Sample records for general quality temporal

  1. Video quality pooling adaptive to perceptual distortion severity.

    PubMed

    Park, Jincheol; Seshadrinathan, Kalpana; Lee, Sanghoon; Bovik, Alan Conrad

    2013-02-01

    It is generally recognized that severe video distortions that are transient in space and/or time have a large effect on overall perceived video quality. In order to understand this phenomena, we study the distribution of spatio-temporally local quality scores obtained from several video quality assessment (VQA) algorithms on videos suffering from compression and lossy transmission over communication channels. We propose a content adaptive spatial and temporal pooling strategy based on the observed distribution. Our method adaptively emphasizes "worst" scores along both the spatial and temporal dimensions of a video sequence and also considers the perceptual effect of large-area cohesive motion flow such as egomotion. We demonstrate the efficacy of the method by testing it using three different VQA algorithms on the LIVE Video Quality database and the EPFL-PoliMI video quality database.

  2. Water-quality conditions at selected landfills in Mecklenburg County, North Carolina, 1986-92

    USGS Publications Warehouse

    Ferrell, G.M.; Smith, D.G.

    1995-01-01

    Water-quality conditions at five municipal landfills in Mecklenburg County, North Carolina, were studied during 1986-92. Analytical results of water samples from monitoring wells and streams at and near the landfills were used to evaluate effects of leachate on surface and ground water. Ground-water levels at monitoring wells were used to determine directions of ground-water flow at the landfills. Data from previous studies were used for analysis of temporal trends in selected water-quality properties and chemical constituents. Effects of leachate, such as large biochemical- and chemical-oxygen demands, generally were evident in small streams originating within the landfills, whereas effects of leachate generally were not evident in most of the larger streams. In larger streams, surface-water quality upstream and downstream from most of the landfills was similar. However, the chemical quality of water in Irwin Creek appears to have been affected by the Statesville Road landfill. Concentrations of several constituents indicative of leachate were larger in samples collected from Irwin Creek downstream from the Statesville Road landfill than in samples collected from Irwin Creek upstream from the landfill. The effect of leachate on ground-water quality generally was largest in water from wells adjacent to waste-disposal cells. Concentrations of most constituents considered indicative of leachate generally were smaller with increasing distance from waste-disposal cells. Water samples from offsite wells generally indicated no effect or very small effects of leachate. Action levels designated by the Mecklenburg County Engineering Department and maximum contaminant levels established by the U.S. Environmental Protection Agency were exceeded in some samples from the landfills. Ground-water samples exceeded action levels and maximum contaminant levels more commonly than surface-water samples. Iron and manganese were the constituents that most commonly exceeded action levels in water samples from the landfills. Synthetic organic compounds were detected more commonly and in larger concentrations in ground-water samples than in surface-water samples. Concentrations of synthetic organic compounds detected in water samples from monitoring sites at the landfills generally were much less than maximum contaminant levels. However, concentrations of some chlorinated organic compounds exceeded maximum contaminant levels in samples from several monitoring wells at the Harrisburg Road and York Road landfills. Trend analysis indicated statistically significant temporal changes in concentrations of selected water-quality constituents and properties at some of the monitoring sites. Trends detected for the Holbrooks Road and Statesville Road landfills generally indicated an improvement in water quality and a decrease in effects of leachate at most monitoring sites at these landfills from 1979 to 1992. Water-quality trends detected for monitoring sites at the Harrisburg Road and York Road landfills, the largest landfills in the study, differed in magnitude and direction. Upward trends generally were detected for sites near recently closed waste-disposal cells, whereas downward trends generally were detected for sites near older waste-disposal cells. Temporal trends in water quality generally reflected changes in degradation processes associated with the aging of landfill wastes.

  3. The temporal structure of pollution levels in developed cities.

    PubMed

    Barrigón Morillas, Juan Miguel; Ortiz-Caraballo, Carmen; Prieto Gajardo, Carlos

    2015-06-01

    Currently, the need for mobility can cause significant pollution levels in cities, with important effects on health and quality of life. Any approach to the study of urban pollution and its effects requires an analysis of spatial distribution and temporal variability. It is a crucial dilemma to obtain proven methodologies that allow an increase in the quality of the prediction and the saving of resources in the spatial and temporal sampling. This work proposes a new analytical methodology in the study of temporal structure. As a result, a model for estimating annual levels of urban traffic noise was proposed. The average errors are less than one decibel in all acoustics indicators. A new working methodology of urban noise has begun. Additionally, a general application can be found for the study of the impacts of pollution associated with traffic, with implications for urban design and possibly in economic and sociological aspects. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Video quality assessment using motion-compensated temporal filtering and manifold feature similarity

    PubMed Central

    Yu, Mei; Jiang, Gangyi; Shao, Feng; Peng, Zongju

    2017-01-01

    Well-performed Video quality assessment (VQA) method should be consistent with human visual systems for better prediction accuracy. In this paper, we propose a VQA method using motion-compensated temporal filtering (MCTF) and manifold feature similarity. To be more specific, a group of frames (GoF) is first decomposed into a temporal high-pass component (HPC) and a temporal low-pass component (LPC) by MCTF. Following this, manifold feature learning (MFL) and phase congruency (PC) are used to predict the quality of temporal LPC and temporal HPC respectively. The quality measures of the LPC and the HPC are then combined as GoF quality. A temporal pooling strategy is subsequently used to integrate GoF qualities into an overall video quality. The proposed VQA method appropriately processes temporal information in video by MCTF and temporal pooling strategy, and simulate human visual perception by MFL. Experiments on publicly available video quality database showed that in comparison with several state-of-the-art VQA methods, the proposed VQA method achieves better consistency with subjective video quality and can predict video quality more accurately. PMID:28445489

  5. Multi-regional synthesis of temporal trends in biotic assemblages in streams and rivers of the continental United States

    USGS Publications Warehouse

    Miller, Matthew P.; Brasher, Anne M.D.; Keenen, Jonathan G.

    2013-01-01

    Biotic assemblages in aquatic ecosystems are excellent integrators and indicators of changing environmental conditions within a watershed. Therefore, temporal changes in abiotic environmental variables often can be inferred from temporal changes in biotic assemblages. Algae, macroinvertebrate, and fish assemblage data were collected from 91 sampling sites in 4 geographic regions (northeastern/north-central, southeastern, south-central, and western), collectively encompassing the continental United States, from 1993 to 2009 as part of the U.S. Geological Survey National Water-Quality Assessment Program. This report uses a multivariate approach to synthesize temporal trends in biotic assemblages and correlations with relevant abiotic parameters as a function of biotic assemblage, geographic region, and land use. Of the three groups of biota, algal assemblages had temporal trends at the greatest percentage of sites. Of the regions, a greater percentage of sites in the northeastern/north-central and western regions had temporal trends in biotic assemblages. In terms of land use, a greater percentage of watersheds draining agricultural, urban, and undeveloped areas had significant temporal changes in biota, as compared to watersheds with mixed use. Correlations between biotic assemblages and abiotic variables indicate that, in general, macroinvertebrate assemblages correlated with water quality and fish assemblages correlated with physical habitat. Taken together, results indicate that there are regional differences in how individual biotic assemblages (algae, macroinvertebrates, and fish) respond to different abiotic drivers of change.

  6. Video quality assessment method motivated by human visual perception

    NASA Astrophysics Data System (ADS)

    He, Meiling; Jiang, Gangyi; Yu, Mei; Song, Yang; Peng, Zongju; Shao, Feng

    2016-11-01

    Research on video quality assessment (VQA) plays a crucial role in improving the efficiency of video coding and the performance of video processing. It is well acknowledged that the motion energy model generates motion energy responses in a middle temporal area by simulating the receptive field of neurons in V1 for the motion perception of the human visual system. Motivated by the biological evidence for the visual motion perception, a VQA method is proposed in this paper, which comprises the motion perception quality index and the spatial index. To be more specific, the motion energy model is applied to evaluate the temporal distortion severity of each frequency component generated from the difference of Gaussian filter bank, which produces the motion perception quality index, and the gradient similarity measure is used to evaluate the spatial distortion of the video sequence to get the spatial quality index. The experimental results of the LIVE, CSIQ, and IVP video databases demonstrate that the random forests regression technique trained by the generated quality indices is highly correspondent to human visual perception and has many significant improvements than comparable well-performing methods. The proposed method has higher consistency with subjective perception and higher generalization capability.

  7. A generalized time-frequency subtraction method for robust speech enhancement based on wavelet filter banks modeling of human auditory system.

    PubMed

    Shao, Yu; Chang, Chip-Hong

    2007-08-01

    We present a new speech enhancement scheme for a single-microphone system to meet the demand for quality noise reduction algorithms capable of operating at a very low signal-to-noise ratio. A psychoacoustic model is incorporated into the generalized perceptual wavelet denoising method to reduce the residual noise and improve the intelligibility of speech. The proposed method is a generalized time-frequency subtraction algorithm, which advantageously exploits the wavelet multirate signal representation to preserve the critical transient information. Simultaneous masking and temporal masking of the human auditory system are modeled by the perceptual wavelet packet transform via the frequency and temporal localization of speech components. The wavelet coefficients are used to calculate the Bark spreading energy and temporal spreading energy, from which a time-frequency masking threshold is deduced to adaptively adjust the subtraction parameters of the proposed method. An unvoiced speech enhancement algorithm is also integrated into the system to improve the intelligibility of speech. Through rigorous objective and subjective evaluations, it is shown that the proposed speech enhancement system is capable of reducing noise with little speech degradation in adverse noise environments and the overall performance is superior to several competitive methods.

  8. H.M. never again! An analysis of H.M.'s epilepsy and treatment.

    PubMed

    Mauguière, F; Corkin, S

    2015-03-01

    On August 25, 1953, the patient H.M., aged 27, underwent a bilateral surgical destruction of the inner aspect of his temporal lobes performed by William Beecher Scoville with the aim to control H.M.'s drug refractory epileptic seizures and alleviate their impact on his quality of life. Postoperatively, H.M. presented for 55 years a "striking and totally unexpected grave loss of recent memories". This paper reports what we know about H.M.'s epilepsy before and after surgery and puts forward arguments supporting the syndromic classification of his epilepsy. We attempted to elucidate what could have been the rationale, in 1953, of Scoville's decision to carry out a bilateral ablation of H.M.'s medial temporal lobe structures, and we examined whether there was any convincing argument published before 1953 suggesting that bilateral hippocampal ablation could result in a permanent and severe amnesia. Our a posteriori analysis of H.M.'s medical history suggested that he was most probably suffering from idiopathic generalized epilepsy with absences and generalized convulsive seizures worsened by high dosage phenytoin treatment, or less probably from cryptogenic frontal lobe epilepsy. Importantly, he did not have temporal lobe epilepsy. Scoville based his proposal of bilateral mesial temporal lobe ablation on his experience as a psychosurgeon and on the assumption that the threshold of generalized epileptic activity could be lowered by some kind of hippocampal dysfunction potentially epileptic in nature. Given the scanty information on the link between amnesia and medial temporal lobe lesions that was available in humans in 1953, one can understand why Scoville was so surprised by the "striking and totally unexpected" memory loss he observed in H.M. after the bilateral ablation of his mesial temporal lobe structures. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. A BASIN-WIDE ANALYSIS OF THE DYNAMICS OF FECAL CONTAMINATION AND FECAL SOURCE IDENTIFICATION IN TILLAMOOK BAY, OREGON

    EPA Science Inventory

    The objectives of this study were to determine if spatial and temporal dynamics exist in source-specific Bacteroidales 16S rRNA genetic marker data across a watershed, to study these in relation to fecal indicator counts, general measurements of water quality, and climat...

  10. Water quality modeling in the dead end sections of drinking water (Supplement)

    EPA Pesticide Factsheets

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of the distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used tocalibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variation

  11. Water Quality Modeling in the Dead End Sections of Drinking ...

    EPA Pesticide Factsheets

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of a distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used to calibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variations

  12. Water Quality Assessment for Deep-water Channel area of Guangzhou Port based on the Comprehensive Water Quality Identification Index Method

    NASA Astrophysics Data System (ADS)

    Chen, Yi

    2018-03-01

    The comprehensive water quality identification index method is able to assess the general water quality situation comprehensively and represent the water quality classification; water environment functional zone achieves pollution level and standard objectively and systematically. This paper selects 3 representative zones along deep-water channel of Guangzhou port and applies comprehensive water quality identification index method to calculate sea water quality monitoring data for different selected zones from year 2006 to 2014, in order to investigate the temporal variation of water quality along deep-water channel of Guangzhou port. The comprehensive water quality level from north to south presents an increased trend, and the water quality of the three zones in 2014 is much better than in 2006. This paper puts forward environmental protection measurements and suggestions for Pearl River Estuary, provides data support and theoretical basis for studied sea area pollution prevention and control.

  13. Application of Climate Assessment Tool (CAT) to estimate climate variability impacts on nutrient loading from local watersheds

    Treesearch

    Ying Ouyang; Prem B. Parajuli; Gary Feng; Theodor D. Leininger; Yongshan Wan; Padmanava Dash

    2018-01-01

    A vast amount of future climate scenario datasets, created by climate models such as general circulation models (GCMs), have been used in conjunction with watershed models to project future climate variability impact on hydrological processes and water quality. However, these low spatial-temporal resolution datasets are often difficult to downscale spatially and...

  14. Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression

    NASA Astrophysics Data System (ADS)

    Chu, Hone-Jay; Kong, Shish-Jeng; Chang, Chih-Hua

    2018-03-01

    The turbidity (TB) of a water body varies with time and space. Water quality is traditionally estimated via linear regression based on satellite images. However, estimating and mapping water quality require a spatio-temporal nonstationary model, while TB mapping necessitates the use of geographically and temporally weighted regression (GTWR) and geographically weighted regression (GWR) models, both of which are more precise than linear regression. Given the temporal nonstationary models for mapping water quality, GTWR offers the best option for estimating regional water quality. Compared with GWR, GTWR provides highly reliable information for water quality mapping, boasts a relatively high goodness of fit, improves the explanation of variance from 44% to 87%, and shows a sufficient space-time explanatory power. The seasonal patterns of TB and the main spatial patterns of TB variability can be identified using the estimated TB maps from GTWR and by conducting an empirical orthogonal function (EOF) analysis.

  15. Surface water quality in streams and rivers: introduction, scaling, and climate change: Chapter 5

    USGS Publications Warehouse

    Loperfido, John

    2013-01-01

    A variety of competing and complementary needs such as ecological health, human consumption, transportation, recreation, and economic value make management and protection of water resources in riverine environments essential. Thus, an understanding of the complex and interacting factors that dictate riverine water quality is essential in empowering stake-holders to make informed management decisions (see Chapter 1.15 for additional information on water resource management). Driven by natural and anthropogenic forcing factors, a variety of chemical, physical, and biological processes dictate riverine water quality, resulting in temporal and spatial patterns and cycling (see Chapter 1.2 for information describing how global change interacts with water resources). Furthermore, changes in climatic forcing factors may lead to long-term deviations in water quality outside the envelope of historical data. The goal of this chapter is to present fundamental concepts dictating the conditions of basic water quality parameters in rivers and streams (herein generally referred to as rivers unless discussing a specific system) in the context of temporal (diel (24 h) to decadal) longitudinal scaling. Understanding water quality scaling in rivers is imperative as water is continually reused and recycled (see also Chapters 3.1 and 3.15); upstream discharges from anthropogenic sources are incorporated into bulk riverine water quality that is used by downstream consumers. Water quality parameters reviewed here include temperature, pH, dissolved oxygen (DO), and suspended sediment and were selected given the abundance of data available for these parameters due to recent advances in water quality sensor technology (see Chapter 4.13 for use of hydrologic data in watershed management). General equations describing reactions affecting water temperature, pH, DO, and suspended sediment are included to convey the complexity of how simultaneously occurring reactions can affect water quality in rivers. Concepts presented in this chapter will provide a backdrop that other chapters in this book will explore further, including water quality in the following riverine systems: the Mississippi River (see Chapter 4.9), Hudson River (see Chapter 4.6), and rivers in India (see Chapter 4.10).

  16. Querying temporal clinical databases on granular trends.

    PubMed

    Combi, Carlo; Pozzi, Giuseppe; Rossato, Rosalba

    2012-04-01

    This paper focuses on the identification of temporal trends involving different granularities in clinical databases, where data are temporal in nature: for example, while follow-up visit data are usually stored at the granularity of working days, queries on these data could require to consider trends either at the granularity of months ("find patients who had an increase of systolic blood pressure within a single month") or at the granularity of weeks ("find patients who had steady states of diastolic blood pressure for more than 3 weeks"). Representing and reasoning properly on temporal clinical data at different granularities are important both to guarantee the efficacy and the quality of care processes and to detect emergency situations. Temporal sequences of data acquired during a care process provide a significant source of information not only to search for a particular value or an event at a specific time, but also to detect some clinically-relevant patterns for temporal data. We propose a general framework for the description and management of temporal trends by considering specific temporal features with respect to the chosen time granularity. Temporal aspects of data are considered within temporal relational databases, first formally by using a temporal extension of the relational calculus, and then by showing how to map these relational expressions to plain SQL queries. Throughout the paper we consider the clinical domain of hemodialysis, where several parameters are periodically sampled during every session. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Modeling very large-fire occurrences over the continental United States from weather and climate forcing

    Treesearch

    R Barbero; J T Abatzoglou; E A Steel

    2014-01-01

    Very large-fires (VLFs) have widespread impacts on ecosystems, air quality, fire suppression resources, and in many regions account for a majority of total area burned. Empirical generalized linear models of the largest fires (>5000 ha) across the contiguous United States (US) were developed at ¡­60 km spatial and weekly temporal resolutions using solely atmospheric...

  18. Temporal trends of selected agricultural chemicals in Iowa's groundwater, 1982-1995: Are things getting better?

    USGS Publications Warehouse

    Kolpin, D.W.; Sneck-Fahrer, D.; Hallberg, G.R.; Libra, R.D.

    1997-01-01

    Since 1982, the Iowa Groundwater Monitoring (IGWM) Program has been used to sample untreated groundwater from Iowa municipal wells for selected agricultural chemicals. This long-term database was used to determine if concentrations of select agricultural chemicals in groundwater have changed with time. Nitrate, alachlor [2-chloro-2′-6′-diethyl-N-(methoxymethyl)-acetanilide], atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), cyanazine [2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-methylpropionitrile)], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] were selected for this temporal analysis of the data. Conclusive temporal changes in frequency of detection and median chemical concentrations were found only for atrazine (decrease) and metolachlor (increase). The greatest temporal chemical changes occurred in the shallowest wells and in alluvial aquifers—both relating to groups of wells generally having the youngest groundwater age. The temporal patterns found for atrazine and metolachlor are consistent with their patterns of chemical use and/or application rates and are suggestive of a causal relation. Only continued data collection, however, will indicate if the trends in chemical concentrations described here represent long-term temporal patterns or only short-term changes in groundwater. No definitive answers could be made in regards to the question of overall improvements in groundwater quality with respect to agricultural chemical contamination and time, due to the inherent problems with the simplistic measurement of overall severity (summation of alachlor + atrazine + cyanazine + metolachlor concentrations) examined for this study. To adequately determine if there is an actual decreasing trend in the overall severity of contamination (improving groundwater quality), the collection of additional water-chemistry data and the investigation of other measures of severity are needed.

  19. High-Density, High-Resolution, Low-Cost Air Quality Sensor Networks for Urban Air Monitoring

    NASA Astrophysics Data System (ADS)

    Mead, M. I.; Popoola, O. A.; Stewart, G.; Bright, V.; Kaye, P.; Saffell, J.

    2012-12-01

    Monitoring air quality in highly granular environments such as urban areas which are spatially heterogeneous with variable emission sources, measurements need to be made at appropriate spatial and temporal scales. Current routine air quality monitoring networks generally are either composed of sparse expensive installations (incorporating e.g. chemiluminescence instruments) or higher density low time resolution systems (e.g. NO2 diffusion tubes). Either approach may not accurately capture important effects such as pollutant "hot spots" or adequately capture spatial (or temporal) variability. As a result, analysis based on data from traditional low spatial resolution networks, such as personal exposure, may be inaccurate. In this paper we present details of a sophisticated, low-cost, multi species (gas phase, speciated PM, meteorology) air quality measurement network methodology incorporating GPS and GPRS which has been developed for high resolution air quality measurements in urban areas. Sensor networks developed in the Centre for Atmospheric Science (University of Cambridge) incorporated electrochemical gas sensors configured for use in urban air quality studies operating at parts-per-billion (ppb) levels. It has been demonstrated that these sensors can be used to measure key air quality gases such as CO, NO and NO2 at the low ppb mixing ratios present in the urban environment (estimated detection limits <4ppb for CO and NO and <1ppb for NO2. Mead et al (submitted Aug., 2012)). Based on this work, a state of the art multi species instrument package for deployment in scalable sensor networks has been developed which has general applicability. This is currently being employed as part of a major 3 year UK program at London Heathrow airport (the Sensor Networks for Air Quality (SNAQ) Heathrow project). The main project outcome is the creation of a calibrated, high spatial and temporal resolution data set for O3, NO, NO2, SO2, CO, CO2, VOCstotal, size-speciated PM, temperature, relative humidity, wind speed and direction. The network incorporates existing GPRS infrastructures for real time sending of data with low overheads in terms of cost, effort and installation. In this paper we present data from the SNAQ Heathrow project as well as previous deployments showing measurement capability at the ppb level for NO, NO2 and CO. We show that variability can be observed and measured quantitatively using these sensor networks over widely differing time scales from individual emission events, diurnal variability associated with traffic and meteorological conditions, through to longer term synoptic weather conditions and seasonal behaviour. This work demonstrates a widely applicable generic capability to urban areas, airports as well as other complex emissions environments making this sensor system methodology valuable for scientific, policy and regulatory issues. We conclude that the low-cost high-density network philosophy has the potential to provide a more complete assessment of the high-granularity air quality structure generally observed in the environment. Further, when appropriately deployed, has the potential to offer a new paradigm in air quality quantification and monitoring.

  20. Spatial patterns and temporal variability in water quality from City of Albuquerque drinking-water supply wells and piezometer nests, with implications for the ground-water flow system

    USGS Publications Warehouse

    Bexfield, Laura M.; Anderholm, Scott K.

    2002-01-01

    Water-quality data for 93 City of Albuquerque drinking-water supply wells, 7 deep piezometer nests, and selected additional wells were examined to improve understanding of the regional ground-water system and its response to pumpage. Plots of median values of several major parameters showed discernible water-quality differences both areally and with depth in the aquifer. Areal differences were sufficiently large to enable delineation of five regions of generally distinct water quality, which are consistent with areas of separate recharge defined by previous investigators. Data for deep piezometer nests indicate that water quality generally degrades somewhat with depth, except in areas where local recharge influenced by evapotranspiration or contamination could be affecting shallow water. The orientations of the five water-quality regions indicate that the direction of ground-water flow has historically been primarily north to south. This is generally consistent with maps of predevelopment hydraulic heads, although some areas lack consistency, possibly because of differences in time scales or depths represented by water quality as opposed to hydraulic head. The primary sources of recharge to ground water in the study area appear to be mountain-front recharge along the Sandia Mountains to the east and the Jemez Mountains to the north, seepage from the Rio Grande, and infiltration through Tijeras Arroyo. Elevated concentrations of many chemical constituents in part of the study area appear to be associated with a source of water having large dissolved solids, possibly moving upward from depth. Hydraulic-head data for deep piezometer nests indicate that vertical head gradients differ in direction and magnitude across the study area. Hydraulic-head gradients are downward in the central and western parts of the study area and upward across much of the eastern part, except at the mountain front. Water-quality data for the piezometers indicate that the ground water is not well mixed, even in areas of large vertical gradients. Water levels in most piezometers respond to short-term variations in ground-water withdrawals and to the cumulative effect of long-term withdrawals throughout the area. In most piezometers screened below the water table, water levels respond clearly to seasonal variations in ground-water withdrawals. Water levels decline from about April through July and rise from about September through January. Water levels seem to be declining in most piezometers at a rate less than 1 foot per year. Water-quality data for unfiltered samples collected over a 10-year period from 93 City of Albuquerque drinking-water supply wells were examined for variability and temporal trends in 10 selected parameters. Variability generally was found to be greatest in the Western and Northeast water-quality regions of the study area. For the 10 parameters investigated, temporal trends were found in 5 to 57 wells. Dissolved-solids, sodium, sulfate, chloride, and silica concentrations showed more increasing than decreasing trends; calcium, bicarbonate, and arsenic concentrations, field pH, and water temperature showed more decreasing than increasing trends. The median magnitudes of most of these trends over a 1-year period were not particularly large (generally less than 1.0 milligram per liter), although the magnitudes for a few individual wells were significant. For the 10 parameters investigated, correlations with monthly pumpage volumes were found in 10 to 32 wells. Calcium and sulfate concentrations, field pH, and water temperature showed more positive than negative correlations with monthly pumpage; dissolved-solids, sodium, bicarbonate, chloride, silica, and arsenic concentrations showed more negative than positive correlations. An increase in pumpage in an individual well appears to increase the contribution

  1. The relationship of seizure focus with depression, anxiety, and health-related quality of life in children and adolescents with epilepsy.

    PubMed

    Schraegle, William A; Titus, Jeffrey B

    2017-03-01

    For youth with epilepsy, comorbid psychiatric conditions, such as depression and anxiety, require further examination as they carry increased risk for reduced health-related quality of life (HRQOL). The current study assessed whether rates of depression, anxiety, and withdrawal behaviors differed based on seizure location. Data included parental ratings on the Behavior Assessment System for Children (BASC-2) and the Quality of Life in Childhood Epilepsy (QOLCE) questionnaire for 132 children and adolescents (mean age=11.34, SD=3.95) with generalized or partial (i.e., frontal [FLE] or temporal lobe epilepsy [TLE]) epilepsy. Our results identified clinically significant internalizing psychopathology in nearly half of our sample (41%). Although rates of internalizing behavior were similar between generalized and partial groups, children and adolescents with TLE demonstrated higher rates of depression compared to youth with FLE. No effects of laterality on internalizing behaviors were identified between TLE and FLE groups. Finally, for youth with TLE, parental depression ratings along with current number of antiepileptic medications (AEDs) were found to be significant barriers to HRQOL above and beyond anxiety, withdrawal, and epilepsy-specific variables. Temporal lobe epilepsy was associated with a two-fold risk of clinically significant depression ratings. These findings highlight the high prevalence of internalizing psychopathology features in pediatric epilepsy and offer further support for the relationship between depression and TLE in children and adolescents with epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Temporal and spatial evolution characteristics of water environment quality in Heze

    NASA Astrophysics Data System (ADS)

    Gao, Qian; Zhao, Qiang; Li, Xiumei

    2018-06-01

    The evolution of water environment is relatively complicated. The study of its characteristics is helpful to grasp the general direction of spatial and temporal evolution of water environment in Heze city, and to carry out water resources development and water environment protection more rationally. The comprehensive pollution index method for calculation, and the observed data are handled by Excel. In order to facilitate the analysis of the basin, Arcgis is utilized to map the watershed map. In addition, for the spatial evolution, surfer12 is used to analyze the spatial evolution characteristics the spatial evolution, and to draw the pictures of spatial evolution of chemical oxygen demand and water quality evolution. The study shows that: (1) In Heze, the quality of water environment has been improved year by year from 2006 to 2013. In 2014, the water environment has deteriorated. The content of volatile phenol has increased greatly, and the evolution trend of COD is close to the trend of the comprehensive pollution index. (2) In terms of Spatial state of water environment, the water quality of Zhuzhao New River and Wanfu River is poor, and Dongyu River water quality is better. Zhuzhao New River and Wanfu River water qualityis often worse than grade V or V, and Dongyu River water quality is mostly maintained in the grade Ⅳ. Through the analysis on the spatial revolution characteristics of water quality and chemical oxygen demand(COD),as a result, water quality is poor in the northern region,and the water quality in the southern region is better in Heze. Although the water quality has changed in recent years, the overall pattern is relatively stable.

  3. Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system.

    PubMed

    Mrochen, Michael; Schelling, Urs; Wuellner, Christian; Donitzky, Christof

    2009-02-01

    To investigate the effect of temporal and spatial distributions of laser spots (scan sequences) on the corneal surface quality after ablation and the maximum ablation of a given refractive correction after photoablation with a high-repetition-rate scanning-spot laser. IROC AG, Zurich, Switzerland, and WaveLight AG, Erlangen, Germany. Bovine corneas and poly(methyl methacrylate) (PMMA) plates were photoablated using a 1050 Hz excimer laser prototype for corneal laser surgery. Four temporal and spatial spot distributions (scan sequences) with different temporal overlapping factors were created for 3 myopic, 3 hyperopic, and 3 phototherapeutic keratectomy ablation profiles. Surface quality and maximum ablation depth were measured using a surface profiling system. The surface quality factor increased (rough surfaces) as the amount of temporal overlapping in the scan sequence and the amount of correction increased. The rise in surface quality factor was less for bovine corneas than for PMMA. The scan sequence might cause systematic substructures at the surface of the ablated material depending on the overlapping factor. The maximum ablation varied within the scan sequence. The temporal and spatial distribution of the laser spots (scan sequence) during a corneal laser procedure affected the surface quality and maximum ablation depth of the ablation profile. Corneal laser surgery could theoretically benefit from smaller spot sizes and higher repetition rates. The temporal and spatial spot distributions are relevant to achieving these aims.

  4. Quality of Life Outcomes in Community-based Mental Health Consumers: Comparisons with Population Norms and Changes over Time.

    PubMed

    Happell, Brenda; Stanton, Robert; Hodgetts, Danya; Scott, David

    2016-01-01

    Quality of life is shown to be lower in people diagnosed with mental illness in comparison to the general population. The aim of this study is to examine the Quality of life in a subset of people accessing mental health services in a regional Queensland Centre. Thirty-seven people accessing mental health services completed the SF36 Health Survey on three occasions. Differences and relationships between Physical Composite Scores and Mental Composite Scores, comparisons with Australian population norms, and temporal change in Quality of Life were examined. Physical Composite Scores were significantly different to, but significantly correlated with, Mental Composite Scores on each occasion. Physical Composite Scores and Mental Composite Scores were significantly different to population norms, and did not vary significantly across time. The poor Quality of life of people with mental illness remains a significant challenge for the mental health workforce.

  5. The role of soil communities in improving ecosystem services in organic farming

    NASA Astrophysics Data System (ADS)

    Zandbergen, Jelmer; Koorneef, Guusje; Veen, Cees; Schrama, Jan; van der Putten, Wim

    2017-04-01

    Worldwide soil fertility decreases and it is generally believed that organic matter (OM) addition to agricultural soils can improve soil properties leading to beneficial ecosystem services. However, it remains unknown under which conditions and how fast biotic, physical and chemical soil properties respond to varying quality and quantity of OM inputs. Therefore, the aims of this research project are (1) to unravel biotic, physical and chemical responses of soils to varying quantity and quality of OM addition; and (2) to understand how we can accelerate the response of soils in order to improve beneficial soil ecosystem services faster. The first step in our research project is to determine how small-scale spatio-temporal patterns in soil biotic, physical and chemical properties relate to crop production and quality. To do this we combine field measurements on soil properties with remote and proximate sensing measures on crop development and yield in a long-term farming systems experiment in the Netherlands (Vredepeel). We hypothesize that spatio-temporal variation in crop development and yield are strongly related to spatio-temporal variation in soil parameters. In the second step of our project we will use this information to identify biological interactions underlying improving soil functions in response to OM addition over time. We will specifically focus on the role of soil communities in driving nutrient cycling, disease suppression and the formation of soil structure, all crucial elements of key soil services in agricultural soils. The knowledge that will be generated in our project can be used to detect specific organic matter qualities that support the underlying ecological processes to accelerate the transition towards improved soil functioning thereby governing enhanced crop yields.

  6. Spatial, temporal, and hybrid decompositions for large-scale vehicle routing with time windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, Russell W

    This paper studies the use of decomposition techniques to quickly find high-quality solutions to large-scale vehicle routing problems with time windows. It considers an adaptive decomposition scheme which iteratively decouples a routing problem based on the current solution. Earlier work considered vehicle-based decompositions that partitions the vehicles across the subproblems. The subproblems can then be optimized independently and merged easily. This paper argues that vehicle-based decompositions, although very effective on various problem classes also have limitations. In particular, they do not accommodate temporal decompositions and may produce spatial decompositions that are not focused enough. This paper then proposes customer-based decompositionsmore » which generalize vehicle-based decouplings and allows for focused spatial and temporal decompositions. Experimental results on class R2 of the extended Solomon benchmarks demonstrates the benefits of the customer-based adaptive decomposition scheme and its spatial, temporal, and hybrid instantiations. In particular, they show that customer-based decompositions bring significant benefits over large neighborhood search in contrast to vehicle-based decompositions.« less

  7. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs

    PubMed Central

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-01-01

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006–2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources. PMID:26492263

  8. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs.

    PubMed

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-10-20

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006-2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  9. Water Quality Sensing and Spatio-Temporal Monitoring Structure with Autocorrelation Kernel Methods.

    PubMed

    Vizcaíno, Iván P; Carrera, Enrique V; Muñoz-Romero, Sergio; Cumbal, Luis H; Rojo-Álvarez, José Luis

    2017-10-16

    Pollution on water resources is usually analyzed with monitoring campaigns, which consist of programmed sampling, measurement, and recording of the most representative water quality parameters. These campaign measurements yields a non-uniform spatio-temporal sampled data structure to characterize complex dynamics phenomena. In this work, we propose an enhanced statistical interpolation method to provide water quality managers with statistically interpolated representations of spatial-temporal dynamics. Specifically, our proposal makes efficient use of the a priori available information of the quality parameter measurements through Support Vector Regression (SVR) based on Mercer's kernels. The methods are benchmarked against previously proposed methods in three segments of the Machángara River and one segment of the San Pedro River in Ecuador, and their different dynamics are shown by statistically interpolated spatial-temporal maps. The best interpolation performance in terms of mean absolute error was the SVR with Mercer's kernel given by either the Mahalanobis spatial-temporal covariance matrix or by the bivariate estimated autocorrelation function. In particular, the autocorrelation kernel provides with significant improvement of the estimation quality, consistently for all the six water quality variables, which points out the relevance of including a priori knowledge of the problem.

  10. Water Quality Sensing and Spatio-Temporal Monitoring Structure with Autocorrelation Kernel Methods

    PubMed Central

    Vizcaíno, Iván P.; Muñoz-Romero, Sergio; Cumbal, Luis H.

    2017-01-01

    Pollution on water resources is usually analyzed with monitoring campaigns, which consist of programmed sampling, measurement, and recording of the most representative water quality parameters. These campaign measurements yields a non-uniform spatio-temporal sampled data structure to characterize complex dynamics phenomena. In this work, we propose an enhanced statistical interpolation method to provide water quality managers with statistically interpolated representations of spatial-temporal dynamics. Specifically, our proposal makes efficient use of the a priori available information of the quality parameter measurements through Support Vector Regression (SVR) based on Mercer’s kernels. The methods are benchmarked against previously proposed methods in three segments of the Machángara River and one segment of the San Pedro River in Ecuador, and their different dynamics are shown by statistically interpolated spatial-temporal maps. The best interpolation performance in terms of mean absolute error was the SVR with Mercer’s kernel given by either the Mahalanobis spatial-temporal covariance matrix or by the bivariate estimated autocorrelation function. In particular, the autocorrelation kernel provides with significant improvement of the estimation quality, consistently for all the six water quality variables, which points out the relevance of including a priori knowledge of the problem. PMID:29035333

  11. Urban air quality measurements using a sensor-based system

    NASA Astrophysics Data System (ADS)

    Ródenas, Mila; Hernández, Daniel; Gómez, Tatiana; López, Ramón; Muñoz, Amalia

    2017-04-01

    Air pollution levels in urban areas have increased the interest, not only of the scientific community but also of the general public, and both at the regional and at the European level. This interest has run in parallel to the development of miniaturized sensors, which only since very recently are suitable for air quality measurements. Certainly, their small size and price allows them to be used as a network of sensors capable of providing high temporal and spatial frequency measurements to characterize an area or city and with increasing potential, under certain considerations, as a complement of conventional methods. Within the frame of the LIFE PHOTOCITYTEX project (use of photocatalytic textiles to help reducing air pollution), CEAM has developed a system to measure gaseous compounds of importance for urban air quality characterization. This system, which allows an autonomous power supply, uses commercial NO, NO2, O3 and CO2 small sensors and incorporates measurements of temperature and humidity. A first version, using XBee boards (Radiofrequency) for communications has been installed in the urban locations defined by the project (tunnel and school), permitting the long-term air quality characterization of sites in the presence of the textiles. An improved second version of the system which also comprises a sensor for measuring particles and which uses GPRS for communications, has been developed and successfully installed in the city center of Valencia. Data are sent to a central server where they can be accessed by citizens in nearly real time and online and, in general, they can be utilized in the air quality characterization, for decision-making related to decontamination (traffic regulation, photocatalytic materials, etc.), in air quality models or in mobile applications of interest for the citizens. Within this work, temporal trends obtained with this system in different urban locations will be shown, discussing the impact of the characteristics of the selected sites and the seasonal variability on the air quality levels observed. Acknowledgements EUPHORE staff is acknowledged. PHOTOCITYTEX project (LIFE13 ENV/ES/000603) is acknowledged for supporting this work. Fundación CEAM is partly supported by Generalitat Valenciana - Spain.

  12. Community-wide assessment of pollen limitation in hummingbird-pollinated plants of a tropical montane rain forest

    PubMed Central

    Wolowski, Marina; Ashman, Tia-Lynn; Freitas, Leandro

    2013-01-01

    Background and Aims Although pollen limitation of reproduction (PL) has been widely studied, our understanding of its occurrence in tropical communities, especially for bird-pollinated plants, is underdeveloped. In addition, inclusion of both quantity and quality aspects in studies of PL are generally lacking. Within hummingbird-pollinated plants, a prediction was made for higher PL for the quality than quantity aspects and a minor effect of temporal variation because hummingbirds are constant and efficient pollen vectors but they may transfer low quality pollen. Methods Field hand and open pollination experiments were conducted on 21 species in a tropical montane rain forest over 2 years. The quantity (fruit set and seeds per fruit) and quality (seed weight and germination) aspects of reproduction were assessed as the response to open pollination relative to outcross hand pollination. The relationships between the effect size of quantity and quality aspects of reproduction and predictive plant features (self-incompatibility, autogamy, density and pollinator specialization level) were assessed with phylogenetic generalized linear models. Key Results Just over half of all the species expressed PL for one or more response variables. On average, the severity of PL was strong for one quality variable (seed germination; 0·83), but insignificant for another (seed weight; –0·03), and low to moderate for quantity variables (0·31 for seeds per fruit and 0·39 for fruit set). There was only a minor contribution of temporal variation to PL within the studied species. Common predictors of PL, i.e. phylogenetic relatedness, self-incompatibility, autogamy, plant density and pollinator specialization level, did not adequately explain variation in PL within this community. Conclusions Despite the measurable degree of PL within these hummingbird-pollinated plants, the causes of pollen quality and quantity insufficiency are not clear. Variables other than those tested may contribute to PL or causes of PL may vary among species and cannot adequately be accounted for when assessed from the within-community perspective. PMID:23845434

  13. Average sperm count remains unchanged despite reduction in maternal smoking: results from a large cross-sectional study with annual investigations over 21 years.

    PubMed

    Priskorn, L; Nordkap, L; Bang, A K; Krause, M; Holmboe, S A; Egeberg Palme, D L; Winge, S B; Mørup, N; Carlsen, E; Joensen, U N; Blomberg Jensen, M; Main, K M; Juul, A; Skakkebaek, N E; Jensen, T K; Jørgensen, N

    2018-06-01

    How are temporal trends in lifestyle factors, including exposure to maternal smoking in utero, associated to semen quality in young men from the general population? Exposure to maternal smoking was associated with lower sperm counts but no overall increase in sperm counts was observed during the study period despite a decrease in this exposure. Meta-analyses suggest a continuous decline in semen quality but few studies have investigated temporal trends in unselected populations recruited and analysed with the same protocol over a long period and none have studied simultaneous trends in lifestyle factors. Cross-sectional population-based study including ~300 participants per year (total number = 6386) between 1996 and 2016. The study is based on men from the Greater Copenhagen area, Denmark, with a median age of 19 years, and unselected with regard to fertility status and semen quality. The men delivered a semen sample, had a blood sample drawn and a physical examination performed and answered a comprehensive questionnaire, including information on lifestyle and the mother's pregnancy. Temporal trends in semen quality and lifestyle were illustrated graphically, and trends in semen parameters and the impact of prenatal and current lifestyle factors were explored in multiple regression analyses. Throughout the study period, 35% of the men had low semen quality. Overall, there were no persistent temporal trends in semen quality, testicular volume or levels of follicle-stimulating hormone over the 21 years studied. The men's alcohol intake was lowest between 2011 and 2016, whereas BMI, use of medication and smoking showed no clear temporal trends. Parental age increased, and exposure in utero to maternal smoking declined from 40% among men investigated in 1996-2000 to 18% among men investigated in 2011-2016. Exposure to maternal smoking was associated with lower sperm counts but no overall increase in sperm counts was observed despite the decrease in this exposure. Information of current and prenatal lifestyle was obtained by self-report, and the men delivered only one semen sample each. The significant decline in in utero exposure to maternal smoking, which was not reflected in an overall improvement of semen quality at the population level, suggest that other unknown adverse factors may maintain the low semen quality among Danish men. The study has received financial support from the ReproUnion; the Research fund of Rigshospitalet, Copenhagen University Hospital; the European Union (Contract numbers BMH4-CT96-0314,QLK4-CT-1999-01422, QLK4-CT-2002-00603, FP7/2007-2013, DEER Grant agreement no. 212844); the Danish Ministry of Health; the Danish Environmental Protection Agency; A.P. Møller and wife Chastine McKinney Møllers foundation; and Svend Andersens Foundation. None of the funders had any role in the study design, collection, analysis or interpretation of data, writing of the paper or publication decisions. N/A.

  14. Temporal variation in groundwater quality in the Permian Basin of Texas, a region of increasing unconventional oil and gas development.

    PubMed

    Hildenbrand, Zacariah L; Carlton, Doug D; Fontenot, Brian E; Meik, Jesse M; Walton, Jayme L; Thacker, Jonathan B; Korlie, Stephanie; Shelor, C Phillip; Kadjo, Akinde F; Clark, Adelaide; Usenko, Sascha; Hamilton, Jason S; Mach, Phillip M; Verbeck, Guido F; Hudak, Paul; Schug, Kevin A

    2016-08-15

    The recent expansion of natural gas and oil extraction using unconventional oil and gas development (UD) practices such as horizontal drilling and hydraulic fracturing has raised questions about the potential for environmental impacts. Prior research has focused on evaluations of air and water quality in particular regions without explicitly considering temporal variation; thus, little is known about the potential effects of UD activity on the environment over longer periods of time. Here, we present an assessment of private well water quality in an area of increasing UD activity over a period of 13months. We analyzed samples from 42 private water wells located in three contiguous counties on the Eastern Shelf of the Permian Basin in Texas. This area has experienced a rise in UD activity in the last few years, and we analyzed samples in four separate time points to assess variation in groundwater quality over time as UD activities increased. We monitored general water quality parameters as well as several compounds used in UD activities. We found that some constituents remained stable over time, but others experienced significant variation over the period of study. Notable findings include significant changes in total organic carbon and pH along with ephemeral detections of ethanol, bromide, and dichloromethane after the initial sampling phase. These data provide insight into the potentially transient nature of compounds associated with groundwater contamination in areas experiencing UD activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. High Spatiotemporal Resolution Dynamic Contrast-Enhanced MR Enterography in Crohn Disease Terminal Ileitis Using Continuous Golden-Angle Radial Sampling, Compressed Sensing, and Parallel Imaging.

    PubMed

    Ream, Justin M; Doshi, Ankur; Lala, Shailee V; Kim, Sooah; Rusinek, Henry; Chandarana, Hersh

    2015-06-01

    The purpose of this article was to assess the feasibility of golden-angle radial acquisition with compress sensing reconstruction (Golden-angle RAdial Sparse Parallel [GRASP]) for acquiring high temporal resolution data for pharmacokinetic modeling while maintaining high image quality in patients with Crohn disease terminal ileitis. Fourteen patients with biopsy-proven Crohn terminal ileitis were scanned using both contrast-enhanced GRASP and Cartesian breath-hold (volume-interpolated breath-hold examination [VIBE]) acquisitions. GRASP data were reconstructed with 2.4-second temporal resolution and fitted to the generalized kinetic model using an individualized arterial input function to derive the volume transfer coefficient (K(trans)) and interstitial volume (v(e)). Reconstructions, including data from the entire GRASP acquisition and Cartesian VIBE acquisitions, were rated for image quality, artifact, and detection of typical Crohn ileitis features. Inflamed loops of ileum had significantly higher K(trans) (3.36 ± 2.49 vs 0.86 ± 0.49 min(-1), p < 0.005) and v(e) (0.53 ± 0.15 vs 0.20 ± 0.11, p < 0.005) compared with normal bowel loops. There were no significant differences between GRASP and Cartesian VIBE for overall image quality (p = 0.180) or detection of Crohn ileitis features, although streak artifact was worse with the GRASP acquisition (p = 0.001). High temporal resolution data for pharmacokinetic modeling and high spatial resolution data for morphologic image analysis can be achieved in the same acquisition using GRASP.

  16. Stochastic spatio-temporal model of coral cover as a function of herbivorous grazers, water quality, and coral demographics

    NASA Astrophysics Data System (ADS)

    Neuhausler, R.; Robinson, M.; Bruna, M.

    2017-12-01

    Over the last 60 years we have seen an increased amount of ecological regime shifts in tropical coastal zones, from coral reefs to macroalgae dominated states, as a result of natural and anthropogenic stresses. However, these shifts are not always immediate- macroalgae are generally present in coral reefs, with their distribution regulated by herbivorous fish. This is especially true in Moorea, French Polynesia, where macroalgae are shown to flourish in spaces that provide refuge from roaming herbivores. While there are currently modeling efforts in projecting ecological regime shifts in Moorea, temporal deterministic models have been utilized, which fail to capture metastability between multiple steady states and can have issues when dealing with very small populations. To address these concerns, we build on these models to account for spatial variations and individual organisms, as well as stochasticity. Our model can project the percent cover of coral, macroalgae, and algae turf as a function of herbivorous grazers, water quality, and coral demographics. Grazers, included as individual fish (particles), evolve according to a kinetic model and interact with neighbouring benthic assemblages, represented as nodes. Water quality and coral demographics are input parameters that can vary over time, allowing our model to be run for temporally changing scenarios and to be adjusted for different reefs. We plan to engage with previous Moorea Reef Resilience Models through a comparative analysis of our models' outcomes and existing Moorea data. Coupling projective models with available data is useful for informing environmental policy and advancing the modeling field.

  17. Time-resolved 3D pulmonary perfusion MRI: comparison of different k-space acquisition strategies at 1.5 and 3 T.

    PubMed

    Attenberger, Ulrike I; Ingrisch, Michael; Dietrich, Olaf; Herrmann, Karin; Nikolaou, Konstantin; Reiser, Maximilian F; Schönberg, Stefan O; Fink, Christian

    2009-09-01

    Time-resolved pulmonary perfusion MRI requires both high temporal and spatial resolution, which can be achieved by using several nonconventional k-space acquisition techniques. The aim of this study is to compare the image quality of time-resolved 3D pulmonary perfusion MRI with different k-space acquisition techniques in healthy volunteers at 1.5 and 3 T. Ten healthy volunteers underwent contrast-enhanced time-resolved 3D pulmonary MRI on 1.5 and 3 T using the following k-space acquisition techniques: (a) generalized autocalibrating partial parallel acquisition (GRAPPA) with an internal acquisition of reference lines (IRS), (b) GRAPPA with a single "external" acquisition of reference lines (ERS) before the measurement, and (c) a combination of GRAPPA with an internal acquisition of reference lines and view sharing (VS). The spatial resolution was kept constant at both field strengths to exclusively evaluate the influences of the temporal resolution achieved with the different k-space sampling techniques on image quality. The temporal resolutions were 2.11 seconds IRS, 1.31 seconds ERS, and 1.07 VS at 1.5 T and 2.04 seconds IRS, 1.30 seconds ERS, and 1.19 seconds VS at 3 T.Image quality was rated by 2 independent radiologists with regard to signal intensity, perfusion homogeneity, artifacts (eg, wrap around, noise), and visualization of pulmonary vessels using a 3 point scale (1 = nondiagnostic, 2 = moderate, 3 = good). Furthermore, the signal-to-noise ratio in the lungs was assessed. At 1.5 T the lowest image quality (sum score: 154) was observed for the ERS technique and the highest quality for the VS technique (sum score: 201). In contrast, at 3 T images acquired with VS were hampered by strong artifacts and image quality was rated significantly inferior (sum score: 137) compared with IRS (sum score: 180) and ERS (sum score: 174). Comparing 1.5 and 3 T, in particular the overall rating of the IRS technique (sum score: 180) was very similar at both field strengths. At 1.5 T the peak signal-to-noise ratio of the ERS was significantly lower in comparison to the IRS and the VS technique (14.6 vs. 26.7 and 39.6 respectively, P < 0.004). Using the IRS sampling algorithm comparable image quality and SNR can be achieved at 1.5 and 3 T. At 1.5 T VS offers the best possible solution for the conflicting requirements between a further increased temporal resolution and image quality. In consequence the gain of increased scanning efficiency from advanced k[r]-space sampling acquisition techniques can be exploited for a further improvement of image quality of pulmonary perfusion MRI.

  18. Long term (1997-2014) spatial and temporal variations in nitrogen in Dongting Lake, China

    PubMed Central

    Tian, Zebin; Zheng, Binghui; Wang, Lijing; Li, Liqiang; Wang, Xing; Li, Hong; Norra, Stefan

    2017-01-01

    In order to protect the water quality of Dongting Lake, it is significant to find out its nitrogen pollution characteristics. Using long-term monthly to seasonally data (1997–2014), we investigated the spatial and temporal variations in nitrogen in Dongting Lake, the second largest freshwater lake in China. The average concentrations of total nitrogen (TN) in the eastern, southern, and western parts of the lake were 1.77, 1.56, and 1.35 mg/L, respectively, in 2014. TN pollution was generally worse in the southern area than in the western area. Concentrations showed temporal variation, and were significantly higher during the dry season than during the wet season. Based on the concentration and growth rate of TN, three different stages were identified in the long term lake data, from 1997 to 2002, from 2003 to 2008, and from 2009 to 2014, during which the concentrations and the growth rate ranged from 1.09–1.51 mg/L and 22.09%-40.03%, 1.05–1.57 mg/L and -9.05%-7.74%, and 1.68–2.02 mg/L and 57.99%-60.41%, respectively. The main controls on the lake water TN concentrations were the quality and quantity of the lake inflows, spatial and temporal variations in hydrodynamic conditions within the lake (flow velocity, flow direction), and point and nonpoint inputs from human activities. Diffuse nutrient losses from agricultural land are a significant contributor. As a priority, the local government should aim to control the pollutant inputs from upstream and non-point nutrient losses from land. PMID:28166245

  19. Integrative Approach to Quality Assessment of Medical Journals Using Impact Factor, Eigenfactor, and Article Influence Scores

    PubMed Central

    Rizkallah, Jacques; Sin, Don D.

    2010-01-01

    Background Impact factor (IF) is a commonly used surrogate for assessing the scientific quality of journals and articles. There is growing discontent in the medical community with the use of this quality assessment tool because of its many inherent limitations. To help address such concerns, Eigenfactor (ES) and Article Influence scores (AIS) have been devised to assess scientific impact of journals. The principal aim was to compare the temporal trends in IF, ES, and AIS on the rank order of leading medical journals over time. Methods The 2001 to 2008 IF, ES, AIS, and number of citable items (CI) of 35 leading medical journals were collected from the Institute of Scientific Information (ISI) and the http://www.eigenfactor.org databases. The journals were ranked based on the published 2008 ES, AIS, and IF scores. Temporal score trends and variations were analyzed. Results In general, the AIS and IF values provided similar rank orders. Using ES values resulted in large changes in the rank orders with higher ranking being assigned to journals that publish a large volume of articles. Since 2001, the IF and AIS of most journals increased significantly; however the ES increased in only 51% of the journals in the analysis. Conversely, 26% of journals experienced a downward trend in their ES, while the rest experienced no significant changes (23%). This discordance between temporal trends in IF and ES was largely driven by temporal changes in the number of CI published by the journals. Conclusion The rank order of medical journals changes depending on whether IF, AIS or ES is used. All of these metrics are sensitive to the number of citable items published by journals. Consumers should thus consider all of these metrics rather than just IF alone in assessing the influence and importance of medical journals in their respective disciplines. PMID:20419115

  20. Water quality modeling in the dead end sections of drinking water distribution networks.

    PubMed

    Abokifa, Ahmed A; Yang, Y Jeffrey; Lo, Cynthia S; Biswas, Pratim

    2016-02-01

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of the distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used to calibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variations in flow demands on the simulation accuracy. A set of three correction factors were analytically derived to adjust residence time, dispersion rate and wall demand to overcome simulation error caused by spatial aggregation approximation. The current model results show better agreement with field-measured concentrations of conservative fluoride tracer and free chlorine disinfectant than the simulations of recent advection dispersion reaction models published in the literature. Accuracy of the simulated concentration profiles showed significant dependence on the spatial distribution of the flow demands compared to temporal variation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Quality of ground water in Idaho

    USGS Publications Warehouse

    Yee, Johnson J.; Souza, William R.

    1987-01-01

    The major aquifers in Idaho are categorized under two rock types, sedimentary and volcanic, and are grouped into six hydrologic basins. Areas with adequate, minimally adequate, or deficient data available for groundwater-quality evaluations are described. Wide variations in chemical concentrations in the water occur within individual aquifers, as well as among the aquifers. The existing data base is not sufficient to describe fully the ground-water quality throughout the State; however, it does indicate that the water is generally suitable for most uses. In some aquifers, concentrations of fluoride, cadmium, and iron in the water exceed the U.S. Environmental Protection Agency's drinking-water standards. Dissolved solids, chloride, and sulfate may cause problems in some local areas. Water-quality data are sparse in many areas, and only general statements can be made regarding the areal distribution of chemical constituents. Few data are available to describe temporal variations of water quality in the aquifers. Primary concerns related to special problem areas in Idaho include (1) protection of water quality in the Rathdrum Prairie aquifer, (2) potential degradation of water quality in the Boise-Nampa area, (3) effects of widespread use of drain wells overlying the eastern Snake River Plain basalt aquifer, and (4) disposal of low-level radioactive wastes at the Idaho National Engineering Laboratory. Shortcomings in the ground-water-quality data base are categorized as (1) multiaquifer sample inadequacy, (2) constituent coverage limitations, (3) baseline-data deficiencies, and (4) data-base nonuniformity.

  2. Spatial-temporal distortion metric for in-service quality monitoring of any digital video system

    NASA Astrophysics Data System (ADS)

    Wolf, Stephen; Pinson, Margaret H.

    1999-11-01

    Many organizations have focused on developing digital video quality metrics which produce results that accurately emulate subjective responses. However, to be widely applicable a metric must also work over a wide range of quality, and be useful for in-service quality monitoring. The Institute for Telecommunication Sciences (ITS) has developed spatial-temporal distortion metrics that meet all of these requirements. These objective metrics are described in detail and have a number of interesting properties, including utilization of (1) spatial activity filters which emphasize long edges on the order of 10 arc min while simultaneously performing large amounts of noise suppression, (2) the angular direction of the spatial gradient, (3) spatial-temporal compression factors of at least 384:1 (spatial compression of at least 64:1 and temporal compression of at least 6:1, and 4) simple perceptibility thresholds and spatial-temporal masking functions. Results are presented that compare the objective metric values with mean opinion scores from a wide range of subjective data bases spanning many different scenes, systems, bit-rates, and applications.

  3. Streamflow gains and losses and selected water-quality observations in five subreaches of the Rio Grande/Rio Bravo del Norte from near Presidio to Langtry, Texas, Big Bend area, United States and Mexico, 2006

    USGS Publications Warehouse

    Raines, Timothy H.; Turco, Michael J.; Connor, Patrick J.; Bennett, Jeffery B.

    2012-01-01

    Few historical streamflow and water-quality data are available to characterize the segment of the Rio Grande/Rio Bravo del Norte (hereinafter Rio Grande) extending from near Presidio to near Langtry, Texas. The U.S. Geological Survey, in cooperation with the National Park Service and the Texas Commission on Environmental Quality, collected water-quality and streamflow data from the Rio Grande from near Presidio to near Langtry, Texas, to characterize the streamflow gain and loss and selected constituent concentrations in a 336.3-mile reach of the Rio Grande from near Presidio to near Langtry, Texas. Streamflow was measured at 38 sites and water-quality samples were collected at 20 sites along the Rio Grande in February, March, and June 2006. Streamflow gains and losses over the course of the stream were measured indirectly by computing the differences in measured streamflow between sites along the stream. Water-quality data were collected and analyzed for salinity, dissolved solids, major ions, nutrients, trace elements, and stable isotopes. Selected properties and constituents were compared to available Texas Commission on Environmental Quality general use protection criteria or screening levels. Summary statistics of selected water-quality data were computed for each of the five designated subreaches. Streamflow gain and loss and water-quality constituent concentration were compared for each subreach, rather than the entire segment because of the temporal variation in sample collection caused by controlled releases upstream. Subreach A was determined to be a losing reach, and subreaches B, C, D, and E were determined to be gaining reaches. Compared to concentrations measured in upstream subreaches, downstream subreaches exhibited evidence of dilution of selected constituent concentrations. Subreaches A and B had measured total dissolved solids, chloride, and sulfate exceeding the Texas Commission on Environmental Quality general use protection criteria. Subreaches C, D, and E did not exceed the general use protection criteria for any constituent concentration criteria, but dissolved oxygen concentrations did not meet the general use criteria in these subreaches.

  4. Spatial and Temporal Variations of Aerosols Around Beijing in the Summer 2006: Model Evaluation and Source Apportionment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Hitoshi; Koike, Makoto; Kondo, Yutaka

    Regional aerosol model calculations were made using the WRF-CMAQ and WRF-chem models to study spatial and temporal variations of aerosols around Beijing, China, in August and September 2006 when the CAREBEIJING-2006 campaign was conducted. Model calculations were compared with in-situ observations made at the urban site in Beijing and suburb site in Yufa, which is 50 km to the south of Beijing. In general, the two model calculations reproduced features of temporal variations of meteorological parameters and concentrations of elemental carbon (EC) and inorganic aerosols (sulfate, ammonium, and nitrate). Spatial distributions of aerosol optical depth (AOD) obtained by the MODISmore » satellite sensor are also generally well reproduced. Model calculations show that enhancements in inorganic aerosol concentrations simultaneously observed at the two sites 4 to 5 times during the one-month observation period were resulted by accumulation of pollutants under stagnated air condition. Because Beijing is located at the north border the high anthropogenic emission area (the Great North China Plain), northward motion of air under the influence of anti-cyclone system caused enhancements in fine aerosol concentrations at Beijing. Concentrations of primary aerosols, such as EC, are found to be generally controlled by emissions within 100 km around Beijing within previous 24 hours. On the other hand, emissions as far as 500 km within previous 3 days were found to affect concentrations of secondary aerosols, such as sulfate. Because of significant contributions of secondary aerosols in Beijing, regional emission controls are found to be necessary for improvement of air quality in Beijing.« less

  5. Temporal and spatial distribution characteristics and influencing factors of air quality index in Xuchang

    NASA Astrophysics Data System (ADS)

    Wang, Zhenghua; Tian, Zhihui

    2018-01-01

    In recent years, the problem of air pollution becomes more and more serious. Based on the geographic and seasonal climatic characteristics of Xuchang City, this paper studies the temporal and spatial distribution characteristics of air quality index. The results show that: from the time point of view, air quality index shows seasonal difference. Air quality index is highest in winter and is lowest in summer. From the space point of view, there are differences between the north and the south to a certain extent. Changge City, Yuzhou city and central Xuchang county is higher than the southeast of Xiangcheng county and Yanling county. The spatial and temporal variation characteristics of air quality index in Xuchang are influenced by natural factors and human activities, and the economic development and population are the important factors affecting the urban air quality.

  6. Effect of land use on the seasonal variation of streamwater quality in the Wei River basin, China

    NASA Astrophysics Data System (ADS)

    Yu, S.; Xu, Z.; Wu, W.; Zuo, D.

    2015-05-01

    The temporal effect of land use on streamwater quality needs to be addressed for a better understanding of the complex relationship between land use and streamwater quality. In this study, GIS and Pearson correlation analysis were used to determine whether there were correlations of land-use types with streamwater quality at the sub-basin scale in the Wei River basin, China, during dry and rainy seasons in 2012. Temporal variation of these relations was observed, indicating that relationships between water quality variables and proportions of different land uses were weaker in the rainy season than that in the dry season. Comparing with other land uses, agriculture and urban lands had a stronger relationship with water quality variables in both the rainy and dry seasons. These results suggest that the aspect of temporal effects should be taken into account for better land-use management.

  7. Does intolerance of uncertainty predict anticipatory startle responses to uncertain threat?

    PubMed

    Nelson, Brady D; Shankman, Stewart A

    2011-08-01

    Intolerance of uncertainty (IU) has been proposed to be an important maintaining factor in several anxiety disorders, including generalized anxiety disorder, obsessive-compulsive disorder, and social phobia. While IU has been shown to predict subjective ratings and decision-making during uncertain/ambiguous situations, few studies have examined whether IU also predicts emotional responding to uncertain threat. The present study examined whether IU predicted aversive responding (startle and subjective ratings) during the anticipation of temporally uncertain shocks. Sixty-nine participants completed three experimental conditions during which they received: no shocks, temporally certain/predictable shocks, and temporally uncertain shocks. Results indicated that IU was negatively associated with startle during the uncertain threat condition in that those with higher IU had a smaller startle response. IU was also only related to startle during the uncertain (and not the certain/predictable) threat condition, suggesting that it was not predictive of general aversive responding, but specific to responses to uncertain aversiveness. Perceived control over anxiety-related events mediated the relation between IU and startle to uncertain threat, such that high IU led to lowered perceived control, which in turn led to a smaller startle response. We discuss several potential explanations for these findings, including the inhibitory qualities of IU. Overall, our results suggest that IU is associated with attenuated aversive responding to uncertain threat. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Fuzzy branching temporal logic.

    PubMed

    Moon, Seong-ick; Lee, Kwang H; Lee, Doheon

    2004-04-01

    Intelligent systems require a systematic way to represent and handle temporal information containing uncertainty. In particular, a logical framework is needed that can represent uncertain temporal information and its relationships with logical formulae. Fuzzy linear temporal logic (FLTL), a generalization of propositional linear temporal logic (PLTL) with fuzzy temporal events and fuzzy temporal states defined on a linear time model, was previously proposed for this purpose. However, many systems are best represented by branching time models in which each state can have more than one possible future path. In this paper, fuzzy branching temporal logic (FBTL) is proposed to address this problem. FBTL adopts and generalizes concurrent tree logic (CTL*), which is a classical branching temporal logic. The temporal model of FBTL is capable of representing fuzzy temporal events and fuzzy temporal states, and the order relation among them is represented as a directed graph. The utility of FBTL is demonstrated using a fuzzy job shop scheduling problem as an example.

  9. Reconstruction of dynamic image series from undersampled MRI data using data-driven model consistency condition (MOCCO).

    PubMed

    Velikina, Julia V; Samsonov, Alexey A

    2015-11-01

    To accelerate dynamic MR imaging through development of a novel image reconstruction technique using low-rank temporal signal models preestimated from training data. We introduce the model consistency condition (MOCCO) technique, which utilizes temporal models to regularize reconstruction without constraining the solution to be low-rank, as is performed in related techniques. This is achieved by using a data-driven model to design a transform for compressed sensing-type regularization. The enforcement of general compliance with the model without excessively penalizing deviating signal allows recovery of a full-rank solution. Our method was compared with a standard low-rank approach utilizing model-based dimensionality reduction in phantoms and patient examinations for time-resolved contrast-enhanced angiography (CE-MRA) and cardiac CINE imaging. We studied the sensitivity of all methods to rank reduction and temporal subspace modeling errors. MOCCO demonstrated reduced sensitivity to modeling errors compared with the standard approach. Full-rank MOCCO solutions showed significantly improved preservation of temporal fidelity and aliasing/noise suppression in highly accelerated CE-MRA (acceleration up to 27) and cardiac CINE (acceleration up to 15) data. MOCCO overcomes several important deficiencies of previously proposed methods based on pre-estimated temporal models and allows high quality image restoration from highly undersampled CE-MRA and cardiac CINE data. © 2014 Wiley Periodicals, Inc.

  10. RECONSTRUCTION OF DYNAMIC IMAGE SERIES FROM UNDERSAMPLED MRI DATA USING DATA-DRIVEN MODEL CONSISTENCY CONDITION (MOCCO)

    PubMed Central

    Velikina, Julia V.; Samsonov, Alexey A.

    2014-01-01

    Purpose To accelerate dynamic MR imaging through development of a novel image reconstruction technique using low-rank temporal signal models pre-estimated from training data. Theory We introduce the MOdel Consistency COndition (MOCCO) technique that utilizes temporal models to regularize the reconstruction without constraining the solution to be low-rank as performed in related techniques. This is achieved by using a data-driven model to design a transform for compressed sensing-type regularization. The enforcement of general compliance with the model without excessively penalizing deviating signal allows recovery of a full-rank solution. Methods Our method was compared to standard low-rank approach utilizing model-based dimensionality reduction in phantoms and patient examinations for time-resolved contrast-enhanced angiography (CE MRA) and cardiac CINE imaging. We studied sensitivity of all methods to rank-reduction and temporal subspace modeling errors. Results MOCCO demonstrated reduced sensitivity to modeling errors compared to the standard approach. Full-rank MOCCO solutions showed significantly improved preservation of temporal fidelity and aliasing/noise suppression in highly accelerated CE MRA (acceleration up to 27) and cardiac CINE (acceleration up to 15) data. Conclusions MOCCO overcomes several important deficiencies of previously proposed methods based on pre-estimated temporal models and allows high quality image restoration from highly undersampled CE-MRA and cardiac CINE data. PMID:25399724

  11. Database of Ground-Water Levels in the Vicinity of Rainier Mesa, Nevada Test Site, Nye County, Nevada, 1957-2005

    USGS Publications Warehouse

    Fenelon, Joseph M.

    2006-01-01

    More than 1,200 water-level measurements from 1957 to 2005 in the Rainier Mesa area of the Nevada Test Site were quality assured and analyzed. Water levels were measured from 50 discrete intervals within 18 boreholes and from 4 tunnel sites. An interpretive database was constructed that describes water-level conditions for each water level measured in the Rainier Mesa area. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes hydrograph narratives that describe the water-level history of each well.

  12. Objective assessment of image quality. IV. Application to adaptive optics

    PubMed Central

    Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, Christopher

    2008-01-01

    The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed. PMID:17106464

  13. Temporal Contingency as an Independent Component of Parenting Behavior.

    ERIC Educational Resources Information Center

    Keller, Heidi; Lohaus, Arnold; Volker, Susanne; Cappenberg, Martina; Chasiotis, Athanasios

    1999-01-01

    Examined relationship between temporal contingency of maternal behavior and interactional quality. Found that although prompt responding was typical, the existence of individual differences indicated that this tendency was expressed in different communicative channels. The relationship between contingency and ratings of interactional quality was…

  14. Spatial and Temporal Variation of Water Quality in the Bertam Catchment, Cameron Highlands, Malaysia.

    PubMed

    Rasul, M G; Islam, Mir Sujaul; Yunus, Rosli Bin Mohd; Mokhtar, Mazlin Bin; Alam, Lubna; Yahaya, F M

    2017-12-01

      The spatio-temporal variability of water quality associated with anthropogenic activities was studied for the Bertam River and its main tributaries within the Bertam Catchment, Cameron Highlands, Malaysia. A number of physico-chemical parameters of collected samples were analyzed to evaluate their spatio-temporal variability. Nonparametric statistical analysis showed significant temporal and spatial differences (p < 0.05) in most of the parameters across the catchment. Parameters except dissolved oxygen and chemical oxygen demand displayed higher values in rainy season. The higher concentration of total suspended solids was caused by massive soil erosion and sedimentation. Seasonal variations in contaminant concentrations are largely affected by precipitation and anthropogenic influences. Untreated domestic wastewater discharge as well as agricultural runoff significantly influenced the water quality. Poor agricultural practices and development activities at slope areas also affected the water quality within the catchment. The analytical results provided a basis for protection of river environments and ecological restoration in mountainous Bertam Catchment.

  15. THE TASTE OF SUGARS

    PubMed Central

    McCaughey, Stuart A.

    2008-01-01

    Sugars evoke a distinctive perceptual quality (“sweetness” in humans) and are generally highly preferred. The neural basis for these phenomena is reviewed for rodents, in which detailed electrophysiological measurements have been made. A receptor has been identified that binds sweeteners and activates G-protein-mediated signaling in taste receptor cells, which leads to changes in neural firing rates in the brain, where perceptions of taste quality, intensity, and palatability are generated. Most cells in gustatory nuclei are broadly-tuned, so quality perception presumably arises from patterns of activity across neural populations. However, some manipulations affect only the most sugar-oriented cells, making it useful to consider them as a distinct neural subtype. Quality perception may also arise partly due to temporal patterns of activity to sugars, especially within sugar-oriented cells that give large but delayed responses. Non-specific gustatory neurons that are excited by both sugars and unpalatable stimuli project to ventral forebrain areas, where neural responses provide a closer match with behavioral preferences. This transition likely involves opposing excitatory and inhibitory influences by different subgroups of gustatory cells. Sweeteners are generally preferred over water, but the strength of this preference can vary across time or between individuals, and higher preferences for sugars are often associated with larger taste-evoked responses. PMID:18499254

  16. Disparities in perceived patient-provider communication quality in the United States: Trends and correlates.

    PubMed

    Spooner, Kiara K; Salemi, Jason L; Salihu, Hamisu M; Zoorob, Roger J

    2016-05-01

    This study aimed to describe disparities and temporal trends in the level of perceived patient-provider communication quality (PPPCQ) in the United States, and to identify sociodemographic and health-related factors associated with elements of PPPCQ. A cross-sectional analysis was conducted using nationally-representative data from the 2011-2013 iterations of the Health Information National Trends Survey (HINTS). Descriptive statistics, multivariable linear and logistic regression analyses were conducted to examine associations. PPPCQ scores, the composite measure of patients' ratings of communication quality, were positive overall (82.8; 95% CI: 82.1-83.5). However, less than half (42-46%) of respondents perceived that providers always addressed their feelings, spent enough time with them, or helped with feelings of uncertainty about their health. Older adults and those with a regular provider consistently had higher PPPCQ scores, while those with poorer perceived general health were consistently less likely to have positive perceptions of their providers' communication behaviors. Disparities in PPPCQ can be attributed to patients' age, race/ethnicity, educational attainment, employment status, income, healthcare access and general health. These findings may inform educational and policy efforts which aim to improve patient-provider communication, enhance the quality of care, and reduce health disparities. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. The Improvement of Spatial-Temporal PM2.5 Resolution in Taiwan by Using Data Assimilation Method

    NASA Astrophysics Data System (ADS)

    Lin, Yong-Qing; Lin, Yuan-Chien

    2017-04-01

    Forecasting air pollution concentration, e.g., the concentration of PM2.5, is of great significance to protect human health and the environment. Accurate prediction of PM2.5 concentrations is limited in number and the data quality of air quality monitoring stations. The spatial and temporal variations of PM2.5 concentrations are measured by 76 National Air Quality Monitoring Stations (built by the TW-EPA) in Taiwan. The National Air Quality Monitoring Stations are costly and scarce because of the highly precise instrument and their size. Therefore, many places still out of the range of National Air Quality Monitoring Stations. Recently, there are an enormous number of portable air quality sensors called "AirBox" developed jointly by the Taiwan government and a private company. By virtue of its price and portative, the AirBox can provide higher resolution of space-time PM2.5 measurement. However, the spatiotemporal distribution and data quality are different between AirBox and National Air Quality Monitoring Stations. To integrate the heterogeneous PM2.5 data, the data assimilation method should be performed before further analysis. In this study, we propose a data assimilation method based on Ensemble Kalman Filter (EnKF), which is a variant of classic Kalman Filter, can be used to combine additional heterogeneous data from different source while modeling to improve the estimation of spatial-temporal PM2.5 concentration. The assimilation procedure uses the advantages of the two kinds of heterogeneous data and merges them to produce the final estimation. The results have shown that by combining AirBox PM2.5 data as additional information in our model based EnKF can bring the better estimation of spatial-temporal PM2.5 concentration and improve the it's space-time resolution. Under the approach proposed in this study, higher spatial-temporal resoultion could provide a very useful information for a better spatial-temporal data analysis and further environmental management, such as air pollution source localization and micro-scale air pollution analysis. Keywords: PM2.5, Data Assimilation, Ensemble Kalman Filter, Air Quality

  18. Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions.

    PubMed

    Singh, Anuradha; Mantri, Shrikant; Sharma, Monica; Chaudhury, Ashok; Tuli, Rakesh; Roy, Joy

    2014-01-16

    The cultivated bread wheat (Triticum aestivum L.) possesses unique flour quality, which can be processed into many end-use food products such as bread, pasta, chapatti (unleavened flat bread), biscuit, etc. The present wheat varieties require improvement in processing quality to meet the increasing demand of better quality food products. However, processing quality is very complex and controlled by many genes, which have not been completely explored. To identify the candidate genes whose expressions changed due to variation in processing quality and interaction (quality x development), genome-wide transcriptome studies were performed in two sets of diverse Indian wheat varieties differing for chapatti quality. It is also important to understand the temporal and spatial distributions of their expressions for designing tissue and growth specific functional genomics experiments. Gene-specific two-way ANOVA analysis of expression of about 55 K transcripts in two diverse sets of Indian wheat varieties for chapatti quality at three seed developmental stages identified 236 differentially expressed probe sets (10-fold). Out of 236, 110 probe sets were identified for chapatti quality. Many processing quality related key genes such as glutenin and gliadins, puroindolines, grain softness protein, alpha and beta amylases, proteases, were identified, and many other candidate genes related to cellular and molecular functions were also identified. The ANOVA analysis revealed that the expression of 56 of 110 probe sets was involved in interaction (quality x development). Majority of the probe sets showed differential expression at early stage of seed development i.e. temporal expression. Meta-analysis revealed that the majority of the genes expressed in one or a few growth stages indicating spatial distribution of their expressions. The differential expressions of a few candidate genes such as pre-alpha/beta-gliadin and gamma gliadin were validated by RT-PCR. Therefore, this study identified several quality related key genes including many other genes, their interactions (quality x development) and temporal and spatial distributions. The candidate genes identified for processing quality and information on temporal and spatial distributions of their expressions would be useful for designing wheat improvement programs for processing quality either by changing their expression or development of single nucleotide polymorphisms (SNPs) markers.

  19. Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions

    PubMed Central

    2014-01-01

    Background The cultivated bread wheat (Triticum aestivum L.) possesses unique flour quality, which can be processed into many end-use food products such as bread, pasta, chapatti (unleavened flat bread), biscuit, etc. The present wheat varieties require improvement in processing quality to meet the increasing demand of better quality food products. However, processing quality is very complex and controlled by many genes, which have not been completely explored. To identify the candidate genes whose expressions changed due to variation in processing quality and interaction (quality x development), genome-wide transcriptome studies were performed in two sets of diverse Indian wheat varieties differing for chapatti quality. It is also important to understand the temporal and spatial distributions of their expressions for designing tissue and growth specific functional genomics experiments. Results Gene-specific two-way ANOVA analysis of expression of about 55 K transcripts in two diverse sets of Indian wheat varieties for chapatti quality at three seed developmental stages identified 236 differentially expressed probe sets (10-fold). Out of 236, 110 probe sets were identified for chapatti quality. Many processing quality related key genes such as glutenin and gliadins, puroindolines, grain softness protein, alpha and beta amylases, proteases, were identified, and many other candidate genes related to cellular and molecular functions were also identified. The ANOVA analysis revealed that the expression of 56 of 110 probe sets was involved in interaction (quality x development). Majority of the probe sets showed differential expression at early stage of seed development i.e. temporal expression. Meta-analysis revealed that the majority of the genes expressed in one or a few growth stages indicating spatial distribution of their expressions. The differential expressions of a few candidate genes such as pre-alpha/beta-gliadin and gamma gliadin were validated by RT-PCR. Therefore, this study identified several quality related key genes including many other genes, their interactions (quality x development) and temporal and spatial distributions. Conclusions The candidate genes identified for processing quality and information on temporal and spatial distributions of their expressions would be useful for designing wheat improvement programs for processing quality either by changing their expression or development of single nucleotide polymorphisms (SNPs) markers. PMID:24433256

  20. Water use benefit index as a tool for community-based monitoring of water related trends in the Great Barrier Reef region

    NASA Astrophysics Data System (ADS)

    Smajgl, A.; Larson, S.; Hug, B.; De Freitas, D. M.

    2010-12-01

    SummaryThis paper presents a tool for documenting and monitoring water use benefits in the Great Barrier Reef catchments that allows temporal and spatial comparison along the region. Water, water use benefits and water allocations are currently receiving much attention from Australian policy makers and conservation practitioners. Because of the inherent complexity and variability in water quality, it is essential that scientific information is presented in a meaningful way to policy makers, managers and ultimately, to the general public who have to live with the consequences of the decisions. We developed an inexpensively populated and easily understandable water use benefit index as a tool for community-based monitoring of water related trends in the Great Barrier Reef region. The index is developed based on a comparative list of selected water-related indices integrating attributes across physico-chemical, economic, social, and ecological domains currently used in the assessment of water quality, water quantity and water use benefits in Australia. Our findings indicate that the proposed index allows the identification of water performance indicators by temporal and spatial comparisons. Benefits for decision makers and conservation practitioners include a flexible way of prioritization towards the domain with highest concern. The broader community benefits from a comprehensive and user-friendly tool, communicating changes in water quality trends more effectively.

  1. Assessing the impact of fine particulate matter (PM2.5) on ...

    EPA Pesticide Factsheets

    An enhanced research paradigm is presented to address the spatial and temporal gaps in fine particulate matter (PM2.5) measurements and generate realistic and representative concentration fields for use in epidemiological studies of human exposure to ambient air particulate concentrations. The general approach for research designed to analyze health impacts of exposure to PM2.5 is to use concentration data from the nearest ground-based air quality monitor(s), which typically have missing data on the temporal and spatial scales due to filter sampling schedules and monitor placement, respectively. To circumvent these data gaps, this research project uses a Hierarchical Bayesian Model (HBM) to generate estimates of PM2.5 in areas with and without air quality monitors by combining PM2.5 concentrations measured by monitors, PM2.5 concentration estimates derived from satellite aerosol optical depth (AOD) data, and Community-Multiscale Air Quality (CMAQ) model predictions of PM2.5 concentrations. This methodology represents a substantial step forward in the approach for developing representative PM2.5 concentration datasets to correlate with inpatient hospitalizations and emergency room visits data for asthma and inpatient hospitalizations for myocardial infarction (MI) and heart failure (HF) using case-crossover analysis. There were two key objective of this current study. First was to show that the inputs to the HBM could be expanded to include AOD data in addition t

  2. Update of NOx emission temporal profiles using CMAQ-HDDM

    NASA Astrophysics Data System (ADS)

    Bae, C.; Lee, J. B.; Kim, H. C.; Kim, B. U.; Kim, S.

    2017-12-01

    This study demonstrates the impact of revised temporal profiles of NOx emissions on air quality simulations in the Seoul Metropolitan Area (SMA), South Korea. Air pollutants such as ozone and nitrogen oxides can be harmful to the human body even with short-term exposure. Since most of air quality models use predefined temporal profiles which are often outdated or taken from different chemical environment, providing accurate temporal variation of emissions are challenging in prediction of correct local air quality. Considering secondary formation of pollutants are important in mega cities and temporal variations of emissions are not coincident with those of resultant concentrations, we utilized CMAQ-HDDM to link emissions and consequential concentrations from different time steps. Base simulations were conducted using WRF, SMOKE, and CMAQ modeling frame using CREATE 2015 and CAPSS 2013 emissions inventories for East Asia and South Korea, respectively. With current modeling system, modeled NOx concentrations underestimate 4% in the daytime (10-16 LST), but overestimate 30% in the nighttime during May to August 2015. Applying revised temporal profiles based on HDDM sensitivities, model performance was improved significantly. We conclude that the proposed temporal allocation method can be useful to reduce the model-observation discrepancies when the activity data for emission sources are difficult to obtain with a bottom-up approach.

  3. Groundwater Quality: Analysis of Its Temporal and Spatial Variability in a Karst Aquifer.

    PubMed

    Pacheco Castro, Roger; Pacheco Ávila, Julia; Ye, Ming; Cabrera Sansores, Armando

    2018-01-01

    This study develops an approach based on hierarchical cluster analysis for investigating the spatial and temporal variation of water quality governing processes. The water quality data used in this study were collected in the karst aquifer of Yucatan, Mexico, the only source of drinking water for a population of nearly two million people. Hierarchical cluster analysis was applied to the quality data of all the sampling periods lumped together. This was motivated by the observation that, if water quality does not vary significantly in time, two samples from the same sampling site will belong to the same cluster. The resulting distribution maps of clusters and box-plots of the major chemical components reveal the spatial and temporal variability of groundwater quality. Principal component analysis was used to verify the results of cluster analysis and to derive the variables that explained most of the variation of the groundwater quality data. Results of this work increase the knowledge about how precipitation and human contamination impact groundwater quality in Yucatan. Spatial variability of groundwater quality in the study area is caused by: a) seawater intrusion and groundwater rich in sulfates at the west and in the coast, b) water rock interactions and the average annual precipitation at the middle and east zones respectively, and c) human contamination present in two localized zones. Changes in the amount and distribution of precipitation cause temporal variation by diluting groundwater in the aquifer. This approach allows to analyze the variation of groundwater quality controlling processes efficiently and simultaneously. © 2017, National Ground Water Association.

  4. Temporal stability of Escherichia coli concentration patterns in two irrigation ponds in Maryland

    USDA-ARS?s Scientific Manuscript database

    Fecal contamination of water sources is an important water quality issue for agricultural irrigation ponds. Escherichia coli is a common microbial indicator used to evaluate recreational and irrigation water quality. We hypothesized that there is a temporally stable pattern of E.coli concentrations ...

  5. Spatial and temporal characterizations of water quality in Kuwait Bay.

    PubMed

    Al-Mutairi, N; Abahussain, A; El-Battay, A

    2014-06-15

    The spatial and temporal patterns of water quality in Kuwait Bay have been investigated using data from six stations between 2009 and 2011. The results showed that most of water quality parameters such as phosphorus (PO4), nitrate (NO3), dissolved oxygen (DO), and Total Suspended Solids (TSS) fluctuated over time and space. Based on Water Quality Index (WQI) data, six stations were significantly clustered into two main classes using cluster analysis, one group located in western side of the Bay, and other in eastern side. Three principal components are responsible for water quality variations in the Bay. The first component included DO and pH. The second included PO4, TSS and NO3, and the last component contained seawater temperature and turbidity. The spatial and temporal patterns of water quality in Kuwait Bay are mainly controlled by seasonal variations and discharges from point sources of pollution along Kuwait Bay's coast as well as from Shatt Al-Arab River. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Temporal and Causal Reasoning in Deaf and Hearing Novice Readers

    ERIC Educational Resources Information Center

    Sullivan, Susan; Oakhill, Jane; Arfé, Barbara; Boureux, Magali

    2014-01-01

    Temporal and causal information in text are crucial in helping the reader form a coherent representation of a narrative. Deaf novice readers are generally poor at processing linguistic markers of causal/temporal information (i.e., connectives), but what is unclear is whether this is indicative of a more general deficit in reasoning about…

  7. A review of specialties performing temporal artery biopsies in Ontario: a retrospective cohort study

    PubMed Central

    Margolin, Edward A.

    2015-01-01

    Background Temporal artery biopsy is the gold standard for the diagnosis of giant cell arteritis, but the numbers and types of surgical specialists performing temporal artery biopsies are unknown. The goal of this study was to determine which surgical specialists performed temporal artery biopsies and how geographic location influenced this trend over a period of 10 years. Methods This retrospective cohort study included all physicians practising in Ontario from 2002 to 2013. Using comprehensive physician services data from the IntelliHEALTH Medical Services database, physicians performing temporal artery biopsies were identified by the Ontario Health Insurance Plan billing code submitted for remuneration. Physicians were categorized by specialty and geographic Local Health Integration Unit. Results A total of 9958 patients underwent a temporal artery biopsy during the study period: the biopsies were performed by 11 different subspecialties. The number of patients undergoing a temporal artery biopsy declined over the 10-year study period. Most procedures were performed by general surgeons (38.1%), followed by ophthalmologists (31.0%) and plastic surgeons (23.6%). Ophthalmologists performed more temporal artery biopsies per person compared with general surgeons, but significantly more general surgeons performed at least 1 biopsy. There was significant variation based on geographic location: plastic surgeons performed the most biopsies in regions with a population of more than 1 million people, and general surgeons performed most of the biopsies in rural areas. Interpretation Geographic location heavily influenced which specialty was most likely to perform temporal artery biopsies. General surgery, ophthalmology and plastic surgery emerged as leaders in this area, and their residency programs should include formal training in this procedure in their curricula. PMID:26442226

  8. 3D scene reconstruction based on multi-view distributed video coding in the Zernike domain for mobile applications

    NASA Astrophysics Data System (ADS)

    Palma, V.; Carli, M.; Neri, A.

    2011-02-01

    In this paper a Multi-view Distributed Video Coding scheme for mobile applications is presented. Specifically a new fusion technique between temporal and spatial side information in Zernike Moments domain is proposed. Distributed video coding introduces a flexible architecture that enables the design of very low complex video encoders compared to its traditional counterparts. The main goal of our work is to generate at the decoder the side information that optimally blends temporal and interview data. Multi-view distributed coding performance strongly depends on the side information quality built at the decoder. At this aim for improving its quality a spatial view compensation/prediction in Zernike moments domain is applied. Spatial and temporal motion activity have been fused together to obtain the overall side-information. The proposed method has been evaluated by rate-distortion performances for different inter-view and temporal estimation quality conditions.

  9. Temporal trends in health-related quality of life after stroke: analysis from the South London Stroke Register 1995-2011.

    PubMed

    Sheldenkar, Anita; Crichton, Siobhan; Douiri, Abdel; Rudd, Anthony G; Wolfe, Charles D A; Chen, Ruoling

    2014-08-01

    Survival after stroke has dramatically increased in the last two decades as the treatment of stroke has improved. However, time-trend analyses of health-related quality of life in stroke patients covering this time period are still not well investigated. The study aims to examine temporal trends in mental and physical health-related quality of life of stroke survivors between the period of 1995 and 2011. First in a lifetime strokes were registered in the South London Stroke Register between 1995 and 2011. Using the Short Form-12 Health Survey, trends in self-reported health-related quality of life at one-year after stroke were assessed over a 17-year period using linear regression, adjusting for socio-demographics, risk factors, and case-mix variables. Analyses stratifying by age, gender, race-ethnicity, and functional impairment were also performed. The overall trends of mental and physical health-related quality of life scores at one-year after stroke remained relatively unchanged over the period 1995-2011. However, mental health-related quality of life scores significantly improved between the period of 1995-2007 [β = 0·94 (95% CI; 0·15 to 1·74), P = 0·02], after which scores deteriorated [β = -2·02 (-3·82 to -0·22), P = 0·03]. Physical health-related quality of life scores remained stable until 2007, after which scores declined [β = -1·63 (-3·25 to -0·01), P = 0·05]. Despite declining health-related quality of life trends within the general population, stroke survivors' overall health-related quality of life remained unchanged, possibly due to lower expectations of health among stroke survivors. However, in recent years there has been a significant unexplained decline in both physical and mental health-related quality of life, suggesting that despite stroke policy aims to improve health-related quality of life, more needs to be done to target this decline. © 2014 The Authors. International Journal of Stroke © 2014 World Stroke Organization.

  10. Recent progress in the development of ISO 19751

    NASA Astrophysics Data System (ADS)

    Farnand, Susan P.; Dalal, Edul N.; Ng, Yee S.

    2006-01-01

    A small number of general visual attributes have been recognized as essential in describing image quality. These include micro-uniformity, macro-uniformity, colour rendition, text and line quality, gloss, sharpness, and spatial adjacency or temporal adjacency attributes. The multiple-part International Standard discussed here was initiated by the INCITS W1 committee on the standardization of office equipment to address the need for unambiguously documented procedures and methods, which are widely applicable over the multiple printing technologies employed in office applications, for the appearance-based evaluation of these visually significant image quality attributes of printed image quality. 1,2 The resulting proposed International Standard, for which ISO/IEC WD 19751-1 3 presents an overview and an outline of the overall procedure and common methods, is based on a proposal that was predicated on the idea that image quality could be described by a small set of broad-based attributes. 4 Five ad hoc teams were established (now six since a sharpness team is in the process of being formed) to generate standards for one or more of these image quality attributes. Updates on the colour rendition, text and line quality, and gloss attributes are provided.

  11. The use of quantile regression to forecast higher than expected respiratory deaths in a daily time series: a study of New York City data 1987-2000.

    PubMed

    Soyiri, Ireneous N; Reidpath, Daniel D

    2013-01-01

    Forecasting higher than expected numbers of health events provides potentially valuable insights in its own right, and may contribute to health services management and syndromic surveillance. This study investigates the use of quantile regression to predict higher than expected respiratory deaths. Data taken from 70,830 deaths occurring in New York were used. Temporal, weather and air quality measures were fitted using quantile regression at the 90th-percentile with half the data (in-sample). Four QR models were fitted: an unconditional model predicting the 90th-percentile of deaths (Model 1), a seasonal/temporal (Model 2), a seasonal, temporal plus lags of weather and air quality (Model 3), and a seasonal, temporal model with 7-day moving averages of weather and air quality. Models were cross-validated with the out of sample data. Performance was measured as proportionate reduction in weighted sum of absolute deviations by a conditional, over unconditional models; i.e., the coefficient of determination (R1). The coefficient of determination showed an improvement over the unconditional model between 0.16 and 0.19. The greatest improvement in predictive and forecasting accuracy of daily mortality was associated with the inclusion of seasonal and temporal predictors (Model 2). No gains were made in the predictive models with the addition of weather and air quality predictors (Models 3 and 4). However, forecasting models that included weather and air quality predictors performed slightly better than the seasonal and temporal model alone (i.e., Model 3 > Model 4 > Model 2) This study provided a new approach to predict higher than expected numbers of respiratory related-deaths. The approach, while promising, has limitations and should be treated at this stage as a proof of concept.

  12. The Use of Quantile Regression to Forecast Higher Than Expected Respiratory Deaths in a Daily Time Series: A Study of New York City Data 1987-2000

    PubMed Central

    Soyiri, Ireneous N.; Reidpath, Daniel D.

    2013-01-01

    Forecasting higher than expected numbers of health events provides potentially valuable insights in its own right, and may contribute to health services management and syndromic surveillance. This study investigates the use of quantile regression to predict higher than expected respiratory deaths. Data taken from 70,830 deaths occurring in New York were used. Temporal, weather and air quality measures were fitted using quantile regression at the 90th-percentile with half the data (in-sample). Four QR models were fitted: an unconditional model predicting the 90th-percentile of deaths (Model 1), a seasonal / temporal (Model 2), a seasonal, temporal plus lags of weather and air quality (Model 3), and a seasonal, temporal model with 7-day moving averages of weather and air quality. Models were cross-validated with the out of sample data. Performance was measured as proportionate reduction in weighted sum of absolute deviations by a conditional, over unconditional models; i.e., the coefficient of determination (R1). The coefficient of determination showed an improvement over the unconditional model between 0.16 and 0.19. The greatest improvement in predictive and forecasting accuracy of daily mortality was associated with the inclusion of seasonal and temporal predictors (Model 2). No gains were made in the predictive models with the addition of weather and air quality predictors (Models 3 and 4). However, forecasting models that included weather and air quality predictors performed slightly better than the seasonal and temporal model alone (i.e., Model 3 > Model 4 > Model 2) This study provided a new approach to predict higher than expected numbers of respiratory related-deaths. The approach, while promising, has limitations and should be treated at this stage as a proof of concept. PMID:24147122

  13. Water quality studied in areas of unconventional oil and gas development, including areas where hydraulic fracturing techniques are used, in the United States

    USGS Publications Warehouse

    Susong, David D.; Gallegos, Tanya J.; Oelsner, Gretchen P.

    2012-01-01

    The U.S. Geological Survey (USGS) John Wesley Powell Center for Analysis and Synthesis is hosting an interdisciplinary working group of USGS scientists to conduct a temporal and spatial analysis of surface-water and groundwater quality in areas of unconventional oil and gas development. The analysis uses existing national and regional datasets to describe water quality, evaluate water-quality changes over time where there are sufficient data, and evaluate spatial and temporal data gaps.

  14. Longitudinal and Temporal Associations Between Daily Pain and Sleep Patterns After Major Pediatric Surgery.

    PubMed

    Rabbitts, Jennifer A; Zhou, Chuan; Narayanan, Arthi; Palermo, Tonya M

    2017-06-01

    Approximately 20% of children develop persistent pain after major surgery. Sleep disruption has been implicated as a predictor of children's acute postsurgical pain. However, perioperative sleep patterns have not been longitudinally assessed, and the role of sleep in persistence of postsurgical pain has not been explored. We aimed to examine sleep patterns over 4 months in children having major surgery, and temporal relationships between daily sleep and pain. Sixty children age 10 to 18 (mean = 14.7) years having major surgery completed 7 days of actigraphy sleep monitoring (sleep duration, efficiency), twice daily electronic diaries (sleep quality, pain intensity, medication use), and validated questionnaires at presurgery, 2 weeks, and 4 months postsurgery. Generalized linear models, controlling for age, sex, naps, and medication, showed sleep quality (β [B] = -.88, P < .001) and efficiency (B = -1.50, P = .036) were significantly reduced at 2 weeks compared with presurgery, and returned to baseline by 4 months. Poorer night-time sleep quality was significantly associated with greater next day pain intensity (B = -.15, P = .005). Sleep duration and efficiency were not associated with subsequent pain; daytime pain was not associated with subsequent sleep. Findings suggest sleep quality may be an important target for intervention after surgery in children; research is needed to understand how other sleep parameters may relate to recovery. This study assessed longitudinal sleep patterns over 4 months after major pediatric surgery using actigraphy, diaries, and validated measures. Sleep quality and efficiency were significantly reduced at 2 weeks. Poorer sleep quality was associated with greater next day pain intensity suggesting that sleep quality may be an important target for intervention. Copyright © 2017 American Pain Society. Published by Elsevier Inc. All rights reserved.

  15. Weighing the value of memory loss in the surgical evaluation of left temporal lobe epilepsy: A decision analysis

    PubMed Central

    Akama-Garren, Elliot H.; Bianchi, Matt T.; Leveroni, Catherine; Cole, Andrew J.; Cash, Sydney S.; Westover, M. Brandon

    2016-01-01

    SUMMARY Objectives Anterior temporal lobectomy is curative for many patients with disabling medically refractory temporal lobe epilepsy, but carries an inherent risk of disabling verbal memory loss. Although accurate prediction of iatrogenic memory loss is becoming increasingly possible, it remains unclear how much weight such predictions should have in surgical decision making. Here we aim to create a framework that facilitates a systematic and integrated assessment of the relative risks and benefits of surgery versus medical management for patients with left temporal lobe epilepsy. Methods We constructed a Markov decision model to evaluate the probabilistic outcomes and associated health utilities associated with choosing to undergo a left anterior temporal lobectomy versus continuing with medical management for patients with medically refractory left temporal lobe epilepsy. Three base-cases were considered, representing a spectrum of surgical candidates encountered in practice, with varying degrees of epilepsy-related disability and potential for decreased quality of life in response to post-surgical verbal memory deficits. Results For patients with moderately severe seizures and moderate risk of verbal memory loss, medical management was the preferred decision, with increased quality-adjusted life expectancy. However, the preferred choice was sensitive to clinically meaningful changes in several parameters, including quality of life impact of verbal memory decline, quality of life with seizures, mortality rate with medical management, probability of remission following surgery, and probability of remission with medical management. Significance Our decision model suggests that for patients with left temporal lobe epilepsy, quantitative assessment of risk and benefit should guide recommendation of therapy. In particular, risk for and potential impact of verbal memory decline should be carefully weighed against the degree of disability conferred by continued seizures on a patient-by-patient basis. PMID:25244498

  16. Weighing the value of memory loss in the surgical evaluation of left temporal lobe epilepsy: a decision analysis.

    PubMed

    Akama-Garren, Elliot H; Bianchi, Matt T; Leveroni, Catherine; Cole, Andrew J; Cash, Sydney S; Westover, M Brandon

    2014-11-01

    Anterior temporal lobectomy is curative for many patients with disabling medically refractory temporal lobe epilepsy, but carries an inherent risk of disabling verbal memory loss. Although accurate prediction of iatrogenic memory loss is becoming increasingly possible, it remains unclear how much weight such predictions should have in surgical decision making. Here we aim to create a framework that facilitates a systematic and integrated assessment of the relative risks and benefits of surgery versus medical management for patients with left temporal lobe epilepsy. We constructed a Markov decision model to evaluate the probabilistic outcomes and associated health utilities associated with choosing to undergo a left anterior temporal lobectomy versus continuing with medical management for patients with medically refractory left temporal lobe epilepsy. Three base-cases were considered, representing a spectrum of surgical candidates encountered in practice, with varying degrees of epilepsy-related disability and potential for decreased quality of life in response to post-surgical verbal memory deficits. For patients with moderately severe seizures and moderate risk of verbal memory loss, medical management was the preferred decision, with increased quality-adjusted life expectancy. However, the preferred choice was sensitive to clinically meaningful changes in several parameters, including quality of life impact of verbal memory decline, quality of life with seizures, mortality rate with medical management, probability of remission following surgery, and probability of remission with medical management. Our decision model suggests that for patients with left temporal lobe epilepsy, quantitative assessment of risk and benefit should guide recommendation of therapy. In particular, risk for and potential impact of verbal memory decline should be carefully weighed against the degree of disability conferred by continued seizures on a patient-by-patient basis. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  17. Precipitation data in a mountainous catchment in Honduras: quality assessment and spatiotemporal characteristics

    NASA Astrophysics Data System (ADS)

    Westerberg, I.; Walther, A.; Guerrero, J.-L.; Coello, Z.; Halldin, S.; Xu, C.-Y.; Chen, D.; Lundin, L.-C.

    2010-08-01

    An accurate description of temporal and spatial precipitation variability in Central America is important for local farming, water supply and flood management. Data quality problems and lack of consistent precipitation data impede hydrometeorological analysis in the 7,500 km2 Choluteca River basin in central Honduras, encompassing the capital Tegucigalpa. We used precipitation data from 60 daily and 13 monthly stations in 1913-2006 from five local authorities and NOAA's Global Historical Climatology Network. Quality control routines were developed to tackle the specific data quality problems. The quality-controlled data were characterised spatially and temporally, and compared with regional and larger-scale studies. Two gap-filling methods for daily data and three interpolation methods for monthly and mean annual precipitation were compared. The coefficient-of-correlation-weighting method provided the best results for gap-filling and the universal kriging method for spatial interpolation. In-homogeneity in the time series was the main quality problem, and 22% of the daily precipitation data were too poor to be used. Spatial autocorrelation for monthly precipitation was low during the dry season, and correlation increased markedly when data were temporally aggregated from a daily time scale to 4-5 days. The analysis manifested the high spatial and temporal variability caused by the diverse precipitation-generating mechanisms and the need for an improved monitoring network.

  18. Monitoring Makes a Difference: Quality and Temporal Variation in Teacher Education Students' Collaborative Learning

    ERIC Educational Resources Information Center

    Näykki, Piia; Järvenoja, Hanna; Järvelä, Sanna; Kirschner, Paul

    2017-01-01

    The aim of this process-oriented video-observation study is to explore how groups that perform differently differ in terms of the number, quality, and temporal variation of their content-level (knowledge co-construction) and meta-level (monitoring) activities. Five groups of teacher education students (n = 22) were observed throughout a 3-month…

  19. Relating Self Reports of Writing Behaviour and Online Task Execution Using a Temporal Model

    ERIC Educational Resources Information Center

    Tillema, Marion; van den Bergh, Huub; Rijlaarsdam, Gert; Sanders, Ted

    2011-01-01

    Current theory about writing states that the quality of (meta)cognitive processing (i.e. planning, text production, revising, et cetera) is, at least partly, determined by the temporal distribution of (meta)cognitive activities across task execution. Put simply, the quality of task execution is determined more by "when" activities are applied than…

  20. Timing Is Everything: Temporal Variation and Measures of School Quality. WCER Working Paper No. 2015-4

    ERIC Educational Resources Information Center

    Goff, Peter T.; Kam, Jihye; Kraszewski, Jacek

    2015-01-01

    Survey tools are used in education to direct policy, drive leadership decisions, and inform research. Increasingly survey measures of school climate and perspectives of leadership are incorporated into measures of school and principal quality. This study examines the role of temporal variations in survey response patterns using the data from the…

  1. Outlier Detection in Urban Air Quality Sensor Networks.

    PubMed

    van Zoest, V M; Stein, A; Hoek, G

    2018-01-01

    Low-cost urban air quality sensor networks are increasingly used to study the spatio-temporal variability in air pollutant concentrations. Recently installed low-cost urban sensors, however, are more prone to result in erroneous data than conventional monitors, e.g., leading to outliers. Commonly applied outlier detection methods are unsuitable for air pollutant measurements that have large spatial and temporal variations as occur in urban areas. We present a novel outlier detection method based upon a spatio-temporal classification, focusing on hourly NO 2 concentrations. We divide a full year's observations into 16 spatio-temporal classes, reflecting urban background vs. urban traffic stations, weekdays vs. weekends, and four periods per day. For each spatio-temporal class, we detect outliers using the mean and standard deviation of the normal distribution underlying the truncated normal distribution of the NO 2 observations. Applying this method to a low-cost air quality sensor network in the city of Eindhoven, the Netherlands, we found 0.1-0.5% of outliers. Outliers could reflect measurement errors or unusual high air pollution events. Additional evaluation using expert knowledge is needed to decide on treatment of the identified outliers. We conclude that our method is able to detect outliers while maintaining the spatio-temporal variability of air pollutant concentrations in urban areas.

  2. “Skill of Generalized Additive Model to Detect PM2.5 Health ...

    EPA Pesticide Factsheets

    Summary. Measures of health outcomes are collinear with meteorology and air quality, making analysis of connections between human health and air quality difficult. The purpose of this analysis was to determine time scales and periods shared by the variables of interest (and by implication scales and periods that are not shared). Hospital admissions, meteorology (temperature and relative humidity), and air quality (PM2.5 and daily maximum ozone) for New York City during the period 2000-2006 were decomposed into temporal scales ranging from 2 days to greater than two years using a complex wavelet transform. Health effects were modeled as functions of the wavelet components of meteorology and air quality using the generalized additive model (GAM) framework. This simulation study showed that GAM is extremely successful at extracting and estimating a health effect embedded in a dataset. It also shows that, if the objective in mind is to estimate the health signal but not to fully explain this signal, a simple GAM model with a single confounder (calendar time) whose smooth representation includes a sufficient number of constraints is as good as a more complex model.Introduction. In the context of wavelet regression, confounding occurs when two or more independent variables interact with the dependent variable at the same frequency. Confounding also acts on a variety of time scales, changing the PM2.5 coefficient (magnitude and sign) and its significance ac

  3. Spatial and Temporal Variations of Water Quality and Trophic Status in Sembrong Reservoir, Johor

    NASA Astrophysics Data System (ADS)

    Intan Najla Syed Hashim, Syarifah; Hidayah Abu Talib, Siti; Salleh Abustan, Muhammad

    2018-03-01

    A study of spatial and temporal variations on water quality and trophic status was conducted to determine the temporal (average reading by month) and spatial variations of water quality in Sembrong reservoir and to evaluate the trophic status of the reservoir. Water samples were collected once a month from November 2016 to June 2017 in seventeen (17) sampling stations at Sembrong Reservoir. Results obtained on the concentration of dissolved oxygen (DO), water temperature, pH and secchi depth had no significant differences compared to Total Phosphorus (TP) and chlorophyll-a. The water level has significantly decreased the value of the water temperature, pH and TP. The water quality of Sembrong reservoir is classified in Class II which is suitable for recreational uses and required conventional treatment while TSI indicates that sembrong reservoir was in lower boundary of classical eutrophic (TSI > 50).

  4. DEVELOPMENT AND IMPROVEMENT OF TEMPORAL ALLOCATION FACTOR FILES

    EPA Science Inventory

    The report gives results of a project to: (1) evaluate the quality and completeness of data and methods being used for temporal allocation of emissions data, (2) identify and prioritize needed improvements to current methods for developing temporal allocation factors (TAFs), and ...

  5. Correlation of gravestone decay and air quality 1960-2010

    NASA Astrophysics Data System (ADS)

    Mooers, H. D.; Carlson, M. J.; Harrison, R. M.; Inkpen, R. J.; Loeffler, S.

    2017-03-01

    Evaluation of spatial and temporal variability in surface recession of lead-lettered Carrara marble gravestones provides a quantitative measure of acid flux to the stone surfaces and is closely related to local land use and air quality. Correlation of stone decay, land use, and air quality for the period after 1960 when reliable estimates of atmospheric pollution are available is evaluated. Gravestone decay and SO2 measurements are interpolated spatially using deterministic and geostatistical techniques. A general lack of spatial correlation was identified and therefore a land-use-based technique for correlation of stone decay and air quality is employed. Decadally averaged stone decay is highly correlated with land use averaged spatially over an optimum radius of ≈7 km even though air quality, determined by records from the UK monitoring network, is not highly correlated with gravestone decay. The relationships among stone decay, air-quality, and land use is complicated by the relatively low spatial density of both gravestone decay and air quality data and the fact that air quality data is available only as annual averages and therefore seasonal dependence cannot be evaluated. However, acid deposition calculated from gravestone decay suggests that the deposition efficiency of SO2 has increased appreciably since 1980 indicating an increase in the SO2 oxidation process possibly related to reactions with ammonia.

  6. Qualities of Single Electrode Stimulation as a Function of Rate and Place of Stimulation with a Cochlear Implant

    PubMed Central

    Landsberger, David M.; Vermeire, Katrien; Claes, Annes; Van Rompaey, Vincent; Van de Heyning, Paul

    2015-01-01

    Objectives Although it has been previously shown that changes in temporal coding produce changes in pitch in all cochlear regions, research has suggested that temporal coding might be best encoded in relatively apical locations. We hypothesized that although temporal coding may provide useable information at any cochlear location, low rates of stimulation might provide better sound quality in apical regions that are more likely to encode temporal information in the normal ear. In the present study, sound qualities of single electrode pulse trains were scaled to provide insight into the combined effects of cochlear location and stimulation rate on sound quality. Design Ten long term users of MED-EL cochlear implants with 31 mm electrode arrays (Standard or FLEXSOFT) were asked to scale the sound quality of single electrode pulse trains in terms of how “Clean”, “Noisy”, “High”, and “Annoying” they sounded. Pulse trains were presented on most electrodes between 1 and 12 representing the entire range of the long electrode array at stimulation rates of 100, 150, 200, 400, or 1500 pulses per second. Results While high rates of stimulation are scaled as having a “Clean” sound quality across the entire array, only the most apical electrodes (typically 1 through 3) were considered “Clean” at low rates. Low rates on electrodes 6 through 12 were not rated as “Clean” while the low rate quality of electrodes 4 and 5 were typically in between. Scaling of “Noisy” responses provided an approximately inverse pattern as “Clean” responses. “High” responses show the trade-off between rate and place of stimulation on pitch. Because “High” responses did not correlate with “Clean” responses, subjects were not rating sound quality based on pitch. Conclusions If explicit temporal coding is to be provided in a cochlear implant, it is likely to sound better when provided apically. Additionally, the finding that low rates sound clean only at apical places of stimulation is consistent with previous findings that a change in rate of stimulation corresponds to an equivalent change in perceived pitch at apical locations. Collectively, the data strongly suggests that temporal coding with a cochlear implant is optimally provided by electrodes placed well into the second cochlear turn. PMID:26583480

  7. A time series analysis of multiple ambient pollutants to investigate the underlying air pollution dynamics and interactions.

    PubMed

    Yu, Hwa-Lung; Lin, Yuan-Chien; Kuo, Yi-Ming

    2015-09-01

    Understanding the temporal dynamics and interactions of particulate matter (PM) concentration and composition is important for air quality control. This paper applied a dynamic factor analysis method (DFA) to reveal the underlying mechanisms of nonstationary variations in twelve ambient concentrations of aerosols and gaseous pollutants, and the associations with meteorological factors. This approach can consider the uncertainties and temporal dependences of time series data. The common trends of the yearlong and three selected diurnal variations were obtained to characterize the dominant processes occurring in general and specific scenarios in Taipei during 2009 (i.e., during Asian dust storm (ADS) events, rainfall, and under normal conditions). The results revealed the two distinct yearlong NOx transformation processes, and demonstrated that traffic emissions and photochemical reactions both critically influence diurnal variation, depending upon meteorological conditions. During an ADS event, transboundary transport and distinct weather conditions both influenced the temporal pattern of identified common trends. This study shows the DFA method can effectively extract meaningful latent processes of time series data and provide insights of the dominant associations and interactions in the complex air pollution processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A novel biological 'twin-father' temporal paradox of General Relativity in a Gödel universe - Where reproductive biology meets theoretical physics.

    PubMed

    Ashrafian, Hutan

    2018-03-01

    Several temporal paradoxes exist in physics. These include General Relativity's grandfather and ontological paradoxes and Special Relativity's Langevin-Einstein twin-paradox. General relativity paradoxes can exist due to a Gödel universe that follows Gödel's closed timelike curves solution to Einstein's field equations. A novel biological temporal paradox of General Relativity is proposed based on reproductive biology's phenomenon of heteropaternal fecundation. Herein, dizygotic twins from two different fathers are the result of concomitant fertilization during one menstrual cycle. In this case an Oedipus-like individual exposed to a Gödel closed timelike curve would sire a child during his maternal fertilization cycle. As a consequence of heteropaternal superfecundation, he would father his own dizygotic twin and would therefore generate a new class of autofraternal superfecundation, and by doing so creating a 'twin-father' temporal paradox. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Temporal abstraction-based clinical phenotyping with Eureka!

    PubMed

    Post, Andrew R; Kurc, Tahsin; Willard, Richie; Rathod, Himanshu; Mansour, Michel; Pai, Akshatha Kalsanka; Torian, William M; Agravat, Sanjay; Sturm, Suzanne; Saltz, Joel H

    2013-01-01

    Temporal abstraction, a method for specifying and detecting temporal patterns in clinical databases, is very expressive and performs well, but it is difficult for clinical investigators and data analysts to understand. Such patterns are critical in phenotyping patients using their medical records in research and quality improvement. We have previously developed the Analytic Information Warehouse (AIW), which computes such phenotypes using temporal abstraction but requires software engineers to use. We have extended the AIW's web user interface, Eureka! Clinical Analytics, to support specifying phenotypes using an alternative model that we developed with clinical stakeholders. The software converts phenotypes from this model to that of temporal abstraction prior to data processing. The model can represent all phenotypes in a quality improvement project and a growing set of phenotypes in a multi-site research study. Phenotyping that is accessible to investigators and IT personnel may enable its broader adoption.

  10. Neuro-cognitive foundations of word stress processing - evidence from fMRI

    PubMed Central

    2011-01-01

    Background To date, the neural correlates of phonological word stress processing are largely unknown. Methods In the present study, we investigated the processing of word stress and vowel quality using an identity matching task with pseudowords. Results In line with previous studies, a bilateral fronto-temporal network comprising the superior temporal gyri extending into the sulci as well as the inferior frontal gyri was observed for word stress processing. Moreover, we found differences in the superior temporal gyrus and the superior temporal sulcus, bilaterally, for the processing of different stress patterns. For vowel quality processing, our data reveal a substantial contribution of the left intraparietal cortex. All activations were modulated by task demands, yielding different patterns for same and different pairs of stimuli. Conclusions Our results suggest that the left superior temporal gyrus represents a basic system underlying stress processing to which additional structures including the homologous cortex site are recruited with increasing difficulty. PMID:21575209

  11. Monitoring water quality in Sydney Harbour using blue mussels during remediation of the Sydney Tar Ponds, Nova Scotia, Canada.

    PubMed

    Walker, Tony R; MacAskill, Devin

    2014-03-01

    Using mussels as monitoring tools we measured water quality in Sydney Harbour during a large scale, multi-year remediation project of the Sydney Tar Ponds (STPs); one of Canada's most contaminated sites. Chemical contaminants were measured in blue mussels (Mytilus edulis) in Sydney Harbour, which were used as monitoring tools to assess the spatio-temporal distribution of polycyclic aromatic hydrocarbons (PAHs); polychlorinated biphenyls (PCBs); metals (As, Cd, Cu, Hg, Pb, Zn) and lipid content during baseline and 3 years of remediation. The overall spatio-temporal distribution of chemicals in mussels was also compared to contaminants in other marine indicators (e.g., sediment, water and crab tissue). Measured metal concentrations in mussels showed some minor temporal variability (4 years), but these did not appear to be directly related to remediation activities, with the highest concentrations of As, Hg and Zn measured at reference stations. Most measured contaminants showed stable or potentially decreasing concentrations during the study, except Pb and Zn. Individual PAH compounds were mostly undetected during baseline and remediation, except for fluoranthene and pyrene. Concentrations of fluoranthene in mussels and deep water samples were moderately related. Generally, PCBs were undetected (<0.05 μg g(-1)), except during year 2 remediation at some near-field stations. Contaminants measured during this study were at much lower concentrations than previously reported in other studies of mussels in Sydney Harbour and eastern Canada. This is likely due to the ongoing natural recovery of Sydney Harbour and to a lesser extent because of the environmental mitigation protection measures implemented during remediation activities at the STPs. The lack of detection of most individual PAHs and PCBs, plus relatively low bio-accumulation of metals observed during baseline and remediation attest to the effectiveness of using mussels as monitoring tools for environmental quality.

  12. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?

    PubMed

    Castell, Nuria; Dauge, Franck R; Schneider, Philipp; Vogt, Matthias; Lerner, Uri; Fishbain, Barak; Broday, David; Bartonova, Alena

    2017-02-01

    The emergence of low-cost, user-friendly and very compact air pollution platforms enable observations at high spatial resolution in near-real-time and provide new opportunities to simultaneously enhance existing monitoring systems, as well as engage citizens in active environmental monitoring. This provides a whole new set of capabilities in the assessment of human exposure to air pollution. However, the data generated by these platforms are often of questionable quality. We have conducted an exhaustive evaluation of 24 identical units of a commercial low-cost sensor platform against CEN (European Standardization Organization) reference analyzers, evaluating their measurement capability over time and a range of environmental conditions. Our results show that their performance varies spatially and temporally, as it depends on the atmospheric composition and the meteorological conditions. Our results show that the performance varies from unit to unit, which makes it necessary to examine the data quality of each node before its use. In general, guidance is lacking on how to test such sensor nodes and ensure adequate performance prior to marketing these platforms. We have implemented and tested diverse metrics in order to assess if the sensor can be employed for applications that require high accuracy (i.e., to meet the Data Quality Objectives defined in air quality legislation, epidemiological studies) or lower accuracy (i.e., to represent the pollution level on a coarse scale, for purposes such as awareness raising). Data quality is a pertinent concern, especially in citizen science applications, where citizens are collecting and interpreting the data. In general, while low-cost platforms present low accuracy for regulatory or health purposes they can provide relative and aggregated information about the observed air quality. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Temporal and spatial variations in fly ash quality

    USGS Publications Warehouse

    Hower, J.C.; Trimble, A.S.; Eble, C.F.

    2001-01-01

    Fly ash quality, both as the amount of petrographically distinguishable carbons and in chemistry, varies in both time and space. Temporal variations are a function of a number of variables. Variables can include variations in the coal blend organic petrography, mineralogy, and chemistry; variations in the pulverization of the coal, both as a function of the coal's Hardgrove grindability index and as a function of the maintenance and settings of the pulverizers; and variations in the operating conditions of the boiler, including changes in the pollution control system. Spatial variation, as an instantaneous measure of fly ash characteristics, should not involve changes in the first two sets of variables listed above. Spatial variations are a function of the gas flow within the boiler and ducts, certain flow conditions leading to a tendency for segregation of the less-dense carbons in one portion of the gas stream. Caution must be applied in sampling fly ash. Samples from a single bin, or series of bins, m ay not be representative of the whole fly ash, providing a biased view of the nature of the material. Further, it is generally not possible to be certain about variation until the analysis of the ash is complete. ?? 2001 Elsevier Science B.V. All rights reserved.

  14. Respiratory hospitalizations in association with fine PM and its ...

    EPA Pesticide Factsheets

    Despite observed geographic and temporal variation in particulate matter (PM)-related health morbidities, only a small number of epidemiologic studies have evaluated the relation between PM2.5 chemical constituents and respiratory disease. Most assessments are limited by inadequate spatial and temporal resolution of ambient PM measurements and/or by their approaches to examine the role of specific PM components on health outcomes. In a case-crossover analysis using daily average ambient PM2.5 total mass and species estimates derived from the Community Multiscale Air Quality (CMAQ) model and available observations, we examined the association between the chemical components of PM (including elemental and organic carbon, sulfate, nitrate, ammonium, and other remaining) and respiratory hospitalizations in New York State. We evaluated relationships between levels (low, medium, high) of PM constituent mass fractions, and assessed modification of the PM2.5–hospitalization association via models stratified by mass fractions of both primary and secondary PM components. In our results, average daily PM2.5 concentrations in New York State were generally lower than the 24-hr average National Ambient Air Quality Standard (NAAQS). Year-round analyses showed statistically significant positive associations between respiratory hospitalizations and PM2.5 total mass, sulfate, nitrate, and ammonium concentrations at multiple exposure lags (0.5–2.0% per interquartile range [IQR

  15. Document-Level Classification of CT Pulmonary Angiography Reports based on an Extension of the ConText Algorithm

    PubMed Central

    Chapman, Brian E.; Lee, Sean; Kang, Hyunseok Peter; Chapman, Wendy W.

    2011-01-01

    In this paper we describe an application called peFinder for document-level classification of CT pulmonary angiography reports. peFinder is based on a generalized version of the ConText algorithm, a simple text processing algorithm for identifying features in clinical report documents. peFinder was used to answer questions about the disease state (pulmonary emboli present or absent), the certainty state of the diagnosis (uncertainty present or absent), the temporal state of an identified pulmonary embolus (acute or chronic), and the technical quality state of the exam (diagnostic or not diagnostic). Gold standard answers for each question were determined from the consensus classifications of three human annotators. peFinder results were compared to naive Bayes’ classifiers using unigrams and bigrams. The sensitivities (and positive predictive values) for peFinder were 0.98(0.83), 0.86(0.96), 0.94(0.93), and 0.60(0.90) for disease state, quality state, certainty state, and temporal state respectively, compared to 0.68(0.77), 0.67(0.87), 0.62(0.82), and 0.04(0.25) for the naive Bayes’ classifier using unigrams, and 0.75(0.79), 0.52(0.69), 0.59(0.84), and 0.04(0.25) for the naive Bayes’ classifier using bigrams. PMID:21459155

  16. 3D single point imaging with compressed sensing provides high temporal resolution R 2* mapping for in vivo preclinical applications.

    PubMed

    Rioux, James A; Beyea, Steven D; Bowen, Chris V

    2017-02-01

    Purely phase-encoded techniques such as single point imaging (SPI) are generally unsuitable for in vivo imaging due to lengthy acquisition times. Reconstruction of highly undersampled data using compressed sensing allows SPI data to be quickly obtained from animal models, enabling applications in preclinical cellular and molecular imaging. TurboSPI is a multi-echo single point technique that acquires hundreds of images with microsecond spacing, enabling high temporal resolution relaxometry of large-R 2 * systems such as iron-loaded cells. TurboSPI acquisitions can be pseudo-randomly undersampled in all three dimensions to increase artifact incoherence, and can provide prior information to improve reconstruction. We evaluated the performance of CS-TurboSPI in phantoms, a rat ex vivo, and a mouse in vivo. An algorithm for iterative reconstruction of TurboSPI relaxometry time courses does not affect image quality or R 2 * mapping in vitro at acceleration factors up to 10. Imaging ex vivo is possible at similar acceleration factors, and in vivo imaging is demonstrated at an acceleration factor of 8, such that acquisition time is under 1 h. Accelerated TurboSPI enables preclinical R 2 * mapping without loss of data quality, and may show increased specificity to iron oxide compared to other sequences.

  17. Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of Córrego Água Limpa, São Paulo (Brazil).

    PubMed

    Rodrigues, Valdemir; Estrany, Joan; Ranzini, Mauricio; de Cicco, Valdir; Martín-Benito, José Mª Tarjuelo; Hedo, Javier; Lucas-Borja, Manuel E

    2018-05-01

    Stream water quality is controlled by the interaction of natural and anthropogenic factors over a range of temporal and spatial scales. Among these anthropogenic factors, land cover changes at catchment scale can affect stream water quality. This work aims to evaluate the influence of land use and seasonality on stream water quality in a representative tropical headwater catchment named as Córrego Água Limpa (Sao Paulo, Brasil), which is highly influenced by intensive agricultural activities and urban areas. Two systematic sampling approach campaigns were implemented with six sampling points along the stream of the headwater catchment to evaluate water quality during the rainy and dry seasons. Three replicates were collected at each sampling point in 2011. Electrical conductivity, nitrates, nitrites, sodium superoxide, Chemical Oxygen Demand (DQO), colour, turbidity, suspended solids, soluble solids and total solids were measured. Water quality parameters differed among sampling points, being lower at the headwater sampling point (0m above sea level), and then progressively higher until the last downstream sampling point (2500m above sea level). For the dry season, the mean discharge was 39.5ls -1 (from April to September) whereas 113.0ls -1 were averaged during the rainy season (from October to March). In addition, significant temporal and spatial differences were observed (P<0.05) for the fourteen parameters during the rainy and dry period. The study enhance significant relationships among land use and water quality and its temporal effect, showing seasonal differences between the land use and water quality connection, highlighting the importance of multiple spatial and temporal scales for understanding the impacts of human activities on catchment ecosystem services. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Temporal dynamics of phosphorus during aquatic and terrestrial litter decomposition in an alpine forest.

    PubMed

    Peng, Yan; Yang, Wanqin; Yue, Kai; Tan, Bo; Huang, Chunping; Xu, Zhenfeng; Ni, Xiangyin; Zhang, Li; Wu, Fuzhong

    2018-06-17

    Plant litter decomposition in forested soil and watershed is an important source of phosphorus (P) for plants in forest ecosystems. Understanding P dynamics during litter decomposition in forested aquatic and terrestrial ecosystems will be of great importance for better understanding nutrient cycling across forest landscape. However, despite massive studies addressing litter decomposition have been carried out, generalizations across aquatic and terrestrial ecosystems regarding the temporal dynamics of P loss during litter decomposition remain elusive. We conducted a two-year field experiment using litterbag method in both aquatic (streams and riparian zones) and terrestrial (forest floors) ecosystems in an alpine forest on the eastern Tibetan Plateau. By using multigroup comparisons of structural equation modeling (SEM) method with different litter mass-loss intervals, we explicitly assessed the direct and indirect effects of several biotic and abiotic drivers on P loss across different decomposition stages. The results suggested that (1) P concentration in decomposing litter showed similar patterns of early increase and later decrease across different species and ecosystems types; (2) P loss shared a common hierarchy of drivers across different ecosystems types, with litter chemical dynamics mainly having direct effects but environment and initial litter quality having both direct and indirect effects; (3) when assessing at the temporal scale, the effects of initial litter quality appeared to increase in late decomposition stages, while litter chemical dynamics showed consistent significant effects almost in all decomposition stages across aquatic and terrestrial ecosystems; (4) microbial diversity showed significant effects on P loss, but its effects were lower compared with other drivers. Our results highlight the importance of including spatiotemporal variations and indicate the possibility of integrating aquatic and terrestrial decomposition into a common framework for future construction of models that account for the temporal dynamics of P in decomposing litter. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Temporal and spatial variation of groundwater in quantity and quality in sand dune at coastal region, Kamisu city, central Japan.

    NASA Astrophysics Data System (ADS)

    Umei, Yohei; Tsujimura, Maki; Sakakibara, Koichi; Watanabe, Yasuto; Minema, Motomitsu

    2016-04-01

    The role of groundwater in integrated water management has become important in recent 10 years, though the surface water is the major source of drinking water in Japan. Especially, it is remarked that groundwater recharge changed due to land cover change under the anthropogenic and climatic condition factors. Therefore, we need to investigate temporal and spatial variation of groundwater in quantity and quality focusing on the change during recent 10-20 years in specific region. We performed research on groundwater level and quality in sand dune at coastal region facing Pacific Ocean, Kamisu city, Ibaraki Prefecture, which have been facing environmental issues, such as land cover change due to soil mining for construction and urbanization. We compared the present situation of groundwater with that in 2000 using existed data to clarify the change of groundwater from 2000 to 2015. The quality of water is dominantly characterized by Ca2+-HCO3- in both 2000 and 2015, and nitrate was not observed in 2015, though it was detected in some locations in 2000. This may be caused by improvement of the domestic wastewater treatment. The topography of groundwater table was in parallel with that of ground surface in 2015, same as that in 2000. However, a depletion of groundwater table was observed in higher elevation area in 2015 as compared with that in 2000, and this area corresponds to the locations where the land cover has changed due to soil mining and urbanization between 2015 and 2000. In the region of soil mining, the original soil is generally replaced by impermeable soil after mining, and this may cause a decrease of percolation and net groundwater recharge, thus the depletion of groundwater table occurred after the soil mining.

  20. Formaldehyde Column Density Measurements as a Suitable Pathway to Estimate Near-Surface Ozone Tendencies from Space

    NASA Technical Reports Server (NTRS)

    Schroeder, Jason R.; Crawford, James H.; Fried, Alan; Walega, James; Weinheimer, Andrew; Wisthaler, Armin; Mueller, Markus; Mikoviny, Tomas; Chen, Gao; Shook, Michael; hide

    2016-01-01

    In support of future satellite missions that aim to address the current shortcomings in measuring air quality from space, NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign was designed to enable exploration of relationships between column measurements of trace species relevant to air quality at high spatial and temporal resolution. In the DISCOVER-AQ data set, a modest correlation (r2 = 0.45) between ozone (O3) and formaldehyde (CH2O) column densities was observed. Further analysis revealed regional variability in the O3-CH2O relationship, with Maryland having a strong relationship when data were viewed temporally and Houston having a strong relationship when data were viewed spatially. These differences in regional behavior are attributed to differences in volatile organic compound (VOC) emissions. In Maryland, biogenic VOCs were responsible for approx.28% of CH2O formation within the boundary layer column, causing CH2O to, in general, increase monotonically throughout the day. In Houston, persistent anthropogenic emissions dominated the local hydrocarbon environment, and no discernable diurnal trend in CH2O was observed. Box model simulations suggested that ambient CH2O mixing ratios have a weak diurnal trend (+/-20% throughout the day) due to photochemical effects, and that larger diurnal trends are associated with changes in hydrocarbon precursors. Finally, mathematical relationships were developed from first principles and were able to replicate the different behaviors seen in Maryland and Houston. While studies would be necessary to validate these results and determine the regional applicability of the O3-CH2O relationship, the results presented here provide compelling insight into the ability of future satellite missions to aid in monitoring near-surface air quality.

  1. Temporal eating patterns: associations with nutrient intakes, diet quality, and measures of adiposity.

    PubMed

    Leech, Rebecca M; Timperio, Anna; Livingstone, Katherine M; Worsley, Anthony; McNaughton, Sarah A

    2017-10-01

    Background: Some evidence suggests that higher energy intake (EI) later in the day is associated with poor diet quality and obesity. However, EI at one eating occasion (EO) is also dependent on EI at surrounding EOs. Studies that examine the distribution of EOs across the day are rare. Objective: The aim of this study was to examine associations between temporal eating patterns, nutrient intakes, diet quality, and measures of adiposity in a representative sample of Australian adults. Design: Dietary data from two 24-h recalls collected during the cross-sectional 2011-2012 Australian National Nutrition and Physical Activity Survey were analyzed ( n = 4544 adults, aged ≥19 y). Temporal eating patterns, based on the distribution of EOs across the day, were determined by using latent class analysis. Diet quality estimated adherence to healthy eating recommendations and was assessed by using the 2013 Dietary Guidelines Index (DGI). Multivariate regression models assessed associations between temporal eating patterns, nutrient intakes, diet quality, and adiposity (body mass index, waist circumference, weight status, and central weight status). Models were adjusted for potential confounders and energy misreporting. Results: Three patterns, labeled "conventional," "later lunch," and "grazing," were identified. Compared with a "conventional" or "later lunch" pattern, men and women with a "grazing" pattern had lower DGI scores and higher intakes of discretionary (noncore) foods ( P < 0.05). Among women, the "grazing" pattern was associated with overweight or obesity (OR: 1.57; 95% CI: 1.15, 2.13) and central overweight or obesity (OR: 1.73; 95% CI: 1.19, 2.50). These associations were attenuated after the exclusion of energy misreporters and adjustment for total EI. Conclusions: This study found that a "grazing" temporal eating pattern was modestly but significantly associated with poorer diet quality and adiposity among women, after adjustment for covariates and energy misreporting. Future research should consider the impact of energy misreporting on the relation between temporal eating patterns and adiposity. This secondary analysis was registered at anzctr.org.au as ACTRN12617001029381. © 2017 American Society for Nutrition.

  2. Quantifying the quality of precipitation data from different sources

    NASA Astrophysics Data System (ADS)

    Leijnse, Hidde; Wauben, Wiel; Overeem, Aart; de Haij, Marijn

    2015-04-01

    There is an increasing demand for high-resolution rainfall data. The current manual and automatic networks of climate and meteorological stations provide high quality rainfall data, but they cannot provide the high spatial and temporal resolution required for many applications. This can only partly be solved by using remotely sensed data. It is therefore necessary to consider third-party data, such as rain gauges operated by amateurs and rainfall intensities from commercial cellular communication links. The quality of such third-party data is highly variable and generally lower than that of dedicated networks. Often, such data quality information is missing for third party data. In order to be able to use data from various sources it is vital that quantitative knowledge of the data quality is available. This holds for all data sources, including the rain gauges in the reference networks of climate and meteorological stations. Data quality information is generally either not available or very limited for third-party data sources. For most dedicated climate meteorological networks, this information is only available for the sensor in laboratory conditions. In many cases, however, a significant part of the measurement errors and uncertainties is determined by the siting and maintenance of the sensor, for which generally only qualitative information is available. Furthermore sensors may have limitations under specific conditions. We aim to quantify data quality for different data sources by performing analyses on collocated data sets. Here we present an intercomparison of two years of precipitation data from six different sources (manual rain gauge, automatic rain gauge, present weather sensor, weather radar, commercial cellular communication links, and Meteosat) at three different locations in the Netherlands. We use auxiliary meteorological data to determine if the quality is influenced by other variables (e.g. the temperature influencing the evaporation from the rain gauge). We use three techniques to compare the data sets: 1) direct comparison; 2) triple collocation (see Stoffelen, 1998); and 3) comparison of statistics. Stoffelen, A. (1998). Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. Journal of Geophysical Research: Oceans (1978-2012), 103(C4), 7755-7766.

  3. Spatial and temporal variations of aerosols around Beijing in summer 2006: 2. Local and column aerosol optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Hitoshi; Koike, Makoto; Kondo, Yutaka

    Weather Research and Forecasting (WRF)-chem model calculations were conducted to study aerosol optical properties around Beijing, China, during the Campaign of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing-2006) period. In this paper, we interpret aerosol optical properties in terms of aerosol mass concentrations and their chemical compositions by linking model calculations with measurements. In general, model calculations reproduced observed features of spatial and temporal variations of various surface and column aerosol optical parameters in and around Beijing. Spatial and temporal variations of aerosol absorption, scattering, and extinction coefficient corresponded well to those of elemental carbon (primary aerosol),more » sulfate (secondary aerosol), and the total aerosol mass concentration, respectively. These results show that spatial and temporal variations of the absorption coefficient are controlled by local emissions (within 100 km around Beijing during the preceding 24 h), while those of the scattering coefficient are controlled by regional-scale emissions (within 500 km around Beijing during the preceding 3 days) under synoptic-scale meteorological conditions, as discussed in our previous study of aerosol mass concentration. Vertical profiles of aerosol extinction revealed that the contribution of secondary aerosols and their water uptake increased with altitude within the planetary boundary layer, leading to a considerable increase in column aerosol optical depth (AOD) around Beijing. These effects are the main factors causing differences in regional and temporal variations between particulate matter (PM) mass concentration at the surface and column AOD over a wide region in the northern part of the Great North China Plain.« less

  4. High visibility temporal ghost imaging with classical light

    NASA Astrophysics Data System (ADS)

    Liu, Jianbin; Wang, Jingjing; Chen, Hui; Zheng, Huaibin; Liu, Yanyan; Zhou, Yu; Li, Fu-li; Xu, Zhuo

    2018-03-01

    High visibility temporal ghost imaging with classical light is possible when superbunching pseudothermal light is employed. In the numerical simulation, the visibility of temporal ghost imaging with pseudothermal light, equaling (4 . 7 ± 0 . 2)%, can be increased to (75 ± 8)% in the same scheme with superbunching pseudothermal light. The reasons for that the retrieved images are different for superbunching pseudothermal light with different values of degree of second-order coherence are discussed in detail. It is concluded that high visibility and high quality temporal ghost image can be obtained by collecting sufficient number of data points. The results are helpful to understand the difference between ghost imaging with classical light and entangled photon pairs. The superbunching pseudothermal light can be employed to improve the image quality in ghost imaging applications.

  5. Prefrontal contributions to domain-general executive control processes during temporal context retrieval.

    PubMed

    Rajah, M Natasha; Ames, Blaine; D'Esposito, Mark

    2008-03-07

    Neuroimaging studies have reported increased prefrontal cortex (PFC) activity during temporal context retrieval versus recognition memory. However, it remains unclear if these activations reflect PFC contributions to domain-general executive control processes or domain-specific retrieval processes. To gain a better understanding of the functional roles of these various PFC regions during temporal context retrieval we propose it is necessary to examine PFC activity across tasks from different domains, in which parallel manipulations are included targeting specific cognitive processes. In the current fMRI study, we examined domain-general and domain-specific PFC contributions to temporal context retrieval by increasing stimulus (but maintaining response number) and increasing response number (but maintaining stimulus number) across temporal context memory and ordering control tasks, for faces. The control task required subjects to order faces from youngest to oldest. Our behavioral results indicate that the combination of increased stimulus and response numbers significantly increased task difficulty for temporal context retrieval and ordering tasks. Across domains, increasing stimulus number, while maintaining response numbers, caused greater right lateral premotor cortex (BA 6/8) activity; whereas increasing response number, while maintaining stimulus number, caused greater domain-general left DLPFC (BA 9) and VLPFC (BA 44/45) activity. In addition, we found domain-specific right DLPFC (BA 9) activity only during retrieval events. These results highlight the functional heterogeneity of frontal cortex, and suggest its involvement in temporal context retrieval is related to its role in various cognitive control processes.

  6. Social Modulation or Hormonal Causation? Linkages of Testosterone with Sexual Activity and Relationship Quality in a Nationally Representative Longitudinal Sample of Older Adults.

    PubMed

    Das, Aniruddha; Sawin, Nicole

    2016-11-01

    This study used population-representative longitudinal data from the 2005-2006 and 2010-2011 waves of the National Social Life, Health and Aging Project-a probability sample of US adults aged 57-85 at baseline (N = 650 women and 620 men)-to examine the causal direction in linkages of endogenous testosterone (T) with sexual activity and relationship quality. For both genders, our autoregressive effects indicated a large amount of temporal stability, not just in individual-level attributes (T, masturbation) but also dyadic ones (partnered sex, relationship quality)-indicating that a need for more nuanced theories of relational processes. Cross-lagged results suggested gender-specific effects-generally more consistent with sexual or relational modulation of T than with hormonal causation. Specifically, men's findings indicated their T might be elevated by their sexual (masturbatory) activity but not vice versa, although androgen levels did lower men's subsequent relationship quality. Women's T, in contrast, was negatively influenced not just by their higher relationship quality but also by their more frequent partnered sex-perhaps reflecting a changing function of sexual activity in late life.

  7. Temporal characteristics of gustatory responses in rat parabrachial neurons vary by stimulus and chemosensitive neuron type.

    PubMed

    Geran, Laura; Travers, Susan

    2013-01-01

    It has been demonstrated that temporal features of spike trains can increase the amount of information available for gustatory processing. However, the nature of these temporal characteristics and their relationship to different taste qualities and neuron types are not well-defined. The present study analyzed the time course of taste responses from parabrachial (PBN) neurons elicited by multiple applications of "sweet" (sucrose), "salty" (NaCl), "sour" (citric acid), and "bitter" (quinine and cycloheximide) stimuli in an acute preparation. Time course varied significantly by taste stimulus and best-stimulus classification. Across neurons, the ensemble code for the three electrolytes was similar initially but quinine diverged from NaCl and acid during the second 500 ms of stimulation and all four qualities became distinct just after 1s. This temporal evolution was reflected in significantly broader tuning during the initial response. Metric space analyses of quality discrimination by individual neurons showed that increases in information (H) afforded by temporal factors was usually explained by differences in rate envelope, which had a greater impact during the initial 2s (22.5% increase in H) compared to the later response (9.5%). Moreover, timing had a differential impact according to cell type, with between-quality discrimination in neurons activated maximally by NaCl or citric acid most affected. Timing was also found to dramatically improve within-quality discrimination (80% increase in H) in neurons that responded optimally to bitter stimuli (B-best). Spikes from B-best neurons were also more likely to occur in bursts. These findings suggest that among PBN taste neurons, time-dependent increases in mutual information can arise from stimulus- and neuron-specific differences in response envelope during the initial dynamic period. A stable rate code predominates in later epochs.

  8. Temporal Characteristics of Gustatory Responses in Rat Parabrachial Neurons Vary by Stimulus and Chemosensitive Neuron Type

    PubMed Central

    Geran, Laura; Travers, Susan

    2013-01-01

    It has been demonstrated that temporal features of spike trains can increase the amount of information available for gustatory processing. However, the nature of these temporal characteristics and their relationship to different taste qualities and neuron types are not well-defined. The present study analyzed the time course of taste responses from parabrachial (PBN) neurons elicited by multiple applications of “sweet” (sucrose), “salty” (NaCl), “sour” (citric acid), and “bitter” (quinine and cycloheximide) stimuli in an acute preparation. Time course varied significantly by taste stimulus and best-stimulus classification. Across neurons, the ensemble code for the three electrolytes was similar initially but quinine diverged from NaCl and acid during the second 500ms of stimulation and all four qualities became distinct just after 1s. This temporal evolution was reflected in significantly broader tuning during the initial response. Metric space analyses of quality discrimination by individual neurons showed that increases in information (H) afforded by temporal factors was usually explained by differences in rate envelope, which had a greater impact during the initial 2s (22.5% increase in H) compared to the later response (9.5%). Moreover, timing had a differential impact according to cell type, with between-quality discrimination in neurons activated maximally by NaCl or citric acid most affected. Timing was also found to dramatically improve within-quality discrimination (80% increase in H) in neurons that responded optimally to bitter stimuli (B-best). Spikes from B-best neurons were also more likely to occur in bursts. These findings suggest that among PBN taste neurons, time-dependent increases in mutual information can arise from stimulus- and neuron-specific differences in response envelope during the initial dynamic period. A stable rate code predominates in later epochs. PMID:24124597

  9. Aggregating the response in time series regression models, applied to weather-related cardiovascular mortality

    NASA Astrophysics Data System (ADS)

    Masselot, Pierre; Chebana, Fateh; Bélanger, Diane; St-Hilaire, André; Abdous, Belkacem; Gosselin, Pierre; Ouarda, Taha B. M. J.

    2018-07-01

    In environmental epidemiology studies, health response data (e.g. hospitalization or mortality) are often noisy because of hospital organization and other social factors. The noise in the data can hide the true signal related to the exposure. The signal can be unveiled by performing a temporal aggregation on health data and then using it as the response in regression analysis. From aggregated series, a general methodology is introduced to account for the particularities of an aggregated response in a regression setting. This methodology can be used with usually applied regression models in weather-related health studies, such as generalized additive models (GAM) and distributed lag nonlinear models (DLNM). In particular, the residuals are modelled using an autoregressive-moving average (ARMA) model to account for the temporal dependence. The proposed methodology is illustrated by modelling the influence of temperature on cardiovascular mortality in Canada. A comparison with classical DLNMs is provided and several aggregation methods are compared. Results show that there is an increase in the fit quality when the response is aggregated, and that the estimated relationship focuses more on the outcome over several days than the classical DLNM. More precisely, among various investigated aggregation schemes, it was found that an aggregation with an asymmetric Epanechnikov kernel is more suited for studying the temperature-mortality relationship.

  10. Remote Sensing based modelling of Annual Surface Mass Balances of Chhota Shigiri Glacier, Western Himalayas, India

    NASA Astrophysics Data System (ADS)

    Chandrasekharan, Anita; Ramsankaran, Raaj

    2017-04-01

    The current study aims at modelling glacier mass balances over Chhota Shigiri glacier (32.28o N; 77.58° E) in Himachal Pradesh, India using the Equilibrium Line Altitude (ELA) gradient approach proposed by Rabatel et al. (2005). The model requires yearly ELA, average mass balance and mass balance gradient to estimate annual mass balance of a glacier which can be obtained either through field measurements or remote sensing observations. However, in view of the general scenario of lack of field data for Himalayan glaciers, in this study the model has been applied only using the inputs derived through multi-temporal satellite remote sensing observations thus eliminating the need for any field measurements. Preliminary analysis show that the obtained results are comparable with the observed field mass balance. The results also demonstrate that this approach with remote sensing inputs has potential to be used for glacier mass balance estimations provided good quality multi-temporal remote sensing dataset are available.

  11. Diffusion pore imaging with generalized temporal gradient profiles.

    PubMed

    Laun, Frederik B; Kuder, Tristan A

    2013-09-01

    In porous material research, one main interest of nuclear magnetic resonance diffusion (NMR) experiments is the determination of the shape of pores. While it has been a longstanding question if this is in principle achievable, it has been shown recently that it is indeed possible to perform NMR-based diffusion pore imaging. In this work we present a generalization of these previous results. We show that the specific temporal gradient profiles that were used so far are not unique as more general temporal diffusion gradient profiles may be used. These temporal gradient profiles may consist of any number of "short" gradient pulses, which fulfil the short-gradient approximation. Additionally, "long" gradient pulses of small amplitude may be present, which can be used to fulfil the rephasing condition for the complete profile. Some exceptions exist. For example, classical q-space gradients consisting of two short gradient pulses of opposite sign cannot be used as the phase information is lost due to the temporal antisymmetry of this profile. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI.

    PubMed

    Asif, M Salman; Hamilton, Lei; Brummer, Marijn; Romberg, Justin

    2013-09-01

    Accelerated magnetic resonance imaging techniques reduce signal acquisition time by undersampling k-space. A fundamental problem in accelerated magnetic resonance imaging is the recovery of quality images from undersampled k-space data. Current state-of-the-art recovery algorithms exploit the spatial and temporal structures in underlying images to improve the reconstruction quality. In recent years, compressed sensing theory has helped formulate mathematical principles and conditions that ensure recovery of (structured) sparse signals from undersampled, incoherent measurements. In this article, a new recovery algorithm, motion-adaptive spatio-temporal regularization, is presented that uses spatial and temporal structured sparsity of MR images in the compressed sensing framework to recover dynamic MR images from highly undersampled k-space data. In contrast to existing algorithms, our proposed algorithm models temporal sparsity using motion-adaptive linear transformations between neighboring images. The efficiency of motion-adaptive spatio-temporal regularization is demonstrated with experiments on cardiac magnetic resonance imaging for a range of reduction factors. Results are also compared with k-t FOCUSS with motion estimation and compensation-another recently proposed recovery algorithm for dynamic magnetic resonance imaging. . Copyright © 2012 Wiley Periodicals, Inc.

  13. Spatial and temporal variations in mango colour, acidity, and sweetness in relation to temperature and ethylene gradients within the fruit.

    PubMed

    Nordey, Thibault; Léchaudel, Mathieu; Génard, Michel; Joas, Jacques

    2014-11-01

    Managing fruit quality is complex because many different attributes have to be taken into account, which are themselves subjected to spatial and temporal variations. Heterogeneous fruit quality has been assumed to be partly related to temperature and maturity gradients within the fruit. To test this assumption, we measured the spatial variability of certain mango fruit quality traits: colour of the peel and of the flesh, and sourness and sweetness, at different stages of fruit maturity using destructive methods as well as vis-NIR reflectance. The spatial variability of mango quality traits was compared to internal variations in thermal time, simulated by a physical model, and to internal variations in maturity, using ethylene content as an indicator. All the fruit quality indicators analysed showed significant spatial and temporal variations, regardless of the measurement method used. The heterogeneity of internal fruit quality traits was not correlated with the marked internal temperature gradient we modelled. However, variations in ethylene content revealed a strong internal maturity gradient which was correlated with the spatial variations in measured mango quality traits. Nonetheless, alone, the internal maturity gradient did not explain the variability of fruit quality traits, suggesting that other factors, such as gas, abscisic acid and water gradients, are also involved. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Phenology and Cover of Plant Growth Forms Predict Herbivore Habitat Selection in a High Latitude Ecosystem

    PubMed Central

    Fauchald, Per; Langeland, Knut; Ims, Rolf A.; Yoccoz, Nigel G.; Bråthen, Kari Anne

    2014-01-01

    The spatial and temporal distribution of forage quality is among the most central factors affecting herbivore habitat selection. Yet, for high latitude areas, forage quantity has been found to be more important than quality. Studies on large ungulate foraging patterns are faced with methodological challenges in both assessing animal movements at the scale of forage distribution, and in assessing forage quality with relevant metrics. Here we use first-passage time analyses to assess how reindeer movements relate to forage quality and quantity measured as the phenology and cover of growth forms along reindeer tracks. The study was conducted in a high latitude ecosystem dominated by low-palatable growth forms. We found that the scale of reindeer movement was season dependent, with more extensive area use as the summer season advanced. Small-scale movement in the early season was related to selection for younger stages of phenology and for higher abundances of generally phenologically advanced palatable growth forms (grasses and deciduous shrubs). Also there was a clear selection for later phenological stages of the most dominant, yet generally phenologically slow and low-palatable growth form (evergreen shrubs). As the summer season advanced only quantity was important, with selection for higher quantities of one palatable growth form and avoidance of a low palatable growth form. We conclude that both forage quality and quantity are significant predictors to habitat selection by a large herbivore at high latitude. The early season selectivity reflected that among dominating low palatability growth forms there were palatable phenological stages and palatable growth forms available, causing herbivores to be selective in their habitat use. The diminishing selectivity and the increasing scale of movement as the season developed suggest a response by reindeer to homogenized forage availability of low quality. PMID:24972188

  15. Phenology and cover of plant growth forms predict herbivore habitat selection in a high latitude ecosystem.

    PubMed

    Iversen, Marianne; Fauchald, Per; Langeland, Knut; Ims, Rolf A; Yoccoz, Nigel G; Bråthen, Kari Anne

    2014-01-01

    The spatial and temporal distribution of forage quality is among the most central factors affecting herbivore habitat selection. Yet, for high latitude areas, forage quantity has been found to be more important than quality. Studies on large ungulate foraging patterns are faced with methodological challenges in both assessing animal movements at the scale of forage distribution, and in assessing forage quality with relevant metrics. Here we use first-passage time analyses to assess how reindeer movements relate to forage quality and quantity measured as the phenology and cover of growth forms along reindeer tracks. The study was conducted in a high latitude ecosystem dominated by low-palatable growth forms. We found that the scale of reindeer movement was season dependent, with more extensive area use as the summer season advanced. Small-scale movement in the early season was related to selection for younger stages of phenology and for higher abundances of generally phenologically advanced palatable growth forms (grasses and deciduous shrubs). Also there was a clear selection for later phenological stages of the most dominant, yet generally phenologically slow and low-palatable growth form (evergreen shrubs). As the summer season advanced only quantity was important, with selection for higher quantities of one palatable growth form and avoidance of a low palatable growth form. We conclude that both forage quality and quantity are significant predictors to habitat selection by a large herbivore at high latitude. The early season selectivity reflected that among dominating low palatability growth forms there were palatable phenological stages and palatable growth forms available, causing herbivores to be selective in their habitat use. The diminishing selectivity and the increasing scale of movement as the season developed suggest a response by reindeer to homogenized forage availability of low quality.

  16. Assessing indoor air quality in New York City nail salons.

    PubMed

    Pavilonis, Brian; Roelofs, Cora; Blair, Carly

    2018-05-01

    Nail salons are an important business and employment sector for recent immigrants offering popular services to a diverse range of customers across the United States. However, due to the nature of nail products and services, salon air can be burdened with a mix of low levels of hazardous airborne contaminants. Surveys of nail technicians have commonly found increased work-related symptoms, such as headaches and respiratory irritation, that are consistent with indoor air quality problems. In an effort to improve indoor air quality in nail salons, the state of New York recently promulgated regulations to require increased outdoor air and "source capture" of contaminants. Existing indoor air quality in New York State salons is unknown. In advance of the full implementation of the rules by 2021, we sought to establish reliable and usable baseline indoor air quality metrics to determine the feasibility and effectiveness of the requirement. In this pilot study, we measured total volatile organic compounds (TVOC) and carbon dioxide (CO 2 ) concentrations in 10 nail salons located in New York City to assess temporal and spatial trends. Within salon contaminant variation was generally minimal, indicating a well-mixed room and similar general exposure despite the task being performed. TVOC and CO 2 concentrations were strongly positively correlated (ρ = 0.81; p < 0.01) suggesting that CO 2 measurements could potentially be used to provide an initial determination of acceptable indoor air quality for the purposes of compliance with the standard. An almost tenfold increase in TVOC concentration was observed when the American National Standards Institute/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ANSI/ASHRAE) target CO 2 concentration of 850 ppm was exceeded compared to when this target was met.

  17. Presence of 1/f noise in the temporal structure of psychoacoustic parameters of natural and urban sounds.

    PubMed

    Yang, Ming; De Coensel, Bert; Kang, Jian

    2015-08-01

    1/f noise or pink noise, which has been shown to be universal in nature, has also been observed in the temporal envelope of music, speech, and environmental sound. Moreover, the slope of the spectral density of the temporal envelope of music has been shown to correlate well to its pleasing, dull, or chaotic character. In this paper, the temporal structure of a number of instantaneous psychoacoustic parameters of environmental sound is examined in order to investigate whether a 1/f temporal structure appears in various types of sound that are generally preferred by people in everyday life. The results show, to some extent, that different categories of environmental sounds have different temporal structure characteristics. Only a number of urban sounds considered and birdsong, generally, exhibit 1/f behavior on short to medium duration time scales, i.e., from 0.1 s to 10 s, in instantaneous loudness and sharpness, whereas a more chaotic variation is found in birdsong at longer time scales, i.e., of 10 s-200 s. The other sound categories considered exhibit random or monotonic variations in the different time scales. In general, this study shows that a 1/f temporal structure is not necessarily present in environmental sounds that are commonly perceived as pleasant.

  18. Assessment of historical surface-water quality data in southwestern Colorado, 1990-2005

    USGS Publications Warehouse

    Miller, Lisa D.; Schaffrath, Keelin R.; Linard, Joshua I.

    2013-01-01

    The spatial and temporal distribution of selected physical and chemical surface-water-quality characteristics were analyzed at stream sites throughout the Dolores and San Juan River Basins in southwestern Colorado using historical data collected from 1990 through 2005 by various local, State, Tribal, and Federal agencies. Overall, streams throughout the study area were well oxygenated. Values of pH generally were near neutral to slightly alkaline throughout most of the study area with the exception of the upper Animas River Basin near Silverton where acidic conditions existed at some sites because of hydrothermal alteration and(or) historical mining. The highest concentrations of dissolved aluminum, total recoverable iron, dissolved lead, and dissolved zinc were measured at sites located in the upper Animas River Basin. Thirty-two sites throughout the study area had at least one measured concentration of total mercury that exceeded the State chronic aquatic-life criterion of 0.01 μg/L. Concentrations of dissolved selenium at some sites exceeded the State chronic water-quality standard of 4.6 μg/L. Total ammonia, nitrate, nitrite, and total phosphorus concentrations generally were low throughout the study area. Overall, results from the trend analyses indicated improvement in water-quality conditions as a result of operation of the Paradox Valley Unit in the Dolores River Basin and irrigation and water-delivery system improvements made in the McElmo Creek Basin (Lower San Juan River Basin) and Mancos River Valley (Upper San Juan River Basin).

  19. Air quality and social deprivation in four French metropolitan areas – A localized spatiotemporal environmental inequality analysis

    PubMed Central

    Padilla, Cindy M; Kihal-Talantikite, Wahida; Vieira, Verónica. M; Rosselo, Philippe; LeNir, Geraldine; Zmirou-Navier, Denis; Deguen, Severine

    2015-01-01

    Several studies have documented that more deprived populations tend to live in areas characterized by higher levels of environmental pollution. Yet, time trends and geographic patterns of this disproportionate distribution of environmental burden remain poorly assessed, especially in Europe. We investigated the spatial and temporal relationship between ambient air nitrogen dioxide (NO2) concentrations and socioeconomic and demographic data in four French Metropolitan Areas (Lille in the north, Lyon in the center, Marseille in the south, and Paris) during two different time periods. The geographical unit used was the census block. The dependent variable was the NO2 annual average concentration (µg/m3) per census block, and the explanatory variables were a neighborhood deprivation index and socioeconomic and demographic data derived from the national census. Generalized additive models were used to account for spatial autocorrelation. We found that the strength and direction of the association between deprivation and NO2 estimates varied between cities. In Paris, census blocks with the higher social categories are exposed to higher mean concentrations of NO2. However, in Lille and Marseille, the most deprived census blocks are the most exposed to NO2. In Lyon, the census blocks in the middle social categories were more likely to have higher concentrations than in the lower social categories. Despite a general reduction in NO2 concentrations over the study period in the four metropolitan areas, we found contrasting results in the temporal trend of environmental inequalities. There is clear evidence of city-specific spatial and temporal environmental inequalities that relate to the historical socioeconomic make-up of the cities and its evolution. Hence, general statements about environmental and social inequalities may not properly characterize situations where people of higher social status find the benefits of living in a specific city outweigh the detriment of higher pollution. PMID:25199972

  20. Enhanced Neural Responses to Imagined Primary Rewards Predict Reduced Monetary Temporal Discounting.

    PubMed

    Hakimi, Shabnam; Hare, Todd A

    2015-09-23

    The pervasive tendency to discount the value of future rewards varies considerably across individuals and has important implications for health and well-being. Here, we used fMRI with human participants to examine whether an individual's neural representation of an imagined primary reward predicts the degree to which the value of delayed monetary payments is discounted. Because future rewards can never be experienced at the time of choice, imagining or simulating the benefits of a future reward may play a critical role in decisions between alternatives with either immediate or delayed benefits. We found that enhanced ventromedial prefrontal cortex response during imagined primary reward receipt was correlated with reduced discounting in a separate monetary intertemporal choice task. Furthermore, activity in enhanced ventromedial prefrontal cortex during reward imagination predicted temporal discounting behavior both between- and within-individual decision makers with 62% and 73% mean balanced accuracy, respectively. These results suggest that the quality of reward imagination may impact the degree to which future outcomes are discounted. Significance statement: We report a novel test of the hypothesis that an important factor influencing the discount rate for future rewards is the quality with which they are imagined or estimated in the present. Previous work has shown that temporal discounting is linked to individual characteristics ranging from general intelligence to the propensity for addiction. We demonstrate that individual differences in a neurobiological measure of primary reward imagination are significantly correlated with discounting rates for future monetary payments. Moreover, our neurobiological measure of imagination can be used to accurately predict choice behavior both between and within individuals. These results suggest that improving reward imagination may be a useful therapeutic target for individuals whose high discount rates promote detrimental behaviors. Copyright © 2015 the authors 0270-6474/15/3513103-07$15.00/0.

  1. A general temporal data model and the structured population event history register

    PubMed Central

    Clark, Samuel J.

    2010-01-01

    At this time there are 37 demographic surveillance system sites active in sub-Saharan Africa, Asia and Central America, and this number is growing continuously. These sites and other longitudinal population and health research projects generate large quantities of complex temporal data in order to describe, explain and investigate the event histories of individuals and the populations they constitute. This article presents possible solutions to some of the key data management challenges associated with those data. The fundamental components of a temporal system are identified and both they and their relationships to each other are given simple, standardized definitions. Further, a metadata framework is proposed to endow this abstract generalization with specific meaning and to bind the definitions of the data to the data themselves. The result is a temporal data model that is generalized, conceptually tractable, and inherently contains a full description of the primary data it organizes. Individual databases utilizing this temporal data model can be customized to suit the needs of their operators without modifying the underlying design of the database or sacrificing the potential to transparently share compatible subsets of their data with other similar databases. A practical working relational database design based on this general temporal data model is presented and demonstrated. This work has arisen out of experience with demographic surveillance in the developing world, and although the challenges and their solutions are more general, the discussion is organized around applications in demographic surveillance. An appendix contains detailed examples and working prototype databases that implement the examples discussed in the text. PMID:20396614

  2. One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system

    NASA Astrophysics Data System (ADS)

    Hu, Jianlin; Chen, Jianjun; Ying, Qi; Zhang, Hongliang

    2016-08-01

    China has been experiencing severe air pollution in recent decades. Although an ambient air quality monitoring network for criteria pollutants has been constructed in over 100 cities since 2013 in China, the temporal and spatial characteristics of some important pollutants, such as particulate matter (PM) components, remain unknown, limiting further studies investigating potential air pollution control strategies to improve air quality and associating human health outcomes with air pollution exposure. In this study, a yearlong (2013) air quality simulation using the Weather Research and Forecasting (WRF) model and the Community Multi-scale Air Quality (CMAQ) model was conducted to provide detailed temporal and spatial information of ozone (O3), total PM2.5, and chemical components. Multi-resolution Emission Inventory for China (MEIC) was used for anthropogenic emissions and observation data obtained from the national air quality monitoring network were collected to validate model performance. The model successfully reproduces the O3 and PM2.5 concentrations at most cities for most months, with model performance statistics meeting the performance criteria. However, overprediction of O3 generally occurs at low concentration range while underprediction of PM2.5 happens at low concentration range in summer. Spatially, the model has better performance in southern China than in northern China, central China, and Sichuan Basin. Strong seasonal variations of PM2.5 exist and wind speed and direction play important roles in high PM2.5 events. Secondary components have more boarder distribution than primary components. Sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), and primary organic aerosol (POA) are the most important PM2.5 components. All components have the highest concentrations in winter except secondary organic aerosol (SOA). This study proves the ability of the CMAQ model to reproduce severe air pollution in China, identifies the directions where improvements are needed, and provides information for human exposure to multiple pollutants for assessing health effects.

  3. An assessment of the performance and quality control procedures of PACS workstation monitors used in Irish radiology departments

    NASA Astrophysics Data System (ADS)

    Wade, Cherrie; Brennan, Patrick C.; Mc Entee, Mark F.

    2005-04-01

    Diagnostic efficacy in soft-copy reporting relies heavily on the quality of workstation monitors and an investigation performed in 2002 demonstrated that CRT monitors in Dublin imaging departments were not operating at optimal levels. The current work examines the performance of CRTs being used in Dublin and other parts of Ireland to establish if problems reported in the earlier work have been rectified. All hospitals performing soft-copy reporting for general radiology using CRTs were included in the work. Examination of ambient lighting, calibration of monitors and analysis of CRT performance using the SMPTE test pattern and a selection of the AAPM test images was performed. Maximum luminance, spatial uniformity of luminance, temporal luminance stability, gamma, geometry, sharpness, veiling glare and spatial resolution of each monitor was evaluated. Ambient lighting in all reporting areas was within recommended levels. All the monitors were calibrated appropriately and were performing at acceptable levels for maximum luminance and temporal stability and only one of the thirty-three investigated failed to reach the standard for spatial uniformity. In contrast a number of the CRTs investigated showed poor adherence to acceptable levels for geometrical distortions, veiling glare and spatial resolution all of which are important influencers of image quality. Gamma values also appeared to be low for a number of monitors but this interpretation is provisional and subject to the establishment of ratified guideline values. The results demonstrate that although some improvement on the previous situation is evident, greater adherence to acceptable levels is required for certain parameters.

  4. Temporal characterization of flowback and produced water quality from a hydraulically fractured oil and gas well.

    PubMed

    Rosenblum, James; Nelson, Andrew W; Ruyle, Bridger; Schultz, Michael K; Ryan, Joseph N; Linden, Karl G

    2017-10-15

    This study examined water quality, naturally-occurring radioactive materials (NORM), major ions, trace metals, and well flow data for water used and produced from start-up to operation of an oil and gas producing hydraulically-fractured well (horizontal) in the Denver-Julesburg (DJ) Basin in northeastern Colorado. Analysis was conducted on the groundwater used to make the fracturing fluid, the fracturing fluid itself, and nine flowback/produced water samples over 220days of operation. The chemical oxygen demand of the wastewater produced during operation decreased from 8200 to 2500mg/L, while the total dissolved solids (TDS) increased in this same period from 14,200 to roughly 19,000mg/L. NORM, trace metals, and major ion levels were generally correlated with TDS, and were lower than other shale basins (e.g. Marcellus and Bakken). Although at lower levels, the salinity and its origin appear to be the result of a similar mechanism to that of other shale basins when comparing Cl/Br, Na/Br, and Mg/Br ratios. Volumes of returned wastewater were low, with only 3% of the volume injected (11millionliters) returning as flowback by day 15 and 30% returning by day 220. Low levels of TDS indicate a potentially treatment-amenable wastewater, but low volumes of flowback could limit onsite reuse in the DJ Basin. These results offer insight into the temporal water quality changes in the days and months following flowback, along with considerations and implications for water reuse in future hydraulic fracturing or for environmental discharge. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Two-stage Bayesian model to evaluate the effect of air pollution on chronic respiratory diseases using drug prescriptions.

    PubMed

    Blangiardo, Marta; Finazzi, Francesco; Cameletti, Michela

    2016-08-01

    Exposure to high levels of air pollutant concentration is known to be associated with respiratory problems which can translate into higher morbidity and mortality rates. The link between air pollution and population health has mainly been assessed considering air quality and hospitalisation or mortality data. However, this approach limits the analysis to individuals characterised by severe conditions. In this paper we evaluate the link between air pollution and respiratory diseases using general practice drug prescriptions for chronic respiratory diseases, which allow to draw conclusions based on the general population. We propose a two-stage statistical approach: in the first stage we specify a space-time model to estimate the monthly NO2 concentration integrating several data sources characterised by different spatio-temporal resolution; in the second stage we link the concentration to the β2-agonists prescribed monthly by general practices in England and we model the prescription rates through a small area approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Familial mesial temporal lobe epilepsy: a benign epilepsy syndrome showing complex inheritance.

    PubMed

    Crompton, Douglas E; Scheffer, Ingrid E; Taylor, Isabella; Cook, Mark J; McKelvie, Penelope A; Vears, Danya F; Lawrence, Kate M; McMahon, Jacinta M; Grinton, Bronwyn E; McIntosh, Anne M; Berkovic, Samuel F

    2010-11-01

    Temporal lobe epilepsy is the commonest partial epilepsy of adulthood. Although generally perceived as an acquired disorder, several forms of familial temporal lobe epilepsy, with mesial or lateral seizure semiology, have been described. Descriptions of familial mesial temporal lobe epilepsy have varied widely from a benign epilepsy syndrome with prominent déjà vu and without antecedent febrile seizures or magnetic resonance imaging abnormalities, to heterogeneous, but generally more refractory epilepsies, often with a history of febrile seizures and with frequent hippocampal atrophy and high T₂ signal on magnetic resonance imaging. Compelling evidence of a genetic aetiology (rather than chance aggregation) in familial mesial temporal lobe epilepsy has come from twin studies. Dominant inheritance has been reported in two large families, though the usual mode of inheritance is not known. Here, we describe clinical and neurophysiological features of 20 new mesial temporal lobe epilepsy families including 51 affected individuals. The epilepsies in these families were generally benign, and febrile seizure history was infrequent (9.8%). No evidence of hippocampal sclerosis or dysplasia was present on brain imaging. A single individual underwent anterior temporal lobectomy, with subsequent seizure freedom and histopathological evidence of hippocampal sclerosis was not found. Inheritance patterns in probands' relatives were analysed in these families, together with 19 other temporal lobe epilepsy families previously reported by us. Observed frequencies of epilepsies in relatives were lower than predicted by dominant Mendelian models, while only a minority (8/39) of families could be compatible with recessive inheritance. These findings strongly suggest that complex inheritance, similar to that widely accepted in the idiopathic generalized epilepsies, is the usual mode of inheritance in familial mesial temporal lobe epilepsy. This disorder, which appears to be relatively common, and not typically associated with hippocampal sclerosis, is an appropriate target for contemporary approaches to complex disorders such as genome-wide association studies for common genetic variants or deep sequencing for rare variants.

  7. Case Numbers and Process Quality in Breast Surgery in Germany: A Retrospective Analysis of Over 150,000 Patients From 2013 to 2014.

    PubMed

    Köster, Christina; Heller, Günther; Wrede, Stephanie; König, Thomas; Handstein, Steffen; Szecsenyi, Joachim

    2015-08-31

    Numerous studies from around the world have shown a positive association between case numbers and the quality of medical care. The evidence to date suggests that conformity to guidelines for the treatment of patients with breast cancer is better in German hospitals that have higher case numbers. We used data obtained by an external program for quality assurance in inpatient care (externe stationäre Qualitätssicherung, esQS) for the years 2013 and 2014 to investigate seven process indicators in the area of breast surgery, including histologic confirmation of the diagnosis before definitive treatment, axillary dissection as recommended by the guidelines, and an appropriate temporal interval between diagnosis and operation. Case numbers were categorized with the aid of various threshold values. Moreover, subgroup analyses were carried out for patients under age 65, patients in good general health, patients without lymph-node involvement, and patients with a tumor size pT0 or pT1 or an overall tumor size less than 5 cm. Data on 153,475 patients from 939 hospitals were analyzed. Six of seven indicators had values that were better overall, to a statistically significant extent, in hospitals with higher case numbers. Although this relationship was not consistently seen, the worst results were generally found in the category with the lowest case numbers. Similar though less striking results were obtained in the subgroup analyses. An exception to the general finding was that, in hospitals with higher case numbers, the interval between diagnosis and operation was more often longer than three weeks. Guideline adherence is higher in hospitals that treat more cases. The present study does not address the question whether this, in turn, affects morbidity or mortality. To improve process quality in peripheral hospitals, the quality assurance program should be continued.

  8. Spatiotemporal database of US congressional elections, 1896–2014

    PubMed Central

    Wolf, Levi John

    2017-01-01

    High-quality historical data about US Congressional elections has long provided common ground for electoral studies. However, advances in geographic information science have recently made it efficient to compile, distribute, and analyze large spatio-temporal data sets on the structure of US Congressional districts. A single spatio-temporal data set that relates US Congressional election results to the spatial extent of the constituencies has not yet been developed. To address this, existing high-quality data sets of elections returns were combined with a spatiotemporal data set on Congressional district boundaries to generate a new spatio-temporal database of US Congressional election results that are explicitly linked to the geospatial data about the districts themselves. PMID:28809849

  9. Downscaling hydrodynamics features to depict causes of major productivity of Sicilian-Maltese area and implications for resource management.

    PubMed

    Capodici, Fulvio; Ciraolo, Giuseppe; Cosoli, Simone; Maltese, Antonino; Mangano, M Cristina; Sarà, Gianluca

    2018-07-01

    Chlorophyll-a (CHL-a) and sea surface temperature (SST) are generally accepted as proxies for water quality. They can be easily retrieved in a quasi-near real time mode through satellite remote sensing and, as such, they provide an overview of the water quality on a synoptic scale in open waters. Their distributions evolve in space and time in response to local and remote forcing, such as winds and currents, which however have much finer temporal and spatial scales than those resolvable by satellites in spite of recent advances in satellite remote-sensing techniques. Satellite data are often characterized by a moderate temporal resolution to adequately catch the actual sub-grid physical processes. Conventional pointwise measurements can resolve high-frequency motions such as tides or high-frequency wind-driven currents, however they are inadequate to resolve their spatial variability over wide areas. We show in this paper that a combined use of near-surface currents, available through High-Frequency (HF) radars, and satellite data (e.g., TERRA and AQUA/MODIS), can properly resolve the main oceanographic features in both coastal and open-sea regions, particularly at the coastal boundaries where satellite imageries fail, and are complementary tools to interpret ocean productivity and resource management in the Sicily Channel. Copyright © 2018. Published by Elsevier B.V.

  10. Document-level classification of CT pulmonary angiography reports based on an extension of the ConText algorithm.

    PubMed

    Chapman, Brian E; Lee, Sean; Kang, Hyunseok Peter; Chapman, Wendy W

    2011-10-01

    In this paper we describe an application called peFinder for document-level classification of CT pulmonary angiography reports. peFinder is based on a generalized version of the ConText algorithm, a simple text processing algorithm for identifying features in clinical report documents. peFinder was used to answer questions about the disease state (pulmonary emboli present or absent), the certainty state of the diagnosis (uncertainty present or absent), the temporal state of an identified pulmonary embolus (acute or chronic), and the technical quality state of the exam (diagnostic or not diagnostic). Gold standard answers for each question were determined from the consensus classifications of three human annotators. peFinder results were compared to naive Bayes' classifiers using unigrams and bigrams. The sensitivities (and positive predictive values) for peFinder were 0.98(0.83), 0.86(0.96), 0.94(0.93), and 0.60(0.90) for disease state, quality state, certainty state, and temporal state respectively, compared to 0.68(0.77), 0.67(0.87), 0.62(0.82), and 0.04(0.25) for the naive Bayes' classifier using unigrams, and 0.75(0.79), 0.52(0.69), 0.59(0.84), and 0.04(0.25) for the naive Bayes' classifier using bigrams. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Bacterial water quality and network hydraulic characteristics: a field study of a small, looped water distribution system using culture-independent molecular methods.

    PubMed

    Sekar, R; Deines, P; Machell, J; Osborn, A M; Biggs, C A; Boxall, J B

    2012-06-01

    To determine the spatial and temporal variability in the abundance, structure and composition of planktonic bacterial assemblages sampled from a small, looped water distribution system and to interpret results with respect to hydraulic conditions. Water samples were collected from five sampling points, twice a day at 06:00 h and 09:00 h on a Monday (following low weekend demand) and a Wednesday (higher midweek demand). All samples were fully compliant with current regulated parameter standards. This study did not show obvious changes in bacterial abundance (DAPI count) or community structure Denaturing gradient gel electrophoresis analysis with respect to sample site and hence to water age; however, the study did show temporal variability with respect to both sampling day and sample times. Data suggests that variations in the bacterial assemblages may be associated with the local system hydraulics: the bacterial composition and numbers, over short durations, are governed by the interaction of the bulk water and the biofilm influenced by the hydraulic conditions. This study demonstrates general stability in bacterial abundance, community structure and composition within the system studied. Trends and patterns supporting the transfer of idealized understanding to the real world were evident. Ultimately, such work will help to safeguard potable water quality, fundamental to public health. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  12. Using generalized additive mixed models to assess spatial, temporal, and hydrologic controls on bacteria and nitrate in a vulnerable agricultural aquifer.

    PubMed

    Mellor, Andrea F P; Cey, Edwin E

    2015-11-01

    The Abbotsford-Sumas aquifer (ASA) has a history of nitrate contamination from agricultural land use and manure application to soils, yet little is known about its microbial groundwater quality. The goal of this study was to investigate the spatiotemporal distribution of pathogen indicators (Escherichia coli [E. coli] and total coliform [TC]) and nitrate in groundwater, and their potential relation to hydrologic drivers. Sampling of 46 wells over an 11-month period confirmed elevated nitrate concentrations, with more than 50% of samples exceeding 10 mg-N/L. E. coli detections in groundwater were infrequent (4 of 385 total samples) and attributed mainly to surface water-groundwater connections along Fishtrap Creek, which tested positive for E. coli in every sampling event. TC was detected frequently in groundwater (70% of samples) across the ASA. Generalized additive mixed models (GAMMs) yielded valuable insights into relationships between TC or nitrate and a range of spatial, temporal, and hydrologic explanatory variables. Increased TC values over the wetter fall and winter period were most strongly related to groundwater temperatures and levels, while precipitation and well location were weaker (but still significant) predictors. In contrast, the moderate temporal variability in nitrate concentrations was not significantly related to hydrologic forcings. TC was relatively widespread across the ASA and spatial patterns could not be attributed solely to surface water connectivity. Varying nitrate concentrations across the ASA were significantly related to both well location and depth, likely due to spatially variable nitrogen loading and localized geochemical attenuation (i.e., denitrification). Vulnerability of the ASA to bacteria was clearly linked to hydrologic conditions, and was distinct from nitrate, such that a groundwater management strategy specifically for bacterial contaminants is warranted. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Quantitative design of emergency monitoring network for river chemical spills based on discrete entropy theory.

    PubMed

    Shi, Bin; Jiang, Jiping; Sivakumar, Bellie; Zheng, Yi; Wang, Peng

    2018-05-01

    Field monitoring strategy is critical for disaster preparedness and watershed emergency environmental management. However, development of such is also highly challenging. Despite the efforts and progress thus far, no definitive guidelines or solutions are available worldwide for quantitatively designing a monitoring network in response to river chemical spill incidents, except general rules based on administrative divisions or arbitrary interpolation on routine monitoring sections. To address this gap, a novel framework for spatial-temporal network design was proposed in this study. The framework combines contaminant transport modelling with discrete entropy theory and spectral analysis. The water quality model was applied to forecast the spatio-temporal distribution of contaminant after spills and then corresponding information transfer indexes (ITIs) and Fourier approximation periodic functions were estimated as critical measures for setting sampling locations and times. The results indicate that the framework can produce scientific preparedness plans of emergency monitoring based on scenario analysis of spill risks as well as rapid design as soon as the incident happened but not prepared. The framework was applied to a hypothetical spill case based on tracer experiment and a real nitrobenzene spill incident case to demonstrate its suitability and effectiveness. The newly-designed temporal-spatial monitoring network captured major pollution information at relatively low costs. It showed obvious benefits for follow-up early-warning and treatment as well as for aftermath recovery and assessment. The underlying drivers of ITIs as well as the limitations and uncertainty of the approach were analyzed based on the case studies. Comparison with existing monitoring network design approaches, management implications, and generalized applicability were also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Instruction-specific brain activations during episodic encoding. a generalized level of processing effect.

    PubMed

    Petersson, Karl Magnus; Sandblom, Johan; Elfgren, Christina; Ingvar, Martin

    2003-11-01

    In a within-subject design we investigated the levels-of-processing (LOP) effect using visual material in a behavioral and a corresponding PET study. In the behavioral study we characterize a generalized LOP effect, using pleasantness and graphical quality judgments in the encoding situation, with two types of visual material, figurative and nonfigurative line drawings. In the PET study we investigate the related pattern of brain activations along these two dimensions. The behavioral results indicate that instruction and material contribute independently to the level of recognition performance. Therefore the LOP effect appears to stem both from the relative relevance of the stimuli (encoding opportunity) and an altered processing of stimuli brought about by the explicit instruction (encoding mode). In the PET study, encoding of visual material under the pleasantness (deep) instruction yielded left lateralized frontoparietal and anterior temporal activations while surface-based perceptually oriented processing (shallow instruction) yielded right lateralized frontoparietal, posterior temporal, and occipitotemporal activations. The result that deep encoding was related to the left prefrontal cortex while shallow encoding was related to the right prefrontal cortex, holding the material constant, is not consistent with the HERA model. In addition, we suggest that the anterior medial superior frontal region is related to aspects of self-referential semantic processing and that the inferior parts of the anterior cingulate as well as the medial orbitofrontal cortex is related to affective processing, in this case pleasantness evaluation of the stimuli regardless of explicit semantic content. Finally, the left medial temporal lobe appears more actively engaged by elaborate meaning-based processing and the complex response pattern observed in different subregions of the MTL lends support to the suggestion that this region is functionally segregated.

  15. HABs Monitoring and Prediction

    EPA Science Inventory

    Monitoring techniques for harmful algal blooms (HABs) vary across temporal and spatial domains. Remote satellite imagery provides information on water quality at relatively broad spatial and lengthy temporal scales. At the other end of the spectrum, local in-situ monitoring tec...

  16. Visualizing and communicating uncertainty in the earth and environmental sciences: a review

    NASA Astrophysics Data System (ADS)

    Pebesma, Edzer

    2014-05-01

    I will review past attempts to visualising uncertainty in spatial or spatio-temporal predictions of groundwater quality, quality predictions, sea bed sediment, bird densities, air quality measurements, and exposure to air quality of individuals and populations. The attempts involved software development (aguila [1], greenland [2]), the development of standards for communicating uncertain spatial and spatio-temporal information (UncertML, [3]), and have been illustrated by applications in a number of EU projects (Apmosphere [4], INTAMAP [5], UncertWeb [6] and GeoViQua [7]). I will also report on usability studies that were carried out (e.g. [8]). [1] http://pcraster.geo.uu.nl/projects/developments/aguila/ [2] https://wiki.52north.org/bin/view/Geostatistics/Greenland [3] http://www.uncertml.org/ [4] http://www.apmosphere.org/ [5] http://www.intamap.org/ [6] http://www.uncertweb.org/ [7] http://www.geoviqua.org/ [8] Senaratne, H. L. Gerharz, E. Pebesma, A. Schwering, 2012. Usability of Spatio-Temporal Uncertainty Visualisation Methods. In: Bridging the Geographic Information Sciences, Lecture Notes in Geoinformation and Cartography, J. Gensel, D. Josselin and D. Vandenbroucke. Springer Berlin Heidelberg.

  17. Low-cost, high-density sensor network for urban emission monitoring: BEACO2N

    NASA Astrophysics Data System (ADS)

    Kim, J.; Shusterman, A.; Lieschke, K.; Newman, C.; Cohen, R. C.

    2017-12-01

    In urban environments, air quality is spatially and temporally heterogeneous as diverse emission sources create a high degree of variability even at the neighborhood scale. Conventional air quality monitoring relies on continuous measurements with limited spatial resolution or passive sampling with high-density and low temporal resolution. Either approach averages the air quality information over space or time and hinders our attempts to understand emissions, chemistry, and human exposure in the near-field of emission sources. To better capture the true spatio-temporal heterogeneity of urban conditions, we have deployed a low-cost, high-density air quality monitoring network in San Francisco Bay Area distributed at 2km horizontal spacing. The BErkeley Atmospheric CO2 Observation Network (BEACO2N) consists of approximately 50 sensor nodes, measuring CO2, CO, NO, NO2, O­3, and aerosol. Here we describe field-based calibration approaches that are consistent with the low-cost strategy of the monitoring network. Observations that allow inference of emission factors and identification of specific local emission sources will also be presented.

  18. Fluctuation in Relationship Quality Over Time and Individual Well-being: Main, Mediated, and Moderated Effects

    PubMed Central

    Whitton, Sarah W.; Rhoades, Galena K.; Whisman, Mark A.

    2018-01-01

    This study examined how the degree of within-person variation (or temporal fluctuation) in relationship quality over time was associated with well-being (psychological distress and life satisfaction). A national sample of 18 to 34 year old men and women in unmarried, opposite-sex relationships completed six waves of surveys every four months (N = 748). Controlling for initial levels of and linear changes in relationship quality, greater temporal fluctuation in relationship quality over time was associated with increasing psychological distress and decreasing life satisfaction over time. Decreased confidence in one’s relationship partially mediated these associations. Moderation analyses revealed that the association between fluctuations in relationship quality and change in life satisfaction was stronger for women, participants cohabiting with their partners, and those with greater anxious attachment, whereas the association between fluctuations in relationship quality and change in psychological distress was stronger for people with greater avoidant attachment. PMID:24727811

  19. O-Plan2 VS Sipe-2 - A General Comparison

    DTIC Science & Technology

    1994-07-01

    on them that are satisfied by the planner. SIPE-2 has been extended to interface with General Electric’s Tachyon system for temporal reasoning...Temporal constraints in SIPE-2 are written to a file that is read by Tachyon . Tachyon processes these constraints and writes a file of narrowed time

  20. The use of GIS and multi-criteria evaluation (MCE) to identify agricultural land management practices which cause surface water pollution in drinking water supply catchments.

    PubMed

    Grayson, Richard; Kay, Paul; Foulger, Miles

    2008-01-01

    Diffuse pollution poses a threat to water quality and results in the need for treatment for potable water supplies which can prove costly. Within the Yorkshire region, UK, nitrates, pesticides and water colour present particular treatment problems. Catchment management techniques offer an alternative to 'end of pipe' solutions and allow resources to be targeted to the most polluting areas. This project has attempted to identify such areas using GIS based modelling approaches in catchments where water quality data were available. As no model exists to predict water colour a model was created using an MCE method which is capable of predicting colour concentrations at the catchment scale. CatchIS was used to predict pesticide and nitrate N concentrations and was found to be generally capable of reliably predicting nitrate N loads at the catchment scale. The pesticides results did not match the historic data possibly due to problems with the historic pesticide data and temporal and spatially variability in pesticide usage. The use of these models can be extended to predict water quality problems in catchments where water quality data are unavailable and highlight areas of concern. IWA Publishing 2008.

  1. Quality of life in childhood epilepsy with lateralized epileptogenic foci.

    PubMed

    Mathiak, Krystyna A; Luba, Małgorzata; Mathiak, Klaus; Karzel, Katarzyna; Wolańczyk, Tomasz; Szczepanik, Elzbieta; Ostaszewski, Paweł

    2010-08-17

    Measuring quality of life (QOL) helps to delineate mechanisms underlying the interaction of disease and psychosocial factors. In adults, epileptic foci in the left temporal lobe led to lower QOL and higher depression and anxiety as compared to the right-sided foci. No study addressed the development of QOL disturbances depending on the lateralization of epileptogenic focus. The objective of our study was to examine QOL in children with lateralized epileptiform discharges. Thirty-one parents of children with epilepsy filled the Health-Related Quality of Life in Childhood Epilepsy Questionnaire (QOLCE). Fifteen children had foci in the left hemisphere and sixteen in the right, as verified with Electroencephalography (EEG) examinations. We found a significant correlation between foci lateralization and reduced QOL (Spearman's rho = 0.361, p < 0.046). Children with right hemispheric foci exhibited lower overall QOL, particularly in five areas: anxiety, social-activities, stigma, general-health, and quality-of-life. We demonstrated for the first time that in children left- and right-hemispheric foci were associated with discordant QOL scores. Unlike in adults, foci in the right hemisphere led to worse emotional and social functioning demonstrating that seizures impact the brain differentially during development.

  2. Quality of life in childhood epilepsy with lateralized epileptogenic foci

    PubMed Central

    2010-01-01

    Background Measuring quality of life (QOL) helps to delineate mechanisms underlying the interaction of disease and psychosocial factors. In adults, epileptic foci in the left temporal lobe led to lower QOL and higher depression and anxiety as compared to the right-sided foci. No study addressed the development of QOL disturbances depending on the lateralization of epileptogenic focus. The objective of our study was to examine QOL in children with lateralized epileptiform discharges. Methods Thirty-one parents of children with epilepsy filled the Health-Related Quality of Life in Childhood Epilepsy Questionnaire (QOLCE). Fifteen children had foci in the left hemisphere and sixteen in the right, as verified with Electroencephalography (EEG) examinations. Results We found a significant correlation between foci lateralization and reduced QOL (Spearman's rho = 0.361, p < 0.046). Children with right hemispheric foci exhibited lower overall QOL, particularly in five areas: anxiety, social-activities, stigma, general-health, and quality-of-life. Conclusions We demonstrated for the first time that in children left- and right-hemispheric foci were associated with discordant QOL scores. Unlike in adults, foci in the right hemisphere led to worse emotional and social functioning demonstrating that seizures impact the brain differentially during development. PMID:20716372

  3. Impacts of flare emissions from an ethylene plant shutdown to regional air quality

    NASA Astrophysics Data System (ADS)

    Wang, Ziyuan; Wang, Sujing; Xu, Qiang; Ho, Thomas

    2016-08-01

    Critical operations of chemical process industry (CPI) plants such as ethylene plant shutdowns could emit a huge amount of VOCs and NOx, which may result in localized and transient ozone pollution events. In this paper, a general methodology for studying dynamic ozone impacts associated with flare emissions from ethylene plant shutdowns has been developed. This multi-scale simulation study integrates process knowledge of plant shutdown emissions in terms of flow rate and speciation together with regional air-quality modeling to quantitatively investigate the sensitivity of ground-level ozone change due to an ethylene plant shutdown. The study shows the maximum hourly ozone increments can vary significantly by different plant locations and temporal factors including background ozone data and solar radiation intensity. It helps provide a cost-effective air-quality control strategy for industries by choosing the optimal starting time of plant shutdown operations in terms of minimizing the induced ozone impact (reduced from 34.1 ppb to 1.2 ppb in the performed case studies). This study provides valuable technical supports for both CPI and environmental policy makers on cost-effective air-quality controls in the future.

  4. Impacts of beach wrack removal via grooming on surf zone water quality.

    PubMed

    Russell, Todd L; Sassoubre, Lauren M; Zhou, Christina; French-Owen, Darien; Hassaballah, Abdulrahman; Boehm, Alexandria B

    2014-02-18

    Fecal indicator bacteria (FIB) are used to assess the microbial water quality of recreational waters. Increasingly, nonfecal sources of FIB have been implicated as causes of poor microbial water quality in the coastal environment. These sources are challenging to quantify and difficult to remediate. The present study investigates one nonfecal FIB source, beach wrack (decaying aquatic plants), and its impacts on water quality along the Central California coast. The prevalence of FIB on wrack was studied using a multibeach survey, collecting wrack throughout Central California. The impacts of beach grooming, to remove wrack, were investigated at Cowell Beach in Santa Cruz, California using a long-term survey (two summers, one with and one without grooming) and a 48 h survey during the first ever intensive grooming event. FIB were prevalent on wrack but highly variable spatially and temporally along the nine beaches sampled in Central California. Beach grooming was generally associated with either no change or a slight increase in coastal FIB concentrations and increases in surf zone turbidity and silicate, phosphate, and dissolved inorganic nitrogen concentrations. The findings suggest that beach grooming for wrack removal is not justified as a microbial pollution remediation strategy.

  5. Trend analysis of selected water-quality constituents in the Verde River Basin, central Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldys, S.

    1990-01-01

    Temporal trends of eight water quality constituents at six data collection sites in the Verde River basin in central Arizona were investigated using seasonal Kendall tau and ordinary least-squares regression methods of analysis. The constituents are dissolved solids, dissolved sulfate, dissolved arsenic, total phosphorus, pH, total nitrite plus nitrate-nitrogen, dissolved iron, and fecal coliform bacteria. Increasing trends with time in dissolved-solids concentrations of 7 to 8 mg/L/yr at Verde River near Camp Verde were found at significant level. An increasing trend in dissolved-sulfate concentrations of 3.59 mg/L/yr was also found at Verde River near Camp Verde, although at nonsignificant levels.more » Statistically significant decreasing trends with time in dissolved-solids and dissolved-sulfate concentrations were found at Verde River above Horseshoe Reservoir, which is downstream from Verde River near Camp Verde. Observed trends in the other constituents do not indicate the emergence of water quality problems in the Verde River basin. Analysis of the eight water quality constituents generally indicate nonvarying concentration levels after adjustment for seasonality and streamflow were made.« less

  6. Future orientation and health quality of life in primary care: vitality as a mediator.

    PubMed

    Hirsch, Jameson K; Molnar, Danielle; Chang, Edward C; Sirois, Fuschia M

    2015-07-01

    Temporal perspective, including views about future goals, may influence motivational processes related to health. An adaptive sense of future orientation is linked to better health, but little research has examined potential underlying factors, such as vitality. In a sample of 101 primary care patients, we examined whether belief in the changeability of the future was related to mental and physical energization and, in turn, to health-related quality of life. Participants were working, uninsured primary care patients, who completed self-report measures of future orientation, vitality, and health-related quality of life. Mediation models, covarying age, sex, and race/ethnicity indicated that vitality significantly mediated the association between future orientation and the outcomes of general health, mental health, social functioning, bodily pain, and role limitations due to emotional and physical reasons. Vitality exerted an indirect-only effect on the relation between future orientation and physical functioning. Our findings suggest that adaptive beliefs about the future may promote, or allow access to, physical and mental energy and, in turn, may result in better mental and physical health functioning. Individual-level and public health interventions designed to promote future orientation and vitality may beneficially influence quality of life and well-being.

  7. Temporal trends and factors associated with diabetes mellitus among patients hospitalized with heart failure: Findings from Get With The Guidelines-Heart Failure registry.

    PubMed

    Echouffo-Tcheugui, Justin B; Xu, Haolin; DeVore, Adam D; Schulte, Phillip J; Butler, Javed; Yancy, Clyde W; Bhatt, Deepak L; Hernandez, Adrian F; Heidenreich, Paul A; Fonarow, Gregg C

    2016-12-01

    The contribution of diabetes to the burden of heart failure (HF) remains largely undescribed. Assessing diabetes temporal trends among US patients hospitalized with HF and their relation with quality measures in real-world practice can help to define this burden. Using data from the Get With the Guidelines-Heart Failure registry, we assessed temporal trends in diabetes prevalence among patients with HF and in subgroups with reduced ejection fraction (HFrEF; EF < 40%), borderline EF (HFbEF; 40%≤EF <50%), or preserved EF (HFpEF; EF ≥ 50%), hospitalized between 2005 and 2015. Logistic regression was used to assess whether in-hospital outcomes and HF quality of care were related to trends. Among 364,480 HF hospitalizations, 160,171 had diabetes (44.0% overall, 41.8% in HFrEF, 46.7% in HFbEF, 45.5% in HFpEF). There was a temporal increase in diabetes frequency in HF patients (43.2%-45.8%; P trend <.0001), including among those with HFrEF (42.0%-43.6%; P trend <.0001), HFbEF (46.0%-49.2%; P trend <.0001), or HFpEF (43.6%-46.8%, P trend <.0001). Diabetic patients had a longer hospital stay (adjusted odds ratio 1.14, 95% CI 1.12-1.16), but lower in-hospital mortality (adjusted odds ratio 0.93 [0.89-0.97]) compared with those without diabetes, with limited differences in quality measures. Temporal trends in diabetes were not associated with in-hospital mortality or length of stay. There were no temporal interactions of most HF quality measures with diabetes status. Approximately 44% of hospitalized HF patients have diabetes, and this proportion has been increasing over the past 10years, particularly among those patients with new-onset HFpEF. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. [Aquatic insects and water quality in Peñas Blancas watershed and reservoir].

    PubMed

    Mora, Meyer Guevara

    2011-06-01

    The aquatic insects have been used to evaluate water quality of aquatic environments. The population of aquatic insects and the water quality of the area were characterized according to the natural and human alterations present in the study site. During the monthly-survey, pH, DO, temperature, water level, DBO, PO4 and NO3 were measured. Biological indexes (abundance, species richness and the BMWP-CR) were used to evaluate the water quality. No relation between environmental and aquatic insects was detected. Temporal and spatial differences attributed to the flow events (temporal) and the presence of Peñas Blancas reservoir (spatial). In the future, the investigations in Peñas Blancas watershed need to be focused on determining the real influence of the flows, sediment release and the possible water quality degradation because of agriculture activities.

  9. Temporalization of Electric Generation Emissions for Improved Representation of Peak Air Quality Episodes

    NASA Astrophysics Data System (ADS)

    Farkas, C. M.; Moeller, M.; Carlton, A. G.

    2013-12-01

    Photochemical transport models routinely under predict peak air quality events. This deficiency may be due, in part, to inadequate temporalization of emissions from the electric generating sector. The National Emissions Inventory (NEI) reports emissions from Electric Generating Units (EGUs) by either Continuous Emission Monitors (CEMs) that report hourly values or as an annual total. The Sparse Matrix Operator Kernel Emissions preprocessor (SMOKE), used to prepare emissions data for modeling with the CMAQ air quality model, allocates annual emission totals throughout the year using specific monthly, weekly, and hourly weights according to standard classification code (SCC) and location. This approach represents average diurnal and seasonal patterns of electricity generation but does not capture spikes in emissions due to episodic use as with peaking units or due to extreme weather events. In this project we use a combination of state air quality permits, CEM data, and EPA emission factors to more accurately temporalize emissions of NOx, SO2 and particulate matter (PM) during the extensive heat wave of July and August 2006. Two CMAQ simulations are conducted; the first with the base NEI emissions and the second with improved temporalization, more representative of actual emissions during the heat wave. Predictions from both simulations are evaluated with O3 and PM measurement data from EPA's National Air Monitoring Stations (NAMS) and State and Local Air Monitoring Stations (SLAMS) during the heat wave, for which ambient concentrations of criteria pollutants were often above NAAQS. During periods of increased photochemistry and high pollutant concentrations, it is critical that emissions are most accurately represented in air quality models.

  10. Relating watershed nutrient loads to satellite derived estuarine water quality

    EPA Science Inventory

    Nutrient enhanced phytoplankton production is a cause of degraded estuarine water quality. Yet, relationships between watershed nutrient loads and the spatial and temporal scales of phytoplankton blooms and subsequent water quality impairments remain unquantified for most systems...

  11. Initial results of a new generation dual source CT system using only an in-plane comb filter for ultra-high resolution temporal bone imaging.

    PubMed

    Meyer, Mathias; Haubenreisser, Holger; Raupach, Rainer; Schmidt, Bernhard; Lietzmann, Florian; Leidecker, Christianne; Allmendinger, Thomas; Flohr, Thomas; Schad, Lothar R; Schoenberg, Stefan O; Henzler, Thomas

    2015-01-01

    To prospectively evaluate radiation dose and image quality of a third generation dual-source CT (DSCT) without z-axis filter behind the patient for temporal bone CT. Forty-five patients were either examined on a first, second, or third generation DSCT in an ultra-high-resolution (UHR) temporal bone-imaging mode. On the third generation DSCT system, the tighter focal spot of 0.2 mm(2) removes the necessity for an additional z-axis-filter, leading to an improved z-axis radiation dose efficiency. Images of 0.4 mm were reconstructed using standard filtered-back-projection or iterative reconstruction (IR) technique for previous generations of DSCT and a novel IR algorithm for the third generation DSCT. Radiation dose and image quality were compared between the three DSCT systems. The statistically significantly highest subjective and objective image quality was evaluated for the third generation DSCT when compared to the first or second generation DSCT systems (all p < 0.05). Total effective dose was 63%/39% lower for the third generation examination as compared to the first and second generation DSCT. Temporal bone imaging without z-axis-UHR-filter and a novel third generation IR algorithm allows for significantly higher image quality while lowering effective dose when compared to the first two generations of DSCTs. • Omitting the z-axis-filter allows a reduction in radiation dose of 50% • A smaller focal spot of 0.2 mm (2) significantly improves spatial resolution • Ultra-high-resolution temporal-bone-CT helps to gain diagnostic information of the middle/inner ear.

  12. Groundwater quality in Geauga County, Ohio: status, including detection frequency of methane in water wells, 2009, and changes during 1978-2009

    USGS Publications Warehouse

    Jagucki, Martha L.; Kula, Stephanie P.; Mailot, Brian E.

    2015-01-01

    To evaluate whether constituent concentrations consistently increased or decreased over time, the strength of the association between sampling year (time) and constituent concentration was statistically evaluated for 116 water-quality samples collected by the USGS in 1978, 1980, 1986, 1999, and 2009 from a total of 65 wells across the county (generally domestic wells or wells serving small businesses or churches). Results indicate that many of the constituents that have been analyzed for decades exhibited no consistent temporal trends at a statistically significant level (p-value less than 0.05); fluctuations in concentrations of these constituents represent natural variation in groundwater quality. Dissolved oxygen, calcium, and sulfate concentrations and chloride:bromide ratios increased over time in one or more aquifers, while pH and concentrations of bromide and dissolved organic carbon decreased over time. Detections of total coliform bacteria and nitrate did not become more frequent from 1986 to 2009, even though potential sources of these constituents, such as number of septic systems (linked to population) and percent developed land in the county, increased during this period.

  13. Comparison of the resulting error in data fusion techniques when used with remote sensing, earth observation, and in-situ data sets for water quality applications

    NASA Astrophysics Data System (ADS)

    Ziemba, Alexander; El Serafy, Ghada

    2016-04-01

    Ecological modeling and water quality investigations are complex processes which can require a high level of parameterization and a multitude of varying data sets in order to properly execute the model in question. Since models are generally complex, their calibration and validation can benefit from the application of data and information fusion techniques. The data applied to ecological models comes from a wide range of sources such as remote sensing, earth observation, and in-situ measurements, resulting in a high variability in the temporal and spatial resolution of the various data sets available to water quality investigators. It is proposed that effective fusion into a comprehensive singular set will provide a more complete and robust data resource with which models can be calibrated, validated, and driven by. Each individual product contains a unique valuation of error resulting from the method of measurement and application of pre-processing techniques. The uncertainty and error is further compounded when the data being fused is of varying temporal and spatial resolution. In order to have a reliable fusion based model and data set, the uncertainty of the results and confidence interval of the data being reported must be effectively communicated to those who would utilize the data product or model outputs in a decision making process[2]. Here we review an array of data fusion techniques applied to various remote sensing, earth observation, and in-situ data sets whose domains' are varied in spatial and temporal resolution. The data sets examined are combined in a manner so that the various classifications, complementary, redundant, and cooperative, of data are all assessed to determine classification's impact on the propagation and compounding of error. In order to assess the error of the fused data products, a comparison is conducted with data sets containing a known confidence interval and quality rating. We conclude with a quantification of the performance of the data fusion techniques and a recommendation on the feasibility of applying of the fused products in operating forecast systems and modeling scenarios. The error bands and confidence intervals derived can be used in order to clarify the error and confidence of water quality variables produced by prediction and forecasting models. References [1] F. Castanedo, "A Review of Data Fusion Techniques", The Scientific World Journal, vol. 2013, pp. 1-19, 2013. [2] T. Keenan, M. Carbone, M. Reichstein and A. Richardson, "The model-data fusion pitfall: assuming certainty in an uncertain world", Oecologia, vol. 167, no. 3, pp. 587-597, 2011.

  14. Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations

    PubMed Central

    Akondi, Vyas; Dorronsoro, Carlos; Gambra, Enrique; Marcos, Susana

    2017-01-01

    Fast tunable lenses allow an effective design of a portable simultaneous vision simulator (SimVis) of multifocal corrections. A novel method of evaluating the temporal profile of a tunable lens in simulating different multifocal intraocular lenses (M-IOLs) is presented. The proposed method involves the characteristic fitting of the through-focus (TF) optical quality of the multifocal component of a given M-IOL to a linear combination of TF optical quality of monofocal lenses viable with a tunable lens. Three different types of M-IOL designs are tested, namely: segmented refractive, diffractive and refractive extended depth of focus. The metric used for the optical evaluation of the temporal profile is the visual Strehl (VS) ratio. It is shown that the time profiles generated with the VS ratio as a metric in SimVis resulted in TF VS ratio and TF simulated images that closely matched the TF VS ratio and TF simulated images predicted with the M-IOL. The effects of temporal sampling, varying pupil size, monochromatic aberrations, longitudinal chromatic aberrations and temporal dynamics on SimVis are discussed. PMID:28717577

  15. Spatio-temporal coordination among functional residues in protein

    NASA Astrophysics Data System (ADS)

    Dutta, Sutapa; Ghosh, Mahua; Chakrabarti, J.

    2017-01-01

    The microscopic basis of communication among the functional sites in bio-macromolecules is a fundamental challenge in uncovering their functions. We study the communication through temporal cross-correlation among the binding sites. We illustrate via Molecular Dynamics simulations the properties of the temporal cross-correlation between the dihedrals of a small protein, ubiquitin which participates in protein degradation in eukaryotes. We show that the dihedral angles of the residues possess non-trivial temporal cross-correlations with asymmetry with respect to exchange of the dihedrals, having peaks at low frequencies with time scales in nano-seconds and an algebraic tail with a universal exponent for large frequencies. We show the existence of path for temporally correlated degrees of freedom among the functional residues. We explain the qualitative features of the cross-correlations through a general mathematical model. The generality of our analysis suggests that temporal cross-correlation functions may provide convenient theoretical framework to understand bio-molecular functions on microscopic basis.

  16. The interaction between reproductive cost and individual quality is mediated by oceanic conditions in a long-lived bird.

    PubMed

    Robert, Alexandre; Paiva, Vitor H; Bolton, Mark; Jiguet, Frédéric; Bried, Joël

    2012-08-01

    Environmental variability, costs of reproduction, and heterogeneity in individual quality are three important sources of the temporal and interindividual variations in vital rates of wild populations. Based on an 18-year monitoring of an endangered, recently described, long-lived seabird, Monteiro's Storm-Petrel (Oceanodroma monteiroi), we designed multistate survival models to separate the effects of the reproductive cost (breeders vs. nonbreeders) and individual quality (successful vs. unsuccessful breeders) in relation to temporally variable demographic and oceanographic properties. The analysis revealed a gradient of individual quality from nonbreeders, to unsuccessful breeders, to successful breeders. The survival rates of unsuccessful breeders (0.90 +/- 0.023, mean +/- SE) tended to decrease in years of high average breeding success and were more sensitive to oceanographic variation than those of both (high-quality) successful breeders (0.97 +/- 0.015) and (low-quality) nonbreeders (0.83 +/- 0.028). Overall, our results indicate that reproductive costs act on individuals of intermediate quality and are mediated by environmental harshness.

  17. Deep learning architecture for air quality predictions.

    PubMed

    Li, Xiang; Peng, Ling; Hu, Yuan; Shao, Jing; Chi, Tianhe

    2016-11-01

    With the rapid development of urbanization and industrialization, many developing countries are suffering from heavy air pollution. Governments and citizens have expressed increasing concern regarding air pollution because it affects human health and sustainable development worldwide. Current air quality prediction methods mainly use shallow models; however, these methods produce unsatisfactory results, which inspired us to investigate methods of predicting air quality based on deep architecture models. In this paper, a novel spatiotemporal deep learning (STDL)-based air quality prediction method that inherently considers spatial and temporal correlations is proposed. A stacked autoencoder (SAE) model is used to extract inherent air quality features, and it is trained in a greedy layer-wise manner. Compared with traditional time series prediction models, our model can predict the air quality of all stations simultaneously and shows the temporal stability in all seasons. Moreover, a comparison with the spatiotemporal artificial neural network (STANN), auto regression moving average (ARMA), and support vector regression (SVR) models demonstrates that the proposed method of performing air quality predictions has a superior performance.

  18. Towards a Visual Quality Metric for Digital Video

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1998-01-01

    The advent of widespread distribution of digital video creates a need for automated methods for evaluating visual quality of digital video. This is particularly so since most digital video is compressed using lossy methods, which involve the controlled introduction of potentially visible artifacts. Compounding the problem is the bursty nature of digital video, which requires adaptive bit allocation based on visual quality metrics. In previous work, we have developed visual quality metrics for evaluating, controlling, and optimizing the quality of compressed still images. These metrics incorporate simplified models of human visual sensitivity to spatial and chromatic visual signals. The challenge of video quality metrics is to extend these simplified models to temporal signals as well. In this presentation I will discuss a number of the issues that must be resolved in the design of effective video quality metrics. Among these are spatial, temporal, and chromatic sensitivity and their interactions, visual masking, and implementation complexity. I will also touch on the question of how to evaluate the performance of these metrics.

  19. Automated Assessment of Visual Quality of Digital Video

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ellis, Stephen R. (Technical Monitor)

    1997-01-01

    The advent of widespread distribution of digital video creates a need for automated methods for evaluating visual quality of digital video. This is particularly so since most digital video is compressed using lossy methods, which involve the controlled introduction of potentially visible artifacts. Compounding the problem is the bursty nature of digital video, which requires adaptive bit allocation based on visual quality metrics. In previous work, we have developed visual quality metrics for evaluating, controlling, and optimizing the quality of compressed still images[1-4]. These metrics incorporate simplified models of human visual sensitivity to spatial and chromatic visual signals. The challenge of video quality metrics is to extend these simplified models to temporal signals as well. In this presentation I will discuss a number of the issues that must be resolved in the design of effective video quality metrics. Among these are spatial, temporal, and chromatic sensitivity and their interactions, visual masking, and implementation complexity. I will also touch on the question of how to evaluate the performance of these metrics.

  20. Spatio-Temporal Gap Analysis of OBIS-SEAMAP Project Data: Assessment and Way Forward

    PubMed Central

    Kot, Connie Y.; Fujioka, Ei; Hazen, Lucie J.; Best, Benjamin D.; Read, Andrew J.; Halpin, Patrick N.

    2010-01-01

    The OBIS-SEAMAP project has acquired and served high-quality marine mammal, seabird, and sea turtle data to the public since its inception in 2002. As data accumulated, spatial and temporal biases resulted and a comprehensive gap analysis was needed in order to assess coverage to direct data acquisition for the OBIS-SEAMAP project and for taxa researchers should true gaps in knowledge exist. All datasets published on OBIS-SEAMAP up to February 2009 were summarized spatially and temporally. Seabirds comprised the greatest number of records, compared to the other two taxa, and most records were from shipboard surveys, compared to the other three platforms. Many of the point observations and polyline tracklines were located in northern and central Atlantic and the northeastern and central-eastern Pacific. The Southern Hemisphere generally had the lowest representation of data, with the least number of records in the southern Atlantic and western Pacific regions. Temporally, records of observations for all taxa were the lowest in fall although the number of animals sighted was lowest in the winter. Oceanographic coverage of observations varied by platform for each taxa, which showed that using two or more platforms represented habitat ranges better than using only one alone. Accessible and published datasets not already incorporated do exist within spatial and temporal gaps identified. Other related open-source data portals also contain data that fill gaps, emphasizing the importance of dedicated data exchange. Temporal and spatial gaps were mostly a result of data acquisition effort, development of regional partnerships and collaborations, and ease of field data collection. Future directions should include fostering partnerships with researchers in the Southern Hemisphere while targeting datasets containing species with limited representation. These results can facilitate prioritizing datasets needed to be represented and for planning research for true gaps in space and time. PMID:20886047

  1. Spatio-temporal gap analysis of OBIS-SEAMAP project data: assessment and way forward.

    PubMed

    Kot, Connie Y; Fujioka, Ei; Hazen, Lucie J; Best, Benjamin D; Read, Andrew J; Halpin, Patrick N

    2010-09-24

    The OBIS-SEAMAP project has acquired and served high-quality marine mammal, seabird, and sea turtle data to the public since its inception in 2002. As data accumulated, spatial and temporal biases resulted and a comprehensive gap analysis was needed in order to assess coverage to direct data acquisition for the OBIS-SEAMAP project and for taxa researchers should true gaps in knowledge exist. All datasets published on OBIS-SEAMAP up to February 2009 were summarized spatially and temporally. Seabirds comprised the greatest number of records, compared to the other two taxa, and most records were from shipboard surveys, compared to the other three platforms. Many of the point observations and polyline tracklines were located in northern and central Atlantic and the northeastern and central-eastern Pacific. The Southern Hemisphere generally had the lowest representation of data, with the least number of records in the southern Atlantic and western Pacific regions. Temporally, records of observations for all taxa were the lowest in fall although the number of animals sighted was lowest in the winter. Oceanographic coverage of observations varied by platform for each taxa, which showed that using two or more platforms represented habitat ranges better than using only one alone. Accessible and published datasets not already incorporated do exist within spatial and temporal gaps identified. Other related open-source data portals also contain data that fill gaps, emphasizing the importance of dedicated data exchange. Temporal and spatial gaps were mostly a result of data acquisition effort, development of regional partnerships and collaborations, and ease of field data collection. Future directions should include fostering partnerships with researchers in the Southern Hemisphere while targeting datasets containing species with limited representation. These results can facilitate prioritizing datasets needed to be represented and for planning research for true gaps in space and time.

  2. A modeling study of the impacts of Mississippi River diversion and sea-level rise on water quality of a deltaic estuary

    USGS Publications Warehouse

    Wang, Hongqing; Chen, Qin; Hu, Kelin; LaPeyre, Megan K.

    2017-01-01

    Freshwater and sediment management in estuaries affects water quality, particularly in deltaic estuaries. Furthermore, climate change-induced sea-level rise (SLR) and land subsidence also affect estuarine water quality by changing salinity, circulation, stratification, sedimentation, erosion, residence time, and other physical and ecological processes. However, little is known about how the magnitudes and spatial and temporal patterns in estuarine water quality variables will change in response to freshwater and sediment management in the context of future SLR. In this study, we applied the Delft3D model that couples hydrodynamics and water quality processes to examine the spatial and temporal variations of salinity, total suspended solids, and chlorophyll-α concentration in response to small (142 m3 s−1) and large (7080 m3 s−1) Mississippi River (MR) diversions under low (0.38 m) and high (1.44 m) relative SLR (RSLR = eustatic SLR + subsidence) scenarios in the Breton Sound Estuary, Louisiana, USA. The hydrodynamics and water quality model were calibrated and validated via field observations at multiple stations across the estuary. Model results indicate that the large MR diversion would significantly affect the magnitude and spatial and temporal patterns of the studied water quality variables across the entire estuary, whereas the small diversion tends to influence water quality only in small areas near the diversion. RSLR would also play a significant role on the spatial heterogeneity in estuary water quality by acting as an opposite force to river diversions; however, RSLR plays a greater role than the small-scale diversion on the magnitude and spatial pattern of the water quality parameters in this deltaic estuary.

  3. Groundwater quality assessment of urban Bengaluru using multivariate statistical techniques

    NASA Astrophysics Data System (ADS)

    Gulgundi, Mohammad Shahid; Shetty, Amba

    2018-03-01

    Groundwater quality deterioration due to anthropogenic activities has become a subject of prime concern. The objective of the study was to assess the spatial and temporal variations in groundwater quality and to identify the sources in the western half of the Bengaluru city using multivariate statistical techniques. Water quality index rating was calculated for pre and post monsoon seasons to quantify overall water quality for human consumption. The post-monsoon samples show signs of poor quality in drinking purpose compared to pre-monsoon. Cluster analysis (CA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the groundwater quality data measured on 14 parameters from 67 sites distributed across the city. Hierarchical cluster analysis (CA) grouped the 67 sampling stations into two groups, cluster 1 having high pollution and cluster 2 having lesser pollution. Discriminant analysis (DA) was applied to delineate the most meaningful parameters accounting for temporal and spatial variations in groundwater quality of the study area. Temporal DA identified pH as the most important parameter, which discriminates between water quality in the pre-monsoon and post-monsoon seasons and accounts for 72% seasonal assignation of cases. Spatial DA identified Mg, Cl and NO3 as the three most important parameters discriminating between two clusters and accounting for 89% spatial assignation of cases. Principal component analysis was applied to the dataset obtained from the two clusters, which evolved three factors in each cluster, explaining 85.4 and 84% of the total variance, respectively. Varifactors obtained from principal component analysis showed that groundwater quality variation is mainly explained by dissolution of minerals from rock water interactions in the aquifer, effect of anthropogenic activities and ion exchange processes in water.

  4. Aggregating the response in time series regression models, applied to weather-related cardiovascular mortality.

    PubMed

    Masselot, Pierre; Chebana, Fateh; Bélanger, Diane; St-Hilaire, André; Abdous, Belkacem; Gosselin, Pierre; Ouarda, Taha B M J

    2018-07-01

    In environmental epidemiology studies, health response data (e.g. hospitalization or mortality) are often noisy because of hospital organization and other social factors. The noise in the data can hide the true signal related to the exposure. The signal can be unveiled by performing a temporal aggregation on health data and then using it as the response in regression analysis. From aggregated series, a general methodology is introduced to account for the particularities of an aggregated response in a regression setting. This methodology can be used with usually applied regression models in weather-related health studies, such as generalized additive models (GAM) and distributed lag nonlinear models (DLNM). In particular, the residuals are modelled using an autoregressive-moving average (ARMA) model to account for the temporal dependence. The proposed methodology is illustrated by modelling the influence of temperature on cardiovascular mortality in Canada. A comparison with classical DLNMs is provided and several aggregation methods are compared. Results show that there is an increase in the fit quality when the response is aggregated, and that the estimated relationship focuses more on the outcome over several days than the classical DLNM. More precisely, among various investigated aggregation schemes, it was found that an aggregation with an asymmetric Epanechnikov kernel is more suited for studying the temperature-mortality relationship. Copyright © 2018. Published by Elsevier B.V.

  5. Health Information-Seeking Patterns of the General Public and Indications for Disease Surveillance: Register-Based Study Using Lyme Disease.

    PubMed

    Pesälä, Samuli; Virtanen, Mikko J; Sane, Jussi; Mustonen, Pekka; Kaila, Minna; Helve, Otto

    2017-11-06

    People using the Internet to find information on health issues, such as specific diseases, usually start their search from a general search engine, for example, Google. Internet searches such as these may yield results and data of questionable quality and reliability. Health Library is a free-of-charge medical portal on the Internet providing medical information for the general public. Physician's Databases, an Internet evidence-based medicine source, provides medical information for health care professionals (HCPs) to support their clinical practice. Both databases are available throughout Finland, but the latter is used only by health professionals and pharmacies. Little is known about how the general public seeks medical information from medical sources on the Internet, how this behavior differs from HCPs' queries, and what causes possible differences in behavior. The aim of our study was to evaluate how the general public's and HCPs' information-seeking trends from Internet medical databases differ seasonally and temporally. In addition, we aimed to evaluate whether the general public's information-seeking trends could be utilized for disease surveillance and whether media coverage could affect these seeking trends. Lyme disease, serving as a well-defined disease model with distinct seasonal variation, was chosen as a case study. Two Internet medical databases, Health Library and Physician's Databases, were used. We compared the general public's article openings on Lyme disease from Health Library to HCPs' article openings on Lyme disease from Physician's Databases seasonally across Finland from 2011 to 2015. Additionally, media publications related to Lyme disease were searched from the largest and most popular media websites in Finland. Both databases, Health Library and Physician's Databases, show visually similar patterns in temporal variations of article openings on Lyme disease in Finland from 2011 to 2015. However, Health Library openings show not only an increasing trend over time but also greater fluctuations, especially during peak opening seasons. Outside these seasons, publications in the media coincide with Health Library article openings only occasionally. Lyme disease-related information-seeking behaviors between the general public and HCPs from Internet medical portals share similar temporal variations, which is consistent with the trend seen in epidemiological data. Therefore, the general public's article openings could be used as a supplementary source of information for disease surveillance. The fluctuations in article openings appeared stronger among the general public, thus, suggesting that different factors such as media coverage, affect the information-seeking behaviors of the public versus professionals. However, media coverage may also have an influence on HCPs. Not every publication was associated with an increase in openings, but the higher the media coverage by some publications, the higher the general public's access to Health Library. ©Samuli Pesälä, Mikko J Virtanen, Jussi Sane, Pekka Mustonen, Minna Kaila, Otto Helve. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 06.11.2017.

  6. Health Information–Seeking Patterns of the General Public and Indications for Disease Surveillance: Register-Based Study Using Lyme Disease

    PubMed Central

    Virtanen, Mikko J; Sane, Jussi; Mustonen, Pekka; Kaila, Minna; Helve, Otto

    2017-01-01

    Background People using the Internet to find information on health issues, such as specific diseases, usually start their search from a general search engine, for example, Google. Internet searches such as these may yield results and data of questionable quality and reliability. Health Library is a free-of-charge medical portal on the Internet providing medical information for the general public. Physician’s Databases, an Internet evidence-based medicine source, provides medical information for health care professionals (HCPs) to support their clinical practice. Both databases are available throughout Finland, but the latter is used only by health professionals and pharmacies. Little is known about how the general public seeks medical information from medical sources on the Internet, how this behavior differs from HCPs’ queries, and what causes possible differences in behavior. Objective The aim of our study was to evaluate how the general public’s and HCPs’ information-seeking trends from Internet medical databases differ seasonally and temporally. In addition, we aimed to evaluate whether the general public’s information-seeking trends could be utilized for disease surveillance and whether media coverage could affect these seeking trends. Methods Lyme disease, serving as a well-defined disease model with distinct seasonal variation, was chosen as a case study. Two Internet medical databases, Health Library and Physician’s Databases, were used. We compared the general public’s article openings on Lyme disease from Health Library to HCPs’ article openings on Lyme disease from Physician’s Databases seasonally across Finland from 2011 to 2015. Additionally, media publications related to Lyme disease were searched from the largest and most popular media websites in Finland. Results Both databases, Health Library and Physician’s Databases, show visually similar patterns in temporal variations of article openings on Lyme disease in Finland from 2011 to 2015. However, Health Library openings show not only an increasing trend over time but also greater fluctuations, especially during peak opening seasons. Outside these seasons, publications in the media coincide with Health Library article openings only occasionally. Conclusions Lyme disease–related information-seeking behaviors between the general public and HCPs from Internet medical portals share similar temporal variations, which is consistent with the trend seen in epidemiological data. Therefore, the general public’s article openings could be used as a supplementary source of information for disease surveillance. The fluctuations in article openings appeared stronger among the general public, thus, suggesting that different factors such as media coverage, affect the information-seeking behaviors of the public versus professionals. However, media coverage may also have an influence on HCPs. Not every publication was associated with an increase in openings, but the higher the media coverage by some publications, the higher the general public’s access to Health Library. PMID:29109071

  7. Quality assurance of temporal variability of natural decay chain and neutron induced background for low-level NORM analysis

    DOE PAGES

    Yoho, Michael; Porterfield, Donivan R.; Landsberger, Sheldon

    2015-09-22

    In this study, twenty-one high purity germanium (HPGe) background spectra were collected over 2 years at Los Alamos National Laboratory. A quality assurance methodology was developed to monitor spectral background levels from thermal and fast neutron flux levels and naturally occurring radioactive material decay series radionuclides. 238U decay products above 222Rn demonstrated minimal temporal variability beyond that expected from counting statistics. 238U and 232Th progeny below Rn gas displayed at most twice the expected variability. Further, an analysis of the 139 keV 74Ge(n, γ) and 691 keV 72Ge(n, n') spectral features demonstrated temporal stability for both thermal and fastmore » neutron fluxes.« less

  8. Monitoring and modeling of microbial and biological water quality

    USDA-ARS?s Scientific Manuscript database

    Microbial and biological water quality informs on the health of water systems and their suitability for uses in irrigation, recreation, aquaculture, and other activities. Indicators of microbial and biological water quality demonstrate high spatial and temporal variability. Therefore, monitoring str...

  9. Water quality of least-impaired lakes in eastern and southern Arkansas.

    PubMed

    Justus, Billy

    2010-09-01

    A three-phased study identified one least-impaired (reference) lake for each of four Arkansas lake classifications: three classifications in the Mississippi Alluvial Plain (MAP) ecoregion and a fourth classification in the South Central Plains (SCP) ecoregion. Water quality at three of the least-impaired lakes generally was comparable and also was comparable to water quality from Kansas and Missouri reference lakes and Texas least-impaired lakes. Water quality of one least-impaired lake in the MAP ecoregion was not as good as water quality in other least-impaired lakes in Arkansas or in the three other states: a probable consequence of all lakes in that classification having a designated use as a source of irrigation water. Chemical and physical conditions for all four lake classifications were at times naturally harsh as limnological characteristics changed temporally. As a consequence of allochthonous organic material, oxbow lakes isolated within watersheds comprised of swamps were susceptible to low dissolved oxygen concentrations to the extent that conditions would be limiting to some aquatic biota. Also, pH in lakes in the SCP ecoregion was <6.0, a level exceeding current Arkansas water-quality standards but typical of black water systems. Water quality of the deepest lakes exceeded that of shallow lakes. N/P ratios and trophic state indices may be less effective for assessing water quality for shallow lakes (<2 m) than for deep lakes because there is an increased exposure of sediment (and associated phosphorus) to disturbance and light in the former.

  10. Withered on the stem: is bamboo a seasonally limiting resource for giant pandas?

    PubMed

    Li, Youxu; Swaisgood, Ronald R; Wei, Wei; Nie, Yonggang; Hu, Yibo; Yang, Xuyu; Gu, Xiaodong; Zhang, Zejun

    2017-04-01

    In response to seasonal variation in quality and quantity of available plant biomass, herbivorous foragers may alternate among different plant resources to meet nutritional requirements. Giant pandas (Ailuropoda melanoleuca) are reliant almost exclusively on bamboo which appears omnipresent in most occupied habitat, but subtle temporal variation in bamboo quality may still govern foraging strategies, with population-level effects. In this paper, we investigated the possibility that temporal variation in the quality of this resource is involved in population regulation and examined pandas' adaptive foraging strategies in response to temporal variation in bamboo quality. Giant pandas in late winter and early spring consumed a less optimal diet in Foping Nature Reserve, as the availability of the most nutritious and preferred components and age classes of Bashania fargesii declined, suggesting that bamboo may be a seasonally limiting resource. Most panda mortalities and rescues occurred during the same period of seasonal food limitation. Our findings raised the possibility that while total bamboo biomass may not be a limiting factor, carrying capacity may be influenced by subtle seasonal variation in bamboo quality. We recommend that managers and policy-makers should consider more than just the quantity of bamboo in the understory and that carrying capacity estimates should be revised downward to reflect the fact that all bamboos are not equal.

  11. Quality Time: Temporal Constraints to Continual Process Development in the Air Force

    DTIC Science & Technology

    2017-06-01

    quality is baked into the process or quality must be obtained through testing and correction of deficiencies. Furthermore, the Air Force concluded...that if quality is baked in it comes “for free” but if quality must be inspected or tested in it comes at a cost. As a manager or a leader, it is

  12. Temporal Non-locality

    NASA Astrophysics Data System (ADS)

    Filk, Thomas

    2013-04-01

    In this article I investigate several possibilities to define the concept of "temporal non-locality" within the standard framework of quantum theory. In particular, I analyze the notions of "temporally non-local states", "temporally non-local events" and "temporally non-local observables". The idea of temporally non-local events is already inherent in the standard formalism of quantum mechanics, and Basil Hiley recently defined an operator in order to measure the degree of such a temporal non-locality. The concept of temporally non-local states enters as soon as "clock-representing states" are introduced in the context of special and general relativity. It is discussed in which way temporally non-local measurements may find an interesting application for experiments which test temporal versions of Bell inequalities.

  13. Temporal and spatial patterns of extreme low flows and effects on stream ecosystems in Otago, New Zealand

    NASA Astrophysics Data System (ADS)

    Caruso, B. S.

    2002-02-01

    The temporal and spatial patterns of summer extreme low flows and effects on stream ecosystems were evaluated throughout the Otago Region of the South Island of New Zealand during a severe drought in 1998-1999. Flows, water quality, and aquatic biology were monitored bimonthly at 12 locations as part of a long-term regional monitoring programme and results were evaluated and compared among summer 1998-1999 and all previous summers, as well as among three major subregions. Flows during the drought were extremely low for prolonged periods in many locations, particularly in North Otago. At most sites temperatures were slightly higher for a longer period than during other summers. In predominantly agricultural/pastoral catchments, widespread bacterial contamination of streams occurred due to increased livestock use of watercourses and decreased dilution during low flows. Concentrations of other contaminants derived from non-point sources, including nitrogen, phosphorus, and sediment, decreased in many locations due to the lack of rainfall and runoff events. Electrical conductivity generally increased as a result of the lack of dilution and increased evaporation and groundwater inputs. Overall water quality was worst in agricultural catchments in South Otago, and returned to conditions prior to the low flows by late autumn in most areas. The diversity of benthic macroinvertebrate communities and number of sensitive taxa decreased somewhat in many locations, but the magnitude and duration of these effects were not great. Differences between summer 1998-1999 and other periods, and among subregions, were not significant. Although some differences in low flows and effects on stream ecosystems across a range of landscapes and catchments can occur, the rapid recovery of water quality and benthic macroinvertebrates in most locations indicates that many streams are resilient to extreme low flows and drought with minor long-term effects.

  14. Different trends in extreme and median surface aerosol extinction coefficients over China inferred from quality-controlled visibility data

    NASA Astrophysics Data System (ADS)

    Li, Jing; Li, Chengcai; Zhao, Chunsheng

    2018-03-01

    Although the temporal changes in aerosol properties have been widely investigated, the majority of studies has focused on average conditions without much emphasis on the extremes. However, the latter can be more important in terms of human health and climate change. This study uses a previously validated, quality-controlled visibility dataset to investigate the long-term trends (expressed in terms of relative changes) in extreme surface aerosol extinction coefficient (AEC) over China and compares them with the median trends. Two methods are used to independently evaluate the trends, which arrive at consistent results. The signs of extreme and median trends are generally coherent, whereas their magnitudes show distinct spatial and temporal differences. In the 1980s, an overall positive trend is found throughout China with the extreme trend exceeding the mean trend, except for northwest China and the North China Plain. In the 1990s, AEC over northeast and northwest China started to decline while the rest of the country still exhibited an increase. The extreme trends continued to dominate in the south while they yielded to the mean trend in the north. After the year 2000, the extreme trend became weaker than the mean trend overall in terms of both the magnitude and significance level. The annual trend can be primarily attributed to winter and fall trends. The results suggest that the decadal changes in pollution in China may be governed by different mechanisms. Synoptic conditions that often result in extreme air quality changes might have dominated in the 1980s, whereas emission increase might have been the main factor for the 2000s.

  15. More is still not better: testing the perturbation model of temporal reference memory across different modalities and tasks.

    PubMed

    Ogden, Ruth S; Jones, Luke A

    2009-05-01

    The ability of the perturbation model (Jones & Wearden, 2003) to account for reference memory function in a visual temporal generalization task and auditory and visual reproduction tasks was examined. In all tasks the number of presentations of the standard was manipulated (1, 3, or 5), and its effect on performance was compared. In visual temporal generalization the number of presentations of the standard did not affect the number of times the standard was correctly identified, nor did it affect the overall temporal generalization gradient. In auditory reproduction there was no effect of the number of times the standard was presented on mean reproductions. In visual reproduction mean reproductions were shorter when the standard was only presented once; however, this effect was reduced when a visual cue was provided before the first presentation of the standard. Whilst the results of all experiments are best accounted for by the perturbation model there appears to be some attentional benefit to multiple presentations of the standard in visual reproduction.

  16. CMAQ MODELING FOR AIR TOXICS AT FINE SCALES: A PROTOTYPE STUDY

    EPA Science Inventory

    Toxic air pollutants (TAPs) or hazardous air pollutants (HAPs) exhibit considerable spatial and temporal variability across urban areas. Therefore, the ability of chemical transport models (CTMs), e.g. Community Multi-scale Air Quality (CMAQ), to reproduce the spatial and tempor...

  17. Cognitive abilities required in time judgment depending on the temporal tasks used: A comparison of children and adults.

    PubMed

    Droit-Volet, S; Wearden, J H; Zélanti, P S

    2015-01-01

    The aim of this study was to examine age-related differences in time judgments during childhood as a function of the temporal task used. Children aged 5 and 8 years, as well as adults, were submitted to 3 temporal tasks (bisection, generalization and reproduction) with short (0.4/0.8 s) and long durations (8/16 s). Furthermore, their cognitive capacities in terms of working memory, attentional control, and processing speed were assessed by a wide battery of neuropsychological tests. The results showed that the age-related differences in time judgment were greater in the reproduction task than in the temporal discrimination tasks. This task was indeed more demanding in terms of working memory and information processing speed. In addition, the bisection task appeared to be easier for children than the generalization task, whereas these 2 tasks were similar for the adults, although the generalization task required more attention to be paid to the processing of durations. Our study thus demonstrates that it is important to understand the different cognitive processes involved in time judgment as a function of the temporal tasks used before venturing to draw conclusions about the development of time perception capabilities.

  18. Evolution of helping and harming in heterogeneous populations.

    PubMed

    Rodrigues, António M M; Gardner, Andy

    2012-07-01

    There has been much interest in understanding how demographic factors can mediate social evolution in viscous populations. Here, we examine the impact of heterogeneity in patch quality--that is, the availability of reproductive resources for each breeder--upon the evolution of helping and harming behaviors. We find that, owing to a cancellation of relatedness and kin competition effects, the evolution of obligate and facultative helping and harming is not influenced by the degree of viscosity in populations characterized by either spatial or temporal heterogeneity in patch quality. However, facultative helping and harming may be favored when there is both spatial and temporal heterogeneity in patch quality, with helping and harming being favored in both high-quality and low-quality patches. We highlight the prospect for using kin selection theory to explain within-population variation in social behavior, and point to the need for further theoretical and empirical investigation of this topic. © 2012 The Author(s).

  19. Influence of land use on water quality in a tropical landscape: a multi-scale analysis

    PubMed Central

    Yackulic, Charles B.; Lim, Yili; Arce-Nazario, Javier A.

    2015-01-01

    There is a pressing need to understand the consequences of human activities, such as land transformations, on watershed ecosystem services. This is a challenging task because different indicators of water quality and yield are expected to vary in their responsiveness to large versus local-scale heterogeneity in land use and land cover (LUC). Here we rely on water quality data collected between 1977 and 2000 from dozens of gauge stations in Puerto Rico together with precipitation data and land cover maps to (1) quantify impacts of spatial heterogeneity in LUC on several water quality indicators; (2) determine the spatial scale at which this heterogeneity influences water quality; and (3) examine how antecedent precipitation modulates these impacts. Our models explained 30–58% of observed variance in water quality metrics. Temporal variation in antecedent precipitation and changes in LUC between measurements periods rather than spatial variation in LUC accounted for the majority of variation in water quality. Urbanization and pasture development generally degraded water quality while agriculture and secondary forest re-growth had mixed impacts. The spatial scale over which LUC influenced water quality differed across indicators. Turbidity and dissolved oxygen (DO) responded to LUC in large-scale watersheds, in-stream nitrogen concentrations to LUC in riparian buffers of large watersheds, and fecal matter content and in-stream phosphorus concentration to LUC at the sub-watershed scale. Stream discharge modulated impacts of LUC on water quality for most of the metrics. Our findings highlight the importance of considering multiple spatial scales for understanding the impacts of human activities on watershed ecosystem services. PMID:26146455

  20. Spatial and temporal air quality pattern recognition using environmetric techniques: a case study in Malaysia.

    PubMed

    Syed Abdul Mutalib, Sharifah Norsukhairin; Juahir, Hafizan; Azid, Azman; Mohd Sharif, Sharifah; Latif, Mohd Talib; Aris, Ahmad Zaharin; Zain, Sharifuddin M; Dominick, Doreena

    2013-09-01

    The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.

  1. Radiation dose optimization in pediatric temporal bone computed tomography: influence of tube tension on image contrast and image quality.

    PubMed

    Nauer, Claude Bertrand; Zubler, Christoph; Weisstanner, Christian; Stieger, Christof; Senn, Pascal; Arnold, Andreas

    2012-03-01

    The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT). Seven lamb heads with infant-equivalent sizes were scanned repeatedly, using four tube tensions from 140 to 80 kV while the CT-Dose Index (CTDI) was held constant. Scanning was repeated with four CTDI values from 30 to 3 mGy. Image contrast was calculated for the middle ear as the Hounsfield unit (HU) difference between bone and air and for the inner ear as the HU difference between bone and fluid. The influence of tube tension on high-contrast detail delineation was evaluated using a phantom. The subjective image quality of eight middle and inner ear structures was assessed using a 4-point scale (scores 1-2 = insufficient; scores 3-4 = sufficient). Middle and inner ear contrast showed a near linear increase with tube tension reduction (r = -0.94/-0.88) and was highest at 80 kV. Tube tension had no influence on spatial resolution. Subjective image quality analysis showed significantly better scoring at lower tube tensions, with highest image quality at 80 kV. However, image quality improvement was most relevant for low-dose scans. Image contrast in the temporal bone is significantly higher at low tube tensions, leading to a better subjective image quality. Highest contrast and best quality were found at 80 kV. This image quality improvement might be utilized to further reduce the radiation dose in pediatric low-dose CT protocols.

  2. Adaptation to Spanish language and validation of the fecal incontinence quality of life scale.

    PubMed

    Minguez, Miguel; Garrigues, Vicente; Soria, Maria Jose; Andreu, Montserrat; Mearin, Fermin; Clave, Pere

    2006-04-01

    The aim of this study was to perform a psychometric evaluation of the Fecal Incontinence Quality of Life Scale in the Spanish language. Eleven hospitals in Spain participated in the study, which included 118 patients with active fecal incontinence. All the patients filled out a questionnaire on the severity of their incontinence, a general questionnaire of health (Medical Outcomes Survey Short Form), and a Spanish translation of the Fecal Incontinence Quality of Life Scale (Cuestionario de Calidad de Vida de Incontinencia Anal), which consists of 29 items in four domains: lifestyle, behavior, depression, and embarrassment. On a second visit, patients repeated the Fecal Incontinence Quality of Life Scale. For each domain, an evaluation was made of temporal reliability, internal reliability, the convergent validity with the generic questionnaire of health, and the discriminant validity correlating the domains of Cuestionario de Calidad de Vida de Incontinencia Anal with the severity of fecal incontinence. For cultural adaptation, the answer alternatives for 14 items were modified. A total of 111 patients (94 percent) completed the study adequately. Temporal reliability (test-retest) was good for all domains except for embarrassment, which showed significant differences (P < 0.02). Internal reliability was good/excellent for all domains (Cronbach alpha >0.80, between 0.84 and 0.96). The four domains of Cuestionario de Calidad de Vida de Incontinencia Anal significantly correlated with the domains of the generic questionnaire on health (P < 0.01) and with the scale of severity of fecal incontinence (P < 0.001). All domains of Cuestionario de Calidad de Vida de Incontinencia Anal correlated negatively with the need to wear pads (P < 0.01) and with the presence of complete fecal incontinence. The Cuestionario de Calidad de Vida de Incontinencia Anal incorporates sufficient requirements of reliability and validity to be applied to patients with fecal incontinence.

  3. An efficient temporal logic for robotic task planning

    NASA Technical Reports Server (NTRS)

    Becker, Jeffrey M.

    1989-01-01

    Computations required for temporal reasoning can be prohibitively expensive if fully general representations are used. Overly simple representations, such as totally ordered sequence of time points, are inadequate for use in a nonlinear task planning system. A middle ground is identified which is general enough to support a capable nonlinear task planner, but specialized enough that the system can support online task planning in real time. A Temporal Logic System (TLS) was developed during the Intelligent Task Automation (ITA) project to support robotic task planning. TLS is also used within the ITA system to support plan execution, monitoring, and exception handling.

  4. A Checklist-based Intervention to Improve Surgical Outcomes in Michigan: Evaluation of the Keystone Surgery Program

    PubMed Central

    Reames, Bradley N.; Krell, Robert W.; Campbell, Darrell A.; Dimick, Justin B.

    2015-01-01

    Importance Previous studies of checklist-based quality improvement interventions have reported mixed results. Objective To evaluate whether implementation of a checklist-based quality improvement intervention, Keystone Surgery, was associated with improved outcomes in patients undergoing general surgery in large statewide population. Design, Setting and Exposure Retrospective longitudinal study examining surgical outcomes in Michigan patients using Michigan Surgical Quality Collaborative clinical registry data from the years 2006–2010 (n=64,891 patients in 29 hospitals). Multivariable logistic regression and difference-in-differences analytic approaches were used to evaluate whether Keystone Surgery program implementation was associated with improved surgical outcomes following general surgery procedures, apart from existing temporal trends toward improved outcomes during the study period. Main Outcome Measures Risk-adjusted rates of superficial surgical site infection, wound complications, any complication, and 30-day mortality. Results Implementation of Keystone Surgery in participating centers (n=14 hospitals) was not associated with improvements in surgical outcomes during the study period. Adjusted rates of superficial surgical site infection (3.2 vs. 3.2%, p=0.91), wound complications (5.9 vs. 6.5%, p=0.30), any complication (12.4 vs. 13.2%, p=0.26), and 30-day mortality (2.1 vs. 1.9%, p=0.32) at participating hospitals were similar before and after implementation. Difference-in-differences analysis accounting for trends in non-participating centers (n=15 hospitals), and sensitivity analysis excluding patients receiving surgery in the first 6- or 12-months after program implementation yielded similar results. Conclusions and Relevance Implementation of a checklist-based quality improvement intervention did not impact rates of adverse surgical outcomes among patients undergoing general surgery in participating Michigan hospitals. Additional research is needed to understand why this program was not successful prior to further dissemination and implementation of this model to other populations. PMID:25588183

  5. A Novel Approach for Evaluation of Water Quality Trends in Gulf Coast Estuaries

    EPA Science Inventory

    Water quality data form the backbone of management programs aimed at protecting environmental resources. The increasing availability of long-term monitoring data for estuaries can improve detection of temporal and spatial changes in water quality. However, the relatively simple...

  6. Spatio-temporal statistical models for river monitoring networks.

    PubMed

    Clement, L; Thas, O; Vanrolleghem, P A; Ottoy, J P

    2006-01-01

    When introducing new wastewater treatment plants (WWTP), investors and policy makers often want to know if there indeed is a beneficial effect of the installation of a WWTP on the river water quality. Such an effect can be established in time as well as in space. Since both temporal and spatial components affect the output of a monitoring network, their dependence structure has to be modelled. River water quality data typically come from a river monitoring network for which the spatial dependence structure is unidirectional. Thus the traditional spatio-temporal models are not appropriate, as they cannot take advantage of this directional information. In this paper, a state-space model is presented in which the spatial dependence of the state variable is represented by a directed acyclic graph, and the temporal dependence by a first-order autoregressive process. The state-space model is extended with a linear model for the mean to estimate the effect of the activation of a WWTP on the dissolved oxygen concentration downstream.

  7. Spatial and temporal analysis of Air Pollution Index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001-2011.

    PubMed

    Li, Li; Qian, Jun; Ou, Chun-Quan; Zhou, Ying-Xue; Guo, Cui; Guo, Yuming

    2014-07-01

    There is an increasing interest in spatial and temporal variation of air pollution and its association with weather conditions. We presented the spatial and temporal variation of Air Pollution Index (API) and examined the associations between API and meteorological factors during 2001-2011 in Guangzhou, China. A Seasonal-Trend Decomposition Procedure Based on Loess (STL) was used to decompose API. Wavelet analyses were performed to examine the relationships between API and several meteorological factors. Air quality has improved since 2005. APIs were highly correlated among five monitoring stations, and there were substantial temporal variations. Timescale-dependent relationships were found between API and a variety of meteorological factors. Temperature, relative humidity, precipitation and wind speed were negatively correlated with API, while diurnal temperature range and atmospheric pressure were positively correlated with API in the annual cycle. Our findings should be taken into account when determining air quality forecasts and pollution control measures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Pragmatic estimation of a spatio-temporal air quality model with irregular monitoring data

    NASA Astrophysics Data System (ADS)

    Sampson, Paul D.; Szpiro, Adam A.; Sheppard, Lianne; Lindström, Johan; Kaufman, Joel D.

    2011-11-01

    Statistical analyses of health effects of air pollution have increasingly used GIS-based covariates for prediction of ambient air quality in "land use" regression models. More recently these spatial regression models have accounted for spatial correlation structure in combining monitoring data with land use covariates. We present a flexible spatio-temporal modeling framework and pragmatic, multi-step estimation procedure that accommodates essentially arbitrary patterns of missing data with respect to an ideally complete space by time matrix of observations on a network of monitoring sites. The methodology incorporates a model for smooth temporal trends with coefficients varying in space according to Partial Least Squares regressions on a large set of geographic covariates and nonstationary modeling of spatio-temporal residuals from these regressions. This work was developed to provide spatial point predictions of PM 2.5 concentrations for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) using irregular monitoring data derived from the AQS regulatory monitoring network and supplemental short-time scale monitoring campaigns conducted to better predict intra-urban variation in air quality. We demonstrate the interpretation and accuracy of this methodology in modeling data from 2000 through 2006 in six U.S. metropolitan areas and establish a basis for likelihood-based estimation.

  9. Physical and temporal characteristics of under 19, under 21 and senior male beach volleyball players.

    PubMed

    Medeiros, Alexandre; Marcelino, Rui; Mesquita, Isabel; Palao, José Manuel

    2014-09-01

    This study aimed to assess the effects of age groups and players' role (blocker vs. defender specialist) in beach volleyball in relation to physical and temporal variables, considering quality of opposition. 1101 rallies from Under 19 (U19), 933 rallies from Under 21 (U21), and 1480 rallies from senior (senior) (Men's Swatch World Championships, 2010-2011) were observed using video match analysis. Cluster analysis was used to set teams' competitive levels and establish quality of opposition as "balanced", "moderate balanced" and "unbalanced" games. The analyzed variables were: temporal (duration of set, total rest time, total work time, duration of rallies, rest time between rallies) and physical (number of jumps and number of hits done by defenders and blockers) characteristics. A one-way ANOVA, independent samples t-test and multinomial logistic regression were performed to analyze the variables studied. The analysis of temporal and physical characteristics showed differences considering age group, player's role and quality of opposition. The duration of set, total rest time, and number of jumps done by defenders significantly increased from the U19 to senior category. Multinomial logistic regression showed that in: a) balanced games, rest time between rallies was higher in seniors than in U19 or U21; number of jumps done by defenders was higher in seniors than in U19) and U21; b) moderate balanced games, number of jumps done by defenders was higher in seniors than in U21 and number of jumps done by blockers was smaller in U19 than U21 or seniors; c) unbalanced games, no significant findings were shown. This study suggests differences in players' performances according to age group and players' role in different qualities of opposition. The article provides reference values that can be useful to guide training and create scenarios that resemble a competition, taking into account physical and temporal characteristics. Key PointsPlayer roles, quality of opposition, and competitive level of the teams influence physical and temporal characteristics, and they may be taken into consideration during the training by strength and conditioning coaches and coaches.More experienced players adopt strategies to better manage their effort and rest time between rallies.The game strategy affects the physical actions done by players (e.g. tendency to serve more to one player of the team affects the number of jumps performed by this player).

  10. Temporal and spatial complexity of maternal thermoregulation in tropical pythons.

    PubMed

    Stahlschmidt, Zachary Ross; Shine, Richard; Denardo, Dale F

    2012-01-01

    Parental care is a widespread adaptation that evolved independently in a broad range of taxa. Although the dynamics by which two parents meet the developmental needs of offspring are well studied in birds, we lack understanding about the temporal and spatial complexity of parental care in taxa exhibiting female-only care, the predominant mode of parental care. Thus, we examined the behavioral and physiological mechanisms by which female water pythons Liasis fuscus meet a widespread developmental need (thermoregulation) in a natural setting. Although female L. fuscus were not facultatively thermogenic, they did use behaviors on multiple spatial scales (e.g., shifts in egg-brooding postures and surface activity patterns) to balance the thermal needs of their offspring throughout reproduction (gravidity and egg brooding). Maternal behaviors in L. fuscus varied by stage within reproduction and were mediated by interindividual variation in body size and fecundity. Female pythons with relatively larger clutch sizes were cooler during egg brooding, suggesting a trade-off between reproductive quantity (size of clutch) and quality (developmental temperature). In nature, caregiving parents of all taxa must navigate both extrinsic factors (temporal and spatial complexity) and intrinsic factors (body size and fecundity) to meet the needs of their offspring. Our study used a comprehensive approach that can be used as a general template for future research examining the dynamics by which parents meet other developmental needs (e.g., predation risk or energy balance).

  11. Assessment of the impacts of aromatic VOC emissions and yields of SOA on SOA concentrations with the air quality model RAMS-CMAQ

    NASA Astrophysics Data System (ADS)

    Li, Jialin; Zhang, Meigen; Wu, Fangkun; Sun, Yele; Tang, Guiqian

    2017-06-01

    The secondary organic aerosol (SOA) concentration is generally underestimated by models. Recent studies suggest that the underprediction is related to underestimations of aromatic volatile organic compound (VOC) emissions and SOA yields in current models. Here, the impacts of these two factors in China were investigated with the regional air quality modeling system RAMS-CMAQ, referring to field observations during the episode from October 14 to November 14, 2014. Comparisons between the observed and modeled SOA of four sensitivity simulation cases indicated the significant impacts of the two underestimated factors on the SOA output. By considering these two aspects, the simulated mean SOA concentrations significantly increased by nearly 4 times with a good representation of the intensively temporal variations of concentrations, which were largely controlled by photochemical processes rather than meteorological conditions. The improvement in SOA compensated for the underestimations by approximately 23.5% and contributed to the mean fraction of SOA to organic aerosol (OA) by increasing the fraction from less than 7% to more than 25%, which was closer to the observed result. These results suggested a more reasonable and more realistic representation of SOA formation in the model after allowing for the two factors. Due to the better simulation of SOA, predictions of OA were correspondingly improved when the correlation coefficient increased from 0.57 to 0.73 and other bias parameters were reduced, which indicated the improved ability of our model to trace the temporal variations of OA. Based on the improved simulation throughout the episode, the mean SOA concentration was obviously higher in eastern China than in the west. The highest concentration appeared in the Sichuan Basin and Pearl River Delta (PRD) areas, with values of 6-11 μg/m3 and 8-17 μg/m3, respectively. Over the wide regions of central and eastern China, the dominant component in SOA was formed from anthropogenic sources (ASOA), generally accounting for more than 60%.

  12. Control costs, enhance quality, and increase revenue in three top general public hospitals in Beijing, China.

    PubMed

    Zhao, Lue-Ping; Yu, Guo-Pei; Liu, Hui; Ma, Xie-Min; Wang, Jing; Kong, Gui-Lan; Li, Yi; Ma, Wen; Cui, Yong; Xu, Beibei; Yu, Na; Bao, Xiao-Yuan; Guo, Yu; Wang, Fei; Zhang, Jun; Li, Yan; Xie, Xue-Qin; Jiang, Bao-Guo; Ke, Yang

    2013-01-01

    With market-oriented economic and health-care reform, public hospitals in China have received unprecedented pressures from governmental regulations, public opinions, and financial demands. To adapt the changing environment and keep pace of modernizing healthcare delivery system, public hospitals in China are expanding clinical services and improving delivery efficiency, while controlling costs. Recent experiences are valuable lessons for guiding future healthcare reform. Here we carefully study three teaching hospitals, to exemplify their experiences during this period. We performed a systematic analysis on hospitalization costs, health-care quality and delivery efficiencies from 2006 to 2010 in three teaching hospitals in Beijing, China. The analysis measured temporal changes of inpatient cost per stay (CPS), cost per day (CPD), inpatient mortality rate (IMR), and length of stay (LOS), using a generalized additive model. There were 651,559 hospitalizations during the period analyzed. Averaged CPS was stable over time, while averaged CPD steadily increased by 41.7% (P<0.001), from CNY 1,531 in 2006 to CNY 2,169 in 2010. The increasing CPD seemed synchronous with the steady rising of the national annual income per capita. Surgical cost was the main contributor to the temporal change of CPD, while medicine and examination costs tended to be stable over time. From 2006 and 2010, IMR decreased by 36%, while LOS reduced by 25%. Increasing hospitalizations with higher costs, along with an overall stable CPS, reduced IMR, and shorter LOS, appear to be the major characteristics of these three hospitals at present. These three teaching hospitals have gained some success in controlling costs, improving cares, adopting modern medical technologies, and increasing hospital revenues. Effective hospital governance and physicians' professional capacity plus government regulations and supervisions may have played a role. However, purely market-oriented health-care reform could also misguide future healthcare reform.

  13. Temporal assessment of copper speciation, bioavailability and toxicity in UK freshwaters using chemical equilibrium and biotic ligand models: Implications for compliance with copper environmental quality standards.

    PubMed

    Lathouri, Maria; Korre, Anna

    2015-12-15

    Although significant progress has been made in understanding how environmental factors modify the speciation, bioavailability and toxicity of metals such as copper in aquatic environments, the current methods used to establish water quality standards do not necessarily consider the different geological and geochemical characteristics of a given site and the factors that affect copper fate, bioavailability potential and toxicity. In addition, the temporal variation in the concentration and bioavailable metal fraction is also important in freshwater systems. The work presented in this paper illustrates the temporal and seasonal variability of a range of water quality parameters, and Cu speciation, bioavailability and toxicity at four freshwaters sites in the UK. Rivers Coquet, Cree, Lower Clyde and Eden (Kent) were selected to cover a broad range of different geochemical environments and site characteristics. The monitoring data used covered a period of around six years at almost monthly intervals. Chemical equilibrium modelling was used to study temporal variations in Cu speciation and was combined with acute toxicity modelling to assess Cu bioavailability for two aquatic species, Daphnia magna and Daphnia pulex. The estimated copper bioavailability, toxicity levels and the corresponding ecosystem risks were analysed in relation to key water quality parameters (alkalinity, pH and DOC). Although copper concentrations did not vary much during the sampling period or between the seasons at the different sites; copper bioavailability varied markedly. In addition, through the chronic-Cu BLM-based on the voluntary risk assessment approach, the potential environmental risk in terms of the chronic toxicity was assessed. A much higher likelihood of toxicity effects was found during the cold period at all sites. It is suggested that besides the metal (copper) concentration in the surface water environment, the variability and seasonality of other important water quality parameters should be considered in setting appropriately protective environmental quality standards for metals. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. In-hive patterns of temporal polyethism in strains of honey bees (Apis mellifera) with distinct genetic backgrounds.

    PubMed

    Siegel, Adam J; Fondrk, M Kim; Amdam, Gro V; Page, Robert E

    2013-01-01

    Honey bee workers exhibit an age-based division of labor (temporal polyethism, DOL). Younger bees transition through sets of tasks within the nest; older bees forage outside. Components of temporal polyethism remain unrevealed. Here, we investigate the timing and pattern of pre-foraging behavior in distinct strains of bees to (1) determine if a general pattern of temporal DOL exists in honey bees, (2) to demonstrate a direct genetic impact on temporal pacing, and (3) to further elucidate the mechanisms controlling foraging initiation. Honey bees selected for differences in stored pollen demonstrate consistent differences in foraging initiation age. Those selected for increased pollen storage (high pollen hoarding strain, HSBs) initiate foraging earlier in life than those selected for decreased pollen storage (low pollen hoarding strain, LSBs). We found that HSBs both initiate and terminate individual pre-foraging tasks earlier than LSBs when housed in a common hive environment. Unselected commercial bees (wild type) generally demonstrated intermediate behavioral timing. There were few differences between genotypes for the proportion of pre-foraging effort dedicated to individual tasks, though total pre-foraging effort differences differed dramatically. This demonstrates that behavioral pacing can be accelerated or slowed, but the pattern of behavior is not fundamentally altered, suggesting a general pattern of temporal behavior in honey bees. This also demonstrates direct genetic control of temporal pacing. Finally, our results suggest that earlier HSB protein (pollen) consumption termination compared to LSBs may contribute to an earlier decline in hemolymph vitellogenin protein titers, which would explain their earlier onset of foraging.

  15. MODELED MESOSCALE METEOROLOGICAL FIELDS WITH FOUR-DIMENSIONAL DATA ASSIMILATION IN REGIONAL SCALE AIR QUALITY MODELS

    EPA Science Inventory

    This paper addresses the need to increase the temporal and spatial resolution of meteorological data currently used in air quality simulation models, AQSMs. ransport and diffusion parameters including mixing heights and stability used in regulatory air quality dispersion models a...

  16. On the Myth and the Reality of the Temporal Validity Degradation of General Mental Ability Test Scores

    ERIC Educational Resources Information Center

    Reeve, Charlie L.; Bonaccio, Silvia

    2011-01-01

    Claims of changes in the validity coefficients associated with general mental ability (GMA) tests due to the passage of time (i.e., temporal validity degradation) have been the focus of an on-going debate in applied psychology. To evaluate whether and, if so, under what conditions this degradation may occur, we integrate evidence from multiple…

  17. Temporal variation of traffic on highways and the development of accurate temporal allocation factors for air pollution analyses

    NASA Astrophysics Data System (ADS)

    Batterman, Stuart; Cook, Richard; Justin, Thomas

    2015-04-01

    Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates.

  18. Temporal variation of traffic on highways and the development of accurate temporal allocation factors for air pollution analyses

    PubMed Central

    Batterman, Stuart; Cook, Richard; Justin, Thomas

    2015-01-01

    Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates. PMID:25844042

  19. Water-quality characteristics in runoff for three discovery farms in North Dakota, 2008-12

    USGS Publications Warehouse

    Nustad, Rochelle A.; Rowland, Kathleen M.; Wiederholt, Ronald

    2015-01-01

    Consistent patterns in water quality emerged at each individual farm, but similarities among farms also were observed. Suspended sediment, total phosphorus, and ammonia concentrations generally decreased downstream from feeding areas, and were primarily affected by surface runoff processes such as dilution, settling out of sediment, or vegetative uptake. Because surface runoff affects these constituents, increased annual surface runoff volume tended to result in increased loads and yields. No significant change in nitrate plus nitrite concentration were observed downstream from feeding areas because additional processes such as high solubility, nitrification, denitrification, and surface-groundwater interaction affect nitrate plus nitrite. For nitrate plus nitrite, increases in annual runoff volume did not consistently relate to increases in annual loads and yields. It seems that temporal distribution of precipitation and surface-groundwater interaction affected nitrate plus nitrite loads and yields. For surface drainage sites, the primary form of nitrogen was organic nitrogen whereas for subsurface drainage sites, the primary form of nitrogen was nitrate plus nitrite nitrogen.

  20. Temporal water quality response in an urban river: a case study in peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    VishnuRadhan, Renjith; Zainudin, Zaki; Sreekanth, G. B.; Dhiman, Ravinder; Salleh, Mohd. Noor; Vethamony, P.

    2017-05-01

    Ambient water quality is a prerequisite for the health and self-purification capacity of riverine ecosystems. To understand the general water quality situation, the time series data of selected water quality parameters were analyzed in an urban river in Peninsular Malaysia. In this regard, the stations were selected from the main stem of the river as well as from the side channel. The stations located at the main stem of the river are less polluted than that in the side channel. Water Quality Index scores indicated that the side channel station is the most polluted, breaching the Class IV water quality criteria threshold during the monitoring period, followed by stations at the river mouth and the main channel. The effect of immediate anthropogenic waste input is also evident at the side channel station. The Organic Pollution Index of side channel station is (14.99) 3 times higher than at stations at river mouth (4.11) and 6 times higher than at the main channel (2.57). The two-way ANOVA showed significant difference among different stations. Further, the factor analysis on water quality parameters yielded two significant factors. They discriminated the stations into two groups. The land-use land cover classification of the study area shows that the region near the sampling sites is dominated by urban settlements (33.23 %) and this can contribute significantly to the deterioration of ambient river water quality. The present study estimated the water quality condition and response in the river and the study can be an immediate yardstick for base lining river water quality, and a basis for future water quality modeling studies in the region.

  1. A Comparison of Statistical Techniques for Combining Modeled and Observed Concentrations to Create High-Resolution Ozone Air Quality Surfaces

    EPA Science Inventory

    Air quality surfaces representing pollutant concentrations across space and time are needed for many applications, including tracking trends and relating air quality to human and ecosystem health. The spatial and temporal characteristics of these surfaces may reveal new informat...

  2. Spatial and Temporal Trends of Air Pollutants in the South Coast Basin Using Low Cost Sensors

    EPA Science Inventory

    The emergence of small, portable, low-cost air sensors has encouraged a shift from traditional monitoring approaches for air quality. The U.S. Environmental Protection Agency (U.S. EPA), in collaboration with the South Coast Air Quality Management District’s (SCAQMD) Air Quality ...

  3. Space-Time Analysis of the Air Quality Model Evaluation International Initiative (AQMEII) Phase 1 Air Quality Simulations

    EPA Science Inventory

    This study presents an evaluation of summertime daily maximum ozone concentrations over North America (NA) and Europe (EU) using the database generated during Phase 1 of the Air Quality Model Evaluation International Initiative (AQMEII). The analysis focuses on identifying tempor...

  4. Temporal stability of E. coli concentration patterns in two irrigation ponds in Maryland

    USDA-ARS?s Scientific Manuscript database

    There are about nine millions ponds in USA, and many of them serve as an important agricultural surface water source. E. coli concentrations are commonly used as indicator organisms to evaluate microbial water quality for irrigation and recreation. Our hypothesis was that there exists a temporally ...

  5. Spatial and Temporal Monitoring of Dissolved Oxygen in NJ Coastal Waters using AUVs (Presentation)

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...

  6. Concentration and biochemical gradients of seston in Lake Ontario

    USGS Publications Warehouse

    Kelly, Patrick T.; Weidel, Brian C.; Paufve, Matthew R.; O'Malley, Brian P.; Watkins, James M.; Rudstam, Lars G.; Jones, Stuart E.

    2017-01-01

    Spatial variability in resource quantity and quality may have important implications for the distribution and productivity of primary consumers. In Lake Ontario, ecosystem characteristics suggest the potential for significant spatial heterogeneity in seston quantity and quality, particularly due to the potential for nearshore-offshore gradients in allochthonous nutrient supply, and the formation of a deep chlorophyll layer (DCL) in July. We assessed total and zooplankton food particle size-fractionated chlorophyll a concentrations, as well as carbon-to-phosphorus stoichiometry and essential fatty acid composition of seston across a distance-from-shore and depth transect. We observed time, sampling depth, and distance from shore to be the best predictors of chlorophyll a concentration. Resource quality was much more homogenous in space, but there were strong patterns through time, as both stoichiometric and fatty acid qualities in general were greatest in May, and lowest in July/August. We did observe a peak in essential fatty acid concentration near the DCL in during time of formation, possibly due to differences in phytoplankton community composition between the DCL and epilimnion. These results suggest the potential for a spatially and temporally dynamic resource base for consumers in Lake Ontario, which may be important in developing a broader understanding of variable consumer productivity.

  7. A Hybrid Approach for Estimating Total Deposition in the ...

    EPA Pesticide Factsheets

    Atmospheric deposition of nitrogen and sulfur causes many deleterious effects on ecosystems including acidification and excess eutrophication. Assessments to support development of strategies to mitigate these effects require spatially and temporally continuous values of nitrogen and sulfur deposition. In the U.S., national monitoring networks exist that provide values of wet and dry deposition at discrete locations. While wet deposition can be interpolated between the monitoring locations, dry deposition cannot. Additionally, monitoring networks do not measure the complete suite of chemicals that contribute to total sulfur and nitrogen deposition. Regional air quality models provide spatially continuous values of deposition of monitored species as well as important unmeasured species. However, air quality modeling values are not generally available for an extended continuous time period. Air quality modeling results may also be biased for some chemical species. We developed a novel approach for estimating dry deposition using data from monitoring networks such as the Clean Air Status and Trends Network (CASTNET), the National Atmospheric Deposition Program (NADP) Ammonia Monitoring Network (AMoN), and the Southeastern Aerosol Research and Characterization (SEARCH) network and modeled data from the Community Multiscale Air Quality (CMAQ) model. These dry deposition values estimates are then combined with wet deposition values from the NADP National Trends Networ

  8. A Novel Hybrid Approach for Estimating Total Deposition in ...

    EPA Pesticide Factsheets

    Atmospheric deposition of nitrogen and sulfur causes many deleterious effects on ecosystems including acidification and excess eutrophication. Assessments to support development of strategies to mitigate these effects require spatially and temporally continuous values of nitrogen and sulfur deposition. In the U.S., national monitoring networks exist that provide values of wet and dry deposition at discrete locations. While wet deposition can be interpolated between the monitoring locations, dry deposition cannot. Additionally, monitoring networks do not measure the complete suite of chemicals that contribute to total sulfur and nitrogen deposition. Regional air quality models provide spatially continuous values of deposition of monitored species as well as important unmeasured species. However, air quality modeling values are not generally available for an extended continuous time period. Air quality modeling results may also be biased for some chemical species. We developed a novel approach for estimating dry deposition using data from monitoring networks such as the Clean Air Status and Trends Network (CASTNET), the National Atmospheric Deposition Program (NADP) Ammonia Monitoring Network (AMoN), and the Southeastern Aerosol Research and Characterization (SEARCH) network and modeled data from the Community Multiscale Air Quality (CMAQ) model. These dry deposition values estimates are then combined with wet deposition values from the NADP National Trends Networ

  9. Adding Temporal Characteristics to Geographical Schemata and Instances: A General Framework

    NASA Astrophysics Data System (ADS)

    Ota, Morishige

    2018-05-01

    This paper proposes the temporal general feature model (TGFM) as a meta-model for application schemata representing changes of real-world phenomena. It is not very easy to determine history directly from the current application schemata, even if the revision notes are attached to the specification. To solve this problem, the rules for description of the succession between previous and posterior components are added to the general feature model, thus resulting in TGFM. After discussing the concepts associated with the new model, simple examples of application schemata are presented as instances of TGFM. Descriptors for changing properties, the succession of changing properties in moving features, and the succession of features and associations are introduced. The modeling methods proposed in this paper will contribute to the acquisition of consistent and reliable temporal geospatial data.

  10. Towards a Generalizable Time Expression Model for Temporal Reasoning in Clinical Notes

    PubMed Central

    Velupillai, Sumithra; Mowery, Danielle L.; Abdelrahman, Samir; Christensen, Lee; Chapman, Wendy W

    2015-01-01

    Accurate temporal identification and normalization is imperative for many biomedical and clinical tasks such as generating timelines and identifying phenotypes. A major natural language processing challenge is developing and evaluating a generalizable temporal modeling approach that performs well across corpora and institutions. Our long-term goal is to create such a model. We initiate our work on reaching this goal by focusing on temporal expression (TIMEX3) identification. We present a systematic approach to 1) generalize existing solutions for automated TIMEX3 span detection, and 2) assess similarities and differences by various instantiations of TIMEX3 models applied on separate clinical corpora. When evaluated on the 2012 i2b2 and the 2015 Clinical TempEval challenge corpora, our conclusion is that our approach is successful – we achieve competitive results for automated classification, and we identify similarities and differences in TIMEX3 modeling that will be informative in the development of a simplified, general temporal model. PMID:26958265

  11. A comparison of pre- and post-remediation water quality, Mineral Creek, Colorado

    USGS Publications Warehouse

    Runkel, R.L.; Bencala, K.E.; Kimball, B.A.; Walton-Day, K.; Verplanck, P.L.

    2009-01-01

    Pre- and post-remediation data sets are used herein to assess the effectiveness of remedial measures implemented in the headwaters of the Mineral Creek watershed, where contamination from hard rock mining has led to elevated metal concentrations and acidic pH. Collection of pre- and post-remediation data sets generally followed the synoptic mass balance approach, in which numerous stream and inflow locations are sampled for the constituents of interest and estimates of streamflow are determined by tracer dilution. The comparison of pre- and post-remediation data sets is confounded by hydrologic effects and the effects of temporal variation. Hydrologic effects arise due to the relatively wet conditions that preceded the collection of pre-remediation data, and the relatively dry conditions associated with the post-remediation data set. This difference leads to a dilution effect in the upper part of the study reach, where pre-remediation concentrations were diluted by rainfall, and a source area effect in the lower part of the study reach, where a smaller portion of the watershed may have been contributing constituent mass during the drier post-remediation period. A second confounding factor, temporal variability, violates the steady-state assumption that underlies the synoptic mass balance approach, leading to false identification of constituent sources and sinks. Despite these complications, remedial actions completed in the Mineral Creek headwaters appear to have led to improvements in stream water quality, as post-remediation profiles of instream load are consistently lower than the pre-remediation profiles over the entire study reach for six of the eight constituents considered (aluminium, arsenic, cadmium, copper, iron, and zinc). Concentrations of aluminium, cadmium, copper, lead, and zinc remain above chronic aquatic-life standards, however, and additional remedial actions may be needed. Future implementations of the synoptic mass balance approach should be preceded by an assessment of temporal variability, and modifications to the synoptic sampling protocol should be made if necessary.

  12. Identifying Optimal Temporal Scale for the Correlation of AOD and Ground Measurements of PM2.5 to Improve the Model Performance in a Real-time Air Quality Estimation System

    NASA Technical Reports Server (NTRS)

    Li, Hui; Faruque, Fazlay; Williams, Worth; Al-Hamdan, Mohammad; Luvall, Jeffrey C.; Crosson, William; Rickman, Douglas; Limaye, Ashutosh

    2009-01-01

    Aerosol optical depth (AOD), an indirect estimate of particle matter using satellite observations, has shown great promise in improving estimates of PM 2.5 air quality surface. Currently, few studies have been conducted to explore the optimal way to apply AOD data to improve the model accuracy of PM 2.5 surface estimation in a real-time air quality system. We believe that two major aspects may be worthy of consideration in that area: 1) the approach to integrate satellite measurements with ground measurements in the pollution estimation, and 2) identification of an optimal temporal scale to calculate the correlation of AOD and ground measurements. This paper is focused on the second aspect on the identifying the optimal temporal scale to correlate AOD with PM2.5. Five following different temporal scales were chosen to evaluate their impact on the model performance: 1) within the last 3 days, 2) within the last 10 days, 3) within the last 30 days, 4) within the last 90 days, and 5) the time period with the highest correlation in a year. The model performance is evaluated for its accuracy, bias, and errors based on the following selected statistics: the Mean Bias, the Normalized Mean Bias, the Root Mean Square Error, Normalized Mean Error, and the Index of Agreement. This research shows that the model with the temporal scale of within the last 30 days displays the best model performance in this study area using 2004 and 2005 data sets.

  13. Sperm competition dynamics: ejaculate fertilising efficiency changes differentially with time.

    PubMed

    Pizzari, Tommaso; Worley, Kirsty; Burke, Terry; Froman, David P

    2008-12-16

    A fundamental challenge in evolutionary biology is to resolve the mechanisms that maintain paternity a hypervariable fitness component. Because females are often sexually promiscuous, this challenge hinges on establishing the mechanisms through which the ejaculates of different males compete for fertilisation (sperm competition). The competitive quality of an ejaculate is mediated by the relative number of live sperm and their motile performance. The differential rate at which rival ejaculates lose their fertilising efficiency over time is therefore expected to influence the outcome of sperm competition. Here, we artificially inseminated into sets of replicate domestic hens, Gallus gallus domesticus, experimentally engineered heterospermic ejaculates containing a large number of low-quality sperm from one male, and a lower number of high-quality sperm from another male. Large, low-quality ejaculates fertilised the first eggs produced after insemination, but small, high-quality ejaculates prevailed in the long run despite their numerical disadvantage. Together, these results provide the first experimental demonstration that the relative competitive value of an ejaculate changes drastically over the time during which competing ejaculates are stored within the reproductive tract of a female, resulting in a marked temporal pattern of variation in paternity. A high level of replication makes these results robust. However, our study was restricted to few males of a well characterised study population, and future work should explore the generality of these results.

  14. Sperm competition dynamics: ejaculate fertilising efficiency changes differentially with time

    PubMed Central

    2008-01-01

    Background A fundamental challenge in evolutionary biology is to resolve the mechanisms that maintain paternity a hypervariable fitness component. Because females are often sexually promiscuous, this challenge hinges on establishing the mechanisms through which the ejaculates of different males compete for fertilisation (sperm competition). The competitive quality of an ejaculate is mediated by the relative number of live sperm and their motile performance. The differential rate at which rival ejaculates lose their fertilising efficiency over time is therefore expected to influence the outcome of sperm competition. Results Here, we artificially inseminated into sets of replicate domestic hens, Gallus gallus domesticus, experimentally engineered heterospermic ejaculates containing a large number of low-quality sperm from one male, and a lower number of high-quality sperm from another male. Large, low-quality ejaculates fertilised the first eggs produced after insemination, but small, high-quality ejaculates prevailed in the long run despite their numerical disadvantage. Conclusion Together, these results provide the first experimental demonstration that the relative competitive value of an ejaculate changes drastically over the time during which competing ejaculates are stored within the reproductive tract of a female, resulting in a marked temporal pattern of variation in paternity. A high level of replication makes these results robust. However, our study was restricted to few males of a well characterised study population, and future work should explore the generality of these results. PMID:19087292

  15. Water quality of least-impaired lakes in eastern and southern Arkansas

    USGS Publications Warehouse

    Justus, B.

    2010-01-01

    A three-phased study identified one least-impaired (reference) lake for each of four Arkansas lake classifications: three classifications in the Mississippi Alluvial Plain (MAP) ecoregion and a fourth classification in the South Central Plains (SCP) ecoregion. Water quality at three of the least-impaired lakes generally was comparable and also was comparable to water quality from Kansas and Missouri reference lakes and Texas least-impaired lakes. Water quality of one least-impaired lake in the MAP ecoregion was not as good as water quality in other least-impaired lakes in Arkansas or in the three other states: a probable consequence of all lakes in that classification having a designated use as a source of irrigation water. Chemical and physical conditions for all four lake classifications were at times naturally harsh as limnological characteristics changed temporally. As a consequence of allochthonous organic material, oxbow lakes isolated within watersheds comprised of swamps were susceptible to low dissolved oxygen concentrations to the extent that conditions would be limiting to some aquatic biota. Also, pH in lakes in the SCP ecoregion was <6.0, a level exceeding current Arkansas water-quality standards but typical of black water systems. Water quality of the deepest lakes exceeded that of shallow lakes. N/P ratios and trophic state indices may be less effective for assessing water quality for shallow lakes (<2 m) than for deep lakes because there is an increased exposure of sediment (and associated phosphorus) to disturbance and light in the former. ?? 2009 Springer Science+Business Media B.V.

  16. Spatio-temporal variability of hydro-chemical characteristics of coastal waters of Gulf of Mannar Marine Biosphere Reserve (GoMMBR), South India

    NASA Astrophysics Data System (ADS)

    Kathiravan, K.; Natesan, Usha; Vishnunath, R.

    2017-03-01

    The intention of this study was to appraise the spatial and temporal variations in the physico-chemical parameters of coastal waters of Rameswaram Island, Gulf of Mannar Marine Biosphere Reserve, south India, using multivariate statistical techniques, such as cluster analysis, factor analysis and principal component analysis. Spatio-temporal variations among the physico-chemical parameters are observed in the coastal waters of Gulf of Mannar, especially during northeast and post monsoon seasons. It is inferred that the high loadings of pH, temperature, suspended particulate matter, salinity, dissolved oxygen, biochemical oxygen demand, chlorophyll a, nutrient species of nitrogen and phosphorus strongly determine the discrimination of coastal water quality. Results highlight the important role of monsoonal variations to determine the coastal water quality around Rameswaram Island.

  17. Water-quality observations of the San Antonio segment of the Edwards aquifer, Texas, with an emphasis on processes influencing nutrient and pesticide geochemistry and factors affecting aquifer vulnerability, 2010–16

    USGS Publications Warehouse

    Opsahl, Stephen P.; Musgrove, MaryLynn; Mahler, Barbara J.; Lambert, Rebecca B.

    2018-06-07

    As questions regarding the influence of increasing urbanization on water quality in the Edwards aquifer are raised, a better understanding of the sources, fate, and transport of compounds of concern in the aquifer—in particular, nutrients and pesticides—is needed to improve water management decision-making capabilities. The U.S. Geological Survey, in cooperation with the San Antonio Water System, performed a study from 2010 to 2016 to better understand how water quality changes under a range of hydrologic conditions and in contrasting land-cover settings (rural and urban) in the Edwards aquifer. The study design included continuous hydrologic monitoring, continuous water-quality monitoring, and discrete sample collection for a detailed characterization of water quality at a network of sites throughout the aquifer system. The sites were selected to encompass a “source-to-sink” (that is, from aquifer recharge to aquifer discharge) approach. Network sites were selected to characterize rainfall, recharging surface water, and groundwater; groundwater sites included wells in the unconfined part of the aquifer (unconfined wells) and in the confined part of the aquifer (confined wells) and a major discharging spring. Storm-related samples—including rainfall samples, stormwater-runoff (surface-water) samples, and groundwater samples—were collected to characterize the aquifer response to recharge.Elevated nitrate concentrations relative to national background values and the widespread detection of pesticides indicate that the Edwards aquifer is vulnerable to contamination and that vulnerability is affected by factors such as land cover, aquifer hydrogeology, and changes in hydrologic conditions. Greater vulnerability of groundwater in urban areas relative to rural areas was evident from results for urban groundwater sites, which generally had higher nitrate concentrations, elevated δ15N-nitrate values, a greater diversity of pesticides, and higher pesticide concentrations. The continuum of water quality from unconfined rural groundwater sites (least affected by anthropogenic contamination) to unconfined urban groundwater sites (most affected by anthropogenic contamination) demonstrates enhanced vulnerability of urban versus rural land cover. Differences in contaminant occurrences and concentration among unconfined urban wells indicate that the urban parts of the aquifer are not uniformly vulnerable, but rather are affected by spatial differences in the sources of nutrients and pesticides. In urban areas, the shallow, unconfined groundwater sites showed greater temporal variability in both nutrient and pesticide concentrations, as well as a greater degree of contamination, than did deeper, confined groundwater sites. In comparison to that of the shallow, unconfined groundwater sites, the water quality of the deeper, confined groundwater sites was relatively invariant during this multiyear study. Although aquifer hydrogeology is an important factor related to aquifer vulnerability, land cover likely has a greater influence on pesticide contamination of groundwater. Temporal variability in hydrologic conditions for the Edwards aquifer is apparent in data for surface water as a source of groundwater recharge, water-level altitude in wells, spring discharge, and groundwater quality. This temporal variability affects recharge sources, recharge amounts, groundwater traveltimes, flow routing, water-rock interaction processes, dilution, mixing, and, in turn, water quality. Relations of land cover, aquifer hydrogeology, and changing hydrologic conditions to water quality are complex but provide insight into the vulnerability of Edwards aquifer groundwater—a vital drinking-water resource.

  18. Spatial and Temporal Dynamics of Mass Mortalities in Oysters Is Influenced by Energetic Reserves and Food Quality

    PubMed Central

    Pernet, Fabrice; Lagarde, Franck; Jeannée, Nicolas; Daigle, Gaetan; Barret, Jean; Le Gall, Patrik; Quere, Claudie; D’orbcastel, Emmanuelle Roque

    2014-01-01

    Although spatial studies of diseases on land have a long history, far fewer have been made on aquatic diseases. Here, we present the first large-scale, high-resolution spatial and temporal representation of a mass mortality phenomenon cause by the Ostreid herpesvirus (OsHV-1) that has affected oysters (Crassostrea gigas) every year since 2008, in relation to their energetic reserves and the quality of their food. Disease mortality was investigated in healthy oysters deployed at 106 locations in the Thau Mediterranean lagoon before the start of the epizootic in spring 2011. We found that disease mortality of oysters showed strong spatial dependence clearly reflecting the epizootic process of local transmission. Disease initiated inside oyster farms spread rapidly beyond these areas. Local differences in energetic condition of oysters, partly driven by variation in food quality, played a significant role in the spatial and temporal dynamics of disease mortality. In particular, the relative contribution of diatoms to the diet of oysters was positively correlated with their energetic reserves, which in turn decreased the risk of disease mortality. PMID:24551106

  19. Spatial and temporal dynamics of mass mortalities in oysters is influenced by energetic reserves and food quality.

    PubMed

    Pernet, Fabrice; Lagarde, Franck; Jeannée, Nicolas; Daigle, Gaetan; Barret, Jean; Le Gall, Patrik; Quere, Claudie; D'orbcastel, Emmanuelle Roque

    2014-01-01

    Although spatial studies of diseases on land have a long history, far fewer have been made on aquatic diseases. Here, we present the first large-scale, high-resolution spatial and temporal representation of a mass mortality phenomenon cause by the Ostreid herpesvirus (OsHV-1) that has affected oysters (Crassostrea gigas) every year since 2008, in relation to their energetic reserves and the quality of their food. Disease mortality was investigated in healthy oysters deployed at 106 locations in the Thau Mediterranean lagoon before the start of the epizootic in spring 2011. We found that disease mortality of oysters showed strong spatial dependence clearly reflecting the epizootic process of local transmission. Disease initiated inside oyster farms spread rapidly beyond these areas. Local differences in energetic condition of oysters, partly driven by variation in food quality, played a significant role in the spatial and temporal dynamics of disease mortality. In particular, the relative contribution of diatoms to the diet of oysters was positively correlated with their energetic reserves, which in turn decreased the risk of disease mortality.

  20. Action change detection in video using a bilateral spatial-temporal constraint

    NASA Astrophysics Data System (ADS)

    Tian, Jing; Chen, Li

    2016-08-01

    Action change detection in video aims to detect action discontinuity in video. The silhouettes-based features are desirable for action change detection. This paper studies the problem of silhouette-quality assessment. For that, a non-reference approach without the need for ground truth is proposed in this paper to evaluate the quality of silhouettes, by exploiting both the boundary contrast of the silhouettes in the spatial domain and the consistency of the silhouettes in the temporal domain. This is in contrast to that either only spatial information or only temporal information of silhouettes is exploited in conventional approaches. Experiments are conducted using artificially generated degraded silhouettes to show that the proposed approach outperforms conventional approaches to achieve more accurate quality assessment. Furthermore, experiments are performed to show that the proposed approach is able to improve the accuracy performance of conventional action change approaches in two human action video data-sets. The average runtime of the proposed approach for Weizmann action video data-set is 0.08 second for one frame using Matlab programming language. It is computationally efficient and potential to real-time implementations.

  1. "One-Stop Shop": Free-Breathing Dynamic Contrast-Enhanced Magnetic Resonance Imaging of the Kidney Using Iterative Reconstruction and Continuous Golden-Angle Radial Sampling.

    PubMed

    Riffel, Philipp; Zoellner, Frank G; Budjan, Johannes; Grimm, Robert; Block, Tobias K; Schoenberg, Stefan O; Hausmann, Daniel

    2016-11-01

    The purpose of the present study was to evaluate a recently introduced technique for free-breathing dynamic contrast-enhanced renal magnetic resonance imaging (MRI) applying a combination of radial k-space sampling, parallel imaging, and compressed sensing. The technique allows retrospective reconstruction of 2 motion-suppressed sets of images from the same acquisition: one with lower temporal resolution but improved image quality for subjective image analysis, and one with high temporal resolution for quantitative perfusion analysis. In this study, 25 patients underwent a kidney examination, including a prototypical fat-suppressed, golden-angle radial stack-of-stars T1-weighted 3-dimensional spoiled gradient-echo examination (GRASP) performed after contrast agent administration during free breathing. Images were reconstructed at temporal resolutions of 55 spokes per frame (6.2 seconds) and 13 spokes per frame (1.5 seconds). The GRASP images were evaluated by 2 blinded radiologists. First, the reconstructions with low temporal resolution underwent subjective image analysis: the radiologists assessed the best arterial phase and the best renal phase and rated image quality score for each patient on a 5-point Likert-type scale.In addition, the diagnostic confidence was rated according to a 3-point Likert-type scale. Similarly, respiratory motion artifacts and streak artifacts were rated according to a 3-point Likert-type scale.Then, the reconstructions with high temporal resolution were analyzed with a voxel-by-voxel deconvolution approach to determine the renal plasma flow, and the results were compared with values reported in previous literature. Reader 1 and reader 2 rated the overall image quality score for the best arterial phase and the best renal phase with a median image quality score of 4 (good image quality) for both phases, respectively. A high diagnostic confidence (median score of 3) was observed. There were no respiratory motion artifacts in any of the patients. Streak artifacts were present in all of the patients, but did not compromise diagnostic image quality.The estimated renal plasma flow was slightly higher (295 ± 78 mL/100 mL per minute) than reported in previous MRI-based studies, but also closer to the physiologically expected value. Dynamic, motion-suppressed contrast-enhanced renal MRI can be performed in high diagnostic quality during free breathing using a combination of golden-angle radial sampling, parallel imaging, and compressed sensing. Both morphologic and quantitative functional information can be acquired within a single acquisition.

  2. Triennial changes in groundwater quality in aquifers used for public supply in California: Utility as indicators of temporal trends

    USGS Publications Warehouse

    Kent, Robert; Landon, Matthew K.

    2016-01-01

    From 2004 to 2011, the U.S. Geological Survey collected samples from 1686 wells across the State of California as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project (PBP). From 2007 to 2013, 224 of these wells were resampled to assess temporal trends in water quality. The samples were analyzed for 216 water-quality constituents, including inorganic and organic compounds as well as isotopic tracers. The resampled wells were grouped into five hydrogeologic zones. A nonparametric hypothesis test was used to test the differences between initial sampling and resampling results to evaluate possible step trends in water-quality, statewide, and within each hydrogeologic zone. The hypothesis tests were performed on the 79 constituents that were detected in more than 5 % of the samples collected during either sampling period in at least one hydrogeologic zone. Step trends were detected for 17 constituents. Increasing trends were detected for alkalinity, aluminum, beryllium, boron, lithium, orthophosphate, perchlorate, sodium, and specific conductance. Decreasing trends were detected for atrazine, cobalt, dissolved oxygen, lead, nickel, pH, simazine, and tritium. Tritium was expected to decrease due to decreasing values in precipitation, and the detection of decreases indicates that the method is capable of resolving temporal trends.

  3. Audio-visual temporal perception in children with restored hearing.

    PubMed

    Gori, Monica; Chilosi, Anna; Forli, Francesca; Burr, David

    2017-05-01

    It is not clear how audio-visual temporal perception develops in children with restored hearing. In this study we measured temporal discrimination thresholds with an audio-visual temporal bisection task in 9 deaf children with restored audition, and 22 typically hearing children. In typically hearing children, audition was more precise than vision, with no gain in multisensory conditions (as previously reported in Gori et al. (2012b)). However, deaf children with restored audition showed similar thresholds for audio and visual thresholds and some evidence of gain in audio-visual temporal multisensory conditions. Interestingly, we found a strong correlation between auditory weighting of multisensory signals and quality of language: patients who gave more weight to audition had better language skills. Similarly, auditory thresholds for the temporal bisection task were also a good predictor of language skills. This result supports the idea that the temporal auditory processing is associated with language development. Copyright © 2017. Published by Elsevier Ltd.

  4. WILDFIRE EMISSION MODELING: INTEGRATING BLUESKY AND SMOKE

    EPA Science Inventory

    Atmospheric chemical transport models are used to simulate historic meteorological episodes for developing air quality management strategies. Wildland fire emissions need to be characterized accurately to achieve these air quality management goals. The temporal and spatial esti...

  5. Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China

    PubMed Central

    Chen, Xiang; Zhou, Weiqi; Pickett, Steward T. A.; Li, Weifeng; Han, Lijian

    2016-01-01

    Rapid urbanization with intense land use and land cover (LULC) change and explosive population growth has a great impact on water quality. The relationship between LULC characteristics and water quality provides important information for non-point sources (NPS) pollution management. In this study, we first quantified the spatial-temporal patterns of five water quality variables in four watersheds with different levels of urbanization in Beijing, China. We then examined the effects of LULC on water quality across different scales, using Pearson correlation analysis, redundancy analysis, and multiple regressions. The results showed that water quality was improved over the sampled years but with no significant difference (p > 0.05). However, water quality was significantly different among nonurban and both exurban and urban sites (p < 0.05). Forest land was positively correlated with water quality and affected water quality significantly (p < 0.05) within a 200 m buffer zone. Impervious surfaces, water, and crop land were negatively correlated with water quality. Crop land and impervious surfaces, however, affected water quality significantly (p < 0.05) for buffer sizes greater than 800 m. Grass land had different effects on water quality with the scales. The results provide important insights into the relationship between LULC and water quality, and thus for controlling NPS pollution in urban areas. PMID:27128934

  6. Applications of high resolution rainfall radar data to quantify water temperature dynamics in urban catchments

    NASA Astrophysics Data System (ADS)

    Croghan, Danny; Van Loon, Anne; Bradley, Chris; Sadler, Jon; Hannnah, David

    2017-04-01

    Studies relating rainfall events to river water quality are frequently hindered by the lack of high resolution rainfall data. Local studies are particularly vulnerable due to the spatial variability of precipitation, whilst studies in urban environments require precipitation data at high spatial and temporal resolutions. The use of point-source data makes identifying causal effects of storms on water quality problematic and can lead to erroneous interpretations. High spatial and temporal resolution rainfall radar data offers great potential to address these issues. Here we use rainfall radar data with a 1km spatial resolution and 5 minute temporal resolution sourced from the UK Met Office Nimrod system to study the effects of storm events on water temperature (WTemp) in Birmingham, UK. 28 WTemp loggers were placed over 3 catchments on a rural-urban land use gradient to identify trends in WTemp during extreme events within urban environments. Using GIS, the catchment associated with each logger was estimated, and 5 min. rainfall totals and intensities were produced for each sub-catchment. Comparisons of rainfall radar data to meteorological stations in the same grid cell revealed the high accuracy of rainfall radar data in our catchments (<5% difference for studied months). The rainfall radar data revealed substantial differences in rainfall quantity between the three adjacent catchments. The most urban catchment generally received more rainfall, with this effect greatest in the highest intensity storms, suggesting the possibility of urban heat island effects on precipitation dynamics within the catchment. Rainfall radar data provided more accurate sub-catchment rainfall totals allowing better modelled estimates of storm flow, whilst spatial fluctuations in both discharge and WTemp can be simply related to precipitation intensity. Storm flow inputs for each sub-catchment were estimated and linked to changes in WTemp. WTemp showed substantial fluctuations (>1 °C) over short durations (<30 minutes) during storm events in urbanised sub-catchments, however WTemp recovery times were more prolonged. Use of the rainfall radar data allowed increased accuracy in estimates of storm flow timings and rainfall quantities at each sub-catchment, from which the impact of storm flow on WTemp could be quantified. We are currently using the radar data to derive thresholds for rainfall amount and intensity at which these storm deviations occur for each logger, from which the relative effects of land use and other catchment characteristics in each sub-catchment can be assessed. Our use of the rainfall radar data calls into question the validity of using station based data for small scale studies, particularly in urban areas, with high variation apparent in rainfall intensity both spatially and temporally. Variation was particularly high within the heavily urbanised catchment. For water quality studies, high resolution rainfall radar can be implemented to increase the reliability of interpretations of the response of water quality variables to storm water inputs in urban catchments.

  7. Spatial and seasonal patterns in water quality in an embayment-mainstem reach of the tidal freshwater Potomac River, USA: a multiyear study.

    PubMed

    Jones, R Christian; Kelso, Donald P; Schaeffer, Elaine

    2008-12-01

    Spatial and temporal patterns in water quality were studied for seven years within an embayment-river mainstem area of the tidal freshwater Potomac River. The purpose of this paper is to determine the important components of spatial and temporal variation in water quality in this study area to facilitate an understanding of management impacts and allow the most effective use of future monitoring resources. The study area received treated sewage effluent and freshwater inflow from direct tributary inputs into the shallow embayment as well as upriver sources in the mainstem. Depth variations were determined to be detectable, but minimal due mainly to the influence of tidal mixing. Results of principal component analysis of two independent water quality datasets revealed clear spatial and seasonal patterns. Interannual variation was generally minimal despite substantial variations in tributary and mainstem discharge among years. Since both spatial and seasonal components were important, data were segmented by season to best determine the spatial pattern. A clear difference was found between a set of stations located within one embayment (Gunston Cove) and a second set in the nearby Potomac mainstem. Parameters most highly correlated with differences were those typically associated with higher densities of phytoplankton: chlorophyll a, photosynthetic rate, pH, dissolved oxygen, BOD, total phosphorus and Secchi depth. These differences and their consistency indicated two distinct water masses: one in the cove harboring higher algal density and activity and a second in the river with lower phytoplankton activity. A second embayment not receiving sewage effluent generally had an intermediate position. While this was the most consistent spatial pattern, there were two others of a secondary nature. Stations closer to the effluent inputs in the embayment sometimes grouped separately due to elevated ammonia and chloride. Stations closer to tributary inflows into the embayment sometimes grouped separately due to dilution with freshwater runoff. Segmenting the datasets by spatial region resulted in a clarification of seasonal patterns with similar factors relating to algal activity being the major correlates of the seasonal pattern. A basic seasonal pattern of lower scores in the spring increasing steadily to a peak in July and August followed by a steady decline through the fall was observed in the cove. In the river, the pattern of increases tended to be delayed slightly in the spring. Results indicate that the study area can be effectively monitored with fewer study sites provided that at least one is located in each of the spatial regions.

  8. Temporal distribution of air quality related to meteorology and road traffic in Madrid.

    PubMed

    Perez-Martinez, Pedro J; Miranda, Regina M

    2015-04-01

    The impact of climatology--air temperature, precipitation and wind speed--and road traffic--volume, vehicle speed and percentage of heavy-duty vehicles (HDVs)--on air quality in Madrid was studied by estimating the effect for each explanatory variable using generalized linear regression models controlling for monthly variations, days of week and parameter levels. Every 1 m/s increase in wind speed produced a decrease in PM10 concentrations by 10.3% (95% CI 12.6-8.6) for all weekdays and by 12.4% (95% CI 14.9-9.8) for working days (up to the cut-off of 2.4 m/s). Increases of PM10 concentrations due to air temperature (7.2% (95% CI 6.2-8.3)) and traffic volume (3.3% (95% CI 2.9-3.8)) were observed at every 10 °C and 1 million vehicle-km increases for all weekdays; oppositely, slight decreases of PM10 concentrations due to percentage of HDVs (3.2% (95% CI 2.7-3.7)) and vehicle speed (0.7% (95% CI 0.6-0.8)) were observed at every 1% and 1 km/h increases. Stronger effects of climatology on air quality than traffic parameters were found.

  9. An approach to developing numeric water quality criteria for coastal waters using the SeaWiFS Satellite Data Record.

    PubMed

    Schaeffer, Blake A; Hagy, James D; Conmy, Robyn N; Lehrter, John C; Stumpf, Richard P

    2012-01-17

    Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and associated ecological impacts. Numeric nutrient water quality standards are needed to protect coastal waters from eutrophication impacts. The Environmental Protection Agency determined that numeric nutrient criteria were necessary to protect designated uses of Florida's waters. The objective of this study was to evaluate a reference condition approach for developing numeric water quality criteria for coastal waters, using data from Florida. Florida's coastal waters have not been monitored comprehensively via field sampling to support numeric criteria development. However, satellite remote sensing had the potential to provide adequate data. Spatial and temporal measures of SeaWiFS OC4 chlorophyll-a (Chl(RS)-a, mg m(-3)) were resolved across Florida's coastal waters between 1997 and 2010 and compared with in situ measurements. Statistical distributions of Chl(RS)-a were evaluated to determine a quantitative reference baseline. A binomial approach was implemented to consider how new data could be assessed against the criteria. The proposed satellite remote sensing approach to derive numeric criteria may be generally applicable to other coastal waters.

  10. An Approach to Developing Numeric Water Quality Criteria for Coastal Waters Using the SeaWiFS Satellite Data Record

    PubMed Central

    2011-01-01

    Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and associated ecological impacts. Numeric nutrient water quality standards are needed to protect coastal waters from eutrophication impacts. The Environmental Protection Agency determined that numeric nutrient criteria were necessary to protect designated uses of Florida’s waters. The objective of this study was to evaluate a reference condition approach for developing numeric water quality criteria for coastal waters, using data from Florida. Florida’s coastal waters have not been monitored comprehensively via field sampling to support numeric criteria development. However, satellite remote sensing had the potential to provide adequate data. Spatial and temporal measures of SeaWiFS OC4 chlorophyll-a (ChlRS-a, mg m–3) were resolved across Florida’s coastal waters between 1997 and 2010 and compared with in situ measurements. Statistical distributions of ChlRS-a were evaluated to determine a quantitative reference baseline. A binomial approach was implemented to consider how new data could be assessed against the criteria. The proposed satellite remote sensing approach to derive numeric criteria may be generally applicable to other coastal waters. PMID:22192062

  11. Ground-water quality in Douglas County, western Nevada

    USGS Publications Warehouse

    Garcia, K.T.

    1989-01-01

    A 182% increase in population within the last 10 years in Douglas County, Nevada, has raised concerns by county officials as to the possible effects land development may have on groundwater quality. Most groundwater in Douglas County meets the State of Nevada drinking water standards. Of the 333 water samples used in this analysis, 6 equaled or were greater than the drinking water standards for sulfates, 44 for fluoride, 4 for dissolved solids, 5 for nitrate as nitrate, 12 for arsenic, 33 for iron, and 18 for manganese. Groundwater in the west-central, northern, and northeastern part of Carson Valley is influenced by geothermal water. Some areas in the county may have septic-tank effluent contaminating the groundwater. Temporal changes in most municipal wells showed no overall trend for dissolved-solids and nitrate concentrations spanning the years 1969-83. However, a municipal well in the Topaz Lake area has shown a general increases in the nitrate concentration from 1961 to 1984, but the concentration does not exceed the drinking-water standard. A future groundwater quality monitoring program in Douglas County would include periodic sampling of primary or heavily pumped wells, long-term trend wells, and supplemental wells. (Thacker-USGS)

  12. Water quality, sediment quality, and stream-channel classification of Rock Creek, Washington, D.C., 1999-2000

    USGS Publications Warehouse

    Anderson, Anita L.; Miller, Cherie V.; Olsen, Lisa D.; Doheny, Edward J.; Phelan, Daniel J.

    2002-01-01

    Rock Creek Park is within the National Capital Region in Washington, D.C., and is maintained by the National Park Service. Part of Montgomery County, Maryland, and part of the District of Columbia drain into Rock Creek, which is a tributary of the Potomac River. Water quality in Rock Creek is important to biotic life in and near the creek, and in the Potomac River Basin and the Chesapeake Bay. The water quality of the Rock Creek Basin has been affected by continued urban and agricultural growth and development. The U.S. Geological Survey, in cooperation with the National Park Service, investigated water quality and sediment quality in Rock Creek over a 2-year period (1998?2000), and performed a stream-channel classification to determine the distribution of bottom sediment in Rock Creek. This report presents and evaluates water quality and bottom sediment in Rock Creek for water years 1999 (October 1, 1998 to September 30, 1999) and 2000 (October 1, 1999 to September 30, 2000). A synoptic surface-water assessment was conducted at five stations from June 23 to June 25, 1999, a temporal surface-water assessment was conducted at one station from February 18, 1999 to September 26, 2000, and bed-sediment samples were collected and assessed from three stations from August 17 to August 19, 1999. The synoptic surface-water assessment included pesticides (parent compounds and selected transformation products), field parameters, nutrients, and major ions. The temporal surface-water assessment included pesticides (parent compounds and selected transformation products) and field parameters. The bed-sediment assessment included trace elements and organic compounds (including low- and high-molecular weight polycyclic aromatic hydrocarbons, poly-chlorinated biphenyls, pesticides, and phthalates). Some, but not all, of the pesticides known to be used in the area were included in the synoptic water-quality assessment, the temporal water-quality assessment, and the bed-sediment assessment. In addition to the water-quality and sediment-quality assessments, a Rosgen stream-channel classification was performed on a 900-foot-long segment of Rock Creek. In the synoptic water-quality assessment, two pesticides were found to be above published criteria for the protection of aquatic life. In the temporal water-quality assessment, four pesticides were found to be above published criteria for the protection of aquatic life. In the bed-sediment assessment, 8 trace elements, 14 polycyclic aromatic hydrocarbons, 6 pesticides, and 1 phthalate compound were found to be above published criteria for the protection of aquatic life. In the Rosgen classification, a comparison to a previous classification for this segment showed an increase in sands and other fine-grained sediments in the creek bed.

  13. Influence of Exposure and Toxicokinetics on Measures of Aquatic Toxicity for Organic Contaminants: A Case Study Review

    PubMed Central

    Landrum, Peter F; Chapman, Peter M; Neff, Jerry; Page, David S

    2013-01-01

    This theoretical and case study review of dynamic exposures of aquatic organisms to organic contaminants examines variables important for interpreting exposure and therefore toxicity. The timing and magnitude of the absorbed dose change when the dynamics of exposure change. Thus, the dose metric for interpreting toxic responses observed during such exposure conditions is generally limited to the specific experiment and cannot be extrapolated to either other experiments with different exposure dynamics or to field exposures where exposure dynamics usually are different. This is particularly true for mixture exposures, for which the concentration and composition and, therefore, the timing and magnitude of exposure to individual components of different potency and potentially different mechanisms of action can vary. Aquatic toxicology needs studies that develop temporal thresholds for absorbed toxicant doses to allow for better extrapolation between conditions of dynamic exposure. Improved experimental designs are required that include high-quality temporal measures of both the exposure and the absorbed dose to allow better interpretation of data. For the short term, initial water concentration can be considered a conservative measure of exposure, although the extent to which this is true cannot be estimated specifically unless the dynamics of exposure as well as the toxicokinetics of the chemicals in the exposure scenario for the organism of interest are known. A better, but still limited, metric for interpreting the exposure and, therefore, toxicity is the peak absorbed dose, although this neglects toxicodynamics, requires appropriate temporal measures of accumulated dose to determine the peak concentration, and requires temporal thresholds for critical body residue for each component of the mixture. Integr Environ Assess Manag 2013; 9: 196–210. © 2012 SETAC PMID:23229376

  14. Temporal and spatial distributions of sediment total organic carbon in an estuary river.

    PubMed

    Ouyang, Y; Zhang, J E; Ou, L-T

    2006-01-01

    Understanding temporal and spatial distributions of naturally occurring total organic carbon (TOC) in sediments is critical because TOC is an important feature of surface water quality. This study investigated temporal and spatial distributions of sediment TOC and its relationships to sediment contaminants in the Cedar and Ortega Rivers, Florida, USA, using three-dimensional kriging analysis and field measurement. Analysis of field data showed that large temporal changes in sediment TOC concentrations occurred in the rivers, which reflected changes in the characteristics and magnitude of inputs into the rivers during approximately the last 100 yr. The average concentration of TOC in sediments from the Cedar and Ortega Rivers was 12.7% with a maximum of 22.6% and a minimum of 2.3%. In general, more TOC accumulated at the upper 1.0 m of the sediment in the southern part of the Ortega River although the TOC sedimentation varied with locations and depths. In contrast, high concentrations of sediment contaminants, that is, total polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were found in sediments from the Cedar River. There was no correlation between TOC and PAHs or PCBs in these river sediments. This finding is in contradiction to some other studies which reported that the sorption of hydrocarbons is highly related to the organic matter content of sediments. This discrepancy occurred because of the differences in TOC and hydrocarbon source input locations. It was found that more TOC loaded into the southern part of the Ortega River, while almost all of the hydrocarbons entered into the Cedar River. This study suggested that the locations of their input sources as well as the land use patterns should also be considered when relating hydrocarbons to sediment TOC.

  15. High-resolution spatio-temporal analyses of drought episodes in the western Mediterranean basin (Spanish mainland, Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    González-Hidalgo, J. C.; Vicente-Serrano, S. M.; Peña-Angulo, D.; Salinas, C.; Tomas-Burguera, M.; Beguería, S.

    2018-04-01

    The purpose of this research was to identify major drought events on the Spanish mainland between 1961 and 2014 by means of two drought indices, and analyze the spatial propagation of drought conditions. The indices applied were the standardized precipitation index (SPI) and the standardized evaporation precipitation index (SPEI). The first was calculated as standardized anomalies of precipitation at various temporal intervals, while the second examined the climatic balance normalized at monthly scale, incorporating the relationship between precipitation and the atmospheric water demand. The daily meteorological data from Spanish Meteorological Archives (AEMet) were used in performing the analyses. Within the framework of the DESEMON project, original data were converted into a high spatial resolution grid (1.1 km2) following exhaustive quality control. Values of both indices were calculated on a weekly scale and different timescales (12, 24 and 36 months). The results show that during the first half of the study period, the SPI usually returned a higher identification of drought areas, while the reverse was true from the 1990s, suggesting that the effect from atmospheric evaporative demand could have increased. The temporal propagation from 12- to 24-month and 36-month timescales analyzed in the paper seems to be a far from straightforward phenomenon that does not follow a simple rule of time lag, because events at different temporal scales can overlap in time and space. Spatially, the propagation of drought events affecting more than 25% of the total land indicates the existence of various spatial gradients of drought propagation, mostly east-west or west-east, but also north-south have been found. No generalized episodes were found with a radial pattern, i.e., from inland to the coast.

  16. Single-trial EEG-informed fMRI reveals spatial dependency of BOLD signal on early and late IC-ERP amplitudes during face recognition.

    PubMed

    Wirsich, Jonathan; Bénar, Christian; Ranjeva, Jean-Philippe; Descoins, Médéric; Soulier, Elisabeth; Le Troter, Arnaud; Confort-Gouny, Sylviane; Liégeois-Chauvel, Catherine; Guye, Maxime

    2014-10-15

    Simultaneous EEG-fMRI has opened up new avenues for improving the spatio-temporal resolution of functional brain studies. However, this method usually suffers from poor EEG quality, especially for evoked potentials (ERPs), due to specific artifacts. As such, the use of EEG-informed fMRI analysis in the context of cognitive studies has particularly focused on optimizing narrow ERP time windows of interest, which ignores the rich diverse temporal information of the EEG signal. Here, we propose to use simultaneous EEG-fMRI to investigate the neural cascade occurring during face recognition in 14 healthy volunteers by using the successive ERP peaks recorded during the cognitive part of this process. N170, N400 and P600 peaks, commonly associated with face recognition, were successfully and reproducibly identified for each trial and each subject by using a group independent component analysis (ICA). For the first time we use this group ICA to extract several independent components (IC) corresponding to the sequence of activation and used single-trial peaks as modulation parameters in a general linear model (GLM) of fMRI data. We obtained an occipital-temporal-frontal stream of BOLD signal modulation, in accordance with the three successive IC-ERPs providing an unprecedented spatio-temporal characterization of the whole cognitive process as defined by BOLD signal modulation. By using this approach, the pattern of EEG-informed BOLD modulation provided improved characterization of the network involved than the fMRI-only analysis or the source reconstruction of the three ERPs; the latter techniques showing only two regions in common localized in the occipital lobe. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Temporal trends in human vulnerability to excessive heat

    NASA Astrophysics Data System (ADS)

    Sheridan, Scott C.; Allen, Michael J.

    2018-04-01

    Over recent decades, studies have examined various morbidity and mortality outcomes associated with heat exposure. This review explores the collective knowledge of the temporal trends of heat on human health, with regard to the hypothesis that humans are less vulnerable to heat events presently than in the past. Using Web of Science and Scopus, the authors identified all peer-reviewed articles that contained keywords on human impact (e.g. mortality, morbidity) and meteorological component (e.g. heat, heatwave). After sorting, a total of 71 articles, both case studies and epidemiological studies, contained explicit assessments of temporal trends in human vulnerability, and thus were used in this review. Most of the studies utilized mortality data, focused on the developed world, and showed a general decrease in heat sensitivity. Factors such as the implementation of a heat warning system, increased awareness, and improved quality of life were cited as contributing factors that led to the decreased impact of heat. Despite the overall recent decreases in heat vulnerability, spatial variability was shown, and differences with respect to health outcomes were also discussed. Several papers noted increases in heat’s impact on human health, particularly when unprecedented conditions occurred. Further, many populations, from outdoor workers to rural residents, in addition to the populations in much of the developing world, have been significantly underrepresented in research to date, and temporal changes in their vulnerability should be assessed in future studies. Moreover, continued monitoring and improvement of heat intervention is needed; with projected changes in the frequency, duration, and intensity of heat events combined with shifts in demographics, heat will remain a major public health issue moving forward.

  18. Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: a study in Can Tho City, a Mekong Delta area, Vietnam.

    PubMed

    Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Dwirahmadi, Febi; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh; Nguyen, Nga Huy; Do, Cuong Manh; Nguyen, Trung Hieu; Dinh, Tuan Anh Diep

    2015-05-01

    The present study is an evaluation of temporal/spatial variations of surface water quality using multivariate statistical techniques, comprising cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA). Eleven water quality parameters were monitored at 38 different sites in Can Tho City, a Mekong Delta area of Vietnam from 2008 to 2012. Hierarchical cluster analysis grouped the 38 sampling sites into three clusters, representing mixed urban-rural areas, agricultural areas and industrial zone. FA/PCA resulted in three latent factors for the entire research location, three for cluster 1, four for cluster 2, and four for cluster 3 explaining 60, 60.2, 80.9, and 70% of the total variance in the respective water quality. The varifactors from FA indicated that the parameters responsible for water quality variations are related to erosion from disturbed land or inflow of effluent from sewage plants and industry, discharges from wastewater treatment plants and domestic wastewater, agricultural activities and industrial effluents, and contamination by sewage waste with faecal coliform bacteria through sewer and septic systems. Discriminant analysis (DA) revealed that nephelometric turbidity units (NTU), chemical oxygen demand (COD) and NH₃ are the discriminating parameters in space, affording 67% correct assignation in spatial analysis; pH and NO₂ are the discriminating parameters according to season, assigning approximately 60% of cases correctly. The findings suggest a possible revised sampling strategy that can reduce the number of sampling sites and the indicator parameters responsible for large variations in water quality. This study demonstrates the usefulness of multivariate statistical techniques for evaluation of temporal/spatial variations in water quality assessment and management.

  19. Primary Datasets for Case Studies of River-Water Quality

    ERIC Educational Resources Information Center

    Goulder, Raymond

    2008-01-01

    Level 6 (final-year BSc) students undertook case studies on between-site and temporal variation in river-water quality. They used professionally-collected datasets supplied by the Environment Agency. The exercise gave students the experience of working with large, real-world datasets and led to their understanding how the quality of river water is…

  20. Quality Assessment in the Blog Space

    ERIC Educational Resources Information Center

    Schaal, Markus; Fidan, Guven; Muller, Roland M.; Dagli, Orhan

    2010-01-01

    Purpose: The purpose of this paper is the presentation of a new method for blog quality assessment. The method uses the temporal sequence of link creation events between blogs as an implicit source for the collective tacit knowledge of blog authors about blog quality. Design/methodology/approach: The blog data are processed by the novel method for…

  1. Dimensions of Mothers' and Fathers' Differential Treatment of Siblings: Links with Adolescents' Sex-Typed Personal Qualities.

    ERIC Educational Resources Information Center

    Tucker, Corinna Jenkins; McHale, Susan M.; Crouter, Ann C.

    2003-01-01

    Explores mothers' and fathers' differential treatment (PDT) of their adolescent offspring and examines how siblings' personal qualities were associated with PDT. Sex was associated with parents' differential temporal involvement. Sex-typed personal qualities were related to parents' differential discipline. Both sex and sex-typed personal…

  2. EFFECTS OF URBANIZATION ON THE SPATIAL AND TEMPORAL CHEMICAL QUALITY OF THREE TIDAL BAYOUS IN THE GULF OF MEXICO

    EPA Science Inventory

    Water and sediment quality in three tidal bayous located near Pensacola, Florida, were assessed during 1993-1995. The primary objective was to determine the environmental condition of the relatively small urban bayous by comparing the chemical quality of the sediments and surface...

  3. Three-Dimensional Numerical Simulation of Water Quality and Sediment-Associated Processes with Application to a Mississippi Delta Lake

    USDA-ARS?s Scientific Manuscript database

    A three-dimensional water quality model was developed for simulating temporal and spatial variations of phytoplankton, nutrients, and dissolved oxygen in freshwater bodies. Effects of suspended and bed sediment on the water quality processes were simulated. A formula was generated from field measure...

  4. Impact of sampling techniques on measured stormwater quality data for small streams

    USGS Publications Warehouse

    Harmel, R.D.; Slade, R.M.; Haney, R.L.

    2010-01-01

    Science-based sampling methodologies are needed to enhance water quality characterization for setting appropriate water quality standards, developing Total Maximum Daily Loads, and managing nonpoint source pollution. Storm event sampling, which is vital for adequate assessment of water quality in small (wadeable) streams, is typically conducted by manual grab or integrated sampling or with an automated sampler. Although it is typically assumed that samples from a single point adequately represent mean cross-sectional concentrations, especially for dissolved constituents, this assumption of well-mixed conditions has received limited evaluation. Similarly, the impact of temporal (within-storm) concentration variability is rarely considered. Therefore, this study evaluated differences in stormwater quality measured in small streams with several common sampling techniques, which in essence evaluated within-channel and within-storm concentration variability. Constituent concentrations from manual grab samples and from integrated samples were compared for 31 events, then concentrations were also compared for seven events with automated sample collection. Comparison of sampling techniques indicated varying degrees of concentration variability within channel cross sections for both dissolved and particulate constituents, which is contrary to common assumptions of substantial variability in particulate concentrations and of minimal variability in dissolved concentrations. Results also indicated the potential for substantial within-storm (temporal) concentration variability for both dissolved and particulate constituents. Thus, failing to account for potential cross-sectional and temporal concentration variability in stormwater monitoring projects can introduce additional uncertainty in measured water quality data. Copyright ?? 2010 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  5. Are You with Me or Not? Temporal Synchronicity and Transactivity during CSCL

    ERIC Educational Resources Information Center

    Popov, V.; van Leeuwen, A.; Buis, S. C. A.

    2017-01-01

    Do the simultaneous alignment of student activities (temporal synchronicity) and students successively building on each other's reasoning (transactivity) predict the quality of collaborative learning products? To address this question, we used a mixed-method approach to study 74 first-year university students who were randomly assigned to work in…

  6. TEMPORAL FEATURES IN OBSERVED AND SIMULATED METEOROLOGY AND AIR QUALITY OVER THE EASTERN UNITED STATES

    EPA Science Inventory

    In this study, temporal scale analysis is applied as a technique to evaluate an annual simulation of meteorology, O3, and PM2.5 and its chemical components over the continental U.S. utilizing two modeling systems. It is illustrated that correlations were ins...

  7. Spatial and Temporal Monitoring of Dissolved Oxygen (DO) in New Jersey Coastal Waters Using Autonomous Gliders

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...

  8. Effect of Temporal Relationships in Associative Rule Mining for Web Log Data

    PubMed Central

    Mohd Khairudin, Nazli; Mustapha, Aida

    2014-01-01

    The advent of web-based applications and services has created such diverse and voluminous web log data stored in web servers, proxy servers, client machines, or organizational databases. This paper attempts to investigate the effect of temporal attribute in relational rule mining for web log data. We incorporated the characteristics of time in the rule mining process and analysed the effect of various temporal parameters. The rules generated from temporal relational rule mining are then compared against the rules generated from the classical rule mining approach such as the Apriori and FP-Growth algorithms. The results showed that by incorporating the temporal attribute via time, the number of rules generated is subsequently smaller but is comparable in terms of quality. PMID:24587757

  9. Optimal Runge-Kutta Schemes for High-order Spatial and Temporal Discretizations

    DTIC Science & Technology

    2015-06-01

    using larger time steps versus lower-order time integration with smaller time steps.4 In the present work, an attempt is made to gener - alize these... generality and because of interest in multi-speed and high Reynolds number, wall-bounded flow regimes, a dual-time framework is adopted in the present work...errors of general combinations of high-order spatial and temporal discretizations. Different Runge-Kutta time integrators are applied to central

  10. Intraoperative cone-beam computed tomography and multi-slice computed tomography in temporal bone imaging for surgical treatment.

    PubMed

    Erovic, Boban M; Chan, Harley H L; Daly, Michael J; Pothier, David D; Yu, Eugene; Coulson, Chris; Lai, Philip; Irish, Jonathan C

    2014-01-01

    Conventional computed tomography (CT) imaging is the standard imaging technique for temporal bone diseases, whereas cone-beam CT (CBCT) imaging is a very fast imaging tool with a significant less radiation dose compared with conventional CT. We hypothesize that a system for intraoperative cone-beam CT provides comparable image quality to diagnostic CT for identifying temporal bone anatomical landmarks in cadaveric specimens. Cross-sectional study. University tertiary care facility. Twenty cadaveric temporal bones were affixed into a head phantom and scanned with both a prototype cone-beam CT C-arm and multislice helical CT. Imaging performance was evaluated by 3 otologic surgeons and 1 head and neck radiologist. Participants were presented images in a randomized order and completed landmark identification questionnaires covering 21 structures. CBCT and multislice CT have comparable performance in identifying temporal structures. Three otologic surgeons indicated that CBCT provided statistically equivalent performance for 19 of 21 landmarks, with CBCT superior to CT for the chorda tympani and inferior for the crura of the stapes. Subgroup analysis showed that CBCT performed superiorly for temporal bone structures compared with CT. The radiologist rated CBCT and CT as statistically equivalent for 18 of 21 landmarks, with CT superior to CBCT for the crura of stapes, chorda tympani, and sigmoid sinus. CBCT provides comparable image quality to conventional CT for temporal bone anatomical sites in cadaveric specimens. Clinical applications of low-dose CBCT imaging in surgical planning, intraoperative guidance, and postoperative assessment are promising but require further investigation.

  11. Temporal Processing Capacity in High-Level Visual Cortex Is Domain Specific.

    PubMed

    Stigliani, Anthony; Weiner, Kevin S; Grill-Spector, Kalanit

    2015-09-09

    Prevailing hierarchical models propose that temporal processing capacity--the amount of information that a brain region processes in a unit time--decreases at higher stages in the ventral stream regardless of domain. However, it is unknown if temporal processing capacities are domain general or domain specific in human high-level visual cortex. Using a novel fMRI paradigm, we measured temporal capacities of functional regions in high-level visual cortex. Contrary to hierarchical models, our data reveal domain-specific processing capacities as follows: (1) regions processing information from different domains have differential temporal capacities within each stage of the visual hierarchy and (2) domain-specific regions display the same temporal capacity regardless of their position in the processing hierarchy. In general, character-selective regions have the lowest capacity, face- and place-selective regions have an intermediate capacity, and body-selective regions have the highest capacity. Notably, domain-specific temporal processing capacities are not apparent in V1 and have perceptual implications. Behavioral testing revealed that the encoding capacity of body images is higher than that of characters, faces, and places, and there is a correspondence between peak encoding rates and cortical capacities for characters and bodies. The present evidence supports a model in which the natural statistics of temporal information in the visual world may affect domain-specific temporal processing and encoding capacities. These findings suggest that the functional organization of high-level visual cortex may be constrained by temporal characteristics of stimuli in the natural world, and this temporal capacity is a characteristic of domain-specific networks in high-level visual cortex. Significance statement: Visual stimuli bombard us at different rates every day. For example, words and scenes are typically stationary and vary at slow rates. In contrast, bodies are dynamic and typically change at faster rates. Using a novel fMRI paradigm, we measured temporal processing capacities of functional regions in human high-level visual cortex. Contrary to prevailing theories, we find that different regions have different processing capacities, which have behavioral implications. In general, character-selective regions have the lowest capacity, face- and place-selective regions have an intermediate capacity, and body-selective regions have the highest capacity. These results suggest that temporal processing capacity is a characteristic of domain-specific networks in high-level visual cortex and contributes to the segregation of cortical regions. Copyright © 2015 the authors 0270-6474/15/3512412-13$15.00/0.

  12. Use of environmental tracers to evaluate ground-water age and water-quality trends in a buried-valley aquifer, Dayton area, southwestern, Ohio

    USGS Publications Warehouse

    Rowe, Gary L.; Shapiro, Stephanie Dunkle; Schlosser, Peter

    1999-01-01

    Chlorofluorocarbons (CFC method) and tritium and helium isotopes (3H-3He method) were used as environmental tracers to estimate ground-water age in conjunction with efforts to develop a regional ground-water flow model of the buried-valley aquifer in the Dayton area, southwestern Ohio. This report describes results of CFC and water-quality sampling, summarizes relevant aspects of previously published work, and describes the use of 3H-3He ages to characterize temporal trends in ground-water quality of the buried-valley aquifer near Dayton, Ohio. Results of CFC sampling indicate that approximately 25 percent of the 137 sampled wells were contaminated with excess CFC's that rendered the ground water unsuitable for age dating. Evaluation of CFC ages obtained for the remaining samples indicated that the CFC compounds used for dating were being affected by microbial degradation. The degradation occurred under anoxic conditions that are found in most parts of the buried-valley aquifer. As a result, ground-water ages derived by the CFC method were too old and were inconsistent with measured tritium concentrations and independently derived 3H-3He ages. Limited data indicate that dissolved methane may play an important role in the degradation of the CFC's. In contrast, the 3H-3He technique was found to yield ground-water ages that were chemically and hydrologically reasonable. Ground-water ages derived by the 3H-3He technique were compared to values for selected water- quality characteristics to evaluate temporal trends in ground-water quality in the buried- valley aquifer. Distinct temporal trends were not identified for pH, alkalinity, or calcium and magnesium because of rapid equilibration of ground-water with calcite and dolomite in aquifer sediments. Temporal trends in which the amount of scatter and the number of outlier concentrations increased as ground-water age decreased were noted for sodium, potassium, boron, bromide, chloride, ammonia, nitrate, phosphate, sulfate, and organic carbon. Elevated concentrations of these constituents in shallow ground water are probably related to human activities. Temporal trends in which concentrations declined as ground-water age increased may reflect natural processes that reduce constituent concentrations to low levels. For example, the absence of nitrate detections in ground water recharged before 1980 may indicate natural removal of nitrate by bacterially mediated denitrification. Temporal trends observed for dissolved oxygen, iron, nitrate and silica indicate that these constituents may help identify recently (post-1990) recharged ground water.

  13. Temporal Planning for Compilation of Quantum Approximate Optimization Algorithm Circuits

    NASA Technical Reports Server (NTRS)

    Venturelli, Davide; Do, Minh Binh; Rieffel, Eleanor Gilbert; Frank, Jeremy David

    2017-01-01

    We investigate the application of temporal planners to the problem of compiling quantum circuits to newly emerging quantum hardware. While our approach is general, we focus our initial experiments on Quantum Approximate Optimization Algorithm (QAOA) circuits that have few ordering constraints and allow highly parallel plans. We report on experiments using several temporal planners to compile circuits of various sizes to a realistic hardware. This early empirical evaluation suggests that temporal planning is a viable approach to quantum circuit compilation.

  14. Seizure ending signs in patients with dyscognitive focal seizures.

    PubMed

    Gavvala, Jay R; Gerard, Elizabeth E; Macken, Mícheál; Schuele, Stephan U

    2015-09-01

    Signs indicating the end of a focal seizure with loss of awareness and/or responsiveness but without progression to focal or generalized motor symptoms are poorly defined and can be difficult to determine. Not recognizing the transition from ictal to postictal behaviour can affect seizure reporting accuracy by family members and may lead to delayed or a lack of examination during EEG monitoring, erroneous seizure localization and inadequate medical intervention for prolonged seizure duration. Our epilepsy monitoring unit database was searched for focal seizures without secondary generalization for the period from 2007 to 2011. The first focal seizure in a patient with loss of awareness and/or responsiveness and/or behavioural arrest, with or without automatisms, was included. Seizures without objective symptoms or inadequate video-EEG quality were excluded. A total of 67 patients were included, with an average age of 41.7 years. Thirty-six of the patients had seizures from the left hemisphere and 29 from the right. All patients showed an abrupt change in motor activity and resumed contact with the environment as a sign of clinical seizure ending. Specific ending signs (nose wiping, coughing, sighing, throat clearing, or laughter) were seen in 23 of 47 of temporal lobe seizures and 7 of 20 extra-temporal seizures. Seizure ending signs are often subtle and the most common finding is a sudden change in motor activity and resumption of contact with the environment. More distinct signs, such as nose wiping, coughing or throat clearing, are not specific to temporal lobe onset. A higher proportion of seizures during sleep went unexamined, compared to those during wakefulness. This demonstrates that seizure semiology can be very subtle and arousals from sleep during monitoring should alert staff. Patient accounts of seizure frequency appear to be unreliable and witness reports need to be taken into account. [Published with video sequences].

  15. Acoustic cue weighting in the singleton vs geminate contrast in Lebanese Arabic: The case of fricative consonants.

    PubMed

    Al-Tamimi, Jalal; Khattab, Ghada

    2015-07-01

    This paper is the first reported investigation of the role of non-temporal acoustic cues in the singleton-geminate contrast in Lebanese Arabic, alongside the more frequently reported temporal cues. The aim is to explore the extent to which singleton and geminate consonants show qualitative differences in a language where phonological length is prominent and where moraic structure governs segment timing and syllable weight. Twenty speakers (ten male, ten female) were recorded producing trochaic disyllables with medial singleton and geminate fricatives preceded by phonologically short and long vowels. The following acoustic measures were applied on the medial fricative and surrounding vowels: absolute duration; intensity; fundamental frequency; spectral peak and shape, dynamic amplitude, and voicing patterns of medial fricatives; and vowel quality and voice quality correlates of surrounding vowels. Discriminant analysis and receiver operating characteristics (ROC) curves were used to assess each acoustic cue's contribution to the singleton-geminate contrast. Classification rates of 89% and ROC curves with an area under the curve rate of 96% confirmed the major role played by temporal cues, with non-temporal cues contributing to the contrast but to a much lesser extent. These results confirm that the underlying contrast for gemination in Arabic is temporal, but highlight [+tense] (fortis) as a secondary feature.

  16. Generation of an annotated reference standard for vaccine adverse event reports.

    PubMed

    Foster, Matthew; Pandey, Abhishek; Kreimeyer, Kory; Botsis, Taxiarchis

    2018-07-05

    As part of a collaborative project between the US Food and Drug Administration (FDA) and the Centers for Disease Control and Prevention for the development of a web-based natural language processing (NLP) workbench, we created a corpus of 1000 Vaccine Adverse Event Reporting System (VAERS) reports annotated for 36,726 clinical features, 13,365 temporal features, and 22,395 clinical-temporal links. This paper describes the final corpus, as well as the methodology used to create it, so that clinical NLP researchers outside FDA can evaluate the utility of the corpus to aid their own work. The creation of this standard went through four phases: pre-training, pre-production, production-clinical feature annotation, and production-temporal annotation. The pre-production phase used a double annotation followed by adjudication strategy to refine and finalize the annotation model while the production phases followed a single annotation strategy to maximize the number of reports in the corpus. An analysis of 30 reports randomly selected as part of a quality control assessment yielded accuracies of 0.97, 0.96, and 0.83 for clinical features, temporal features, and clinical-temporal associations, respectively and speaks to the quality of the corpus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. The Temporal Signature of Memories: Identification of a General Mechanism for Dynamic Memory Replay in Humans

    PubMed Central

    Michelmann, Sebastian; Bowman, Howard; Hanslmayr, Simon

    2016-01-01

    Reinstatement of dynamic memories requires the replay of neural patterns that unfold over time in a similar manner as during perception. However, little is known about the mechanisms that guide such a temporally structured replay in humans, because previous studies used either unsuitable methods or paradigms to address this question. Here, we overcome these limitations by developing a new analysis method to detect the replay of temporal patterns in a paradigm that requires participants to mentally replay short sound or video clips. We show that memory reinstatement is accompanied by a decrease of low-frequency (8 Hz) power, which carries a temporal phase signature of the replayed stimulus. These replay effects were evident in the visual as well as in the auditory domain and were localized to sensory-specific regions. These results suggest low-frequency phase to be a domain-general mechanism that orchestrates dynamic memory replay in humans. PMID:27494601

  18. The effects of spatial and temporal heterogeneity on the population dynamics of four animal species in a Danish landscape

    PubMed Central

    Sibly, Richard M; Nabe-Nielsen, Jacob; Forchhammer, Mads C; Forbes, Valery E; Topping, Christopher J

    2009-01-01

    Background Variation in carrying capacity and population return rates is generally ignored in traditional studies of population dynamics. Variation is hard to study in the field because of difficulties controlling the environment in order to obtain statistical replicates, and because of the scale and expense of experimenting on populations. There may also be ethical issues. To circumvent these problems we used detailed simulations of the simultaneous behaviours of interacting animals in an accurate facsimile of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of skylarks Alauda arvensis, voles Microtus agrestis, a ground beetle Bembidion lampros and a linyphiid spider Erigone atra. This allows us to quantify and evaluate the importance of spatial and temporal heterogeneity on the population dynamics of the four species. Results Both spatial and temporal heterogeneity affected the relationship between population growth rate and population density in all four species. Spatial heterogeneity accounted for 23–30% of the variance in population growth rate after accounting for the effects of density, reflecting big differences in local carrying capacity associated with the landscape features important to individual species. Temporal heterogeneity accounted for 3–13% of the variance in vole, skylark and spider, but 43% in beetles. The associated temporal variation in carrying capacity would be problematic in traditional analyses of density dependence. Return rates were less than one in all species and essentially invariant in skylarks, spiders and beetles. Return rates varied over the landscape in voles, being slower where there were larger fluctuations in local population sizes. Conclusion Our analyses estimated the traditional parameters of carrying capacities and return rates, but these are now seen as varying continuously over the landscape depending on habitat quality and the mechanisms of density dependence. The importance of our results lies in our demonstration that the effects of spatial and temporal heterogeneity must be accounted for if we are to have accurate predictive models for use in management and conservation. This is an area which until now has lacked an adequate theoretical framework and methodology. PMID:19549327

  19. A global assessment of climate-water quality relationships in large rivers: an elasticity perspective.

    PubMed

    Jiang, Jiping; Sharma, Ashish; Sivakumar, Bellie; Wang, Peng

    2014-01-15

    To uncover climate-water quality relationships in large rivers on a global scale, the present study investigates the climate elasticity of river water quality (CEWQ) using long-term monthly records observed at 14 large rivers. Temperature and precipitation elasticities of 12 water quality parameters, highlighted by N- and P-nutrients, are assessed. General observations on elasticity values show the usefulness of this approach to describe the magnitude of stream water quality responses to climate change, which improves that of simple statistical correlation. Sensitivity type, intensity and variability rank of CEWQ are reported and specific characteristics and mechanism of elasticity of nutrient parameters are also revealed. Among them, the performance of ammonia, total phosphorus-air temperature models, and nitrite, orthophosphorus-precipitation models are the best. Spatial and temporal assessment shows that precipitation elasticity is more variable in space than temperature elasticity and that seasonal variation is more evident for precipitation elasticity than for temperature elasticity. Moreover, both anthropogenic activities and environmental factors are found to impact CEWQ for select variables. The major relationships that can be inferred include: (1) human population has a strong linear correlation with temperature elasticity of turbidity and total phosphorus; and (2) latitude has a strong linear correlation with precipitation elasticity of turbidity and N nutrients. As this work improves our understanding of the relation between climate factors and surface water quality, it is potentially helpful for investigating the effect of climate change on water quality in large rivers, such as on the long-term change of nutrient concentrations. © 2013.

  20. Application of two quality indices as monitoring and management tools of rivers. Case study: the Imera Meridionale River, Italy.

    PubMed

    Bonanno, Giuseppe; Lo Giudice, Rosa

    2010-04-01

    On the basis of the European Water Framework Directive (2000/60), the water resources of the member states of the European Community should reach good quality standards by 2015. Although such regulations illustrate the basic points for a comprehensive and effective policy of water monitoring and management, no practical tools are provided to face and solve the issues concerning freshwater ecosystems such as rivers. The Italian government has developed a set of regulations as adoption of the European Directive but failed to indicate feasible procedures for river monitoring and management. On a local scale, Sicilian authorities have implemented monitoring networks of watersheds, aiming at describing the general conditions of rivers. However, such monitoring programs have provided a relatively fragmentary picture of the ecological conditions of the rivers. In this study, the integrated use of environmental quality indices is proposed as a methodology able to provide a practical approach to river monitoring and management. As a case study, the Imera Meridionale River, Sicily's largest river, was chosen. The water quality index developed by the U.S. National Sanitation Foundation and the floristic quality index based on the Wilhelm method were applied. The former enabled us to describe the water quality according to a spatial-temporal gradient, whereas the latter focused on the ecological quality of riparian vegetation. This study proposes a holistic view of river ecosystems by considering biotic and abiotic factors in agreement with the current European regulations. How the combined use of such indices can guide sustainable management efforts is also discussed.

  1. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy

    PubMed Central

    Chang, Chia-Yuan; Cheng, Li-Chung; Su, Hung-Wei; Hu, Yvonne Yuling; Cho, Keng-Chi; Yen, Wei-Chung; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen

    2014-01-01

    Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1μm fluorescent beads sealed in agarose gel at different depths is improved. PMID:24940539

  2. Physics of cardiac imaging with multiple-row detector CT.

    PubMed

    Mahesh, Mahadevappa; Cody, Dianna D

    2007-01-01

    Cardiac imaging with multiple-row detector computed tomography (CT) has become possible due to rapid advances in CT technologies. Images with high temporal and spatial resolution can be obtained with multiple-row detector CT scanners; however, the radiation dose associated with cardiac imaging is high. Understanding the physics of cardiac imaging with multiple-row detector CT scanners allows optimization of cardiac CT protocols in terms of image quality and radiation dose. Knowledge of the trade-offs between various scan parameters that affect image quality--such as temporal resolution, spatial resolution, and pitch--is the key to optimized cardiac CT protocols, which can minimize the radiation risks associated with these studies. Factors affecting temporal resolution include gantry rotation time, acquisition mode, and reconstruction method; factors affecting spatial resolution include detector size and reconstruction interval. Cardiac CT has the potential to become a reliable tool for noninvasive diagnosis and prevention of cardiac and coronary artery disease. (c) RSNA, 2007.

  3. Toward a perceptual video-quality metric

    NASA Astrophysics Data System (ADS)

    Watson, Andrew B.

    1998-07-01

    The advent of widespread distribution of digital video creates a need for automated methods for evaluating the visual quality of digital video. This is particularly so since most digital video is compressed using lossy methods, which involve the controlled introduction of potentially visible artifacts. Compounding the problem is the bursty nature of digital video, which requires adaptive bit allocation based on visual quality metrics, and the economic need to reduce bit-rate to the lowest level that yields acceptable quality. In previous work, we have developed visual quality metrics for evaluating, controlling,a nd optimizing the quality of compressed still images. These metrics incorporate simplified models of human visual sensitivity to spatial and chromatic visual signals. Here I describe a new video quality metric that is an extension of these still image metrics into the time domain. Like the still image metrics, it is based on the Discrete Cosine Transform. An effort has been made to minimize the amount of memory and computation required by the metric, in order that might be applied in the widest range of applications. To calibrate the basic sensitivity of this metric to spatial and temporal signals we have made measurements of visual thresholds for temporally varying samples of DCT quantization noise.

  4. Blind prediction of natural video quality.

    PubMed

    Saad, Michele A; Bovik, Alan C; Charrier, Christophe

    2014-03-01

    We propose a blind (no reference or NR) video quality evaluation model that is nondistortion specific. The approach relies on a spatio-temporal model of video scenes in the discrete cosine transform domain, and on a model that characterizes the type of motion occurring in the scenes, to predict video quality. We use the models to define video statistics and perceptual features that are the basis of a video quality assessment (VQA) algorithm that does not require the presence of a pristine video to compare against in order to predict a perceptual quality score. The contributions of this paper are threefold. 1) We propose a spatio-temporal natural scene statistics (NSS) model for videos. 2) We propose a motion model that quantifies motion coherency in video scenes. 3) We show that the proposed NSS and motion coherency models are appropriate for quality assessment of videos, and we utilize them to design a blind VQA algorithm that correlates highly with human judgments of quality. The proposed algorithm, called video BLIINDS, is tested on the LIVE VQA database and on the EPFL-PoliMi video database and shown to perform close to the level of top performing reduced and full reference VQA algorithms.

  5. General Temporal Knowledge for Planning and Data Mining

    NASA Technical Reports Server (NTRS)

    Morris, Robert; Khatib, Lina

    2001-01-01

    We consider the architecture of systems that combine temporal planning and plan execution and introduce a layer of temporal reasoning that potential1y improves both the communication between humans and such systems, and the performance of the temporal planner itself. In particular, this additional layer simultaneously supports more flexibility in specifying and maintaining temporal constraints on plans within an uncertain and changing execution environment, and the ability to understand and trace the progress of plan execution. It is shown how a representation based on single set of abstractions of temporal information can be used to characterize the reasoning underlying plan generation and execution interpretation. The complexity of such reasoning is discussed.

  6. Applying probabilistic temporal and multisite data quality control methods to a public health mortality registry in Spain: a systematic approach to quality control of repositories.

    PubMed

    Sáez, Carlos; Zurriaga, Oscar; Pérez-Panadés, Jordi; Melchor, Inma; Robles, Montserrat; García-Gómez, Juan M

    2016-11-01

    To assess the variability in data distributions among data sources and over time through a case study of a large multisite repository as a systematic approach to data quality (DQ). Novel probabilistic DQ control methods based on information theory and geometry are applied to the Public Health Mortality Registry of the Region of Valencia, Spain, with 512 143 entries from 2000 to 2012, disaggregated into 24 health departments. The methods provide DQ metrics and exploratory visualizations for (1) assessing the variability among multiple sources and (2) monitoring and exploring changes with time. The methods are suited to big data and multitype, multivariate, and multimodal data. The repository was partitioned into 2 probabilistically separated temporal subgroups following a change in the Spanish National Death Certificate in 2009. Punctual temporal anomalies were noticed due to a punctual increment in the missing data, along with outlying and clustered health departments due to differences in populations or in practices. Changes in protocols, differences in populations, biased practices, or other systematic DQ problems affected data variability. Even if semantic and integration aspects are addressed in data sharing infrastructures, probabilistic variability may still be present. Solutions include fixing or excluding data and analyzing different sites or time periods separately. A systematic approach to assessing temporal and multisite variability is proposed. Multisite and temporal variability in data distributions affects DQ, hindering data reuse, and an assessment of such variability should be a part of systematic DQ procedures. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Application of water quality index to evaluate groundwater quality (temporal and spatial variation) of an intensively exploited aquifer (Puebla valley, Mexico).

    PubMed

    Salcedo-Sánchez, Edith R; Garrido Hoyos, Sofía E; Esteller Alberich, Ma Vicenta; Martínez Morales, Manuel

    2016-10-01

    The spatial and temporal variation of water quality in the urban area of the Puebla Valley aquifer was evaluated using historical and present data obtained during this investigation. The current study assessed water quality based on the Water Quality Index developed by the Canadian Council of Ministers of the Environment (CCME-WQI), which provides a mathematical framework to evaluate the quality of water in combination with a set of conditions representing quality criteria, or limits. This index is flexible regarding the type and number of variables used by the evaluation given that the variables of interest are selected according to the characteristics and objectives of development, conservation and compliance with regulations. The CCME-WQI was calculated using several variables that assess the main use of the wells in the urban area that is public supply, according to criteria for human use and consumption established by Mexican law and international standards proposed by the World Health Organization. The assessment of the index shows a gradual deterioration in the quality of the aquifer over time, as the amount of wells with excellent quality have decreased and those with lower index values (poor quality) have increased throughout the urban area of the Puebla Valley aquifer. The parameters affecting groundwater quality are: total dissolved solids, sulfate, calcium, magnesium and total hardness.

  8. Storm Surge Measurement with an Airborne Scanning Radar Altimeter

    NASA Technical Reports Server (NTRS)

    Wright, C. W.; Walsh, E. J.; Krabill, W. B.; Shaffer, W. A.; Baig, S. R.; Peng, M.; Pietrafesa, L. J.; Garcia, A. W.; Marks, F. D., Jr.; Black, P. G.; hide

    2008-01-01

    Over the years, hurricane track and intensity forecasts and storm surge models and the digital terrain and bathymetry data they depend on have improved significantly. Strides have also been made in knowledge of the detailed variation of the surface wind field driving the surge. The area of least improvement has been in obtaining data on the details of the temporal/spatial variation of the storm surge dome of water as it evolves and inundates the land to evaluate the performance of the numerical models. Tide gages in the vicinity of the landfall are frequently destroyed by the surge. Survey crews dispatched after the event provide no temporal information and only indirect indications of the maximum surge envelope over land. The landfall of Hurricane Bonnie on 26 August 1998, with a surge less than 2 m, provided an excellent opportunity to demonstrate the potential benefits of direct airborne measurement of the temporal/spatial evolution of storm surge. Despite a 160 m variation in aircraft altitude, an 11.5 m variation in the elevation of the mean sea surface relative to the ellipsoid over the flight track, and the tidal variation over the 5 hour data acquisition interval, a survey-quality Global Positioning System (GPS) aircraft trajectory allowed the NASA Scanning Radar Altimeter carried by a NOAA hurricane research aircraft to produce storm surge measurements that generally fell between the predictions of the NOAA SLOSH model and the North Carolina State University storm surge model.

  9. Landfill mining in Austria: foundations for an integrated ecological and economic assessment.

    PubMed

    Hermann, Robert; Baumgartner, Rupert J; Sarc, Renato; Ragossnig, Arne; Wolfsberger, Tanja; Eisenberger, Martin; Budischowsky, Andreas; Pomberger, Roland

    2014-09-01

    For the first time, basic technical and economic studies for landfill mining are being carried out in Austria on the basis of a pilot project. An important goal of these studies is the collection of elementary data as the basis for an integrated ecological and economic assessment of landfill mining projects with regard to their feasibility. For this purpose, economic, ecological, technical, organizational, as well as political and legal influencing factors are identified and extensively studied in the article. An important aspect is the mutual influence of the factors on each other, as this can significantly affect the development of an integrated assessment system. In addition to the influencing factors, the definition of the spatial and temporal system boundaries is crucial for further investigations. Among others, the quality and quantity of recovered waste materials, temporal fluctuations or developments in prices of secondary raw material and fuels attainable in the markets, and time and duration of dumping, play a crucial role. Based on the investigations, the spatial system boundary is defined in as much as all the necessary process steps, from landfill mining, preparing and sorting to providing a marketable material/product by the landfill operator, are taken into account. No general accepted definition can be made for the temporal system boundary because the different time-related influencing factors necessitate an individual project-specific determination and adaptation to the facts of the on-site landfill mining project. © The Author(s) 2014.

  10. Peri-ictal ECG changes in childhood epilepsy: implications for detection systems.

    PubMed

    Jansen, Katrien; Varon, Carolina; Van Huffel, Sabine; Lagae, Lieven

    2013-10-01

    Early detection of seizures could reduce associated morbidity and mortality and improve the quality of life of patients with epilepsy. In this study, the aim was to investigate whether ictal tachycardia is present in focal and generalized epileptic seizures in children. We sought to predict in which type of seizures tachycardia can be identified before actual seizure onset. Electrocardiogram segments in 80 seizures were analyzed in time and frequency domains before and after the onset of epileptic seizures on EEG. These ECG parameters were analyzed to find the most informative ones that can be used for seizure detection. The algorithm of Leutmezer et al. was used to find the temporal relationship between the change in heart rate and seizure onset. In the time domain, the mean RR shows a significant difference before compared to after onset of the seizure in focal seizures. This can be observed in temporal lobe seizures as well as frontal lobe seizures. Calculation of mean RR interval has a high specificity for detection of ictal heart rate changes. Preictal heart rate changes are observed in 70% of the partial seizures. Ictal heart rate changes are present only in partial seizures in this childhood epilepsy study. The changes can be observed in temporal lobe seizures as well as in frontal lobe seizures. Heart rate changes precede seizure onset in 70% of the focal seizures, making seizure detection and closed-loop systems a possible therapeutic alternative in the population of children with refractory epilepsy. © 2013.

  11. Modelling catchment hydrological responses in a Himalayan Lake as a function of changing land use and land cover

    NASA Astrophysics Data System (ADS)

    Badar, Bazigha; Romshoo, Shakil A.; Khan, M. A.

    2013-04-01

    In this paper, we evaluate the impact of changing land use/land cover (LULC) on the hydrological processes in Dal lake catchment of Kashmir Himalayas by integrating remote sensing, simulation modelling and extensive field observations. Over the years, various anthropogenic pressures in the lake catchment have significantly altered the land system, impairing, inter-alia, sustained biotic communities and water quality of the lake. The primary objective of this paper was to help a better understanding of the LULC change, its driving forces and the overall impact on the hydrological response patterns. Multi-sensor and multi-temporal satellite data for 1992 and 2005 was used for determining the spatio-temporal dynamics of the lake catchment. Geographic Information System (GIS) based simulation model namely Generalized Watershed Loading Function (GWLF) was used to model the hydrological processes under the LULC conditions. We discuss spatio-temporal variations in LULC and identify factors contributing to these variations and analyze the corresponding impacts of the change on the hydrological processes like runoff, erosion and sedimentation. The simulated results on the hydrological responses reveal that depletion of the vegetation cover in the study area and increase in impervious and bare surface cover due to anthropogenic interventions are the primary reasons for the increased runoff, erosion and sediment discharges in the Dal lake catchment. This study concludes that LULC change in the catchment is a major concern that has disrupted the ecological stability and functioning of the Dal lake ecosystem.

  12. Spatial and temporal patterns in trace element deposition to lakes in the Athabasca oil sands region (Alberta, Canada)

    NASA Astrophysics Data System (ADS)

    Cooke, Colin A.; Kirk, Jane L.; Muir, Derek C. G.; Wiklund, Johan A.; Wang, Xiaowa; Gleason, Amber; Evans, Marlene S.

    2017-12-01

    The mining and processing of the Athabasca oil sands (Alberta, Canada) has been occurring for decades; however, a lack of consistent regional monitoring has obscured the long-term environmental impact. Here, we present sediment core results to reconstruct spatial and temporal patterns in trace element deposition to lakes in the Athabasca oil sands region. Early mining operations (during the 1970s and 1980s) led to elevated V and Pb inputs to lakes located <50 km from mining operations. Subsequent improvements to mining and upgrading technologies since the 1980s have reduced V and Pb loading to near background levels at many sites. In contrast, Hg deposition increased by a factor of ~3 to all 20 lakes over the 20th century, reflecting global-scale patterns in atmospheric Hg emissions. Base cation deposition (from fugitive dust emissions) has not measurably impacted regional lake sediments. Instead, results from a principal components analysis suggest that the presence of carbonate bedrock underlying lakes located close to development appears to exert a first-order control over lake sediment base cation concentrations and overall lake sediment geochemical composition. Trace element concentrations generally did not exceed Canadian sediment quality guidelines, and no spatial or temporal trends were observed in the frequency of guideline exceedence. Our results demonstrate that early mining efforts had an even greater impact on trace element cycling than has been appreciated previously, placing recent monitoring efforts in a critical long-term context.

  13. Scale Issues in Air Quality Modeling Policy Support

    EPA Science Inventory

    This study examines the issues relating to the use of regional photochemical air quality models for evaluating their performance in reproducing the spatio-temporal features embedded in the observations and for designing emission control strategies needed to achieve compliance wit...

  14. Temporal changes in surface-water insecticide concentrations after the phaseout of diazinon and chlorpyrifos

    USGS Publications Warehouse

    Phillips, P.J.; Ator, S.W.; Nystrom, E.A.

    2007-01-01

    The recent (late 2001) federally mandated phaseout of diazinon and chlorpyrifos insecticide use in outdoor urban settings has resulted in a rapid decline in concentrations of these insecticides in urban streams and rivers in the northeastern and midwestern United States. Assessment of temporal insecticide trends at 20 sites showed that significant step decreases in diazinon concentrations occurred at 90% of the sites after the phaseout, with concentrations generally decreasing by over 50% in summer samples. Chlorpyrifos concentrations showed significant step decreases in at least 1 season at 3 of the 4 sites with sufficient data for analysis. The decrease in diazinon concentrations in response to the phaseout resulted in a decline in the frequency of concentrations exceeding the acute invertebrate water-quality benchmark of 0.1 ??g/L from 10% of pre-phaseout summer samples to fewer than 1% of post-phaseout summer samples. Although some studies have indicated an increase in concentrations of carbaryl in response to the organophosphorous phaseout, carbaryl concentrations only increased at 1 site after the phaseout. A full assessment of the effect of the phaseout of diazinon and chlorpyrifos on surface water will require data on other insecticides used to replace these compounds.

  15. X-ray fast tomography and its applications in dynamical phenomena studies in geosciences at Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Xiao, Xianghui; Fusseis, Florian; De Carlo, Francesco

    2012-10-01

    State-of-art synchrotron radiation based micro-computed tomography provides high spatial and temporal resolution. This matches the needs of many research problems in geosciences. In this letter we report the current capabilities in microtomography at sector 2BM at the Advanced Photon Source (APS) of Argonne National Laboratory. The beamline is well suited to routinely acquire three-dimensional data of excellent quality with sub-micron resolution. Fast cameras in combination with a polychromatic beam allow time-lapse experiments with temporal resolutions of down to 200 ms. Data processing utilizes quantitative phase retrieval to optimize contrast in phase contrast tomographic data. The combination of these capabilities with purpose-designed experimental cells allows for a wide range of dynamic studies on geoscientific topics, two of which are summarized here. In the near future, new experimental cells capable of simulating conditions in most geological reservoirs will be available for general use. Ultimately, these advances will be matched by a new wide-field imaging beam line, which will be constructed as part of the APS upgrade. It is expected that even faster tomography with larger field of view can be conducted at this beam line, creating new opportunities for geoscientific studies.

  16. Long-term particulate matter modeling for health effects studies in California - Part 1: Model performance on temporal and spatial variations

    NASA Astrophysics Data System (ADS)

    Hu, J.; Zhang, H.; Ying, Q.; Chen, S.-H.; Vandenberghe, F.; Kleeman, M. J.

    2014-08-01

    For the first time, a decadal (9 years from 2000 to 2008) air quality model simulation with 4 km horizontal resolution and daily time resolution has been conducted in California to provide air quality data for health effects studies. Model predictions are compared to measurements to evaluate the accuracy of the simulation with an emphasis on spatial and temporal variations that could be used in epidemiology studies. Better model performance is found at longer averaging times, suggesting that model results with averaging times ≥ 1 month should be the first to be considered in epidemiological studies. The UCD/CIT model predicts spatial and temporal variations in the concentrations of O3, PM2.5, EC, OC, nitrate, and ammonium that meet standard modeling performance criteria when compared to monthly-averaged measurements. Predicted sulfate concentrations do not meet target performance metrics due to missing sulfur sources in the emissions. Predicted seasonal and annual variations of PM2.5, EC, OC, nitrate, and ammonium have mean fractional biases that meet the model performance criteria in 95%, 100%, 71%, 73%, and 92% of the simulated months, respectively. The base dataset provides an improvement for predicted population exposure to PM concentrations in California compared to exposures estimated by central site monitors operated one day out of every 3 days at a few urban locations. Uncertainties in the model predictions arise from several issues. Incomplete understanding of secondary organic aerosol formation mechanisms leads to OC bias in the model results in summertime but does not affect OC predictions in winter when concentrations are typically highest. The CO and NO (species dominated by mobile emissions) results reveal temporal and spatial uncertainties associated with the mobile emissions generated by the EMFAC 2007 model. The WRF model tends to over-predict wind speed during stagnation events, leading to under-predictions of high PM concentrations, usually in winter months. The WRF model also generally under-predicts relative humidity, resulting in less particulate nitrate formation especially during winter months. These issues will be improved in future studies. All model results included in the current manuscript can be downloaded free of charge at http://faculty.engineering.ucdavis.edu/kleeman/.

  17. Long-term particulate matter modeling for health effect studies in California - Part 1: Model performance on temporal and spatial variations

    NASA Astrophysics Data System (ADS)

    Hu, J.; Zhang, H.; Ying, Q.; Chen, S.-H.; Vandenberghe, F.; Kleeman, M. J.

    2015-03-01

    For the first time, a ~ decadal (9 years from 2000 to 2008) air quality model simulation with 4 km horizontal resolution over populated regions and daily time resolution has been conducted for California to provide air quality data for health effect studies. Model predictions are compared to measurements to evaluate the accuracy of the simulation with an emphasis on spatial and temporal variations that could be used in epidemiology studies. Better model performance is found at longer averaging times, suggesting that model results with averaging times ≥ 1 month should be the first to be considered in epidemiological studies. The UCD/CIT model predicts spatial and temporal variations in the concentrations of O3, PM2.5, elemental carbon (EC), organic carbon (OC), nitrate, and ammonium that meet standard modeling performance criteria when compared to monthly-averaged measurements. Predicted sulfate concentrations do not meet target performance metrics due to missing sulfur sources in the emissions. Predicted seasonal and annual variations of PM2.5, EC, OC, nitrate, and ammonium have mean fractional biases that meet the model performance criteria in 95, 100, 71, 73, and 92% of the simulated months, respectively. The base data set provides an improvement for predicted population exposure to PM concentrations in California compared to exposures estimated by central site monitors operated 1 day out of every 3 days at a few urban locations. Uncertainties in the model predictions arise from several issues. Incomplete understanding of secondary organic aerosol formation mechanisms leads to OC bias in the model results in summertime but does not affect OC predictions in winter when concentrations are typically highest. The CO and NO (species dominated by mobile emissions) results reveal temporal and spatial uncertainties associated with the mobile emissions generated by the EMFAC 2007 model. The WRF model tends to overpredict wind speed during stagnation events, leading to underpredictions of high PM concentrations, usually in winter months. The WRF model also generally underpredicts relative humidity, resulting in less particulate nitrate formation, especially during winter months. These limitations must be recognized when using data in health studies. All model results included in the current manuscript can be downloaded free of charge at http://faculty.engineering.ucdavis.edu/kleeman/ .

  18. Phase recovery in temporal speckle pattern interferometry using the generalized S-transform.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2008-04-15

    We propose a novel approach based on the generalized S-transform to retrieve optical phase distributions in temporal speckle pattern interferometry. The performance of the proposed approach is compared with those given by well-known techniques based on the continuous wavelet, the Hilbert transforms, and a smoothed time-frequency distribution by analyzing interferometric data degraded by noise, nonmodulating pixels, and modulation loss. The advantages and limitations of the proposed phase retrieval approach are discussed.

  19. Spatio-temporal variability of hyporheic exchange through a pool-riffle-pool sequence

    Treesearch

    Frank P. Gariglio; Daniele Tonina; Charles H. Luce

    2013-01-01

    Stream water enters and exits the streambed sediment due to hyporheic fluxes, which stem primarily from the interaction between surface water hydraulics and streambed morphology. These fluxes sustain a rich ecotone, whose habitat quality depends on their direction and magnitude. The spatio-temporal variability of hyporheic fluxes is not well understood over several...

  20. Temporal and Spatial Variation of Chemical Water Quality in a Contour Canal.

    NASA Astrophysics Data System (ADS)

    Swanson, L. A.; Lunn, R. J.

    2004-12-01

    Chemical water quality is a highly variable aspect of any water body. Historically numerous researchers have investigated the chemical variability of rivers, streams and wetlands, artificial water bodies such as canals have been largely neglected. Canals are typically hydraulically characterised by low flows and a lack of mixing processes. This can potentially lead to significant spatial variability in water chemistry, and as a result many canals in the UK regularly fail water quality targets at specific locations. Recent changes to UK legislation, following the European Water Framework Directive (2000/60/EC), have resulted in canals being subject to achieving `good ecological status'. In the case of canals, what constitutes `good ecological status' is largely unknown and little expertise is available since historically canal management has not been driven by chemical and ecological quality targets. Consequently, there is an urgent need for new research to determine the main factors influencing canal water quality and their ecological status. This research presents results from a study based on a UK contour canal, the Union Canal in central Scotland. The Union Canal typically demonstrates spatially and temporally variable levels of dissolved oxygen (DO) and orthophosphate (PO4-P): simultaneously, seasonal and diel fluctuations of DO and PO4-P are pronounced at a small number of locations. During 1995, minimum levels of DO along the canal length ranged from 9mgl-1 in Edinburgh to as low as 2mgl-1 approximately 20kms away, this then rose again to 8mgl-1 after a further distance of 2km. These acutely low levels of DO are coupled with events of excessive PO4-P up to 0.235mgl-1:10 times greater than those normally found in rivers, causing localised eutrophication and extensive fish kills. To determine the cause of the `hot spots' of poor water quality found on the Union Canal, simultaneous investigations of the hydraulic regime, spatial and temporal water quality variation and the canal's biological status were carried out. Velocity metering in the canal identified extremely low flow rates ~0.15m3s-1. A tracer testing procedure for the canal's low flow conditions was designed and implemented which identified a lack of rapid dispersion processes with D~0.133m3s-1. Water quality sampling consisted of a year-long programme of high frequency temporal and spatial sampling along the canal length. Observations demonstrate significant variability, with widely differing measurements of DO as little as 5m apart. In addition, spot samples of water quality taken from individual incoming field drains showed PO4-P concentrations up to 2mgl-1, with a predominance of nutrient bound clay and silt sediments that ultimately settle on the canal bed. Due to low dispersion rates, residence times for pollutants are long and field drains, in combination with navigational activity, may well be one of the primary causes of raised nutrient levels at some locations. This research has shown that canal water quality is highly spatially and temporally variable; far in excess of the variability normally found in river systems. This is mainly determined by a lack of hydraulic mixing and the presence of small quantities of incoming runoff water of very low quality. Whilst low in volume, incoming sediment from the drains appears to strongly influence the nearby canal water quality. These results have important consequences both for future monitoring strategies of canals and management of their gradual ecological improvement.

  1. Monitoring air quality in mountains: Designing an effective network

    USGS Publications Warehouse

    Peterson, D.L.

    2000-01-01

    A quantitatively robust yet parsimonious air-quality monitoring network in mountainous regions requires special attention to relevant spatial and temporal scales of measurement and inference. The design of monitoring networks should focus on the objectives required by public agencies, namely: 1) determine if some threshold has been exceeded (e.g., for regulatory purposes), and 2) identify spatial patterns and temporal trends (e.g., to protect natural resources). A short-term, multi-scale assessment to quantify spatial variability in air quality is a valuable asset in designing a network, in conjunction with an evaluation of existing data and simulation-model output. A recent assessment in Washington state (USA) quantified spatial variability in tropospheric ozone distribution ranging from a single watershed to the western third of the state. Spatial and temporal coherence in ozone exposure modified by predictable elevational relationships ( 1.3 ppbv ozone per 100 m elevation gain) extends from urban areas to the crest of the Cascade Range. This suggests that a sparse network of permanent analyzers is sufficient at all spatial scales, with the option of periodic intensive measurements to validate network design. It is imperative that agencies cooperate in the design of monitoring networks in mountainous regions to optimize data collection and financial efficiencies.

  2. Occurrence of fecal coliform bacteria in selected streams in Wyoming, 1990-99

    USGS Publications Warehouse

    Clark, Melanie L.; Norris, Jodi R.

    2000-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Wyoming Department of Environmental Quality (WDEQ), is collecting water samples for analysis of fecal coliform bacteria at 18 stream sites as part of a statewide network. Contamination by bacteria of fecal origin in streams where contact recreation is a designated water use is a concern because of potential public-health risk from the presence of enteric pathogens. Fecal coliform concentrations are temporally and spatially variable in Wyoming streams-concentrations ranged from less than 1 to 45,000 colonies per 100 milliliters of water during 1990-99. Fecal coliform concentrations were less than the water-quality criterion of 400 colonies per 100 milliliters in 83 percent of the samples, indicating fecal coliform contamination is not a widespread problem in these Wyoming streams. However, 14 of the 18 monitoring sites had at least one sample in which the fecal coliform concentration exceeded 400 colonies per 100 milliliters at some time during the 10-year period. Fecal coliform concentrations generally are higher during April through September than during October through March. The higher concentrations coincide with the time period when the public-health risk is higher because summer months are when contact recreation use is more likely occurring. Fecal coliform concentrations were positively correlated with discharge and stream temperature and generally were negatively correlated with pH, specific conductance, and dissolved oxygen.

  3. Effects of ground-water chemistry and flow on quality of drainflow in the western San Joaquin Valley, California

    USGS Publications Warehouse

    Fio, John L.; Leighton, David A.

    1994-01-01

    Chemical and geohydrologic data were used to assess the effects of regional ground-water flow on the quality of on-farm drainflows in a part of the western San Joaquin Valley, California. Shallow ground water beneath farm fields has been enriched in stable isotopes and salts by partial evaporation from the shallow water table and is being displaced by irrigation, drainage, and regional ground-water flow. Ground-water flow is primarily downward in the study area but can flow upward in some down- slope areas. Transitional areas exist between the downward and upward flow zones, where ground water can move substantial horizontal distances (0.3 to 3.6 kilometers) and can require 10 to 90 years to reach the downslope drainage systems. Simulation of ground-water flow to drainage systems indicates that regional ground water contributes to about 11 percent of annual drainflow. Selenium concentrations in ground water and drainwater are affected by geologic source materials, partial evaporation from a shallow water table, drainage-system, and regional ground-water flow. Temporal variability in drainflow quality is affected in part by the distribution of chemical constituents in ground water and the flow paths to the drainage systems. The mass flux of selenium in drainflows, or load, generally is proportional to flow, and reductions in drainflow quantity should reduce selenium loads over the short-term. Uncertain changes in the distribution of ground-water quality make future changes in drainflow quality difficult to quantify.

  4. Impacts of a Rural Subdivision on Groundwater Quality: Results of Long-Term Monitoring.

    PubMed

    Rayne, Todd W; Bradbury, Kenneth R; Krause, Jacob J

    2018-03-30

    A rural subdivision in south central Wisconsin was instrumented with monitoring wells and lysimeters before, during, and after its construction to examine the impacts of the unsewered subdivision on groundwater quality and quantity. Prior to construction, the 78-acre (32 ha) site was farmland. Sixteen homes were constructed beginning in 2003. Initial monitoring from 2002 to 2005 showed that groundwater beneath the site had been impacted by previous agricultural use, with nitrate-N values as high as 30 mg/L and some detections of the herbicide atrazine. Our 12-year study shows that the transition from agricultural to residential land use has changed groundwater quality in both negative and positive ways. Although groundwater elevations showed typical seasonal fluctuations each year, there were no measurable changes in groundwater levels or general flow directions during the 12-year study period. Chloride values increased in many wells, possibly as a result of road salting or water softener discharge. Nitrate concentrations varied spatially and temporally over the study period, with some initial concentrations substantially above the drinking water standard. In some wells, nitrate and atrazine levels have declined substantially since agriculture ceased. However, atrazine was still present at trace concentrations throughout the site in 2014. Wastewater tracers show there are small but detectable impacts from septic effluent on groundwater quality. Particle traces based on a groundwater flow model are consistent with the hypothesis that septic leachate has impacted groundwater quality. © 2018, National Ground Water Association.

  5. Defining chemical status of a temporary Mediterranean River.

    PubMed

    Skoulikidis, Nikolaos Th

    2008-07-01

    Although the majority of rivers and streams in the Mediterranean area are temporary, no particular attention is being paid for such systems in the Water Framework Directive (WFD). A typical temporal Mediterranean river, draining an intensively cultivated basin, was assessed for its chemical status. Elevated concentrations of nitrates and salts in river water as well as nutrients and heavy metals in river sediments have been attributed to agricultural land uses and practices and point sources of organic pollution. A scheme for the classification of the river's chemical status (within the ecological quality classification procedure) was applied by combining pollution parameters in groups according to related pressures. In light of the temporal hydrological regime and anthropogenic impacts, sediment chemical quality elements were considered, in addition to hydrochemical ones. Despite the extensive agricultural activities in the basin, the majority of the sites examined showed a good quality and only three of them were classified as moderate. For the classification of the chemical quality of temporary water bodies, there is a need to develop ecologically relevant salinity and sediment quality standards.

  6. Crustal deformation at long Valley Caldera, eastern California, 1992-1996 inferred from satellite radar interferometry

    USGS Publications Warehouse

    Thatcher, W.; Massonnet, D.

    1997-01-01

    Satellite radar interferometric images of Long Valley caldera show a pattern of surface deformation that resembles that expected from analysis of an extensive suite of ground-based geodetic data. Images from 2 and 4 year intervals respectively, are consistent with uniform movement rates determined from leveling surveys. Synthetic interferograms generated from ellipsoidal-inclusion source models based on inversion of the ground-based data show generally good agreement with the observed images. Two interferograms show evidence for a magmatic source southwest of the caldera in a region not covered by ground measurements. Poorer image quality in the 4 year interferogram indicates that temporal decorrelation of surface radar reflectors is progressively degrading the fringe pattern in the Long Valley region. Copyright 1997 by the American Geophysical Union.

  7. A compact time reversal emitter-receiver based on a leaky random cavity

    PubMed Central

    Luong, Trung-Dung; Hies, Thomas; Ohl, Claus-Dieter

    2016-01-01

    Time reversal acoustics (TRA) has gained widespread applications for communication and measurements. In general, a scattering medium in combination with multiple transducers is needed to achieve a sufficiently large acoustical aperture. In this paper, we report an implementation for a cost-effective and compact time reversal emitter-receiver driven by a single piezoelectric element. It is based on a leaky cavity with random 3-dimensional printed surfaces. The random surfaces greatly increase the spatio-temporal focusing quality as compared to flat surfaces and allow the focus of an acoustic beam to be steered over an angle of 41°. We also demonstrate its potential use as a scanner by embedding a receiver to detect an object from its backscatter without moving the TRA emitter. PMID:27811957

  8. Machine processing for remotely acquired data. [using multivariate statistical analysis

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A.

    1974-01-01

    This paper is a general discussion of earth resources information systems which utilize airborne and spaceborne sensors. It points out that information may be derived by sensing and analyzing the spectral, spatial and temporal variations of electromagnetic fields emanating from the earth surface. After giving an overview system organization, the two broad categories of system types are discussed. These are systems in which high quality imagery is essential and those more numerically oriented. Sensors are also discussed with this categorization of systems in mind. The multispectral approach and pattern recognition are described as an example data analysis procedure for numerically-oriented systems. The steps necessary in using a pattern recognition scheme are described and illustrated with data obtained from aircraft and the Earth Resources Technology Satellite (ERTS-1).

  9. Using biotic ligand models to predict metal toxicity in mineralized systems

    USGS Publications Warehouse

    Smith, Kathleen S.; Balistrieri, Laurie S.; Todd, Andrew S.

    2015-01-01

    The biotic ligand model (BLM) is a numerical approach that couples chemical speciation calculations with toxicological information to predict the toxicity of aquatic metals. This approach was proposed as an alternative to expensive toxicological testing, and the U.S. Environmental Protection Agency incorporated the BLM into the 2007 revised aquatic life ambient freshwater quality criteria for Cu. Research BLMs for Ag, Ni, Pb, and Zn are also available, and many other BLMs are under development. Current BLMs are limited to ‘one metal, one organism’ considerations. Although the BLM generally is an improvement over previous approaches to determining water quality criteria, there are several challenges in implementing the BLM, particularly at mined and mineralized sites. These challenges include: (1) historically incomplete datasets for BLM input parameters, especially dissolved organic carbon (DOC), (2) several concerns about DOC, such as DOC fractionation in Fe- and Al-rich systems and differences in DOC quality that result in variations in metal-binding affinities, (3) water-quality parameters and resulting metal-toxicity predictions that are temporally and spatially dependent, (4) additional influences on metal bioavailability, such as multiple metal toxicity, dietary metal toxicity, and competition among organisms or metals, (5) potential importance of metal interactions with solid or gas phases and/or kinetically controlled reactions, and (6) tolerance to metal toxicity observed for aquatic organisms living in areas with elevated metal concentrations.

  10. Analysis of ecological quality of the environment and influencing factors in China during 2005-2010.

    PubMed

    Wang, Shi-Xin; Yao, Yao; Zhou, Yi

    2014-01-30

    Since the twentieth century, China has been facing various kinds of environmental problems. It is necessary to evaluate and analyze the ecological status of the environment over China, which is of great importance for environmental protection measures. In this article, an Eco-environmental Quality Index (EQI) model is established using national remote sensing land-use data, NDVI data from MODIS and other statistical data. The model is used to evaluate the ecological status over China during 2005, 2008 and 2010, and spatial and temporal variations in EQI are analyzed during the period 2005-2010. We also discuss important factors affecting ecological quality, with special emphasis on meteorological conditions (including rainfall and sunshine duration) and anthropogenic factors (including normalized population and gross domestic product densities). The results show that, EQIs in northwestern China are generally lower than those in the southeast of the country, presenting a ladder-like distribution. There is significant correlation between EQI, rainfall and sunshine duration. Population density and GDP also have some relation to EQI. On the whole, the environmental quality results showed little variation during 2005-2010, with national average EQIs of 54.86, 55.07 and 54.43 in 2005, 2008 and 2010, respectively. During 2005-2010, differences in EQI were observed at the local level, but those at the provincial level were small.

  11. A novel hybrid approach for estimating total deposition in the United States

    NASA Astrophysics Data System (ADS)

    Schwede, Donna B.; Lear, Gary G.

    2014-08-01

    Atmospheric deposition of nitrogen and sulfur causes many deleterious effects on ecosystems including acidification and excess eutrophication. Assessments to support development of strategies to mitigate these effects require spatially and temporally continuous values of nitrogen and sulfur deposition. In the U.S., national monitoring networks exist that provide values of wet and dry deposition at discrete locations. While wet deposition can be interpolated between the monitoring locations, dry deposition cannot. Additionally, monitoring networks do not measure the complete suite of chemicals that contribute to total sulfur and nitrogen deposition. Regional air quality models provide spatially continuous values of deposition of monitored species as well as important unmeasured species. However, air quality modeling values are not generally available for an extended continuous time period. Air quality modeling results may also be biased for some chemical species. We developed a novel approach for estimating dry deposition using data from monitoring networks such as the Clean Air Status and Trends Network (CASTNET), the National Atmospheric Deposition Program (NADP) Ammonia Monitoring Network (AMoN), and the Southeastern Aerosol Research and Characterization (SEARCH) network and modeled data from the Community Multiscale Air Quality (CMAQ) model. These dry deposition values estimates are then combined with wet deposition values from the NADP National Trends Network (NTN) to develop values of total deposition of sulfur and nitrogen. Data developed using this method are made available via the CASTNET website.

  12. Framework for Derivation of Water Quality Criteria Using the Biotic Ligand Model: Copper as a Case Study.

    PubMed

    Gondek, John C; Gensemer, Robert W; Claytor, Carrie A; Canton, Steven P; Gorsuch, Joseph W

    2018-06-01

    Acceptance of the Biotic Ligand Model (BLM) to derive aquatic life criteria, for metals in general and copper in particular, is growing amongst regulatory agencies worldwide. Thus, it is important to ensure that water quality data are used appropriately and consistently in deriving such criteria. Here we present a suggested BLM implementation framework (hereafter referred to as "the Framework") to help guide the decision-making process when designing sampling and analysis programs for use of the BLM to derive water quality criteria applied on a site-specific basis. Such a framework will help inform stakeholders on the requirements needed to derive BLM-based criteria, and thus, ensure the appropriate types and amount of data are being collected and interpreted. The Framework was developed for calculating BLM-based criteria when data are available from multiple sampling locations on a stream. The Framework aspires to promote consistency when applying the BLM across datasets of disparate water quality, data quantity, and spatial and temporal representativeness, and is meant to be flexible to maximize applicability over a wide range of scenarios. Therefore, the Framework allows for a certain level of interpretation and adjustment to address the issues unique to each dataset. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Demographic response of Louisiana Waterthrush, a stream obligate songbird of conservation concern, to shale gas development

    USGS Publications Warehouse

    Frantz, Mack W.; Wood, Petra B.; Sheehan, James; George, Gregory

    2018-01-01

    Shale gas development continues to outpace the implementation of best management practices for wildlife affected by development. We examined demographic responses of the Louisiana Waterthrush (Parkesia motacilla) to shale gas development during 2009–2011 and 2013–2015 in a predominantly forested landscape in West Virginia, USA. Forest cover across the study area decreased from 95% in 2008 to 91% in 2015, while the area affected by shale gas development increased from 0.4% to 3.9%. We quantified nest survival and productivity, a source–sink threshold, riparian habitat quality, territory density, and territory length by monitoring 58.1 km of forested headwater streams (n = 14 streams). Across years, we saw annual variability in nest survival, with a general declining trend over time. Of 11 a priori models tested to explain nest survival (n = 280 nests), 4 models that included temporal, habitat, and shale gas covariates were supported, and 2 of these models accounted for most of the variation in daily nest survival rate. After accounting for temporal effects (rainfall, nest age, and time within season), shale gas development had negative effects on nest survival. Population-level nest productivity declined and individual productivity was lower in areas disturbed by shale gas development than in undisturbed areas, and a source–sink threshold suggested that disturbed areas were more at risk of being sink habitat. Riparian habitat quality scores, as measured by a U.S. Environmental Protection Agency index and a waterthrush-specific habitat suitability index, differed by year and were negatively related to the amount of each territory disturbed by shale gas development. Territory density was not related to the amount of shale gas disturbance, but decreased over time as territory lengths increased. Overall, our results suggest a decline in waterthrush site quality as shale gas development increases, despite relatively small site-wide forest loss.

  14. Assessment of water quality monitoring for the optimal sensor placement in lake Yahuarcocha using pattern recognition techniques and geographical information systems.

    PubMed

    Jácome, Gabriel; Valarezo, Carla; Yoo, Changkyoo

    2018-03-30

    Pollution and the eutrophication process are increasing in lake Yahuarcocha and constant water quality monitoring is essential for a better understanding of the patterns occurring in this ecosystem. In this study, key sensor locations were determined using spatial and temporal analyses combined with geographical information systems (GIS) to assess the influence of weather features, anthropogenic activities, and other non-point pollution sources. A water quality monitoring network was established to obtain data on 14 physicochemical and microbiological parameters at each of seven sample sites over a period of 13 months. A spatial and temporal statistical approach using pattern recognition techniques, such as cluster analysis (CA) and discriminant analysis (DA), was employed to classify and identify the most important water quality parameters in the lake. The original monitoring network was reduced to four optimal sensor locations based on a fuzzy overlay of the interpolations of concentration variations of the most important parameters.

  15. The climate-wildfire-air quality system: interactions and feedbacks across spatial and temporal scales

    Treesearch

    E. Natasha Stavros; Donald McKenzie; Narasimhan Larkin

    2014-01-01

    Future climate change and its effects on social and ecological systems present challenges for preserving valued ecosystem services, including local and regional air quality. Wildfire is a major source of air-quality impact in some locations, and a substantial contributor to pollutants of concern, including nitrogen oxides and particulate matter, which are regulated to...

  16. Relationships Between Sleep Quality and Pain-Related Factors for People with Chronic Low Back Pain: Tests of Reciprocal and Time of Day Effects.

    PubMed

    Gerhart, James I; Burns, John W; Post, Kristina M; Smith, David A; Porter, Laura S; Burgess, Helen J; Schuster, Erik; Buvanendran, Asokumar; Fras, Anne Marie; Keefe, Francis J

    2017-06-01

    Poor sleep quality among people with chronic low back pain appears to be related to worse pain, affect, poor physical function, and pain catastrophizing. The causal direction between poor sleep and pain remains an open question, however, as does whether sleep quality exerts effects on low back pain differently across the course of the day. This daily diary study examined lagged temporal associations between prior night sleep quality and subsequent day pain, affect, physical function and pain catastrophizing, the reverse lagged temporal associations between prior day pain-related factors and subsequent night sleep quality, and whether the time of day during which an assessment was made moderated these temporal associations. Chronic low back pain patients (n = 105) completed structured electronic diary assessments five times per day for 14 days. Items included patient ratings of their pain, affect, physical function, and pain catastrophizing. Collapsed across all observations, poorer sleep quality was significantly related to higher pain ratings, higher negative affect, lower positive affect, poorer physical function, and higher pain catastrophizing. Lagged analyses averaged across the day revealed that poorer prior night sleep quality significantly predicted greater next day patient ratings of pain, and poorer physical function and higher pain catastrophizing. Prior poorer night sleep quality significantly predicted greater reports of pain, and poorer physical function, and higher pain catastrophizing, especially during the early part of the day. Sleep quality × time of day interactions showed that poor sleepers reported high pain, and negative mood and low function uniformly across the day, whereas good sleepers reported relatively good mornings, but showed pain, affect and function levels comparable to poor sleepers by the end of the day. Analyses of the reverse causal pathway were mostly nonsignificant. Sleep quality appears related not only to pain intensity but also to a wide range of patient mood and function factors. A good night's sleep also appears to offer only temporary respite, suggesting that comprehensive interventions for chronic low back pain not only should include attention to sleep problems but also focus on problems with pain appraisals and coping.

  17. Relationships Between Sleep Quality and Pain-Related Factors for People with Chronic Low Back Pain: Tests of Reciprocal and Time of Day Effects

    PubMed Central

    Gerhart, James I.; Burns, John W.; Post, Kristina M.; Smith, David A.; Porter, Laura S.; Burgess, Helen J.; Schuster, Erik; Buvanendran, Asokumar; Fras, Anne Marie; Keefe, Francis J.

    2016-01-01

    Background Poor sleep quality among people with chronic low back pain appears to be related to worse pain, affect, poor physical function and pain catastrophizing. The causal direction between poor sleep and pain remains an open question, however, as does whether sleep quality exerts effects on low back pain differently across the course of the day. Purpose This daily diary study examined lagged temporal associations between prior night sleep quality and subsequent day pain, affect, physical function and pain catastrophizing, the reverse lagged temporal associations between prior day pain-related factors and subsequent night sleep quality, and whether the time of day during which an assessment was made moderated these temporal associations. Methods Chronic low back pain patients (n = 105) completed structured electronic diary assessments five times per day for 14 days. Items included patient ratings of their pain, affect, physical function and pain catastrophizing. Results Collapsed across all observations, poorer sleep quality was significantly related to higher pain ratings, higher negative affect, lower positive affect, poorer physical function and higher pain catastrophizing. Lagged analyses averaged across the day revealed that poorer prior night sleep quality significantly predicted greater next day patient ratings of pain, and poorer physical function and higher pain catastrophizing. Prior poorer night sleep quality significantly predicted greater reports of pain, and poorer physical function, and higher pain catastrophizing, especially during the early part of the day. Sleep Quality × Time of Day interactions showed that poor sleepers reported high pain, and negative mood and low function uniformly across the day, whereas good sleepers reported relatively good mornings, but showed pain, affect and function levels comparable to poor sleepers by the end of the day. Analyses of the reverse causal pathway were mostly nonsignificant. Conclusions Sleep quality appears related not only to pain intensity but also to a wide range of patient mood and function factors. A good night’s sleep also appears to offer only temporary respite, suggesting that comprehensive interventions for chronic low back pain not only should include attention to sleep problems but also focus on problems with pain appraisals and coping. PMID:27844327

  18. Assessing the Future Vehicle Fleet Electrification: The Impacts on Regional and Urban Air Quality.

    PubMed

    Ke, Wenwei; Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wang, Shuxiao; Hao, Jiming

    2017-01-17

    There have been significant advancements in electric vehicles (EVs) in recent years. However, the different changing patterns in emissions at upstream and on-road stages and complex atmospheric chemistry of pollutants lead to uncertainty in the air quality benefits from fleet electrification. This study considers the Yangtze River Delta (YRD) region in China to investigate whether EVs can improve future air quality. The Community Multiscale Air Quality model enhanced by the two-dimensional volatility basis set module is applied to simulate the temporally, spatially, and chemically resolved changes in PM 2.5 concentrations and the changes of other pollutants from fleet electrification. A probable scenario (Scenario EV1) with 20% of private light-duty passenger vehicles and 80% of commercial passenger vehicles (e.g., taxis and buses) electrified can reduce average PM 2.5 concentrations by 0.4 to 1.1 μg m -3 during four representative months for all urban areas of YRD in 2030. The seasonal distinctions of the air quality impacts with respect to concentration reductions in key aerosol components are also identified. For example, the PM 2.5 reduction in January is mainly attributed to the nitrate reduction, whereas the secondary organic aerosol reduction is another essential contributor in August. EVs can also effectively assist in mitigating NO 2 concentrations, which would gain greater reductions for traffic-dense urban areas (e.g., Shanghai). This paper reveals that the fleet electrification in the YRD region could generally play a positive role in improving regional and urban air quality.

  19. Modeling Source Water Threshold Exceedances with Extreme Value Theory

    NASA Astrophysics Data System (ADS)

    Rajagopalan, B.; Samson, C.; Summers, R. S.

    2016-12-01

    Variability in surface water quality, influenced by seasonal and long-term climate changes, can impact drinking water quality and treatment. In particular, temperature and precipitation can impact surface water quality directly or through their influence on streamflow and dilution capacity. Furthermore, they also impact land surface factors, such as soil moisture and vegetation, which can in turn affect surface water quality, in particular, levels of organic matter in surface waters which are of concern. All of these will be exacerbated by anthropogenic climate change. While some source water quality parameters, particularly Total Organic Carbon (TOC) and bromide concentrations, are not directly regulated for drinking water, these parameters are precursors to the formation of disinfection byproducts (DBPs), which are regulated in drinking water distribution systems. These DBPs form when a disinfectant, added to the water to protect public health against microbial pathogens, most commonly chlorine, reacts with dissolved organic matter (DOM), measured as TOC or dissolved organic carbon (DOC), and inorganic precursor materials, such as bromide. Therefore, understanding and modeling the extremes of TOC and Bromide concentrations is of critical interest for drinking water utilities. In this study we develop nonstationary extreme value analysis models for threshold exceedances of source water quality parameters, specifically TOC and bromide concentrations. In this, the threshold exceedances are modeled as Generalized Pareto Distribution (GPD) whose parameters vary as a function of climate and land surface variables - thus, enabling to capture the temporal nonstationarity. We apply these to model threshold exceedance of source water TOC and bromide concentrations at two locations with different climate and find very good performance.

  20. Quality of a fished resource: Assessing spatial and temporal dynamics

    PubMed Central

    Lorda, Julio; Shears, Nick T.; Ben-Horin, Tal; Toseland, Rebecca E.; Rathbone, Sarah T.; Rudie, Dave; Gaines, Steven D.

    2018-01-01

    Understanding spatio-temporal variability in the demography of harvested species is essential to improve sustainability, especially if there is large geographic variation in demography. Reproductive patterns commonly vary spatially, which is particularly important for management of “roe”-based fisheries, since profits depend on both the number and reproductive condition of individuals. The red sea urchin, Mesocentrotus franciscanus, is harvested in California for its roe (gonad), which is sold to domestic and international sushi markets. The primary driver of price within this multi-million-dollar industry is gonad quality. A relatively simple measure of the fraction of the body mass that is gonad, the gonadosomatic index (GSI), provides important insight into the ecological and environmental factors associated with variability in reproductive quality, and hence value within the industry. We identified the seasonality of the reproductive cycle and determined whether it varied within a heavily fished region. We found that fishermen were predictable both temporally and spatially in collecting urchins according to the reproductive dynamics of urchins. We demonstrated the use of red sea urchin GSI as a simple, quantitative tool to predict quality, effort, landings, price, and value of the fishery. We found that current management is not effectively realizing some objectives for the southern California fishery, since the reproductive cycle does not match the cycle in northern California, where these management guidelines were originally shaped. Although regulations may not be meeting initial management goals, the scheme may in fact provide conservation benefits by curtailing effort during part of the high-quality fishing season right before spawning. PMID:29874229

  1. Characterizing the functional MRI response using Tikhonov regularization.

    PubMed

    Vakorin, Vasily A; Borowsky, Ron; Sarty, Gordon E

    2007-09-20

    The problem of evaluating an averaged functional magnetic resonance imaging (fMRI) response for repeated block design experiments was considered within a semiparametric regression model with autocorrelated residuals. We applied functional data analysis (FDA) techniques that use a least-squares fitting of B-spline expansions with Tikhonov regularization. To deal with the noise autocorrelation, we proposed a regularization parameter selection method based on the idea of combining temporal smoothing with residual whitening. A criterion based on a generalized chi(2)-test of the residuals for white noise was compared with a generalized cross-validation scheme. We evaluated and compared the performance of the two criteria, based on their effect on the quality of the fMRI response. We found that the regularization parameter can be tuned to improve the noise autocorrelation structure, but the whitening criterion provides too much smoothing when compared with the cross-validation criterion. The ultimate goal of the proposed smoothing techniques is to facilitate the extraction of temporal features in the hemodynamic response for further analysis. In particular, these FDA methods allow us to compute derivatives and integrals of the fMRI signal so that fMRI data may be correlated with behavioral and physiological models. For example, positive and negative hemodynamic responses may be easily and robustly identified on the basis of the first derivative at an early time point in the response. Ultimately, these methods allow us to verify previously reported correlations between the hemodynamic response and the behavioral measures of accuracy and reaction time, showing the potential to recover new information from fMRI data. 2007 John Wiley & Sons, Ltd

  2. Trust, temporality and systems: how do patients understand patient safety in primary care? A qualitative study.

    PubMed

    Rhodes, Penny; Campbell, Stephen; Sanders, Caroline

    2016-04-01

    Patient safety research has tended to focus on hospital settings, although most clinical encounters occur in primary care, and to emphasize practitioner errors, rather than patients' own understandings of safety. To explore patients' understandings of safety in primary care. Qualitative interviews were conducted with patients recruited from general practices in northwest England. Participants were asked basic socio-demographic information; thereafter, topics were largely introduced by interviewees themselves. Transcripts were coded and analysed using NVivo10 (qualitative data software), following a process of constant comparison. Thirty-eight people (14 men, 24 women) from 19 general practices in rural, small town and city locations were interviewed. Many of their concerns (about access, length of consultation, relationship continuity) have been discussed in terms of quality, but, in the interviews, were raised as matters of safety. Three broad themes were identified: (i) trust and psycho-social aspects of professional-patient relationships; (ii) choice, continuity, access, and the temporal underpinnings of safety; and (iii) organizational and systems-level tensions constraining safety. Conceptualizations of safety included common reliance on a bureaucratic framework of accreditation, accountability, procedural rules and regulation, but were also individual and context-dependent. For patients, safety is not just a property of systems, but personal and contingent and is realized in the interaction between doctor and patient. However, it is the systems approach that has dominated safety thinking, and patients' individualistic and relational conceptualizations are poorly accommodated within current service organization. © 2015 The Authors Health Expectations Published by John Wiley & Sons Ltd.

  3. Group-level spatio-temporal pattern recovery in MEG decoding using multi-task joint feature learning.

    PubMed

    Kia, Seyed Mostafa; Pedregosa, Fabian; Blumenthal, Anna; Passerini, Andrea

    2017-06-15

    The use of machine learning models to discriminate between patterns of neural activity has become in recent years a standard analysis approach in neuroimaging studies. Whenever these models are linear, the estimated parameters can be visualized in the form of brain maps which can aid in understanding how brain activity in space and time underlies a cognitive function. However, the recovered brain maps often suffer from lack of interpretability, especially in group analysis of multi-subject data. To facilitate the application of brain decoding in group-level analysis, we present an application of multi-task joint feature learning for group-level multivariate pattern recovery in single-trial magnetoencephalography (MEG) decoding. The proposed method allows for recovering sparse yet consistent patterns across different subjects, and therefore enhances the interpretability of the decoding model. Our experimental results demonstrate that the mutli-task joint feature learning framework is capable of recovering more meaningful patterns of varying spatio-temporally distributed brain activity across individuals while still maintaining excellent generalization performance. We compare the performance of the multi-task joint feature learning in terms of generalization, reproducibility, and quality of pattern recovery against traditional single-subject and pooling approaches on both simulated and real MEG datasets. These results can facilitate the usage of brain decoding for the characterization of fine-level distinctive patterns in group-level inference. Considering the importance of group-level analysis, the proposed approach can provide a methodological shift towards more interpretable brain decoding models. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. [Epilepsy in the temporal lobe: déjà vu in Primary Care].

    PubMed

    Miguéns Blanco, I; Rodríguez Acevedo, B

    2013-10-01

    Epilepsy is a common disease in the general population. 10% of the population will present a seizure throughout his life, although only 1% will have an epileptic condition. We can divide the generalized epilepsy and focal. Es in the latter that more diagnostic and management difficulties may arise in clinical practice, for its wide variety of symptoms and their identification difficult. These symptoms may be referred to differently by each patient, often dismissively. In focal epilepsy, the most prevalent epilepsy that originates in the temporal lobe. The identification and study of this pathology is very important because the patient may have episodes of disconnecting means and in one third of cases secondarily generalized crises. Although most patients the culprit lesion is mesial temporal sclerosis, one must rule out other causes such as tumors or infections. Copyright © 2012 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.

  5. Temporal genetic structure in a poecilogonous polychaete: the interplay of developmental mode and environmental stochasticity

    PubMed Central

    2014-01-01

    Background Temporal variation in the genetic structure of populations can be caused by multiple factors, including natural selection, stochastic environmental variation, migration, or genetic drift. In benthic marine species, the developmental mode of larvae may indicate a possibility for temporal genetic variation: species with dispersive planktonic larvae are expected to be more likely to show temporal genetic variation than species with benthic or brooded non-dispersive larvae, due to differences in larval mortality and dispersal ability. We examined temporal genetic structure in populations of Pygospio elegans, a poecilogonous polychaete with within-species variation in developmental mode. P. elegans produces either planktonic, benthic, or intermediate larvae, varying both among and within populations, providing a within-species test of the generality of a relationship between temporal genetic variation and larval developmental mode. Results In contrast to our expectations, our microsatellite analyses of P. elegans revealed temporal genetic stability in the UK population with planktonic larvae, whereas there was variation indicative of drift in temporal samples of the populations from the Baltic Sea, which have predominantly benthic and intermediate larvae. We also detected temporal variation in relatedness within these populations. A large temporal shift in genetic structure was detected in a population from the Netherlands, having multiple developmental modes. This shift could have been caused by local extiction due to extreme environmental conditions and (re)colonization by planktonic larvae from neighboring populations. Conclusions In our study of P. elegans, temporal genetic variation appears to be due to not only larval developmental mode, but also the stochastic environment of adults. Large temporal genetic shifts may be more likely in marine intertidal habitats (e.g. North Sea and Wadden Sea) which are more prone to environmental stochasticity than the sub-tidal Baltic habitats. Sub-tidal and/or brackish (less saline) habitats may support smaller P. elegans populations and these may be more susceptible to the effects of random genetic drift. Moreover, higher frequencies of asexual reproduction and the benthic larval developmental mode in these populations leads to higher relatedness and contributes to drift. Our results indicate that a general relationship between larval developmental mode and temporal genetic variation may not exist. PMID:24447386

  6. Temporal genetic structure in a poecilogonous polychaete: the interplay of developmental mode and environmental stochasticity.

    PubMed

    Kesäniemi, Jenni E; Mustonen, Marina; Boström, Christoffer; Hansen, Benni W; Knott, K Emily

    2014-01-22

    Temporal variation in the genetic structure of populations can be caused by multiple factors, including natural selection, stochastic environmental variation, migration, or genetic drift. In benthic marine species, the developmental mode of larvae may indicate a possibility for temporal genetic variation: species with dispersive planktonic larvae are expected to be more likely to show temporal genetic variation than species with benthic or brooded non-dispersive larvae, due to differences in larval mortality and dispersal ability. We examined temporal genetic structure in populations of Pygospio elegans, a poecilogonous polychaete with within-species variation in developmental mode. P. elegans produces either planktonic, benthic, or intermediate larvae, varying both among and within populations, providing a within-species test of the generality of a relationship between temporal genetic variation and larval developmental mode. In contrast to our expectations, our microsatellite analyses of P. elegans revealed temporal genetic stability in the UK population with planktonic larvae, whereas there was variation indicative of drift in temporal samples of the populations from the Baltic Sea, which have predominantly benthic and intermediate larvae. We also detected temporal variation in relatedness within these populations. A large temporal shift in genetic structure was detected in a population from the Netherlands, having multiple developmental modes. This shift could have been caused by local extiction due to extreme environmental conditions and (re)colonization by planktonic larvae from neighboring populations. In our study of P. elegans, temporal genetic variation appears to be due to not only larval developmental mode, but also the stochastic environment of adults. Large temporal genetic shifts may be more likely in marine intertidal habitats (e.g. North Sea and Wadden Sea) which are more prone to environmental stochasticity than the sub-tidal Baltic habitats. Sub-tidal and/or brackish (less saline) habitats may support smaller P. elegans populations and these may be more susceptible to the effects of random genetic drift. Moreover, higher frequencies of asexual reproduction and the benthic larval developmental mode in these populations leads to higher relatedness and contributes to drift. Our results indicate that a general relationship between larval developmental mode and temporal genetic variation may not exist.

  7. Towards a General Model of Temporal Discounting

    ERIC Educational Resources Information Center

    van den Bos, Wouter; McClure, Samuel M.

    2013-01-01

    Psychological models of temporal discounting have now successfully displaced classical economic theory due to the simple fact that many common behavior patterns, such as impulsivity, were unexplainable with classic models. However, the now dominant hyperbolic model of discounting is itself becoming increasingly strained. Numerous factors have…

  8. A Tentative Application Of Morphological Filters To Time-Varying Images

    NASA Astrophysics Data System (ADS)

    Billard, D.; Poquillon, B.

    1989-03-01

    In this paper, morphological filters, which are commonly used to process either 2D or multidimensional static images, are generalized to the analysis of time-varying image sequence. The introduction of the time dimension induces then interesting prop-erties when designing such spatio-temporal morphological filters. In particular, the specification of spatio-temporal structuring ele-ments (equivalent to time-varying spatial structuring elements) can be adjusted according to the temporal variations of the image sequences to be processed : this allows to derive specific morphological transforms to perform noise filtering or moving objects discrimination on dynamic images viewed by a non-stationary sensor. First, a brief introduction to the basic principles underlying morphological filters will be given. Then, a straightforward gener-alization of these principles to time-varying images will be pro-posed. This will lead us to define spatio-temporal opening and closing and to introduce some of their possible applications to process dynamic images. At last, preliminary results obtained us-ing a natural forward looking infrared (FUR) image sequence are presented.

  9. Comparing the information conveyed by envelope modulation for speech intelligibility, speech quality, and music quality.

    PubMed

    Kates, James M; Arehart, Kathryn H

    2015-10-01

    This paper uses mutual information to quantify the relationship between envelope modulation fidelity and perceptual responses. Data from several previous experiments that measured speech intelligibility, speech quality, and music quality are evaluated for normal-hearing and hearing-impaired listeners. A model of the auditory periphery is used to generate envelope signals, and envelope modulation fidelity is calculated using the normalized cross-covariance of the degraded signal envelope with that of a reference signal. Two procedures are used to describe the envelope modulation: (1) modulation within each auditory frequency band and (2) spectro-temporal processing that analyzes the modulation of spectral ripple components fit to successive short-time spectra. The results indicate that low modulation rates provide the highest information for intelligibility, while high modulation rates provide the highest information for speech and music quality. The low-to-mid auditory frequencies are most important for intelligibility, while mid frequencies are most important for speech quality and high frequencies are most important for music quality. Differences between the spectral ripple components used for the spectro-temporal analysis were not significant in five of the six experimental conditions evaluated. The results indicate that different modulation-rate and auditory-frequency weights may be appropriate for indices designed to predict different types of perceptual relationships.

  10. Comparing the information conveyed by envelope modulation for speech intelligibility, speech quality, and music quality

    PubMed Central

    Kates, James M.; Arehart, Kathryn H.

    2015-01-01

    This paper uses mutual information to quantify the relationship between envelope modulation fidelity and perceptual responses. Data from several previous experiments that measured speech intelligibility, speech quality, and music quality are evaluated for normal-hearing and hearing-impaired listeners. A model of the auditory periphery is used to generate envelope signals, and envelope modulation fidelity is calculated using the normalized cross-covariance of the degraded signal envelope with that of a reference signal. Two procedures are used to describe the envelope modulation: (1) modulation within each auditory frequency band and (2) spectro-temporal processing that analyzes the modulation of spectral ripple components fit to successive short-time spectra. The results indicate that low modulation rates provide the highest information for intelligibility, while high modulation rates provide the highest information for speech and music quality. The low-to-mid auditory frequencies are most important for intelligibility, while mid frequencies are most important for speech quality and high frequencies are most important for music quality. Differences between the spectral ripple components used for the spectro-temporal analysis were not significant in five of the six experimental conditions evaluated. The results indicate that different modulation-rate and auditory-frequency weights may be appropriate for indices designed to predict different types of perceptual relationships. PMID:26520329

  11. Changes in Sleep Duration, Quality, and Medication Use Are Prospectively Associated With Health and Well-being: Analysis of the UK Household Longitudinal Study.

    PubMed

    Tang, Nicole K Y; Fiecas, Mark; Afolalu, Esther F; Wolke, Dieter

    2017-03-01

    Sleep is a plausible target for public health promotion. We examined the association of changes in sleep with subsequent health and well-being in the general population. We analyzed data from the UK Household Longitudinal Survey, involving 30594 people (aged > 16) who provided data on sleep and health and well-being at both Wave 1 (2009-2011) and Wave 4 (2012-2014) assessments. Predicting variables were changes in sleep quantity, sleep quality, and sleep medication use over the 4-year period. Outcome variables were the General Health Questionnaire (GHQ-12) and the 12-Item Short-Form Health Survey (SF-12) mental (MCS) and physical (PCS) component scores at Wave 4. Linear regression on each outcome was fully adjusted for potential confounders and baseline values of the relevant predicting and outcome variables. Better outcomes were associated with an increase in sleep duration (GHQ: β = 1.031 [95% confidence interval {CI}: -1.328, -0.734]; MCS: 1.531 [1.006, 2.055]; PCS: -0.071 [-0.419, 0.56]), sleep quality (GHQ: β = -2.031 [95% CI: -2.218, -1.844]; MCS: 3.027 [2.692, 3.361]; PCS: 0.924 [0.604, 1.245]), and a reduction in sleep medication use (GHQ: β = -1.929 [95% CI: -2.400, -1.459]; MCS: 3.106 [2.279, 3.933]; PCS: 2.633 [1.860, 3.406]). Poorer outcomes were on the other hand associated with a reduction in sleep duration, a decrease in sleep quality, and an increase in sleep medication use. Changes in sleep quality yielded the largest effects on the health and well-being outcomes. Changes in sleep were temporally associated with subsequent health and well-being. Initiatives that aim to protect a critical amount of sleep, promote sleep quality, and reduce sleep medication use may have public health values. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  12. Person-Based Versus Generalized Impulsivity Disinhibition in Frontotemporal Dementia and Alzheimer Disease.

    PubMed

    Paholpak, Pongsatorn; Carr, Andrew R; Barsuglia, Joseph P; Barrows, Robin J; Jimenez, Elvira; Lee, Grace J; Mendez, Mario F

    2016-09-19

    While much disinhibition in dementia results from generalized impulsivity, in behavioral variant frontotemporal dementia (bvFTD) disinhibition may also result from impaired social cognition. To deconstruct disinhibition and its neural correlates in bvFTD vs. early-onset Alzheimer's disease (eAD). Caregivers of 16 bvFTD and 21 matched-eAD patients completed the Frontal Systems Behavior Scale disinhibition items. The disinhibition items were further categorized into (1) "person-based" subscale which predominantly associated with violating social propriety and personal boundary and (2) "generalized-impulsivity" subscale which included nonspecific impulsive acts. Subscale scores were correlated with grey matter volumes from tensor-based morphometry on magnetic resonance images. In comparison to the eAD patients, the bvFTD patients developed greater person-based disinhibition (P < 0.001) but comparable generalized impulsivity. Severity of person-based disinhibition significantly correlated with the left anterior superior temporal sulcus (STS), and generalized-impulsivity correlated with the right orbitofrontal cortex (OFC) and the left anterior temporal lobe (aTL). Person-based disinhibition was predominant in bvFTD and correlated with the left STS. In both dementia, violations of social propriety and personal boundaries involved fronto-parieto-temporal network of Theory of Mind, whereas nonspecific disinhibition involved the OFC and aTL. © The Author(s) 2016.

  13. Examining issues with water quality model configuration

    USDA-ARS?s Scientific Manuscript database

    Complex watershed–scale, water quality models require a considerable amount of data in order to be properly configured, especially in view of the scarcity of data in many regions due to temporal and economic constraints. In this study, we examined two different input issues incurred while building ...

  14. Air Quality Modeling in Support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    EPA Science Inventory

    A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related a...

  15. Spatial and Temporal Water Quality Patterns in Open-Water Lake Michigan from the 2015 CSMI

    EPA Science Inventory

    Water quality patterns in the Laurentian Great Lakes broadly reflect climate, surficial geography, and landuse but are also shaped by limnological and biological processes. Open-water sampling conducted as part of the 2015 Lake Michigan interagency coordinated science and monito...

  16. TREND ANALYSIS OF WATER QUALITY MONITORING DATA FOR COBB COUNTY, GEORGIA

    EPA Science Inventory

    The Cobb County Water Protection Division Water Quality Laboratory has conducted quarterly chemical monitoring from 1995-2005. Here we analyze these data for temporal trends in 20 Piedmont streams in the Chattahoochee and Etowah river basins. We found trends through time at mos...

  17. TREND ANALYSIS OF WATER QUALITY MONITORING DATA FOR COBB COUNTY, GEORGIA

    EPA Science Inventory

    The Cobb County Water Protection Division Water Quality Laboratory has conducted quarterly chemical monitoring from 1995-2005. Here we analyze these data for temporal trends at 45 sites in 10 Piedmont streams in the Chattahoochee and Etowah river basins. The strongest overall tre...

  18. Temporal efficiency evaluation and small-worldness characterization in temporal networks

    PubMed Central

    Dai, Zhongxiang; Chen, Yu; Li, Junhua; Fam, Johnson; Bezerianos, Anastasios; Sun, Yu

    2016-01-01

    Numerous real-world systems can be modeled as networks. To date, most network studies have been conducted assuming stationary network characteristics. Many systems, however, undergo topological changes over time. Temporal networks, which incorporate time into conventional network models, are therefore more accurate representations of such dynamic systems. Here, we introduce a novel generalized analytical framework for temporal networks, which enables 1) robust evaluation of the efficiency of temporal information exchange using two new network metrics and 2) quantitative inspection of the temporal small-worldness. Specifically, we define new robust temporal network efficiency measures by incorporating the time dependency of temporal distance. We propose a temporal regular network model, and based on this plus the redefined temporal efficiency metrics and widely used temporal random network models, we introduce a quantitative approach for identifying temporal small-world architectures (featuring high temporal network efficiency both globally and locally). In addition, within this framework, we can uncover network-specific dynamic structures. Applications to brain networks, international trade networks, and social networks reveal prominent temporal small-world properties with distinct dynamic network structures. We believe that the framework can provide further insight into dynamic changes in the network topology of various real-world systems and significantly promote research on temporal networks. PMID:27682314

  19. Temporal efficiency evaluation and small-worldness characterization in temporal networks

    NASA Astrophysics Data System (ADS)

    Dai, Zhongxiang; Chen, Yu; Li, Junhua; Fam, Johnson; Bezerianos, Anastasios; Sun, Yu

    2016-09-01

    Numerous real-world systems can be modeled as networks. To date, most network studies have been conducted assuming stationary network characteristics. Many systems, however, undergo topological changes over time. Temporal networks, which incorporate time into conventional network models, are therefore more accurate representations of such dynamic systems. Here, we introduce a novel generalized analytical framework for temporal networks, which enables 1) robust evaluation of the efficiency of temporal information exchange using two new network metrics and 2) quantitative inspection of the temporal small-worldness. Specifically, we define new robust temporal network efficiency measures by incorporating the time dependency of temporal distance. We propose a temporal regular network model, and based on this plus the redefined temporal efficiency metrics and widely used temporal random network models, we introduce a quantitative approach for identifying temporal small-world architectures (featuring high temporal network efficiency both globally and locally). In addition, within this framework, we can uncover network-specific dynamic structures. Applications to brain networks, international trade networks, and social networks reveal prominent temporal small-world properties with distinct dynamic network structures. We believe that the framework can provide further insight into dynamic changes in the network topology of various real-world systems and significantly promote research on temporal networks.

  20. A new metric to assess temporal coherence for video retargeting

    NASA Astrophysics Data System (ADS)

    Li, Ke; Yan, Bo; Yuan, Binhang

    2014-10-01

    In video retargeting, how to assess the performance in maintaining temporal coherence has become the prominent challenge. In this paper, we will present a new objective measurement to assess temporal coherence after video retargeting. It's a general metric to assess jittery artifact for both discrete and continuous video retargeting methods, the accuracy of which is verified by psycho-visual tests. As a result, our proposed assessment method possesses huge practical significance.

  1. A Novel Temporal Bone Simulation Model Using 3D Printing Techniques.

    PubMed

    Mowry, Sarah E; Jammal, Hachem; Myer, Charles; Solares, Clementino Arturo; Weinberger, Paul

    2015-09-01

    An inexpensive temporal bone model for use in a temporal bone dissection laboratory setting can be made using a commercially available, consumer-grade 3D printer. Several models for a simulated temporal bone have been described but use commercial-grade printers and materials to produce these models. The goal of this project was to produce a plastic simulated temporal bone on an inexpensive 3D printer that recreates the visual and haptic experience associated with drilling a human temporal bone. Images from a high-resolution CT of a normal temporal bone were converted into stereolithography files via commercially available software, with image conversion and print settings adjusted to achieve optimal print quality. The temporal bone model was printed using acrylonitrile butadiene styrene (ABS) plastic filament on a MakerBot 2x 3D printer. Simulated temporal bones were drilled by seven expert temporal bone surgeons, assessing the fidelity of the model as compared with a human cadaveric temporal bone. Using a four-point scale, the simulated bones were assessed for haptic experience and recreation of the temporal bone anatomy. The created model was felt to be an accurate representation of a human temporal bone. All raters felt strongly this would be a good training model for junior residents or to simulate difficult surgical anatomy. Material cost for each model was $1.92. A realistic, inexpensive, and easily reproducible temporal bone model can be created on a consumer-grade desktop 3D printer.

  2. The neural correlates of specific versus general autobiographical memory construction and elaboration

    PubMed Central

    Holland, Alisha C.; Addis, Donna Rose; Kensinger, Elizabeth A.

    2011-01-01

    We examined the neural correlates of specific (i.e., unique to time and place) and general (i.e., extended in or repeated over time) autobiographical memories (AMs) during their initial construction and later elaboration phases. The construction and elaboration of specific and general events engaged a widely distributed set of regions previously associated with AM recall. Specific (vs. general) event construction preferentially engaged prefrontal and medial temporal lobe regions known to be critical for memory search and retrieval processes. General event elaboration was differentiated from specific event elaboration by extensive right-lateralized prefrontal cortex (PFC) activity. Interaction analyses confirmed that PFC activity was disproportionately engaged by specific AMs during construction, and general AMs during elaboration; a similar pattern was evident in regions of the left lateral temporal lobe. These neural differences between specific and general AM construction and elaboration were largely unrelated to reported differences in the level of detail recalled about each type of event. PMID:21803063

  3. Uncertainties in selected river water quality data

    NASA Astrophysics Data System (ADS)

    Rode, M.; Suhr, U.

    2007-02-01

    Monitoring of surface waters is primarily done to detect the status and trends in water quality and to identify whether observed trends arise from natural or anthropogenic causes. Empirical quality of river water quality data is rarely certain and knowledge of their uncertainties is essential to assess the reliability of water quality models and their predictions. The objective of this paper is to assess the uncertainties in selected river water quality data, i.e. suspended sediment, nitrogen fraction, phosphorus fraction, heavy metals and biological compounds. The methodology used to structure the uncertainty is based on the empirical quality of data and the sources of uncertainty in data (van Loon et al., 2005). A literature review was carried out including additional experimental data of the Elbe river. All data of compounds associated with suspended particulate matter have considerable higher sampling uncertainties than soluble concentrations. This is due to high variability within the cross section of a given river. This variability is positively correlated with total suspended particulate matter concentrations. Sampling location has also considerable effect on the representativeness of a water sample. These sampling uncertainties are highly site specific. The estimation of uncertainty in sampling can only be achieved by taking at least a proportion of samples in duplicates. Compared to sampling uncertainties, measurement and analytical uncertainties are much lower. Instrument quality can be stated well suited for field and laboratory situations for all considered constituents. Analytical errors can contribute considerably to the overall uncertainty of river water quality data. Temporal autocorrelation of river water quality data is present but literature on general behaviour of water quality compounds is rare. For meso scale river catchments (500-3000 km2) reasonable yearly dissolved load calculations can be achieved using biweekly sample frequencies. For suspended sediments none of the methods investigated produced very reliable load estimates when weekly concentrations data were used. Uncertainties associated with loads estimates based on infrequent samples will decrease with increasing size of rivers.

  4. Uncertainties in selected surface water quality data

    NASA Astrophysics Data System (ADS)

    Rode, M.; Suhr, U.

    2006-09-01

    Monitoring of surface waters is primarily done to detect the status and trends in water quality and to identify whether observed trends arise form natural or anthropogenic causes. Empirical quality of surface water quality data is rarely certain and knowledge of their uncertainties is essential to assess the reliability of water quality models and their predictions. The objective of this paper is to assess the uncertainties in selected surface water quality data, i.e. suspended sediment, nitrogen fraction, phosphorus fraction, heavy metals and biological compounds. The methodology used to structure the uncertainty is based on the empirical quality of data and the sources of uncertainty in data (van Loon et al., 2006). A literature review was carried out including additional experimental data of the Elbe river. All data of compounds associated with suspended particulate matter have considerable higher sampling uncertainties than soluble concentrations. This is due to high variability's within the cross section of a given river. This variability is positively correlated with total suspended particulate matter concentrations. Sampling location has also considerable effect on the representativeness of a water sample. These sampling uncertainties are highly site specific. The estimation of uncertainty in sampling can only be achieved by taking at least a proportion of samples in duplicates. Compared to sampling uncertainties measurement and analytical uncertainties are much lower. Instrument quality can be stated well suited for field and laboratory situations for all considered constituents. Analytical errors can contribute considerable to the overall uncertainty of surface water quality data. Temporal autocorrelation of surface water quality data is present but literature on general behaviour of water quality compounds is rare. For meso scale river catchments reasonable yearly dissolved load calculations can be achieved using biweekly sample frequencies. For suspended sediments none of the methods investigated produced very reliable load estimates when weekly concentrations data were used. Uncertainties associated with loads estimates based on infrequent samples will decrease with increasing size of rivers.

  5. The localizing value of ictal EEG in focal epilepsy.

    PubMed

    Foldvary, N; Klem, G; Hammel, J; Bingaman, W; Najm, I; Lüders, H

    2001-12-11

    To investigate the lateralization and localization of ictal EEG in focal epilepsy. A total of 486 ictal EEG of 72 patients with focal epilepsy arising from the mesial temporal, neocortical temporal, mesial frontal, dorsolateral frontal, parietal, and occipital regions were analyzed. Surface ictal EEG was adequately localized in 72% of cases, more often in temporal than extratemporal epilepsy. Localized ictal onsets were seen in 57% of seizures and were most common in mesial temporal lobe epilepsy (MTLE), lateral frontal lobe epilepsy (LFLE), and parietal lobe epilepsy, whereas lateralized onsets predominated in neocortical temporal lobe epilepsy and generalized onsets in mesial frontal lobe epilepsy (MFLE) and occipital lobe epilepsy. Approximately two-thirds of seizures were localized, 22% generalized, 4% lateralized, and 6% mislocalized/lateralized. False localization/lateralization occurred in 28% of occipital and 16% of parietal seizures. Rhythmic temporal theta at ictal onset was seen exclusively in temporal lobe seizures, whereas localized repetitive epileptiform activity was highly predictive of LFLE. Seizures arising from the lateral convexity and mesial regions were differentiated by a high incidence of repetitive epileptiform activity at ictal onset in the former and rhythmic theta activity in the latter. With the exception of mesial frontal lobe epilepsy, ictal recordings are very useful in the localization/lateralization of focal seizures. Some patterns are highly accurate in localizing the epileptogenic lobe. One limitation of ictal EEG is the potential for false localization/lateralization in occipital and parietal lobe epilepsies.

  6. Temporal Variability of Stemflow Dissolved Organic Carbon (DOC) Concentrations and Quality from Morphologically Contrasting Deciduous Canopies

    NASA Astrophysics Data System (ADS)

    van Stan, J. T.; Levia, D. F.; Inamdar, S. P.; Mitchell, M. J.; Mage, S. M.

    2010-12-01

    Dissolved organic carbon (DOC) inputs from canopy-derived hydrologic fluxes play a significant role in the terrestrial carbon budgets of forested ecosystems. However, no studies known to the authors have examined the variability of both DOC concentrations and quality for stemflow across time scales, nor has any study to date evaluated the effects of canopy structure on stemflow DOC characteristics. This investigation seeks to rectify this knowledge gap by examining the variability of stemflow DOC concentrations and quality across contrasting canopy morphologies and time scales (seasonal, storm and intrastorm). Bulk and intrastorm stemflow samples from a less dense, rough-barked, more plagiophile (Liriodendron tulipifera L. (tulip poplar)) and a denser, thin-barked, more erectophile (Fagus grandifolia Ehrh. (American beech)) canopy were collected and analyzed for DOC quality using metrics derived from UV-vis spectroscopy (E2:E3 ratio, SUVA254, select spectral slope (S), and spectral slope ratios (SR)). Our results suggest that stemflow DOC concentrations and quality change as crown architectural traits enhance or diminish hydrologic retention time within the canopy. The architecture of L. tulipifera canopies likely retards the flow of intercepted water, increasing chemical exchange with bark and foliar surfaces. UV-vis metrics indicated that this increased chemical exchange, particularly with bark surfaces, generally enhanced aromatic hydrocarbon content and increased molecular weight. Because leaf presence influenced DOC quality, stemflow DOC characteristics also varied seasonally in response to canopy condition. At the inter- and intrastorm scale, stemflow DOC concentration and quality varied with meteorological and antecedent canopy conditions. Since recent studies have linked stemflow production to preferential subsurface transport of dissolved chemistries, trends in DOC speciation and fluxes described in this study may impact soil environments within wooded ecosystems.

  7. Temporal self-splitting of optical pulses

    NASA Astrophysics Data System (ADS)

    Ding, Chaoliang; Koivurova, Matias; Turunen, Jari; Pan, Liuzhan

    2018-05-01

    We present mathematical models for temporally and spectrally partially coherent pulse trains with Laguerre-Gaussian and Hermite-Gaussian Schell-model statistics as extensions of the standard Gaussian Schell model for pulse trains. We derive propagation formulas of both classes of pulsed fields in linearly dispersive media and in temporal optical systems. It is found that, in general, both types of fields exhibit time-domain self-splitting upon propagation. The Laguerre-Gaussian model leads to multiply peaked pulses, while the Hermite-Gaussian model leads to doubly peaked pulses, in the temporal far field (in dispersive media) or at the Fourier plane of a temporal system. In both model fields the character of the self-splitting phenomenon depends both on the degree of temporal and spectral coherence and on the power spectrum of the field.

  8. Improving Temporal Cognition by Enhancing Motivation

    PubMed Central

    Avlar, Billur; Kahn, Julia B.; Jensen, Greg; Kandel, Eric R.; Simpson, Eleanor H.; Balsam, Peter D.

    2015-01-01

    Increasing motivation can positively impact cognitive performance. Here we employed a cognitive timing task that allows us to detect changes in cognitive performance that are not influenced by general activity or arousal factors such as the speed or persistence of responding. This approach allowed us to manipulate motivation using three different methods; molecular/genetic, behavioral and pharmacological. Increased striatal D2Rs resulted in deficits in temporal discrimination. Switching off the transgene improved motivation in earlier studies, and here partially rescued the temporal discrimination deficit. To manipulate motivation behaviorally, we altered reward magnitude and found that increasing reward magnitude improved timing in control mice and partially rescued timing in the transgenic mice. Lastly, we manipulated motivation pharmacologically using a functionally selective 5-HT2C receptor ligand, SB242084, which we previously found to increase incentive motivation. SB242084 improved temporal discrimination in both control and transgenic mice. Thus, while there is a general intuitive belief that motivation can affect cognition, we here provide a direct demonstration that enhancing motivation, in a variety of ways, can be an effective strategy for enhancing temporal cognition. Understanding the interaction of motivation and cognition is of clinical significance since many psychiatric disorders are characterized by deficits in both domains. PMID:26371378

  9. Temporal and geographic patterns in population trends of brown-headed cowbirds

    USGS Publications Warehouse

    Peterjohn, B.G.; Sauer, J.R.; Schwarz, S.

    2000-01-01

    The temporal and geographic patterns in the population trends of Brown-headed Cowbirds are summarized from the North American Breeding Bird Survey. During 1966-1992, the survey-wide population declined significantly, a result of declining populations in the Eastern BBS Region, southern Great Plains, and the Pacific coast states. Increasing populations were most evident in the northern Great Plains. Cowbird populations were generally stable or increasing during 1966-1976, but their trends became more negative after 1976. The trends in cowbird populations were generally directly correlated with the trends of both host and nonhost species, suggesting that large-scale factors such as changing weather patterns, land use practices, or habitat availability were responsible for the observed temporal and geographic patterns in the trends of cowbirds and their hosts.

  10. Temporal Context, Preference, and Resistance to Change

    ERIC Educational Resources Information Center

    Podlesnik, Christopher A.; Jimenez-Gomez, Corina; Thrailkill, Eric A.; Shahan, Timothy A.

    2011-01-01

    According to behavioral momentum theory, preference and relative resistance to change in concurrent chains schedules are correlated and reflect the relative conditioned value of discriminative stimuli. In the present study, we explore the generality of this relation by manipulating the temporal context within a concurrent-chains procedure through…

  11. Speckle reduction in echocardiography by temporal compounding and anisotropic diffusion filtering

    NASA Astrophysics Data System (ADS)

    Giraldo-Guzmán, Jader; Porto-Solano, Oscar; Cadena-Bonfanti, Alberto; Contreras-Ortiz, Sonia H.

    2015-01-01

    Echocardiography is a medical imaging technique based on ultrasound signals that is used to evaluate heart anatomy and physiology. Echocardiographic images are affected by speckle, a type of multiplicative noise that obscures details of the structures, and reduces the overall image quality. This paper shows an approach to enhance echocardiography using two processing techniques: temporal compounding and anisotropic diffusion filtering. We used twenty echocardiographic videos that include one or three cardiac cycles to test the algorithms. Two images from each cycle were aligned in space and averaged to obtain the compound images. These images were then processed using anisotropic diffusion filters to further improve their quality. Resultant images were evaluated using quality metrics and visual assessment by two medical doctors. The average total improvement on signal-to-noise ratio was up to 100.29% for videos with three cycles, and up to 32.57% for videos with one cycle.

  12. Localized analysis of paint-coat drying using dynamic speckle interferometry

    NASA Astrophysics Data System (ADS)

    Sierra-Sosa, Daniel; Tebaldi, Myrian; Grumel, Eduardo; Rabal, Hector; Elmaghraby, Adel

    2018-07-01

    The paint-coating is part of several industrial processes, including the automotive industry, architectural coatings, machinery and appliances. These paint-coatings must comply with high quality standards, for this reason evaluation techniques from paint-coatings are in constant development. One important factor from the paint-coating process is the drying, as it has influence on the quality of final results. In this work we present an assessment technique based on the optical dynamic speckle interferometry, this technique allows for the temporal activity evaluation of the paint-coating drying process, providing localized information from drying. This localized information is relevant in order to address the drying homogeneity, optimal drying, and quality control. The technique relies in the definition of a new temporal history of the speckle patterns to obtain the local activity; this information is then clustered to provide a convenient indicative of different drying process stages. The experimental results presented were validated using the gravimetric drying curves

  13. Summary of available state ambient stream-water-quality data, 1990-98, and limitations for national assessment

    USGS Publications Warehouse

    Pope, Larry M.; Rosner, Stacy M.; Hoffman, Darren C.; Ziegler, Andrew C.

    2004-01-01

    The investigation described in this report summarized data from State ambient stream-water-quality monitoring sites for 10 water-quality constituents or measurements (suspended solids, fecal coliform bacteria, ammonia as nitrogen, nitrite plus nitrate as nitrogen, total phosphorus, total arsenic, dissolved solids, chloride, sulfate, and pH). These 10 water-quality constituents or measurements commonly are listed nationally as major contributors to degradation of surface water. Water-quality data were limited to that electronically accessible from the U.S. Environmental Protection Agency Storage and Retrieval System (STORET), the U.S. Geological Survey National Water Information System (NWIS), or individual State databases. Forty-two States had ambient stream-water-quality data electronically accessible for some or all of the constituents or measurements summarized during this investigation. Ambient in this report refers to data collected for the purpose of evaluating stream ecosystems in relation to human health, environmental and ecological conditions, and designated uses. Generally, data were from monitoring sites assessed for State 305(b) reports. Comparisons of monitoring data among States are problematic for several reasons, including differences in the basic spatial design of monitoring networks; water-quality constituents for which samples are analyzed; water-quality criteria to which constituent concentrations are compared; quantity and comprehensiveness of water-quality data; sample collection, processing, and handling; analytical methods; temporal variability in sample collection; and quality-assurance practices. Large differences among the States in number of monitoring sites precluded a general assumption that statewide water-quality conditions were represented by data from these sites. Furthermore, data from individual monitoring sites may not represent water-quality conditions at the sites because sampling conditions and protocols are unknown. Because of these factors, a high level of uncertainty exists in a national assessment of water quality. The purpose of this report is to present a summary of electronically available State ambient stream-water-quality data for 10 selected constituents and measurements from monitoring sites with nine or more analyses for 199098 and to discuss limitations for use of the data for national assessment. These analyses were statistiscally summarized by monitoring site and State, and the results presented in tabular format. Most of the selected constituents or measurements have U.S. Environmental Protection Agency criteria or guidelines for aquatic-life or drinking-water purposes. A significant finding of this investigation is that for a large percentage of monitoring sites in the Nation, there are insufficient data to meet U.S. Environmental Protection Agency recommendations for determining if water-quality conditions are degraded and for making informed decisions regarding total maximum daily loads.

  14. Hybrid Air Quality Modeling Approach for use in the Hear-road Exposures to Urban air pollutant Study(NEXUS)

    EPA Science Inventory

    The paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associa...

  15. Spatial and temporal variation of fecal indicator organisms in two creeks in Beltsville, Maryland

    USDA-ARS?s Scientific Manuscript database

    Evaluation of microbial water quality is commonly achieved by monitoring populations of indicator bacteria such as E. coli and enterococci. Monitoring data are utilized by water managers to predict potential fecal contaminations as well as a decision tool to improve microbial water quality. Both te...

  16. TEMPORAL SIGNATURES OF AIR QUALITY OBSERVATIONS AND MODEL OUTPUTS: DO TIME SERIES DECOMPOSITION METHODS CAPTURE RELEVANT TIME SCALES?

    EPA Science Inventory

    Time series decomposition methods were applied to meteorological and air quality data and their numerical model estimates. Decomposition techniques express a time series as the sum of a small number of independent modes which hypothetically represent identifiable forcings, thereb...

  17. 7 CFR 29.6017 - General quality.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false General quality. 29.6017 Section 29.6017 Agriculture... INSPECTION Standards Definitions § 29.6017 General quality. The quality of tobacco considered in relation to the type as a whole. General quality is distinguished from the restricted use of the term “quality...

  18. Pathway Evidence of How Musical Perception Predicts Word-Level Reading Ability in Children with Reading Difficulties

    PubMed Central

    Cogo-Moreira, Hugo; Brandão de Ávila, Clara Regina; Ploubidis, George B.; de Jesus Mari, Jair

    2013-01-01

    Objective To investigate whether specific domains of musical perception (temporal and melodic domains) predict the word-level reading skills of eight- to ten-year-old children (n = 235) with reading difficulties, normal quotient of intelligence, and no previous exposure to music education classes. Method A general-specific solution of the Montreal Battery of Evaluation of Amusia (MBEA), which underlies a musical perception construct and is constituted by three latent factors (the general, temporal, and the melodic domain), was regressed on word-level reading skills (rate of correct isolated words/non-words read per minute). Results General and melodic latent domains predicted word-level reading skills. PMID:24358358

  19. LaSVM-based big data learning system for dynamic prediction of air pollution in Tehran.

    PubMed

    Ghaemi, Z; Alimohammadi, A; Farnaghi, M

    2018-04-20

    Due to critical impacts of air pollution, prediction and monitoring of air quality in urban areas are important tasks. However, because of the dynamic nature and high spatio-temporal variability, prediction of the air pollutant concentrations is a complex spatio-temporal problem. Distribution of pollutant concentration is influenced by various factors such as the historical pollution data and weather conditions. Conventional methods such as the support vector machine (SVM) or artificial neural networks (ANN) show some deficiencies when huge amount of streaming data have to be analyzed for urban air pollution prediction. In order to overcome the limitations of the conventional methods and improve the performance of urban air pollution prediction in Tehran, a spatio-temporal system is designed using a LaSVM-based online algorithm. Pollutant concentration and meteorological data along with geographical parameters are continually fed to the developed online forecasting system. Performance of the system is evaluated by comparing the prediction results of the Air Quality Index (AQI) with those of a traditional SVM algorithm. Results show an outstanding increase of speed by the online algorithm while preserving the accuracy of the SVM classifier. Comparison of the hourly predictions for next coming 24 h, with those of the measured pollution data in Tehran pollution monitoring stations shows an overall accuracy of 0.71, root mean square error of 0.54 and coefficient of determination of 0.81. These results are indicators of the practical usefulness of the online algorithm for real-time spatial and temporal prediction of the urban air quality.

  20. Linking Dynamic Habitat Selection with Wading Bird Foraging Distributions across Resource Gradients

    PubMed Central

    Beerens, James M.; Noonburg, Erik G.; Gawlik, Dale E.

    2015-01-01

    Species distribution models (SDM) link species occurrence with a suite of environmental predictors and provide an estimate of habitat quality when the variable set captures the biological requirements of the species. SDMs are inherently more complex when they include components of a species’ ecology such as conspecific attraction and behavioral flexibility to exploit resources that vary across time and space. Wading birds are highly mobile, demonstrate flexible habitat selection, and respond quickly to changes in habitat quality; thus serving as important indicator species for wetland systems. We developed a spatio-temporal, multi-SDM framework using Great Egret (Ardea alba), White Ibis (Eudocimus albus), and Wood Stork (Mycteria Americana) distributions over a decadal gradient of environmental conditions to predict species-specific abundance across space and locations used on the landscape over time. In models of temporal dynamics, species demonstrated conditional preferences for resources based on resource levels linked to differing temporal scales. Wading bird abundance was highest when prey production from optimal periods of inundation was concentrated in shallow depths. Similar responses were observed in models predicting locations used over time, accounting for spatial autocorrelation. Species clustered in response to differing habitat conditions, indicating that social attraction can co-vary with foraging strategy, water-level changes, and habitat quality. This modeling framework can be applied to evaluate the multi-annual resource pulses occurring in real-time, climate change scenarios, or restorative hydrological regimes by tracking changing seasonal and annual distribution and abundance of high quality foraging patches. PMID:26107386

  1. Daily antecedents and consequences of nightly sleep.

    PubMed

    Lee, Soomi; Crain, Tori L; McHale, Susan M; Almeida, David M; Buxton, Orfeu M

    2017-08-01

    Sleep can serve as both cause and consequence of individuals' everyday experiences. We built upon prior studies of the correlates of sleep, which have relied primarily on cross-sectional data, to examine the antecedents and consequences of sleep using a daily diary design. Specifically, we assessed the temporal sequence between nightly sleep and daily psychosocial stressors. Parents employed in a US information technology company (n = 102) completed eight consecutive daily diaries at both baseline and 1 year later. In telephone interviews each evening, participants reported on the previous night's sleep hours, sleep quality and sleep latency. They also reported daily work-to-family conflict and time inadequacy (i.e. perceptions of not having enough time) for their child and for themselves to engage in exercise. Multi-level models testing lagged and non-lagged effects simultaneously revealed that sleep hours and sleep quality were associated with next-day consequences of work-to-family conflict and time inadequacy, whereas psychosocial stressors as antecedents did not predict sleep hours or quality that night. For sleep latency, the opposite temporal order emerged: on days with more work-to-family conflict or time inadequacy for child and self than usual, participants reported longer sleep latencies than usual. An exception to this otherwise consistent pattern was that time inadequacy for child also preceded shorter sleep hours and poorer sleep quality that night. The results highlight the utility of a daily diary design for capturing the temporal sequences linking sleep and psychosocial stressors. © 2016 European Sleep Research Society.

  2. Linking dynamic habitat selection with wading bird foraging distributions across resource gradients

    USGS Publications Warehouse

    Beerens, James M.; Noonberg, Erik G.; Gawlik, Dale E.

    2015-01-01

    Species distribution models (SDM) link species occurrence with a suite of environmental predictors and provide an estimate of habitat quality when the variable set captures the biological requirements of the species. SDMs are inherently more complex when they include components of a species' ecology such as conspecific attraction and behavioral flexibility to exploit resources that vary across time and space. Wading birds are highly mobile, demonstrate flexible habitat selection, and respond quickly to changes in habitat quality; thus serving as important indicator species for wetland systems. We developed a spatio-temporal, multi-SDM framework using Great Egret (Ardea alba), White Ibis (Eudocimus albus), and Wood Stork (Mycteria Americana) distributions over a decadal gradient of environmental conditions to predict species-specific abundance across space and locations used on the landscape over time. In models of temporal dynamics, species demonstrated conditional preferences for resources based on resource levels linked to differing temporal scales. Wading bird abundance was highest when prey production from optimal periods of inundation was concentrated in shallow depths. Similar responses were observed in models predicting locations used over time, accounting for spatial autocorrelation. Species clustered in response to differing habitat conditions, indicating that social attraction can co-vary with foraging strategy, water-level changes, and habitat quality. This modeling framework can be applied to evaluate the multi-annual resource pulses occurring in real-time, climate change scenarios, or restorative hydrological regimes by tracking changing seasonal and annual distribution and abundance of high quality foraging patches.

  3. The importance of temporal inequality in quantifying vegetated filter strip removal efficiencies

    NASA Astrophysics Data System (ADS)

    Gall, H. E.; Schultz, D.; Mejia, A.; Harman, C. J.; Raj, C.; Goslee, S.; Veith, T.; Patterson, P. H.

    2017-12-01

    Vegetated filter strips (VFSs) are best management practices (BMPs) commonly implemented adjacent to row-cropped fields to trap overland transport of sediment and other constituents often present in agricultural runoff. VFSs are generally reported to have high sediment removal efficiencies (i.e., 70 - 95%); however, these values are typically calculated as an average of removal efficiencies observed or simulated for individual events. We argue that due to: (i) positively correlated sediment concentration-discharge relationships; (ii) strong temporal inequality exhibited by sediment transport; and (iii) decreasing VFS performance with increasing flow rates, VFS removal efficiencies over annual time scales may be significantly lower than the per-event values or averages typically reported in the literature and used in decision-making models. By applying a stochastic approach to a two-component VFS model, we investigated the extent of the disparity between two calculation methods: averaging efficiencies from each event over the course of one year, versus reporting the total annual load reduction. We examined the effects of soil texture, concentration-discharge relationship, and VFS slope to reveal the potential errors that may be incurred by ignoring the effects of temporal inequality in quantifying VFS performance. Simulation results suggest that errors can be as low as < 2% and as high as > 20%, with the differences between the two methods of removal efficiency calculations greatest for: (i) soils with high percentage of fine particulates; (ii) VFSs with higher slopes; and (iii) strongly positive concentration-discharge relationships. These results can aid in annual-scale decision making for achieving downstream water quality goals.

  4. California dragonfly and damselfly (Odonata) database: temporal and spatial distribution of species records collected over the past century

    PubMed Central

    Ball-Damerow, Joan E.; Oboyski, Peter T.; Resh, Vincent H.

    2015-01-01

    Abstract The recently completed Odonata database for California consists of specimen records from the major entomology collections of the state, large Odonata collections outside of the state, previous literature, historical and recent field surveys, and from enthusiast group observations. The database includes 32,025 total records and 19,000 unique records for 106 species of dragonflies and damselflies, with records spanning 1879–2013. Records have been geographically referenced using the point-radius method to assign coordinates and an uncertainty radius to specimen locations. In addition to describing techniques used in data acquisition, georeferencing, and quality control, we present assessments of the temporal, spatial, and taxonomic distribution of records. We use this information to identify biases in the data, and to determine changes in species prevalence, latitudinal ranges, and elevation ranges when comparing records before 1976 and after 1979. The average latitude of where records occurred increased by 78 km over these time periods. While average elevation did not change significantly, the average minimum elevation across species declined by 108 m. Odonata distribution may be generally shifting northwards as temperature warms and to lower minimum elevations in response to increased summer water availability in low-elevation agricultural regions. The unexpected decline in elevation may also be partially the result of bias in recent collections towards centers of human population, which tend to occur at lower elevations. This study emphasizes the need to address temporal, spatial, and taxonomic biases in museum and observational records in order to produce reliable conclusions from such data. PMID:25709531

  5. Plasticity of left perisylvian white-matter tracts is associated with individual differences in math learning.

    PubMed

    Jolles, Dietsje; Wassermann, Demian; Chokhani, Ritika; Richardson, Jennifer; Tenison, Caitlin; Bammer, Roland; Fuchs, Lynn; Supekar, Kaustubh; Menon, Vinod

    2016-04-01

    Plasticity of white matter tracts is thought to be essential for cognitive development and academic skill acquisition in children. However, a dearth of high-quality diffusion tensor imaging (DTI) data measuring longitudinal changes with learning, as well as methodological difficulties in multi-time point tract identification have limited our ability to investigate plasticity of specific white matter tracts. Here, we examine learning-related changes of white matter tracts innervating inferior parietal, prefrontal and temporal regions following an intense 2-month math tutoring program. DTI data were acquired from 18 third grade children, both before and after tutoring. A novel fiber tracking algorithm based on a White Matter Query Language (WMQL) was used to identify three sections of the superior longitudinal fasciculus (SLF) linking frontal and parietal (SLF-FP), parietal and temporal (SLF-PT) and frontal and temporal (SLF-FT) cortices, from which we created child-specific probabilistic maps. The SLF-FP, SLF-FT, and SLF-PT tracts identified with the WMQL method were highly reliable across the two time points and showed close correspondence to tracts previously described in adults. Notably, individual differences in behavioral gains after 2 months of tutoring were specifically correlated with plasticity in the left SLF-FT tract. Our results extend previous findings of individual differences in white matter integrity, and provide important new insights into white matter plasticity related to math learning in childhood. More generally, our quantitative approach will be useful for future studies examining longitudinal changes in white matter integrity associated with cognitive skill development.

  6. Uncertainties in TRMM-Era multisatellite-based tropical rainfall estimates over the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Rauniyar, S. P.; Protat, A.; Kanamori, H.

    2017-05-01

    This study investigates the regional and seasonal rainfall rate retrieval uncertainties within nine state-of-the-art satellite-based rainfall products over the Maritime Continent (MC) region. The results show consistently larger differences in mean daily rainfall among products over land, especially over mountains and along coasts, compared to over ocean, by about 20% for low to medium rain rates and 5% for heavy rain rates. However, rainfall differences among the products do not exhibit any seasonal dependency over both surface types (land and ocean) of the MC region. The differences between products largely depends on the rain rate itself, with a factor 2 difference for light rain and 30% for intermediate and high rain rates over ocean. The rain-rate products dominated by microwave measurements showed less spread among themselves over ocean compared to the products dominated by infrared measurements. Conversely, over land, the rain gauge-adjusted post-real-time products dominated by microwave measurements produced the largest spreads, due to the usage of different gauge analyses for the bias corrections. Intercomparisons of rainfall characteristics of these products revealed large discrepancies in detecting the frequency and intensity of rainfall. These satellite products are finally evaluated at subdaily, daily, monthly, intraseasonal, and seasonal temporal scales against high-quality gridded rainfall observations in the Sarawak (Malaysia) region for the 4 year period 2000-2003. No single satellite-based rainfall product clearly outperforms the other products at all temporal scales. General guidelines are provided for selecting a product that could be best suited for a particular application and/or temporal resolution.

  7. Automatic segmentation and co-registration of gated CT angiography datasets: measuring abdominal aortic pulsatility

    NASA Astrophysics Data System (ADS)

    Wentz, Robert; Manduca, Armando; Fletcher, J. G.; Siddiki, Hassan; Shields, Raymond C.; Vrtiska, Terri; Spencer, Garrett; Primak, Andrew N.; Zhang, Jie; Nielson, Theresa; McCollough, Cynthia; Yu, Lifeng

    2007-03-01

    Purpose: To develop robust, novel segmentation and co-registration software to analyze temporally overlapping CT angiography datasets, with an aim to permit automated measurement of regional aortic pulsatility in patients with abdominal aortic aneurysms. Methods: We perform retrospective gated CT angiography in patients with abdominal aortic aneurysms. Multiple, temporally overlapping, time-resolved CT angiography datasets are reconstructed over the cardiac cycle, with aortic segmentation performed using a priori anatomic assumptions for the aorta and heart. Visual quality assessment is performed following automatic segmentation with manual editing. Following subsequent centerline generation, centerlines are cross-registered across phases, with internal validation of co-registration performed by examining registration at the regions of greatest diameter change (i.e. when the second derivative is maximal). Results: We have performed gated CT angiography in 60 patients. Automatic seed placement is successful in 79% of datasets, requiring either no editing (70%) or minimal editing (less than 1 minute; 12%). Causes of error include segmentation into adjacent, high-attenuating, nonvascular tissues; small segmentation errors associated with calcified plaque; and segmentation of non-renal, small paralumbar arteries. Internal validation of cross-registration demonstrates appropriate registration in our patient population. In general, we observed that aortic pulsatility can vary along the course of the abdominal aorta. Pulsation can also vary within an aneurysm as well as between aneurysms, but the clinical significance of these findings remain unknown. Conclusions: Visualization of large vessel pulsatility is possible using ECG-gated CT angiography, partial scan reconstruction, automatic segmentation, centerline generation, and coregistration of temporally resolved datasets.

  8. Changes in temporal variability of precipitation over land due to anthropogenic forcings

    DOE PAGES

    Konapala, Goutam; Mishra, Ashok; Leung, L. Ruby

    2017-02-02

    This study investigated the anthropogenic influence on the temporal variability of annual precipitation for the period 1950-2005 as simulated by the CMIP5 models. The temporal variability of both annual precipitation amount (PRCPTOT) and intensity (SDII) was first measured using a metric of statistical dispersion called the Gini coefficient. Comparing simulations driven by both anthropogenic and natural forcings (ALL) with simulations of natural forcings only (NAT), we quantified the anthropogenic contributions to the changes in temporal variability at global, continental and sub-continental scales as a relative difference of the respective Gini coefficients of ALL and NAT. Over the period of 1950-2005,more » our results indicate that anthropogenic forcings have resulted in decreased uniformity (i.e., increase in unevenness or disparity) in annual precipitation amount and intensity at global as well as continental scales. In addition, out of the 21 sub-continental regions considered, 14 (PRCPTOT) and 17 (SDII) regions showed significant anthropogenic influences. The human impacts are generally larger for SDII compared to PRCTOT, indicating that the temporal variability of precipitation intensity is generally more susceptible to anthropogenic influence than precipitation amount. Lastly, the results highlight that anthropogenic activities have changed not only the trends but also the temporal variability of annual precipitation, which underscores the need to develop effective adaptation management practices to address the increased disparity.« less

  9. X-Ray Variability Characteristics of the Seyfert 1 Galaxy NGC 3783

    NASA Astrophysics Data System (ADS)

    Markowitz, A.

    2005-12-01

    We have characterized the energy-dependent X-ray variability properties of the Seyfert 1 galaxy NGC 3783 using archival XMM-Newton and Rossi X-Ray Timing Explorer data. The high-frequency fluctuation power spectral density function (PSD) slope is consistent with flattening toward higher energies. Light-curve cross-correlation functions yield no significant lags, but peak coefficients generally decrease as energy separation of the bands increases on both short and long timescales. We have measured the coherence between various X-ray bands over the temporal frequency range of 6×10-8-1×10-4 Hz; this range includes the temporal frequency of the low-frequency PSD break tentatively detected by Markowitz et al. and includes the lowest temporal frequency over which coherence has been measured in any active galactic nucleus to date. Coherence is generally near unity at these temporal frequencies, although it decreases slightly as energy separation of the bands increases. Temporal frequency-dependent phase lags are detected on short timescales; phase lags are consistent with increasing as energy separation increases or as temporal frequency decreases. All of these results are similar to those obtained previously for several Seyfert galaxies and stellar mass black hole systems. Qualitatively, these results are consistent with the variability models of Kotov et al. and Lyubarskii, wherein the X-ray variability is due to inwardly propagating variations in the local mass accretion rate.

  10. Wheat seed weight and quality differ temporally in sensitivity to warm or cool conditions during seed development and maturation

    PubMed Central

    Nasehzadeh, M

    2017-01-01

    Abstract Background and aims Short periods of extreme temperature may affect wheat (Triticum aestivum) seed weight, but also quality. Temporal sensitivity to extreme temperature during seed development and maturation was investigated. Methods Plants of ‘Tybalt’ grown at ambient temperature were moved to growth cabinets at 29/20°C or 34/20°C (2010), or 15/10°C or 34/20°C (2011), for successive 7-d periods from 7 DAA (days after anthesis) onwards, and also 7–65 DAA in 2011. Seed samples were harvested serially and moisture content, weight, ability to germinate, subsequent longevity in air-dry storage and bread-making quality were determined. Key Results High temperature (34/20°C) reduced final seed weight, with greatest temporal sensitivity at 7–14 or 14–21 DAA. Several aspects of bread-making quality were also most sensitive to high temperature then, but whereas protein quality decreased protein and sulphur concentrations improved. Early exposure to high temperature provided earlier development of ability to germinate and tolerate desiccation, but had little effect on maximum germination capacity. All treatments at 15/10°C resulted in ability to germinate declining between 58 and 65 DAA. Early exposure to high temperature hastened improvement in seed storage longevity, but the subsequent decline in late maturation preceded that in the control. Long (7–65 DAA) exposure to 15/10°C disrupted the development of seed longevity, with no improvement after seed filling ended. Longevity improved during maturation drying in other treatments. Early (7–14 DAA) exposure to high temperature reduced and low temperature increased subsequent longevity at harvest maturity, whereas late (35 or 42–49 DAA) exposure to high temperature increased and low temperature reduced it. Conclusions Temporal sensitivity to extreme temperature was detected. It varied considerably amongst the contrasting seed variables investigated. Subsequent seed longevity at harvest maturity responded negatively to temperature early in development, but positively later in development and throughout maturation. PMID:28637252

  11. Towards clinical assessment of velopharyngeal closure using MRI: evaluation of real-time MRI sequences at 1.5 and 3 T.

    PubMed

    Scott, A D; Boubertakh, R; Birch, M J; Miquel, M E

    2012-11-01

    The objective of this study was to demonstrate soft palate MRI at 1.5 and 3 T with high temporal resolution on clinical scanners. Six volunteers were imaged while speaking, using both four real-time steady-state free-precession (SSFP) sequences at 3 T and four balanced SSFP (bSSFP) at 1.5 T. Temporal resolution was 9-20 frames s(-1) (fps), spatial resolution 1.6 × 1.6 × 10.0-2.7 × 2.7 × 10.0 mm(3). Simultaneous audio was recorded. Signal-to-noise ratio (SNR), palate thickness and image quality score (1-4, non-diagnostic-excellent) were evaluated. SNR was higher at 3 T than 1.5 T in the relaxed palate (nasal breathing position) and reduced in the elevated palate at 3 T, but not 1.5 T. Image quality was not significantly different between field strengths or sequences (p=NS). At 3 T, 40% acquisitions scored 2 and 56% scored 3. Most 1.5 T acquisitions scored 1 (19%) or 4 (46%). Image quality was more dependent on subject or field than sequence. SNR in static images was highest with 1.9 × 1.9 × 10.0 mm(3) resolution (10 fps) and measured palate thickness was similar (p=NS) to that at the highest resolution (1.6 × 1.6 × 10.0 mm(3)). SNR in intensity-time plots through the soft palate was highest with 2.7 × 2.7 × 10.0 mm(3) resolution (20 fps). At 3 T, SSFP images are of a reliable quality, but 1.5 T bSSFP images are often better. For geometric measurements, temporal should be traded for spatial resolution (1.9 × 1.9 × 10.0 mm(3), 10 fps). For assessment of motion, temporal should be prioritised over spatial resolution (2.7 × 2.7 × 10.0 mm(3), 20 fps). Advances in knowledge Diagnostic quality real-time soft palate MRI is possible using clinical scanners and optimised protocols have been developed. 3 T SSFP imaging is reliable, but 1.5 T bSSFP often produces better images.

  12. Nonparametric Identification of Causal Effects under Temporal Dependence

    ERIC Educational Resources Information Center

    Dafoe, Allan

    2018-01-01

    Social scientists routinely address temporal dependence by adopting a simple technical fix. However, the correct identification strategy for a causal effect depends on causal assumptions. These need to be explicated and justified; almost no studies do so. This article addresses this shortcoming by offering a precise general statement of the…

  13. The Temporal Sequencing of Problem Gambling and Comorbid Disorders

    ERIC Educational Resources Information Center

    Holdsworth, Louise; Haw, John; Hing, Nerilee

    2012-01-01

    Two qualitative studies were undertaken to identify the prevalent comorbid mental disorders in treatment seeking problem gamblers and to also identify the temporal sequencing of the disorders. A forum with problem gambling counsellors and interviews with 24 mental health experts were undertaken. There was general agreement that the most commonly…

  14. Effects of land use and land cover changes on water quality in the uMngeni river catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Namugize, Jean Nepomuscene; Jewitt, Graham; Graham, Mark

    2018-06-01

    Land use and land cover change are major drivers of water quality deterioration in watercourses and impoundments. However, understanding of the spatial and temporal variability of land use change characteristics and their link to water quality parameters in catchments is limited. As a contribution to address this limitation, the objective of this study is to assess the linkages between biophysico-chemical water quality parameters and land use and land cover (LULC) classes in the upper reaches of the uMngeni Catchment, a rapidly developing catchment in South Africa. These were assessed using Geographic Information Systems tools and statistical analyses for the years 1994, 2000, 2008 and 2011 based on changes over time of eight LULC classes and available water quality information. Natural vegetation, forest plantations and cultivated areas occupy 85% of the catchment. Cultivated, urban/built-up and degraded areas increased by 6%, 4.5% and 3%, respectively coinciding with a decrease in natural vegetation by 17%. Variability in the concentration of water quality parameters from 1994 to 2011 and an overall decline in water quality were observed. Escherichia coli (E. coli) levels exceeding the recommended guidelines for recreation and public health protection was noted as a major issue at seven of the nine sampling points. Overall, water supply reservoirs in the catchment retained over 20% of nutrients and over 85% of E. coli entering them. A relationship between land use types and water quality variables was found. However, the degree and magnitude of the associations varies between sub-catchments and is difficult to quantify. This highlights the complexity and the site-specific nature of relationships between land use types and water quality parameters in the catchment. Thus, this study provides useful findings on the general relationship between land use and land cover and water quality degradation, but highlights the risks of applying simple relationships or adding complex relationships in the management of the catchment.

  15. Power quality analysis based on spatial correlation

    NASA Astrophysics Data System (ADS)

    Li, Jiangtao; Zhao, Gang; Liu, Haibo; Li, Fenghou; Liu, Xiaoli

    2018-03-01

    With the industrialization and urbanization, the status of electricity in the production and life is getting higher and higher. So the prediction of power quality is the more potential significance. Traditional power quality analysis methods include: power quality data compression, disturbance event pattern classification, disturbance parameter calculation. Under certain conditions, these methods can predict power quality. This paper analyses the temporal variation of power quality of one provincial power grid in China from time angle. The distribution of power quality was analyzed based on spatial autocorrelation. This paper tries to prove that the research idea of geography is effective for mining the potential information of power quality.

  16. Spectro-temporal modulation masking patterns reveal frequency selectivity.

    PubMed

    Oetjen, Arne; Verhey, Jesko L

    2015-02-01

    The present study investigated the possibility that the human auditory system demonstrates frequency selectivity to spectro-temporal amplitude modulations. Threshold modulation depth for detecting sinusoidal spectro-temporal modulations was measured using a generalized masked threshold pattern paradigm with narrowband masker modulations. Four target spectro-temporal modulations were examined, differing in their temporal and spectral modulation frequencies: a temporal modulation of -8, 8, or 16 Hz combined with a spectral modulation of 1 cycle/octave and a temporal modulation of 4 Hz combined with a spectral modulation of 0.5 cycles/octave. The temporal center frequencies of the masker modulation ranged from 0.25 to 4 times the target temporal modulation. The spectral masker-modulation center-frequencies were 0, 0.5, 1, 1.5, and 2 times the target spectral modulation. For all target modulations, the pattern of average thresholds for the eight normal-hearing listeners was consistent with the hypothesis of a spectro-temporal modulation filter. Such a pattern of modulation-frequency sensitivity was predicted on the basis of psychoacoustical data for purely temporal amplitude modulations and purely spectral amplitude modulations. An analysis of separability indicates that, for the present data set, selectivity in the spectro-temporal modulation domain can be described by a combination of a purely spectral and a purely temporal modulation filter function.

  17. Assessment of microscale spatio-temporal variation of air pollution at an urban hotspot in Madrid (Spain) through an extensive field campaign

    NASA Astrophysics Data System (ADS)

    Borge, Rafael; Narros, Adolfo; Artíñano, Begoña; Yagüe, Carlos; Gómez-Moreno, Francisco Javier; de la Paz, David; Román-Cascón, Carlos; Díaz, Elías; Maqueda, Gregorio; Sastre, Mariano; Quaassdorff, Christina; Dimitroulopoulou, Chrysanthi; Vardoulakis, Sotiris

    2016-09-01

    Poor urban air quality is one of the main environmental concerns worldwide due to its implications for population exposure and health-related issues. However, the development of effective abatement strategies in cities requires a consistent and holistic assessment of air pollution processes, taking into account all the relevant scales within a city. This contribution presents the methodology and main results of an intensive experimental campaign carried out in a complex pollution hotspot in Madrid (Spain) under the TECNAIRE-CM research project, which aimed at understanding the microscale spatio-temporal variation of ambient concentration levels in areas where high pollution values are recorded. A variety of instruments were deployed during a three-week field campaign to provide detailed information on meteorological and micrometeorological parameters and spatio-temporal variations of the most relevant pollutants (NO2 and PM) along with relevant information needed to simulate pedestrian fluxes. The results show the strong dependence of ambient concentrations on local emissions and meteorology that turns out in strong spatial and temporal variations, with gradients up to 2 μg m-3 m-1 for NO2 and 55 μg m-3 min-1 for PM10. Pedestrian exposure to these pollutants also presents strong variations temporally and spatially but it concentrates on pedestrian crossings and bus stops. The analysis of the results show that the high concentration levels found in urban hotspots depend on extremely complex dynamic processes that cannot be captured by routinely measurements made by air quality monitoring stations used for regulatory compliance assessment. The large influence from local traffic in the concentration fields highlights the need for a detailed description of specific variables that determine emissions and dispersion at microscale level. This also indicates that city-scale interventions may be complemented with local control measures and exposure management, to improve air quality and reduce air pollution health effects more effectively.

  18. An Optical Flow-Based Full Reference Video Quality Assessment Algorithm.

    PubMed

    K, Manasa; Channappayya, Sumohana S

    2016-06-01

    We present a simple yet effective optical flow-based full-reference video quality assessment (FR-VQA) algorithm for assessing the perceptual quality of natural videos. Our algorithm is based on the premise that local optical flow statistics are affected by distortions and the deviation from pristine flow statistics is proportional to the amount of distortion. We characterize the local flow statistics using the mean, the standard deviation, the coefficient of variation (CV), and the minimum eigenvalue ( λ min ) of the local flow patches. Temporal distortion is estimated as the change in the CV of the distorted flow with respect to the reference flow, and the correlation between λ min of the reference and of the distorted patches. We rely on the robust multi-scale structural similarity index for spatial quality estimation. The computed temporal and spatial distortions, thus, are then pooled using a perceptually motivated heuristic to generate a spatio-temporal quality score. The proposed method is shown to be competitive with the state-of-the-art when evaluated on the LIVE SD database, the EPFL Polimi SD database, and the LIVE Mobile HD database. The distortions considered in these databases include those due to compression, packet-loss, wireless channel errors, and rate-adaptation. Our algorithm is flexible enough to allow for any robust FR spatial distortion metric for spatial distortion estimation. In addition, the proposed method is not only parameter-free but also independent of the choice of the optical flow algorithm. Finally, we show that the replacement of the optical flow vectors in our proposed method with the much coarser block motion vectors also results in an acceptable FR-VQA algorithm. Our algorithm is called the flow similarity index.

  19. Long-Term Seizure, Quality of Life, Depression, and Verbal Memory Outcomes in a Controlled Mesial Temporal Lobe Epilepsy Surgical Series Using Portuguese-Validated Instruments.

    PubMed

    Dias, Luis Augusto; Angelis, Geisa de; Teixeira, Wagner Afonso; Casulari, Luiz Augusto

    2017-08-01

    We aimed to evaluate long-term surgical outcomes in patients treated for mesial temporal lobe epilepsy compared with a similar group of patients who underwent a preoperative evaluation. Patient interviews were conducted by an independent neuropsychologist and included a sociodemographic questionnaire and validated versions of the Beck Depression Inventory-II, Adverse Events Profile, Quality of Life in Epilepsy-31, and Rey Auditory Verbal Learning Test. Seventy-one patients who underwent surgery and 20 who underwent mesial temporal lobe epilepsy preoperative evaluations were interviewed. After an 81-month mean postoperative follow-up, 44% of the surgical patients achieved complete seizure relief according to the Engel classification and 68% according to the International League Against Epilepsy classification. The surgical group had a significantly lower prevalence of depression (P = 0.002) and drug-related adverse effects (P = 0.002). Improvement on unemployment (P = 0.02) was achieved but not on driving or education. Delayed verbal memory recall was impaired in 76% of the surgical and 65% of the control cases (P = 0.32). Regarding the Quality of Life in Epilepsy-31, the operated patients scored higher in their total score (mean, 75.44 vs. mean, 60.08; P < 0.001) and in all but the cognitive functioning domain irrespective of the follow-up length. Seizure control, Beck Depression Score, and Adverse Events Profile severity explained 73% of the variance in the surgical group quality of life. Our study found that, although surgical treatment was effective, its impact on social indicators was modest. Moreover, the self-reported quality of life relied not only on seizure control but also on depressive symptoms and antiepileptic drug burden. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    PubMed

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario).

  1. Lessons from a 5 yr citizen-science monitoring program, Mountain Watch, to engage hikers in air quality/visibility and plant phenology monitoring in the mountains

    NASA Astrophysics Data System (ADS)

    Murray, G.; Weihrauch, D.; Kimball, K.; McDonough, C.

    2010-12-01

    The AMC’s citizen scientist monitoring program, Mountain Watch, engages hikers in observational monitoring while recreating in the northern Appalachian Mountains. The program uses two monitoring activities:1) tracking the phenology of 11 mountain flowers species, and 2) the visitors real world perception of on-mountain visibility and its ‘quality’ with proximate monitored air quality parameters. The Mountain Watch program objectives are a) to engage and educate the public through hands-on monitoring, b) to motivate the participant to take further action towards environmental stewardship, and c) to provide supplemental data to AMC’s ongoing science-based research to further our understanding of the impact of human activity on mountain ecosystems. The Mountain Watch plant monitoring includes recording the time and location of alpine and forest plants flowering and other phenological phases using AMC field guides and datasheets. In the White Mountains of New Hampshire concurrent meteorological data, including soil temperature, is paired with the phenology observations as part of AMC’s research to develop spatial and temporal phenology models with air and soil temperature for northeastern mountains. Mountain Watch’s visibility monitoring program has hikers record visual range and rate the view at select vistas in comparison to a clear day view photo guide when visiting AMC’s backcountry huts. The results are compared to proximate air quality measurements, which assists in determining how White Mountain National Forest air quality related values and natural resources management objectives are being met. Since 2006 the Mountain Watch program has received over 3,500 citizen datasheets for plant reproductive phenology and visibility monitoring. We estimate that we have reached more than 15,000 hikers through our facility based education programming focused on air quality and phenology and field monitoring hikes. While we consider this good success in engaging hikers to date, the ratio of resource expenditures in recruiting volunteers and QA/QCing their data for actual research application has been high. Mountain Watch staff are now refining the program to achieve education and research goals a manner that is sustainable into the future with limited fiscal and staff resources. The quality of our citizen phenology observations, in comparison to staff monitoring, has lead to refinements including directing general audience hikers to well-defined trailside observation stations, growing our more skilled amateur botanist volunteer base, and use of remote cameras for quality controls and better temporal coverage. Visibility monitoring at four mountain vistas has recently been analyzed in the context of policy applications. Refinements will be presented that will further inform natural resource management of air quality in relation to Clean Air Act Air Quality Related Values and a potential visibility focused particulate matter secondary National Ambient Air Quality Standard. Overall lessons learned, regarding audience considerations, resource needs, and long-term sustainability, from our 5-year field based geoscience programs will be discussed.

  2. Does quality control matter? Surface urban heat island intensity variations estimated by satellite-derived land surface temperature products

    NASA Astrophysics Data System (ADS)

    Lai, Jiameng; Zhan, Wenfeng; Huang, Fan; Quan, Jinling; Hu, Leiqiu; Gao, Lun; Ju, Weimin

    2018-05-01

    The temporally regular and spatially comprehensive monitoring of surface urban heat islands (SUHIs) have been extremely difficult, until the advent of satellite-based land surface temperature (LST) products. However, these LST products have relatively higher errors compared to in situ measurements. This has resulted in comparatively inaccurate estimations of SUHI indicators and, consequently, may have distorted interpretations of SUHIs. Although reports have shown that LST qualities are important for SUHI interpretations, systematic investigations of the response of SUHI indicators to LST qualities across cities with dissimilar bioclimates are rare. To address this issue, we chose eighty-six major cities across mainland China and analyzed SUHI intensity (SUHII) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) LST data. The LST-based SUHII differences due to inclusion or exclusion of MODIS quality control (QC) flags (i.e., ΔSUHII) were evaluated. Our major findings included, but are not limited to, the following four aspects: (1) SUHIIs can be significantly impacted by MODIS QC flags, and the associated QC-induced ΔSUHIIs generally accounted for 24.3% (29.9%) of the total SUHII value during the day (night); (2) the ΔSUHIIs differed between seasons, with considerable differences between transitional (spring and autumn) and extreme (summer and winter) seasons; (3) significant discrepancies also appeared among cities located in northern and southern regions, with northern cities often possessing higher annual mean ΔSUHIIs. The internal variations of ΔSUHIIs within individual cities also showed high heterogeneity, with ΔSUHII variations that generally exceeded 5.0 K (3.0 K) in northern (southern) cities; (4) ΔSUHIIs were negatively related to SUHIIs and cloud cover percentages (mostly in transitional seasons). No significant relationship was found in the extreme seasons. Our findings highlight the need to be extremely cautious when using LST product-based SUHIIs to interpret SUHIs.

  3. Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland

    NASA Astrophysics Data System (ADS)

    Lu, Bing; He, Yuhong

    2017-06-01

    Investigating spatio-temporal variations of species composition in grassland is an essential step in evaluating grassland health conditions, understanding the evolutionary processes of the local ecosystem, and developing grassland management strategies. Space-borne remote sensing images (e.g., MODIS, Landsat, and Quickbird) with spatial resolutions varying from less than 1 m to 500 m have been widely applied for vegetation species classification at spatial scales from community to regional levels. However, the spatial resolutions of these images are not fine enough to investigate grassland species composition, since grass species are generally small in size and highly mixed, and vegetation cover is greatly heterogeneous. Unmanned Aerial Vehicle (UAV) as an emerging remote sensing platform offers a unique ability to acquire imagery at very high spatial resolution (centimetres). Compared to satellites or airplanes, UAVs can be deployed quickly and repeatedly, and are less limited by weather conditions, facilitating advantageous temporal studies. In this study, we utilize an octocopter, on which we mounted a modified digital camera (with near-infrared (NIR), green, and blue bands), to investigate species composition in a tall grassland in Ontario, Canada. Seven flight missions were conducted during the growing season (April to December) in 2015 to detect seasonal variations, and four of them were selected in this study to investigate the spatio-temporal variations of species composition. To quantitatively compare images acquired at different times, we establish a processing flow of UAV-acquired imagery, focusing on imagery quality evaluation and radiometric correction. The corrected imagery is then applied to an object-based species classification. Maps of species distribution are subsequently used for a spatio-temporal change analysis. Results indicate that UAV-acquired imagery is an incomparable data source for studying fine-scale grassland species composition, owing to its high spatial resolution. The overall accuracy is around 85% for images acquired at different times. Species composition is spatially attributed by topographical features and soil moisture conditions. Spatio-temporal variation of species composition implies the growing process and succession of different species, which is critical for understanding the evolutionary features of grassland ecosystems. Strengths and challenges of applying UAV-acquired imagery for vegetation studies are summarized at the end.

  4. Multi-temporal Soil Erosion Modelling over the Mt Kenya Region with Multi-Sensor Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Symeonakis, Elias; Higginbottom, Thomas

    2015-04-01

    Accelerated soil erosion is the principal cause of soil degradation across the world. In Africa, it is seen as a serious problem creating negative impacts on agricultural production, infrastructure and water quality. Regarding the Mt Kenya region, specifically, soil erosion is a serious threat mainly due to unplanned and unsustainable practices linked to tourism, agriculture and rapid population growth. The soil types roughly correspond with different altitudinal zones and are generally very fertile due to their volcanic origin. Some of them have been created by eroding glaciers while others are due to millions of years of fluvial erosion. The soils on the mountain are easily eroded once exposed: when vegetation is removed, the soil quickly erodes down to bedrock by either animals or humans, as tourists erode paths and local people clear large swaths of forested land for agriculture, mostly illegally. It is imperative, therefore, that a soil erosion monitoring system for the Mt Kenya region is in place in order to understand the magnitude of, and be able to respond to, the increasing number of demands on this renewable resource. In this paper, we employ a simple regional-scale soil erosion modelling framework based on the Thornes model and suggest an operational methodology for quantifying and monitoring water runoff and soil erosion using multi-sensor and multi-temporal remote sensing data in a GIS framework. We compare the estimates of this study with general data on the severity of soil erosion over Kenya and with measured rates of soil loss at different locations over the area of study. The results show that the measured and estimated rates of erosion are generally similar and within the same order of magnitude. They also show that, over the last years, erosion rates are increasing in large parts of the region at an alarming rate, and that mitigation measures are needed to reverse the negative effects of uncontrolled socio-economic practices.

  5. Immediate impact of smoke-free laws on indoor air quality.

    PubMed

    Lee, Kiyoung; Hahn, Ellen J; Riker, Carol; Head, Sara; Seithers, Peggy

    2007-09-01

    Smoke-free laws significantly impact indoor air quality. However, the temporal effects of these laws on indoor air pollution have not been determined. This paper assesses the temporal impact of one smoke-free law on indoor air quality. This quasi-experimental study compared the indoor air quality of nine hospitality venues and one bingo hall in Georgetown, Kentucky, before and after implementation of a 100% smoke-free workplace law. We made real-time measurements of particulate matter with 2.5 microm aerodynamic diameter or smaller (PM2.5). Among the nine Georgetown hospitality venues, the average indoor PM2.5 concentration was 84 microg/m3 before the law took effect. The average indoor PM2.5 concentrations in nine compliant venues significantly decreased to 18 microg/m3 one week after the law took effect. Three venues having 82 microg/m3 before the law had significantly lower levels from the first day the law was implemented, and the low level was maintained. Compliance with the law is critical to achieving clean indoor air. Indoor air pollution in the bingo hall was not reduced until the establishment decided to comply with the law. The smoke-free law showed immediate impact on indoor air quality.

  6. An assessment of stream water quality of the Rio San Juan, Nuevo Leon, Mexico, 1995-1996.

    PubMed

    Flores Laureano, José Santos; Návar, José

    2002-01-01

    Good water quality of the Rio San Juan is critical for economic development of northeastern Mexico. However, water quality of the river has rapidly degraded during the last few decades. Societal concerns include indications of contamination problems and increased water diversions for agriculture, residential, and industrial water supplies. Eight sampling sites were selected along the river where water samples were collected monthly for 10 mo (October 1995-July 1996). The concentration of heavy metals and chemical constituents and measurements of bacteriological and physical parameters were determined on water samples. In addition, river discharge was recorded. Constituent concentrations in 18.7% of all samples exceeded at least one water quality standard. In particular, concentrations of fecal and total coliform bacteria, sulfate, detergent, dissolved solids, Al, Ba, Cr, Fe, and Cd, exceeded several water quality standards. Pollution showed spatial and temporal variations and trends. These variations were statistically explained by spatial and temporal changes of constituent inputs and discharge. Samples collected from the site upstream of El Cuchillo reservoir had large constituent concentrations when discharge was small; this reservoir supplies domestic and industrial water to the city of Monterrey.

  7. Recent Advances on INSAR Temporal Decorrelation: Theory and Observations Using UAVSAR

    NASA Technical Reports Server (NTRS)

    Lavalle, M.; Hensley, S.; Simard, M.

    2011-01-01

    We review our recent advances in understanding the role of temporal decorrelation in SAR interferometry and polarimetric SAR interferometry. We developed a physical model of temporal decorrelation based on Gaussian-statistic motion that varies along the vertical direction in forest canopies. Temporal decorrelation depends on structural parameters such as forest height, is sensitive to polarization and affects coherence amplitude and phase. A model of temporal-volume decorrelation valid for arbitrary spatial baseline is discussed. We tested the inversion of this model to estimate forest height from model simulations supported by JPL/UAVSAR data and lidar LVIS data. We found a general good agreement between forest height estimated from radar data and forest height estimated from lidar data.

  8. Needs Assessment for the Use of NASA Remote Sensing Data in the Development and Implementation of Estuarine and Coastal Water Quality Standards

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce; Underwood, Lauren; Ellis, Chris; Lehrter, John; Hagy, Jim; Schaeffer, Blake

    2010-01-01

    The goals of the project are to provide information from satellite remote sensing to support numeric nutrient criteria development and to determine data processing methods and data quality requirements to support nutrient criteria development and implementation. The approach is to identify water quality indicators that are used by decision makers to assess water quality and that are related to optical properties of the water; to develop remotely sensed data products based on algorithms relating remote sensing imagery to field-based observations of indicator values; to develop methods to assess estuarine water quality, including trends, spatial and temporal variability, and seasonality; and to develop tools to assist in the development and implementation of estuarine and coastal nutrient criteria. Additional slides present process, criteria development, typical data sources and analyses for criteria process, the power of remote sensing data for the process, examples from Pensacola Bay, spatial and temporal variability, pixel matchups, remote sensing validation, remote sensing in coastal waters, requirements for remotely sensed data products, and needs assessment. An additional presentation examines group engagement and information collection. Topics include needs assessment purpose and objectives, understanding water quality decision making, determining information requirements, and next steps.

  9. Quality assessment of static aggregation compared to the temporal approach based on a pig trade network in Northern Germany.

    PubMed

    Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim

    2016-07-01

    Recent analyses of animal movement networks focused on the static aggregation of trade contacts over different time windows, which neglects the system's temporal variation. In terms of disease spread, ignoring the temporal dynamics can lead to an over- or underestimation of an outbreak's speed and extent. This becomes particularly evident, if the static aggregation allows for the existence of more paths compared to the number of time-respecting paths (i.e. paths in the right chronological order). Therefore, the aim of this study was to reveal differences between static and temporal representations of an animal trade network and to assess the quality of the static aggregation in comparison to the temporal counterpart. Contact data from a pig trade network (2006-2009) of a producer community in Northern Germany were analysed. The results show that a median value of 8.7 % (4.6-14.1%) of the nodes and 3.1% (1.6-5.5%) of the edges were active on a weekly resolution. No fluctuations in the activity patterns were obvious. Furthermore, 50% of the nodes already had one trade contact after approximately six months. For an accumulation window with increasing size (one day each), the accumulation rate, i.e. the relative increase in the number of nodes or edges, stayed relatively constant below 0.07% for the nodes and 0.12 % for the edges. The temporal distances had a much wider distribution than the topological distances. 84% of the temporal distances were smaller than 90 days. The maximum temporal distance was 1000 days, which corresponds to the temporal diameter of the present network. The median temporal correlation coefficient, which measures the probability for an edge to persist across two consecutive time steps, was 0.47, with a maximum value of 0.63 at the accumulation window of 88 days. The causal fidelity measures the fraction of the number of static paths which can also be taken in the temporal network. For the whole observation period relatively high values indicate that 67% of the time-respecting paths existed in both network representations. An increase to 0.87 (0.82-0.88) and 0.92 (0.80-0.98), respectively, could be observed for yearly and monthly aggregation windows. The results show that the investigated pig trade network in its static aggregation represents the temporal dynamics of the system sufficiently well. Therefore, the methodology for analysing static instead of dynamic networks can be used without losing too much information. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Perception of Hearing Aid-Processed Speech in Individuals with Late-Onset Auditory Neuropathy Spectrum Disorder.

    PubMed

    Mathai, Jijo Pottackal; Appu, Sabarish

    2015-01-01

    Auditory neuropathy spectrum disorder (ANSD) is a form of sensorineural hearing loss, causing severe deficits in speech perception. The perceptual problems of individuals with ANSD were attributed to their temporal processing impairment rather than to reduced audibility. This rendered their rehabilitation difficult using hearing aids. Although hearing aids can restore audibility, compression circuits in a hearing aid might distort the temporal modulations of speech, causing poor aided performance. Therefore, hearing aid settings that preserve the temporal modulations of speech might be an effective way to improve speech perception in ANSD. The purpose of the study was to investigate the perception of hearing aid-processed speech in individuals with late-onset ANSD. A repeated measures design was used to study the effect of various compression time settings on speech perception and perceived quality. Seventeen individuals with late-onset ANSD within the age range of 20-35 yr participated in the study. The word recognition scores (WRSs) and quality judgment of phonemically balanced words, processed using four different compression settings of a hearing aid (slow, medium, fast, and linear), were evaluated. The modulation spectra of hearing aid-processed stimuli were estimated to probe the effect of amplification on the temporal envelope of speech. Repeated measures analysis of variance and post hoc Bonferroni's pairwise comparisons were used to analyze the word recognition performance and quality judgment. The comparison between unprocessed and all four hearing aid-processed stimuli showed significantly higher perception using the former stimuli. Even though perception of words processed using slow compression time settings of the hearing aids were significantly higher than the fast one, their difference was only 4%. In addition, there were no significant differences in perception between any other hearing aid-processed stimuli. Analysis of the temporal envelope of hearing aid-processed stimuli revealed minimal changes in the temporal envelope across the four hearing aid settings. In terms of quality, the highest number of individuals preferred stimuli processed using slow compression time settings. Individuals who preferred medium ones followed this. However, none of the individuals preferred fast compression time settings. Analysis of quality judgment showed that slow, medium, and linear settings presented significantly higher preference scores than the fast compression setting. Individuals with ANSD showed no marked difference in perception of speech that was processed using the four different hearing aid settings. However, significantly higher preference, in terms of quality, was found for stimuli processed using slow, medium, and linear settings over the fast one. Therefore, whenever hearing aids are recommended for ANSD, those having slow compression time settings or linear amplification may be chosen over the fast (syllabic compression) one. In addition, WRSs obtained using hearing aid-processed stimuli were remarkably poorer than unprocessed stimuli. This shows that processing of speech through hearing aids might have caused a large reduction of performance in individuals with ANSD. However, further evaluation is needed using individually programmed hearing aids rather than hearing aid-processed stimuli. American Academy of Audiology.

  11. A New Hybrid Method for Remote Sensing Time Series Reconstruction in Support of Land Surface Phenology

    NASA Astrophysics Data System (ADS)

    Barreto-Munoz, A.; Didan, K.; Riveracamacho, J.; Yitayew, M.

    2010-12-01

    Remote sensing vegetation indices (NDVI, EVI, and EVI2) are proxies for studying vegetation states and enable the effective and consistent monitoring of global vegetation. Records of daily global satellite images are available from the last three decades, however, the presence of clouds, aerosols, variable viewing geometry and less than ideal processing techniques makes it difficult to obtain high quality data every time; resulting in incomplete daily coverage (80% of the data is either missing or useless sometimes). In order to improve the temporal frequency and coverage, gap fill techniques are usually employed. There are several methods that are mostly based on the use of complex Fourier Transform (TF) functions, Gaussian fitting models, or simple compositing techniques. The first two methods are extremely CPU and memory intensive and the results tend to be biased towards the periods of time when data is available . The composite-method sacrifices the temporal frequency in order to achieve higher quality data over longer periods of time by combining several images into one to insure the elimination of problematic data Long composite period interval tend to inhibit proper change detection during periods of rapid change and periods of land cover disturbance. Because this method is based on maximizing the vegetation index value during the composite period, longer composite interval will shift the start of season towards later dates, the end of season towards earlier dates, and consequently shorter growing season. These slight errors and uncertainties interfere with accurate change detection as they add a level of uncertainty to the estimated Phenology parameters. In this research we’re developing a new technique that aims at producing consistently high quality vegetation index data, while preserving adequate temporal resolution to support accurate phenological studies. This method involves finding the optimum number of days for compositing and then using an interpolation approach for filling the remaining temporal gaps. The seasonally variable per-pixel optimum composite period is obtained by minimizing the number of temporal gaps when varying the composite period from 1 day to 16 days. Remaining gaps are then estimated using a local linear function that uses as input only the nearest high quality observation days. We further constrain this method by a moving window long term average to address biases that may result from over- or under-fitting. This method was evaluated using the 30+ year Climate Modeling Grid resolution (CMG, 0.05 deg.) records of AVHRR and MODIS Terra/Aqua daily surface reflectance. We note several advantages to this method: 1) Simpler and less computer intensive to implement, 2) Superior to other methods since it only looked at the data around the temporal gap which helps eliminate the biases that may result from methods that simultaneously use the full annual cycle, and 3) Most importantly it kept a balance between providing higher frequency and high quality data and the potential noise that results from daily data. It is currently being implemented as a package to support the estimation of global phenology and to generate high quality long term Earth System Data Records of Vegetation Index from multiple sensors.

  12. 3D Printed Pediatric Temporal Bone: A Novel Training Model.

    PubMed

    Longfield, Evan A; Brickman, Todd M; Jeyakumar, Anita

    2015-06-01

    Temporal bone dissection is a fundamental element of otologic training. Cadaveric temporal bones (CTB) are the gold standard surgical training model; however, many institutions do not have ready access to them and their cost can be significant: $300 to $500. Furthermore, pediatric cadaveric temporal bones are not readily available. Our objective is to develop a pediatric temporal bone model. Temporal bone model. Tertiary Children's Hospital. Pediatric patient model. We describe the novel use of a 3D printer for the generation of a plaster training model from a pediatric high- resolution CT temporal bone scan of a normal pediatric temporal bone. Three models were produced and were evaluated. The models utilized multiple colors (white for bone, yellow for the facial nerve) and were of high quality. Two models were drilled as a proof of concept and found to be an acceptable facsimile of the patient's anatomy, rendering all necessary surgical landmarks accurately. The only negative comments pertaining to the 3D printed temporal bone as a training model were the lack of variation in hardness between cortical and cancellous bone, noting a tactile variation from cadaveric temporal bones. Our novel pediatric 3D temporal bone training model is a viable, low-cost training option for previously inaccessible pediatric temporal bone training. Our hope is that, as 3D printers become commonplace, these models could be rapidly reproduced, allowing for trainees to print models of patients before performing surgery on the living patient.

  13. Segmentation and clustering as complementary sources of information

    NASA Astrophysics Data System (ADS)

    Dale, Michael B.; Allison, Lloyd; Dale, Patricia E. R.

    2007-03-01

    This paper examines the effects of using a segmentation method to identify change-points or edges in vegetation. It identifies coherence (spatial or temporal) in place of unconstrained clustering. The segmentation method involves change-point detection along a sequence of observations so that each cluster formed is composed of adjacent samples; this is a form of constrained clustering. The protocol identifies one or more models, one for each section identified, and the quality of each is assessed using a minimum message length criterion, which provides a rational basis for selecting an appropriate model. Although the segmentation is less efficient than clustering, it does provide other information because it incorporates textural similarity as well as homogeneity. In addition it can be useful in determining various scales of variation that may apply to the data, providing a general method of small-scale pattern analysis.

  14. Integration of Administrative, Clinical, and Environmental Data to Support the Management of Type 2 Diabetes Mellitus: From Satellites to Clinical Care.

    PubMed

    Dagliati, Arianna; Marinoni, Andrea; Cerra, Carlo; Decata, Pasquale; Chiovato, Luca; Gamba, Paolo; Bellazzi, Riccardo

    2015-12-01

    A very interesting perspective of "big data" in diabetes management stands in the integration of environmental information with data gathered for clinical and administrative purposes, to increase the capability of understanding spatial and temporal patterns of diseases. Within the MOSAIC project, funded by the European Union with the goal to design new diabetes analytics, we have jointly analyzed a clinical-administrative dataset of nearly 1.000 type 2 diabetes patients with environmental information derived from air quality maps acquired from remote sensing (satellite) data. Within this context we have adopted a general analysis framework able to deal with a large variety of temporal, geo-localized data. Thanks to the exploitation of time series analysis and satellite images processing, we studied whether glycemic control showed seasonal variations and if they have a spatiotemporal correlation with air pollution maps. We observed a link between the seasonal trends of glycated hemoglobin and air pollution in some of the considered geographic areas. Such findings will need future investigations for further confirmation. This work shows that it is possible to successfully deal with big data by implementing new analytics and how their exploration may provide new scenarios to better understand clinical phenomena. © 2015 Diabetes Technology Society.

  15. Clinical characteristics, surgical and neuropsychological outcomes in drug resistant tumoral temporal lobe epilepsy.

    PubMed

    Ravat, Sangeeta; Iyer, Vivek; Muzumdar, Dattatraya; Shah, Urvashi; Pradhan, Pranjali; Jain, Neeraj; Godge, Yogesh

    2016-12-01

    Glioneuronal tumors are found in nearly one third patients who undergo surgery for pharmacoresistant epilepsy with temporal lobe being the most common location. Few studies, however have concentrated on the neurological and neuropsychological outcomes after surgery, hitherto none from India. We studied 34 patients with temporal lobe tumors and drug resistant epilepsy. These patients underwent anterior temporal lobectomy or lesionectomy based on the involvement of the hippocampus and mesial temporal structures. The clinical history, EEG, neuropsychology profile and MRI were compared. Seizure outcome was categorized using Engel's classification. At a mean follow up of 62 months, 85.29% of the patients were seizure free (Engel's Class I). All 8 patients with intraoperative electrocorticography (ECoG) guided resection were seizure free. Presence of a residual lesion was significantly associated with persistence of seizures post surgery (p = 0.002). Group analysis revealed no significant shifts in IQ and memory scores postoperatively. There was a significant improvement in the quality of life scores (total and across all subdomains) in all patients (p < 0.001). Postoperative EEG abnormalities predicted unfavorable ​seizure outcome. Surgery for temporal lobe tumors and refractory epilepsy offers complete seizure freedom in majority. Complete surgical excision of the epileptogenic zone is of paramount importance in achieving seizure freedom. Intraoperative electrocorticography (EcoG) is a useful adjunct to ensure complete removal of epileptogenic zone, thus achieving optimal seizure freedom. There is a significant improvement in the quality of life scores (p < 0.001) with no negative impact of surgery on memory and intelligence. Even the patients who are not seizure free can achieve worthwhile improvement post surgery. Copyright © 2015 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  16. Spatial and temporal trends from an air quality sensor network near a heavily trafficked intersection

    NASA Astrophysics Data System (ADS)

    Orlando, P.; Vo, D.; Giossi, C.; George, L.

    2017-12-01

    With the world-wide increase in urbanization and the increasing usage of combustion vehicles in urban areas, traffic-related air pollution is a growing health hazard. However, there are limited studies that examine the spatial and temporal impacts of traffic-related pollutants within cities. In particular, there are few studies that look at traffic management and its potential for pollution mitigation. In a previous study we examined roadway pollution and traffic parameters with one roadway station instrumented with standard measurement instruments. With the advent of low-cost air pollution sensors, we have expanded our work by observing multiple sites within a neighborhood to understand spatial and temporal exposures. We have deployed a high-density sensor network around urban arterial corridors in SE Portland, Oregon. This network consisted of ten nodes measuring CO, NO, NO2 and O3, and ten nodes measuring CO, CO2, VOC and PM2.5. The co-location of standard measurement instruments provided insight towards the utility of our low-cost sensor network, as the different nodes varied in cost, and potentially in quality. We have identified near-real-time temporal trends and local-scale spatial patterns during the summer of 2017. Meteorological and traffic data were included to further characterize these patterns, exploring the potential for pollution mitigation.

  17. Two-color temporal focusing multiphoton excitation imaging with tunable-wavelength excitation

    NASA Astrophysics Data System (ADS)

    Lien, Chi-Hsiang; Abrigo, Gerald; Chen, Pei-Hsuan; Chien, Fan-Ching

    2017-02-01

    Wavelength tunable temporal focusing multiphoton excitation microscopy (TFMPEM) is conducted to visualize optical sectioning images of multiple fluorophore-labeled specimens through the optimal two-photon excitation (TPE) of each type of fluorophore. The tunable range of excitation wavelength was determined by the groove density of the grating, the diffraction angle, the focal length of lenses, and the shifting distance of the first lens in the beam expander. Based on a consideration of the trade-off between the tunable-wavelength range and axial resolution of temporal focusing multiphoton excitation imaging, the presented system demonstrated a tunable-wavelength range from 770 to 920 nm using a diffraction grating with groove density of 830 lines/mm. TPE fluorescence imaging examination of a fluorescent thin film indicated that the width of the axial confined excitation was 3.0±0.7 μm and the shifting distance of the temporal focal plane was less than 0.95 μm within the presented wavelength tunable range. Fast different wavelength excitation and three-dimensionally rendered imaging of Hela cell mitochondria and cytoskeletons and mouse muscle fibers were demonstrated. Significantly, the proposed system can improve the quality of two-color TFMPEM images through different excitation wavelengths to obtain higher-quality fluorescent signals in multiple-fluorophore measurements.

  18. Adaptation of a Weighted Regression Approach to Evaluate Water Quality Trends in Tampa Bay, Florida

    EPA Science Inventory

    The increasing availability of long-term monitoring data can improve resolution of temporal and spatial changes in water quality. In many cases, the fact that changes have occurred is no longer a matter of debate. However, the relatively simple methods that have been used to ev...

  19. Pollutant fate and spatio-temporal variability in the choptank river estuary: factors influencing water quality

    USDA-ARS?s Scientific Manuscript database

    Restoration of the Chesapeake Bay, a national treasure and the largest estuary in the United States, is a national priority, and documentation of progress of this restoration effort is needed. A study was conducted to examine water quality conditions in a tributary of the Chesapeake, the Choptank R...

  20. Long-term agroecosystem research in the Central Mississippi River Basin: hyperspectral remote sensing of reservoir water quality

    USDA-ARS?s Scientific Manuscript database

    In-situ methods for estimating water quality parameters would facilitate efforts in spatial and temporal monitoring, and optical reflectance sensing has shown potential in this regard, particularly for chlorophyll, suspended sediment and turbidity. The objective of this research was to develop and e...

  1. Sub aquatic 3D visualization and temporal analysis utilizing ArcGIS online and 3D applications

    EPA Science Inventory

    We used 3D Visualization tools to illustrate some complex water quality data we’ve been collecting in the Great Lakes. These data include continuous tow data collected from our research vessel the Lake Explorer II, and continuous water quality data collected from an autono...

  2. Air quality climate in the Columbia River Basin.

    Treesearch

    Sue A. Ferguson

    1998-01-01

    Aspects of climate that influence air quality in the Columbia River basin of the Northwestern United States are described. A few, relatively simple, analytical tools were developed to show the spatial and temporal patterns of mean-monthly mixing heights, precipitation scavenging, upper level and surface trajectory winds, and drought that inhibit pollution uptake. Also...

  3. Changes in Pore Water Quality After Peatland Restoration: Assessment of a Large-Scale, Replicated Before-After-Control-Impact Study in Finland

    NASA Astrophysics Data System (ADS)

    Menberu, Meseret Walle; Marttila, Hannu; Tahvanainen, Teemu; Kotiaho, Janne S.; Hokkanen, Reijo; Kløve, Bjørn; Ronkanen, Anna-Kaisa

    2017-10-01

    Drainage is known to affect peatland natural hydrology and water quality, but peatland restoration is considered to ameliorate peatland degradation. Using a replicated BACIPS (Before-After-Control-Impact Paired Series) design, we investigated 24 peatlands, all drained for forestry and subsequently restored, and 19 pristine control boreal peatlands with high temporal and spatial resolution data on hydroclimate and pore water quality. In drained conditions, total nitrogen (Ntot), total phosphorus (Ptot), and dissolved organic carbon (DOC) in pore water were several-fold higher than observed at pristine control sites, highlighting the impacts of long-term drainage on pore water quality. In general, pore water DOC and Ntot decreased after restoration measures but still remained significantly higher than at pristine control sites, indicating long time lags in restoration effects. Different peatland classes and trophic levels (vegetation gradient) responded differently to restoration, primarily due to altered hydrology and varying acidity levels. Sites that were hydrologically overrestored (inundated) showed higher Ptot, Ntot, and DOC than well-restored or insufficiently restored sites, indicating the need to optimize natural-like hydrological regimes when restoring peatlands drained for forestry. Rich fens (median pH 6.2-6.6) showed lower pore water Ptot, Ntot, and DOC than intermediate and poor peats (pH 4.0-4.6) both before and after restoration. Nutrients and DOC in pore water increased in the first year postrestoration but decreased thereafter. The most important variables related to pore water quality were trophic level, peatland class, water table level, and soil and air temperature.

  4. An urban observatory for quantifying phosphorus and suspended solid loads in combined natural and stormwater conveyances.

    PubMed

    Melcher, Anthony A; Horsburgh, Jeffery S

    2017-06-01

    Water quality in urban streams and stormwater systems is highly dynamic, both spatially and temporally, and can change drastically during storm events. Infrequent grab samples commonly collected for estimating pollutant loadings are insufficient to characterize water quality in many urban water systems. In situ water quality measurements are being used as surrogates for continuous pollutant load estimates; however, relatively few studies have tested the validity of surrogate indicators in urban stormwater conveyances. In this paper, we describe an observatory aimed at demonstrating the infrastructure required for surrogate monitoring in urban water systems and for capturing the dynamic behavior of stormwater-driven pollutant loads. We describe the instrumentation of multiple, autonomous water quality and quantity monitoring sites within an urban observatory. We also describe smart and adaptive sampling procedures implemented to improve data collection for developing surrogate relationships and for capturing the temporal and spatial variability of pollutant loading events in urban watersheds. Results show that the observatory is able to capture short-duration storm events within multiple catchments and, through inter-site communication, sampling efforts can be synchronized across multiple monitoring sites.

  5. Detecting long-term temporal trends in sediment-bound trace metals from urbanised catchments.

    PubMed

    Sharley, David J; Sharp, Simon M; Bourgues, Sophie; Pettigrove, Vincent J

    2016-12-01

    The shift from rural lifestyles to urban living has dramatically altered the way humans interact and live across the globe. With over 50% of the world's populations living within cities, and significant increases expected over the next 50 years, it is critical that changes to social, economic and environmental sustainability of cities globally be implicit. Protecting and enhancing aquatic ecosystems, which provide important ecosystem services, is challenging. A number of factors influence pollutants in urban waterways including changes in land-use, impervious area and stormwater discharges, with sediment-bound pollution a major issue worldwide. This work aimed to investigate the spatial and temporal distribution of trace metals in freshwater sediments from six urbanised catchment over a 30-year period. It provides an estimate of pollution using a geoaccumulation index and examines possible toxicity using a probable effect concentration quotient (mPECq). Results showed significant temporal changes in metal concentrations over time, with lead generally decreasing in all but one of the sites, attributed to significant changes in environmental policies and the active elimination of lead products. Temporal changes in other metals were variable and likely dependent on site-specific factors. While it is likely that diffuse pollution is driving changes in zinc, for metals such as lead, chromium and copper, it is likely that watershed landuse and/or point sources are more important. The results clearly indicated that changes to watershed landuse, environmental policy and pollution abatement programs are all driving changes in sediment quality, highlighting the utility of long-term sediment monitoring for assessment of urban watershed condition. While this study has demonstrated the utility of detecting long-term changes in metal concentrations, this approach could easily be adapted to detect and assess future trends in other hydrophobic contaminants and emerging chemicals of concern, such as synthetic pyrethroids, providing essential information for the protection of catchment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The use of alternative pollutant metrics in time-series studies of ambient air pollution and respiratory emergency department visits.

    PubMed

    Darrow, Lyndsey A; Klein, Mitchel; Sarnat, Jeremy A; Mulholland, James A; Strickland, Matthew J; Sarnat, Stefanie E; Russell, Armistead G; Tolbert, Paige E

    2011-01-01

    Various temporal metrics of daily pollution levels have been used to examine the relationships between air pollutants and acute health outcomes. However, daily metrics of the same pollutant have rarely been systematically compared within a study. In this analysis, we describe the variability of effect estimates attributable to the use of different temporal metrics of daily pollution levels. We obtained hourly measurements of ambient particulate matter (PM₂.₅), carbon monoxide (CO), nitrogen dioxide (NO₂), and ozone (O₃) from air monitoring networks in 20-county Atlanta for the time period 1993-2004. For each pollutant, we created (1) a daily 1-h maximum; (2) a 24-h average; (3) a commute average; (4) a daytime average; (5) a nighttime average; and (6) a daily 8-h maximum (only for O₃). Using Poisson generalized linear models, we examined associations between daily counts of respiratory emergency department visits and the previous day's pollutant metrics. Variability was greatest across O₃ metrics, with the 8-h maximum, 1-h maximum, and daytime metrics yielding strong positive associations and the nighttime O₃ metric yielding a negative association (likely reflecting confounding by air pollutants oxidized by O₃). With the exception of daytime metric, all of the CO and NO₂ metrics were positively associated with respiratory emergency department visits. Differences in observed associations with respiratory emergency room visits among temporal metrics of the same pollutant were influenced by the diurnal patterns of the pollutant, spatial representativeness of the metrics, and correlation between each metric and copollutant concentrations. Overall, the use of metrics based on the US National Ambient Air Quality Standards (for example, the use of a daily 8-h maximum O₃ as opposed to a 24-h average metric) was supported by this analysis. Comparative analysis of temporal metrics also provided insight into underlying relationships between specific air pollutants and respiratory health.

  7. 40 years of progress in female cancer death risk: a Bayesian spatio-temporal mapping analysis in Switzerland.

    PubMed

    Herrmann, Christian; Ess, Silvia; Thürlimann, Beat; Probst-Hensch, Nicole; Vounatsou, Penelope

    2015-10-09

    In the past decades, mortality of female gender related cancers declined in Switzerland and other developed countries. Differences in the decrease and in spatial patterns within Switzerland have been reported according to urbanisation and language region, and remain controversial. We aimed to investigate geographical and temporal trends of breast, ovarian, cervical and uterine cancer mortality, assess whether differential trends exist and to provide updated results until 2011. Breast, ovarian, cervical and uterine cancer mortality and population data for Switzerland in the period 1969-2011 was retrieved from the Swiss Federal Statistical office (FSO). Cases were grouped into <55 year olds, 55-74 year olds and 75+ year olds. The geographical unit of analysis was the municipality. To explore age- specific spatio-temporal patterns we fitted Bayesian hierarchical spatio-temporal models on subgroup-specific death rates indirectly standardized by national references. We used linguistic region and degree of urbanisation as covariates. Female cancer mortality continuously decreased in terms of rates in all age groups and cancer sites except for ovarian cancer in 75+ year olds, especially since 1990 onwards. Contrary to other reports, we found no systematic difference between language regions. Urbanisation as a proxy for access to and quality of medical services, education and health consciousness seemed to have no influence on cancer mortality with the exception of uterine and ovarian cancer in specific age groups. We observed no obvious spatial pattern of mortality common for all cancer sites. Rate reduction in cervical cancer was even stronger than for other cancer sites. Female gender related cancer mortality is continuously decreasing in Switzerland since 1990. Geographical differences are small, present on a regional or canton-overspanning level, and different for each cancer site and age group. No general significant association with cantonal or language region borders could be observed.

  8. Evaluation of change detection techniques for monitoring coastal zone environments

    NASA Technical Reports Server (NTRS)

    Weismiller, R. A. (Principal Investigator); Kristof, S. J.; Scholz, D. K.; Anuta, P. E.; Momin, S. M.

    1977-01-01

    The author has identified the following significant results. Four change detection techniques were designed and implemented for evaluation: (1) post classification comparison change detection, (2) delta data change detection, (3) spectral/temporal change classification, and (4) layered spectral/temporal change classification. The post classification comparison technique reliably identified areas of change and was used as the standard for qualitatively evaluating the other three techniques. The layered spectral/temporal change classification and the delta data change detection results generally agreed with the post classification comparison technique results; however, many small areas of change were not identified. Major discrepancies existed between the post classification comparison and spectral/temporal change detection results.

  9. Study of Temporal Effects on Subjective Video Quality of Experience.

    PubMed

    Bampis, Christos George; Zhi Li; Moorthy, Anush Krishna; Katsavounidis, Ioannis; Aaron, Anne; Bovik, Alan Conrad

    2017-11-01

    HTTP adaptive streaming is being increasingly deployed by network content providers, such as Netflix and YouTube. By dividing video content into data chunks encoded at different bitrates, a client is able to request the appropriate bitrate for the segment to be played next based on the estimated network conditions. However, this can introduce a number of impairments, including compression artifacts and rebuffering events, which can severely impact an end-user's quality of experience (QoE). We have recently created a new video quality database, which simulates a typical video streaming application, using long video sequences and interesting Netflix content. Going beyond previous efforts, the new database contains highly diverse and contemporary content, and it includes the subjective opinions of a sizable number of human subjects regarding the effects on QoE of both rebuffering and compression distortions. We observed that rebuffering is always obvious and unpleasant to subjects, while bitrate changes may be less obvious due to content-related dependencies. Transient bitrate drops were preferable over rebuffering only on low complexity video content, while consistently low bitrates were poorly tolerated. We evaluated different objective video quality assessment algorithms on our database and found that objective video quality models are unreliable for QoE prediction on videos suffering from both rebuffering events and bitrate changes. This implies the need for more general QoE models that take into account objective quality models, rebuffering-aware information, and memory. The publicly available video content as well as metadata for all of the videos in the new database can be found at http://live.ece.utexas.edu/research/LIVE_NFLXStudy/nflx_index.html.

  10. A proposal for assessing study quality: Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument.

    PubMed

    LaKind, Judy S; Sobus, Jon R; Goodman, Michael; Barr, Dana Boyd; Fürst, Peter; Albertini, Richard J; Arbuckle, Tye E; Schoeters, Greet; Tan, Yu-Mei; Teeguarden, Justin; Tornero-Velez, Rogelio; Weisel, Clifford P

    2014-12-01

    The quality of exposure assessment is a major determinant of the overall quality of any environmental epidemiology study. The use of biomonitoring as a tool for assessing exposure to ubiquitous chemicals with short physiologic half-lives began relatively recently. These chemicals present several challenges, including their presence in analytical laboratories and sampling equipment, difficulty in establishing temporal order in cross-sectional studies, short- and long-term variability in exposures and biomarker concentrations, and a paucity of information on the number of measurements required for proper exposure classification. To date, the scientific community has not developed a set of systematic guidelines for designing, implementing and interpreting studies of short-lived chemicals that use biomonitoring as the exposure metric or for evaluating the quality of this type of research for WOE assessments or for peer review of grants or publications. We describe key issues that affect epidemiology studies using biomonitoring data on short-lived chemicals and propose a systematic instrument--the Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument--for evaluating the quality of research proposals and studies that incorporate biomonitoring data on short-lived chemicals. Quality criteria for three areas considered fundamental to the evaluation of epidemiology studies that include biological measurements of short-lived chemicals are described: 1) biomarker selection and measurement, 2) study design and execution, and 3) general epidemiological study design considerations. We recognize that the development of an evaluative tool such as BEES-C is neither simple nor non-controversial. We hope and anticipate that the instrument will initiate further discussion/debate on this topic. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. A proposal for assessing study quality: Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument

    PubMed Central

    LaKind, Judy S.; Sobus, Jon R.; Goodman, Michael; Barr, Dana Boyd; Fürst, Peter; Albertini, Richard J.; Arbuckle, Tye E.; Schoeters, Greet; Tan, Yu-Mei; Teeguarden, Justin; Tornero-Velez, Rogelio; Weisel, Clifford P.

    2015-01-01

    The quality of exposure assessment is a major determinant of the overall quality of any environmental epidemiology study. The use of biomonitoring as a tool for assessing exposure to ubiquitous chemicals with short physiologic half-lives began relatively recently. These chemicals present several challenges, including their presence in analytical laboratories and sampling equipment, difficulty in establishing temporal order in cross-sectional studies, short- and long-term variability in exposures and biomarker concentrations, and a paucity of information on the number of measurements required for proper exposure classification. To date, the scientific community has not developed a set of systematic guidelines for designing, implementing and interpreting studies of short-lived chemicals that use biomonitoring as the exposure metric or for evaluating the quality of this type of research for WOE assessments or for peer review of grants or publications. We describe key issues that affect epidemiology studies using biomonitoring data on short-lived chemicals and propose a systematic instrument – the Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument – for evaluating the quality of research proposals and studies that incorporate biomonitoring data on short-lived chemicals. Quality criteria for three areas considered fundamental to the evaluation of epidemiology studies that include biological measurements of short-lived chemicals are described: 1) biomarker selection and measurement, 2) study design and execution, and 3) general epidemiological study design considerations. We recognize that the development of an evaluative tool such as BEES-C is neither simple nor non-controversial. We hope and anticipate that the instrument will initiate further discussion/debate on this topic. PMID:25137624

  12. U.S. Geological Survey second national symposium on Water quality; abstracts of the technical sessions, Orlando, Florida, November 12-17, 1989

    USGS Publications Warehouse

    Pederson, G. L.; Smith, M.M.

    1989-01-01

    The U.S Geological Survey (USGS) compiled and analyzed existing hydrologic and water-quality data from over 200 stream and estuary stations of the Abemarle-Pamlico estuarine system (A/P) to identify long-term temporal and spatial trends. The dataset included seven stations of the USGS National Stream Quality Accounting Network, two stations of the National Atmospheric Precipitation Deposition monitoring network, stations of the N.C. Department of Natural Resources and Community Development, and stations from 25 reports by individual investigators. Regression-residuals analysis, the seasonal Kendall's Tau test for trends, and graphical analysis using annual box plots were employed to determine trends. Profound change has occurred in the water quality of the A/P area over the last 30 years. Analysis of water-quality data upstream from the estuaries indicates increases of discharge-adjusted values of specific conductance, alkalinity, phosphorous, hardness, chloride, and dissolved solids. In the estuaries, pH is increasing except in the Pamlico River, where it is decreasing. There is a generalized decrease in suspended inorganic material in the system. Salinities are decreasing for sections of the Pamlico River, and increasing for parts of Albemarle Sound. Nitrogen concentrations are decreasing except in the Pamlico River, where they are increasing. Phosphorus concentrations are increasing in the Pamlico River and decreasing elsewhere. Annual average data show that nitrogen is the limiting nutrient in the Neuse and Pamlico Rivers. Phosphorus is limiting in the rest of the area. Chlorophyll-a levels are increasing in parts of the Neuse and Pamlico Rivers and decreasing in parts of the Chowan River. To evaluate the effect of basin characteristics on water quality, linear correlation was used. Agricultural crop variables produced the most correlations with water-quality data. Fertilizer usage had little detectable relation to water quality in the study area. In the section of the Pamlico River near Aurora, relations between employment, road mileages, and water quality indicated effects of development in the area.

  13. Spatial and temporal variations in the relationship between lake water surface temperatures and water quality - A case study of Dianchi Lake.

    PubMed

    Yang, Kun; Yu, Zhenyu; Luo, Yi; Yang, Yang; Zhao, Lei; Zhou, Xiaolu

    2018-05-15

    Global warming and rapid urbanization in China have caused a series of ecological problems. One consequence has involved the degradation of lake water environments. Lake surface water temperatures (LSWTs) significantly shape water ecological environments and are highly correlated with the watershed ecosystem features and biodiversity levels. Analysing and predicting spatiotemporal changes in LSWT and exploring the corresponding impacts on water quality is essential for controlling and improving the ecological water environment of watersheds. In this study, Dianchi Lake was examined through an analysis of 54 water quality indicators from 10 water quality monitoring sites from 2005 to 2016. Support vector regression (SVR), Principal Component Analysis (PCA) and Back Propagation Artificial Neural Network (BPANN) methods were applied to form a hybrid forecasting model. A geospatial analysis was conducted to observe historical LSWTs and water quality changes for Dianchi Lake from 2005 to 2016. Based on the constructed model, LSWTs and changes in water quality were simulated for 2017 to 2020. The relationship between LSWTs and water quality thresholds was studied. The results show limited errors and highly generalized levels of predictive performance. In addition, a spatial visualization analysis shows that from 2005 to 2020, the chlorophyll-a (Chla), chemical oxygen demand (COD) and total nitrogen (TN) diffused from north to south and that ammonia nitrogen (NH 3 -N) and total phosphorus (TP) levels are increases in the northern part of Dianchi Lake, where the LSWT levels exceed 17°C. The LSWT threshold is 17.6-18.53°C, which falls within the threshold for nutritional water quality, but COD and TN levels fall below V class water quality standards. Transparency (Trans), COD, biochemical oxygen demand (BOD) and Chla levels present a close relationship with LSWT, and LSWTs are found to fundamentally affect lake cyanobacterial blooms. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Changes in dissolved organic matter quality in a peatland and forest headwater stream as a function of seasonality and hydrologic conditions

    NASA Astrophysics Data System (ADS)

    Broder, Tanja; Knorr, Klaus-Holger; Biester, Harald

    2017-04-01

    Peatlands and peaty riparian zones are major sources of dissolved organic matter (DOM), but are poorly understood in terms of export dynamics and controls thereof. Thereby quality of DOM affects function and behavior of DOM in aquatic ecosystems, but DOM quality can also help to track DOM sources and their export dynamics under specific hydrologic preconditions. The objective of this study was to elucidate controls on temporal variability in DOM concentration and quality in stream water draining a bog and a forested peaty riparian zone, particularly considering drought and storm flow events. DOM quality was monitored using spectrofluorometric indices for aromaticity (SUVA254), apparent molecular size (SR) and precursor organic material (FI), as well as PARAFAC modeling of excitation emission matrices (EEMs). Indices for DOM quality exhibited major changes due to different hydrologic conditions, but patterns were also dependent on season. Stream water at the forested site with mineral, peaty soils generally exhibited higher variability in DOM concentrations and quality compared to the outflow of an ombrotrophic bog, where DOM was less susceptible to changes in hydrologic conditions. During snowmelt and spring events, near-surface protein-like DOM pools were exported. A microbial DOM fraction originating from groundwater and deep peat layers was increasing during drought, while a strongly microbially altered DOM fraction was also exported by discharge events with dry preconditions at the forested site. This might be due to accelerated microbial activity in the peaty riparian zone of the forested site under these preconditions. Our study demonstrated that DOM export dynamics are not only a passive mixing of different hydrological sources, but monitoring studies have to consider that DOM quality depends on hydrologic preconditions and season. Moreover, the forested peaty riparian zone generated the most variability in headwater DOM quantity and quality, as could be tracked by the used spectrofluorometric indices.

  15. Medial Temporal Lobe Structures Contribute to On-Line Processing

    ERIC Educational Resources Information Center

    Warren, David

    2009-01-01

    For the last five decades, the medial temporal lobes have been generally understood to facilitate enduring representation of certain kinds of information. In particular, knowledge about the relations among items and concepts appears to rely on that region of the brain. Recent results suggest that those same structures also play a subtle role in…

  16. Description and Analysis of Military Planning Systems

    DTIC Science & Technology

    2005-07-01

    layer placed on top of SIPE-2 so as to keep track of the temporal constraints within a plan. The added module is Tachyon , a general-purpose...constraint-based subsystem developed by GE’s R&D Centre to provide temporal reasoning. The interface to Tachyon is a 34 DRDC Valcartier TR 2004-320

  17. Is déjà vu a symptom of temporal lobe epilepsy?

    PubMed

    Neppe, V M

    1981-12-05

    The definition and conceptualization of the déjà vu phenomenon are interpreted in various ways. The common occurrence of déjà vu is the general population stresses the need for the development of specific qualitative features which will be valuable in the diagnosis of temporal lobe epilepsy.

  18. Spatial and Temporal Properties of Gestures in North American English /r/

    ERIC Educational Resources Information Center

    Campbell, Fiona; Gick, Bryan; Wilson, Ian; Vatikiotis-Bateson, Eric

    2010-01-01

    Systematic syllable-based variation has been observed in the relative spatial and temporal properties of supralaryngeal gestures in a number of complex segments. Generally, more anterior gestures tend to appear at syllable peripheries while less anterior gestures occur closer to syllable peaks. Because previous studies compared only two gestures,…

  19. Generalized filtering of laser fields in optimal control theory: application to symmetry filtering of quantum gate operations

    NASA Astrophysics Data System (ADS)

    Schröder, Markus; Brown, Alex

    2009-10-01

    We present a modified version of a previously published algorithm (Gollub et al 2008 Phys. Rev. Lett.101 073002) for obtaining an optimized laser field with more general restrictions on the search space of the optimal field. The modification leads to enforcement of the constraints on the optimal field while maintaining good convergence behaviour in most cases. We demonstrate the general applicability of the algorithm by imposing constraints on the temporal symmetry of the optimal fields. The temporal symmetry is used to reduce the number of transitions that have to be optimized for quantum gate operations that involve inversion (NOT gate) or partial inversion (Hadamard gate) of the qubits in a three-dimensional model of ammonia.

  20. [Brain Mechanisms for Measuring Time: Population Coding of Durations].

    PubMed

    Hayashi, Masamichi J

    2016-11-01

    Temporal processing is crucial in many aspects of our perception and action. While there is mounting evidence for the encoding mechanisms of spatial ("where") and identity ("what") information, those of temporal information ("when") remain largely unknown. Recent studies suggested that, similarly to the basic visual stimulus features such as orientation, motion direction, and numerical quantity, event durations are also represented by a population of neurons that are tuned for specific, preferred durations. This paper first reviews recent psychophysical studies on duration aftereffect. Changes in the three parameters (response gain, shift, and width of tuning curves) are then discussed that may need to be taken into account in the putative duration-channel model. Next, the potential neural basis of the duration channels is examined by overviewing recent neuroimaging and electrophysiological studies on time perception. Finally, this paper proposes a general neural basis of timing that commonly represents time-differences independent of stimulus types (e.g., a single duration v.s. multiple brief events). This extends the idea of the "when pathway" from the perception of temporal order to the general timing mechanisms for the perception of duration, temporal frequency, and synchrony.

  1. On the sub-model errors of a generalized one-way coupling scheme for linking models at different scales

    NASA Astrophysics Data System (ADS)

    Zeng, Jicai; Zha, Yuanyuan; Zhang, Yonggen; Shi, Liangsheng; Zhu, Yan; Yang, Jinzhong

    2017-11-01

    Multi-scale modeling of the localized groundwater flow problems in a large-scale aquifer has been extensively investigated under the context of cost-benefit controversy. An alternative is to couple the parent and child models with different spatial and temporal scales, which may result in non-trivial sub-model errors in the local areas of interest. Basically, such errors in the child models originate from the deficiency in the coupling methods, as well as from the inadequacy in the spatial and temporal discretizations of the parent and child models. In this study, we investigate the sub-model errors within a generalized one-way coupling scheme given its numerical stability and efficiency, which enables more flexibility in choosing sub-models. To couple the models at different scales, the head solution at parent scale is delivered downward onto the child boundary nodes by means of the spatial and temporal head interpolation approaches. The efficiency of the coupling model is improved either by refining the grid or time step size in the parent and child models, or by carefully locating the sub-model boundary nodes. The temporal truncation errors in the sub-models can be significantly reduced by the adaptive local time-stepping scheme. The generalized one-way coupling scheme is promising to handle the multi-scale groundwater flow problems with complex stresses and heterogeneity.

  2. Guidelines for the collection of continuous stream water-temperature data in Alaska

    USGS Publications Warehouse

    Toohey, Ryan C.; Neal, Edward G.; Solin, Gary L.

    2014-01-01

    Objectives of stream monitoring programs differ considerably among many of the academic, Federal, state, tribal, and non-profit organizations in the state of Alaska. Broad inclusion of stream-temperature monitoring can provide an opportunity for collaboration in the development of a statewide stream-temperature database. Statewide and regional coordination could reduce overall monitoring cost, while providing better analyses at multiple spatial and temporal scales to improve resource decision-making. Increased adoption of standardized protocols and data-quality standards may allow for validation of historical modeling efforts with better projection calibration. For records of stream water temperature to be generally consistent, unbiased, and reproducible, data must be collected and analyzed according to documented protocols. Collection of water-temperature data requires definition of data-quality objectives, good site selection, proper selection of instrumentation, proper installation of sensors, periodic site visits to maintain sensors and download data, pre- and post-deployment verification against an NIST-certified thermometer, potential data corrections, and proper documentation, review, and approval. A study created to develop a quality-assurance project plan, data-quality objectives, and a database management plan that includes procedures for data archiving and dissemination could provide a means to standardize a statewide stream-temperature database in Alaska. Protocols can be modified depending on desired accuracy or specific needs of data collected. This document is intended to guide users in collecting time series water-temperature data in Alaskan streams and draws extensively on the broader protocols already published by the U.S. Geological Survey.

  3. Large-scale vegetation responses to terrestrial moisture storage changes

    NASA Astrophysics Data System (ADS)

    Andrew, Robert L.; Guan, Huade; Batelaan, Okke

    2017-09-01

    The normalised difference vegetation index (NDVI) is a useful tool for studying vegetation activity and ecosystem performance at a large spatial scale. In this study we use the Gravity Recovery and Climate Experiment (GRACE) total water storage (TWS) estimates to examine temporal variability of the NDVI across Australia. We aim to demonstrate a new method that reveals the moisture dependence of vegetation cover at different temporal resolutions. Time series of monthly GRACE TWS anomalies are decomposed into different temporal frequencies using a discrete wavelet transform and analysed against time series of the NDVI anomalies in a stepwise regression. The results show that combinations of different frequencies of decomposed GRACE TWS data explain NDVI temporal variations better than raw GRACE TWS alone. Generally, the NDVI appears to be more sensitive to interannual changes in water storage than shorter changes, though grassland-dominated areas are sensitive to higher-frequencies of water-storage changes. Different types of vegetation, defined by areas of land use type, show distinct differences in how they respond to the changes in water storage, which is generally consistent with our physical understanding. This unique method provides useful insight into how the NDVI is affected by changes in water storage at different temporal scales across land use types.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konapala, Goutam; Mishra, Ashok; Leung, L. Ruby

    This study investigated the anthropogenic influence on the temporal variability of annual precipitation for the period 1950-2005 as simulated by the CMIP5 models. The temporal variability of both annual precipitation amount (PRCPTOT) and intensity (SDII) was first measured using a metric of statistical dispersion called the Gini coefficient. Comparing simulations driven by both anthropogenic and natural forcings (ALL) with simulations of natural forcings only (NAT), we quantified the anthropogenic contributions to the changes in temporal variability at global, continental and sub-continental scales as a relative difference of the respective Gini coefficients of ALL and NAT. Over the period of 1950-2005,more » our results indicate that anthropogenic forcings have resulted in decreased uniformity (i.e., increase in unevenness or disparity) in annual precipitation amount and intensity at global as well as continental scales. In addition, out of the 21 sub-continental regions considered, 14 (PRCPTOT) and 17 (SDII) regions showed significant anthropogenic influences. The human impacts are generally larger for SDII compared to PRCTOT, indicating that the temporal variability of precipitation intensity is generally more susceptible to anthropogenic influence than precipitation amount. Lastly, the results highlight that anthropogenic activities have changed not only the trends but also the temporal variability of annual precipitation, which underscores the need to develop effective adaptation management practices to address the increased disparity.« less

  5. 7 CFR 29.3026 - General quality.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false General quality. 29.3026 Section 29.3026 Agriculture... General quality. The quality of tobacco considered in relation to the type as a whole. General quality is distinguished from the restricted use of the term “quality” within a group. [24 FR 8771, Oct. 29, 1959...

  6. Examining Water Quality Variations of Tidal Pond System

    NASA Astrophysics Data System (ADS)

    Chui, T. F. M.; Cui, W.

    2014-12-01

    Brackish tidal shrimp ponds, traditionally referred to as gei wais, have been constructed along coastal areas in many parts of the world. The regular exchange of pond water with the surrounding coastal environment is important as it brings shrimp larvae and nutrients, etc. into and out of the pond. Such a water exchange can reduce the quality of the receiving waters; though there are opposing views recently because farming practices are becoming more sustainable while other sources of pollutions in the surroundings are increasing. This project monitors the water quality of a tidal shrimp pond and its receiving water at high temporal resolution. The pond is located within the wetland complex of Mai Po Nature Reserve in Hong Kong, China. Water quality parameters (i.e., dissolved oxygen, temperature, salinity, pH, water depth and chlorophyll) were recorded at 15-minute interval from December 2013 to March 2014 within the pond and also at its receiving water which is a water channel within a mangrove forest. Data reveals both daily and fortnightly fluctuations. Daily variations in mangrove correspond to both tidal flushing and insolation, whereas those within the pond correspond mainly to insolation. For example, dissolved oxygen in mangrove shows two peaks daily which correlate with tidal elevation, and that within the pond shows only one peak which correlates with sunlight. Dissolved oxygen within the pond also shows a fortnightly pattern that corresponds to the schedule of water exchange. Such high temporal resolution of monitoring reveals the two-way water quality influences between the pond and the mangrove. It sheds insights that can possibly lead to refinement of water exchange practice and water sampling schedule given the temporal variations of the water quality both inside and outside the pond. It thus enables us to take a step closer in adopting more sustainable farming practices despite increasing pollution in the surrounding areas.

  7. Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system

    PubMed Central

    Lall, Ramona; Levin-Rector, Alison; Sell, Jessica; Paladini, Marc; Konty, Kevin J.; Olson, Don; Weiss, Don

    2017-01-01

    The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method’s implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System’s C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis. PMID:28886112

  8. Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system.

    PubMed

    Mathes, Robert W; Lall, Ramona; Levin-Rector, Alison; Sell, Jessica; Paladini, Marc; Konty, Kevin J; Olson, Don; Weiss, Don

    2017-01-01

    The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method's implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System's C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis.

  9. Mining and Integration of Environmental Data

    NASA Astrophysics Data System (ADS)

    Tran, V.; Hluchy, L.; Habala, O.; Ciglan, M.

    2009-04-01

    The project ADMIRE (Advanced Data Mining and Integration Research for Europe) is a 7th FP EU ICT project aims to deliver a consistent and easy-to-use technology for extracting information and knowledge. The project is motivated by the difficulty of extracting meaningful information by data mining combinations of data from multiple heterogeneous and distributed resources. It will also provide an abstract view of data mining and integration, which will give users and developers the power to cope with complexity and heterogeneity of services, data and processes. The data sets describing phenomena from domains like business, society, and environment often contain spatial and temporal dimensions. Integration of spatio-temporal data from different sources is a challenging task due to those dimensions. Different spatio-temporal data sets contain data at different resolutions (e.g. size of the spatial grid) and frequencies. This heterogeneity is the principal challenge of geo-spatial and temporal data sets integration - the integrated data set should hold homogeneous data of the same resolution and frequency. Thus, to integrate heterogeneous spatio-temporal data from distinct source, transformation of one or more data sets is necessary. Following transformation operation are required: • transformation to common spatial and temporal representation - (e.g. transformation to common coordinate system), • spatial and/or temporal aggregation - data from detailed data source are aggregated to match the resolution of other resources involved in the integration process, • spatial and/or temporal record decomposition - records from source with lower resolution data are decomposed to match the granularity of the other data source. This operation decreases data quality (e.g. transformation of data from 50km grid to 10 km grid) - data from lower resolution data set in the integrated schema are imprecise, but it allows us to preserve higher resolution data. We can decompose the spatio-temporal data integration to following phases: • pre-integration data processing - different data set can be physically stored in different formats (e.g. relational databases, text files); it might be necessary to pre-process the data sets to be integrated, • identification of transformation operations necessary to integrate data in spatio-temporal dimensions, • identification of transformation operations to be performed on non-spatio-temporal attributes and • output data schema and set generation - given prepared data and the set of transformation, operations, the final integrated schema is produces. Spatio-temporal dimension brings its specifics also to the problem of mining spatio-temporal data sets. Spatio-temporal relationships exist among records in (s-t) data sets and those relationships should be considered in mining operation. This means that when analyzing a record in spatio-temporal data set, the records in its spatial and/or temporal proximity should be taken into account. In addition, the relationships discovered in spatio-temporal data can be different when mining the same data on different scales (e.g. mining the same data sets on 50 km grid with daily data vs. 10 km grid with hourly data). To be able to do effective data mining, we first needed to gather a sufficient amount of environmental data covering similar area and time span. For this purpose we have engaged in cooperation with several organizations working in the environmental domain in Slovakia, some of which are also our partners from previous research efforts. The organizations which volunteered some of their data are the Slovak Hydro-meteorological Institute (SHMU), the Slovak Water Enterprise (SVP), the Soil Science and Conservation Institute (VUPOP), and the Institute of Hydrology of the Slovak Academy of Sciences (UHSAV). We have prepared scenarios from general meteorology, as well as specialized in hydrology and soil protection.

  10. Flexible timing by temporal scaling of cortical responses

    PubMed Central

    Wang, Jing; Narain, Devika; Hosseini, Eghbal A.; Jazayeri, Mehrdad

    2017-01-01

    Musicians can perform at different tempos, speakers can control the cadence of their speech, and children can flexibly vary their temporal expectations of events. To understand the neural basis of such flexibility, we recorded from the medial frontal cortex of nonhuman primates trained to produce different time intervals with different effectors. Neural responses were heterogeneous, nonlinear and complex, and exhibited a remarkable form of temporal invariance: firing rate profiles were temporally scaled to match the produced intervals. Recording from downstream neurons in the caudate and thalamic neurons projecting to the medial frontal cortex indicated that this phenomenon originates within cortical networks. Recurrent neural network models trained to perform the task revealed that temporal scaling emerges from nonlinearities in the network and degree of scaling is controlled by the strength of external input. These findings demonstrate a simple and general mechanism for conferring temporal flexibility upon sensorimotor and cognitive functions. PMID:29203897

  11. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    PubMed

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Technical Report: TG-142 compliant and comprehensive quality assurance tests for respiratory gating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Kyle; Rong, Yi, E-mail: yrong@ucdavis.edu

    2015-11-15

    Purpose: To develop and establish a comprehensive gating commissioning and quality assurance procedure in compliance with TG-142. Methods: Eight Varian TrueBeam Linacs were used for this study. Gating commissioning included an end-to-end test and baseline establishment. The end-to-end test was performed using a CIRS dynamic thoracic phantom with a moving cylinder inside the lung, which was used for carrying both optically simulated luminescence detectors (OSLDs) and Gafchromic EBT2 films while the target is moving, for a point dose check and 2D profile check. In addition, baselines were established for beam-on temporal delay and calibration of the surrogate, for both megavoltagemore » (MV) and kilovoltage (kV) beams. A motion simulation device (MotionSim) was used to provide periodic motion on a platform, in synchronizing with a surrogate motion. The overall accuracy and uncertainties were analyzed and compared. Results: The OSLD readings were within 5% compared to the planned dose (within measurement uncertainty) for both phase and amplitude gated deliveries. Film results showed less than 3% agreement to the predicted dose with a standard sinusoid motion. The gate-on temporal accuracy was averaged at 139 ± 10 ms for MV beams and 92 ± 11 ms for kV beams. The temporal delay of the surrogate motion depends on the motion speed and was averaged at 54.6 ± 3.1 ms for slow, 24.9 ± 2.9 ms for intermediate, and 23.0 ± 20.1 ms for fast speed. Conclusions: A comprehensive gating commissioning procedure was introduced for verifying the output accuracy and establishing the temporal accuracy baselines with respiratory gating. The baselines are needed for routine quality assurance tests, as suggested by TG-142.« less

  13. Can single empirical algorithms accurately predict inland shallow water quality status from high resolution, multi-sensor, multi-temporal satellite data?

    NASA Astrophysics Data System (ADS)

    Theologou, I.; Patelaki, M.; Karantzalos, K.

    2015-04-01

    Assessing and monitoring water quality status through timely, cost effective and accurate manner is of fundamental importance for numerous environmental management and policy making purposes. Therefore, there is a current need for validated methodologies which can effectively exploit, in an unsupervised way, the enormous amount of earth observation imaging datasets from various high-resolution satellite multispectral sensors. To this end, many research efforts are based on building concrete relationships and empirical algorithms from concurrent satellite and in-situ data collection campaigns. We have experimented with Landsat 7 and Landsat 8 multi-temporal satellite data, coupled with hyperspectral data from a field spectroradiometer and in-situ ground truth data with several physico-chemical and other key monitoring indicators. All available datasets, covering a 4 years period, in our case study Lake Karla in Greece, were processed and fused under a quantitative evaluation framework. The performed comprehensive analysis posed certain questions regarding the applicability of single empirical models across multi-temporal, multi-sensor datasets towards the accurate prediction of key water quality indicators for shallow inland systems. Single linear regression models didn't establish concrete relations across multi-temporal, multi-sensor observations. Moreover, the shallower parts of the inland system followed, in accordance with the literature, different regression patterns. Landsat 7 and 8 resulted in quite promising results indicating that from the recreation of the lake and onward consistent per-sensor, per-depth prediction models can be successfully established. The highest rates were for chl-a (r2=89.80%), dissolved oxygen (r2=88.53%), conductivity (r2=88.18%), ammonium (r2=87.2%) and pH (r2=86.35%), while the total phosphorus (r2=70.55%) and nitrates (r2=55.50%) resulted in lower correlation rates.

  14. In situ adaptive response to climate and habitat quality variation: spatial and temporal variation in European badger (Meles meles) body weight.

    PubMed

    Byrne, Andrew W; Fogarty, Ursula; O'Keeffe, James; Newman, Chris

    2015-09-01

    Variation in climatic and habitat conditions can affect populations through a variety of mechanisms, and these relationships can act at different temporal and spatial scales. Using post-mortem badger body weight records from 15 878 individuals captured across the Republic of Ireland (7224 setts across ca. 15 000 km(2) ; 2009-2012), we employed a hierarchical multilevel mixed model to evaluate the effects of climate (rainfall and temperature) and habitat quality (landscape suitability), while controlling for local abundance (unique badgers caught/sett/year). Body weight was affected strongly by temperature across a number of temporal scales (preceding month or season), with badgers being heavier if preceding temperatures (particularly during winter/spring) were warmer than the long-term seasonal mean. There was less support for rainfall across different temporal scales, although badgers did exhibit heavier weights when greater rainfall occurred one or 2 months prior to capture. Badgers were also heavier in areas with higher landscape habitat quality, modulated by the number of individuals captured per sett, consistent with density-dependent effects reducing weights. Overall, the mean badger body weight of culled individuals rose during the study period (2009-2012), more so for males than for females. With predicted increases in temperature, and rainfall, augmented by ongoing agricultural land conversion in this region, we project heavier individual badger body weights in the future. Increased body weight has been associated with higher fecundity, recruitment and survival rates in badgers, due to improved food availability and energetic budgets. We thus predict that climate change could increase the badger population across the Republic of Ireland. Nevertheless, we emphasize that, locally, populations could still be vulnerable to extreme weather variability coupled with detrimental agricultural practice, including population management. © 2015 John Wiley & Sons Ltd.

  15. Technical Report: TG-142 compliant and comprehensive quality assurance tests for respiratory gating.

    PubMed

    Woods, Kyle; Rong, Yi

    2015-11-01

    To develop and establish a comprehensive gating commissioning and quality assurance procedure in compliance with TG-142. Eight Varian TrueBeam Linacs were used for this study. Gating commissioning included an end-to-end test and baseline establishment. The end-to-end test was performed using a CIRS dynamic thoracic phantom with a moving cylinder inside the lung, which was used for carrying both optically simulated luminescence detectors (OSLDs) and Gafchromic EBT2 films while the target is moving, for a point dose check and 2D profile check. In addition, baselines were established for beam-on temporal delay and calibration of the surrogate, for both megavoltage (MV) and kilovoltage (kV) beams. A motion simulation device (MotionSim) was used to provide periodic motion on a platform, in synchronizing with a surrogate motion. The overall accuracy and uncertainties were analyzed and compared. The OSLD readings were within 5% compared to the planned dose (within measurement uncertainty) for both phase and amplitude gated deliveries. Film results showed less than 3% agreement to the predicted dose with a standard sinusoid motion. The gate-on temporal accuracy was averaged at 139±10 ms for MV beams and 92±11 ms for kV beams. The temporal delay of the surrogate motion depends on the motion speed and was averaged at 54.6±3.1 ms for slow, 24.9±2.9 ms for intermediate, and 23.0±20.1 ms for fast speed. A comprehensive gating commissioning procedure was introduced for verifying the output accuracy and establishing the temporal accuracy baselines with respiratory gating. The baselines are needed for routine quality assurance tests, as suggested by TG-142.

  16. Complexities in Subsetting Level 2 Data

    NASA Technical Reports Server (NTRS)

    Huwe, Paul; Wei, Jennifer; Meyer, David; Silberstein, David S.; Alfred, Jerome; Savtchenko, Andrey K.; Johnson, James E.; Albayrak, Arif; Hearty, Thomas

    2017-01-01

    Satellite Level 2 data presents unique challenges for tools and services. From nonlinear spatial geometry to inhomogeneous file data structure to inconsistent temporal variables to complex data variable dimensionality to multiple file formats, there are many difficulties in creating general tools for Level 2 data support. At NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), we are implementing a general Level 2 Subsetting service for Level 2 data to a user-specified spatio-temporal region of interest (ROI). In this presentation, we will unravel some of the challenges faced in creating this service and the strategies we used to surmount them.

  17. Localized shape abnormalities in the thalamus and pallidum are associated with secondarily generalized seizures in mesial temporal lobe epilepsy.

    PubMed

    Yang, Linglin; Li, Hong; Zhu, Lujia; Yu, Xinfeng; Jin, Bo; Chen, Cong; Wang, Shan; Ding, Meiping; Zhang, Minming; Chen, Zhong; Wang, Shuang

    2017-05-01

    Mesial temporal lobe epilepsy (mTLE) is a common type of drug-resistant epilepsy and secondarily generalized tonic-clonic seizures (sGTCS) have devastating consequences for patients' safety and quality of life. To probe the mechanism underlying the genesis of sGTCS, we investigated the structural differences between patients with and without sGTCS in a cohort of mTLE with radiologically defined unilateral hippocampal sclerosis. We performed voxel-based morphometric analysis of cortex and vertex-wise shape analysis of subcortical structures (the basal ganglia and thalamus) on MRI of 39 patients (21 with and 18 without sGTCS). Comparisons were initially made between sGTCS and non-sGTCS groups, and subsequently made between uncontrolled-sGTCS and controlled-sGTCS subgroups. Regional atrophy of the ipsilateral ventral pallidum (cluster size=450 voxels, corrected p=0.047, Max voxel coordinate=107, 120, 65), medial thalamus (cluster size=1128 voxels, corrected p=0.049, Max voxel coordinate=107, 93, 67), middle frontal gyrus (cluster size=60 voxels, corrected p<0.05, Max voxel coordinate=-30, 49.5, 6), and contralateral posterior cingulate cortex (cluster size=130 voxels, corrected p<0.05, Max voxel coordinate=16.5, -57, 27) was found in the sGTCS group relative to the non-sGTCS group. Furthermore, the uncontrolled-sGTCS subgroup showed more pronounced atrophy of the ipsilateral medial thalamus (cluster size=1240 voxels, corrected p=0.014, Max voxel coordinate=107, 93, 67) than the controlled-sGTCS subgroup. These findings indicate a central role of thalamus and pallidum in the pathophysiology of sGTCS in mTLE. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Assessment of regional change in nitrate concentrations in groundwater in the Central Valley, California, USA, 1950s-2000s

    USGS Publications Warehouse

    Burow, Karen R.; Jurgens, Bryant C.; Belitz, Kenneth; Dubrovsky, Neil M.

    2013-01-01

    A regional assessment of multi-decadal changes in nitrate concentrations was done using historical data and a spatially stratified non-biased approach. Data were stratified into physiographic subregions on the basis of geomorphology and soils data to represent zones of historical recharge and discharge patterns in the basin. Data were also stratified by depth to represent a shallow zone generally representing domestic drinking-water supplies and a deep zone generally representing public drinking-water supplies. These stratifications were designed to characterize the regional extent of groundwater with common redox and age characteristics, two factors expected to influence changes in nitrate concentrations over time. Overall, increasing trends in nitrate concentrations and the proportion of nitrate concentrations above 5 mg/L were observed in the east fans subregion of the Central Valley. Whereas the west fans subregion has elevated nitrate concentrations, temporal trends were not detected, likely due to the heterogeneous nature of the water quality in this area and geologic sources of nitrate, combined with sparse and uneven data coverage. Generally low nitrate concentrations in the basin subregion are consistent with reduced geochemical conditions resulting from low permeability soils and higher organic content, reflecting the distal portions of alluvial fans and historical groundwater discharge areas. Very small increases in the shallow aquifer in the basin subregion may reflect downgradient movement of high nitrate groundwater from adjacent areas or overlying intensive agricultural inputs. Because of the general lack of regionally extensive long-term monitoring networks, the results from this study highlight the importance of placing studies of trends in water quality into regional context. Earlier work concluded that nitrate concentrations were steadily increasing over time in the eastern San Joaquin Valley, but clearly those trends do not apply to other physiographic subregions within the Central Valley, even where land use and climate are similar.

  19. Near-death experiences and the temporal lobe.

    PubMed

    Britton, Willoughby B; Bootzin, Richard R

    2004-04-01

    Many studies in humans suggest that altered temporal lobe functioning, especially functioning in the right temporal lobe, is involved in mystical and religious experiences. We investigated temporal lobe functioning in individuals who reported having transcendental "near-death experiences" during life-threatening events. These individuals were found to have more temporal lobe epileptiform electroencephalographic activity than control subjects and also reported significantly more temporal lobe epileptic symptoms. Contrary to predictions, epileptiform activity was nearly completely lateralized to the left hemisphere. The near-death experience was not associated with dysfunctional stress reactions such as dissociation, posttraumatic stress disorder, and substance abuse, but rather was associated with positive coping styles. Additional analyses revealed that near-death experiencers had altered sleep patterns, specifically, a shorter duration of sleep and delayed REM sleep relative to the control group. These results suggest that altered temporal lobe functioning may be involved in the near-death experience and that individuals who have had such experiences are physiologically distinct from the general population.

  20. First-pass selectivity for semantic categories in human anteroventral temporal lobe

    PubMed Central

    Chan, Alexander M.; Baker, Janet M.; Eskandar, Emad; Schomer, Donald; Ulbert, Istvan; Marinkovic, Ksenija; Cash, Sydney S.; Halgren, Eric

    2012-01-01

    How the brain encodes the semantic concepts represented by words is a fundamental question in cognitive neuroscience. Hemodynamic neuroimaging studies have robustly shown that different areas of posteroventral temporal lobe are selectively activated by images of animals versus manmade objects. Selective responses in these areas to words representing animals versus objects are sometimes also seen, but they are task-dependent, suggesting that posteroventral temporal cortex may encode visual categories, while more anterior areas encode semantic categories. Here, using the spatiotemporal resolution provided by intracranial macroelectrode and microelectrode arrays, we report category-selective responses to words representing animals and objects in human anteroventral temporal areas including inferotemporal, perirhinal and entorhinal cortices. This selectivity generalizes across tasks and sensory modalities, suggesting that it represents abstract lexico-semantic categories. Significant category-specific responses are found in measures sensitive to synaptic activity (local field potentials, high gamma power, current sources and sinks) and unit-firing (multi- and single-unit activity). Category-selective responses can occur at short latency, as early as 130ms, in middle cortical layers and thus are extracted in the first-pass of activity through the anteroventral temporal lobe. This activation may provide input to posterior areas for iconic representations when required by the task, as well as to the hippocampal formation for categorical encoding and retrieval of memories, and to the amygdala for emotional associations. More generally, these results support models in which the anteroventral temporal lobe plays a primary role in the semantic representation of words. PMID:22159123

  1. Making Temporal Logic Calculational: A Tool for Unification and Discovery

    NASA Astrophysics Data System (ADS)

    Boute, Raymond

    In temporal logic, calculational proofs beyond simple cases are often seen as challenging. The situation is reversed by making temporal logic calculational, yielding shorter and clearer proofs than traditional ones, and serving as a (mental) tool for unification and discovery. A side-effect of unifying theories is easier access by practicians. The starting point is a simple generic (software tool independent) Functional Temporal Calculus (FTC). Specific temporal logics are then captured via endosemantic functions. This concept reflects tacit conventions throughout mathematics and, once identified, is general and useful. FTC also yields a reasoning style that helps discovering theorems by calculation rather than just proving given facts. This is illustrated by deriving various theorems, most related to liveness issues in TLA+, and finding strengthenings of known results. Educational issues are addressed in passing.

  2. Temporal reflection as a spectral-broadening mechanism in dual-pumped dispersion-decreasing fibers and its connection to dispersive waves

    NASA Astrophysics Data System (ADS)

    Antikainen, Aku; Arteaga-Sierra, Francisco R.; Agrawal, Govind P.

    2017-03-01

    We show that temporal reflections off a moving refractive index barrier play a major role in the spectral broadening of a dual-wavelength input inside a highly nonlinear, dispersion-decreasing fiber. We also find that a recently developed linear theory of temporal reflections works well in predicting the reflected frequencies. Successive temporal reflections from multiple closely spaced solitons create a blueshifted spectral band, while continuous narrowing of solitons inside the dispersion-decreasing fiber enhances Raman-induced redshifts, leading to supercontinuum generation at relatively low pump powers. We also show how dispersive wave emission can be considered a special case of the more general process of temporal reflections. Hence our findings have implications on all systems able to support solitons.

  3. 42 CFR 476.160 - General quality of care review procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false General quality of care review procedures. 476.160... SERVICES (CONTINUED) QUALITY IMPROVEMENT ORGANIZATIONS QUALITY IMPROVEMENT ORGANIZATION REVIEW Review Responsibilities of Quality Improvement Organizations (QIOs) Qio Review Functions § 476.160 General quality of care...

  4. Differences in Pain Location, Intensity and Quality by Pain Pattern in Outpatients with Cancer

    PubMed Central

    Ngamkham, Srisuda; Holden, Janean E.; Wilkie, Diana J.

    2013-01-01

    Pain pattern represents how the individual’s pain changes temporally with activities or other factors. Understanding pain pattern is important for appropriate timing of pain interventions, but researchers have studied less the temporal aspects of cancer pain than pain location, intensity, and quality parameters. The study purpose was to explore differences in pain location, intensity, and quality by pattern groups in outpatients with cancer. We conducted a comparative, secondary data analysis of data collected from 1994 to 2007. 762 outpatients with cancer had completed the 0-to-10 Pain Intensity Number Scale and the McGill Pain Questionnaire to measure pain location, quality and pattern. From all possible combinations of the three types of pain patterns, we created seven pain pattern groups. The distribution of pain pattern was: pattern-1 (27%); pattern-2 (24%); pattern-3 (8%); pattern-4 (12%); pattern-5 (3%); pattern-6 (18%); and pattern-7 (8%). A statistically significant higher proportion of patients with continuous pain patterns (pattern 1, 4, 5, and 7) reported pain location in two or more sites. Patients with pattern 1, 4, and 7 reported statistically significant, higher worst pain mean scores than patients with pattern 2, 3, and 6 (not continuous descriptors). Patients with pattern7 reported statistically significant, higher mean scores (pain rating index-sensory and total number of words selected) than patients with pattern1, 2, 3, 4, and 6. Using pain pattern groups may help clinicians to understand temporal changes in cancer pain and to provide more effective pain management by recognizing the high risk if the pain is continuous. PMID:21512345

  5. Using Temporal Fill Factor to Reduce Frame Reconstruction Rates

    NASA Technical Reports Server (NTRS)

    Larimer, James; Balram, Nikhil; Gille, Jennifer; Luszcz, Jeffery

    1997-01-01

    The newer active matrix display technologies such as TFT-LCD, DMD, PDP maintain their pixel values through the entire frame time, presenting a 100% temporal fill factor, in contrast to the duty cycle produced by the phosphor impulse response of the CRT. This sample-and-hold characteristic can be exploited to lower the displayed frame rate without affecting visual quality. The lower frame rate results in significantly lower transmission bandwidth, power, and cost.

  6. Surface NO2 fields derived from joint use of OMI and GOME-2A observations with EMEP model output

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Svendby, Tove; Stebel, Kerstin

    2016-04-01

    Nitrogen dioxide (NO2) is one of the most prominent air pollutants. Emitted primarily by transport and industry, NO2 has a major impact on health and economy. In contrast to the very sparse network of air quality monitoring stations, satellite data of NO2 is ubiquitous and allows for quantifying the NO2 levels worldwide. However, one drawback of satellite-derived NO2 products is that they provide solely an estimate of the entire tropospheric column, whereas what is generally needed for air quality applications are the concentrations of NO2 near the surface. Here we derive surface NO2 concentration fields from OMI and GOME-2A tropospheric column products using the EMEP chemical transport model as auxiliary information. The model is used for providing information of the boundary layer contribution to the total tropospheric column. For preparation of deriving the surface product, a comprehensive model-based analysis of the spatial and temporal patterns of the NO2 surface-to-column ratio in Europe was carried out for the year 2011. The results from this analysis indicate that the spatial patterns of the surface-to-column ratio vary only slightly. While the highest ratio values can be found in some shipping lanes, the spatial variability of the ratio in some of the most polluted areas of Europe is not very high. Some but not all urban agglomeration shows high ratio values. Focusing on the temporal behavior, the analysis showed that the European-wide average ratio varies throughout the year. The surface-to-column ratio increases from January all the way through April when it reaches its maximum, then decreases relatively rapidly to average levels and then stays mostly constant throughout the summer. The minimum ratio is observed in December. The knowledge gained from analyzing the spatial and temporal patterns of the surface-to-column ratio was then used to produce surface NO2 products from the daily NO2 data for OMI and GOME-2A. This was carried out using two methods, namely using 1) hourly surface-to-column ratio at the time of the satellite overpass as well as 2) using annual average ratios thus eliminating the temporal variability and focusing solely on the spatial patterns. A validation of the resulting surface NO2 fields was performed using station observations of NO2 as provided by the Airbase database maintained by the European Environment Agency. First results indicate that the methodology is capable of producing surface concentration fields that reproduce the station-observed surface NO2 levels significantly better than the model surface fields as measured by the root mean squared error. The results also show that the spatial patterns of the surface-to-column ratio are more significant than its temporal variability. In addition to deriving satellite-based surface NO2, we further present initial results of a geostatistical methodology for downscaling satellite products of NO2 to spatial scales that are more relevant for applications in urban air quality. This is being carried out by applying area-to-point kriging techniques while using high-resolution (1-2 km spatial resolution) runs of a chemical transport model as a spatial proxy. In combination, these two techniques for deriving surface NO2 and spatially downscaling satellite-based NO2 fields have significant potential for improving satellite-based monitoring and mapping of regional and local-scale air pollution.

  7. The superficial temporal fat pad and its ramifications for temporalis muscle construction in facial approximation.

    PubMed

    Stephan, Carl N; Devine, Matthew

    2009-10-30

    The construction of the facial muscles (particularly those of mastication) is generally thought to enhance the accuracy of facial approximation methods because they increase attention paid to face anatomy. However, the lack of consideration for non-muscular structures of the face when using these "anatomical" methods ironically forces one of the two large masticatory muscles to be exaggerated beyond reality. To demonstrate and resolve this issue the temporal region of nineteen caucasoid human cadavers (10 females, 9 males; mean age=84 years, s=9 years, range=58-97 years) were investigated. Soft tissue depths were measured at regular intervals across the temporal fossa in 10 cadavers, and the thickness of the muscle and fat components quantified in nine other cadavers. The measurements indicated that the temporalis muscle generally accounts for <50% of the total soft tissue depth, and does not fill the entirety of the fossa (as generally known in the anatomical literature, but not as followed in facial approximation practice). In addition, a soft tissue bulge was consistently observed in the anteroinferior portion of the temporal fossa (as also evident in younger individuals), and during dissection, this bulge was found to closely correspond to the superficial temporal fat pad (STFP). Thus, the facial surface does not follow a simple undulating curve of the temporalis muscle as currently undertaken in facial approximation methods. New metric-based facial approximation guidelines are presented to facilitate accurate construction of the STFP and the temporalis muscle for future facial approximation casework. This study warrants further investigations of the temporalis muscle and the STFP in younger age groups and demonstrates that untested facial approximation guidelines, including those propounded to be anatomical, should be cautiously regarded.

  8. ContextD: an algorithm to identify contextual properties of medical terms in a Dutch clinical corpus.

    PubMed

    Afzal, Zubair; Pons, Ewoud; Kang, Ning; Sturkenboom, Miriam C J M; Schuemie, Martijn J; Kors, Jan A

    2014-11-29

    In order to extract meaningful information from electronic medical records, such as signs and symptoms, diagnoses, and treatments, it is important to take into account the contextual properties of the identified information: negation, temporality, and experiencer. Most work on automatic identification of these contextual properties has been done on English clinical text. This study presents ContextD, an adaptation of the English ConText algorithm to the Dutch language, and a Dutch clinical corpus. We created a Dutch clinical corpus containing four types of anonymized clinical documents: entries from general practitioners, specialists' letters, radiology reports, and discharge letters. Using a Dutch list of medical terms extracted from the Unified Medical Language System, we identified medical terms in the corpus with exact matching. The identified terms were annotated for negation, temporality, and experiencer properties. To adapt the ConText algorithm, we translated English trigger terms to Dutch and added several general and document specific enhancements, such as negation rules for general practitioners' entries and a regular expression based temporality module. The ContextD algorithm utilized 41 unique triggers to identify the contextual properties in the clinical corpus. For the negation property, the algorithm obtained an F-score from 87% to 93% for the different document types. For the experiencer property, the F-score was 99% to 100%. For the historical and hypothetical values of the temporality property, F-scores ranged from 26% to 54% and from 13% to 44%, respectively. The ContextD showed good performance in identifying negation and experiencer property values across all Dutch clinical document types. Accurate identification of the temporality property proved to be difficult and requires further work. The anonymized and annotated Dutch clinical corpus can serve as a useful resource for further algorithm development.

  9. Probability of atrial fibrillation after ablation: Using a parametric nonlinear temporal decomposition mixed effects model.

    PubMed

    Rajeswaran, Jeevanantham; Blackstone, Eugene H; Ehrlinger, John; Li, Liang; Ishwaran, Hemant; Parides, Michael K

    2018-01-01

    Atrial fibrillation is an arrhythmic disorder where the electrical signals of the heart become irregular. The probability of atrial fibrillation (binary response) is often time varying in a structured fashion, as is the influence of associated risk factors. A generalized nonlinear mixed effects model is presented to estimate the time-related probability of atrial fibrillation using a temporal decomposition approach to reveal the pattern of the probability of atrial fibrillation and their determinants. This methodology generalizes to patient-specific analysis of longitudinal binary data with possibly time-varying effects of covariates and with different patient-specific random effects influencing different temporal phases. The motivation and application of this model is illustrated using longitudinally measured atrial fibrillation data obtained through weekly trans-telephonic monitoring from an NIH sponsored clinical trial being conducted by the Cardiothoracic Surgery Clinical Trials Network.

  10. Anterior temporal cortex and semantic memory: reconciling findings from neuropsychology and functional imaging.

    PubMed

    Rogers, Timothy T; Hocking, Julia; Noppeney, Uta; Mechelli, Andrea; Gorno-Tempini, Maria Luisa; Patterson, Karalyn; Price, Cathy J

    2006-09-01

    Studies of semantic impairment arising from brain disease suggest that the anterior temporal lobes are critical for semantic abilities in humans; yet activation of these regions is rarely reported in functional imaging studies of healthy controls performing semantic tasks. Here, we combined neuropsychological and PET functional imaging data to show that when healthy subjects identify concepts at a specific level, the regions activated correspond to the site of maximal atrophy in patients with relatively pure semantic impairment. The stimuli were color photographs of common animals or vehicles, and the task was category verification at specific (e.g., robin), intermediate (e.g., bird), or general (e.g., animal) levels. Specific, relative to general, categorization activated the antero-lateral temporal cortices bilaterally, despite matching of these experimental conditions for difficulty. Critically, in patients with atrophy in precisely these areas, the most pronounced deficit was in the retrieval of specific semantic information.

  11. A generalized spatiotemporal covariance model for stationary background in analysis of MEG data.

    PubMed

    Plis, S M; Schmidt, D M; Jun, S C; Ranken, D M

    2006-01-01

    Using a noise covariance model based on a single Kronecker product of spatial and temporal covariance in the spatiotemporal analysis of MEG data was demonstrated to provide improvement in the results over that of the commonly used diagonal noise covariance model. In this paper we present a model that is a generalization of all of the above models. It describes models based on a single Kronecker product of spatial and temporal covariance as well as more complicated multi-pair models together with any intermediate form expressed as a sum of Kronecker products of spatial component matrices of reduced rank and their corresponding temporal covariance matrices. The model provides a framework for controlling the tradeoff between the described complexity of the background and computational demand for the analysis using this model. Ways to estimate the value of the parameter controlling this tradeoff are also discussed.

  12. The perception of regularity in an isochronous stimulus in zebra finches (Taeniopygia guttata) and humans.

    PubMed

    van der Aa, Jeroen; Honing, Henkjan; ten Cate, Carel

    2015-06-01

    Perceiving temporal regularity in an auditory stimulus is considered one of the basic features of musicality. Here we examine whether zebra finches can detect regularity in an isochronous stimulus. Using a go/no go paradigm we show that zebra finches are able to distinguish between an isochronous and an irregular stimulus. However, when the tempo of the isochronous stimulus is changed, it is no longer treated as similar to the training stimulus. Training with three isochronous and three irregular stimuli did not result in improvement of the generalization. In contrast, humans, exposed to the same stimuli, readily generalized across tempo changes. Our results suggest that zebra finches distinguish the different stimuli by learning specific local temporal features of each individual stimulus rather than attending to the global structure of the stimuli, i.e., to the temporal regularity. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Musical Creativity “Revealed” in Brain Structure: Interplay between Motor, Default Mode, and Limbic Networks

    PubMed Central

    Bashwiner, David M.; Wertz, Christopher J.; Flores, Ranee A.; Jung, Rex E.

    2016-01-01

    Creative behaviors are among the most complex that humans engage in, involving not only highly intricate, domain-specific knowledge and skill, but also domain-general processing styles and the affective drive to create. This study presents structural imaging data indicating that musically creative people (as indicated by self-report) have greater cortical surface area or volume in a) regions associated with domain-specific higher-cognitive motor activity and sound processing (dorsal premotor cortex, supplementary and pre-supplementary motor areas, and planum temporale), b) domain-general creative-ideation regions associated with the default mode network (dorsomedial prefrontal cortex, middle temporal gyrus, and temporal pole), and c) emotion-related regions (orbitofrontal cortex, temporal pole, and amygdala). These findings suggest that domain-specific musical expertise, default-mode cognitive processing style, and intensity of emotional experience might all coordinate to motivate and facilitate the drive to create music. PMID:26888383

  14. Temporal grouping effects in musical short-term memory.

    PubMed

    Gorin, Simon; Mengal, Pierre; Majerus, Steve

    2018-07-01

    Recent theoretical accounts of verbal and visuo-spatial short-term memory (STM) have proposed the existence of domain-general mechanisms for the maintenance of serial order information. These accounts are based on the observation of similar behavioural effects across several modalities, such as temporal grouping effects. Across two experiments, the present study aimed at extending these findings, by exploring a STM modality that has received little interest so far, STM for musical information. Given its inherent rhythmic, temporal and serial organisation, the musical domain is of interest for investigating serial order STM processes such as temporal grouping. In Experiment 1, the data did not allow to determine the presence or the absence of temporal grouping effects. In Experiment 2, we observed that temporal grouping of tone sequences during encoding improves short-term recognition for serially presented probe tones. Furthermore, the serial position curves included micro-primacy and micro-recency effects, which are the hallmark characteristic of temporal grouping. Our results suggest that the encoding of serial order information in musical STM may be supported by temporal positional coding mechanisms similar to those reported in the verbal domain.

  15. Retrograde amnesia in patients with diencephalic, temporal lobe or frontal lesions.

    PubMed

    Kopelman, M D; Stanhope, N; Kingsley, D

    1999-07-01

    Patients with focal diencephalic, temporal lobe, or frontal lobe lesions were examined on various measures of remote memory. Korsakoff patients showed a severe impairment with a characteristic 'temporal gradient', whereas two patients with focal diencephalic damage (and anterograde amnesia) were virtually unimpaired on remote memory measures. Patients with frontal lobe pathology were severely impaired in the recall of autobiographical incidents and famous news events. Patients with temporal lobe pathology showed severe impairment but a relatively 'flat' temporal gradient, largely attributable to herpes encephalitis patients. From recognition and cued recall tasks, it is argued that there is an important retrieval component to the remote memory deficit across all the lesion groups. In general, the pattern of performance by the frontal lobe and temporal lobe groups was closely similar, and there was no evidence of any major access/storage difference between them. However, laterality comparisons across these groups indicated that the right temporal and frontal lobe regions may make a greater contribution to the retrieval of past episodic (incident and event) memories, whereas the left temporal region is more closely involved in the lexical-semantic labelling of remote memories.

  16. Max CAPR: high-resolution 3D contrast-enhanced MR angiography with acquisition times under 5 seconds.

    PubMed

    Haider, Clifton R; Borisch, Eric A; Glockner, James F; Mostardi, Petrice M; Rossman, Phillip J; Young, Phillip M; Riederer, Stephen J

    2010-10-01

    High temporal and spatial resolution is desired in imaging of vascular abnormalities having short arterial-to-venous transit times. Methods that exploit temporal correlation to reduce the observed frame time demonstrate temporal blurring, obfuscating bolus dynamics. Previously, a Cartesian acquisition with projection reconstruction-like (CAPR) sampling method has been demonstrated for three-dimensional contrast-enhanced angiographic imaging of the lower legs using two-dimensional sensitivity-encoding acceleration and partial Fourier acceleration, providing 1mm isotropic resolution of the calves, with 4.9-sec frame time and 17.6-sec temporal footprint. In this work, the CAPR acquisition is further undersampled to provide a net acceleration approaching 40 by eliminating all view sharing. The tradeoff of frame time and temporal footprint in view sharing is presented and characterized in phantom experiments. It is shown that the resultant 4.9-sec acquisition time, three-dimensional images sets have sufficient spatial and temporal resolution to clearly portray arterial and venous phases of contrast passage. It is further hypothesized that these short temporal footprint sequences provide diagnostic quality images. This is tested and shown in a series of nine contrast-enhanced MR angiography patient studies performed with the new method.

  17. The role of metadata and strategies to detect and control temporal data bias in environmental monitoring of soil contamination.

    PubMed

    Desaules, André

    2012-11-01

    It is crucial for environmental monitoring to fully control temporal bias, which is the distortion of real data evolution by varying bias through time. Temporal bias cannot be fully controlled by statistics alone but requires appropriate and sufficient metadata, which should be under rigorous and continuous quality assurance and control (QA/QC) to reliably document the degree of consistency of the monitoring system. All presented strategies to detect and control temporal data bias (QA/QC, harmonisation/homogenisation/standardisation, mass balance approach, use of tracers and analogues and control of changing boundary conditions) rely on metadata. The Will Rogers phenomenon, due to subsequent reclassification, is a particular source of temporal data bias introduced to environmental monitoring here. Sources and effects of temporal data bias are illustrated by examples from the Swiss soil monitoring network. The attempt to make a comprehensive compilation and assessment of required metadata for soil contamination monitoring reveals that most metadata are still far from being reliable. This leads to the conclusion that progress in environmental monitoring means further development of the concept of environmental metadata for the sake of temporal data bias control as a prerequisite for reliable interpretations and decisions.

  18. Direct Patlak Reconstruction From Dynamic PET Data Using the Kernel Method With MRI Information Based on Structural Similarity.

    PubMed

    Gong, Kuang; Cheng-Liao, Jinxiu; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi

    2018-04-01

    Positron emission tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neuroscience. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information into image reconstruction. Previously, kernel learning has been successfully embedded into static and dynamic PET image reconstruction using either PET temporal or MRI information. Here, we combine both PET temporal and MRI information adaptively to improve the quality of direct Patlak reconstruction. We examined different approaches to combine the PET and MRI information in kernel learning to address the issue of potential mismatches between MRI and PET signals. Computer simulations and hybrid real-patient data acquired on a simultaneous PET/MR scanner were used to evaluate the proposed methods. Results show that the method that combines PET temporal information and MRI spatial information adaptively based on the structure similarity index has the best performance in terms of noise reduction and resolution improvement.

  19. Novel true-motion estimation algorithm and its application to motion-compensated temporal frame interpolation.

    PubMed

    Dikbas, Salih; Altunbasak, Yucel

    2013-08-01

    In this paper, a new low-complexity true-motion estimation (TME) algorithm is proposed for video processing applications, such as motion-compensated temporal frame interpolation (MCTFI) or motion-compensated frame rate up-conversion (MCFRUC). Regular motion estimation, which is often used in video coding, aims to find the motion vectors (MVs) to reduce the temporal redundancy, whereas TME aims to track the projected object motion as closely as possible. TME is obtained by imposing implicit and/or explicit smoothness constraints on the block-matching algorithm. To produce better quality-interpolated frames, the dense motion field at interpolation time is obtained for both forward and backward MVs; then, bidirectional motion compensation using forward and backward MVs is applied by mixing both elegantly. Finally, the performance of the proposed algorithm for MCTFI is demonstrated against recently proposed methods and smoothness constraint optical flow employed by a professional video production suite. Experimental results show that the quality of the interpolated frames using the proposed method is better when compared with the MCFRUC techniques.

  20. Work Characteristics and Parent-Child Relationship Quality: The Mediating Role of Temporal Involvement

    ERIC Educational Resources Information Center

    Roeters, Anne; Van Der Lippe, Tanja; Kluwer, Esther S.

    2010-01-01

    This study investigated whether the amount and nature of parent-child time mediated the association between parental work characteristics and parent-child relationship quality. We based hypotheses on the conflict and enrichment approaches, and we tested a path model using self-collected data on 1,008 Dutch fathers and 929 Dutch mothers with…

  1. Influences of management of Southern forests on water quantity and quality

    Treesearch

    Ge Sun; Mark Riedel; Rhett Jackson; Randy Kolka; Devendra Amatya; Jim Shepard

    2004-01-01

    Water is a key output of southern forests and is critical to other processes, functions, and values of forest ecosystems. This chapter synthesizes published literature about the effects of forest management practices on water quantity and water quality across the Southern United States region. We evaluate the influences of forest management at different temporal and...

  2. THE DISTRIBUTION OF CHLORPYRIFOS FOLLOWING A CRACK AND CREVICE TYPE APPLICATION IN THE U.S. EPA INDOOR AIR QUALITY RESEARCH HOUSE

    EPA Science Inventory

    A study was conducted in the U.S. EPA Indoor Air Quality Research House to determine the spatial and temporal distribution of chlorpyrifos following a professional crack and crevice application in the kitchen. Following the application, measurements were made in the kitchen, de...

  3. Matrix population models as a tool in development of habitat models

    Treesearch

    Gregory D. Hayward; David B. McDonald

    1997-01-01

    Building sophisticated habitat models for conservation of owls must stem from an understanding of the relative quality of habitats at a variety of geographic and temporal scales. Developing these models requires knowing the relationship between habitat conditions and owl performance. What measure should be used to compare the quality of habitats? Matrix population...

  4. ASSESSING HABITAT QUALITY OF MOUNT HOPE BAY AND NARRAGANSETT BAY USING GROWTH, RNA:DNA, AND FEDDING HABITS OF CAGED JUVENILE WINTER FLOUNDER

    EPA Science Inventory

    Somatic growth rates, RNA:DNA, and feeding habits of juvenile Pseudopleuronectes americanus (Winter Flounder) were used to asses small-scale spatio-temporal variations in the habitat quality of Mount Hope Bay and Narragan-sett Bay, RI. Three successive caging experiments (14–16 d...

  5. THE DISTRIBUTION OF CHLORPYRIFOS FOLLOWING A CRACK AND CREVICE TYPE APPLICATION IN THE U.S. EPA INDOOR AIR QUALITY RESEARCH HOUSE

    EPA Science Inventory

    The paper gives results of a study to determine the spatial and temporal distribution of chlorpyrifos following a professional crack-and-crevice application in the kitchen of the U.S. EPA's indoor air quality research house in North Carolina. Following the application, measuremen...

  6. WATGIS: A GIS-Based Lumped Parameter Water Quality Model

    Treesearch

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2002-01-01

    A Geographic Information System (GIS)­based, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogen­loading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...

  7. THE DISTRIBUTION OF CHLORPYRIFOS FOLLOWING A CRACK AND CREVICE TYPE APPLICATION IN THE U.S. EPA INDOOR AIR QUALITY TEST HOUSE

    EPA Science Inventory

    A study was conducted in the U.S. EPA Indoor Air Quality Test House to determine the spatial and temporal distribution of chlorpyrifos following a professional crack and crevice application in the kitchen. Following the application, measurements were made in the kitchen, den a...

  8. Variation of organic matter quantity and quality in streams at Critical Zone Observatory watersheds

    Treesearch

    Matthew P. Miller; Elizabeth W. Boyer; Diane M. McKnight; Michael G. Brown; Rachel S. Gabor; Carolyn Hunsaker; Lidiia Iavorivska; Shreeram Inamdar; Dale W. Johnson; Louis A. Kaplan; Henry Lin; William H. McDowell; Julia N. Perdrial

    2016-01-01

    The quantity and chemical composition of dissolved organic matter (DOM) in surface waters influence ecosystem processes and anthropogenic use of freshwater. However, despite the importance of understanding spatial and temporal patterns in DOM, measures of DOM quality are not routinely included as part of large-scale ecosystem monitoring programs and variations in...

  9. Improving image-quality of interference fringes of out-of-plane vibration using temporal speckle pattern interferometry and standard deviation for piezoelectric plates.

    PubMed

    Chien-Ching Ma; Ching-Yuan Chang

    2013-07-01

    Interferometry provides a high degree of accuracy in the measurement of sub-micrometer deformations; however, the noise associated with experimental measurement undermines the integrity of interference fringes. This study proposes the use of standard deviation in the temporal domain to improve the image quality of patterns obtained from temporal speckle pattern interferometry. The proposed method combines the advantages of both mean and subtractive methods to remove background noise and ambient disturbance simultaneously, resulting in high-resolution images of excellent quality. The out-of-plane vibration of a thin piezoelectric plate is the main focus of this study, providing information useful to the development of energy harvesters. First, ten resonant states were measured using the proposed method, and both mode shape and resonant frequency were investigated. We then rebuilt the phase distribution of the first resonant mode based on the clear interference patterns obtained using the proposed method. This revealed instantaneous deformations in the dynamic characteristics of the resonant state. The proposed method also provides a frequency-sweeping function, facilitating its practical application in the precise measurement of resonant frequency. In addition, the mode shapes and resonant frequencies obtained using the proposed method were recorded and compared with results obtained using finite element method and laser Doppler vibrometery, which demonstrated close agreement.

  10. Temporal complexity in emission from Anderson localized lasers

    NASA Astrophysics Data System (ADS)

    Kumar, Randhir; Balasubrahmaniyam, M.; Alee, K. Shadak; Mujumdar, Sushil

    2017-12-01

    Anderson localization lasers exploit resonant cavities formed due to structural disorder. The inherent randomness in the structure of these cavities realizes a probability distribution in all cavity parameters such as quality factors, mode volumes, mode structures, and so on, implying resultant statistical fluctuations in the temporal behavior. Here we provide direct experimental measurements of temporal width distributions of Anderson localization lasing pulses in intrinsically and extrinsically disordered coupled-microresonator arrays. We first illustrate signature exponential decays in the spatial intensity distributions of the lasing modes that quantify their localized character, and then measure the temporal width distributions of the pulsed emission over several configurations. We observe a dependence of temporal widths on the disorder strength, wherein the widths show a single-peaked, left-skewed distribution in extrinsic disorder and a dual-peaked distribution in intrinsic disorder. We propose a model based on coupled rate equations for an emitter and an Anderson cavity with a random mode structure, which gives excellent quantitative and qualitative agreement with the experimental observations. The experimental and theoretical analyses bring to the fore the temporal complexity in Anderson-localization-based lasing systems.

  11. 42 CFR 493.1239 - Standard: General laboratory systems quality assessment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of general laboratory systems quality assessment reviews with appropriate staff. (c) The laboratory must document all general laboratory systems quality assessment activities. [68 FR 3703, Jan. 24, 2003... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: General laboratory systems quality...

  12. How Geoscience Novices Reason about Temporal Duration: The Role of Spatial Thinking and Large Numbers

    ERIC Educational Resources Information Center

    Cheek, Kim A.

    2013-01-01

    Research about geologic time conceptions generally focuses on the placement of events on the geologic timescale, with few studies dealing with the duration of geologic processes or events. Those studies indicate that students often have very poor conceptions about temporal durations of geologic processes, but the reasons for that are relatively…

  13. Local-Scale Air Quality Modeling in Support of Human Health and Exposure Research (Invited)

    NASA Astrophysics Data System (ADS)

    Isakov, V.

    2010-12-01

    Spatially- and temporally-sparse information on air quality is a key concern for air-pollution-related environmental health studies. Monitor networks are sparse in both space and time, are costly to maintain, and are often designed purposely to avoid detecting highly localized sources. Recent studies have shown that more narrowly defining the geographic domain of the study populations and improvements in the measured/estimated ambient concentrations can lead to stronger associations between air pollution and hospital admissions and mortality records. Traditionally, ambient air quality measurements have been used as a primary input to support human health and exposure research. However, there is increasing evidence that the current ambient monitoring network is not capturing sharp gradients in exposure due to the presence of high concentration levels near, for example, major roadways. Many air pollutants exhibit large concentration gradients near large emitters such as major roadways, factories, ports, etc. To overcome these limitations, researchers are now beginning to use air quality models to support air pollution exposure and health studies. There are many advantages to using air quality models over traditional approaches based on existing ambient measurements alone. First, models can provide spatially- and temporally-resolved concentrations as direct input to exposure and health studies and thus better defining the concentration levels for the population in the geographic domain. Air quality models have a long history of use in air pollution regulations, and supported by regulatory agencies and a large user community. Also, models can provide bidirectional linkages between sources of emissions and ambient concentrations, thus allowing exploration of various mitigation strategies to reduce risk to exposure. In order to provide best estimates of air concentrations to support human health and exposure studies, model estimates should consider local-scale features, regional-scale transport, and photochemical transformations. Since these needs are currently not met by a single model, hybrid air quality modeling has recently been developed to combine these capabilities. In this paper, we present the results of two studies where we applied the hybrid modeling approach to provide spatial and temporal details in air quality concentrations to support exposure and health studies: a) an urban-scale air quality accountability study involving near-source exposures to multiple ambient air pollutants, and b) an urban-scale epidemiological study involving human health data based on emergency department visits.

  14. Temporal variability and climatology of hydrodynamic, water property and water quality parameters in the West Johor Strait of Singapore.

    PubMed

    Behera, Manasa Ranjan; Chun, Cui; Palani, Sundarambal; Tkalich, Pavel

    2013-12-15

    The study presents a baseline variability and climatology study of measured hydrodynamic, water properties and some water quality parameters of West Johor Strait, Singapore at hourly-to-seasonal scales to uncover their dependency and correlation to one or more drivers. The considered parameters include, but not limited by sea surface elevation, current magnitude and direction, solar radiation and air temperature, water temperature, salinity, chlorophyll-a and turbidity. FFT (Fast Fourier Transform) analysis is carried out for the parameters to delineate relative effect of tidal and weather drivers. The group and individual correlations between the parameters are obtained by principal component analysis (PCA) and cross-correlation (CC) technique, respectively. The CC technique also identifies the dependency and time lag between driving natural forces and dependent water property and water quality parameters. The temporal variability and climatology of the driving forces and the dependent parameters are established at the hourly, daily, fortnightly and seasonal scales. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Investigation of Spatial and Temporal Trends in Water Quality in Daya Bay, South China Sea

    PubMed Central

    Wu, Mei-Lin; Wang, You-Shao; Dong, Jun-De; Sun, Cui-Ci; Wang, Yu-Tu; Sun, Fu-Lin; Cheng, Hao

    2011-01-01

    The objective is to identify the spatial and temporal variability of the hydrochemical quality of the water column in a subtropical coastal system, Daya Bay, China. Water samples were collected in four seasons at 12 monitoring sites. The Southeast Asian monsoons, northeasterly from October to the next April and southwesterly from May to September have also an important influence on water quality in Daya Bay. In the spatial pattern, two groups have been identified, with the help of multidimensional scaling analysis and cluster analysis. Cluster I consisted of the sites S3, S8, S10 and S11 in the west and north coastal parts of Daya Bay. Cluster I is mainly related to anthropogenic activities such as fish-farming. Cluster II consisted of the rest of the stations in the center, east and south parts of Daya Bay. Cluster II is mainly related to seawater exchange from South China Sea. PMID:21776234

  16. Using animation quality metric to improve efficiency of global illumination computation for dynamic environments

    NASA Astrophysics Data System (ADS)

    Myszkowski, Karol; Tawara, Takehiro; Seidel, Hans-Peter

    2002-06-01

    In this paper, we consider applications of perception-based video quality metrics to improve the performance of global lighting computations for dynamic environments. For this purpose we extend the Visible Difference Predictor (VDP) developed by Daly to handle computer animations. We incorporate into the VDP the spatio-velocity CSF model developed by Kelly. The CSF model requires data on the velocity of moving patterns across the image plane. We use the 3D image warping technique to compensate for the camera motion, and we conservatively assume that the motion of animated objects (usually strong attractors of the visual attention) is fully compensated by the smooth pursuit eye motion. Our global illumination solution is based on stochastic photon tracing and takes advantage of temporal coherence of lighting distribution, by processing photons both in the spatial and temporal domains. The VDP is used to keep noise inherent in stochastic methods below the sensitivity level of the human observer. As a result a perceptually-consistent quality across all animation frames is obtained.

  17. Temporal and spatial variation in allocating annual traffic activity across an urban region and implications for air quality assessments

    PubMed Central

    Batterman, Stuart

    2015-01-01

    Patterns of traffic activity, including changes in the volume and speed of vehicles, vary over time and across urban areas and can substantially affect vehicle emissions of air pollutants. Time-resolved activity at the street scale typically is derived using temporal allocation factors (TAFs) that allow the development of emissions inventories needed to predict concentrations of traffic-related air pollutants. This study examines the spatial and temporal variation of TAFs, and characterizes prediction errors resulting from their use. Methods are presented to estimate TAFs and their spatial and temporal variability and used to analyze total, commercial and non-commercial traffic in the Detroit, Michigan, U.S. metropolitan area. The variability of total volume estimates, quantified by the coefficient of variation (COV) representing the percentage departure from expected hourly volume, was 21, 33, 24 and 33% for weekdays, Saturdays, Sundays and holidays, respectively. Prediction errors mostly resulted from hour-to-hour variability on weekdays and Saturdays, and from day-to-day variability on Sundays and holidays. Spatial variability was limited across the study roads, most of which were large freeways. Commercial traffic had different temporal patterns and greater variability than noncommercial vehicle traffic, e.g., the weekday variability of hourly commercial volume was 28%. The results indicate that TAFs for a metropolitan region can provide reasonably accurate estimates of hourly vehicle volume on major roads. While vehicle volume is only one of many factors that govern on-road emission rates, air quality analyses would be strengthened by incorporating information regarding the uncertainty and variability of traffic activity. PMID:26688671

  18. Visual temporal processing in dyslexia and the magnocellular deficit theory: the need for speed?

    PubMed

    McLean, Gregor M T; Stuart, Geoffrey W; Coltheart, Veronika; Castles, Anne

    2011-12-01

    A controversial question in reading research is whether dyslexia is associated with impairments in the magnocellular system and, if so, how these low-level visual impairments might affect reading acquisition. This study used a novel chromatic flicker perception task to specifically explore temporal aspects of magnocellular functioning in 40 children with dyslexia and 42 age-matched controls (aged 7-11). The relationship between magnocellular temporal resolution and higher-level aspects of visual temporal processing including inspection time, single and dual-target (attentional blink) RSVP performance, go/no-go reaction time, and rapid naming was also assessed. The Dyslexia group exhibited significant deficits in magnocellular temporal resolution compared with controls, but the two groups did not differ in parvocellular temporal resolution. Despite the significant group differences, associations between magnocellular temporal resolution and reading ability were relatively weak, and links between low-level temporal resolution and reading ability did not appear specific to the magnocellular system. Factor analyses revealed that a collective Perceptual Speed factor, involving both low-level and higher-level visual temporal processing measures, accounted for unique variance in reading ability independently of phonological processing, rapid naming, and general ability.

  19. The Impact of the 2011 Accreditation Council for Graduate Medical Education Duty Hour Reform on Quality and Safety in Trauma Care.

    PubMed

    Marwaha, Jayson S; Drolet, Brian C; Maddox, Suma S; Adams, Charles A

    2016-06-01

    In 2011, the ACGME limited duty hours for residents. Although studies evaluating the 2011 policy have not shown improvements in general measures of morbidity or mortality, these outcomes might not reflect changes in specialty-specific practice patterns and secondary quality measures. All trauma admissions from July 2009 through June 2013 at an academic Level I trauma center were evaluated for 5 primary outcomes (eg, mortality and length of stay), and 10 secondary quality measures and practice patterns (eg, operating room [OR] visits). All variables were compared before and after the reform (July 1, 2011). Piecewise regression was used to study temporal trends in quality. There were 11,740 admissions studied. The reform was not strongly associated with changes in any primary outcomes except length of stay (7.98 to 7.36 days; p = 0.01). However, many secondary quality metrics changed. The total number of OR and bedside procedures per admission (6.72 to 7.34; p < 0.001) and OR visits per admission (0.76 to 0.91; p < 0.001) were higher in the post-reform group, representing an additional 9,559 procedures and 1,584 OR visits. Use of minor bedside procedures, such as laboratory and imaging studies, increased most significantly. Although most major outcomes were unaffected, quality of care might have changed after the reform. Indeed, a consistent change in resource use patterns was manifested by substantial post-reform increases in measures such as bedside procedures and OR visits. No secondary quality measures exhibited improvements strongly associated with the reform. Several factors, including attending oversight, might have insulated major outcomes from change. Our findings show that some less-commonly studied quality metrics related to costs of care changed after the 2011 reform at our institution. Copyright © 2016 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Effects of stock use and backpackers on water quality in wilderness in Sequoia and Kings Canyon National Parks, USA.

    PubMed

    Clow, David W; Forrester, Harrison; Miller, Benjamin; Roop, Heidi; Sickman, James O; Ryu, Hodon; Domingo, Jorge Santo

    2013-12-01

    During 2010-2011, a study was conducted in Sequoia and Kings Canyon National Parks (SEKI) to evaluate the influence of pack animals (stock) and backpackers on water quality in wilderness lakes and streams. The study had three main components: (1) a synoptic survey of water quality in wilderness areas of the parks, (2) paired water quality sampling above and below several areas with differing types and amounts of visitor use, and (3) intensive monitoring at six sites to document temporal variations in water quality. Data from the synoptic water quality survey indicated that wilderness lakes and streams are dilute and have low nutrient and Escherichia coli concentrations. The synoptic survey sites were categorized as minimal use, backpacker-use, or mixed use (stock and backpackers), depending on the most prevalent type of use upstream from the sampling locations. Sites with mixed use tended to have higher concentrations of most constituents (including E. coli) than those categorized as minimal-use (P ≤ 0.05); concentrations at backpacker-use sites were intermediate. Data from paired-site sampling indicated that E. coli, total coliform, and particulate phosphorus concentrations were greater in streams downstream from mixed-use areas than upstream from those areas (P ≤ 0.05). Paired-site data also indicated few statistically significant differences in nutrient, E. coli, or total coliform concentrations in streams upstream and downstream from backpacker-use areas. The intensive-monitoring data indicated that nutrient and E. coli concentrations normally were low, except during storms, when notable increases in concentrations of E. coli, nutrients, dissolved organic carbon, and turbidity occurred. In summary, results from this study indicate that water quality in SEKI wilderness generally is good, except during storms; and visitor use appears to have a small, but statistically significant influence on stream water quality.

  1. Effects of Stock Use and Backpackers on Water Quality in Wilderness in Sequoia and Kings Canyon National Parks, USA

    NASA Astrophysics Data System (ADS)

    Clow, David W.; Forrester, Harrison; Miller, Benjamin; Roop, Heidi; Sickman, James O.; Ryu, Hodon; Domingo, Jorge Santo

    2013-12-01

    During 2010-2011, a study was conducted in Sequoia and Kings Canyon National Parks (SEKI) to evaluate the influence of pack animals (stock) and backpackers on water quality in wilderness lakes and streams. The study had three main components: (1) a synoptic survey of water quality in wilderness areas of the parks, (2) paired water quality sampling above and below several areas with differing types and amounts of visitor use, and (3) intensive monitoring at six sites to document temporal variations in water quality. Data from the synoptic water quality survey indicated that wilderness lakes and streams are dilute and have low nutrient and Escherichia coli concentrations. The synoptic survey sites were categorized as minimal use, backpacker-use, or mixed use (stock and backpackers), depending on the most prevalent type of use upstream from the sampling locations. Sites with mixed use tended to have higher concentrations of most constituents (including E. coli) than those categorized as minimal-use ( P ≤ 0.05); concentrations at backpacker-use sites were intermediate. Data from paired-site sampling indicated that E. coli, total coliform, and particulate phosphorus concentrations were greater in streams downstream from mixed-use areas than upstream from those areas ( P ≤ 0.05). Paired-site data also indicated few statistically significant differences in nutrient, E. coli, or total coliform concentrations in streams upstream and downstream from backpacker-use areas. The intensive-monitoring data indicated that nutrient and E. coli concentrations normally were low, except during storms, when notable increases in concentrations of E. coli, nutrients, dissolved organic carbon, and turbidity occurred. In summary, results from this study indicate that water quality in SEKI wilderness generally is good, except during storms; and visitor use appears to have a small, but statistically significant influence on stream water quality.

  2. Effects of stock use and backpackers on water quality in wilderness in Sequoia and Kings Canyon National Parks, USA

    USGS Publications Warehouse

    Clow, David W.; Forrester, Harrison; Miller, Benjamin; Roop, Heidi; Sickman, James O.; Ryu, Hodon; Santo Domingo, Jorge

    2013-01-01

    During 2010-2011, a study was conducted in Sequoia and Kings Canyon National Parks (SEKI) to evaluate the influence of pack animals (stock) and backpackers on water quality in wilderness lakes and streams. The study had three main components: (1) a synoptic survey of water quality in wilderness areas of the parks, (2) paired water-quality sampling above and below several areas with differing types and amounts of visitor use, and (3) intensive monitoring at six sites to document temporal variations in water quality. Data from the synoptic water-quality survey indicated that wilderness lakes and streams are dilute and have low nutrient and Escherichia coli (E. coli) concentrations. The synoptic survey sites were categorized as minimal use, backpacker use, or mixed use (stock and backpackers), depending on the most prevalent type of use upstream from the sampling locations. Sites with mixed use tended to have higher concentrations of most constituents (including E.coli) than those categorized as minimal-use (p≤0.05); concentrations at backpacker-use sites were intermediate. Data from paired-site sampling indicated that E.coli, total coliform, and particulate phosphorus concentrations were greater in streams downstream from mixed-use areas than upstream from those areas (p≤0.05). Paired-site data also indicated few statistically significant differences in nutrient, E. coli, or total coliform concentrations in streams upstream and downstream from backpacker-use areas. The intensive-monitoring data indicated that nutrient and E. coli concentrations normally were low, except during storms, when notable increases in concentrations of E.coli, nutrients, dissolved organic carbon, and turbidity occurred. In summary, results from this study indicate that water quality in SEKI wilderness generally is good, except during storms; and visitor use appears to have a small, but statistically significant influence on stream water quality.

  3. Dopamine and temporal attention: An attentional blink study in Parkinson's disease patients on and off medication.

    PubMed

    Slagter, H A; van Wouwe, N C; Kanoff, K; Grasman, R P P P; Claassen, D O; van den Wildenberg, W P M; Wylie, S A

    2016-10-01

    The current study aimed to shed more light on the role of dopamine in temporal attention. To this end, we pharmacologically manipulated dopamine levels in a large sample of Parkinson's disease patients (n=63) while they performed an attentional blink (AB) task in which they had to identify two targets (T1 and T2) presented in close temporal proximity among distractors. We specifically examined 1) differences in the magnitude of the AB between unmedicated Parkinson patients, who have depleted levels of striatal dopamine, and healthy controls, and 2) effects of two dopaminergic medications (l-DOPA and dopamine agonists) on the AB in the Parkinson patients at the group level and as a function of individual baseline performance. In line with the notion that relatively low levels of striatal dopamine may impair target detection in general, Parkinson patients OFF medications displayed overall poor target perception compared to healthy controls. Moreover, as predicted, effects of dopaminergic medication on AB performance critically depended on individual baseline AB size, although this effect was only observed for l-DOPA. l-DOPA generally decreased the size of the AB in patients with a large baseline AB (i.e., OFF medications), while l-DOPA generally increased the AB in patients with a small baseline AB. These findings may support a role for dopamine in the AB and temporal attention, more generally and corroborate the notion that there is an optimum dopamine level for cognitive function. They also emphasize the need for more studies that examine the separate effects of DA agonists and l-DOPA on cognitive functioning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Temporal changes in sulfate, chloride, and sodium concentrations in four eastern Pennsylvania streams

    USGS Publications Warehouse

    Barker, J.L.

    1986-01-01

    Trend analyses of 20 years or more of chemical quality and streamflow data for four streams in eastern Pennsylvania indicate that sulfate has decreased significantly in three of the four basins studied, while sodium and chloride have generally increased. The majority of chemical quality changes occurred in the late 1950 's and early 1960 's coincident with significant cultural changes. It is believed that these chemical quality changes are presently of little or no environmental consequence, as the concentrations are well within the range of those found in natural waters. Decreases in sulfate follow a regional trend concurrent with the conversion of home and industrial heating units from high to low sulfur coal, gas, and oil. The most significant decreases were observed in those basins severely affected by mine-drainage where pumpage has decreased significantly in the past 25 years, thereby further reducing the sulfur content of the streams. The observed increases in chloride and sodium are attributed to population increases and shifts from rural to suburban communities with concurrent increase in the percentage of the population using municipal waste treatment facilities and the increased use of salt on roadways. The concentrations of dissolved chloride, which are from two to three times higher in recent years, reach a peak in January, coincident with the application of salt to melt ice on the roadways. (USGS)

  5. [Airports and air quality: a critical synthesis of the literature].

    PubMed

    Cattani, Giorgio; Di Menno di Bucchianico, Alessandro; Gaeta, Alessandra; Romani, Daniela; Fontana, Luca; Iavicoli, Ivo

    2014-01-01

    This work reviewed existing literature on airport related activities that could worsen surrounding air quality; its aim is to underline the progress coming from recent-year studies, the knowledge emerging from new approaches, the development of semi-empiric analytical methods as well as the questions still needing to be clarified. To estimate pollution levels, spatial and temporal variability, and the sources relative contributions integrated assessment, using both fixed point measurement and model outputs, are needed. The general picture emerging from the studies was a non-negligible and highly spatially variable (within 2-3 km from the fence line) airport contribution; even if it is often not dominant compared to other concomitant pollution sources. Results were highly airport-specific. Traffic volumes, landscape and meteorology were the key variables that drove the impacts. Results were thus hardly exportable to other contexts. Airport related pollutant sources were found to be characterized by unusual emission patterns (particularly ultrafine particles, black carbon and nitrogen oxides during take-off); high time-resolution measurements allow to depict the rapidly changing take-off effect on air quality that could not be adequately observed otherwise. Few studies used high time resolution data in a successful way as statistical models inputs to estimate the aircraft take-off contribution to the observed average levels. These findings should not be neglected when exposure of people living near airports is to be assessed.

  6. Adaption of cardio-respiratory balance during day-rest compared to deep sleep--an indicator for quality of life?

    PubMed

    von Bonin, Dietrich; Grote, Vincent; Buri, Caroline; Cysarz, Dirk; Heusser, Peter; Moser, Max; Wolf, Ursula; Laederach, Kurt

    2014-11-30

    Heart rate and breathing rate fluctuations represent interacting physiological oscillations. These interactions are commonly studied using respiratory sinus arrhythmia (RSA) of heart rate variability (HRV) or analyzing cardiorespiratory synchronization. Earlier work has focused on a third type of relationship, the temporal ratio of respiration rate and heart rate (HRR). Each method seems to reveal a specific aspect of cardiorespiratory interaction and may be suitable for assessing states of arousal and relaxation of the organism. We used HRR in a study with 87 healthy subjects to determine the ability to relax during 5 day-resting periods in comparison to deep sleep relaxation. The degree to which a person during waking state could relax was compared to somatic complaints, health-related quality of life, anxiety and depression. Our results show, that HRR is barely connected to balance (LF/HF) in HRV, but significantly correlates to the perception of general health and mental well-being as well as to depression. If relaxation, as expressed in HRR, during day-resting is near to deep sleep relaxation, the subjects felt healthier, indicated better mental well-being and less depressive moods. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Trace organic chemical attenuation during managed aquifer recharge: Insights from a variably saturated 2D tank experiment

    NASA Astrophysics Data System (ADS)

    Regnery, Julia; Lee, Jonghyun; Drumheller, Zachary W.; Drewes, Jörg E.; Illangasekare, Tissa H.; Kitanidis, Peter K.; McCray, John E.; Smits, Kathleen M.

    2017-05-01

    Meaningful model-based predictions of water quality and quantity are imperative for the designed footprint of managed aquifer recharge installations. A two-dimensional (2D) synthetic MAR system equipped with automated sensors (temperature, water pressure, conductivity, soil moisture, oxidation-reduction potential) and embedded water sampling ports was used to test and model fundamental subsurface processes during surface spreading managed aquifer recharge operations under controlled flow and redox conditions at the meso-scale. The fate and transport of contaminants in the variably saturated synthetic aquifer were simulated using the finite element analysis model, FEFLOW. In general, the model concurred with travel times derived from contaminant breakthrough curves at individual sensor locations throughout the 2D tank. However, discrepancies between measured and simulated trace organic chemical concentrations (i.e., carbamazepine, sulfamethoxazole, tris (2-chloroethyl) phosphate, trimethoprim) were observed. While the FEFLOW simulation of breakthrough curves captured overall shapes of trace organic chemical concentrations well, the model struggled with matching individual data points, although compound-specific attenuation parameters were used. Interestingly, despite steady-state operation, oxidation-reduction potential measurements indicated temporal disturbances in hydraulic properties in the saturated zone of the 2D tank that affected water quality.

  8. PET motion correction in context of integrated PET/MR: Current techniques, limitations, and future projections.

    PubMed

    Gillman, Ashley; Smith, Jye; Thomas, Paul; Rose, Stephen; Dowson, Nicholas

    2017-12-01

    Patient motion is an important consideration in modern PET image reconstruction. Advances in PET technology mean motion has an increasingly important influence on resulting image quality. Motion-induced artifacts can have adverse effects on clinical outcomes, including missed diagnoses and oversized radiotherapy treatment volumes. This review aims to summarize the wide variety of motion correction techniques available in PET and combined PET/CT and PET/MR, with a focus on the latter. A general framework for the motion correction of PET images is presented, consisting of acquisition, modeling, and correction stages. Methods for measuring, modeling, and correcting motion and associated artifacts, both in literature and commercially available, are presented, and their relative merits are contrasted. Identified limitations of current methods include modeling of aperiodic and/or unpredictable motion, attaining adequate temporal resolution for motion correction in dynamic kinetic modeling acquisitions, and maintaining availability of the MR in PET/MR scans for diagnostic acquisitions. Finally, avenues for future investigation are discussed, with a focus on improvements that could improve PET image quality, and that are practical in the clinical environment. © 2017 American Association of Physicists in Medicine.

  9. Modeling the BOD of Danube River in Serbia using spatial, temporal, and input variables optimized artificial neural network models.

    PubMed

    Šiljić Tomić, Aleksandra N; Antanasijević, Davor Z; Ristić, Mirjana Đ; Perić-Grujić, Aleksandra A; Pocajt, Viktor V

    2016-05-01

    This paper describes the application of artificial neural network models for the prediction of biological oxygen demand (BOD) levels in the Danube River. Eighteen regularly monitored water quality parameters at 17 stations on the river stretch passing through Serbia were used as input variables. The optimization of the model was performed in three consecutive steps: firstly, the spatial influence of a monitoring station was examined; secondly, the monitoring period necessary to reach satisfactory performance was determined; and lastly, correlation analysis was applied to evaluate the relationship among water quality parameters. Root-mean-square error (RMSE) was used to evaluate model performance in the first two steps, whereas in the last step, multiple statistical indicators of performance were utilized. As a result, two optimized models were developed, a general regression neural network model (labeled GRNN-1) that covers the monitoring stations from the Danube inflow to the city of Novi Sad and a GRNN model (labeled GRNN-2) that covers the stations from the city of Novi Sad to the border with Romania. Both models demonstrated good agreement between the predicted and actually observed BOD values.

  10. CMAQ modeling of near-ground ozone pollution during the CAREBeijing-2006 campaign in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, Xuesong; Song, Yu; Zhang, Yuanhang; Hu, Min; Zeng, Limin; Zhu, Tong

    2010-05-01

    The Community Multiscale Air Quality (CMAQ) modeling system, a 3-D regional chemical transport model, was used to simulate the O3 episodes during the Campaign of Air Quality Research in Beijing and surrounding areas in 2006 (CAREBeijing-2006). The model reproduced the temporal and spatial variations of the observed ozone and precursors well during the campaign. The modeling results showed the evolution of near ground O3 and the feature of vertical O3 profile on pollution days with different meteorological conditions. Process analysis was applied to investigate the contributions of local production and regional transport, and found different relative importance at different locations of Beijing. O3-NOx-VOCs sensitivity was also addressed with different precursor emission scenarios. The Beijing downtown area and downwind urban plume were usually in VOC-limited regime, whereas the upwind regions and northern mountain areas were generally characterized by NOx-sensitive chemistry. Ozone production efficiency of NOx was also calculated based on simulation results and compared with that derived from observations. For reducing O3 levels in Beijing, the above results suggest a regional emission control strategy with more emphasis on VOCs reduction in Beijing urban areas.

  11. Recent Efforts to Improve the Near Real Time Forest Disturbance Monitoring Capabilities of the ForWarn System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William; Gasser, Gerald

    2013-01-01

    This presentation discusses the development of anew method for computing NDVI temporal composites from near real time eMODIS data This research is being conducted to improve forest change products used in the ForWarn system for monitoring regional forest disturbances in the United States. ForWarn provides nation-wide NDVI-based forest disturbance detection products that are refreshed every 8 days. Current eMODIS and historical MOD13 24 day NDVI data are used to compute the disturbance detection products. The eMODIS 24 day NDVI data re-aggregated from 7 day NDVI products. The 24 day eMODIS NDVIs are generally cloud free, but do not necessarily use the freshest quality data. To shorten the disturbance detection time, a method has been developed that performs adaptive length/maximum value compositing of eMODIS NDVI, along with cloud and shadow "noise" mitigation. Tests indicate that this method can reduce detection rates by 8-16 days for known recent disturbance events, depending on the cloud frequencies and disturbance type. The noise mitigation in these tests, though imperfect, helped to improve quality of the resulting NDVI and forest change products.

  12. Fractal analysis of narwhal space use patterns.

    PubMed

    Laidre, Kristin L; Heide-Jørgensen, Mads P; Logsdon, Miles L; Hobbs, Roderick C; Dietz, Rune; VanBlaricom, Glenn R

    2004-01-01

    Quantifying animal movement in response to a spatially and temporally heterogeneous environment is critical to understanding the structural and functional landscape influences on population viability. Generalities of landscape structure can easily be extended to the marine environment, as marine predators inhabit a patchy, dynamic system, which influences animal choice and behavior. An innovative use of the fractal measure of complexity, indexing the linearity of movement paths over replicate temporal scales, was applied to satellite tracking data collected from narwhals (Monodon monoceros) (n = 20) in West Greenland and the eastern Canadian high Arctic. Daily movements of individuals were obtained using polar orbiting satellites via the ARGOS data location and collection system. Geographic positions were filtered to obtain a daily good quality position for each whale. The length of total pathway was measured over seven different temporal length scales (step lengths), ranging from one day to one week, and a seasonal mean was calculated. Fractal dimension (D) was significantly different between seasons, highest during summer (D = 1.61, SE 0.04) and winter (D = 1.69, SE 0.06) when whales made convoluted movements in focal areas. Fractal dimension was lowest during fall (D = 1.34, SE 0.03) when whales were migrating south ahead of the forming sea ice. There were no significant effects of size category or sex on fractal dimension by season. The greater linearity of movement during the migration period suggests individuals do not intensively forage on patchy resources until they arrive at summer or winter sites. The highly convoluted movements observed during summer and winter suggest foraging or searching efforts in localized areas. Significant differences between the fractal dimensions on two separate wintering grounds in Baffin Bay suggest differential movement patterns in response to the dynamics of sea ice.

  13. Temporal trends in organic carbon content in the main Swiss rivers, 1974-2010.

    PubMed

    Rodríguez-Murillo, J C; Zobrist, J; Filella, M

    2015-01-01

    Increases in dissolved organic carbon (DOC) concentrations have often been reported in rivers and lakes of the Northern Hemisphere over the last few decades. High-quality organic carbon (OC) concentration data have been used to study the change in DOC and total (TOC) organic carbon concentrations in the main rivers of Switzerland (Rhône, Rhine, Thur and Aar) between 1974 and 2010. These rivers are characterized by high discharge regimes (due to their Alpine origin) and by running in populated areas. Small long term trends (a general statistically significant decrease in TOC and a less clear increase in DOC concentrations), on the order of 1% of mean OC concentration per year, have been observed. An upward trend before 1999 reversed direction to a more marked downward trend from 1999 to 2010. Of the potential causes of OC temporal variation analysed (water temperature, dissolved reactive phosphorus and river discharge), only discharge explains a significant, albeit still small, part of TOC variability (8-31%), while accounting for barely 2.5% of DOC variability. Estimated anthropogenic TOC and DOC loads (treated sewage) to the rivers could account for a maximum of 4-20% of the temporal trends. Such low predictability is a good example of the limitations faced when studying causality and drivers behind small variations in complex systems. River export of OC from Switzerland has decreased significantly over the period. Since about 5.5% of estimated NEP of Switzerland is exported by the rivers, riverine OC fluxes should be taken into account in a detailed carbon budget of the country. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Moody, Eric G.; Schaaf, Crystal B.; Platnick, Steven

    2006-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. , Over five years of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA s Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface s radiative characteristics. However, roughly 30% of the global land surface, on an annual equal-angle basis, is obscured due to persistent and transient cloud cover, while another 207% is obscured due to ephemeral and seasonal snow effects. This precludes the MOD43B3 albedo products from being directly used in some remote sensing and ground-based applications, climate models, and global change research projects. To provide researchers with the requisite spatially complete global snow-free land surface albedo dataset, an ecosystem-dependent temporal interpolation technique was developed to fill missing or lower quality data and snow covered values from the official MOD43B3 dataset with geophysically realistic values. The method imposes pixel-level and local regional ecosystem-dependent phenological behavior onto retrieved pixel temporal data in such a way as to maintain pixel-level spatial and spectral detail and integrity. The phenological curves are derived from statistics based on the MODIS MOD12Q1 IGBP land cover classification product geolocated with the MOD43B3 data.

  15. Simulating smoke transport from wildland fires with a regional-scale air quality model: sensitivity to spatiotemporal allocation of fire emissions.

    PubMed

    Garcia-Menendez, Fernando; Hu, Yongtao; Odman, Mehmet T

    2014-09-15

    Air quality forecasts generated with chemical transport models can provide valuable information about the potential impacts of fires on pollutant levels. However, significant uncertainties are associated with fire-related emission estimates as well as their distribution on gridded modeling domains. In this study, we explore the sensitivity of fine particulate matter concentrations predicted by a regional-scale air quality model to the spatial and temporal allocation of fire emissions. The assessment was completed by simulating a fire-related smoke episode in which air quality throughout the Atlanta metropolitan area was affected on February 28, 2007. Sensitivity analyses were carried out to evaluate the significance of emission distribution among the model's vertical layers, along the horizontal plane, and into hourly inputs. Predicted PM2.5 concentrations were highly sensitive to emission injection altitude relative to planetary boundary layer height. Simulations were also responsive to the horizontal allocation of fire emissions and their distribution into single or multiple grid cells. Additionally, modeled concentrations were greatly sensitive to the temporal distribution of fire-related emissions. The analyses demonstrate that, in addition to adequate estimates of emitted mass, successfully modeling the impacts of fires on air quality depends on an accurate spatiotemporal allocation of emissions. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Episodic air quality impacts of plug-in electric vehicles

    NASA Astrophysics Data System (ADS)

    Razeghi, Ghazal; Carreras-Sospedra, Marc; Brown, Tim; Brouwer, Jack; Dabdub, Donald; Samuelsen, Scott

    2016-07-01

    In this paper, the Spatially and Temporally Resolved Energy and Environment Tool (STREET) is used in conjunction with University of California Irvine - California Institute of Technology (UCI-CIT) atmospheric chemistry and transport model to assess the impact of deploying plug-in electric vehicles and integrating wind energy into the electricity grid on urban air quality. STREET is used to generate emissions profiles associated with transportation and power generation sectors for different future cases. These profiles are then used as inputs to UCI-CIT to assess the impact of each case on urban air quality. The results show an overall improvement in 8-h averaged ozone and 24-h averaged particulate matter concentrations in the South Coast Air Basin (SoCAB) with localized increases in some cases. The most significant reductions occur northeast of the region where baseline concentrations are highest (up to 6 ppb decrease in 8-h-averaged ozone and 6 μg/m3 decrease in 24-h-averaged PM2.5). The results also indicate that, without integration of wind energy into the electricity grid, the temporal vehicle charging profile has very little to no effect on urban air quality. With the addition of wind energy to the grid mix, improvement in air quality is observed while charging at off-peak hours compared to the business as usual scenario.

  17. Space-time light field rendering.

    PubMed

    Wang, Huamin; Sun, Mingxuan; Yang, Ruigang

    2007-01-01

    In this paper, we propose a novel framework called space-time light field rendering, which allows continuous exploration of a dynamic scene in both space and time. Compared to existing light field capture/rendering systems, it offers the capability of using unsynchronized video inputs and the added freedom of controlling the visualization in the temporal domain, such as smooth slow motion and temporal integration. In order to synthesize novel views from any viewpoint at any time instant, we develop a two-stage rendering algorithm. We first interpolate in the temporal domain to generate globally synchronized images using a robust spatial-temporal image registration algorithm followed by edge-preserving image morphing. We then interpolate these software-synchronized images in the spatial domain to synthesize the final view. In addition, we introduce a very accurate and robust algorithm to estimate subframe temporal offsets among input video sequences. Experimental results from unsynchronized videos with or without time stamps show that our approach is capable of maintaining photorealistic quality from a variety of real scenes.

  18. Smoothed spectra for enhanced dispersion-free pulse duration reduction of passively Q-switched microchip lasers.

    PubMed

    Lehneis, R; Jauregui, C; Steinmetz, A; Limpert, J; Tünnermann, A

    2014-02-01

    We present an enhanced technique for dispersion-free pulse shortening, which exploits the interplay of different third-order nonlinear effects in a waveguide structure. When exceeding a certain value of the pulse energy coupled into the waveguide, the typical oscillations of self-phase modulation (SPM)-broadened spectra vanish during pulse propagation. Such smoothed spectra ensure a high pulse quality of the spectrally filtered and, therefore, temporally shortened pulses independently of the filtering position. A reduction of the pulse duration from 138 to 24 ps has been achieved while preserving a high temporal quality. To the best of our knowledge, the nonlinear smoothing of SPM-broadened spectra is used in the context of dispersion-free pulse duration reduction for the first time.

  19. Programming of Multicomponent Temporal Release Profiles in 3D Printed Polypills via Core-Shell, Multilayer, and Gradient Concentration Profiles.

    PubMed

    Haring, Alexander P; Tong, Yuxin; Halper, Justin; Johnson, Blake N

    2018-06-10

    Additive manufacturing (AM) appears poised to provide novel pharmaceutical technology and controlled release systems, yet understanding the effects of processing and post-processing operations on pill design, quality, and performance remains a significant barrier. This paper reports a study of the relationship between programmed concentration profile and resultant temporal release profile using a 3D printed polypill system consisting of a Food and Drug Administration (FDA) approved excipient (Pluronic F-127) and therapeutically relevant dosages of three commonly used oral agents for treatment of type 2 diabetes (300-500 mg per pill). A dual-extrusion hydrogel microextrusion process enables the programming of three unique concentration profiles, including core-shell, multilayer, and gradient structures. Experimental and computational studies of diffusive mass transfer processes reveal that programmed concentration profiles are dynamic throughout both pill 3D printing and solidification. Spectrophotometric assays show that the temporal release profiles could be selectively programmed to exhibit delayed, pulsed, or constant profiles over a 5 h release period by utilizing the core-shell, multilayer, and gradient distributions, respectively. Ultimately, this work provides new insights into the mass transfer processes that affect design, quality, and performance of spatially graded controlled release systems, as well as demonstrating the potential to create disease-specific polypill technology with programmable temporal release profiles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dynamic CT perfusion imaging of the myocardium: a technical note on improvement of image quality.

    PubMed

    Muenzel, Daniela; Kabus, Sven; Gramer, Bettina; Leber, Vivian; Vembar, Mani; Schmitt, Holger; Wildgruber, Moritz; Fingerle, Alexander A; Rummeny, Ernst J; Huber, Armin; Noël, Peter B

    2013-01-01

    To improve image and diagnostic quality in dynamic CT myocardial perfusion imaging (MPI) by using motion compensation and a spatio-temporal filter. Dynamic CT MPI was performed using a 256-slice multidetector computed tomography scanner (MDCT). Data from two different patients-with and without myocardial perfusion defects-were evaluated to illustrate potential improvements for MPI (institutional review board approved). Three datasets for each patient were generated: (i) original data (ii) motion compensated data and (iii) motion compensated data with spatio-temporal filtering performed. In addition to the visual assessment of the tomographic slices, noise and contrast-to-noise-ratio (CNR) were measured for all data. Perfusion analysis was performed using time-density curves with regions-of-interest (ROI) placed in normal and hypoperfused myocardium. Precision in definition of normal and hypoperfused areas was determined in corresponding coloured perfusion maps. The use of motion compensation followed by spatio-temporal filtering resulted in better alignment of the cardiac volumes over time leading to a more consistent perfusion quantification and improved detection of the extend of perfusion defects. Additionally image noise was reduced by 78.5%, with CNR improvements by a factor of 4.7. The average effective radiation dose estimate was 7.1±1.1 mSv. The use of motion compensation and spatio-temporal smoothing will result in improved quantification of dynamic CT MPI using a latest generation CT scanner.

  1. Spatial and Temporal Dynamics in Air Pollution Exposure Assessment

    PubMed Central

    Dias, Daniela; Tchepel, Oxana

    2018-01-01

    Analyzing individual exposure in urban areas offers several challenges where both the individual’s activities and air pollution levels demonstrate a large degree of spatial and temporal dynamics. This review article discusses the concepts, key elements, current developments in assessing personal exposure to urban air pollution (seventy-two studies reviewed) and respective advantages and disadvantages. A new conceptual structure to organize personal exposure assessment methods is proposed according to two classification criteria: (i) spatial-temporal variations of individuals’ activities (point-fixed or trajectory based) and (ii) characterization of air quality (variable or uniform). This review suggests that the spatial and temporal variability of urban air pollution levels in combination with indoor exposures and individual’s time-activity patterns are key elements of personal exposure assessment. In the literature review, the majority of revised studies (44 studies) indicate that the trajectory based with variable air quality approach provides a promising framework for tackling the important question of inter- and intra-variability of individual exposure. However, future quantitative comparison between the different approaches should be performed, and the selection of the most appropriate approach for exposure quantification should take into account the purpose of the health study. This review provides a structured basis for the intercomparing of different methodologies and to make their advantages and limitations more transparent in addressing specific research objectives. PMID:29558426

  2. Determinants of STD epidemics: implications for phase appropriate intervention strategies.

    PubMed

    Aral, S O

    2002-04-01

    Determinants of evolving epidemics of sexually transmitted diseases (STD) are equally influenced by the evolution of the STD epidemics themselves and by the evolution of human societies. A temporal approach to STD transmission dynamics suggests the need to monitor infectivity, rate of exposure between infected and susceptible individuals, and duration of infectiousness in societies. Different indicators may be used to monitor rate of exposure in the general population and in core groups. In addition, underlying determinants of STD epidemics such as poverty, inequality, racial/ethnic discrimination, unemployment, sex ratio, volume of migration, and health care coverage and quality are important variables to monitor through a surveillance system focused on social context. Ongoing large scale societal changes including urbanisation, globalisation, increasing inequality, and increasing volume of migrant populations may affect the evolution of STD epidemics. Globalised STD epidemics could pose a major challenge to local public health systems.

  3. Hand classification of fMRI ICA noise components.

    PubMed

    Griffanti, Ludovica; Douaud, Gwenaëlle; Bijsterbosch, Janine; Evangelisti, Stefania; Alfaro-Almagro, Fidel; Glasser, Matthew F; Duff, Eugene P; Fitzgibbon, Sean; Westphal, Robert; Carone, Davide; Beckmann, Christian F; Smith, Stephen M

    2017-07-01

    We present a practical "how-to" guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check the results of unsupervised ones or to manually clean the data. In this paper we describe the main spatial and temporal features of ICs and provide general guidelines on how to evaluate these. Examples of signal and noise components are provided from a wide range of datasets (3T data, including examples from the UK Biobank and the Human Connectome Project, and 7T data), together with practical guidelines for their identification. Finally, we discuss how the data quality, data type and preprocessing can influence the characteristics of the ICs and present examples of particularly challenging datasets. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Effects of urban land-use change on streamflow and water quality in Oakland County, Michigan, 1970-2003, as inferred from urban gradient and temporal analysis

    USGS Publications Warehouse

    Aichele, Stephen S.

    2005-01-01

    This apparent contradiction may be caused by the differences in the changes measured in each analysis. The change-through-time approach describes change from a fixed starting point of approximately 1970; the gradient approach describes the cumulative effect of all change up to approximately 2000. These findings indicate that although urbanization in Oakland County results in most of the effects observed in the literature, as evidenced in the gradient approach, relatively few of the anticipated effects have been observed during the past three decades. This relative stability despite rapid land-cover change may be related to efforts to mitigate the effects of development and a general decrease in the density of new residential development. It may also be related to external factors such as climate variability and reduced atmospheric deposition of specific chemicals. 

  5. What are we monitoring and why? Using geomorphic principles to frame eco-hydrological assessments of river condition.

    PubMed

    Brierley, Gary; Reid, Helen; Fryirs, Kirstie; Trahan, Nadine

    2010-04-01

    Monitoring and assessment are integral components in adaptive management programmes that strive to improve the condition of river systems. Unfortunately, these procedures are generally applied with an emphasis upon biotic attributes and water quality, with limited regard for the geomorphic structure, function and evolutionary trajectory of a river system. Geomorphic principles convey an understanding of the landscape context within which ecohydrologic processes interact. Collectively, geo-eco-hydrologic understanding presents a coherent biophysical template that can be used to frame spatially and temporally rigorous approaches to monitoring that respect the inherent diversity, variability and complexity of any given river system. This understanding aids the development of management programmes that 'work with nature.' Unless an integrative perspective is used to monitor river condition, conservation and rehabilitation plans are unlikely to reach their true potential. (c) 2010 Elsevier B.V. All rights reserved.

  6. Spatial and temporal trends of contaminants in eggs of wading birds from San Francisco Bay, California

    USGS Publications Warehouse

    Hothem, R.L.; Roster, D.L.; King, K.A.; Keldsen, T.J.; Marois, Katherine C.; Wainwright, S.E.

    1995-01-01

    Between 1989 and 1991, reproduction by black-crowned night-herons (Nycticorax nycticorax) and snowy egrets (Egretta thula) was studied at sites in San Francisco Bay. Eggs were collected from these and other bay sites and from South Wilbur Flood Area, a reference site in California's San Joaquin Valley. Eggs were analyzed for inorganic trace elements, organochlorine pesticides, and polychlorinated biphenyls (PCBs). Results were compared among sites and years and with results of previous studies. There was some evidence of impaired reproduction, but concentrations of contaminants were generally lower than threshold levels for such effects. Egg hatchability was generally good, with predation being the factor that most limited reproductive success. Mean PCB concentrations were generally higher in eggs from the south end of San Francisco Bay than from the north, but the only temporal change, an increase, was observed at Alcatraz Island. There were spatial differences for p,p'-DDE in night-heron eggs in 1990, but the highest mean concentration of DDE was in night-heron eggs from South Wilbur in 1991. Temporal declines in maximum concentrations of DDE in eggs were observed in the bay, but means did not change significantly over time, At Bair Island in the southern end of the bay, mean concentrations of mercury decreased while selenium increased in night-heron eggs over time, but there were no clear bay-wide spatial or temporal trends for either element.

  7. A 2D MTF approach to evaluate and guide dynamic imaging developments.

    PubMed

    Chao, Tzu-Cheng; Chung, Hsiao-Wen; Hoge, W Scott; Madore, Bruno

    2010-02-01

    As the number and complexity of partially sampled dynamic imaging methods continue to increase, reliable strategies to evaluate performance may prove most useful. In the present work, an analytical framework to evaluate given reconstruction methods is presented. A perturbation algorithm allows the proposed evaluation scheme to perform robustly without requiring knowledge about the inner workings of the method being evaluated. A main output of the evaluation process consists of a two-dimensional modulation transfer function, an easy-to-interpret visual rendering of a method's ability to capture all combinations of spatial and temporal frequencies. Approaches to evaluate noise properties and artifact content at all spatial and temporal frequencies are also proposed. One fully sampled phantom and three fully sampled cardiac cine datasets were subsampled (R = 4 and 8) and reconstructed with the different methods tested here. A hybrid method, which combines the main advantageous features observed in our assessments, was proposed and tested in a cardiac cine application, with acceleration factors of 3.5 and 6.3 (skip factors of 4 and 8, respectively). This approach combines features from methods such as k-t sensitivity encoding, unaliasing by Fourier encoding the overlaps in the temporal dimension-sensitivity encoding, generalized autocalibrating partially parallel acquisition, sensitivity profiles from an array of coils for encoding and reconstruction in parallel, self, hybrid referencing with unaliasing by Fourier encoding the overlaps in the temporal dimension and generalized autocalibrating partially parallel acquisition, and generalized autocalibrating partially parallel acquisition-enhanced sensitivity maps for sensitivity encoding reconstructions.

  8. Land use in, and water quality of, the Pea Hill Arm of Lake Gaston, Virginia and North Carolina, 1988-90

    USGS Publications Warehouse

    Woodside, Michael D.

    1994-01-01

    The City of Virginia Beach currently (1994) supplies water to about 400,000 people in southeastern Virginia. The city plans to withdraw water from the Pea Hill Arm of Lake Gaston to meet projected water needs of the population to the year 2030. The purpose of this report is to (1) describe the temporal and spatial distribution of selected water-quality constituents, (2) document current (1989) land use and land cover in the Pea Hill Arm drainage basin, and (3) discuss relations, if any, between the quality of water in the inlets within the Pea Hill Arm and land uses. The report focuses on water-quality problems in the basin, including changes in concentrations of major ions, nutrients, and algae associated with urban development adjacent to water bodies.The Pea Hill Arm was classified as mesotrophic on the basis of the range of concentrations of total phosphorus (0.001 to 0.61 milligrams per liter); the range of concentrations of total organic-plus-ammonia nitrogen (0.2 to 1.4 milligrams per liter); and the range of concentrations of chlorophyll a (1.4 to 56 micrograms per liter). These water-quality data were collected at 3 feet below the water surface during water years 1989-90.Thermal stratification in Pea Hill Arm generally began in April and ended in September. Water below a depth of about 25 feet generally became anoxic by June. Destratification generally began in late September and was completed by November. Lake Gaston followed the same general stratification and destratification pattern as Pea Hill Arm, except Lake Gaston was partially destratified during the summer when large amounts of water were released from John H. Kerr Reservoir and Lake Gaston Dams. During water year 1988, streamflows were 33 percent below the long-term mean-annual streamflows at one of the major streams to Lake Gaston. Low streamflows contributed to elevated specific conductances and concentrations of sodium, calcium, magnesium, and alkalinity from October 1988 to February 1989 at sampling stations in the Pea Hill Arm and Lake Gaston.About 75 percent of the land use in the Pea Hill Arm is forest land. The remaining 25 percent of the Pea Hill Arm drainage basin is 8 percent pasture/open land, 8 percent open water, 6 percent residential land, and 3 percent cropland. No statistical relations are present between water-quality constituents measured and developed land uses within 11 basins in the Pea Hill Arm Basin, except during periods of stormwater runoff. During a stormwater-runoff event, there was a relation between total nitrite plus nitrate and land use (Kendall's tau correlation coefficient of 0.69). The relation between the developed land use and total nitrite plus nitrate can also be related to the increased ground-water inputs during high base-flow periods.Spatial differences in water-quality constituents as determined by Wilcoxon (matched-pairs) signed-rank tests and cluster analyses were longitudinal and primarily grouped into riverine, transition, and lacustrine zones. These zones were grouped on the basis of flow characteristics and nutrient concentrations.

  9. The influence of canopy, sky condition, and solar angle on light quality in a longleaf pine woodland

    Treesearch

    Stephen D. Pecot; Stephen B. Horsley; Michael A. Battaglia; Robert J. Mitchell

    2005-01-01

    Light transmittance estimates under open, heterogeneous woodland canopies such as those of longleaf pine (Pinus palustris Mill.) forests report high spatial and temporal variation in the quantity of the light environment. In addition, light quality, that is, the ratio of red to far-red light (R:FR), regulates important aspects of plant...

  10. Low-Cost Sensor Units for Measuring Urban Air Quality

    NASA Astrophysics Data System (ADS)

    Popoola, O. A.; Mead, M.; Stewart, G.; Hodgson, T.; McLoed, M.; Baldovi, J.; Landshoff, P.; Hayes, M.; Calleja, M.; Jones, R.

    2010-12-01

    Measurements of selected key air quality gases (CO, NO & NO2) have been made with a range of miniature low-cost sensors based on electrochemical gas sensing technology incorporating GPS and GPRS for position and communication respectively. Two types of simple to operate sensors units have been designed to be deployed in relatively large numbers. Mobile handheld sensor units designed for operation by members of the public have been deployed on numerous occasions including in Cambridge, London and Valencia. Static sensor units have also been designed for long-term autonomous deployment on existing street furniture. A study was recently completed in which 45 sensor units were deployed in the Cambridge area for a period of 3 months. Results from these studies indicate that air quality varies widely both spatially and temporally. The widely varying concentrations found suggest that the urban environment cannot be fully understood using limited static site (AURN) networks and that a higher resolution, more dispersed network is required to better define air quality in the urban environment. The results also suggest that higher spatial and temporal resolution measurements could improve knowledge of the levels of individual exposure in the urban environment.

  11. Modelling spatio-temporal heterogeneities in groundwater quality in Ghana: a multivariate chemometric approach.

    PubMed

    Armah, Frederick Ato; Paintsil, Arnold; Yawson, David Oscar; Adu, Michael Osei; Odoi, Justice O

    2017-08-01

    Chemometric techniques were applied to evaluate the spatial and temporal heterogeneities in groundwater quality data for approximately 740 goldmining and agriculture-intensive locations in Ghana. The strongest linear and monotonic relationships occurred between Mn and Fe. Sixty-nine per cent of total variance in the dataset was explained by four variance factors: physicochemical properties, bacteriological quality, natural geologic attributes and anthropogenic factors (artisanal goldmining). There was evidence of significant differences in means of all trace metals and physicochemical parameters (p < 0.001) between goldmining and non-goldmining locations. Arsenic and turbidity produced very high value F's demonstrating that 'physical properties and chalcophilic elements' was the function that most discriminated between non-goldmining and goldmining locations. Variations in Escherichia coli and total coliforms were observed between the dry and wet seasons. The overall predictive accuracy of the discriminant function showed that non-goldmining locations were classified with slightly better accuracy (89%) than goldmining areas (69.6%). There were significant differences between the underlying distributions of Cd, Mn and Pb in the wet and dry seasons. This study emphasizes the practicality of chemometrics in the assessment and elucidation of complex water quality datasets to promote effective management of groundwater resources for sustaining human health.

  12. Impact of city effluents on water quality of Indus River: assessment of temporal and spatial variations in the southern region of Khyber Pakhtunkhwa, Pakistan.

    PubMed

    Khan, Ilham; Khan, Azim; Khan, Muhammad Sohail; Zafar, Shabnam; Hameed, Asma; Badshah, Shakeel; Rehman, Shafiq Ur; Ullah, Hidayat; Yasmeen, Ghazala

    2018-04-04

    The impact of city effluents on water quality of Indus River was assessed in the southern region of Khyber Pakhtunkhwa, Pakistan. Water samples were collected in dry (DS) and wet (WS) seasons from seven sampling zones along Indus River and the physical, bacteriological, and chemical parameters determining water quality were quantified. There were marked temporal and spatial variations in the water quality of Indus River. The magnitude of pollution was high in WS compared with DS. The quality of water varied across the sampling zones, and it greatly depended upon the nature of effluents entering the river. Water samples exceeded the WHO permissible limits for pH, EC, TDS, TS, TSS, TH, DO, BOD, COD, total coliforms, Escherichia coli, Ca 2+ , Mg 2+ , NO 3 - , and PO 4 2- . Piper analysis indicated that water across the seven sampling zones along Indus River was alkaline in nature. Correlation analyses indicated that EC, TDS, TS, TH, DO, BOD, and COD may be considered as key physical parameters, while Na + , K + , Ca 2+ , Mg 2+ , Cl - , F - , NO 3 - , PO 4 2- , and SO 4 2- as key chemical parameters determining water quality, because they were strongly correlated (r > 0.70) with most of the parameters studied. Cluster analysis indicated that discharge point at Shami Road is the major source of pollution impairing water quality of Indus River. Wastewater treatment plants must be installed at all discharge points along Indus River for protecting the quality of water of this rich freshwater resource in Pakistan.

  13. Sex and Age Differences in Future Temporal Perspective.

    ERIC Educational Resources Information Center

    Grant, Edward; Sawler, Joyce

    This study explored sex differences in the Future Temporal Perspectives (FTP) of children. The influences of age, social class and intelligence were also investigated, or FTP was generally believed to be affected by them. Subjects were 96 boys and 96 girls, selected from 26 schools in Nova Scotia, from three age groups: 9.6-11.0, 12.0-13.6, and…

  14. The Interaction of Temporal Generalization Gradients Predicts the Context Effect

    ERIC Educational Resources Information Center

    de Castro, Ana Catarina; Machado, Armando

    2012-01-01

    In a temporal double bisection task, animals learn two discriminations. In the presence of Red and Green keys, responses to Red are reinforced after 1-s samples and responses to Green are reinforced after 4-s samples; in the presence of Blue and Yellow keys, responses to Blue are reinforced after 4-s samples and responses to Yellow are reinforced…

  15. Short-Term Memory for Time in Children and Adults: A Behavioral Study and a Model

    ERIC Educational Resources Information Center

    Droit-Volet, Sylvie; Wearden, John; Delgado-Yonger, Maria

    2007-01-01

    This experiment investigated the effect of the short-term retention of duration on temporal discrimination in 5- and 8-year-olds, as well as in adults, by using an episodic temporal generalization task. In each age group, the participants' task was to compare two successive durations (a standard and a comparison duration) separated by a retention…

  16. Postictal aphasia and paresis: a clinical and intracerebral EEG study.

    PubMed

    Adam, C; Adam, C; Rouleau, I; Saint-Hilaire, J M

    2000-02-01

    We examined the lateralizing value of postictal language and motor deficits and studied their underlying mechanisms. The total sample consisted of 35 patients (26 temporals, 8 frontals, 1 parietal) with a good postsurgical outcome (Engel's class I and II). Postictal examination was blindly reviewed on videotapes. In 15 cases (29 seizures), postictal language manifestations were analyzed in relation with the diffusion of the epileptic discharge recorded by intracerebral EEG. Language dominance was determined by the intracarotid amobarbital test. Postictal aphasia was observed only when (1) seizure originated in the dominant hemisphere and (2) ictal activity spread to language areas (Wernicke and/or Broca areas). When the epileptic focus was in the nondominant hemisphere, no postictal aphasia was observed even if there was secondary generalization of ictal activity affecting the language areas of the dominant hemisphere. Postictal motor deficits also had a strong lateralizing value even when seizures were secondarily generalized. Postictal aphasia in temporal epilepsies and postical motor deficits in temporal and extra temporal epilepsies provided excellent lateralizing information. Postictal deficits appear to be the result of inhibitory mechanisms induced by previous ictal activity of the structures related to these functions.

  17. Decoding-Accuracy-Based Sequential Dimensionality Reduction of Spatio-Temporal Neural Activities

    NASA Astrophysics Data System (ADS)

    Funamizu, Akihiro; Kanzaki, Ryohei; Takahashi, Hirokazu

    Performance of a brain machine interface (BMI) critically depends on selection of input data because information embedded in the neural activities is highly redundant. In addition, properly selected input data with a reduced dimension leads to improvement of decoding generalization ability and decrease of computational efforts, both of which are significant advantages for the clinical applications. In the present paper, we propose an algorithm of sequential dimensionality reduction (SDR) that effectively extracts motor/sensory related spatio-temporal neural activities. The algorithm gradually reduces input data dimension by dropping neural data spatio-temporally so as not to undermine the decoding accuracy as far as possible. Support vector machine (SVM) was used as the decoder, and tone-induced neural activities in rat auditory cortices were decoded into the test tone frequencies. SDR reduced the input data dimension to a quarter and significantly improved the accuracy of decoding of novel data. Moreover, spatio-temporal neural activity patterns selected by SDR resulted in significantly higher accuracy than high spike rate patterns or conventionally used spatial patterns. These results suggest that the proposed algorithm can improve the generalization ability and decrease the computational effort of decoding.

  18. Fibromyalgia Is Correlated with Retinal Nerve Fiber Layer Thinning.

    PubMed

    Garcia-Martin, Elena; Garcia-Campayo, Javier; Puebla-Guedea, Marta; Ascaso, Francisco J; Roca, Miguel; Gutierrez-Ruiz, Fernando; Vilades, Elisa; Polo, Vicente; Larrosa, Jose M; Pablo, Luis E; Satue, Maria

    2016-01-01

    To investigate whether fibromyalgia induces axonal damage in the optic nerve that can be detected using optical coherence tomography (OCT), as the retinal nerve fiber layer (RNFL) is atrophied in patients with fibromyalgia compared with controls. Fibromyalgia patients (n = 116) and age-matched healthy controls (n = 144) were included in this observational and prospective cohort study. All subjects underwent visual acuity measurement and structural analysis of the RNFL using two OCT devices (Cirrus and Spectralis). Fibromyalgia patients were evaluated according to Giesecke's fibromyalgia subgroups, the Fibromyalgia Impact Questionnaire (FIQ), and the European Quality of Life-5 Dimensions (EQ5D) scale. We compared the differences between fibromyalgia patients and controls, and analyzed the correlations between OCT measurements, disease duration, fibromyalgia subgroups, severity, and quality of life. The impact on quality of life in fibromyalgia subgroups and in patients with different disease severity was also analyzed. A significant decrease in the RNFL was detected in fibromyalgia patients compared with controls using the two OCT devices: Cirrus OCT ganglion cell layer analysis registered a significant decrease in the minimum thickness of the inner plexiform layer (74.99±16.63 vs 79.36±3.38 μm, respectively; p = 0.023), nasal inferior, temporal inferior and temporal superior sectors (p = 0.040; 0.011 and 0.046 respectively). The Glaucoma application of the Spectralis OCT revealed thinning in the nasal, temporal inferior and temporal superior sectors (p = 0.009, 0.006, and 0.002 respectively) of fibromyalgia patients and the Axonal application in all sectors, except the nasal superior and temporal sectors. The odds ratio (OR) to estimate the size effect of FM in RNFL thickness was 1.39. RNFL atrophy was detected in patients with FIQ scores <60 (patients in early disease stages) compared with controls in the temporal inferior sector (78.74±17.75 vs 81.65±3.61; p = 0.020) and the temporal superior sector (78.20±14.50 vs 80.74±3.88; p = 0.039) with Cirrus OCT; in the temporal inferior sector (145.85±24.32 vs 150.18±19.71; p = 0.012) and temporal superior sector (131.54±20.53 vs 138.13±16.67; p = 0.002) with the Glaucoma application of the Spectralis OCT; and in all sectors, except the average, nasal superior, and temporal sectors, and parameters with the Axonal application of the Spectralis OCT. Temporal inferior RNFL thickness was significantly reduced in patients with severe fibromyalgia (FIQ≥60) compared with patients with mild fibromyalgia (FIQ<60; 145.85±24.32 vs 138.99±18.09 μm, respectively; 145.43±13.21 vs 139.85±13.09 μm, p = 0.032 with the Glaucoma application and p = 0.021 with the Axonal application). The subgroup with biologic fibromyalgia exhibited significant thinning in the temporal inferior and superior sectors (115.17±20.82 μm and 117.05±24.19 μm, respectively) compared with the depressive (130.83±22.97 μm and 127.71±26.10 μm, respectively) and atypical (128.60±26.54 μm and 125.55±23.65 μm, respectively) subgroups (p = 0.005 and 0.001 respectively). Fibromyalgia causes subclinical axonal damage in the RNFL that can be detected using innocuous and non-invasive OCT, even in the early disease stages. The impact on the RNFL in the temporal sectors is greater in patients with biologic fibromyalgia, suggesting the presence of neurodegenerative processes in this subgroup of patients with fibromyalgia.

  19. Fibromyalgia Is Correlated with Retinal Nerve Fiber Layer Thinning

    PubMed Central

    Garcia-Martin, Elena; Garcia-Campayo, Javier; Puebla-Guedea, Marta; Ascaso, Francisco J.; Roca, Miguel; Gutierrez-Ruiz, Fernando; Vilades, Elisa; Polo, Vicente; Larrosa, Jose M.; Pablo, Luis E.; Satue, Maria

    2016-01-01

    Objective To investigate whether fibromyalgia induces axonal damage in the optic nerve that can be detected using optical coherence tomography (OCT), as the retinal nerve fiber layer (RNFL) is atrophied in patients with fibromyalgia compared with controls. Methods Fibromyalgia patients (n = 116) and age-matched healthy controls (n = 144) were included in this observational and prospective cohort study. All subjects underwent visual acuity measurement and structural analysis of the RNFL using two OCT devices (Cirrus and Spectralis). Fibromyalgia patients were evaluated according to Giesecke’s fibromyalgia subgroups, the Fibromyalgia Impact Questionnaire (FIQ), and the European Quality of Life-5 Dimensions (EQ5D) scale. We compared the differences between fibromyalgia patients and controls, and analyzed the correlations between OCT measurements, disease duration, fibromyalgia subgroups, severity, and quality of life. The impact on quality of life in fibromyalgia subgroups and in patients with different disease severity was also analyzed. Results A significant decrease in the RNFL was detected in fibromyalgia patients compared with controls using the two OCT devices: Cirrus OCT ganglion cell layer analysis registered a significant decrease in the minimum thickness of the inner plexiform layer (74.99±16.63 vs 79.36±3.38 μm, respectively; p = 0.023), nasal inferior, temporal inferior and temporal superior sectors (p = 0.040; 0.011 and 0.046 respectively). The Glaucoma application of the Spectralis OCT revealed thinning in the nasal, temporal inferior and temporal superior sectors (p = 0.009, 0.006, and 0.002 respectively) of fibromyalgia patients and the Axonal application in all sectors, except the nasal superior and temporal sectors. The odds ratio (OR) to estimate the size effect of FM in RNFL thickness was 1.39. RNFL atrophy was detected in patients with FIQ scores <60 (patients in early disease stages) compared with controls in the temporal inferior sector (78.74±17.75 vs 81.65±3.61; p = 0.020) and the temporal superior sector (78.20±14.50 vs 80.74±3.88; p = 0.039) with Cirrus OCT; in the temporal inferior sector (145.85±24.32 vs 150.18±19.71; p = 0.012) and temporal superior sector (131.54±20.53 vs 138.13±16.67; p = 0.002) with the Glaucoma application of the Spectralis OCT; and in all sectors, except the average, nasal superior, and temporal sectors, and parameters with the Axonal application of the Spectralis OCT. Temporal inferior RNFL thickness was significantly reduced in patients with severe fibromyalgia (FIQ≥60) compared with patients with mild fibromyalgia (FIQ<60; 145.85±24.32 vs 138.99±18.09 μm, respectively; 145.43±13.21 vs 139.85±13.09 μm, p = 0.032 with the Glaucoma application and p = 0.021 with the Axonal application). The subgroup with biologic fibromyalgia exhibited significant thinning in the temporal inferior and superior sectors (115.17±20.82 μm and 117.05±24.19 μm, respectively) compared with the depressive (130.83±22.97 μm and 127.71±26.10 μm, respectively) and atypical (128.60±26.54 μm and 125.55±23.65 μm, respectively) subgroups (p = 0.005 and 0.001 respectively). Conclusions Fibromyalgia causes subclinical axonal damage in the RNFL that can be detected using innocuous and non-invasive OCT, even in the early disease stages. The impact on the RNFL in the temporal sectors is greater in patients with biologic fibromyalgia, suggesting the presence of neurodegenerative processes in this subgroup of patients with fibromyalgia. PMID:27584145

  20. Modeling Spatial and Temporal Variability in Ammonia Emissions from Agricultural Fertilization

    NASA Astrophysics Data System (ADS)

    Balasubramanian, S.; Koloutsou-Vakakis, S.; Rood, M. J.

    2013-12-01

    Ammonia (NH3), is an important component of the reactive nitrogen cycle and a precursor to formation of atmospheric particulate matter (PM). Predicting regional PM concentrations and deposition of nitrogen species to ecosystems requires representative emission inventories. Emission inventories have traditionally been developed using top down approaches and more recently from data assimilation based on satellite and ground based ambient concentrations and wet deposition data. The National Emission Inventory (NEI) indicates agricultural fertilization as the predominant contributor (56%) to NH3 emissions in Midwest USA, in 2002. However, due to limited understanding of the complex interactions between fertilizer usage, farm practices, soil and meteorological conditions and absence of detailed statistical data, such emission estimates are currently based on generic emission factors, time-averaged temporal factors and coarse spatial resolution. Given the significance of this source, our study focuses on developing an improved NH3 emission inventory for agricultural fertilization at finer spatial and temporal scales for air quality modeling studies. Firstly, a high-spatial resolution 4 km x 4 km NH3 emission inventory for agricultural fertilization has been developed for Illinois by modifying spatial allocation of emissions based on combining crop-specific fertilization rates with cropland distribution in the Sparse Matrix Operator Kernel Emissions model. Net emission estimates of our method are within 2% of NEI, since both methods are constrained by fertilizer sales data. However, we identified localized crop-specific NH3 emission hotspots at sub-county resolutions absent in NEI. Secondly, we have adopted the use of the DeNitrification-DeComposition (DNDC) Biogeochemistry model to simulate the physical and chemical processes that control volatilization of nitrogen as NH3 to the atmosphere after fertilizer application and resolve the variability at the hourly scale. Representative temporal factors are being developed to capture crop-specific NH3 emission variability by combining knowledge of local crop management practices with high resolution cropland and soil maps. This improved spatially and temporally dependent NH3 emission inventory for agricultural fertilization is being prepared as a direct input to a state of the art air quality model to evaluate the effects of agricultural fertilization on regional air quality and atmospheric deposition of reactive nitrogen species.

Top