Longitudinal Validation of General and Specific Structural Features of Personality Pathology
Wright, Aidan G.C.; Hopwood, Christopher J.; Skodol, Andrew E.; Morey, Leslie C.
2016-01-01
Theorists have long argued that personality disorder (PD) is best understood in terms of general impairments shared across the disorders as well as more specific instantiations of pathology. A model based on this theoretical structure was proposed as part of the DSM-5 revision process. However, only recently has this structure been subjected to formal quantitative evaluation, with little in the way of validation efforts via external correlates or prospective longitudinal prediction. We used the Collaborative Longitudinal Study of Personality Disorders dataset to: (1) estimate structural models that parse general from specific variance in personality disorder features, (2) examine patterns of growth in general and specific features over the course of 10 years, and (3) establish concurrent and dynamic longitudinal associations in PD features and a host of external validators including basic personality traits and psychosocial functioning scales. We found that general PD exhibited much lower absolute stability and was most strongly related to broad markers of psychosocial functioning, concurrently and longitudinally, whereas specific features had much higher mean stability and exhibited more circumscribed associations with functioning. However, both general and specific factors showed recognizable associations with normative and pathological traits. These results can inform efforts to refine the conceptualization and diagnosis of personality pathology. PMID:27819472
Generalized Multilevel Structural Equation Modeling
ERIC Educational Resources Information Center
Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew
2004-01-01
A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…
Jalem, Randy; Nakayama, Masanobu; Noda, Yusuke; Le, Tam; Takeuchi, Ichiro; Tateyama, Yoshitaka; Yamazaki, Hisatsugu
2018-01-01
Abstract Increasing attention has been paid to materials informatics approaches that promise efficient and fast discovery and optimization of functional inorganic materials. Technical breakthrough is urgently requested to advance this field and efforts have been made in the development of materials descriptors to encode or represent characteristics of crystalline solids, such as chemical composition, crystal structure, electronic structure, etc. We propose a general representation scheme for crystalline solids that lifts restrictions on atom ordering, cell periodicity, and system cell size based on structural descriptors of directly binned Voronoi-tessellation real feature values and atomic/chemical descriptors based on the electronegativity of elements in the crystal. Comparison was made vs. radial distribution function (RDF) feature vector, in terms of predictive accuracy on density functional theory (DFT) material properties: cohesive energy (CE), density (d), electronic band gap (BG), and decomposition energy (Ed). It was confirmed that the proposed feature vector from Voronoi real value binning generally outperforms the RDF-based one for the prediction of aforementioned properties. Together with electronegativity-based features, Voronoi-tessellation features from a given crystal structure that are derived from second-nearest neighbor information contribute significantly towards prediction. PMID:29707064
Jalem, Randy; Nakayama, Masanobu; Noda, Yusuke; Le, Tam; Takeuchi, Ichiro; Tateyama, Yoshitaka; Yamazaki, Hisatsugu
2018-01-01
Increasing attention has been paid to materials informatics approaches that promise efficient and fast discovery and optimization of functional inorganic materials. Technical breakthrough is urgently requested to advance this field and efforts have been made in the development of materials descriptors to encode or represent characteristics of crystalline solids, such as chemical composition, crystal structure, electronic structure, etc. We propose a general representation scheme for crystalline solids that lifts restrictions on atom ordering, cell periodicity, and system cell size based on structural descriptors of directly binned Voronoi-tessellation real feature values and atomic/chemical descriptors based on the electronegativity of elements in the crystal. Comparison was made vs. radial distribution function (RDF) feature vector, in terms of predictive accuracy on density functional theory (DFT) material properties: cohesive energy (CE), density ( d ), electronic band gap (BG), and decomposition energy (Ed). It was confirmed that the proposed feature vector from Voronoi real value binning generally outperforms the RDF-based one for the prediction of aforementioned properties. Together with electronegativity-based features, Voronoi-tessellation features from a given crystal structure that are derived from second-nearest neighbor information contribute significantly towards prediction.
Algorithm-Dependent Generalization Bounds for Multi-Task Learning.
Liu, Tongliang; Tao, Dacheng; Song, Mingli; Maybank, Stephen J
2017-02-01
Often, tasks are collected for multi-task learning (MTL) because they share similar feature structures. Based on this observation, in this paper, we present novel algorithm-dependent generalization bounds for MTL by exploiting the notion of algorithmic stability. We focus on the performance of one particular task and the average performance over multiple tasks by analyzing the generalization ability of a common parameter that is shared in MTL. When focusing on one particular task, with the help of a mild assumption on the feature structures, we interpret the function of the other tasks as a regularizer that produces a specific inductive bias. The algorithm for learning the common parameter, as well as the predictor, is thereby uniformly stable with respect to the domain of the particular task and has a generalization bound with a fast convergence rate of order O(1/n), where n is the sample size of the particular task. When focusing on the average performance over multiple tasks, we prove that a similar inductive bias exists under certain conditions on the feature structures. Thus, the corresponding algorithm for learning the common parameter is also uniformly stable with respect to the domains of the multiple tasks, and its generalization bound is of the order O(1/T), where T is the number of tasks. These theoretical analyses naturally show that the similarity of feature structures in MTL will lead to specific regularizations for predicting, which enables the learning algorithms to generalize fast and correctly from a few examples.
Features and characterization needs of rubber composite structures
NASA Technical Reports Server (NTRS)
Tabaddor, Farhad
1989-01-01
Some of the major unique features of rubber composite structures are outlined. The features covered are those related to the material properties, but the analytical features are also briefly discussed. It is essential to recognize these features at the planning stage of any long-range analytical, experimental, or application program. The development of a general and comprehensive program which fully accounts for all the important characteristics of tires, under all the relevant modes of operation, may present a prohibitively expensive and impractical task at the near future. There is therefore a need to develop application methodologies which can utilize the less general models, beyond their theoretical limitations and yet with reasonable reliability, by proper mix of analytical, experimental, and testing activities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... structure encompasses the historic building and its site, landscape features, and environment, generally... means a building and its site and landscape features. Registered Historic District means any district...
Code of Federal Regulations, 2013 CFR
2013-07-01
... structure encompasses the historic building and its site, landscape features, and environment, generally... means a building and its site and landscape features. Registered Historic District means any district...
Code of Federal Regulations, 2012 CFR
2012-07-01
... structure encompasses the historic building and its site, landscape features, and environment, generally... means a building and its site and landscape features. Registered Historic District means any district...
Code of Federal Regulations, 2014 CFR
2014-07-01
... structure encompasses the historic building and its site, landscape features, and environment, generally... means a building and its site and landscape features. Registered Historic District means any district...
In silico systems for the prediction of the ability of chemicals to induce carcinogenicity in rodents have generally relied on knowledge of the structure and physical-chemical features of the compound, as well as the mutagenic and genotoxic features of the compound in various bio...
Ellipsis as a Diagnostic Tool of Feature Strength and the Syntactic Structure of Ilocano
ERIC Educational Resources Information Center
Anderson, Michael Don
2009-01-01
This dissertation examines Ilocano, an Austronesian Filipino language, within the Minimalist Framework, in an effort to tease apart the general syntactic properties of the language. I show that Ilocano underlying structure can easily be captured within the standard syntactic structures proposed for languages generally (Universal Grammar). In my…
Freyhult, Eva; Moulton, Vincent; Ardell, David H.
2006-01-01
Sequence logos are stacked bar graphs that generalize the notion of consensus sequence. They employ entropy statistics very effectively to display variation in a structural alignment of sequences of a common function, while emphasizing its over-represented features. Yet sequence logos cannot display features that distinguish functional subclasses within a structurally related superfamily nor do they display under-represented features. We introduce two extensions to address these needs: function logos and inverse logos. Function logos display subfunctions that are over-represented among sequences carrying a specific feature. Inverse logos generalize both sequence logos and function logos by displaying under-represented, rather than over-represented, features or functions in structural alignments. To make inverse logos, a compositional inverse is applied to the feature or function frequency distributions before logo construction, where a compositional inverse is a mathematical transform that makes common features or functions rare and vice versa. We applied these methods to a database of structurally aligned bacterial tDNAs to create highly condensed, birds-eye views of potentially all so-called identity determinants and antideterminants that confer specific amino acid charging or initiator function on tRNAs in bacteria. We recovered both known and a few potentially novel identity elements. Function logos and inverse logos are useful tools for exploratory bioinformatic analysis of structure–function relationships in sequence families and superfamilies. PMID:16473848
CIRCAL-2 - General-purpose on-line circuit design.
NASA Technical Reports Server (NTRS)
Dertouzos, M. L.; Jessel, G. P.; Stinger, J. R.
1972-01-01
CIRCAL-2 is a second-generation general-purpose on-line circuit-design program with the following main features: (1) multiple-analysis capability; (2) uniform and general data structures for handling text editing, network representations, and output results, regardless of analysis; (3) special techniques and structures for minimizing and controlling user-program interaction; (4) use of functionals for the description of hysteresis and heat effects; and (5) ability to define optimization procedures that 'replace' the user. The paper discusses the organization of CIRCAL-2, the aforementioned main features, and their consequences, such as a set of network elements and models general enough for most analyses and a set of functions tailored to circuit-design requirements. The presentation is descriptive, concentrating on conceptual rather than on program implementation details.
Extending the Online Public Access Catalog into the Microcomputer Environment.
ERIC Educational Resources Information Center
Sutton, Brett
1990-01-01
Describes PCBIS, a database program for MS-DOS microcomputers that features a utility for automatically converting online public access catalog search results stored as text files into structured database files that can be searched, sorted, edited, and printed. Topics covered include the general features of the program, record structure, record…
Breccia dikes from the Beaverhead Impact structure, southwest Montana
NASA Technical Reports Server (NTRS)
Fiske, P. S.; Hougen, S. B.; Hargraves, R. B.
1992-01-01
While shatter cones are generally accepted as indicators of meteorite impact, older petrologic features are not widely recognized in the geologic community. Breccia dikes are one such feature. They are found in many large impact structures occurring over an area at least as extensively as shatter cones. Breccia dikes will survive moderate degrees of metamorphism and tectonism, unlike many other microscopic features (shocked quartz grains, high-pressure polymorphs, etc.) and even large-scale features such as annular or bowl-shaped topographic features. Thus, they are important diagnostic criteria, especially for large, poorly preserved impact structures. The Beaverhead Impact structure is a recently discovered, deeply eroded impact structure in southwestern Montana. The remains of the structure are delineated by the occurrence of shatter cones, found in an area greater than 200 sq km, occurring within the Cabin thrust plate, part of the Cretaceous Sevier fold and thrust system. The distribution of shatter cones is further truncated by Tertiary normal faults. The present remains represent an allochthonous fragment of a larger structure.
Algebraic features of some generalizations of the Lotka-Volterra system
NASA Astrophysics Data System (ADS)
Bibik, Yu. V.; Sarancha, D. A.
2010-10-01
For generalizations of the Lotka-Volterra system, an integration method is proposed based on the nontrivial algebraic structure of these generalizations. The method makes use of an auxiliary first-order differential equation derived from the phase curve equation with the help of this algebraic structure. Based on this equation, a Hamiltonian approach can be developed and canonical variables (moreover, action-angle variables) can be constructed.
Mimas: Tectonic structure and geologic history
NASA Technical Reports Server (NTRS)
Croft, Steven K.
1991-01-01
Mimas, the innermost of the major saturnian satellites, occupies an important place in comparative studies of icy satellites. It is the smallest icy satellite known to have a mostly spherical shape. Smaller icy objects like Hyperion and Puck are generally irregular in shape, while larger ones like Miranda and Enceladus are spherical. Thus Mimas is near the diameter where the combination of increasing surface gravity and internal heating begin to have a significant effect on global structure. The nature and extent of endogenic surface features provide important constraints on the interior structure and history of this transitional body. The major landforms on Mimas are impact craters. Mimas has one of the most heavily cratered surfaces in the solar system. The most prominent single feature on Mimas is Herschel, an unrelaxed complex crater 130 km in diameter. The only other recognized landforms on Mimas are tectonic grooves and lineaments. Groove locations were mapped by Schenk, but without analysis of groove structures or superposition relationships. Mimas' tectonic structures are remapped here in more detail than previously has been done, as part of a general study of tectonic features on icy satellites.
Mooney, Catherine; Haslam, Niall J.; Pollastri, Gianluca; Shields, Denis C.
2012-01-01
The conventional wisdom is that certain classes of bioactive peptides have specific structural features that endow their particular functions. Accordingly, predictions of bioactivity have focused on particular subgroups, such as antimicrobial peptides. We hypothesized that bioactive peptides may share more general features, and assessed this by contrasting the predictive power of existing antimicrobial predictors as well as a novel general predictor, PeptideRanker, across different classes of peptides. We observed that existing antimicrobial predictors had reasonable predictive power to identify peptides of certain other classes i.e. toxin and venom peptides. We trained two general predictors of peptide bioactivity, one focused on short peptides (4–20 amino acids) and one focused on long peptides ( amino acids). These general predictors had performance that was typically as good as, or better than, that of specific predictors. We noted some striking differences in the features of short peptide and long peptide predictions, in particular, high scoring short peptides favour phenylalanine. This is consistent with the hypothesis that short and long peptides have different functional constraints, perhaps reflecting the difficulty for typical short peptides in supporting independent tertiary structure. We conclude that there are general shared features of bioactive peptides across different functional classes, indicating that computational prediction may accelerate the discovery of novel bioactive peptides and aid in the improved design of existing peptides, across many functional classes. An implementation of the predictive method, PeptideRanker, may be used to identify among a set of peptides those that may be more likely to be bioactive. PMID:23056189
Vehicle license plate recognition based on geometry restraints and multi-feature decision
NASA Astrophysics Data System (ADS)
Wu, Jianwei; Wang, Zongyue
2005-10-01
Vehicle license plate (VLP) recognition is of great importance to many traffic applications. Though researchers have paid much attention to VLP recognition there has not been a fully operational VLP recognition system yet for many reasons. This paper discusses a valid and practical method for vehicle license plate recognition based on geometry restraints and multi-feature decision including statistical and structural features. In general, the VLP recognition includes the following steps: the location of VLP, character segmentation, and character recognition. This paper discusses the three steps in detail. The characters of VLP are always declining caused by many factors, which makes it more difficult to recognize the characters of VLP, therefore geometry restraints such as the general ratio of length and width, the adjacent edges being perpendicular are used for incline correction. Image Moment has been proved to be invariant to translation, rotation and scaling therefore image moment is used as one feature for character recognition. Stroke is the basic element for writing and hence taking it as a feature is helpful to character recognition. Finally we take the image moment, the strokes and the numbers of each stroke for each character image and some other structural features and statistical features as the multi-feature to match each character image with sample character images so that each character image can be recognized by BP neural net. The proposed method combines statistical and structural features for VLP recognition, and the result shows its validity and efficiency.
NASA Technical Reports Server (NTRS)
Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah
2007-01-01
We have calculated the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer, with flow structures obtained by general relativistic magnetohydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features are found protruding (visually) from the accretion disk surface, which are enhancements of synchrotron emission when the magnetic field is roughly aligned with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and location drifts of the features are responsible for certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuerst, Steven V.; /KIPAC, Menlo Park; Mizuno, Yosuke
2007-01-05
We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observedmore » in black-hole X-ray binaries.« less
The Joint Chiefs of Staff Video Collections
Senior Enlisted Advisor Joint Staff History Joint Staff Inspector General Joint Staff Structure Origin of J8 | Force Structure, Resources & Assessment Contact Home : Media : Videos Featured Videos Gen
Fast and Efficient Feature Engineering for Multi-Cohort Analysis of EHR Data.
Ozery-Flato, Michal; Yanover, Chen; Gottlieb, Assaf; Weissbrod, Omer; Parush Shear-Yashuv, Naama; Goldschmidt, Yaara
2017-01-01
We present a framework for feature engineering, tailored for longitudinal structured data, such as electronic health records (EHRs). To fast-track feature engineering and extraction, the framework combines general-use plug-in extractors, a multi-cohort management mechanism, and modular memoization. Using this framework, we rapidly extracted thousands of features from diverse and large healthcare data sources in multiple projects.
Highest-weight representations of Brocherd`s algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slansky, R.
1997-01-01
General features of highest-weight representations of Borcherd`s algebras are described. to show their typical features, several representations of Borcherd`s extensions of finite-dimensional algebras are analyzed. Then the example of the extension of affine- su(2) to a Borcherd`s algebra is examined. These algebras provide a natural way to extend a Kac-Moody algebra to include the hamiltonian and number-changing operators in a generalized symmetry structure.
ERIC Educational Resources Information Center
National Institute of General Medical Sciences (NIGMS), 2007
2007-01-01
This booklet reveals how structural biology provides insight into health and disease and is useful in developing new medications. It contains a general introduction to proteins, coverage of the techniques used to determine protein structures, and a chapter on structure-based drug design. The booklet features "Student Snapshots," designed to…
Prospects and limitations of full-text index structures in genome analysis
Vyverman, Michaël; De Baets, Bernard; Fack, Veerle; Dawyndt, Peter
2012-01-01
The combination of incessant advances in sequencing technology producing large amounts of data and innovative bioinformatics approaches, designed to cope with this data flood, has led to new interesting results in the life sciences. Given the magnitude of sequence data to be processed, many bioinformatics tools rely on efficient solutions to a variety of complex string problems. These solutions include fast heuristic algorithms and advanced data structures, generally referred to as index structures. Although the importance of index structures is generally known to the bioinformatics community, the design and potency of these data structures, as well as their properties and limitations, are less understood. Moreover, the last decade has seen a boom in the number of variant index structures featuring complex and diverse memory-time trade-offs. This article brings a comprehensive state-of-the-art overview of the most popular index structures and their recently developed variants. Their features, interrelationships, the trade-offs they impose, but also their practical limitations, are explained and compared. PMID:22584621
Temporal evolution of ion spectral structures during a geomagnetic storm: Observations and modeling
NASA Astrophysics Data System (ADS)
Ferradas, C.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.
2016-12-01
During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. We present a case study of the temporal evolution of H+, He+, and O+ spectral structures throughout the geomagnetic storm of 2 October 2013. We use data from the Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer onboard Van Allen Probe A to analyze the spectral structures in the energy range of 1- 50 keV. We find that the characteristics of the ion structures follow a cyclic pattern, the observed features changing dramatically as the storm starts and then returning to its initial pre-storm state. Quiet, pre-storm times are characterized by multiple and often complex flux structures at narrow energy bands. During the storm main phase, the observed features become simple, with no nose structures or only one nose structure present in the energy-time spectrograms. As the inner magnetosphere recovers from the storm, more complex structures appear once again. Additionally, the heavy ion spectral features are generally more complex than the H+ features, with multiple noses being observed more often in the heavy ion spectra. We use a model of ion drift and losses due to charge exchange to understand the formation of the spectral features and their species dependence.
1987-06-01
advanced I/O operations * extended variations of the data types and control structures found in most symbolic languages Features such as rulesets and...paradigms. Because of its "general-purpose" flavor, it is less structured and more , flexible than many contemporary Al systems and tools. Nonetheless...operations. Such operations were hardwired into the language because they did not fit easily into any general linguistic -. structure . Some operations
Beyond lognormal inequality: The Lorenz Flow Structure
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2016-11-01
Observed from a socioeconomic perspective, the intrinsic inequality of the lognormal law happens to manifest a flow generated by an underlying ordinary differential equation. In this paper we extend this feature of the lognormal law to a general ;Lorenz Flow Structure; of Lorenz curves-objects that quantify socioeconomic inequality. The Lorenz Flow Structure establishes a general framework of size distributions that span continuous spectra of socioeconomic states ranging from the pure-communism extreme to the absolute-monarchy extreme. This study introduces and explores the Lorenz Flow Structure, analyzes its statistical properties and its inequality properties, unveils the unique role of the lognormal law within this general structure, and presents various examples of this general structure. Beyond the lognormal law, the examples include the inverse-Pareto and Pareto laws-which often govern the tails of composite size distributions.
Pérez-Dorado, Inmaculada; Bortolotti, Ana; Cortez, Néstor; Hermoso, Juan A
2013-01-09
Analysis of the crystal structure of NifF from Rhodobacter capsulatus and its homologues reported so far reflects the existence of unique structural features in nif flavodoxins: a leucine at the re face of the isoalloxazine, an eight-residue insertion at the C-terminus of the 50's loop and a remarkable difference in the electrostatic potential surface with respect to non-nif flavodoxins. A phylogenetic study on 64 sequences from 52 bacterial species revealed four clusters, including different functional prototypes, correlating the previously defined as "short-chain" with the firmicutes flavodoxins and the "long-chain" with gram-negative species. The comparison of Rhodobacter NifF structure with other bacterial flavodoxin prototypes discloses the concurrence of specific features of these functional electron donors to nitrogenase.
Dart, R.L.; Swolfs, H.S.
1998-01-01
A new contour map of the basement of the Reelfoot rift constructed from drill hole and seismic reflection data shows the general surface configuration as well as several major and minor structural features. The major features are two asymmetric intrarift basins, bounded by three structural highs, and the rift margins. The basins are oriented normal to the northeast trend of the rift. Two of the highs appear to be ridges of undetermined width that extend across the rift. The third high is an isolated dome or platform located between the basins. The minor features are three linear structures of low relief oriented subparallel to the trend of the rift. Two of these, located within the rift basins, may divide the rift basins into paired subbasins. These mapped features may be the remnants of initial extensional rifting, half graben faulting, and basement subsidence. The rift basins are interpreted as having formed as opposing half graben, and the structural highs are interpreted as having formed as associated accommodation zones. Some of these features appear to be reactivated seismogenic structures within the modem midcontinent compressional stress regime. A detailed knowledge of the geometries of the Reelfoot rift's basement features, therefore, is essential when evaluating their seismic risk potential.
Tools reference manual for a Requirements Specification Language (RSL), version 2.0
NASA Technical Reports Server (NTRS)
Fisher, Gene L.; Cohen, Gerald C.
1993-01-01
This report describes a general-purpose Requirements Specification Language, RSL. The purpose of RSL is to specify precisely the external structure of a mechanized system and to define requirements that the system must meet. A system can be comprised of a mixture of hardware, software, and human processing elements. RSL is a hybrid of features found in several popular requirements specification languages, such as SADT (Structured Analysis and Design Technique), PSL (Problem Statement Language), and RMF (Requirements Modeling Framework). While languages such as these have useful features for structuring a specification, they generally lack formality. To overcome the deficiencies of informal requirements languages, RSL has constructs for formal mathematical specification. These constructs are similar to those found in formal specification languages such as EHDM (Enhanced Hierarchical Development Methodology), Larch, and OBJ3.
Malignant lymphoma simulating lymph node toxoplasmosis.
Miettinen, M; Franssila, K
1982-03-01
On histological examination of 667 cases originally suspected of lymph node toxoplasmosis, 12 cases were diagnosed as malignant lymphoma and 15 cases as atypical hyperplasia (AH), suspicious of malignant lymphoma. All 12 malignant cases were of Hodgkin's disease: eight of the lymphocyte predominant nodular type, two of lymphocyte predominant diffuse type, and two of the nodular sclerosis type. In all cases, the lymph nodes contained small groups of epithelioid cells which were virtually indistinguishable from those seen in toxoplasmosis. In the differential diagnosis between lymph node toxoplasmosis and malignant lymphoma, the following features were found helpful. In toxoplasmosis the general structure is preserved and germinal centres are frequent, while in malignant lymphoma and in AH the general structure is destroyed. However, in some cases of toxoplasmosis germinal centres may be difficult to identify because their margins are indistinct due to clusters of epithelioid cells. Also, in some types of Hodgkin's disease and in some cases of AH with epithelioid cells, the general structure of the lymph node may be partially preserved. The occurrence of epithelioid cells within germinal centres seems to be a specific feature for toxoplasmosis; it was never seen in malignant lymphoma nor in AH. The occurrence of strands of monocytoid cells (unreife Sinushistiocytose) though a fairly typical feature of toxoplasmosis, was also occasionally seen in Hodgkin's disease or AH.
NASA Astrophysics Data System (ADS)
Chockalingam, Letchumanan
2005-01-01
The data of Gunung Ledang region of Malaysia acquired through LANDSAT are considered to map certain hydrogeolocial features. To map these significant features, image-processing tools such as contrast enhancement, edge detection techniques are employed. The advantages of these techniques over the other methods are evaluated from the point of their validity in properly isolating features of hydrogeolocial interest are discussed. As these techniques take the advantage of spectral aspects of the images, these techniques have several limitations to meet the objectives. To discuss these limitations, a morphological transformation, which generally considers the structural aspects rather than spectral aspects from the image, are applied to provide comparisons between the results derived from spectral based and the structural based filtering techniques.
NASA Astrophysics Data System (ADS)
Costache, G. N.; Gavat, I.
2004-09-01
Along with the aggressive growing of the amount of digital data available (text, audio samples, digital photos and digital movies joined all in the multimedia domain) the need for classification, recognition and retrieval of this kind of data became very important. In this paper will be presented a system structure to handle multimedia data based on a recognition perspective. The main processing steps realized for the interesting multimedia objects are: first, the parameterization, by analysis, in order to obtain a description based on features, forming the parameter vector; second, a classification, generally with a hierarchical structure to make the necessary decisions. For audio signals, both speech and music, the derived perceptual features are the melcepstral (MFCC) and the perceptual linear predictive (PLP) coefficients. For images, the derived features are the geometric parameters of the speaker mouth. The hierarchical classifier consists generally in a clustering stage, based on the Kohonnen Self-Organizing Maps (SOM) and a final stage, based on a powerful classification algorithm called Support Vector Machines (SVM). The system, in specific variants, is applied with good results in two tasks: the first, is a bimodal speech recognition which uses features obtained from speech signal fused to features obtained from speaker's image and the second is a music retrieval from large music database.
Neural net target-tracking system using structured laser patterns
NASA Astrophysics Data System (ADS)
Cho, Jae-Wan; Lee, Yong-Bum; Lee, Nam-Ho; Park, Soon-Yong; Lee, Jongmin; Choi, Gapchu; Baek, Sunghyun; Park, Dong-Sun
1996-06-01
In this paper, we describe a robot endeffector tracking system using sensory information from recently-announced structured pattern laser diodes, which can generate images with several different types of structured pattern. The neural network approach is employed to recognize the robot endeffector covering the situation of three types of motion: translation, scaling and rotation. Features for the neural network to detect the position of the endeffector are extracted from the preprocessed images. Artificial neural networks are used to store models and to match with unknown input features recognizing the position of the robot endeffector. Since a minimal number of samples are used for different directions of the robot endeffector in the system, an artificial neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network trained with the back propagation learning is used to detect the position of the robot endeffector. Another feedforward neural network module is used to estimate the motion from a sequence of images and to control movements of the robot endeffector. COmbining the tow neural networks for recognizing the robot endeffector and estimating the motion with the preprocessing stage, the whole system keeps tracking of the robot endeffector effectively.
Structural Behavioral Study on the General Aviation Network Based on Complex Network
NASA Astrophysics Data System (ADS)
Zhang, Liang; Lu, Na
2017-12-01
The general aviation system is an open and dissipative system with complex structures and behavioral features. This paper has established the system model and network model for general aviation. We have analyzed integral attributes and individual attributes by applying the complex network theory and concluded that the general aviation network has influential enterprise factors and node relations. We have checked whether the network has small world effect, scale-free property and network centrality property which a complex network should have by applying degree distribution of functions and proved that the general aviation network system is a complex network. Therefore, we propose to achieve the evolution process of the general aviation industrial chain to collaborative innovation cluster of advanced-form industries by strengthening network multiplication effect, stimulating innovation performance and spanning the structural hole path.
The Equivalence of Precession Phenomena in Metric Theories of Gravity
NASA Technical Reports Server (NTRS)
Krisher, Timothy P.
1997-01-01
The requirement of general covariance imparts to metric theories of gravity, such as general relavity, important structural features. A precise mathematical form results, ensuring that computation of observable physical effects in the theory gives the same answers independently of the chosen system of coordinates.
The puzzling Venusian polar atmospheric structure reproduced by a general circulation model
Ando, Hiroki; Sugimoto, Norihiko; Takagi, Masahiro; Kashimura, Hiroki; Imamura, Takeshi; Matsuda, Yoshihisa
2016-01-01
Unlike the polar vortices observed in the Earth, Mars and Titan atmospheres, the observed Venus polar vortex is warmer than the midlatitudes at cloud-top levels (∼65 km). This warm polar vortex is zonally surrounded by a cold latitude band located at ∼60° latitude, which is a unique feature called ‘cold collar' in the Venus atmosphere. Although these structures have been observed in numerous previous observations, the formation mechanism is still unknown. Here we perform numerical simulations of the Venus atmospheric circulation using a general circulation model, and succeed in reproducing these puzzling features in close agreement with the observations. The cold collar and warm polar region are attributed to the residual mean meridional circulation enhanced by the thermal tide. The present results strongly suggest that the thermal tide is crucial for the structure of the Venus upper polar atmosphere at and above cloud levels. PMID:26832195
Coupling Sensing Hardware with Data Interrogation Software for Structural Health Monitoring
Farrar, Charles R.; Allen, David W.; Park, Gyuhae; ...
2006-01-01
The process of implementing a damage detection strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). The authors' approach is to address the SHM problem in the context of a statistical pattern recognition paradigm. In this paradigm, the process can be broken down into four parts: (1) Operational Evaluation, (2) Data Acquisition and Cleansing, (3) Feature Extraction and Data Compression, and (4) Statistical Model Development for Feature Discrimination. These processes must be implemented through hardware or software and, in general, some combination of these two approaches will be used. This paper will discussmore » each portion of the SHM process with particular emphasis on the coupling of a general purpose data interrogation software package for structural health monitoring with a modular wireless sensing and processing platform. More specifically, this paper will address the need to take an integrated hardware/software approach to developing SHM solutions.« less
NASA Astrophysics Data System (ADS)
Jaenisch, Holger; Handley, James
2013-06-01
We introduce a generalized numerical prediction and forecasting algorithm. We have previously published it for malware byte sequence feature prediction and generalized distribution modeling for disparate test article analysis. We show how non-trivial non-periodic extrapolation of a numerical sequence (forecast and backcast) from the starting data is possible. Our ancestor-progeny prediction can yield new options for evolutionary programming. Our equations enable analytical integrals and derivatives to any order. Interpolation is controllable from smooth continuous to fractal structure estimation. We show how our generalized trigonometric polynomial can be derived using a Fourier transform.
Topographic attributes as a guide for automated detection or highlighting of geological features
NASA Astrophysics Data System (ADS)
Viseur, Sophie; Le Men, Thibaud; Guglielmi, Yves
2015-04-01
Photogrammetry or LIDAR technology combined with photography allow geoscientists to obtain 3D high-resolution numerical representations of outcrops, generally termed as Digital Outcrop Models (DOM). For over a decade, these 3D numerical outcrops serve as support for precise and accurate interpretations of geological features such as fracture traces or plans, strata, facies mapping, etc. These interpretations have the benefit to be directly georeferenced and embedded into the 3D space. They are then easily integrated into GIS or geomodeler softwares for modelling in 3D the subsurface geological structures. However, numerical outcrops generally represent huge data sets that are heavy to manipulate and hence to interpret. This may be particularly tedious as soon as several scales of geological features must be investigated or as geological features are very dense and imbricated. Automated tools for interpreting geological features from DOMs would be then a significant help to process these kinds of data. Such technologies are commonly used for interpreting seismic or medical data. However, it may be noticed that even if many efforts have been devoted to easily and accurately acquire 3D topographic point clouds and photos and to visualize accurate 3D textured DOMs, few attentions have been paid to the development of algorithms for automated detection of the geological structures from DOMs. The automatic detection of objects on numerical data generally assumes that signals or attributes computed from this data allows the recognition of the targeted object boundaries. The first step consists then in defining attributes that highlight the objects or their boundaries. For DOM interpretations, some authors proposed to use differential operators computed on the surface such as normal or curvatures. These methods generally extract polylines corresponding to fracture traces or bed limits. Other approaches rely on the PCA technology to segregate different topographic plans. This approach assume that structural or sedimentary features coincide with topographic surface parts. In this work, several topographic attributes are proposed to highlight geological features on outcrops. Among them, differential operators are used but also combined and processed to display particular topographic shapes. Moreover, two kinds of attributes are used: unsupervised and supervised attributes. The supervised attributes integrate an a priori knowledge about the objects to extract (e.g.: a preferential orientation of fracture surfaces, etc.). This strategy may be compared to the one used for seismic interpretation. Indeed, many seismic attributes have been proposed to highlight geological structures hardly observable due to data noise. The same issue exist with topographic data: plants, erosions, etc. generate noise that make interpretation sometimes hard. The proposed approach has been applied on real case studies to show how it could help the interpretation of geological features. The obtained 'topographic attributes' are shown and discussed.
Fesharaki, Nooshin Jafari; Pourghassem, Hossein
2013-07-01
Due to the daily mass production and the widespread variation of medical X-ray images, it is necessary to classify these for searching and retrieving proposes, especially for content-based medical image retrieval systems. In this paper, a medical X-ray image hierarchical classification structure based on a novel merging and splitting scheme and using shape and texture features is proposed. In the first level of the proposed structure, to improve the classification performance, similar classes with regard to shape contents are grouped based on merging measures and shape features into the general overlapped classes. In the next levels of this structure, the overlapped classes split in smaller classes based on the classification performance of combination of shape and texture features or texture features only. Ultimately, in the last levels, this procedure is also continued forming all the classes, separately. Moreover, to optimize the feature vector in the proposed structure, we use orthogonal forward selection algorithm according to Mahalanobis class separability measure as a feature selection and reduction algorithm. In other words, according to the complexity and inter-class distance of each class, a sub-space of the feature space is selected in each level and then a supervised merging and splitting scheme is applied to form the hierarchical classification. The proposed structure is evaluated on a database consisting of 2158 medical X-ray images of 18 classes (IMAGECLEF 2005 database) and accuracy rate of 93.6% in the last level of the hierarchical structure for an 18-class classification problem is obtained.
NASA Technical Reports Server (NTRS)
Steiner, B.; Kuriyama, M.; Dobbyn, R. C.; Laor, U.; Larson, D.; Brown, M.
1988-01-01
Novel, streak-like disruption features restricted to the plane of diffraction have recently been observed in images obtained by synchrotron radiation diffraction from undoped, semi-insulating gallium arsenide crystals. These features were identified as ensembles of very thin platelets or interfaces lying in (110) planes, and a structural model consisting of antiphase domain boundaries was proposed. We report here the other principal features observed in high resolution monochromatic synchrotron radiation diffraction images: (quasi) cellular structure; linear, very low-angle subgrain boundaries in (110) directions, and surface stripes in a (110) direction. In addition, we report systematic differences in the acceptance angle for images involving various diffraction vectors. When these observations are considered together, a unifying picture emerges. The presence of ensembles of thin (110) antiphase platelet regions or boundaries is generally consistent not only with the streak-like diffraction features but with the other features reported here as well. For the formation of such regions we propose two mechanisms, operating in parallel, that appear to be consistent with the various defect features observed by a variety of techniques.
NASA Technical Reports Server (NTRS)
Steiner, B.; Kuriyama, M.; Dobbyn, R. C.; Laor, U.; Larson, D.
1989-01-01
Novel, streak-like disruption features restricted to the plane of diffraction have recently been observed in images obtained by synchrotron radiation diffraction from undoped, semi-insulating gallium arsenide crystals. These features were identified as ensembles of very thin platelets or interfaces lying in (110) planes, and a structural model consisting of antiphase domain boundaries was proposed. We report here the other principal features observed in high resolution monochromatic synchrotron radiation diffraction images: (quasi) cellular structure; linear, very low-angle subgrain boundaries in (110) directions, and surface stripes in a (110) direction. In addition, we report systematic differences in the acceptance angle for images involving various diffraction vectors. When these observations are considered together, a unifying picture emerges. The presence of ensembles of thin (110) antiphase platelet regions or boundaries is generally consistent not only with the streak-like diffraction features but with the other features reported here as well. For the formation of such regions we propose two mechanisms, operating in parallel, that appear to be consistent with the various defect features observed by a variety of techniques.
Seeking instructional specificity: An example from analogical instruction
NASA Astrophysics Data System (ADS)
Kuo, Eric; Wieman, Carl E.
2015-12-01
Broad instructional methods like "interactive engagement" have been shown to be effective, but such general characterization provides little guidance on the details of how to structure instructional materials. In this study, we seek instructional specificity by comparing two ways of using an analogy to learn a target physical principle: (i) applying the analogy to the target physical domain on a case-by-case basis and (ii) using the analogy to create a general rule in the target physical domain. In the discussion sections of a large, introductory physics course (N =2 3 1 ), students who sought a general rule were better able to discover and apply a correct physics principle than students who analyzed the examples case by case. The difference persisted at a reduced level after subsequent direct instruction. We argue that students who performed case-by-case analyses were more likely to focus on idiosyncratic problem-specific features rather than the deep structural features. This study provides an example of investigations into how the specific structure of instructional materials can be consequential for what is learned.
Structural lineament and pattern analysis of Missouri, using LANDSAT imagery
NASA Technical Reports Server (NTRS)
Martin, J. A.; Kisvarsanyi, G. (Principal Investigator)
1977-01-01
The author has identified the following significant results. Major linear, circular, and arcuate traces were observed on LANDSAT imagery of Missouri. Lineaments plotted within the state boundaries range from 20 to nearly 500 km in length. Several extend into adjoining states. Lineaments plots indicate a distinct pattern and in general reflect structural features of the Precambrian basement of the platform. Coincidence of lineaments traced from the imagery and known structural features in Missouri is high, thus supporting a causative relation between them. The lineament pattern apparently reveals a fundamental style of the deformation of the intracontinental craton. Dozens of heretofore unknown linear features related to epirogenic movements and deformation of this segment of the continental crust were delineated. Lineaments and mineralization are interrelated in a geometrically classifiable pattern.
ERIC Educational Resources Information Center
Sutherland, David Earl
1976-01-01
A reorganization and reanalysis of data gathered by Ronald Charles Frederico--who interviewed 146 dancers belonging to 12 ballet companies in the U.S.--to investigate the structural features of ballet as a profession. Four possibilities exist for a more general interpretative scheme for understanding ballet: social structural, phenomenological,…
Reducing Sweeping Frequencies in Microwave NDT Employing Machine Learning Feature Selection
Moomen, Abdelniser; Ali, Abdulbaset; Ramahi, Omar M.
2016-01-01
Nondestructive Testing (NDT) assessment of materials’ health condition is useful for classifying healthy from unhealthy structures or detecting flaws in metallic or dielectric structures. Performing structural health testing for coated/uncoated metallic or dielectric materials with the same testing equipment requires a testing method that can work on metallics and dielectrics such as microwave testing. Reducing complexity and expenses associated with current diagnostic practices of microwave NDT of structural health requires an effective and intelligent approach based on feature selection and classification techniques of machine learning. Current microwave NDT methods in general based on measuring variation in the S-matrix over the entire operating frequency ranges of the sensors. For instance, assessing the health of metallic structures using a microwave sensor depends on the reflection or/and transmission coefficient measurements as a function of the sweeping frequencies of the operating band. The aim of this work is reducing sweeping frequencies using machine learning feature selection techniques. By treating sweeping frequencies as features, the number of top important features can be identified, then only the most influential features (frequencies) are considered when building the microwave NDT equipment. The proposed method of reducing sweeping frequencies was validated experimentally using a waveguide sensor and a metallic plate with different cracks. Among the investigated feature selection techniques are information gain, gain ratio, relief, chi-squared. The effectiveness of the selected features were validated through performance evaluations of various classification models; namely, Nearest Neighbor, Neural Networks, Random Forest, and Support Vector Machine. Results showed good crack classification accuracy rates after employing feature selection algorithms. PMID:27104533
Natural Presettlement Features of the Ashley County, Arkansas Area
Don C. Bragg
2003-01-01
The General Land Office (GLO) survey records of the Ashley County, Arkansas, area were analyzed for natural attributes including forest composition and structure, prairie communities and aquatic and geomorphological features. Almost 13,000 witness trees from at least 23 families were extracted from the surveys. Most (68% of the total) witness trees were black oak (
NASA Astrophysics Data System (ADS)
Lo Celso, Fabrizio; Triolo, Alessandro; Gontrani, Lorenzo; Russina, Olga
2018-06-01
One of the outstanding features of ionic liquids is their inherently hierarchical structural organization at mesoscopic spatial scales. Recently experimental and computational studies showed the fading of this feature when pressurising. Here we use simulations to show that this effect is not general: appropriate anion choice leads to an obstinate resistance against pressurization.
Phenylethynyl reactive diluents
NASA Technical Reports Server (NTRS)
Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor)
1995-01-01
A composition of matter having a specified general structure is employed to terminate a nucleophilic reagent, resulting in the exclusive production of phenylethynyl terminated reactive oligomers which display unique thermal characteristics. A reactive diluent having a specified general structure is employed to decrease the melt viscosity of a phenylethynyl terminated reactive oligomer and to subsequently react with to provide a thermosetting material of enhanced density. These materials have features which make them attractive candidates for use as composite matrices and adhesives.
Control of large flexible space structures
NASA Technical Reports Server (NTRS)
Vandervelde, W. E.
1986-01-01
Progress in robust design of generalized parity relations, design of failure sensitive observers using the geometric system theory of Wonham, computational techniques for evaluation of the performance of control systems with fault tolerance and redundancy management features, and the design and evaluation od control systems for structures having nonlinear joints are described.
NASA Technical Reports Server (NTRS)
Mcgill, George E.; Squyres, Steven W.
1991-01-01
Grooves are the dominant structural features on Ganymede. While single grooves are found in many areas, it is somewhat more common to find them grouped together in groove sets (groupings of grooves with common structural trends). It is generally believed that the grooves are extensional features. Their underlying geologic nature cannot be determined from Voyager images, however. It appears likely that they are grabens, but the images are insufficient to rule out the possibility that they are modified extension fractures or some kind of ductile necking features. The oldest materials within the Nun Sulci and Perrine quadrangles occur within the cratered dark materials unit, as is generally the case for all of Ganymede. This is the most widespread of the dark units mapped in these two quadrangles. Crater densities within cratered dark materials are consistent with an age on the order of several billion years, and thus cratered dark terrain probably represents crust that has survived from the end of the primordial intense bombardment phase of solar system history. The brief geologic history is greatly oversimplified as a result of the poor resolution and unfavorable viewing geometry of the images covering the area.
Nixon, Mark S.; Komogortsev, Oleg V.
2017-01-01
We introduce the intraclass correlation coefficient (ICC) to the biometric community as an index of the temporal persistence, or stability, of a single biometric feature. It requires, as input, a feature on an interval or ratio scale, and which is reasonably normally distributed, and it can only be calculated if each subject is tested on 2 or more occasions. For a biometric system, with multiple features available for selection, the ICC can be used to measure the relative stability of each feature. We show, for 14 distinct data sets (1 synthetic, 8 eye-movement-related, 2 gait-related, and 2 face-recognition-related, and one brain-structure-related), that selecting the most stable features, based on the ICC, resulted in the best biometric performance generally. Analyses based on using only the most stable features produced superior Rank-1-Identification Rate (Rank-1-IR) performance in 12 of 14 databases (p = 0.0065, one-tailed), when compared to other sets of features, including the set of all features. For Equal Error Rate (EER), using a subset of only high-ICC features also produced superior performance in 12 of 14 databases (p = 0. 0065, one-tailed). In general, then, for our databases, prescreening potential biometric features, and choosing only highly reliable features yields better performance than choosing lower ICC features or than choosing all features combined. We also determined that, as the ICC of a group of features increases, the median of the genuine similarity score distribution increases and the spread of this distribution decreases. There was no statistically significant similar relationships for the impostor distributions. We believe that the ICC will find many uses in biometric research. In case of the eye movement-driven biometrics, the use of reliable features, as measured by ICC, allowed to us achieve the authentication performance with EER = 2.01%, which was not possible before. PMID:28575030
Friedman, Lee; Nixon, Mark S; Komogortsev, Oleg V
2017-01-01
We introduce the intraclass correlation coefficient (ICC) to the biometric community as an index of the temporal persistence, or stability, of a single biometric feature. It requires, as input, a feature on an interval or ratio scale, and which is reasonably normally distributed, and it can only be calculated if each subject is tested on 2 or more occasions. For a biometric system, with multiple features available for selection, the ICC can be used to measure the relative stability of each feature. We show, for 14 distinct data sets (1 synthetic, 8 eye-movement-related, 2 gait-related, and 2 face-recognition-related, and one brain-structure-related), that selecting the most stable features, based on the ICC, resulted in the best biometric performance generally. Analyses based on using only the most stable features produced superior Rank-1-Identification Rate (Rank-1-IR) performance in 12 of 14 databases (p = 0.0065, one-tailed), when compared to other sets of features, including the set of all features. For Equal Error Rate (EER), using a subset of only high-ICC features also produced superior performance in 12 of 14 databases (p = 0. 0065, one-tailed). In general, then, for our databases, prescreening potential biometric features, and choosing only highly reliable features yields better performance than choosing lower ICC features or than choosing all features combined. We also determined that, as the ICC of a group of features increases, the median of the genuine similarity score distribution increases and the spread of this distribution decreases. There was no statistically significant similar relationships for the impostor distributions. We believe that the ICC will find many uses in biometric research. In case of the eye movement-driven biometrics, the use of reliable features, as measured by ICC, allowed to us achieve the authentication performance with EER = 2.01%, which was not possible before.
Sequential structural damage diagnosis algorithm using a change point detection method
NASA Astrophysics Data System (ADS)
Noh, H.; Rajagopal, R.; Kiremidjian, A. S.
2013-11-01
This paper introduces a damage diagnosis algorithm for civil structures that uses a sequential change point detection method. The general change point detection method uses the known pre- and post-damage feature distributions to perform a sequential hypothesis test. In practice, however, the post-damage distribution is unlikely to be known a priori, unless we are looking for a known specific type of damage. Therefore, we introduce an additional algorithm that estimates and updates this distribution as data are collected using the maximum likelihood and the Bayesian methods. We also applied an approximate method to reduce the computation load and memory requirement associated with the estimation. The algorithm is validated using a set of experimental data collected from a four-story steel special moment-resisting frame and multiple sets of simulated data. Various features of different dimensions have been explored, and the algorithm was able to identify damage, particularly when it uses multidimensional damage sensitive features and lower false alarm rates, with a known post-damage feature distribution. For unknown feature distribution cases, the post-damage distribution was consistently estimated and the detection delays were only a few time steps longer than the delays from the general method that assumes we know the post-damage feature distribution. We confirmed that the Bayesian method is particularly efficient in declaring damage with minimal memory requirement, but the maximum likelihood method provides an insightful heuristic approach.
Hamiltonian structure and Darboux theorem for families of generalized Lotka-Volterra systems
NASA Astrophysics Data System (ADS)
Hernández-Bermejo, Benito; Fairén, Víctor
1998-11-01
This work is devoted to the establishment of a Poisson structure for a format of equations known as generalized Lotka-Volterra systems. These equations, which include the classical Lotka-Volterra systems as a particular case, have been deeply studied in the literature. They have been shown to constitute a whole hierarchy of systems, the characterization of which is made in the context of simple algebra. Our main result is to show that this algebraic structure is completely translatable into the Poisson domain. Important Poisson structures features, such as the symplectic foliation and the Darboux canonical representation, rise as a result of rather simple matrix manipulations.
Laser-induced structure formation on stretched polymer foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bityurin, Nikita; Arnold, Nikita; Baeuerle, Dieter
2007-04-15
Noncoherent structures that develop during UV laser ablation of stretched semicrystalline polymer foils are a very general phenomenon. A thermodynamic model based on stress relaxation within the modified layer of the polymer surface describes the main features of the observed phenomena, and, in particular, the dependence of the period of structures on laser wavelength, fluence, and number of laser pulses.
What causes Mars' annular polar vortices?
NASA Astrophysics Data System (ADS)
Toigo, A. D.; Waugh, D. W.; Guzewich, S. D.
2017-01-01
A distinctive feature of the Martian atmosphere is that the winter polar vortices exhibit annuli of high potential vorticity (PV) with a local minimum near the pole. These annuli are seen in observations, reanalyses, and free-running general circulation model simulations of Mars, but are not generally a feature of Earth's polar vortices, where there is a monotonic increase in magnitude of PV with latitude. The creation and maintenance of the annular polar vortices on Mars are not well understood. Here we use simulations with a Martian general circulation model to the show that annular vortices are related to another distinctive, and possibly unique in the solar system, feature of the Martian atmosphere: the condensation of the predominant atmospheric gas species (CO2) in polar winter regions. The latent heat associated with CO2 condensation leads to destruction of PV in the polar lower atmosphere, inducing the formation of an annular PV structure.
Gathering Momentum! Transition from School to Work. Featuring Profiles of 23 Ohio Programs.
ERIC Educational Resources Information Center
Gifford, Bev
This report examines the provisions of the School-to-Work Opportunities Act and describes the steps that have been taken thus far to establish an Ohio system. It discusses the general features that must be included in Ohio's school-to-work system and the strategies around which Ohio's school-to-work plans are being structured. Recommendations are…
Dehzangi, Abdollah; Paliwal, Kuldip; Sharma, Alok; Dehzangi, Omid; Sattar, Abdul
2013-01-01
Better understanding of structural class of a given protein reveals important information about its overall folding type and its domain. It can also be directly used to provide critical information on general tertiary structure of a protein which has a profound impact on protein function determination and drug design. Despite tremendous enhancements made by pattern recognition-based approaches to solve this problem, it still remains as an unsolved issue for bioinformatics that demands more attention and exploration. In this study, we propose a novel feature extraction model that incorporates physicochemical and evolutionary-based information simultaneously. We also propose overlapped segmented distribution and autocorrelation-based feature extraction methods to provide more local and global discriminatory information. The proposed feature extraction methods are explored for 15 most promising attributes that are selected from a wide range of physicochemical-based attributes. Finally, by applying an ensemble of different classifiers namely, Adaboost.M1, LogitBoost, naive Bayes, multilayer perceptron (MLP), and support vector machine (SVM) we show enhancement of the protein structural class prediction accuracy for four popular benchmarks.
Analysis of Structural Features Contributing to Weak Affinities of Ubiquitin/Protein Interactions.
Cohen, Ariel; Rosenthal, Eran; Shifman, Julia M
2017-11-10
Ubiquitin is a small protein that enables one of the most common post-translational modifications, where the whole ubiquitin molecule is attached to various target proteins, forming mono- or polyubiquitin conjugations. As a prototypical multispecific protein, ubiquitin interacts non-covalently with a variety of proteins in the cell, including ubiquitin-modifying enzymes and ubiquitin receptors that recognize signals from ubiquitin-conjugated substrates. To enable recognition of multiple targets and to support fast dissociation from the ubiquitin modifying enzymes, ubiquitin/protein interactions are characterized with low affinities, frequently in the higher μM and lower mM range. To determine how structure encodes low binding affinity of ubiquitin/protein complexes, we analyzed structures of more than a hundred such complexes compiled in the Ubiquitin Structural Relational Database. We calculated various structure-based features of ubiquitin/protein binding interfaces and compared them to the same features of general protein-protein interactions (PPIs) with various functions and generally higher affinities. Our analysis shows that ubiquitin/protein binding interfaces on average do not differ in size and shape complementarity from interfaces of higher-affinity PPIs. However, they contain fewer favorable hydrogen bonds and more unfavorable hydrophobic/charge interactions. We further analyzed how binding interfaces change upon affinity maturation of ubiquitin toward its target proteins. We demonstrate that while different features are improved in different experiments, the majority of the evolved complexes exhibit better shape complementarity and hydrogen bond pattern compared to wild-type complexes. Our analysis helps to understand how low-affinity PPIs have evolved and how they could be converted into high-affinity PPIs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Polymer Physics of the Large-Scale Structure of Chromatin.
Bianco, Simona; Chiariello, Andrea Maria; Annunziatella, Carlo; Esposito, Andrea; Nicodemi, Mario
2016-01-01
We summarize the picture emerging from recently proposed models of polymer physics describing the general features of chromatin large scale spatial architecture, as revealed by microscopy and Hi-C experiments.
Communication: Finding destructive interference features in molecular transport junctions.
Reuter, Matthew G; Hansen, Thorsten
2014-11-14
Associating molecular structure with quantum interference features in electrode-molecule-electrode transport junctions has been difficult because existing guidelines for understanding interferences only apply to conjugated hydrocarbons. Herein we use linear algebra and the Landauer-Büttiker theory for electron transport to derive a general rule for predicting the existence and locations of interference features. Our analysis illustrates that interferences can be directly determined from the molecular Hamiltonian and the molecule-electrode couplings, and we demonstrate its utility with several examples.
[Clinical-pathogenetic features of meningococcal infection in children].
Buriak, V N; Serhyenko, A S
2011-01-01
Analysis features of clinical manifestation and pathogenetic mechanisms of development of meningococcal infection is introduced. It is emphasized that in most cases mentioned infection is characterized by mild course as nasopharyngitidis. However relatively seldom developing generalize form put this phatology on third place after intestinal infections and septicemia in structure of child mortality from infection deseases. Occurence of generalize forms of meningococcal infection depend on peculiarity of immune response is followed by release of endotoxin and exotoxin in blood stream. This toxins start up pathogenetic mechanisms, which lead to toxic shock, adrenal glands hemorrhage, brain edema, brain stem wedge in big occipital foramen.
Generalized epidemic process on modular networks.
Chung, Kihong; Baek, Yongjoo; Kim, Daniel; Ha, Meesoon; Jeong, Hawoong
2014-05-01
Social reinforcement and modular structure are two salient features observed in the spreading of behavior through social contacts. In order to investigate the interplay between these two features, we study the generalized epidemic process on modular networks with equal-sized finite communities and adjustable modularity. Using the analytical approach originally applied to clique-based random networks, we show that the system exhibits a bond-percolation type continuous phase transition for weak social reinforcement, whereas a discontinuous phase transition occurs for sufficiently strong social reinforcement. Our findings are numerically verified using the finite-size scaling analysis and the crossings of the bimodality coefficient.
New Era of Studying RNA Secondary Structure and Its Influence on Gene Regulation in Plants.
Yang, Xiaofei; Yang, Minglei; Deng, Hongjing; Ding, Yiliang
2018-01-01
The dynamic structure of RNA plays a central role in post-transcriptional regulation of gene expression such as RNA maturation, degradation, and translation. With the rise of next-generation sequencing, the study of RNA structure has been transformed from in vitro low-throughput RNA structure probing methods to in vivo high-throughput RNA structure profiling. The development of these methods enables incremental studies on the function of RNA structure to be performed, revealing new insights of novel regulatory mechanisms of RNA structure in plants. Genome-wide scale RNA structure profiling allows us to investigate general RNA structural features over 10s of 1000s of mRNAs and to compare RNA structuromes between plant species. Here, we provide a comprehensive and up-to-date overview of: (i) RNA structure probing methods; (ii) the biological functions of RNA structure; (iii) genome-wide RNA structural features corresponding to their regulatory mechanisms; and (iv) RNA structurome evolution in plants.
A structurally oriented simulation system
NASA Technical Reports Server (NTRS)
Aran, Z.
1973-01-01
The computer program SOSS (Structurally Oriented Simulation System) is designed to be used as an experimental aid in the study of reliable systems. Basically, SOSS can simulate the structure and behavior of a discrete-time, finite-state, time-invariant system at various levels of structural definition. A general description of the program is given along with its modes of operation, command language of the basic system, future features to be incorporated in SOSS, and an example of usage.
Crashworthy airframe design concepts: Fabrication and testing
NASA Technical Reports Server (NTRS)
Cronkhite, J. D.; Berry, V. L.
1982-01-01
Crashworthy floor concepts applicable to general aviation aircraft metal airframe structures were investigated. Initially several energy absorbing lower fuselage structure concepts were evaluated. Full scale floor sections representative of a twin engine, general aviation airplane lower fuselage structure were designed and fabricated. The floors featured an upper high strength platform with an energy absorbing, crushable structure underneath. Eighteen floors were fabricated that incorporated five different crushable subfloor concepts. The floors were then evaluated through static and dynamic testing. Computer programs NASTRAN and KRASH were used for the static and dynamic analysis of the floor section designs. Two twin engine airplane fuselages were modified to incorporate the most promising crashworthy floor sections for test evaluation.
NASA Technical Reports Server (NTRS)
Collins, R. J. (Principal Investigator); Mccown, F. P.; Stonis, L. P.; Petzel, G. J.; Everett, J. R.
1974-01-01
The author has identified the following significant results. ERTS-1 data give exploration geologists a new perspective for looking at the earth. The data are excellent for interpreting regional lithologic and structural relationships and quickly directing attention to areas of greatest exploration interest. Information derived from ERTS data useful for petroleum exploration include: linear features, general lithologic distribution, identification of various anomalous features, some details of structures controlling hydrocarbon accumulation, overall structural relationships, and the regional context of the exploration province. Many anomalies (particularly geomorphic anomalies) correlate with known features of petroleum exploration interest. Linears interpreted from the imagery that were checked in the field correlate with fractures. Bands 5 and 7 and color composite imagery acquired during the periods of maximum and minimum vegetation vigor are best for geologic interpretation. Preliminary analysis indicates that use of ERTS imagery can substantially reduce the cost of petroleum exploration in relatively unexplored areas.
Protein sectors: evolutionary units of three-dimensional structure
Halabi, Najeeb; Rivoire, Olivier; Leibler, Stanislas; Ranganathan, Rama
2011-01-01
Proteins display a hierarchy of structural features at primary, secondary, tertiary, and higher-order levels, an organization that guides our current understanding of their biological properties and evolutionary origins. Here, we reveal a structural organization distinct from this traditional hierarchy by statistical analysis of correlated evolution between amino acids. Applied to the S1A serine proteases, the analysis indicates a decomposition of the protein into three quasi-independent groups of correlated amino acids that we term “protein sectors”. Each sector is physically connected in the tertiary structure, has a distinct functional role, and constitutes an independent mode of sequence divergence in the protein family. Functionally relevant sectors are evident in other protein families as well, suggesting that they may be general features of proteins. We propose that sectors represent a structural organization of proteins that reflects their evolutionary histories. PMID:19703402
ERIC Educational Resources Information Center
Petrov, Mark G.
2016-01-01
Thermally activated analysis of experimental data allows considering about the structure features of each material. By modelling the structural heterogeneity of materials by means of rheological models, general and local plastic flows in metals and alloys can be described over. Based on physical fundamentals of failure and deformation of materials…
NASA Technical Reports Server (NTRS)
Schenk, P. M.
1984-01-01
An evaluation of surface features and structures on the Galilean moon Europa is made using the available high resolution Voyager imagery, low resolution support imaging, and what understanding of ice structure and mechanical behavior science has that is applicable to the problem. A general discussion of the history of Europa studies and the fundamental global morphology is undertaken. The visible lineament and terrain patterns are described, and possible origins discussed. Observations of faulting and block rotation previously described are amplified. A comparison of Europa's structures to terrestrial sea ice and lava lake crust features is also included. Finally, an attempt is made at synthesizing a unified model for the evolution of Europa's crust is presented which is compared with models developed by others.
The Equivalence of Precession Phenomena in Metric Theories of Gravity
NASA Technical Reports Server (NTRS)
Krisher, Timothy P.
1996-01-01
The requirement of general covariance imparts to metric theories of gravity, such as general relativity, important structural features. A precise mathematical form results, ensuring that computation of observable physical effects in the theory gives the same answers independently of the chosen system of coordinates. This coordinate independence property, in turn, can lead to an equivalence of apparently different physical effects.
NASA Astrophysics Data System (ADS)
Jiang, Li; Xuan, Jianping; Shi, Tielin
2013-12-01
Generally, the vibration signals of faulty machinery are non-stationary and nonlinear under complicated operating conditions. Therefore, it is a big challenge for machinery fault diagnosis to extract optimal features for improving classification accuracy. This paper proposes semi-supervised kernel Marginal Fisher analysis (SSKMFA) for feature extraction, which can discover the intrinsic manifold structure of dataset, and simultaneously consider the intra-class compactness and the inter-class separability. Based on SSKMFA, a novel approach to fault diagnosis is put forward and applied to fault recognition of rolling bearings. SSKMFA directly extracts the low-dimensional characteristics from the raw high-dimensional vibration signals, by exploiting the inherent manifold structure of both labeled and unlabeled samples. Subsequently, the optimal low-dimensional features are fed into the simplest K-nearest neighbor (KNN) classifier to recognize different fault categories and severities of bearings. The experimental results demonstrate that the proposed approach improves the fault recognition performance and outperforms the other four feature extraction methods.
Integrated Optical Design Analysis (IODA): New Test Data and Modeling Features
NASA Technical Reports Server (NTRS)
Moore, Jim; Troy, Ed; Patrick, Brian
2003-01-01
A general overview of the capabilities of the IODA ("Integrated Optical Design Analysis") exchange of data and modeling results between thermal, structures, optical design, and testing engineering disciplines. This presentation focuses on new features added to the software that allow measured test data to be imported into the IODA environment for post processing or comparisons with pretest model predictions. software is presented. IODA promotes efficient
NASA Technical Reports Server (NTRS)
Jammu, V. B.; Danai, K.; Lewicki, D. G.
1998-01-01
This paper presents the experimental evaluation of the Structure-Based Connectionist Network (SBCN) fault diagnostic system introduced in the preceding article. For this vibration data from two different helicopter gearboxes: OH-58A and S-61, are used. A salient feature of SBCN is its reliance on the knowledge of the gearbox structure and the type of features obtained from processed vibration signals as a substitute to training. To formulate this knowledge, approximate vibration transfer models are developed for the two gearboxes and utilized to derive the connection weights representing the influence of component faults on vibration features. The validity of the structural influences is evaluated by comparing them with those obtained from experimental RMS values. These influences are also evaluated ba comparing them with the weights of a connectionist network trained though supervised learning. The results indicate general agreement between the modeled and experimentally obtained influences. The vibration data from the two gearboxes are also used to evaluate the performance of SBCN in fault diagnosis. The diagnostic results indicate that the SBCN is effective in directing the presence of faults and isolating them within gearbox subsystems based on structural influences, but its performance is not as good in isolating faulty components, mainly due to lack of appropriate vibration features.
The Rock Elm meteorite impact structure, Wisconsin: Geology and shock-metamorphic effects in quartz
French, B.M.; Cordua, W.S.; Plescia, J.B.
2004-01-01
The Rock Elm structure in southwest Wisconsin is an anomalous circular area of highly deformed rocks, ???6.5 km in diameter, located in a region of virtually horizontal undeformed sedimentary rocks. Shock-produced planar microstructures (PMs) have been identified in quartz grains in several lithologies associated with the structure: sandstones, quartzite pebbles, and breccia. Two distinct types of PMs are present: P1 features, which appear identical to planar fractures (PFs or cleavage), and P2 features, which are interpreted as possible incipient planar deformation features (PDFs). The latter are uniquely produced by the shock waves associated with meteorite impact events. Both types of PMs are oriented parallel to specific crystallographic planes in the quartz, most commonly to c(0001), ??112??2, and r/z101??1. The association of unusual, structurally deformed strata with distinct shock-produced microdeformation features in their quartz-bearing rocks establishes Rock Elm as a meteorite impact structure and supports the view that the presence of multiple parallel cleavages in quartz may be used independently as a criterion for meteorite impact. Preliminary paleontological studies indicate a minimum age of Middle Ordovician for the Rock Elm structure. A similar age estimate (450-400 Ma) is obtained independently by combining the results of studies of the general morphology of complex impact structures with estimated rates of sedimentation for the region. Such methods may be applicable to dating other old and deeply eroded impact structures formed in sedimentary target rocks.
Assumptions to the annual energy outlook 1999 : with projections to 2020
DOT National Transportation Integrated Search
1998-12-16
This paper presents the major assumptions of the National Energy Modeling System (NEMS) used to : generate the projections in the Annual Energy Outlook 19991 (AEO99), including general features of : the model structure, assumptions concerning energy ...
Assumptions to the annual energy outlook 2000 : with projections to 2020
DOT National Transportation Integrated Search
2000-01-01
This paper presents the major assumptions of the National Energy Modeling System (NEMS) used to : generate the projections in the Annual Energy Outlook 20001 (AEO2000), including general features of : the model structure, assumptions concerning energ...
Assumptions to the annual energy outlook 2001 : with projections to 2020
DOT National Transportation Integrated Search
2000-12-01
This report presents the major assumptions of the National Energy Modeling System (NEMS) used to : generate the projections in the Annual Energy Outlook 20011 (AEO2001), including general features of : the model structure, assumptions concerning ener...
Assumptions for the annual energy outlook 2003 : with projections to 2025
DOT National Transportation Integrated Search
2003-01-01
This report presents the major assumptions of the National Energy Modeling System (NEMS) used to : generate the projections in the Annual Energy Outlook 20031 (AEO2003), including general features of : the model structure, assumptions concerning ener...
The New ROSIE Reference Manual and User’s Guide
1987-06-01
control structures found in most symbolic languages Features such as rulesets and the pattern matcher blend with the naturalness of ROSIE’s English-like...tasks and does not embody any particular problem-solving techniques or paradigms. Because of its "general-purpose" flavor, it is less structured and... structure . Some operations required special arguments, others performed actions that were considered expedient in n programming language. As the number of
Fifteenth NASTRAN (R) Users' Colloquium
NASA Technical Reports Server (NTRS)
1987-01-01
Numerous applications of the NASA Structural Analysis (NASTRAN) computer program, a general purpose finite element code, are discussed. Additional features that can be added to NASTRAN, interactive plotting of NASTRAN data on microcomputers, mass modeling for bars, the design of wind tunnel models, the analysis of ship structures subjected to underwater explosions, and buckling analysis of radio antennas are among the topics discussed.
Huang, Liqiang
2015-05-01
Basic visual features (e.g., color, orientation) are assumed to be processed in the same general way across different visual tasks. Here, a significant deviation from this assumption was predicted on the basis of the analysis of stimulus spatial structure, as characterized by the Boolean-map notion. If a task requires memorizing the orientations of a set of bars, then the map consisting of those bars can be readily used to hold the overall structure in memory and will thus be especially useful. If the task requires visual search for a target, then the map, which contains only an overall structure, will be of little use. Supporting these predictions, the present study demonstrated that in comparison to stimulus colors, bar orientations were processed more efficiently in change-detection tasks but less efficiently in visual search tasks (Cohen's d = 4.24). In addition to offering support for the role of the Boolean map in conscious access, the present work also throws doubts on the generality of processing visual features. © The Author(s) 2015.
Small is beautiful: features of the smallest insects and limits to miniaturization.
Polilov, Alexey A
2015-01-07
Miniaturization leads to considerable reorganization of structures in insects, affecting almost all organs and tissues. In the smallest insects, comparable in size to unicellular organisms, modifications arise not only at the level of organs, but also at the cellular level. Miniaturization is accompanied by allometric changes in many organ systems. The consequences of miniaturization displayed by different insect taxa include both common and unique changes. Because the smallest insects are among the smallest metazoans and have the most complex organization among organisms of the same size, their peculiar structural features and the factors that limit their miniaturization are of considerable theoretical interest to general biology.
ANALYSIS OF CLINICAL AND DERMOSCOPIC FEATURES FOR BASAL CELL CARCINOMA NEURAL NETWORK CLASSIFICATION
Cheng, Beibei; Stanley, R. Joe; Stoecker, William V; Stricklin, Sherea M.; Hinton, Kristen A.; Nguyen, Thanh K.; Rader, Ryan K.; Rabinovitz, Harold S.; Oliviero, Margaret; Moss, Randy H.
2012-01-01
Background Basal cell carcinoma (BCC) is the most commonly diagnosed cancer in the United States. In this research, we examine four different feature categories used for diagnostic decisions, including patient personal profile (patient age, gender, etc.), general exam (lesion size and location), common dermoscopic (blue-gray ovoids, leaf-structure dirt trails, etc.), and specific dermoscopic lesion (white/pink areas, semitranslucency, etc.). Specific dermoscopic features are more restricted versions of the common dermoscopic features. Methods Combinations of the four feature categories are analyzed over a data set of 700 lesions, with 350 BCCs and 350 benign lesions, for lesion discrimination using neural network-based techniques, including Evolving Artificial Neural Networks and Evolving Artificial Neural Network Ensembles. Results Experiment results based on ten-fold cross validation for training and testing the different neural network-based techniques yielded an area under the receiver operating characteristic curve as high as 0.981 when all features were combined. The common dermoscopic lesion features generally yielded higher discrimination results than other individual feature categories. Conclusions Experimental results show that combining clinical and image information provides enhanced lesion discrimination capability over either information source separately. This research highlights the potential of data fusion as a model for the diagnostic process. PMID:22724561
Linn, Kristin A; Gaonkar, Bilwaj; Satterthwaite, Theodore D; Doshi, Jimit; Davatzikos, Christos; Shinohara, Russell T
2016-05-15
Normalization of feature vector values is a common practice in machine learning. Generally, each feature value is standardized to the unit hypercube or by normalizing to zero mean and unit variance. Classification decisions based on support vector machines (SVMs) or by other methods are sensitive to the specific normalization used on the features. In the context of multivariate pattern analysis using neuroimaging data, standardization effectively up- and down-weights features based on their individual variability. Since the standard approach uses the entire data set to guide the normalization, it utilizes the total variability of these features. This total variation is inevitably dependent on the amount of marginal separation between groups. Thus, such a normalization may attenuate the separability of the data in high dimensional space. In this work we propose an alternate approach that uses an estimate of the control-group standard deviation to normalize features before training. We study our proposed approach in the context of group classification using structural MRI data. We show that control-based normalization leads to better reproducibility of estimated multivariate disease patterns and improves the classifier performance in many cases. Copyright © 2016 Elsevier Inc. All rights reserved.
Morphologic interpretation of fertile structures in glossopterid gymnosperms
Schopf, J.M.
1976-01-01
The problem of determining affinity among glossopterid gymnosperms is beset by deficiencies in preservation, natural dissociation of parts, and scarcity of features assuredly critical for morphologic comprarison. The glossopterids probably are not a very heterogeneous group of plants, but this is difficult to prove. The Gondwana glacial "hiatus" has resulted in the omission of a critical chapter glossopterid evolution. As a consequence, morphologic features and phyletic probabilities must be evaluated on a much more hypothetical basis than would otherwise be justified. Confusion has arisen from the lack of morphologic terms that permit clear discussion of a newly evolved type of reproductive structure in glossopterids. The structure, here designated a "fertiliger", consists of a leafy bract, a partially adnate stalk, and a fertile head or capitulum. Seven types of fertile structures are discussed, all of which are bilaterally symmetrical and have different features on dorsiventral surfaces. I regard all fertiligers as ovulate but this interpretation may bot be acceptable to some workers; others may not accept dorsiventral organization of the capitulum as being fundamental. Among glossopterids, however, in spite of differences in preservation that may seem to support a variant interpretation, these ovulate fertiligers are the distinctive features that show general consistency. A single fertile bract bearing several capitula, as exemplified by Lidgettonia, is called a compound fertiliger. Staminate structures (microsporophylls) of glossopterids are separately classified as Eretmonia, Glossotheca, and possibly as other taxa. Only the manner of sporangial attachment is not entirely clear. It seems likely the staminate parts have previously been confused with scale leaves and are actually coextensive in distribution with the glossopterids. A tentative phyletic model suggests the distant derivation of glossopterids from middle Carboniferous cordaiteans. Many details must be speculative due to the lack of a pertinent fossil record, but this interpretation accounts for some features that have no counterpart in pteridosperms. Permineralized ovules from Antarctica provide general support for this working hypothesis, but specific evidence is lacking. Furthermore, it seems unlikely angiosperms originated from glossopterids; it is more reasonable to consider the glossopterids as possible distant ancestors of the Gnetales. ?? 1976.
10 CFR 55.41 - Written examination: Operators.
Code of Federal Regulations, 2011 CFR
2011-01-01
... coefficients, and poison effects. (2) General design features of the core, including core structure, fuel elements, control rods, core instrumentation, and coolant flow. (3) Mechanical components and design... changes, and operating limitations and reasons for these operating characteristics. (6) Design, components...
10 CFR 55.41 - Written examination: Operators.
Code of Federal Regulations, 2010 CFR
2010-01-01
... coefficients, and poison effects. (2) General design features of the core, including core structure, fuel elements, control rods, core instrumentation, and coolant flow. (3) Mechanical components and design... changes, and operating limitations and reasons for these operating characteristics. (6) Design, components...
10 CFR 55.41 - Written examination: Operators.
Code of Federal Regulations, 2012 CFR
2012-01-01
... coefficients, and poison effects. (2) General design features of the core, including core structure, fuel elements, control rods, core instrumentation, and coolant flow. (3) Mechanical components and design... changes, and operating limitations and reasons for these operating characteristics. (6) Design, components...
Dark mammoth trunks in the merging galaxy NGC 1316 and a mechanism of cosmic double helices
NASA Astrophysics Data System (ADS)
Carlqvist, Per
2010-06-01
NGC 1316 is a giant, elliptical galaxy containing a complex network of dark, dust features. The morphology of these features has been examined in some detail using a Hubble Space Telescope, Advanced Camera for Surveys image. It is found that most of the features are constituted of long filaments. There also exist a great number of dark structures protruding inwards from the filaments. Many of these structures are strikingly similar to elephant trunks in H ii regions in the Milky Way Galaxy, although much larger. The structures, termed mammoth trunks, generally are filamentary and often have shapes resembling the letters V or Y. In some of the mammoth trunks the stem of the Y can be resolved into two or more filaments, many of which showing signs of being intertwined. A model of the mammoth trunks, related to a recent theory of elephant trunks, is proposed. Based on magnetized filaments, the model is capable of giving an account of the various shapes of the mammoth trunks observed, including the twined structures.
NASA Technical Reports Server (NTRS)
Johnson, Charles S.
1986-01-01
It is nearly axiomatic, that to take the greatest advantage of the useful features available in a development system, and to avoid the negative interactions of those features, requires the exercise of a design methodology which constrains their use. A major design support feature of the Ada language is abstraction: for data, functions processes, resources, and system elements in general. Atomic abstract types can be created in packages defining those private types and all of the overloaded operators, functions, and hidden data required for their use in an application. Generically structured abstract types can be created in generic packages defining those structured private types, as buildups from the user-defined data types which are input as parameters. A study is made of the design constraints required for software incorporating either atomic or generically structured abstract types, if the integration of software components based on them is to be subsequently performed. The impact of these techniques on the reusability of software and the creation of project-specific software support environments is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budzevich, M; Grove, O; Balagurunathan, Y
Purpose: To assess the reproducibility of quantitative structural features using images from the computed tomography thoracic FDA phantom database under different scanning conditions. Methods: Development of quantitative image features to describe lesion shape and size, beyond conventional RECIST measures, is an evolving area of research in need of benchmarking standards. Gavrielides et al. (2010) scanned a FDA-developed thoracic phantom with nodules of various Hounsfield units (HU) values, shapes and sizes close to vascular structures using several scanners and varying scanning conditions/parameters; these images are in the public domain. We tested six structural features, namely, Convexity, Perimeter, Major Axis, Minor Axis,more » Extent Mean and Eccentricity, to characterize lung nodules. Convexity measures lesion irregularity referenced to a convex surface. Previously, we showed it to have prognostic value in lung adenocarcinoma. The above metrics and RECIST measures were evaluated on three spiculated (8mm/-300HU, 12mm/+30HU and 15mm/+30HU) and two non-spiculated (8mm/+100HU and 10mm/+100HU) nodules (from layout 2) imaged at three different mAs values: 25, 100 and 200 mAs; on a Phillips scanner (16-slice Mx8000-IDT; 3mm slice thickness). The nodules were segmented semi-automatically using a commercial software tool; the same HU range was used for all nodules. Results: Analysis showed convexity having the lowest maximum coefficient of variation (MCV): 1.1% and 0.6% for spiculated and non-spiculated nodules, respectively, much lower compared to RECIST Major and Minor axes whose MCV were 10.1% and 13.4% for spiculated, and 1.9% and 2.3% for non-spiculated nodules, respectively, across the various mAs. MCVs were consistently larger for speculated nodules. In general, the dependence of structural features on mAs (noise) was low. Conclusion: The FDA phantom CT database may be used for benchmarking of structural features for various scanners and scanning conditions; we used only a small fraction of available data. Our feature convexity outperformed other structural features including RECIST measures.« less
Activity Structures and the Unfolding of Problem-Solving Actions in High-School Chemistry Classrooms
NASA Astrophysics Data System (ADS)
Criswell, Brett A.; Rushton, Greg T.
2014-02-01
In this paper, we argue for a more systematic approach for studying the relationship between classroom practices and scientific practices—an approach that will likely better support the systemic reforms being promoted in the Next Generation Science Standards in the USA and similar efforts in other countries. One component of that approach is looking at how the nature of the activity structure may influence the relative alignment between classroom and scientific practices. To that end, we build on previously published research related to the practices utilized by five high-school chemistry teachers as they enacted problem-solving activities in which students were likely to generate proposals that were not aligned with normative scientific understandings. In that prior work, our analysis had emphasized micro-level features of the talk interactions and how they related to the way students' ideas were explored; in the current paper, the analysis zooms out to consider the macro-level nature of the enactments associated with the activity structure of each lesson examined. Our data show that there were two general patterns to the activity structure across the 14 lessons scrutinized, and that each pattern had associated with it a constellation of features that impinged on the way the problem space was navigated. A key finding is that both activity structures (the expansive and the open) had features that aligned with scientific practices espoused in the Next Generation Science Standards—and both had features that were not aligned with those practices. We discuss the nature of these two structures, evidence of the relationship of each structure to key features of how the lessons unfolded, and the implications of these findings for both future research and the training of teachers.
Protein structure based prediction of catalytic residues.
Fajardo, J Eduardo; Fiser, Andras
2013-02-22
Worldwide structural genomics projects continue to release new protein structures at an unprecedented pace, so far nearly 6000, but only about 60% of these proteins have any sort of functional annotation. We explored a range of features that can be used for the prediction of functional residues given a known three-dimensional structure. These features include various centrality measures of nodes in graphs of interacting residues: closeness, betweenness and page-rank centrality. We also analyzed the distance of functional amino acids to the general center of mass (GCM) of the structure, relative solvent accessibility (RSA), and the use of relative entropy as a measure of sequence conservation. From the selected features, neural networks were trained to identify catalytic residues. We found that using distance to the GCM together with amino acid type provide a good discriminant function, when combined independently with sequence conservation. Using an independent test set of 29 annotated protein structures, the method returned 411 of the initial 9262 residues as the most likely to be involved in function. The output 411 residues contain 70 of the annotated 111 catalytic residues. This represents an approximately 14-fold enrichment of catalytic residues on the entire input set (corresponding to a sensitivity of 63% and a precision of 17%), a performance competitive with that of other state-of-the-art methods. We found that several of the graph based measures utilize the same underlying feature of protein structures, which can be simply and more effectively captured with the distance to GCM definition. This also has the added the advantage of simplicity and easy implementation. Meanwhile sequence conservation remains by far the most influential feature in identifying functional residues. We also found that due the rapid changes in size and composition of sequence databases, conservation calculations must be recalibrated for specific reference databases.
Fuzzy set methods for object recognition in space applications
NASA Technical Reports Server (NTRS)
Keller, James M.
1991-01-01
Progress on the following tasks is reported: (1) fuzzy set-based decision making methodologies; (2) feature calculation; (3) clustering for curve and surface fitting; and (4) acquisition of images. The general structure for networks based on fuzzy set connectives which are being used for information fusion and decision making in space applications is described. The structure and training techniques for such networks consisting of generalized means and gamma-operators are described. The use of other hybrid operators in multicriteria decision making is currently being examined. Numerous classical features on image regions such as gray level statistics, edge and curve primitives, texture measures from cooccurrance matrix, and size and shape parameters were implemented. Several fractal geometric features which may have a considerable impact on characterizing cluttered background, such as clouds, dense star patterns, or some planetary surfaces, were used. A new approach to a fuzzy C-shell algorithm is addressed. NASA personnel are in the process of acquiring suitable simulation data and hopefully videotaped actual shuttle imagery. Photographs have been digitized to use in the algorithms. Also, a model of the shuttle was assembled and a mechanism to orient this model in 3-D to digitize for experiments on pose estimation is being constructed.
A deep learning framework for modeling structural features of RNA-binding protein targets
Zhang, Sai; Zhou, Jingtian; Hu, Hailin; Gong, Haipeng; Chen, Ligong; Cheng, Chao; Zeng, Jianyang
2016-01-01
RNA-binding proteins (RBPs) play important roles in the post-transcriptional control of RNAs. Identifying RBP binding sites and characterizing RBP binding preferences are key steps toward understanding the basic mechanisms of the post-transcriptional gene regulation. Though numerous computational methods have been developed for modeling RBP binding preferences, discovering a complete structural representation of the RBP targets by integrating their available structural features in all three dimensions is still a challenging task. In this paper, we develop a general and flexible deep learning framework for modeling structural binding preferences and predicting binding sites of RBPs, which takes (predicted) RNA tertiary structural information into account for the first time. Our framework constructs a unified representation that characterizes the structural specificities of RBP targets in all three dimensions, which can be further used to predict novel candidate binding sites and discover potential binding motifs. Through testing on the real CLIP-seq datasets, we have demonstrated that our deep learning framework can automatically extract effective hidden structural features from the encoded raw sequence and structural profiles, and predict accurate RBP binding sites. In addition, we have conducted the first study to show that integrating the additional RNA tertiary structural features can improve the model performance in predicting RBP binding sites, especially for the polypyrimidine tract-binding protein (PTB), which also provides a new evidence to support the view that RBPs may own specific tertiary structural binding preferences. In particular, the tests on the internal ribosome entry site (IRES) segments yield satisfiable results with experimental support from the literature and further demonstrate the necessity of incorporating RNA tertiary structural information into the prediction model. The source code of our approach can be found in https://github.com/thucombio/deepnet-rbp. PMID:26467480
ERIC Educational Resources Information Center
Olatunji, Bunmi O.; Broman-Fulks, Joshua J.; Bergman, Shawn M.; Green, Bradley A.; Zlomke, Kimberly R.
2010-01-01
Worry has been described as a core feature of several disorders, particularly generalized anxiety disorder (GAD). The present study examined the latent structure of worry by applying 3 taxometric procedures (MAXEIG, MAMBAC, and L-Mode) to data collected from 2 large samples. Worry in the first sample (Study 1) of community participants (n = 1,355)…
Maximum likelihood clustering with dependent feature trees
NASA Technical Reports Server (NTRS)
Chittineni, C. B. (Principal Investigator)
1981-01-01
The decomposition of mixture density of the data into its normal component densities is considered. The densities are approximated with first order dependent feature trees using criteria of mutual information and distance measures. Expressions are presented for the criteria when the densities are Gaussian. By defining different typs of nodes in a general dependent feature tree, maximum likelihood equations are developed for the estimation of parameters using fixed point iterations. The field structure of the data is also taken into account in developing maximum likelihood equations. Experimental results from the processing of remotely sensed multispectral scanner imagery data are included.
A New DEM Generalization Method Based on Watershed and Tree Structure
Chen, Yonggang; Ma, Tianwu; Chen, Xiaoyin; Chen, Zhende; Yang, Chunju; Lin, Chenzhi; Shan, Ligang
2016-01-01
The DEM generalization is the basis of multi-dimensional observation, the basis of expressing and analyzing the terrain. DEM is also the core of building the Multi-Scale Geographic Database. Thus, many researchers have studied both the theory and the method of DEM generalization. This paper proposed a new method of generalizing terrain, which extracts feature points based on the tree model construction which considering the nested relationship of watershed characteristics. The paper used the 5 m resolution DEM of the Jiuyuan gully watersheds in the Loess Plateau as the original data and extracted the feature points in every single watershed to reconstruct the DEM. The paper has achieved generalization from 1:10000 DEM to 1:50000 DEM by computing the best threshold. The best threshold is 0.06. In the last part of the paper, the height accuracy of the generalized DEM is analyzed by comparing it with some other classic methods, such as aggregation, resample, and VIP based on the original 1:50000 DEM. The outcome shows that the method performed well. The method can choose the best threshold according to the target generalization scale to decide the density of the feature points in the watershed. Meanwhile, this method can reserve the skeleton of the terrain, which can meet the needs of different levels of generalization. Additionally, through overlapped contour contrast, elevation statistical parameters and slope and aspect analysis, we found out that the W8D algorithm performed well and effectively in terrain representation. PMID:27517296
Hull, Damien C; Williams, Glenn A; Griffiths, Mark D
2013-09-01
Video games provide opportunities for positive psychological experiences such as flow-like phenomena during play and general happiness that could be associated with gaming achievements. However, research has shown that specific features of game play may be associated with problematic behaviour associated with addiction-like experiences. The study was aimed at analysing whether certain structural characteristics of video games, flow, and global happiness could be predictive of video game addiction. A total of 110 video game players were surveyed about a game they had recently played by using a 24-item checklist of structural characteristics, an adapted Flow State Scale, the Oxford Happiness Questionnaire, and the Game Addiction Scale. The study revealed decreases in general happiness had the strongest role in predicting increases in gaming addiction. One of the nine factors of the flow experience was a significant predictor of gaming addiction - perceptions of time being altered during play. The structural characteristic that significantly predicted addiction was its social element with increased sociability being associated with higher levels of addictive-like experiences. Overall, the structural characteristics of video games, elements of the flow experience, and general happiness accounted for 49.2% of the total variance in Game Addiction Scale levels. Implications for interventions are discussed, particularly with regard to making players more aware of time passing and in capitalising on benefits of social features of video game play to guard against addictive-like tendencies among video game players.
Hull, Damien C.; Williams, Glenn A.; Griffiths, Mark D.
2013-01-01
Aims: Video games provide opportunities for positive psychological experiences such as flow-like phenomena during play and general happiness that could be associated with gaming achievements. However, research has shown that specific features of game play may be associated with problematic behaviour associated with addiction-like experiences. The study was aimed at analysing whether certain structural characteristics of video games, flow, and global happiness could be predictive of video game addiction. Method: A total of 110 video game players were surveyed about a game they had recently played by using a 24-item checklist of structural characteristics, an adapted Flow State Scale, the Oxford Happiness Questionnaire, and the Game Addiction Scale. Results: The study revealed decreases in general happiness had the strongest role in predicting increases in gaming addiction. One of the nine factors of the flow experience was a significant predictor of gaming addiction – perceptions of time being altered during play. The structural characteristic that significantly predicted addiction was its social element with increased sociability being associated with higher levels of addictive-like experiences. Overall, the structural characteristics of video games, elements of the flow experience, and general happiness accounted for 49.2% of the total variance in Game Addiction Scale levels. Conclusions: Implications for interventions are discussed, particularly with regard to making players more aware of time passing and in capitalising on benefits of social features of video game play to guard against addictive-like tendencies among video game players. PMID:25215196
Movement of feeder-using songbirds: the influence of urban features.
Cox, Daniel T C; Inger, Richard; Hancock, Steven; Anderson, Karen; Gaston, Kevin J
2016-11-23
Private gardens provide vital opportunities for people to interact with nature. The most popular form of interaction is through garden bird feeding. Understanding how landscape features and seasons determine patterns of movement of feeder-using songbirds is key to maximising the well-being benefits they provide. To determine these patterns we established three networks of automated data loggers along a gradient of greenspace fragmentation. Over a 12-month period we tracked 452 tagged blue tits Cyantistes caeruleus and great tits Parus major moving between feeder pairs 9,848 times, to address two questions: (i) Do urban features within different forms, and season, influence structural (presence-absence of connections between feeders by birds) and functional (frequency of these connections) connectivity? (ii) Are there general patterns of structural and functional connectivity across forms? Vegetation cover increased connectivity in all three networks, whereas the presence of road gaps negatively affected functional but not structural connectivity. Across networks structural connectivity was lowest in the summer when birds maintain breeding territories, however patterns of functional connectivity appeared to vary with habitat fragmentation. Using empirical data this study shows how key urban features and season influence movement of feeder-using songbirds, and we provide evidence that this is related to greenspace fragmentation.
Generalized Weyl-Wigner map and Vey quantum mechanics
NASA Astrophysics Data System (ADS)
Dias, Nuno Costa; Prata, João Nuno
2001-12-01
The Weyl-Wigner map yields the entire structure of Moyal quantum mechanics directly from the standard operator formulation. The covariant generalization of Moyal theory, also known as Vey quantum mechanics, was presented in the literature many years ago. However, a derivation of the formalism directly from standard operator quantum mechanics, clarifying the relation between the two formulations, is still missing. In this article we present a covariant generalization of the Weyl order prescription and of the Weyl-Wigner map and use them to derive Vey quantum mechanics directly from the standard operator formulation. The procedure displays some interesting features: it yields all the key ingredients and provides a more straightforward interpretation of the Vey theory including a direct implementation of unitary operator transformations as phase space coordinate transformations in the Vey idiom. These features are illustrated through a simple example.
New geomorphic data on the active Taiwan orogen: A multisource approach
NASA Technical Reports Server (NTRS)
Deffontaines, B.; Lee, J.-C.; Angelier, J.; Carvalho, J.; Rudant, J.-P.
1994-01-01
A multisource and multiscale approach of Taiwan morphotectonics combines different complementary geomorphic analyses based on a new elevation model (DEM), side-looking airborne radar (SLAR), and satellite (SPOT) imagery, aerial photographs, and control from independent field data. This analysis enables us not only to present an integrated geomorphic description of the Taiwan orogen but also to highlight some new geodynamic aspects. Well-known, major geological structures such as the Longitudinal Valley, Lishan, Pingtung, and the Foothills fault zones are of course clearly recognized, but numerous, previously unrecognized structures appear distributed within different regions of Taiwan. For instance, transfer fault zones within the Western Foothills and the Central Range are identified based on analyses of lineaments and general morphology. In many cases, the existence of geomorphic features identified in general images is supported by the results of geological field analyses carried out independently. In turn, the field analyses of structures and mechanisms at some sites provide a key for interpreting similar geomorphic featues in other areas. Examples are the conjugate pattern of strike-slip faults within the Central Range and the oblique fold-and-thrust pattern of the Coastal Range. Furthermore, neotectonic and morphological analyses (drainage and erosional surfaces) has been combined in order to obtain a more comprehensive description and interpretation of neotectonic features in Taiwan, such as for the Longitudinal Valley Fault. Next, at a more general scale, numerical processing of digital elevation models, resulting in average topography, summit level or base level maps, allows identification of major features related to the dynamics of uplift and erosion and estimates of erosion balance. Finally, a preliminary morphotectonic sketch map of Taiwan, combining information from all the sources listed above, is presented.
Makino, Hiroshi; Jitsumori, Masako
2007-02-01
Adult humans (Homo sapiens) and pigeons (Columba livia) were trained to discriminate artificial categories that the authors created by mimicking 2 properties of natural categories. One was a family resemblance relationship: The highly variable exemplars, including those that did not have features in common, were structured by a similarity network with the features correlating to one another in each category. The other was a polymorphous rule: No single feature was essential for distinguishing the categories, and all the features overlapped between the categories. Pigeons learned the categories with ease and then showed a prototype effect in accord with the degrees of family resemblance for novel stimuli. Some evidence was also observed for interactive effects of learning of individual exemplars and feature frequencies. Humans had difficulty in learning the categories. The participants who learned the categories generally responded to novel stimuli in an all-or-none fashion on the basis of their acquired classification decision rules. The processes that underlie the classification performances of the 2 species are discussed.
Network Ecology and Adolescent Social Structure
McFarland, Daniel A.; Moody, James; Diehl, David; Smith, Jeffrey A.; Thomas, Reuben J.
2014-01-01
Adolescent societies—whether arising from weak, short-term classroom friendships or from close, long-term friendships—exhibit various levels of network clustering, segregation, and hierarchy. Some are rank-ordered caste systems and others are flat, cliquish worlds. Explaining the source of such structural variation remains a challenge, however, because global network features are generally treated as the agglomeration of micro-level tie-formation mechanisms, namely balance, homophily, and dominance. How do the same micro-mechanisms generate significant variation in global network structures? To answer this question we propose and test a network ecological theory that specifies the ways features of organizational environments moderate the expression of tie-formation processes, thereby generating variability in global network structures across settings. We develop this argument using longitudinal friendship data on schools (Add Health study) and classrooms (Classroom Engagement study), and by extending exponential random graph models to the study of multiple societies over time. PMID:25535409
Network Ecology and Adolescent Social Structure.
McFarland, Daniel A; Moody, James; Diehl, David; Smith, Jeffrey A; Thomas, Reuben J
2014-12-01
Adolescent societies-whether arising from weak, short-term classroom friendships or from close, long-term friendships-exhibit various levels of network clustering, segregation, and hierarchy. Some are rank-ordered caste systems and others are flat, cliquish worlds. Explaining the source of such structural variation remains a challenge, however, because global network features are generally treated as the agglomeration of micro-level tie-formation mechanisms, namely balance, homophily, and dominance. How do the same micro-mechanisms generate significant variation in global network structures? To answer this question we propose and test a network ecological theory that specifies the ways features of organizational environments moderate the expression of tie-formation processes, thereby generating variability in global network structures across settings. We develop this argument using longitudinal friendship data on schools (Add Health study) and classrooms (Classroom Engagement study), and by extending exponential random graph models to the study of multiple societies over time.
Association between MRI structural features and cognitive measures in pediatric multiple sclerosis
NASA Astrophysics Data System (ADS)
Amoroso, N.; Bellotti, R.; Fanizzi, A.; Lombardi, A.; Monaco, A.; Liguori, M.; Margari, L.; Simone, M.; Viterbo, R. G.; Tangaro, S.
2017-09-01
Multiple sclerosis (MS) is an inflammatory and demyelinating disease associated with neurodegenerative processes that lead to brain structural changes. The disease affects mostly young adults, but 3-5% of cases has a pediatric onset (POMS). Magnetic Resonance Imaging (MRI) is generally used for diagnosis and follow-up in MS patients, however the most common MRI measures (e.g. new or enlarging T2-weighted lesions, T1-weighted gadolinium- enhancing lesions) have often failed as surrogate markers of MS disability and progression. MS is clinically heterogenous with symptoms that can include both physical changes (such as visual loss or walking difficulties) and cognitive impairment. 30-50% of POMS experience prominent cognitive dysfunction. In order to investigate the association between cognitive measures and brain morphometry, in this work we present a fully automated pipeline for processing and analyzing MRI brain scans. Relevant anatomical structures are segmented with FreeSurfer; besides, statistical features are computed. Thus, we describe the data referred to 12 patients with early POMS (mean age at MRI: 15.5 +/- 2.7 years) with a set of 181 structural features. The major cognitive abilities measured are verbal and visuo-spatial learning, expressive language and complex attention. Data was collected at the Department of Basic Sciences, Neurosciences and Sense Organs, University of Bari, and exploring different abilities like the verbal and visuo-spatial learning, expressive language and complex attention. Different regression models and parameter configurations are explored to assess the robustness of the results, in particular Generalized Linear Models, Bayes Regression, Random Forests, Support Vector Regression and Artificial Neural Networks are discussed.
Task-relevant perceptual features can define categories in visual memory too.
Antonelli, Karla B; Williams, Carrick C
2017-11-01
Although Konkle, Brady, Alvarez, and Oliva (2010, Journal of Experimental Psychology: General, 139(3), 558) claim that visual long-term memory (VLTM) is organized on underlying conceptual, not perceptual, information, visual memory results from visual search tasks are not well explained by this theory. We hypothesized that when viewing an object, any task-relevant visual information is critical to the organizational structure of VLTM. In two experiments, we examined the organization of VLTM by measuring the amount of retroactive interference created by objects possessing different combinations of task-relevant features. Based on task instructions, only the conceptual category was task relevant or both the conceptual category and a perceptual object feature were task relevant. Findings indicated that when made task relevant, perceptual object feature information, along with conceptual category information, could affect memory organization for objects in VLTM. However, when perceptual object feature information was task irrelevant, it did not contribute to memory organization; instead, memory defaulted to being organized around conceptual category information. These findings support the theory that a task-defined organizational structure is created in VLTM based on the relevance of particular object features and information.
Unraveling hadron structure with generalized parton distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrei Belitsky; Anatoly Radyushkin
2004-10-01
The recently introduced generalized parton distributions have emerged as a universal tool to describe hadrons in terms of quark and gluonic degrees of freedom. They combine the features of form factors, parton densities and distribution amplitudes - the functions used for a long time in studies of hadronic structure. Generalized parton distributions are analogous to the phase-space Wigner quasi-probability function of non-relativistic quantum mechanics which encodes full information on a quantum-mechanical system. We give an extensive review of main achievements in the development of this formalism. We discuss physical interpretation and basic properties of generalized parton distributions, their modeling andmore » QCD evolution in the leading and next-to-leading orders. We describe how these functions enter a wide class of exclusive reactions, such as electro- and photo-production of photons, lepton pairs, or mesons.« less
Generalized probability theories: what determines the structure of quantum theory?
NASA Astrophysics Data System (ADS)
Janotta, Peter; Hinrichsen, Haye
2014-08-01
The framework of generalized probabilistic theories is a powerful tool for studying the foundations of quantum physics. It provides the basis for a variety of recent findings that significantly improve our understanding of the rich physical structure of quantum theory. This review paper tries to present the framework and recent results to a broader readership in an accessible manner. To achieve this, we follow a constructive approach. Starting from a few basic physically motivated assumptions we show how a given set of observations can be manifested in an operational theory. Furthermore, we characterize consistency conditions limiting the range of possible extensions. In this framework classical and quantum theory appear as special cases, and the aim is to understand what distinguishes quantum mechanics as the fundamental theory realized in nature. It turns out that non-classical features of single systems can equivalently result from higher-dimensional classical theories that have been restricted. Entanglement and non-locality, however, are shown to be genuine non-classical features.
Road displacement model based on structural mechanics
NASA Astrophysics Data System (ADS)
Lu, Xiuqin; Guo, Qingsheng; Zhang, Yi
2006-10-01
Spatial conflict resolution is an important part of cartographic generalization, and it can deal with the problems of having too much information competing for too little space, while feature displacement is a primary operator of map generalization, which aims at resolving the spatial conflicts between neighbor objects especially road features. Considering the road object, this paper explains an idea of displacement based on structural mechanics. In view of spatial conflict problem after road symbolization, it is the buffer zones that are used to detect conflicts, then we focus on each conflicting region, with the finite element method, taking every triangular element for analysis, listing stiffness matrix, gathering system equations and calculating with iteration strategy, and we give the solution to road symbol conflicts. Being like this until all the conflicts in conflicting regions are solved, then we take the whole map into consideration again, conflicts are detected by reusing the buffer zones and solved by displacement operator, so as to all of them are handled.
Gong, Tao; Lam, Yau W.; Shuai, Lan
2016-01-01
Psychological experiments have revealed that in normal visual perception of humans, color cues are more salient than shape cues, which are more salient than textural patterns. We carried out an artificial language learning experiment to study whether such perceptual saliency hierarchy (color > shape > texture) influences the learning of orders regulating adjectives of involved visual features in a manner either congruent (expressing a salient feature in a salient part of the form) or incongruent (expressing a salient feature in a less salient part of the form) with that hierarchy. Results showed that within a few rounds of learning participants could learn the compositional segments encoding the visual features and the order between them, generalize the learned knowledge to unseen instances with the same or different orders, and show learning biases for orders that are congruent with the perceptual saliency hierarchy. Although the learning performances for both the biased and unbiased orders became similar given more learning trials, our study confirms that this type of individual perceptual constraint could contribute to the structural configuration of language, and points out that such constraint, as well as other factors, could collectively affect the structural diversity in languages. PMID:28066281
Gong, Tao; Lam, Yau W; Shuai, Lan
2016-01-01
Psychological experiments have revealed that in normal visual perception of humans, color cues are more salient than shape cues, which are more salient than textural patterns. We carried out an artificial language learning experiment to study whether such perceptual saliency hierarchy (color > shape > texture) influences the learning of orders regulating adjectives of involved visual features in a manner either congruent (expressing a salient feature in a salient part of the form) or incongruent (expressing a salient feature in a less salient part of the form) with that hierarchy. Results showed that within a few rounds of learning participants could learn the compositional segments encoding the visual features and the order between them, generalize the learned knowledge to unseen instances with the same or different orders, and show learning biases for orders that are congruent with the perceptual saliency hierarchy. Although the learning performances for both the biased and unbiased orders became similar given more learning trials, our study confirms that this type of individual perceptual constraint could contribute to the structural configuration of language, and points out that such constraint, as well as other factors, could collectively affect the structural diversity in languages.
TOMML: A Rule Language for Structured Data
NASA Astrophysics Data System (ADS)
Cirstea, Horatiu; Moreau, Pierre-Etienne; Reilles, Antoine
We present the TOM language that extends JAVA with the purpose of providing high level constructs inspired by the rewriting community. TOM bridges thus the gap between a general purpose language and high level specifications based on rewriting. This approach was motivated by the promotion of rule based techniques and their integration in large scale applications. Powerful matching capabilities along with a rich strategy language are among TOM's strong features that make it easy to use and competitive with respect to other rule based languages. TOM is thus a natural choice for querying and transforming structured data and in particular XML documents [1]. We present here its main XML oriented features and illustrate its use on several examples.
ASTROS: A multidisciplinary automated structural design tool
NASA Technical Reports Server (NTRS)
Neill, D. J.
1989-01-01
ASTROS (Automated Structural Optimization System) is a finite-element-based multidisciplinary structural optimization procedure developed under Air Force sponsorship to perform automated preliminary structural design. The design task is the determination of the structural sizes that provide an optimal structure while satisfying numerous constraints from many disciplines. In addition to its automated design features, ASTROS provides a general transient and frequency response capability, as well as a special feature to perform a transient analysis of a vehicle subjected to a nuclear blast. The motivation for the development of a single multidisciplinary design tool is that such a tool can provide improved structural designs in less time than is currently needed. The role of such a tool is even more apparent as modern materials come into widespread use. Balancing conflicting requirements for the structure's strength and stiffness while exploiting the benefits of material anisotropy is perhaps an impossible task without assistance from an automated design tool. Finally, the use of a single tool can bring the design task into better focus among design team members, thereby improving their insight into the overall task.
NASTRAN forced vibration analysis of rotating cyclic structures
NASA Technical Reports Server (NTRS)
Elchuri, V.; Smith, G. C. C.; Gallo, A. M.
1983-01-01
Theoretical aspects of a new capability developed and implemented in NASTRAN level 17.7 to analyze forced vibration of a cyclic structure rotating about its axis of symmetry are presented. Fans, propellers, and bladed shrouded discs of turbomachines are some examples of such structures. The capability includes the effects of Coriolis and centripetal accelerations on the rotating structure which can be loaded with: (1) directly applied loads moving with the structure and (2) inertial loas due to the translational acceleration of the axis of rotation (''base' acceleration). Steady-state sinusoidal or general periodic loads are specified to represent: (1) the physical loads on various segments of the complete structure, or (2) the circumferential harmonic components of the loads in (1). The cyclic symmetry feature of the rotating structure is used in deriving and solving the equations of forced motion. Consequently, only one of the cyclic sectors is modelled and analyzed using finite elements, yielding substantial savings in the analysis cost. Results, however, are obtained for the entire structure. A tuned twelve bladed disc example is used to demonstrate the various features of the capability.
A general prediction model for the detection of ADHD and Autism using structural and functional MRI.
Sen, Bhaskar; Borle, Neil C; Greiner, Russell; Brown, Matthew R G
2018-01-01
This work presents a novel method for learning a model that can diagnose Attention Deficit Hyperactivity Disorder (ADHD), as well as Autism, using structural texture and functional connectivity features obtained from 3-dimensional structural magnetic resonance imaging (MRI) and 4-dimensional resting-state functional magnetic resonance imaging (fMRI) scans of subjects. We explore a series of three learners: (1) The LeFMS learner first extracts features from the structural MRI images using the texture-based filters produced by a sparse autoencoder. These filters are then convolved with the original MRI image using an unsupervised convolutional network. The resulting features are used as input to a linear support vector machine (SVM) classifier. (2) The LeFMF learner produces a diagnostic model by first computing spatial non-stationary independent components of the fMRI scans, which it uses to decompose each subject's fMRI scan into the time courses of these common spatial components. These features can then be used with a learner by themselves or in combination with other features to produce the model. Regardless of which approach is used, the final set of features are input to a linear support vector machine (SVM) classifier. (3) Finally, the overall LeFMSF learner uses the combined features obtained from the two feature extraction processes in (1) and (2) above as input to an SVM classifier, achieving an accuracy of 0.673 on the ADHD-200 holdout data and 0.643 on the ABIDE holdout data. Both of these results, obtained with the same LeFMSF framework, are the best known, over all hold-out accuracies on these datasets when only using imaging data-exceeding previously-published results by 0.012 for ADHD and 0.042 for Autism. Our results show that combining multi-modal features can yield good classification accuracy for diagnosis of ADHD and Autism, which is an important step towards computer-aided diagnosis of these psychiatric diseases and perhaps others as well.
A generalized geologic map of Mars.
NASA Technical Reports Server (NTRS)
Carr, M. H.; Masursky, H.; Saunders, R. S.
1973-01-01
A geologic map of Mars has been constructed largely on the basis of photographic evidence. Four classes of units are recognized: (1) primitive cratered terrain, (2) sparsely cratered volcanic eolian plains, (3) circular radially symmetric volcanic constructs such as shield volcanoes, domes, and craters, and (4) tectonic erosional units such as chaotic and channel deposits. Grabens are the main structural features; compressional and strike slip features are almost completely absent. Most grabens are part of a set radial to the main volcanic area, Tharsis.
Monitoring the Depth of Anesthesia Using a New Adaptive Neurofuzzy System.
Shalbaf, Ahmad; Saffar, Mohsen; Sleigh, Jamie W; Shalbaf, Reza
2018-05-01
Accurate and noninvasive monitoring of the depth of anesthesia (DoA) is highly desirable. Since the anesthetic drugs act mainly on the central nervous system, the analysis of brain activity using electroencephalogram (EEG) is very useful. This paper proposes a novel automated method for assessing the DoA using EEG. First, 11 features including spectral, fractal, and entropy are extracted from EEG signal and then, by applying an algorithm according to exhaustive search of all subsets of features, a combination of the best features (Beta-index, sample entropy, shannon permutation entropy, and detrended fluctuation analysis) is selected. Accordingly, we feed these extracted features to a new neurofuzzy classification algorithm, adaptive neurofuzzy inference system with linguistic hedges (ANFIS-LH). This structure can successfully model systems with nonlinear relationships between input and output, and also classify overlapped classes accurately. ANFIS-LH, which is based on modified classical fuzzy rules, reduces the effects of the insignificant features in input space, which causes overlapping and modifies the output layer structure. The presented method classifies EEG data into awake, light, general, and deep states during anesthesia with sevoflurane in 17 patients. Its accuracy is 92% compared to a commercial monitoring system (response entropy index) successfully. Moreover, this method reaches the classification accuracy of 93% to categorize EEG signal to awake and general anesthesia states by another database of propofol and volatile anesthesia in 50 patients. To sum up, this method is potentially applicable to a new real-time monitoring system to help the anesthesiologist with continuous assessment of DoA quickly and accurately.
Hierarchy Measure for Complex Networks
Mones, Enys; Vicsek, Lilla; Vicsek, Tamás
2012-01-01
Nature, technology and society are full of complexity arising from the intricate web of the interactions among the units of the related systems (e.g., proteins, computers, people). Consequently, one of the most successful recent approaches to capturing the fundamental features of the structure and dynamics of complex systems has been the investigation of the networks associated with the above units (nodes) together with their relations (edges). Most complex systems have an inherently hierarchical organization and, correspondingly, the networks behind them also exhibit hierarchical features. Indeed, several papers have been devoted to describing this essential aspect of networks, however, without resulting in a widely accepted, converging concept concerning the quantitative characterization of the level of their hierarchy. Here we develop an approach and propose a quantity (measure) which is simple enough to be widely applicable, reveals a number of universal features of the organization of real-world networks and, as we demonstrate, is capable of capturing the essential features of the structure and the degree of hierarchy in a complex network. The measure we introduce is based on a generalization of the m-reach centrality, which we first extend to directed/partially directed graphs. Then, we define the global reaching centrality (GRC), which is the difference between the maximum and the average value of the generalized reach centralities over the network. We investigate the behavior of the GRC considering both a synthetic model with an adjustable level of hierarchy and real networks. Results for real networks show that our hierarchy measure is related to the controllability of the given system. We also propose a visualization procedure for large complex networks that can be used to obtain an overall qualitative picture about the nature of their hierarchical structure. PMID:22470477
Towards automatic musical instrument timbre recognition
NASA Astrophysics Data System (ADS)
Park, Tae Hong
This dissertation is comprised of two parts---focus on issues concerning research and development of an artificial system for automatic musical instrument timbre recognition and musical compositions. The technical part of the essay includes a detailed record of developed and implemented algorithms for feature extraction and pattern recognition. A review of existing literature introducing historical aspects surrounding timbre research, problems associated with a number of timbre definitions, and highlights of selected research activities that have had significant impact in this field are also included. The developed timbre recognition system follows a bottom-up, data-driven model that includes a pre-processing module, feature extraction module, and a RBF/EBF (Radial/Elliptical Basis Function) neural network-based pattern recognition module. 829 monophonic samples from 12 instruments have been chosen from the Peter Siedlaczek library (Best Service) and other samples from the Internet and personal collections. Significant emphasis has been put on feature extraction development and testing to achieve robust and consistent feature vectors that are eventually passed to the neural network module. In order to avoid a garbage-in-garbage-out (GIGO) trap and improve generality, extra care was taken in designing and testing the developed algorithms using various dynamics, different playing techniques, and a variety of pitches for each instrument with inclusion of attack and steady-state portions of a signal. Most of the research and development was conducted in Matlab. The compositional part of the essay includes brief introductions to "A d'Ess Are ," "Aboji," "48 13 N, 16 20 O," and "pH-SQ." A general outline pertaining to the ideas and concepts behind the architectural designs of the pieces including formal structures, time structures, orchestration methods, and pitch structures are also presented.
Pediatric dermatohistopathology--histopathology of skin diseases in newborns and infants.
Wobser, Marion; Ernestus, Karen; Hamm, Henning
2015-06-01
While neonatal skin physiology has been thoroughly examined using non-invasive techniques in recent years, only few systematic studies and review articles addressing the histopathology of neonatal skin have been published thus far. In most cases, histopathological findings of dermatoses in neonatal skin do not significantly differ from those seen in adult skin. Nevertheless, a comprehensive knowledge of embryonic and fetal skin development as well as the microanatomical structure of neonatal skin can contribute to a better understanding of various dermatoses of infancy. In the first part of this review article, we present the histopathological features of such skin diseases, which, though generally rare, almost exclusively appear during the first weeks of life due to distinctive structural and functional features of neonatal skin. The second part is dedicated to classic dermatoses of infancy and their histopathological features. © 2015 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.
Phenylethynyl terminated reactive oligomer
NASA Technical Reports Server (NTRS)
Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor)
1995-01-01
A composition of matter having the general structure: ##STR1## (wherein X is F, Cl, or NO.sub.2, and Y is CO, SO.sub.2 or C(CF.sub.3).sub.2) is employed to terminate a nucleophilic reagent, resulting in the exclusive production of phenylethynyl terminated reactive oligomers which display unique thermal characteristics. A reactive diluent having the general structure: ##STR2## (wherein R is any aliphatic or aromatic moiety) is employed to decrease the melt viscosity of a phenylethynyl terminated reactive oligomer and to subsequently react therewith to provide a thermosetting material of enhanced density. These materials have features which make them attractive candidates for use as composite matrices and adhesives.
ERIC Educational Resources Information Center
Hofer, Roberta Senner
Although conversational stories within one individual's corpus share the same structure, they have features that set them apart from one another. Based on the stories' general characteristics and the way they function in ongoing talk, they can be identified as: (1) durable personal experience narratives (PENs), which are often repeated during the…
Internship Handbook for Career Academies.
ERIC Educational Resources Information Center
Winthrop, Jerauld
Career academies are high school programs that frame academic learning around a career focus in order to increase student motivation and achievement. They generally have three defining features: a school-within-a-school structure, a college preparation curriculum with a career theme, and partnerships with employers, the community, and higher…
2.4 Å resolution crystal structure of human TRAP1NM, the Hsp90 paralog in the mitochondrial matrix.
Sung, Nuri; Lee, Jungsoon; Kim, Ji Hyun; Chang, Changsoo; Tsai, Francis T F; Lee, Sukyeong
2016-08-01
TRAP1 is an organelle-specific Hsp90 paralog that is essential for neoplastic growth. As a member of the Hsp90 family, TRAP1 is presumed to be a general chaperone facilitating the late-stage folding of Hsp90 client proteins in the mitochondrial matrix. Interestingly, TRAP1 cannot replace cytosolic Hsp90 in protein folding, and none of the known Hsp90 co-chaperones are found in mitochondria. Thus, the three-dimensional structure of TRAP1 must feature regulatory elements that are essential to the ATPase activity and chaperone function of TRAP1. Here, the crystal structure of a human TRAP1NM dimer is presented, featuring an intact N-domain and M-domain structure, bound to adenosine 5'-β,γ-imidotriphosphate (ADPNP). The crystal structure together with epitope-mapping results shows that the TRAP1 M-domain loop 1 contacts the neighboring subunit and forms a previously unobserved third dimer interface that mediates the specific interaction with mitochondrial Hsp70.
Toward a holographic theory for general spacetimes
NASA Astrophysics Data System (ADS)
Nomura, Yasunori; Salzetta, Nico; Sanches, Fabio; Weinberg, Sean J.
2017-04-01
We study a holographic theory of general spacetimes that does not rely on the existence of asymptotic regions. This theory is to be formulated in a holographic space. When a semiclassical description is applicable, the holographic space is assumed to be a holographic screen: a codimension-1 surface that is capable of encoding states of the gravitational spacetime. Our analysis is guided by conjectured relationships between gravitational spacetime and quantum entanglement in the holographic description. To understand basic features of this picture, we catalog predictions for the holographic entanglement structure of cosmological spacetimes. We find that qualitative features of holographic entanglement entropies for such spacetimes differ from those in AdS/CFT but that the former reduce to the latter in the appropriate limit. The Hilbert space of the theory is analyzed, and two plausible structures are found: a direct-sum and "spacetime-equals-entanglement" structure. The former preserves a naive relationship between linear operators and observable quantities, while the latter respects a more direct connection between holographic entanglement and spacetime. We also discuss the issue of selecting a state in quantum gravity, in particular how the state of the multiverse may be selected in the landscape.
NASA Astrophysics Data System (ADS)
Benavides-Rivas, C. L.; Soto-Pinto, C. A.; Arellano-Baeza, A. A.
2014-12-01
Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the LANDSAT 8 satellite have been used to delineate the geological structures related to the potential geothermal reservoirs located at the northern end of the Southern Volcanic Zone of Chile. It was done by applying the lineament extraction technique, using the ADALGEO software, developed by [Soto et al., 2013]. These structures have been compared with the distribution of main geological structures obtained in the field. It was found that the lineament density increases in the areas of the major heat flux indicating that the lineament analysis could be a power tool for the detection of faults and joint zones associated to the geothermal fields. A lineament is generally defined as a straight or slightly curved feature in the landscape visible satellite image as an aligned sequence of pixel intensity contrast compared to the background. The system features extracted from satellite images is not identical to the geological lineaments that are generally determined by ground surveys, however, generally reflects the structure of faults and fractures in the crust. A temporal sequence of eight Landsat multispectral images of Central Andes geothermal field, located in VI region de Chile, was used to study changes in the configuration of the lineaments during 2011. The presence of minerals with silicification, epidotization, and albitization, which are typical for geothrmal reservoirs, was also identified, using their spectral characteristics, and subsequently corroborated in the field. Both lineament analysis and spectral analysis gave similar location of the reservoir, which increases reliability of the results.
NASA Technical Reports Server (NTRS)
Ciciora, J. A.; Leonard, S. D.; Johnson, N.; Amell, J.
1984-01-01
In order to derive general design guidelines for automated systems a study was conducted on the utilization and acceptance of existing automated systems as currently employed in several commercial fields. Four principal study area were investigated by means of structured interviews, and in some cases questionnaires. The study areas were aviation, a both scheduled airline and general commercial aviation; process control and factory applications; office automation; and automation in the power industry. The results of over eighty structured interviews were analyzed and responses categoried as various human factors issues for use by both designers and users of automated equipment. These guidelines address such items as general physical features of automated equipment; personnel orientation, acceptance, and training; and both personnel and system reliability.
A Guide for Planning Indoor Facilities for College Physical Education.
ERIC Educational Resources Information Center
Crawford, Wayne H.
Following a general consideration of the functional aspects of planning facilities and the relationship between program and facilities, a detailed presentation is made of planning buildings for college and university indoor physical education activities. Recommendations are made with regard to design, structural and functional features of…
Swahili. An Active Introduction. General Conversation.
ERIC Educational Resources Information Center
Indakwa, John; And Others
This textbook is aimed towards the beginning student of Swahili and is designed to cover almost all the main features of Swahili structure. The course is divided into 87 "cycles," each of which begins with an "M" phase (mimicry, meaning, manipulation, memorization), and ends with a "C" phase (conversation and…
Development of Distinctive Feature Theory.
ERIC Educational Resources Information Center
Meyer, Peggy L.
Since the beginning of man's awareness of his language capabilities and language structure, he has assumed that speech is composed of discrete entities. The linguist attempts to establish a model of the workings of these distinctive sounds in a language. Utilizing an historical basis for discussion, this general survey of the distinctive feature…
Ecological Understanding 2: Transformation--A Key to Ecological Understanding.
ERIC Educational Resources Information Center
Carlsson, Britta
2002-01-01
Describes the structure and general features of the phenomenon of ecological understanding. Presents qualitatively different ways of experiencing cycling of matter and the flow of energy in the context of ecosystems. The idea of transformation is key to the development of ecological understanding. (Contains 17 references.) (Author/YDS)
Assumptions to the Annual Energy Outlook
2017-01-01
This report presents the major assumptions of the National Energy Modeling System (NEMS) used to generate the projections in the Annual Energy Outlook, including general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are the most significant in formulating the model results.
Reflections on New Configurations in Campus Governance.
ERIC Educational Resources Information Center
Wise, W. Max
Changes in college government generally incorporate the following features: (1) they provide structural means for the expression of opinion, (often the right to vote) to representatives of groups hitherto underrepresented or unrepresented on decision-making bodies; (2) they are intended to make the decision-making process more explicit, and more…
A Rational Analysis of Rule-Based Concept Learning
ERIC Educational Resources Information Center
Goodman, Noah D.; Tenenbaum, Joshua B.; Feldman, Jacob; Griffiths, Thomas L.
2008-01-01
This article proposes a new model of human concept learning that provides a rational analysis of learning feature-based concepts. This model is built upon Bayesian inference for a grammatically structured hypothesis space--a concept language of logical rules. This article compares the model predictions to human generalization judgments in several…
NASA Astrophysics Data System (ADS)
Draghici, Sorin; Cumberland, Lonnie T., Jr.; Kovari, Ladislau C.
2000-04-01
This paper presents some results of data mining HIV genotypic and structural data. Our aim is to try to relate structural features of HIV enzymes essential to its reproductive abilities to the drug resistance phenomenon. This paper concentrates on the HIV protease enzyme and Indinavir which is one of the FDA approved protease inhibitors. Our starting point was the current list of HIV mutations related to drug resistance. We used the fact that some molecular structures determined through high resolution X-ray crystallography were available for the protease-Indinavir complex. Starting with these structures and the known mutations, we modelled the mutant proteases and studied the pattern of atomic contacts between the protease and the drug. After suitable pre- processing, these patterns have been used as the input of our data mining process. We have used both supervised and unsupervised learning techniques with the aim of understanding the relationship between structural features at a molecular level and resistance to Indinavir. The supervised learning was aimed at predicting IC90 values for arbitrary mutants. The SOFM was aimed at identifying those structural features that are important for drug resistance and discovering a classifier based on such features. We have used validation and cross validation to test the generalization abilities of the learning paradigm we have designed. The straightforward supervised learning was able to learn very successfully but validation results are less than satisfactory. This is due to the insufficient number of patterns in the training set which in turn is due to the scarcity of the available data. The data mining using SOFM was very successful. We have managed to distinguish between resistant and non-resistant mutants using structural features. We have been able to divide all reported HIV mutants into several categories based on their 3- dimensional molecular structures and the pattern of contacts between the mutant protease and Indinavir. Our classifier shows reasonably good prediction performance being able to predict the drug resistance of previously unseen mutants with an accuracy of between 60% and 70%. We believe that this performance can be greatly improved once more data becomes available. The results presented here support the hypothesis that structural features of the molecular structure can be used in antiviral drug treatment selection and drug design.
Common structural features of cholesterol binding sites in crystallized soluble proteins
Bukiya, Anna N.; Dopico, Alejandro M.
2017-01-01
Cholesterol-protein interactions are essential for the architectural organization of cell membranes and for lipid metabolism. While cholesterol-sensing motifs in transmembrane proteins have been identified, little is known about cholesterol recognition by soluble proteins. We reviewed the structural characteristics of binding sites for cholesterol and cholesterol sulfate from crystallographic structures available in the Protein Data Bank. This analysis unveiled key features of cholesterol-binding sites that are present in either all or the majority of sites: i) the cholesterol molecule is generally positioned between protein domains that have an organized secondary structure; ii) the cholesterol hydroxyl/sulfo group is often partnered by Asn, Gln, and/or Tyr, while the hydrophobic part of cholesterol interacts with Leu, Ile, Val, and/or Phe; iii) cholesterol hydrogen-bonding partners are often found on α-helices, while amino acids that interact with cholesterol’s hydrophobic core have a slight preference for β-strands and secondary structure-lacking protein areas; iv) the steroid’s C21 and C26 constitute the “hot spots” most often seen for steroid-protein hydrophobic interactions; v) common “cold spots” are C8–C10, C13, and C17, at which contacts with the proteins were not detected. Several common features we identified for soluble protein-steroid interaction appear evolutionarily conserved. PMID:28420706
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasyanos, M
We study the lithospheric structure of Africa, Arabia and adjacent oceanic regions with fundamental-mode surface waves over a wide period range. Including short period group velocities allows us to examine shallower features than previous studies of the whole continent. In the process, we have developed a crustal thickness map of Africa. Main features include crustal thickness increases under the West African, Congo, and Kalahari cratons. We find crustal thinning under Mesozoic and Cenozoic rifts, including the Benue Trough, Red Sea, and East, Central, and West African rift systems. Crustal shear wave velocities are generally faster in oceanic regions and cratons,more » and slower in more recent crust and in active and formerly active orogenic regions. Deeper structure, related to the thickness of cratons and modern rifting, is generally consistent with previous work. Under cratons we find thick lithosphere and fast upper mantle velocities, while under rifts we find thinned lithosphere and slower upper mantle velocities. There are no consistent effects in areas classified as hotspots, indicating that there seem to be numerous origins for these features. Finally, it appears that the African Superswell has had a significantly different impact in the north and the south, indicating specifics of the feature (temperature, time of influence, etc.) to be dissimilar between the two regions. Factoring in other information, it is likely that the southern portion has been active in the past, but that shallow activity is currently limited to the northern portion of the superswell.« less
Robust evaluation of time series classification algorithms for structural health monitoring
NASA Astrophysics Data System (ADS)
Harvey, Dustin Y.; Worden, Keith; Todd, Michael D.
2014-03-01
Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and mechanical infrastructure through analysis of structural response measurements. The supervised learning methodology for data-driven SHM involves computation of low-dimensional, damage-sensitive features from raw measurement data that are then used in conjunction with machine learning algorithms to detect, classify, and quantify damage states. However, these systems often suffer from performance degradation in real-world applications due to varying operational and environmental conditions. Probabilistic approaches to robust SHM system design suffer from incomplete knowledge of all conditions a system will experience over its lifetime. Info-gap decision theory enables nonprobabilistic evaluation of the robustness of competing models and systems in a variety of decision making applications. Previous work employed info-gap models to handle feature uncertainty when selecting various components of a supervised learning system, namely features from a pre-selected family and classifiers. In this work, the info-gap framework is extended to robust feature design and classifier selection for general time series classification through an efficient, interval arithmetic implementation of an info-gap data model. Experimental results are presented for a damage type classification problem on a ball bearing in a rotating machine. The info-gap framework in conjunction with an evolutionary feature design system allows for fully automated design of a time series classifier to meet performance requirements under maximum allowable uncertainty.
A generalized reaction diffusion model for spatial structure formed by motile cells.
Ochoa, F L
1984-01-01
A non-linear stability analysis using a multi-scale perturbation procedure is carried out on a model of a generalized reaction diffusion mechanism which involves only a single equation but which nevertheless exhibits bifurcation to non-uniform states. The patterns generated by this model by variation in a parameter related to the scalar dimensions of domain of definition, indicate its capacity to represent certain key morphogenetic features of multicellular systems formed by motile cells.
General properties of quantum optical systems in a strong field limit
NASA Technical Reports Server (NTRS)
Chumakov, S. M.; Klimov, Andrei B.
1994-01-01
We investigate the dynamics of an arbitrary atomic system (n-level atoms or many n-level atoms) interacting with a resonant quantized mode of an em field. If the initial field state is a coherent state with a large photon number then the system dynamics possesses some general features, independently of the particular structure of the atomic system. Namely, trapping states, factorization of the wave function, collapses and revivals of the atomic energy oscillations are discussed.
Insights into multimodal imaging classification of ADHD
Colby, John B.; Rudie, Jeffrey D.; Brown, Jesse A.; Douglas, Pamela K.; Cohen, Mark S.; Shehzad, Zarrar
2012-01-01
Attention deficit hyperactivity disorder (ADHD) currently is diagnosed in children by clinicians via subjective ADHD-specific behavioral instruments and by reports from the parents and teachers. Considering its high prevalence and large economic and societal costs, a quantitative tool that aids in diagnosis by characterizing underlying neurobiology would be extremely valuable. This provided motivation for the ADHD-200 machine learning (ML) competition, a multisite collaborative effort to investigate imaging classifiers for ADHD. Here we present our ML approach, which used structural and functional magnetic resonance imaging data, combined with demographic information, to predict diagnostic status of individuals with ADHD from typically developing (TD) children across eight different research sites. Structural features included quantitative metrics from 113 cortical and non-cortical regions. Functional features included Pearson correlation functional connectivity matrices, nodal and global graph theoretical measures, nodal power spectra, voxelwise global connectivity, and voxelwise regional homogeneity. We performed feature ranking for each site and modality using the multiple support vector machine recursive feature elimination (SVM-RFE) algorithm, and feature subset selection by optimizing the expected generalization performance of a radial basis function kernel SVM (RBF-SVM) trained across a range of the top features. Site-specific RBF-SVMs using these optimal feature sets from each imaging modality were used to predict the class labels of an independent hold-out test set. A voting approach was used to combine these multiple predictions and assign final class labels. With this methodology we were able to predict diagnosis of ADHD with 55% accuracy (versus a 39% chance level in this sample), 33% sensitivity, and 80% specificity. This approach also allowed us to evaluate predictive structural and functional features giving insight into abnormal brain circuitry in ADHD. PMID:22912605
Deep and Structured Robust Information Theoretic Learning for Image Analysis.
Deng, Yue; Bao, Feng; Deng, Xuesong; Wang, Ruiping; Kong, Youyong; Dai, Qionghai
2016-07-07
This paper presents a robust information theoretic (RIT) model to reduce the uncertainties, i.e. missing and noisy labels, in general discriminative data representation tasks. The fundamental pursuit of our model is to simultaneously learn a transformation function and a discriminative classifier that maximize the mutual information of data and their labels in the latent space. In this general paradigm, we respectively discuss three types of the RIT implementations with linear subspace embedding, deep transformation and structured sparse learning. In practice, the RIT and deep RIT are exploited to solve the image categorization task whose performances will be verified on various benchmark datasets. The structured sparse RIT is further applied to a medical image analysis task for brain MRI segmentation that allows group-level feature selections on the brain tissues.
Structural optimization via a design space hierarchy
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.
1976-01-01
Mathematical programming techniques provide a general approach to automated structural design. An iterative method is proposed in which design is treated as a hierarchy of subproblems, one being locally constrained and the other being locally unconstrained. It is assumed that the design space is locally convex in the case of good initial designs and that the objective and constraint functions are continuous, with continuous first derivatives. A general design algorithm is outlined for finding a move direction which will decrease the value of the objective function while maintaining a feasible design. The case of one-dimensional search in a two-variable design space is discussed. Possible applications are discussed. A major feature of the proposed algorithm is its application to problems which are inherently ill-conditioned, such as design of structures for optimum geometry.
Semi-Local DFT Functionals with Exact-Exchange-Like Features: Beyond the AK13
NASA Astrophysics Data System (ADS)
Armiento, Rickard
The Armiento-Kümmel functional from 2013 (AK13) is a non-empirical semi-local exchange functional on generalized gradient approximation form (GGA) in Kohn-Sham (KS) density functional theory (DFT). Recent works have established that AK13 gives improved electronic-structure exchange features over other semi-local methods, with a qualitatively improved orbital description and band structure. For example, the Kohn-Sham band gap is greatly extended, as it is for exact exchange. This talk outlines recent efforts towards new exchange-correlation functionals based on, and extending, the AK13 design ideas. The aim is to improve the quantitative accuracy, the description of energetics, and to address other issues found with the original formulation. Swedish e-Science Research Centre (SeRC).
TLS from fundamentals to practice
Urzhumtsev, Alexandre; Afonine, Pavel V.; Adams, Paul D.
2014-01-01
The Translation-Libration-Screw-rotation (TLS) model of rigid-body harmonic displacements introduced in crystallography by Schomaker & Trueblood (1968) is now a routine tool in macromolecular studies and is a feature of most modern crystallographic structure refinement packages. In this review we consider a number of simple examples that illustrate important features of the TLS model. Based on these examples simplified formulae are given for several special cases that may occur in structure modeling and refinement. The derivation of general TLS formulae from basic principles is also provided. This manuscript describes the principles of TLS modeling, as well as some select algorithmic details for practical application. An extensive list of applications references as examples of TLS in macromolecular crystallography refinement is provided. PMID:25249713
Ultra-wideband three-dimensional optoacoustic tomography.
Gateau, Jérôme; Chekkoury, Andrei; Ntziachristos, Vasilis
2013-11-15
Broadband optoacoustic waves generated by biological tissues excited with nanosecond laser pulses carry information corresponding to a wide range of geometrical scales. Typically, the frequency content present in the signals generated during optoacoustic imaging is much larger compared to the frequency band captured by common ultrasonic detectors, the latter typically acting as bandpass filters. To image optical absorption within structures ranging from entire organs to microvasculature in three dimensions, we implemented optoacoustic tomography with two ultrasound linear arrays featuring a center frequency of 6 and 24 MHz, respectively. In the present work, we show that complementary information on anatomical features could be retrieved and provide a better understanding on the localization of structures in the general anatomy by analyzing multi-bandwidth datasets acquired on a freshly excised kidney.
NASA Technical Reports Server (NTRS)
Robinson, J. C.
1979-01-01
Two methods for determining stresses and internal forces in geometrically nonlinear structural analysis are presented. The simplified approach uses the mid-deformed structural position to evaluate strains when rigid body rotation is present. The important feature of this approach is that it can easily be used with a general-purpose finite-element computer program. The refined approach uses element intrinsic or corotational coordinates and a geometric transformation to determine element strains from joint displacements. Results are presented which demonstrate the capabilities of these potentially useful approaches for geometrically nonlinear structural analysis.
Defining and predicting structurally conserved regions in protein superfamilies
Huang, Ivan K.; Grishin, Nick V.
2013-01-01
Motivation: The structures of homologous proteins are generally better conserved than their sequences. This phenomenon is demonstrated by the prevalence of structurally conserved regions (SCRs) even in highly divergent protein families. Defining SCRs requires the comparison of two or more homologous structures and is affected by their availability and divergence, and our ability to deduce structurally equivalent positions among them. In the absence of multiple homologous structures, it is necessary to predict SCRs of a protein using information from only a set of homologous sequences and (if available) a single structure. Accurate SCR predictions can benefit homology modelling and sequence alignment. Results: Using pairwise DaliLite alignments among a set of homologous structures, we devised a simple measure of structural conservation, termed structural conservation index (SCI). SCI was used to distinguish SCRs from non-SCRs. A database of SCRs was compiled from 386 SCOP superfamilies containing 6489 protein domains. Artificial neural networks were then trained to predict SCRs with various features deduced from a single structure and homologous sequences. Assessment of the predictions via a 5-fold cross-validation method revealed that predictions based on features derived from a single structure perform similarly to ones based on homologous sequences, while combining sequence and structural features was optimal in terms of accuracy (0.755) and Matthews correlation coefficient (0.476). These results suggest that even without information from multiple structures, it is still possible to effectively predict SCRs for a protein. Finally, inspection of the structures with the worst predictions pinpoints difficulties in SCR definitions. Availability: The SCR database and the prediction server can be found at http://prodata.swmed.edu/SCR. Contact: 91huangi@gmail.com or grishin@chop.swmed.edu Supplementary information: Supplementary data are available at Bioinformatics Online PMID:23193223
Fault-tolerant control of large space structures using the stable factorization approach
NASA Technical Reports Server (NTRS)
Razavi, H. C.; Mehra, R. K.; Vidyasagar, M.
1986-01-01
Large space structures are characterized by the following features: they are in general infinite-dimensional systems, and have large numbers of undamped or lightly damped poles. Any attempt to apply linear control theory to large space structures must therefore take into account these features. Phase I consisted of an attempt to apply the recently developed Stable Factorization (SF) design philosophy to problems of large space structures, with particular attention to the aspects of robustness and fault tolerance. The final report on the Phase I effort consists of four sections, each devoted to one task. The first three sections report theoretical results, while the last consists of a design example. Significant results were obtained in all four tasks of the project. More specifically, an innovative approach to order reduction was obtained, stabilizing controller structures for plants with an infinite number of unstable poles were determined under some conditions, conditions for simultaneous stabilizability of an infinite number of plants were explored, and a fault tolerance controller design that stabilizes a flexible structure model was obtained which is robust against one failure condition.
Protein structure based prediction of catalytic residues
2013-01-01
Background Worldwide structural genomics projects continue to release new protein structures at an unprecedented pace, so far nearly 6000, but only about 60% of these proteins have any sort of functional annotation. Results We explored a range of features that can be used for the prediction of functional residues given a known three-dimensional structure. These features include various centrality measures of nodes in graphs of interacting residues: closeness, betweenness and page-rank centrality. We also analyzed the distance of functional amino acids to the general center of mass (GCM) of the structure, relative solvent accessibility (RSA), and the use of relative entropy as a measure of sequence conservation. From the selected features, neural networks were trained to identify catalytic residues. We found that using distance to the GCM together with amino acid type provide a good discriminant function, when combined independently with sequence conservation. Using an independent test set of 29 annotated protein structures, the method returned 411 of the initial 9262 residues as the most likely to be involved in function. The output 411 residues contain 70 of the annotated 111 catalytic residues. This represents an approximately 14-fold enrichment of catalytic residues on the entire input set (corresponding to a sensitivity of 63% and a precision of 17%), a performance competitive with that of other state-of-the-art methods. Conclusions We found that several of the graph based measures utilize the same underlying feature of protein structures, which can be simply and more effectively captured with the distance to GCM definition. This also has the added the advantage of simplicity and easy implementation. Meanwhile sequence conservation remains by far the most influential feature in identifying functional residues. We also found that due the rapid changes in size and composition of sequence databases, conservation calculations must be recalibrated for specific reference databases. PMID:23433045
Music Structure Analysis from Acoustic Signals
NASA Astrophysics Data System (ADS)
Dannenberg, Roger B.; Goto, Masataka
Music is full of structure, including sections, sequences of distinct musical textures, and the repetition of phrases or entire sections. The analysis of music audio relies upon feature vectors that convey information about music texture or pitch content. Texture generally refers to the average spectral shape and statistical fluctuation, often reflecting the set of sounding instruments, e.g., strings, vocal, or drums. Pitch content reflects melody and harmony, which is often independent of texture. Structure is found in several ways. Segment boundaries can be detected by observing marked changes in locally averaged texture.
Cimpian, Andrei; Petro, Gina
2014-05-01
Is the structure of human concepts continuous across development, or does it undergo qualitative transformations? Extensive evidence with adults has demonstrated that they are motivated to understand why categories have the features they do. To investigate whether young children display a similar motivation-an issue that bears on the question of continuity vs. transformation in conceptual structure-we conducted three studies involving 4-year-olds (N=90) and adults (N=124). Experiments 1 and 2 suggested that 4-year-olds indeed display a strong motivation to explain why categories have the features they do. Specifically, when provided with the option of asking "why?" about features of novel categories vs. features of individuals from other novel categories, children preferred to ask "why?" about the category features. Moreover, children's explanatory preference was specific to facts about categories per se and did not extend to facts that were merely presented in the context of multiple category instances. Experiment 3 also ruled out the possibility that the category facts were preferred because these facts were more surprising. In sum, these three studies reveal an early-emerging motivation to make sense of the categories encountered in the world and, more generally, speak to the richness of children's conceptual representations. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Drew T.; Zeng, Jia; Bailey, Constance B.
In an effort to uncover the structural motifs and biosynthetic logic of the relatively uncharacterized trans-acyltransferase polyketide synthases, we have begun the dissection of the enigmatic dehydrating bimodules common in these enzymatic assembly lines. We report the 1.98 Å resolution structure of a ketoreductase (KR) from the first half of a type A dehydrating bimodule and the 2.22 Å resolution structure of a dehydratase (DH) from the second half of a type B dehydrating bimodule. The KR, from the third module of the bacillaene synthase, and the DH, from the tenth module of the difficidin synthase, possess features not observedmore » in structurally characterized homologs. The DH architecture provides clues for how it catalyzes a unique double dehydration. Correlations between the chemistries proposed for dehydrating bimodules and bioinformatic analysis indicate that type A dehydrating bimodules generally produce an α/β-cis alkene moiety, while type B dehydrating bimodules generally produce an α/β-trans, γ/δ-cis diene moiety.« less
Aeroelastic Optimization of Generalized Tube and Wing Aircraft Concepts Using HCDstruct Version 2.0
NASA Technical Reports Server (NTRS)
Quinlan, Jesse R.; Gern, Frank H.
2017-01-01
Major enhancements were made to the Higher-fidelity Conceptual Design and structural optimization (HCDstruct) tool developed at NASA Langley Research Center (LaRC). Whereas previous versions were limited to hybrid wing body (HWB) configurations, the current version of HCDstruct now supports the analysis of generalized tube and wing (TW) aircraft concepts. Along with significantly enhanced user input options for all air- craft configurations, these enhancements represent HCDstruct version 2.0. Validation was performed using a Boeing 737-200 aircraft model, for which primary structure weight estimates agreed well with available data. Additionally, preliminary analysis of the NASA D8 (ND8) aircraft concept was performed, highlighting several new features of the tool.
Theory of Band Warping and its Effects on Thermoelectronic Transport Properties
NASA Astrophysics Data System (ADS)
Mecholsky, Nicholas; Resca, Lorenzo; Pegg, Ian; Fornari, Marco
2015-03-01
Transport properties of materials depend upon features of band structures near extrema in the BZ. Such features are generally described in terms of quadratic expansions and effective masses. Such expansions, however, are permissible only under strict conditions that are sometimes violated by materials. Suggestive terms such as ``band warping'' have been used to refer to such situations and ad hoc methods have been developed to treat them. We develop a generally applicable theory, based on radial expansions, and a corresponding definition of angular effective mass which also accounts for effects of band non-parabolicity and anisotropy. Further, we develop precise procedures to evaluate band warping quantitatively and as an example we analyze the warping features of valence bands in silicon using first-principles calculations and we compare those with semi-empirical models. We use our theory to generalize derivations of transport coefficients for cases of either single or multiple electronic bands, with either quadratically expansible or warped energy surfaces. We introduce the transport-equivalent ellipsoid and illustrate the drastic effects that band warping can induce on thermoelectric properties using multi-band models. Vitreous State Laboratory and Samsung's GRO program.
Molecular chaperones: functional mechanisms and nanotechnological applications
NASA Astrophysics Data System (ADS)
Rosario Fernández-Fernández, M.; Sot, Begoña; María Valpuesta, José
2016-08-01
Molecular chaperones are a group of proteins that assist in protein homeostasis. They not only prevent protein misfolding and aggregation, but also target misfolded proteins for degradation. Despite differences in structure, all types of chaperones share a common general feature, a surface that recognizes and interacts with the misfolded protein. This and other, more specialized properties can be adapted for various nanotechnological purposes, by modification of the original biomolecules or by de novo design based on artificial structures.
High energy gamma ray results from the second small astronomy satellite
NASA Technical Reports Server (NTRS)
Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. F.; Tuemer, T.
1974-01-01
A high energy (35 MeV) gamma ray telescope employing a thirty-two level magnetic core spark chamber system was flown on SAS 2. The high energy galactic gamma radiation is observed to dominate over the general diffuse radiation along the entire galactic plane, and when examined in detail, the longitudinal and latitudinal distribution seem generally correlated with galactic structural features, particularly with arm segments. The general high energy gamma radiation from the galactic plane, explained on the basis of its angular distribution and magnitude, probably results primarily from cosmic ray interactions with interstellar matter.
Spiders: water-driven erosive structures in the southern hemisphere of Mars.
Prieto-Ballesteros, Olga; Fernández-Remolar, David C; Rodríguez-Manfredi, José Antonio; Selsis, Franck; Manrubia, Susanna C
2006-08-01
Recent data from space missions reveal that there are ongoing climatic changes and erosive processes that continuously modify surface features of Mars. We have investigated the seasonal dynamics of a number of morphological features located at Inca City, a representative area at high southern latitude that has undergone seasonal processes. By integrating visual information from the Mars Orbiter Camera on board the Mars Global Surveyor and climatic cycles from a Mars' General Circulation Model, and considering the recently reported evidence for the presence of water-ice and aqueous precipitates on Mars, we propose that a number of the erosive features identified in Inca City, among them spiders, result from the seasonal melting of aqueous salty solutions.
The Multidimensional Structure of University Absenteeism: An Exploratory Study
ERIC Educational Resources Information Center
López-Bonilla, Jesús Manuel; López-Bonilla, Luis Miguel
2015-01-01
Absenteeism has been a common and very extended problem in university spheres for several years. This problem has become a permanent feature in academic studies in general, yet it has received scarce empirical research attention. This work is focused on the analysis of the factors that determine university absenteeism. It evaluates a series of…
Rotor systems research aircraft predesign study. Volume 4: Preliminary draft detail specification
NASA Technical Reports Server (NTRS)
Miller, A. N.; Linden, A. W.
1972-01-01
The RSRA requirements are presented in a detail specification format. Coverage of the requirements includes the following headings: (1) aircraft characteristics, (2) general features of design and construction, (3) aerodynamics, (4) structural design criteria, (5) flight control system, (6) propulsion subsystem, and (7) secondary power and distribution subsystem.
Trait covariance: the functional warp of plant diversity?
Walker, Anthony P.; McCormack, M. Luke; Messier, Julie; ...
2017-11-07
In 300 BC Ancient Greece, Theophrastus was one of the first to organize the diversity of plant life on Earth into categories of function and use (Theophrastus, 1916). Currently, scientists are still working to simplify the vast array of plant species and forms in order to distill general features of plant function, structure, and strategy.
Trait covariance: the functional warp of plant diversity?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Anthony P.; McCormack, M. Luke; Messier, Julie
In 300 BC Ancient Greece, Theophrastus was one of the first to organize the diversity of plant life on Earth into categories of function and use (Theophrastus, 1916). Currently, scientists are still working to simplify the vast array of plant species and forms in order to distill general features of plant function, structure, and strategy.
ERIC Educational Resources Information Center
McCarthy, Brian D.; Dempsey, Jillian L.
2017-01-01
A graduate-level course focused on original research proposals is introduced to address the uneven preparation in technical writing of new chemistry graduate students. This course focuses on writing original research proposals. The general course structure features extensive group discussions, small-group activities, and regular in-class…
ERIC Educational Resources Information Center
Smeenk, Sanne; Teelken, Christine; Eisinga, Rob; Doorewaard, Hans
2008-01-01
Societal developments have forced universities all over Europe to replace their "professional" strategies, structures, and values by organizational characteristics that could be stereotyped as "private sector" features. This trend is known as "managerialism". Since university employees generally stick to professional…
Identification of coniferous woods
B. Francis Kukachka
1960-01-01
The identification of coniferous woods is generally regarded as being more difficult than for the hardwood species. This is due to the fact that conifers are more elemental in their structure and, as a consequence, the number of diagnostic features that may he employed is proportionately smaller. Instructions are given here in the sequential use of primary diagnostic...
USDA-ARS?s Scientific Manuscript database
Thresholding is an important step in the segmentation of image features, and the existing methods are not all effective when the image histogram exhibits a unimodal pattern, which is common in defect detection of fruit. This study was aimed at developing a general automatic thresholding methodology ...
Remote sensing image denoising application by generalized morphological component analysis
NASA Astrophysics Data System (ADS)
Yu, Chong; Chen, Xiong
2014-12-01
In this paper, we introduced a remote sensing image denoising method based on generalized morphological component analysis (GMCA). This novel algorithm is the further extension of morphological component analysis (MCA) algorithm to the blind source separation framework. The iterative thresholding strategy adopted by GMCA algorithm firstly works on the most significant features in the image, and then progressively incorporates smaller features to finely tune the parameters of whole model. Mathematical analysis of the computational complexity of GMCA algorithm is provided. Several comparison experiments with state-of-the-art denoising algorithms are reported. In order to make quantitative assessment of algorithms in experiments, Peak Signal to Noise Ratio (PSNR) index and Structural Similarity (SSIM) index are calculated to assess the denoising effect from the gray-level fidelity aspect and the structure-level fidelity aspect, respectively. Quantitative analysis on experiment results, which is consistent with the visual effect illustrated by denoised images, has proven that the introduced GMCA algorithm possesses a marvelous remote sensing image denoising effectiveness and ability. It is even hard to distinguish the original noiseless image from the recovered image by adopting GMCA algorithm through visual effect.
Structural hierarchy of autism spectrum disorder symptoms: an integrative framework.
Kim, Hyunsik; Keifer, Cara M; Rodriguez-Seijas, Craig; Eaton, Nicholas R; Lerner, Matthew D; Gadow, Kenneth D
2018-01-01
In an attempt to resolve questions regarding the symptom classification of autism spectrum disorder (ASD), previous research generally aimed to demonstrate superiority of one model over another. Rather than adjudicating which model may be optimal, we propose an alternative approach that integrates competing models using Goldberg's bass-ackwards method, providing a comprehensive understanding of the underlying symptom structure of ASD. The study sample comprised 3,825 individuals, consecutive referrals to a university hospital developmental disabilities specialty clinic or a child psychiatry outpatient clinic. This study analyzed DSM-IV-referenced ASD symptom statements from parent and teacher versions of the Child and Adolescent Symptom Inventory-4R. A series of exploratory structural equation models was conducted in order to produce interpretable latent factors that account for multivariate covariance. Results indicated that ASD symptoms were structured into an interpretable hierarchy across multiple informants. This hierarchy includes five levels; key features of ASD bifurcate into different constructs with increasing specificity. This is the first study to examine an underlying structural hierarchy of ASD symptomatology using the bass-ackwards method. This hierarchy demonstrates how core features of ASD relate at differing levels of resolution, providing a model for conceptualizing ASD heterogeneity and a structure for integrating divergent theories of cognitive processes and behavioral features that define the disorder. These findings suggest that a more coherent and complete understanding of the structure of ASD symptoms may be reflected in a metastructure rather than at one level of resolution. © 2017 Association for Child and Adolescent Mental Health.
Mechanism and energetics of
NASA Astrophysics Data System (ADS)
Wu, Zhaoxuan; Curtin, W. A.
2016-10-01
Hexagonal close-packed (hcp) metals such as Mg, Ti, and Zr are lightweight and/or durable metals with critical structural applications in the automotive (Mg), aerospace (Ti), and nuclear (Zr) industries. The hcp structure, however, brings significant complications in the mechanisms of plastic deformation, strengthening, and ductility, and these complications pose significant challenges in advancing the science and engineering of these metals. In hcp metals, generalized plasticity requires the activation of slip on pyramidal planes, but the structure, motion, and cross-slip of the associated
NASA Astrophysics Data System (ADS)
Nagarajan, Mahesh B.; Checefsky, Walter A.; Abidin, Anas Z.; Tsai, Halley; Wang, Xixi; Hobbs, Susan K.; Bauer, Jan S.; Baum, Thomas; Wismüller, Axel
2015-03-01
While the proximal femur is preferred for measuring bone mineral density (BMD) in fracture risk estimation, the introduction of volumetric quantitative computed tomography has revealed stronger associations between BMD and spinal fracture status. In this study, we propose to capture properties of trabecular bone structure in spinal vertebrae with advanced second-order statistical features for purposes of fracture risk assessment. For this purpose, axial multi-detector CT (MDCT) images were acquired from 28 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. A semi-automated method was used to annotate the trabecular compartment in the central vertebral slice with a circular region of interest (ROI) to exclude cortical bone; pixels within were converted to values indicative of BMD. Six second-order statistical features derived from gray-level co-occurrence matrices (GLCM) and the mean BMD within the ROI were then extracted and used in conjunction with a generalized radial basis functions (GRBF) neural network to predict the failure load of the specimens; true failure load was measured through biomechanical testing. Prediction performance was evaluated with a root-mean-square error (RMSE) metric. The best prediction performance was observed with GLCM feature `correlation' (RMSE = 1.02 ± 0.18), which significantly outperformed all other GLCM features (p < 0.01). GLCM feature correlation also significantly outperformed MDCTmeasured mean BMD (RMSE = 1.11 ± 0.17) (p< 10-4). These results suggest that biomechanical strength prediction in spinal vertebrae can be significantly improved through characterization of trabecular bone structure with GLCM-derived texture features.
Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank
NASA Astrophysics Data System (ADS)
Gangopadhyay, Avijit; Robinson, Allan R.; Haley, Patrick J.; Leslie, Wayne G.; Lozano, Carlos J.; Bisagni, James J.; Yu, Zhitao
2003-03-01
The multiscale synoptic circulation system in the Gulf of Maine and Georges Bank (GOMGB) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or 'features', are identified from previous observational studies. These features include the buoyancy-driven Maine Coastal Current, the Georges Bank anticyclonic frontal circulation system, the basin-scale cyclonic gyres (Jordan, Georges and Wilkinson), the deep inflow through the Northeast Channel (NEC), the shallow outflow via the Great South Channel (GSC), and the shelf-slope front (SSF). Their synoptic water-mass ( T- S) structures are characterized and parameterized in a generalized formulation to develop temperature-salinity feature models. A synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in the coastal-to-deep region of the GOMGB system is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and then objectively analyzed with appropriate background climatology in the coastal region. Furthermore, these fields are melded with adjacent deep-ocean regional circulation (Gulf Stream Meander and Ring region) along and across the SSF. These initialization fields are then used for dynamical simulations via the primitive equation model. Simulation results are analyzed to calibrate the multiparameter feature-oriented modeling system. Experimental short-term synoptic simulations are presented for multiple resolutions in different regions with and without atmospheric forcing. The presented 'generic and portable' methodology demonstrates the potential of applying similar FORMS in many other regions of the Global Coastal Ocean.
Discriminative prediction of mammalian enhancers from DNA sequence
Lee, Dongwon; Karchin, Rachel; Beer, Michael A.
2011-01-01
Accurately predicting regulatory sequences and enhancers in entire genomes is an important but difficult problem, especially in large vertebrate genomes. With the advent of ChIP-seq technology, experimental detection of genome-wide EP300/CREBBP bound regions provides a powerful platform to develop predictive tools for regulatory sequences and to study their sequence properties. Here, we develop a support vector machine (SVM) framework which can accurately identify EP300-bound enhancers using only genomic sequence and an unbiased set of general sequence features. Moreover, we find that the predictive sequence features identified by the SVM classifier reveal biologically relevant sequence elements enriched in the enhancers, but we also identify other features that are significantly depleted in enhancers. The predictive sequence features are evolutionarily conserved and spatially clustered, providing further support of their functional significance. Although our SVM is trained on experimental data, we also predict novel enhancers and show that these putative enhancers are significantly enriched in both ChIP-seq signal and DNase I hypersensitivity signal in the mouse brain and are located near relevant genes. Finally, we present results of comparisons between other EP300/CREBBP data sets using our SVM and uncover sequence elements enriched and/or depleted in the different classes of enhancers. Many of these sequence features play a role in specifying tissue-specific or developmental-stage-specific enhancer activity, but our results indicate that some features operate in a general or tissue-independent manner. In addition to providing a high confidence list of enhancer targets for subsequent experimental investigation, these results contribute to our understanding of the general sequence structure of vertebrate enhancers. PMID:21875935
Qiao, Hong; Li, Yinlin; Li, Fengfu; Xi, Xuanyang; Wu, Wei
2016-10-01
Recently, many biologically inspired visual computational models have been proposed. The design of these models follows the related biological mechanisms and structures, and these models provide new solutions for visual recognition tasks. In this paper, based on the recent biological evidence, we propose a framework to mimic the active and dynamic learning and recognition process of the primate visual cortex. From principle point of view, the main contributions are that the framework can achieve unsupervised learning of episodic features (including key components and their spatial relations) and semantic features (semantic descriptions of the key components), which support higher level cognition of an object. From performance point of view, the advantages of the framework are as follows: 1) learning episodic features without supervision-for a class of objects without a prior knowledge, the key components, their spatial relations and cover regions can be learned automatically through a deep neural network (DNN); 2) learning semantic features based on episodic features-within the cover regions of the key components, the semantic geometrical values of these components can be computed based on contour detection; 3) forming the general knowledge of a class of objects-the general knowledge of a class of objects can be formed, mainly including the key components, their spatial relations and average semantic values, which is a concise description of the class; and 4) achieving higher level cognition and dynamic updating-for a test image, the model can achieve classification and subclass semantic descriptions. And the test samples with high confidence are selected to dynamically update the whole model. Experiments are conducted on face images, and a good performance is achieved in each layer of the DNN and the semantic description learning process. Furthermore, the model can be generalized to recognition tasks of other objects with learning ability.
2.4 Å resolution crystal structure of human TRAP1 NM , the Hsp90 paralog in the mitochondrial matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sung, Nuri; Lee, Jungsoon; Kim, Ji-Hyun
2016-07-13
TRAP1 is an organelle-specific Hsp90 paralog that is essential for neoplastic growth. As a member of the Hsp90 family, TRAP1 is presumed to be a general chaperone facilitating the late-stage folding of Hsp90 client proteins in the mitochondrial matrix. Interestingly, TRAP1 cannot replace cytosolic Hsp90 in protein folding, and none of the known Hsp90 co-chaperones are found in mitochondria. Thus, the three-dimensional structure of TRAP1 must feature regulatory elements that are essential to the ATPase activity and chaperone function of TRAP1. Here, the crystal structure of a human TRAP1 NMdimer is presented, featuring an intact N-domain and M-domain structure, boundmore » to adenosine 5'-β,γ-imidotriphosphate (ADPNP). The crystal structure together with epitope-mapping results shows that the TRAP1 M-domain loop 1 contacts the neighboring subunit and forms a previously unobserved third dimer interface that mediates the specific interaction with mitochondrial Hsp70.« less
Citation Sentiment Analysis in Clinical Trial Papers
Xu, Jun; Zhang, Yaoyun; Wu, Yonghui; Wang, Jingqi; Dong, Xiao; Xu, Hua
2015-01-01
In scientific writing, positive credits and negative criticisms can often be seen in the text mentioning the cited papers, providing useful information about whether a study can be reproduced or not. In this study, we focus on citation sentiment analysis, which aims to determine the sentiment polarity that the citation context carries towards the cited paper. A citation sentiment corpus was annotated first on clinical trial papers. The effectiveness of n-gram and sentiment lexicon features, and problem-specified structure features for citation sentiment analysis were then examined using the annotated corpus. The combined features from the word n-grams, the sentiment lexicons and the structure information achieved the highest Micro F-score of 0.860 and Macro-F score of 0.719, indicating that it is feasible to use machine learning methods for citation sentiment analysis in biomedical publications. A comprehensive comparison between citation sentiment analysis of clinical trial papers and other general domains were conducted, which additionally highlights the unique challenges within this domain. PMID:26958274
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tureau, Maëva S.; Kuan, Wei-Fan; Rong, Lixia
Disordered block copolymers are generally impractical in nanopatterning applications due to their inability to self-assemble into well-defined nanostructures. However, inducing order in low molecular weight disordered systems permits the design of periodic structures with smaller characteristic sizes. Here, we have induced nanoscale phase separation from disordered triblock copolymer melts to form well-ordered lamellae, hexagonally packed cylinders, and a triply periodic gyroid network structure, using a copolymer/homopolymer blending approach, which incorporates constituent homopolymers into selective block domains. This versatile blending approach allows one to precisely target multiple nanostructures from a single disordered material and can be applied to a wide varietymore » of triblock copolymer systems for nanotemplating and nanoscale separation applications requiring nanoscale feature sizes and/or high areal feature densities.« less
A communication-theory based view on telemedical communication.
Schall, Thomas; Roeckelein, Wolfgang; Mohr, Markus; Kampshoff, Joerg; Lange, Tim; Nerlich, Michael
2003-01-01
Communication theory based analysis sheds new light on the use of health telematics. This analysis of structures in electronic medical communication shows communicative structures with special features. Current and evolving telemedical applications are analyzed. The methodology of communicational theory (focusing on linguistic pragmatics) is used to compare it with its conventional counterpart. The semiotic model, the roles of partners, the respective message and their relation are discussed. Channels, sender, addressee, and other structural roles are analyzed for different types of electronic medical communication. The communicative processes are shown as mutual, rational action towards a common goal. The types of communication/texts are analyzed in general. Furthermore the basic communicative structures of medical education via internet are presented with their special features. The analysis shows that electronic medical communication has special features compared to everyday communication: A third participant role often is involved: the patient. Messages often are addressed to an unspecified partner or to an unspecified partner within a group. Addressing in this case is (at least partially) role-based. Communication and message often directly (rather than indirectly) influence actions of the participants. Communication often is heavily regulated including legal implications like liability, and more. The conclusion from the analysis is that the development of telemedical applications so far did not sufficiently take communicative structures into consideration. Based on these results recommendations for future developments of telemedical applications/services are given.
Line group techniques in description of the structural phase transitions in some superconductors
NASA Technical Reports Server (NTRS)
Meszaros, CS.; Balint, A.; Bankuti, J.
1995-01-01
The main features of the theory of line groups, and their irreducible representations are briefly discussed, as well as the most important applications of them. A new approach in the general symmetry analysis of the modulated systems is presented. It is shown, that the line group formalism could be a very effective tool in the examination of the structural phase transitions in High Temperature SUperconductors. As an example, the material YBa2Cu3O(7-x) is discussed briefly.
1980-08-01
soil series. These soils generally make good fill material when properly compacted. The "Geologic Map ot Missouri" indicates that two known faults run in...appurtenant structures, reser- voir, and downstream features are presented in Appendix D. B. Dam: The dam appears to be in good condition. No sloughing...or sliding of the embankment was noted. The horizontal and vertical alignments of the crest were good , and no surfacing cracking or unusual movement
Standardization of a Hierarchical Transactive Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammerstrom, Donald J.; Oliver, Terry V.; Melton, Ronald B.
2010-12-03
The authors describe work they have conducted toward the generalization and standardization of the transactive control approach that was first demonstrated in the Olympic Peninsula Project for the management of a transmission constraint. The newly generalized approach addresses several potential shortfalls of the prior approach: First, the authors have formalized a hierarchical node structure which defines the nodes and the functional signal pathways between these nodes. Second, by fully generalizing the inputs, outputs, and functional responsibilities of each node, the authors make the approach available to a much wider set of responsive assets and operational objectives. Third, the new, generalizedmore » approach defines transactive signals that include the predicted day-ahead future. This predictive feature allows the market-like bids and offers to become resolved iteratively over time, thus allowing the behaviors of responsive assets to be called upon both for the present and as future dispatch decisions are being made. The hierarchical transactive control approach is a key feature of a proposed Pacific Northwest smart grid demonstration.« less
Access to general practice for Pacific peoples: a place for cultural competency.
Ludeke, Melissa; Puni, Ronald; Cook, Lynley; Pasene, Maria; Abel, Gillian; Sopoaga, Faafetai
2012-06-01
Access to primary health care services has been identified as a problem for Pacific peoples. Although cost is the most frequently cited barrier to Pacific service utilisation, some research has indicated that access may also be influenced by features of mainstream primary care services. This study aimed to identify features of mainstream general practice services that act as barriers to accessing these services for Pacific peoples in order to explore strategies that providers could adopt to enable their practices to be more welcoming, accessible and appropriate for Pacific peoples. Pacific participants were recruited through Pacific networks known to Pegasus Health and via 'snowball' sampling. In total, 20 participants participated in one of three focus groups. A semi-structured interview explored the participants' views and experiences of mainstream general practice care. Thematic analysis was utilised to interpret the data. The analysis revealed five themes highlighting non-financial features of mainstream general practice services that may influence the availability and acceptability of these services to Pacific peoples: language and communication; rushed consultations; appointment availability; reception; and Pacific presence. The findings indicate that all personnel within the primary care setting have the ability to directly engage in the improvement of the health status of Pacific peoples in New Zealand by developing cultural competency and incorporating flexibility and diversity into the care and service they provide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seongmin; Verdine, Gregory L.; Harvard)
2010-01-14
Adenine DNA glycosylase catalyzes the glycolytic removal of adenine from the promutagenic A {center_dot} oxoG base pair in DNA. The general features of DNA recognition by an adenine DNA glycosylase, Bacillus stearothermophilus MutY, have previously been revealed via the X-ray structure of a catalytically inactive mutant protein bound to an A:oxoG-containing DNA duplex. Although the structure revealed the substrate adenine to be, as expected, extruded from the DNA helix and inserted into an extrahelical active site pocket on the enzyme, the substrate adenine engaged in no direct contacts with active site residues. This feature was paradoxical, because other glycosylases havemore » been observed to engage their substrates primarily through direct contacts. The lack of direct contacts in the case of MutY suggested that either MutY uses a distinctive logic for substrate recognition or that the X-ray structure had captured a noncatalytically competent state in lesion recognition. To gain further insight into this issue, we crystallized wild-type MutY bound to DNA containing a catalytically inactive analog of 2'-deoxyadenosine in which a single 2'-H atom was replaced by fluorine. The structure of this fluorinated lesion-recognition complex (FLRC) reveals the substrate adenine buried more deeply into the active site pocket than in the prior structure and now engaged in multiple direct hydrogen bonding and hydrophobic interactions. This structure appears to capture the catalytically competent state of adenine DNA glycosylases, and it suggests a catalytic mechanism for this class of enzymes, one in which general acid-catalyzed protonation of the nucleobase promotes glycosidic bond cleavage.« less
Kramer, Christian; Fuchs, Julian E; Liedl, Klaus R
2015-03-23
Nonadditivity in protein-ligand affinity data represents highly instructive structure-activity relationship (SAR) features that indicate structural changes and have the potential to guide rational drug design. At the same time, nonadditivity is a challenge for both basic SAR analysis as well as many ligand-based data analysis techniques such as Free-Wilson Analysis and Matched Molecular Pair analysis, since linear substituent contribution models inherently assume additivity and thus do not work in such cases. While structural causes for nonadditivity have been analyzed anecdotally, no systematic approaches to interpret and use nonadditivity prospectively have been developed yet. In this contribution, we lay the statistical framework for systematic analysis of nonadditivity in a SAR series. First, we develop a general metric to quantify nonadditivity. Then, we demonstrate the non-negligible impact of experimental uncertainty that creates apparent nonadditivity, and we introduce techniques to handle experimental uncertainty. Finally, we analyze public SAR data sets for strong nonadditivity and use recourse to the original publications and available X-ray structures to find structural explanations for the nonadditivity observed. We find that all cases of strong nonadditivity (ΔΔpKi and ΔΔpIC50 > 2.0 log units) with sufficient structural information to generate reasonable hypothesis involve changes in binding mode. With the appropriate statistical basis, nonadditivity analysis offers a variety of new attempts for various areas in computer-aided drug design, including the validation of scoring functions and free energy perturbation approaches, binding pocket classification, and novel features in SAR analysis tools.
Magnetoconductance signatures of subband structure in semiconductor nanowires
NASA Astrophysics Data System (ADS)
Holloway, Gregory; Haapamaki, Chris; Lapierre, Ray; Baugh, Jonathan
2015-03-01
Understanding the subband structure due to radial confinement in semiconductor nanowires can benefit technologies ranging from optical sensors to quantum information processing. An axial magnetic field couples to the orbital angular momentum, giving rise to non-trivial features in electronic transport as a function of magnetic field. Previous reports focused on conduction electrons confined to a thin shell near the nanowire surface, which lead to flux-periodic energies and conductance oscillations. Here, we calculate the eigenstates for more general radial potentials with moderate to low surface band bending such that electrons are distributed more uniformly across the nanowire cross-section. It is found that the energy spectrum becomes aperiodic in both gate voltage and magnetic field as the radial potential becomes flatter. The behavior of an energy level is dictated by its angular momentum, and this allows, in principle, each state to be identified based on its dependence on magnetic field and the chemical potential. We experimentally investigate a short-channel InAs nanowire FET in search of conductance features that reveal this subband structure. A quantitative measure for assigning conductance features to specific transverse states is introduced and applied to this device.
Automatic Generalizability Method of Urban Drainage Pipe Network Considering Multi-Features
NASA Astrophysics Data System (ADS)
Zhu, S.; Yang, Q.; Shao, J.
2018-05-01
Urban drainage systems are indispensable dataset for storm-flooding simulation. Given data availability and current computing power, the structure and complexity of urban drainage systems require to be simplify. However, till data, the simplify procedure mainly depend on manual operation that always leads to mistakes and lower work efficiency. This work referenced the classification methodology of road system, and proposed a conception of pipeline stroke. Further, length of pipeline, angle between two pipelines, the pipeline belonged road level and diameter of pipeline were chosen as the similarity criterion to generate the pipeline stroke. Finally, designed the automatic method to generalize drainage systems with the concern of multi-features. This technique can improve the efficiency and accuracy of the generalization of drainage systems. In addition, it is beneficial to the study of urban storm-floods.
Using Conversation Topics for Predicting Therapy Outcomes in Schizophrenia
Howes, Christine; Purver, Matthew; McCabe, Rose
2013-01-01
Previous research shows that aspects of doctor-patient communication in therapy can predict patient symptoms, satisfaction and future adherence to treatment (a significant problem with conditions such as schizophrenia). However, automatic prediction has so far shown success only when based on low-level lexical features, and it is unclear how well these can generalize to new data, or whether their effectiveness is due to their capturing aspects of style, structure or content. Here, we examine the use of topic as a higher-level measure of content, more likely to generalize and to have more explanatory power. Investigations show that while topics predict some important factors such as patient satisfaction and ratings of therapy quality, they lack the full predictive power of lower-level features. For some factors, unsupervised methods produce models comparable to manual annotation. PMID:23943658
ERIC Educational Resources Information Center
McCabe, Declan J.; Knight, Evelyn J.
2016-01-01
Since being introduced by Connor and Simberloff in response to Diamond's assembly rules, null model analysis has been a controversial tool in community ecology. Despite being commonly used in the primary literature, null model analysis has not featured prominently in general textbooks. Complexity of approaches along with difficulty in interpreting…
W.B. Sutton; Y. Wang; C.J. Schweitzer; D.A. Steen
2014-01-01
Understanding the impacts of disturbances in forest ecosystems is essential for long-term biodiversity conservation. Many studies have evaluated wildlife responses to various disturbances but most generally do not use changes in microclimate features or crohabitat structure to explain these responses. We examined lizard responses to two common forest management...
A Santos, Jose C; Nassif, Houssam; Page, David; Muggleton, Stephen H; E Sternberg, Michael J
2012-07-11
There is a need for automated methods to learn general features of the interactions of a ligand class with its diverse set of protein receptors. An appropriate machine learning approach is Inductive Logic Programming (ILP), which automatically generates comprehensible rules in addition to prediction. The development of ILP systems which can learn rules of the complexity required for studies on protein structure remains a challenge. In this work we use a new ILP system, ProGolem, and demonstrate its performance on learning features of hexose-protein interactions. The rules induced by ProGolem detect interactions mediated by aromatics and by planar-polar residues, in addition to less common features such as the aromatic sandwich. The rules also reveal a previously unreported dependency for residues cys and leu. They also specify interactions involving aromatic and hydrogen bonding residues. This paper shows that Inductive Logic Programming implemented in ProGolem can derive rules giving structural features of protein/ligand interactions. Several of these rules are consistent with descriptions in the literature. In addition to confirming literature results, ProGolem's model has a 10-fold cross-validated predictive accuracy that is superior, at the 95% confidence level, to another ILP system previously used to study protein/hexose interactions and is comparable with state-of-the-art statistical learners.
Kinematic parameters of signed verbs.
Malaia, Evie; Wilbur, Ronnie B; Milkovic, Marina
2013-10-01
Sign language users recruit physical properties of visual motion to convey linguistic information. Research on American Sign Language (ASL) indicates that signers systematically use kinematic features (e.g., velocity, deceleration) of dominant hand motion for distinguishing specific semantic properties of verb classes in production ( Malaia & Wilbur, 2012a) and process these distinctions as part of the phonological structure of these verb classes in comprehension ( Malaia, Ranaweera, Wilbur, & Talavage, 2012). These studies are driven by the event visibility hypothesis by Wilbur (2003), who proposed that such use of kinematic features should be universal to sign language (SL) by the grammaticalization of physics and geometry for linguistic purposes. In a prior motion capture study, Malaia and Wilbur (2012a) lent support for the event visibility hypothesis in ASL, but there has not been quantitative data from other SLs to test the generalization to other languages. The authors investigated the kinematic parameters of predicates in Croatian Sign Language ( Hrvatskom Znakovnom Jeziku [HZJ]). Kinematic features of verb signs were affected both by event structure of the predicate (semantics) and phrase position within the sentence (prosody). The data demonstrate that kinematic features of motion in HZJ verb signs are recruited to convey morphological and prosodic information. This is the first crosslinguistic motion capture confirmation that specific kinematic properties of articulator motion are grammaticalized in other SLs to express linguistic features.
RATFOR user's guide version 2.0
NASA Technical Reports Server (NTRS)
Helmle, L. C.
1985-01-01
This document is a user's guide for RATFOR at Ames Research Center. The main part of the document is a general description of RATFOR, and the appendix is devoted to a machine specific implementation for the Cray X-MP. The general stylistic features of RATFOR are discussed, including the block structure, keywords, source code, format, and the notion of tokens. There is a section on the basic control structures (IF-ELSE, ELSE IF, WHILE, FOR, DO, REPEAT-UNTIL, BREAK, NEXT), and there is a section on the statements that extend FORTRAN's capabilities (DEFINE, MACRO, INCLUDE, STRING). THE appendix discusses everything needed to compile and run a basic job, the preprocessor options, the supported character sets, the generated listings, fatal errors, and program limitations and the differences from standard FORTRAN.
General view looking out from the Fixed Service Structure at ...
General view looking out from the Fixed Service Structure at Launch Complex 39 B at Kennedy Space Center. This view shows a Solid Rocket Booster (SRB) attached to the External Tank (ET) as well as the Orbiter Discovery attached to the ET for a complete launch stack assembly being prepared for launch. The most prominent features of the SRB shown in this view id the ET Attach Ring in the lower center of the view and the Systems Tunnel running vertically from the Aft Skirt Assembly, beyond the lower edge of this view, to the Forward Skirt near the Frustum at the top center of this view. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Investigation of lunar crustal structure and isostasy
NASA Technical Reports Server (NTRS)
Thurber, Clifford H.
1987-01-01
The lunar mascon basins have strongly free air gravity anomalies, generally exceeding 100 milligals at an elevation of 100 km. The source of the anomalies is a combination of mantle uplift beneath the impact basins and subsequent infilling by high-density mare basalts. The relative contribution of these two components is still somewhat uncertain, although it is generally accepted that the amount of mantle uplift greatly exceeds the thickness of the basalts. Extensive studies have been carried out of the crustal structure of mare basins, based on gravity data, and their tectonic evolution, based on compressive and extensional tectonic features. The present study endeavored to develop a unified, self-consistent model of the lunar crust and lithosphere incorporating both gravity and tectonic constraints.
NASA Technical Reports Server (NTRS)
Mcgill, George E.
1992-01-01
The plains regions of Venus exhibit a complex array of structural features, including deformation belts of various types, wrinkle ridges, grabens, and enigmatic radar-bright linears. Probably the most pervasive of these structures are the wrinkle ridges, which appear to be morphologically identical to their counterparts on the Moon and Mars. Almost all workers agree that wrinkle ridges result from horizontal compressive stresses in the crust; they either are explained as flexural fold structures, or alternatively as scarps or folds related to reverse faults. Wrinkle ridges generally are narrow, have small amplitudes, and commonly are closely spaced as well, characteristics that imply a shallow crustal origin. If wrinkle ridges are due to horizontally directed compressive stresses in the shallow crust, as generally has been inferred, then the trends of these features provide a means to map both local and regional orientations of principal stresses in the uppermost part of the venusian crust: maximum compressive stress is normal to the ridges, minimum compressive stress is normal to the topographic surface, and thus the wrinkle ridge trends trace the orientation of the intermediate principal stress. Because there are few plains areas on Venus totally devoid of wrinkle ridges, it should be possible to establish a number of interesting relationships on a near-global scale by mapping the trends of wrinkle ridges wherever they occur. The present study is addressing three questions: (1) Do the trends of wrinkle ridges define domains that are large relative to the sizes of individual plains regions? If so, can these domains be related to large-scale topographic or geologic features? (2) Are regional trends of wrinkle ridges affected by local features such as coronae? If so, is it possible to determine the relative ages of the far-field and local stresses from detailed study of trend inheritance or superposition relationships? (3) What is the relationship between wrinkle ridges and the larger ridges that make up ridge belts?
Motor Task Variation Induces Structural Learning
Braun, Daniel A.; Aertsen, Ad; Wolpert, Daniel M.; Mehring, Carsten
2009-01-01
Summary When we have learned a motor skill, such as cycling or ice-skating, we can rapidly generalize to novel tasks, such as motorcycling or rollerblading [1–8]. Such facilitation of learning could arise through two distinct mechanisms by which the motor system might adjust its control parameters. First, fast learning could simply be a consequence of the proximity of the original and final settings of the control parameters. Second, by structural learning [9–14], the motor system could constrain the parameter adjustments to conform to the control parameters' covariance structure. Thus, facilitation of learning would rely on the novel task parameters' lying on the structure of a lower-dimensional subspace that can be explored more efficiently. To test between these two hypotheses, we exposed subjects to randomly varying visuomotor tasks of fixed structure. Although such randomly varying tasks are thought to prevent learning, we show that when subsequently presented with novel tasks, subjects exhibit three key features of structural learning: facilitated learning of tasks with the same structure, strong reduction in interference normally observed when switching between tasks that require opposite control strategies, and preferential exploration along the learned structure. These results suggest that skill generalization relies on task variation and structural learning. PMID:19217296
Motor task variation induces structural learning.
Braun, Daniel A; Aertsen, Ad; Wolpert, Daniel M; Mehring, Carsten
2009-02-24
When we have learned a motor skill, such as cycling or ice-skating, we can rapidly generalize to novel tasks, such as motorcycling or rollerblading [1-8]. Such facilitation of learning could arise through two distinct mechanisms by which the motor system might adjust its control parameters. First, fast learning could simply be a consequence of the proximity of the original and final settings of the control parameters. Second, by structural learning [9-14], the motor system could constrain the parameter adjustments to conform to the control parameters' covariance structure. Thus, facilitation of learning would rely on the novel task parameters' lying on the structure of a lower-dimensional subspace that can be explored more efficiently. To test between these two hypotheses, we exposed subjects to randomly varying visuomotor tasks of fixed structure. Although such randomly varying tasks are thought to prevent learning, we show that when subsequently presented with novel tasks, subjects exhibit three key features of structural learning: facilitated learning of tasks with the same structure, strong reduction in interference normally observed when switching between tasks that require opposite control strategies, and preferential exploration along the learned structure. These results suggest that skill generalization relies on task variation and structural learning.
A novel knowledge-based potential for RNA 3D structure evaluation
NASA Astrophysics Data System (ADS)
Yang, Yi; Gu, Qi; Zhang, Ben-Gong; Shi, Ya-Zhou; Shao, Zhi-Gang
2018-03-01
Ribonucleic acids (RNAs) play a vital role in biology, and knowledge of their three-dimensional (3D) structure is required to understand their biological functions. Recently structural prediction methods have been developed to address this issue, but a series of RNA 3D structures are generally predicted by most existing methods. Therefore, the evaluation of the predicted structures is generally indispensable. Although several methods have been proposed to assess RNA 3D structures, the existing methods are not precise enough. In this work, a new all-atom knowledge-based potential is developed for more accurately evaluating RNA 3D structures. The potential not only includes local and nonlocal interactions but also fully considers the specificity of each RNA by introducing a retraining mechanism. Based on extensive test sets generated from independent methods, the proposed potential correctly distinguished the native state and ranked near-native conformations to effectively select the best. Furthermore, the proposed potential precisely captured RNA structural features such as base-stacking and base-pairing. Comparisons with existing potential methods show that the proposed potential is very reliable and accurate in RNA 3D structure evaluation. Project supported by the National Science Foundation of China (Grants Nos. 11605125, 11105054, 11274124, and 11401448).
NASA Astrophysics Data System (ADS)
Jiang, Dongfei; Liu, F. S.; Zheng, Xianzhong; Yesuf, Hassen M.; Koo, David C.; Faber, S. M.; Guo, Yicheng; Koekemoer, Anton M.; Wang, Weichen; Fang, Jerome J.; Barro, Guillermo; Jia, Meng; Tong, Wei; Liu, Lu; Meng, Xianmin; Kocevski, Dale; McGrath, Elizabeth J.; Hathi, Nimish P.
2018-02-01
We have measured the radial profiles of isophotal ellipticity (ε) and disky/boxy parameter A 4 out to radii of about three times the semimajor axes for ∼4600 star-forming galaxies (SFGs) between redshift 0.5 and 1.8 in the CANDELS/GOODS-S and UDS fields. Based on the average size–mass relation in each redshift bin, we divide our galaxies at a given mass into Small SFGs (SSFGs; smaller than the average) and Large SFGs (LSFGs; larger than the average). We show that, at low masses ({M}* < {10}10{M}ȯ ), the SSFGs generally have nearly flat ε and A 4 profiles in both edge-on and face-on views, especially at z> 1. Moreover, the median A 4 values at all radii are almost zero. In contrast, the highly inclined low-mass LSFGs in the same mass-redshift bins generally have monotonically increasing ε profiles with radius and disky feature dominated in the intermediate regions. These findings imply that at these redshifts, the low-mass SSFGs are not disk-like, whereas the low-mass LSFGs likely harbour disk-like components flattened by significant rotations. At high masses ({M}* > {10}10{M}ȯ ), both highly inclined SSFGs and LSFGs generally exhibit distinct trends in both ε and A 4 profiles, which increase at lower radii, reach maxima, then decrease at larger radii. Such the feature is more prevalent for more massive ({M}* > {10}10.5{M}ȯ ) galaxies or at lower redshifts (z< 1.4). This feature can be simply explained if galaxies possess all three components: central bulges, disks in the intermediate regions, and halo-like stellar components in the outskirts.
Distel, M A; Middeldorp, C M; Trull, T J; Derom, C A; Willemsen, G; Boomsma, D I
2011-04-01
Traumatic life events are generally more common in patients with borderline personality disorder (BPD) than in non-patients or patients with other personality disorders. This study investigates whether exposure to life events moderates the genetic architecture of BPD features. As the presence of genotype-environment correlation (rGE) can lead to spurious findings of genotype-environment interaction (G × E), we also test whether BPD features increase the likelihood of exposure to life events. The extent to which an individual is at risk to develop BPD was assessed with the Personality Assessment Inventory - Borderline features scale (PAI-BOR). Life events under study were a divorce/break-up, traffic accident, violent assault, sexual assault, robbery and job loss. Data were available for 5083 twins and 1285 non-twin siblings. Gene-environment interaction and correlation were assessed by using structural equation modelling (SEM) and the co-twin control design. There was evidence for both gene-environment interaction and correlation. Additive genetic influences on BPD features interacted with the exposure to sexual assault, with genetic variance being lower in exposed individuals. In individuals who had experienced a divorce/break-up, violent assault, sexual assault or job loss, environmental variance for BPD features was higher, leading to a lower heritability of BPD features in exposed individuals. Gene-environment correlation was present for some life events. The genes that influence BPD features thus also increased the likelihood of being exposed to certain life events. To our knowledge, this study is the first to test the joint effect of genetic and environmental influences and the exposure to life events on BPD features in the general population. Our results indicate the importance of both genetic vulnerability and life events.
NASA Astrophysics Data System (ADS)
Myrow, P.; Chen, J.
2013-12-01
A wide variety of unusual penecontemporaneous deformation structures exist in grainstone and flat-pebble conglomerate beds of the Upper Cambrian strata, western Colorado, including slide scarps, thrusted beds, irregular blocks and internally deformed beds. Slide scarps are characterized by concave-up, sharp surfaces that truncate one or more underlying beds. Thrusted beds record movement of a part of a bed onto itself along a moderate to steeply inclined (generally 25°-40°) ramp. The hanging wall lenses in cases show fault-bend geometries, with either intact or mildly deformed bedding. Irregular bedded to internally deformed blocks isolated on generally flat upper bedding surfaces are similar in composition to the underlying beds. These features represent parts of beds that were detached, moved up onto, and some distances across, the laterally adjacent undisturbed bed surfaces. The blocks moved either at the sediment-water interface or intrastratally at shallow depths within overlying muddy deposits. Finally, internally deformed beds have large blocks, fitted fabrics of highly irregular fragments, and contorted lamination, which represent heterogeneous deformation, such as brecciation and liquefaction. The various deformation structures were most probably triggered by earthquakes, considering the nature of deformation (regional distribution of liquefaction structures, and the brittle segmentation and subsequent transportation of semi-consolidated beds) and the reactivation of Mesoproterozoic, crustal-scale shear zones in the central Rockies during the Late Cambrian. Features produced by initial brittle deformation are unusual relative to most reported seismites, and may represent poorly recognized to unrecognized seismogenic structures in the rock record.
Design Rules for Tailoring Antireflection Properties of Hierarchical Optical Structures
Leon, Juan J. Diaz; Hiszpanski, Anna M.; Bond, Tiziana C.; ...
2017-05-18
Hierarchical structures consisting of small sub-wavelength features stacked atop larger structures have been demonstrated as an effective means of reducing the reflectance of surfaces. However, optical devices require different antireflective properties depending on the application, and general unifying guidelines on hierarchical structures' design to attain a desired antireflection spectral response are still lacking. The type of reflectivity (diffuse, specular, or total/hemispherical) and its angular- and spectral-dependence are all dictated by the structural parameters. Through computational and experimental studies, guidelines have been devised to modify these various aspects of reflectivity across the solar spectrum by proper selection of the features ofmore » hierarchical structures. In this wavelength regime, micrometer-scale substructures dictate the long-wavelength spectral response and effectively reduce specular reflectance, whereas nanometer-scale substructures dictate primarily the visible wavelength spectral response and reduce diffuse reflectance. Coupling structures having these two length scales into hierarchical arrays impressively reduces surfaces' hemispherical reflectance across a broad spectrum of wavelengths and angles. Furthermore, such hierarchical structures in silicon are demonstrated having an average total reflectance across the solar spectrum of 1.1% (average weighted reflectance of 1% in the 280–2500 nm range of the AM 1.5 G spectrum) and specular reflectance <1% even at angles of incidence as high as 67°.« less
NASA Astrophysics Data System (ADS)
Kelly, Resa M.; Jones, Loretta L.
2007-10-01
Animations of molecular structure and dynamics are often used to help students understand the abstract ideas of chemistry. This qualitative study investigated how the features of two different styles of molecular-level animation affected students' explanations of how sodium chloride dissolves in water. In small group sessions 18 college-level general chemistry students dissolved table salt in water, after which they individually viewed two animations of salt dissolution. Before and after viewing each animation the participants provided pictorial, written, and oral explanations of the process at the macroscopic and molecular levels. The students then discussed the animations as a group. An analysis of the data showed that students incorporated some of the microscopic structural and functional features from the animations into their explanations. However, oral explanations revealed that in many cases, participants who drew or wrote correct explanations did not comprehend their meanings. Students' drawings may have reflected only what they had seen, rather than a cohesive understanding. Students' explanations given after viewing the animations improved, but some prior misconceptions were retained and in some cases, new misconceptions appeared. Students reported that they found the animations useful in learning; however, they sometimes missed essential features when they watched the animation alone.
Extensions of algebraic image operators: An approach to model-based vision
NASA Technical Reports Server (NTRS)
Lerner, Bao-Ting; Morelli, Michael V.
1990-01-01
Researchers extend their previous research on a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets. Addition and multiplication are defined for the set of all grey-level images, which can then be described as polynomials of two variables. Utilizing this new algebraic structure, researchers devised an innovative, efficient edge detection scheme. An accurate method for deriving gradient component information from this edge detector is presented. Based upon this new edge detection system researchers developed a robust method for linear feature extraction by combining the techniques of a Hough transform and a line follower. The major advantage of this feature extractor is its general, object-independent nature. Target attributes, such as line segment lengths, intersections, angles of intersection, and endpoints are derived by the feature extraction algorithm and employed during model matching. The algebraic operators are global operations which are easily reconfigured to operate on any size or shape region. This provides a natural platform from which to pursue dynamic scene analysis. A method for optimizing the linear feature extractor which capitalizes on the spatially reconfiguration nature of the edge detector/gradient component operator is discussed.
Stevenson, K; Baker, R; Farooqi, A; Sorrie, R; Khunti, K
2001-02-01
In quality improvement activities such as audit, some general practices succeed in improving care and some do not. With audit of care likely to be one of the major tools in clinical governance, it would be helpful to establish what features of primary health care teams are associated with successful audit in general practice. The aim of the present study was to identify those features of primary health care teams that were associated with successful quality improvement during systematic audit of diabetes care. Semi-structured tape-recorded interviews were carried out with lead GPs and practice nurses in 18 general practices in Leicestershire that had the opportunity to improve their care and had completed two data collections in a multipractice audit of diabetes care. The interviewees were asked to describe their practice's approach to audit and the transcripts were coded for common features and judged for strength of feeling by blinded independent raters. Features common to practices that had, and those that had not, managed to improve diabetes care were identified. Six features were identified reliably in the transcripts by blinded independent raters. Four were significantly associated with the successful improvement of care. Success was more likely in teams in which: the GP or nurse felt personally involved in the audit; they perceived their teamwork as good; they had recognized the need for systematic plans to address obstacles to quality improvement; and their teams had a positive attitude to continued monitoring of care. A positive attitude to audit and a personal interest in the disease were not associated with improvement in care. Success in improving diabetes care is associated with certain organizational features of primary health care teams. Experimental studies are required to determine whether the development of teamwork enables practice teams to identify and overcome systematically the obstacles to improved quality of patient care that face them.
Lagrangian Coherent Structures, Hyperbolicity, and Lyapunov Exponents
NASA Astrophysics Data System (ADS)
Haller, George
2010-05-01
We review the fundamental physical motivation behind the definition of Lagrangian Coherent Structures (LCS) and show how it leads to the concept of finite-time hyperbolicity in non-autonomous dynamical systems. Using this concept of hyperbolicity, we obtain a self-consistent criterion for the existence of attracting and repelling material surfaces in unsteady fluid flows, such as those in the atmosphere and the ocean. The existence of LCS is often postulated in terms of features of the Finite-Time Lyapunov Exponent (FTLE) field associated with the system. As simple examples show, however, the FTLE field does not necessarily highlight LCS, or may ighlight structures that are not LCS. Under appropriate nondegeneracy conditions, we show that ridges of the FTLE field indeed coincide with LCS in volume-preserving flows. For general flows, we obtain a more general scalar field whose ridges correspond to LCS. We finally review recent applications of LCS techniques to flight safety analysis at Hong Kong International Airport.
Demersal fish assemblages on seamounts and other rugged features in the northeastern Caribbean
NASA Astrophysics Data System (ADS)
Quattrini, Andrea M.; Demopoulos, Amanda W. J.; Singer, Randal; Roa-Varon, Adela; Chaytor, Jason D.
2017-05-01
Recent investigations of demersal fish communities in deepwater (>50 m) habitats have considerably increased our knowledge of the factors that influence the assemblage structure of fishes across mesophotic to deep-sea depths. While different habitat types influence deepwater fish distribution, whether different types of rugged seafloor features provide functionally equivalent habitat for fishes is poorly understood. In the northeastern Caribbean, different types of rugged features (e.g., seamounts, banks, canyons) punctuate insular margins, and thus create a remarkable setting in which to compare demersal fish communities across various features. Concurrently, several water masses are vertically layered in the water column, creating strong stratification layers corresponding to specific abiotic conditions. In this study, we examined differences among fish assemblages across different features (e.g., seamount, canyon, bank/ridge) and water masses at depths ranging from 98 to 4060 m in the northeastern Caribbean. We conducted 26 remotely operated vehicle dives across 18 sites, identifying 156 species of which 42% of had not been previously recorded from particular depths or localities in the region. While rarefaction curves indicated fewer species at seamounts than at other features in the NE Caribbean, assemblage structure was similar among the different types of features. Thus, similar to seamount studies in other regions, seamounts in the Anegada Passage do not harbor distinct communities from other types of rugged features. Species assemblages, however, differed among depths, with zonation generally corresponding to water mass boundaries in the region. High species turnover occurred at depths <1200 m, and may be driven by changes in water mass characteristics including temperature (4.8-24.4 °C) and dissolved oxygen (2.2-9.5 mg per l). Our study suggests the importance of water masses in influencing community structure of benthic fauna, while considerably adding to the knowledge of mesophotic and deep-sea fish biogeography.
Demersal fish assemblages on seamounts and other rugged features in the northeastern Caribbean
Quattrini, Andrea M.; Demopoulos, Amanda W. J.; Singer, Randal; Roa-Varon, Adela; Chaytor, Jason D.
2017-01-01
Recent investigations of demersal fish communities in deepwater (>50 m) habitats have considerably increased our knowledge of the factors that influence the assemblage structure of fishes across mesophotic to deep-sea depths. While different habitat types influence deepwater fish distribution, whether different types of rugged seafloor features provide functionally equivalent habitat for fishes is poorly understood. In the northeastern Caribbean, different types of rugged features (e.g., seamounts, banks, canyons) punctuate insular margins, and thus create a remarkable setting in which to compare demersal fish communities across various features. Concurrently, several water masses are vertically layered in the water column, creating strong stratification layers corresponding to specific abiotic conditions. In this study, we examined differences among fish assemblages across different features (e.g., seamount, canyon, bank/ridge) and water masses at depths ranging from 98 to 4060 m in the northeastern Caribbean. We conducted 26 remotely operated vehicle dives across 18 sites, identifying 156 species of which 42% of had not been previously recorded from particular depths or localities in the region. While rarefaction curves indicated fewer species at seamounts than at other features in the NE Caribbean, assemblage structure was similar among the different types of features. Thus, similar to seamount studies in other regions, seamounts in the Anegada Passage do not harbor distinct communities from other types of rugged features. Species assemblages, however, differed among depths, with zonation generally corresponding to water mass boundaries in the region. High species turnover occurred at depths <1200 m, and may be driven by changes in water mass characteristics including temperature (4.8–24.4 °C) and dissolved oxygen (2.2–9.5 mg per l). Our study suggests the importance of water masses in influencing community structure of benthic fauna, while considerably adding to the knowledge of mesophotic and deep-sea fish biogeography.
Discovering rules for protein-ligand specificity using support vector inductive logic programming.
Kelley, Lawrence A; Shrimpton, Paul J; Muggleton, Stephen H; Sternberg, Michael J E
2009-09-01
Structural genomics initiatives are rapidly generating vast numbers of protein structures. Comparative modelling is also capable of producing accurate structural models for many protein sequences. However, for many of the known structures, functions are not yet determined, and in many modelling tasks, an accurate structural model does not necessarily tell us about function. Thus, there is a pressing need for high-throughput methods for determining function from structure. The spatial arrangement of key amino acids in a folded protein, on the surface or buried in clefts, is often the determinants of its biological function. A central aim of molecular biology is to understand the relationship between such substructures or surfaces and biological function, leading both to function prediction and to function design. We present a new general method for discovering the features of binding pockets that confer specificity for particular ligands. Using a recently developed machine-learning technique which couples the rule-discovery approach of inductive logic programming with the statistical learning power of support vector machines, we are able to discriminate, with high precision (90%) and recall (86%) between pockets that bind FAD and those that bind NAD on a large benchmark set given only the geometry and composition of the backbone of the binding pocket without the use of docking. In addition, we learn rules governing this specificity which can feed into protein functional design protocols. An analysis of the rules found suggests that key features of the binding pocket may be tied to conformational freedom in the ligand. The representation is sufficiently general to be applicable to any discriminatory binding problem. All programs and data sets are freely available to non-commercial users at http://www.sbg.bio.ic.ac.uk/svilp_ligand/.
Structural Analysis of Cubane-Type Iron Clusters
Tan, Lay Ling; Holm, R. H.; Lee, Sonny C.
2013-01-01
The generalized cluster type [M4(μ3-Q)4Ln]x contains the cubane-type [M4Q4]z core unit that can approach, but typically deviates from, perfect Td symmetry. The geometric properties of this structure have been analyzed with reference to Td symmetry by a new protocol. Using coordinates of M and Q atoms, expressions have been derived for interatomic separations, bond angles, and volumes of tetrahedral core units (M4, Q4) and the total [M4Q4] core (as a tetracapped M4 tetrahedron). Values for structural parameters have been calculated from observed average values for a given cluster type. Comparison of calculated and observed values measures the extent of deviation of a given parameter from that required in an exact tetrahedral structure. The procedure has been applied to the structures of over 130 clusters containing [Fe4Q4] (Q = S2−, Se2−, Te2−, [NPR3]−, [NR]2−) units, of which synthetic and biological sulfide-bridged clusters constitute the largest subset. General structural features and trends in structural parameters are identified and summarized. An extensive database of structural properties (distances, angles, volumes) has been compiled in Supporting Information. PMID:24072952
Structural Analysis of Cubane-Type Iron Clusters.
Tan, Lay Ling; Holm, R H; Lee, Sonny C
2013-07-13
The generalized cluster type [M 4 (μ 3 -Q) 4 L n ] x contains the cubane-type [M 4 Q 4 ] z core unit that can approach, but typically deviates from, perfect T d symmetry. The geometric properties of this structure have been analyzed with reference to T d symmetry by a new protocol. Using coordinates of M and Q atoms, expressions have been derived for interatomic separations, bond angles, and volumes of tetrahedral core units (M 4 , Q 4 ) and the total [M 4 Q 4 ] core (as a tetracapped M 4 tetrahedron). Values for structural parameters have been calculated from observed average values for a given cluster type. Comparison of calculated and observed values measures the extent of deviation of a given parameter from that required in an exact tetrahedral structure. The procedure has been applied to the structures of over 130 clusters containing [Fe 4 Q 4 ] (Q = S 2- , Se 2- , Te 2- , [NPR 3 ] - , [NR] 2- ) units, of which synthetic and biological sulfide-bridged clusters constitute the largest subset. General structural features and trends in structural parameters are identified and summarized. An extensive database of structural properties (distances, angles, volumes) has been compiled in Supporting Information.
Integrated feature extraction and selection for neuroimage classification
NASA Astrophysics Data System (ADS)
Fan, Yong; Shen, Dinggang
2009-02-01
Feature extraction and selection are of great importance in neuroimage classification for identifying informative features and reducing feature dimensionality, which are generally implemented as two separate steps. This paper presents an integrated feature extraction and selection algorithm with two iterative steps: constrained subspace learning based feature extraction and support vector machine (SVM) based feature selection. The subspace learning based feature extraction focuses on the brain regions with higher possibility of being affected by the disease under study, while the possibility of brain regions being affected by disease is estimated by the SVM based feature selection, in conjunction with SVM classification. This algorithm can not only take into account the inter-correlation among different brain regions, but also overcome the limitation of traditional subspace learning based feature extraction methods. To achieve robust performance and optimal selection of parameters involved in feature extraction, selection, and classification, a bootstrapping strategy is used to generate multiple versions of training and testing sets for parameter optimization, according to the classification performance measured by the area under the ROC (receiver operating characteristic) curve. The integrated feature extraction and selection method is applied to a structural MR image based Alzheimer's disease (AD) study with 98 non-demented and 100 demented subjects. Cross-validation results indicate that the proposed algorithm can improve performance of the traditional subspace learning based classification.
Mechanism and energetics of 〈c + a〉 dislocation cross-slip in hcp metals.
Wu, Zhaoxuan; Curtin, W A
2016-10-04
Hexagonal close-packed (hcp) metals such as Mg, Ti, and Zr are lightweight and/or durable metals with critical structural applications in the automotive (Mg), aerospace (Ti), and nuclear (Zr) industries. The hcp structure, however, brings significant complications in the mechanisms of plastic deformation, strengthening, and ductility, and these complications pose significant challenges in advancing the science and engineering of these metals. In hcp metals, generalized plasticity requires the activation of slip on pyramidal planes, but the structure, motion, and cross-slip of the associated [Formula: see text] dislocations are not well established even though they determine ductility and influence strengthening. Here, atomistic simulations in Mg reveal the unusual mechanism of [Formula: see text] dislocation cross-slip between pyramidal I and II planes, which occurs by cross-slip of the individual partial dislocations. The energy barrier is controlled by a fundamental step/jog energy and the near-core energy difference between pyramidal [Formula: see text] dislocations. The near-core energy difference can be changed by nonglide stresses, leading to tension-compression asymmetry and even a switch in absolute stability from one glide plane to the other, both features observed experimentally in Mg, Ti, and their alloys. The unique cross-slip mechanism is governed by common features of the generalized stacking fault energy surfaces of hcp pyramidal planes and is thus expected to be generic to all hcp metals. An analytical model is developed to predict the cross-slip barrier as a function of the near-core energy difference and applied stresses and quantifies the controlling features of cross-slip and pyramidal I/II stability across the family of hcp metals.
Mechanism and energetics of 〈c + a〉 dislocation cross-slip in hcp metals
Wu, Zhaoxuan; Curtin, W. A.
2016-01-01
Hexagonal close-packed (hcp) metals such as Mg, Ti, and Zr are lightweight and/or durable metals with critical structural applications in the automotive (Mg), aerospace (Ti), and nuclear (Zr) industries. The hcp structure, however, brings significant complications in the mechanisms of plastic deformation, strengthening, and ductility, and these complications pose significant challenges in advancing the science and engineering of these metals. In hcp metals, generalized plasticity requires the activation of slip on pyramidal planes, but the structure, motion, and cross-slip of the associated 〈c+a〉 dislocations are not well established even though they determine ductility and influence strengthening. Here, atomistic simulations in Mg reveal the unusual mechanism of 〈c+a〉 dislocation cross-slip between pyramidal I and II planes, which occurs by cross-slip of the individual partial dislocations. The energy barrier is controlled by a fundamental step/jog energy and the near-core energy difference between pyramidal 〈c+a〉 dislocations. The near-core energy difference can be changed by nonglide stresses, leading to tension–compression asymmetry and even a switch in absolute stability from one glide plane to the other, both features observed experimentally in Mg, Ti, and their alloys. The unique cross-slip mechanism is governed by common features of the generalized stacking fault energy surfaces of hcp pyramidal planes and is thus expected to be generic to all hcp metals. An analytical model is developed to predict the cross-slip barrier as a function of the near-core energy difference and applied stresses and quantifies the controlling features of cross-slip and pyramidal I/II stability across the family of hcp metals. PMID:27647908
Structural features of phosphate accumulations in the Gantour basin - Morocco : Application of GIS
NASA Astrophysics Data System (ADS)
Mohamed, Laadraoui; El Hassane, Boumaggard; Essaid, Jourani
2010-05-01
The Moroccan Atlantic margin raises a lot of interest because of its potential resources in phosphates. It also holds in its Mesetien part one of the largest phosphatic deposit in the world. The authors present the results of their researches on structural environments of the phosphatic sedimentary sequences in the Gantour deposit in western Morocco. These investigations are mainly based on field data, data recorded from work done by the OCP (Office Chérifien des Phosphates) group, the interpretation of industrial seismic profiles and the application of GIS. Our aim are devoted to the apprehension of the geometry and the cinematic of these basins which are contemporaneous to the Central Atlantic Rifting, as well as the determination of the list of factors liable to the genesis of these phosphatic basins. Other data of field observations (cartography, study of structural features,...) permit to identify the general structure of the prospect. Sedimentation of phosphated deposits is strained by the presence of two wrench faulting systems oriented N20¬40E, N80¬120E and N140¬160E.
Papaleo, Elena; Tiberti, Matteo; Invernizzi, Gaetano; Pasi, Marco; Ranzani, Valeria
2011-11-01
The identification of molecular mechanisms underlying enzyme cold adaptation is a hot-topic both for fundamental research and industrial applications. In the present contribution, we review the last decades of structural computational investigations on cold-adapted enzymes in comparison to their warm-adapted counterparts. Comparative sequence and structural studies allow the definition of a multitude of adaptation strategies. Different enzymes carried out diverse mechanisms to adapt to low temperatures, so that a general theory for enzyme cold adaptation cannot be formulated. However, some common features can be traced in dynamic and flexibility properties of these enzymes, as well as in their intra- and inter-molecular interaction networks. Interestingly, the current data suggest that a family-centered point of view is necessary in the comparative analyses of cold- and warm-adapted enzymes. In fact, enzymes belonging to the same family or superfamily, thus sharing at least the three-dimensional fold and common features of the functional sites, have evolved similar structural and dynamic patterns to overcome the detrimental effects of low temperatures.
NASA Astrophysics Data System (ADS)
Kim, Hyejeong; Kim, Hyeonjeong; Huh, Hyungkyu; Hwang, Hyung Ju; Lee, Sang Joon
2014-11-01
Plant leaves are generally known to have optimized morphological structure in response to environmental changes for efficient water usage. However, the advantageous features of plant leaves are not fully utilized in engineering fields yet, since the optimum design in internal structure of plant leaves is unclear. In this study, the tissue organization of the hydraulic pathways inside plant leaves was investigated. Water transport through double-layered porous hydrogel models analogous to mesophyll cells was experimentally observed. In addition, computational experiment and theoretical analysis were applied to the model systems to find the optimal design for efficient water transport. As a result, the models with lower porosity or with pores distributed widely in the structure exhibit efficient mass transport. Our theoretical prediction supports that structural features of plant leaves guarantee sufficient water supply as survival strategy. This study may provide a new framework for investigating the biophysical principles governing the morphological optimization of plant leaves and for designing microfluidic devices to enhance mass transport ability. This study was supported by the National Research Foundation of Korea and funded by the Korean government.
Event-related potentials to structural familiar face incongruity processing.
Jemel, B; George, N; Olivares, E; Fiori, N; Renault, B
1999-07-01
Thirty scalp sites were used to investigate the specific topography of the event-related potentials (ERPs) related to face associative priming when masked eyes of familiar faces were completed with either the proper features or incongruent ones. The enhanced negativity of N210 and N350, due to structural incongruity of faces, have a "category specific" inferotemporal localization on the scalp. Additional analyses support the existence of multiple ERP features within the temporal interval typically associated with N400 (N350 and N380), involving occipitotemporal and centroparietal areas. Seven reliable dipole locations have been evidenced using the brain electrical source analysis algorithm. Some of these localizations (fusiform, parahippocampal) are already known to be involved in face recognition, the other ones being related to general cognitive processes related to the task's demand. Because of their specific topography, the observed effects suggest that the face structural congruency process might involve early specialized neocortical areas in parallel with cortical memory circuits in the integration of perceptual and cognitive face processing.
The Nature of Metastable AA’ Graphite: Low Dimensional Nano- and Single-Crystalline Forms
Lee, Jae-Kap; Kim, Jin-Gyu; Hembram, K. P. S. S.; Kim, Yong-Il; Min, Bong-Ki; Park, Yeseul; Lee, Jeon-Kook; Moon, Dong Ju; Lee, Wooyoung; Lee, Sang-Gil; John, Phillip
2016-01-01
Over the history of carbon, it is generally acknowledged that Bernal AB stacking of the sp2 carbon layers is the unique crystalline form of graphite. The universal graphite structure is synthesized at 2,600~3,000 °C and exhibits a micro-polycrystalline feature. In this paper, we provide evidence for a metastable form of graphite with an AA’ structure. The non-Bernal AA’ allotrope of graphite is synthesized by the thermal- and plasma-treatment of graphene nanopowders at ~1,500 °C. The formation of AA’ bilayer graphene nuclei facilitates the preferred texture growth and results in single-crystal AA’ graphite in the form of nanoribbons (1D) or microplates (2D) of a few nm in thickness. Kinetically controlled AA’ graphite exhibits unique nano- and single-crystalline feature and shows quasi-linear behavior near the K-point of the electronic band structure resulting in anomalous optical and acoustic phonon behavior. PMID:28000780
Enhanced Regulatory Sequence Prediction Using Gapped k-mer Features
Mohammad-Noori, Morteza; Beer, Michael A.
2014-01-01
Abstract Oligomers of length k, or k-mers, are convenient and widely used features for modeling the properties and functions of DNA and protein sequences. However, k-mers suffer from the inherent limitation that if the parameter k is increased to resolve longer features, the probability of observing any specific k-mer becomes very small, and k-mer counts approach a binary variable, with most k-mers absent and a few present once. Thus, any statistical learning approach using k-mers as features becomes susceptible to noisy training set k-mer frequencies once k becomes large. To address this problem, we introduce alternative feature sets using gapped k-mers, a new classifier, gkm-SVM, and a general method for robust estimation of k-mer frequencies. To make the method applicable to large-scale genome wide applications, we develop an efficient tree data structure for computing the kernel matrix. We show that compared to our original kmer-SVM and alternative approaches, our gkm-SVM predicts functional genomic regulatory elements and tissue specific enhancers with significantly improved accuracy, increasing the precision by up to a factor of two. We then show that gkm-SVM consistently outperforms kmer-SVM on human ENCODE ChIP-seq datasets, and further demonstrate the general utility of our method using a Naïve-Bayes classifier. Although developed for regulatory sequence analysis, these methods can be applied to any sequence classification problem. PMID:25033408
Enhanced regulatory sequence prediction using gapped k-mer features.
Ghandi, Mahmoud; Lee, Dongwon; Mohammad-Noori, Morteza; Beer, Michael A
2014-07-01
Oligomers of length k, or k-mers, are convenient and widely used features for modeling the properties and functions of DNA and protein sequences. However, k-mers suffer from the inherent limitation that if the parameter k is increased to resolve longer features, the probability of observing any specific k-mer becomes very small, and k-mer counts approach a binary variable, with most k-mers absent and a few present once. Thus, any statistical learning approach using k-mers as features becomes susceptible to noisy training set k-mer frequencies once k becomes large. To address this problem, we introduce alternative feature sets using gapped k-mers, a new classifier, gkm-SVM, and a general method for robust estimation of k-mer frequencies. To make the method applicable to large-scale genome wide applications, we develop an efficient tree data structure for computing the kernel matrix. We show that compared to our original kmer-SVM and alternative approaches, our gkm-SVM predicts functional genomic regulatory elements and tissue specific enhancers with significantly improved accuracy, increasing the precision by up to a factor of two. We then show that gkm-SVM consistently outperforms kmer-SVM on human ENCODE ChIP-seq datasets, and further demonstrate the general utility of our method using a Naïve-Bayes classifier. Although developed for regulatory sequence analysis, these methods can be applied to any sequence classification problem.
NASA Astrophysics Data System (ADS)
Bahrudin, Nurul Fairuz Diyana Binti; Hamzah, Umar
2016-11-01
Magnetic data were processed to interpret the geology of Peninsular Malaysia especially in delineating the igneous bodies and structural lineament trends by potential field geophysical method. A total of about 32000 magnetic intensity data were obtained from Earth Magnetic Anomaly Grid (EMAG2) covering an area of East Sumatra to part of South China Sea within 99° E to 105° E Longitude and 1° N to 7°N Latitude. These data were used in several processing stages in generating the total magnetic intensity (TMI), reduce to equator (RTE), total horizontal derivative (THD) and total vertical derivative (TVD). Values of the possible surface and subsurface magnetic sources associated to the geological features of the study area. The magnetic properties are normally corresponding to features like igneous bodies and faults structures. The anomalies obtained were then compared to the geological features of the area. In general, the high magnetic anomalies of the TMI-RTE are closely matched with major igneous intrusion of Peninsular Malaysia such as the Main Range, Eastern Belt and the Mersing-Johor Bahru stretch. More dense lineaments of magnetic structures were observed in the THD and TVD results indicating the presence of more deep and shallow magnetic rich geological features. The positions of Bukit Tinggi, Mersing and Lepar faults are perfectly matched with the magnetic highs while the presence of Lebir and Bok Bak faults are not clearly observed in the magnetic results. The high magnetic values of igneous bodies may have concealed and obscured the magnetic values representing these faults.
2015-01-01
To investigate magnetostructural relationships in colloidal magnetite (Fe3O4) nanoparticles (NPs) at high temperature (300–900 K), we measured the temperature dependence of magnetization (M) of oleate-capped magnetite NPs ca. 20 nm in size. Magnetometry revealed an unusual irreversible high-temperature dependence of M for these NPs, with dip and loop features observed during heating–cooling cycles. Detailed characterizations of as-synthesized and annealed Fe3O4 NPs as well as reference ligand-free Fe3O4 NPs indicate that both types of features in M(T) are related to thermal decomposition of the capping ligands. The ligand decomposition upon the initial heating induces a reduction of Fe3+ to Fe2+ and the associated dip in M, leading to more structurally and compositionally uniform magnetite NPs. Having lost the protective ligands, the NPs continually sinter during subsequent heating cycles, resulting in divergent M curves featuring loops. The increase in M with sintering proceeds not only through elimination of a magnetically dead layer on the particle surface, as a result of a decrease in specific surface area with increasing size, but also through an uncommonly invoked effect resulting from a significant change in Fe3+/Fe2+ ratio with heat treatment. The interpretation of irreversible features in M(T) indicates that reversible M(T) behavior, conversely, can be expected only for ligand-free, structurally and compositionally uniform magnetite NPs, suggesting a general applicability of high-temperature M(T) measurements as an analytical method for probing the structure and composition of magnetic nanomaterials. PMID:25506407
The geometrical structure of quantum theory as a natural generalization of information geometry
NASA Astrophysics Data System (ADS)
Reginatto, Marcel
2015-01-01
Quantum mechanics has a rich geometrical structure which allows for a geometrical formulation of the theory. This formalism was introduced by Kibble and later developed by a number of other authors. The usual approach has been to start from the standard description of quantum mechanics and identify the relevant geometrical features that can be used for the reformulation of the theory. Here this procedure is inverted: the geometrical structure of quantum theory is derived from information geometry, a geometrical structure that may be considered more fundamental, and the Hilbert space of the standard formulation of quantum mechanics is constructed using geometrical quantities. This suggests that quantum theory has its roots in information geometry.
A PLANETARY LENSING FEATURE IN CAUSTIC-CROSSING HIGH-MAGNIFICATION MICROLENSING EVENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Sun-Ju; Hwang, Kyu-Ha; Ryu, Yoon-Hyun
Current microlensing follow-up observations focus on high-magnification events because of the high efficiency of planet detection. However, central perturbations of high-magnification events caused by a planet can also be produced by a very close or a very wide binary companion, and the two kinds of central perturbations are not generally distinguished without time consuming detailed modeling (a planet-binary degeneracy). Hence, it is important to resolve the planet-binary degeneracy that occurs in high-magnification events. In this paper, we investigate caustic-crossing high-magnification events caused by a planet and a wide binary companion. From this investigation, we find that because of the differentmore » magnification excess patterns inside the central caustics induced by the planet and the binary companion, the light curves of the caustic-crossing planetary-lensing events exhibit a feature that is discriminated from those of the caustic-crossing binary-lensing events, and the feature can be used to immediately distinguish between the planetary and binary companions. The planetary-lensing feature appears in the interpeak region between the two peaks of the caustic-crossings. The structure of the interpeak region for the planetary-lensing events is smooth and convex or boxy, whereas the structure for the binary-lensing events is smooth and concave. We also investigate the effect of a finite background source star on the planetary-lensing feature in the caustic-crossing high-magnification events. From this, we find that the convex-shaped interpeak structure appears in a certain range that changes with the mass ratio of the planet to the planet-hosting star.« less
Spontaneous Discovery and Use of Categorical Structure
1993-02-15
defaults (e.g., 4 Wittgenstein , 1953; Rosch, 1975, 1977). In a second set of study time experiments, we have begun to extend this procedure to investigate...Psychological Review, 84, 327-352. Wittgenstein , L. (1953). Philosophical investigations. Oxford: Blackwell. 25 Footnotes This research was supported...point, because the features of natural categories are generally considered to be probabilistic rather than deterministic ( Wittgenstein , 1953; Rosch
NASA Technical Reports Server (NTRS)
Rishbeth, H.
1986-01-01
The principal features that might exist in the terrestrial paleoionosphere, if the geomagnetic field were to assume a quadrupole form during a polarity reversal are discussed. Complicated phenomena would be expected to occur at magnetic equators and magnetospherically-driven plasma convection might occur at latitudes where the magnetic field is steeply inclined. The influence of magnetic field strength on ionospheric structure is considered in general terms.
Negasheva, M A
2008-01-01
669 young men and women aged 16-23 years were examined using a program including the measurements of 40 body, head and face parameters, fingerprinting and determination of personal psychological characteristics. On the basis of the study of the correlations between the different groups of characteristics, the evidence was obtained that supports the concept of a relative autonomy of the morpho-functional systems as an essential condition for the integrity of the organism as a whole. The coefficients of canonical correlation were calculated between the somatic and dermatoglyphic features (R=0.3), somatic sizes and psychological personality characteristics (R=0.4), psychological characteristics and the dermatoglyphic indices (R=0.4). An original model is suggested that describes the correlations of somatic, dermatoglyphic and psychological features in the structure of general human constitution on the basis of statistically significant canonical correlations (revealed by the author) and that takes in consideration the degree of the influence of genetic and social-economic complex of factors (on the basis of the literature data) on the development and formation of the investigated systems of characteristics.
Remarkable features in lattice-parameter ratios of crystals. II. Monoclinic and triclinic crystals.
de Gelder, R; Janner, A
2005-06-01
The frequency distributions of monoclinic crystals as a function of the lattice-parameter ratios resemble the corresponding ones of orthorhombic crystals: an exponential component, with more or less pronounced sharp peaks, with in general the most important peak at the ratio value 1. In addition, the distribution as a function of the monoclinic angle beta has a sharp peak at 90 degrees and decreases sensibly at larger angles. Similar behavior is observed for the three triclinic angular parameters alpha, beta and gamma, with characteristic differences between the organic and metal-organic, bio-macromolecular and inorganic crystals, respectively. The general behavior observed for the hexagonal, tetragonal, orthorhombic, monoclinic and triclinic crystals {in the first part of this series [de Gelder & Janner (2005). Acta Cryst. B61, 287-295] and in the present case} is summarized and commented. The data involved represent 366 800 crystals, with lattice parameters taken from the Cambridge Structural Database, CSD (294 400 entries), the Protein Data Bank, PDB (18 800 entries), and the Inorganic Crystal Structure Database, ICSD (53 600 entries). A new general structural principle is suggested.
Edge enhancement and noise suppression for infrared image based on feature analysis
NASA Astrophysics Data System (ADS)
Jiang, Meng
2018-06-01
Infrared images are often suffering from background noise, blurred edges, few details and low signal-to-noise ratios. To improve infrared image quality, it is essential to suppress noise and enhance edges simultaneously. To realize it in this paper, we propose a novel algorithm based on feature analysis in shearlet domain. Firstly, as one of multi-scale geometric analysis (MGA), we introduce the theory and superiority of shearlet transform. Secondly, after analyzing the defects of traditional thresholding technique to suppress noise, we propose a novel feature extraction distinguishing image structures from noise well and use it to improve the traditional thresholding technique. Thirdly, with computing the correlations between neighboring shearlet coefficients, the feature attribute maps identifying the weak detail and strong edges are completed to improve the generalized unsharped masking (GUM). At last, experiment results with infrared images captured in different scenes demonstrate that the proposed algorithm suppresses noise efficiently and enhances image edges adaptively.
Deep learning of support vector machines with class probability output networks.
Kim, Sangwook; Yu, Zhibin; Kil, Rhee Man; Lee, Minho
2015-04-01
Deep learning methods endeavor to learn features automatically at multiple levels and allow systems to learn complex functions mapping from the input space to the output space for the given data. The ability to learn powerful features automatically is increasingly important as the volume of data and range of applications of machine learning methods continues to grow. This paper proposes a new deep architecture that uses support vector machines (SVMs) with class probability output networks (CPONs) to provide better generalization power for pattern classification problems. As a result, deep features are extracted without additional feature engineering steps, using multiple layers of the SVM classifiers with CPONs. The proposed structure closely approaches the ideal Bayes classifier as the number of layers increases. Using a simulation of classification problems, the effectiveness of the proposed method is demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sampling and Visualizing Creases with Scale-Space Particles
Kindlmann, Gordon L.; Estépar, Raúl San José; Smith, Stephen M.; Westin, Carl-Fredrik
2010-01-01
Particle systems have gained importance as a methodology for sampling implicit surfaces and segmented objects to improve mesh generation and shape analysis. We propose that particle systems have a significantly more general role in sampling structure from unsegmented data. We describe a particle system that computes samplings of crease features (i.e. ridges and valleys, as lines or surfaces) that effectively represent many anatomical structures in scanned medical data. Because structure naturally exists at a range of sizes relative to the image resolution, computer vision has developed the theory of scale-space, which considers an n-D image as an (n + 1)-D stack of images at different blurring levels. Our scale-space particles move through continuous four-dimensional scale-space according to spatial constraints imposed by the crease features, a particle-image energy that draws particles towards scales of maximal feature strength, and an inter-particle energy that controls sampling density in space and scale. To make scale-space practical for large three-dimensional data, we present a spline-based interpolation across scale from a small number of pre-computed blurrings at optimally selected scales. The configuration of the particle system is visualized with tensor glyphs that display information about the local Hessian of the image, and the scale of the particle. We use scale-space particles to sample the complex three-dimensional branching structure of airways in lung CT, and the major white matter structures in brain DTI. PMID:19834216
Morphology of auroral zone radio wave scintillation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rino, C.L.; Matthews, S.J.
1980-08-01
This paper describes the morphology of midnight sector and morning sector auroral zone scintillation observations made over a two-year period using the Wideband satelite, which is in a sun-synchronous, low-altitude orbit. No definitive seasonal variation was found. The nighttime data showed the highest scintillation ocurrence levels, but significant amounts of morning scintillation were observed. For the most part the scintillation activity followed the general pattern of local magnetic activity. The most prominent feature in the nightime data is a localized amplitude and phase scintillation enhancement at the point where the propagation vector lies within an L shell. A geometrical effectmore » due to a dynamic slab of sheetlike structures in the F region is hypothesized as the source of his enhancement. The data have been sorted by magnetic activity, proximity to local midnight, and season. The general features of the data are in agreement with the accepted morphology of auroral zone scintillation.« less
van der Aa, Jeroen; Honing, Henkjan; ten Cate, Carel
2015-06-01
Perceiving temporal regularity in an auditory stimulus is considered one of the basic features of musicality. Here we examine whether zebra finches can detect regularity in an isochronous stimulus. Using a go/no go paradigm we show that zebra finches are able to distinguish between an isochronous and an irregular stimulus. However, when the tempo of the isochronous stimulus is changed, it is no longer treated as similar to the training stimulus. Training with three isochronous and three irregular stimuli did not result in improvement of the generalization. In contrast, humans, exposed to the same stimuli, readily generalized across tempo changes. Our results suggest that zebra finches distinguish the different stimuli by learning specific local temporal features of each individual stimulus rather than attending to the global structure of the stimuli, i.e., to the temporal regularity. Copyright © 2015 Elsevier B.V. All rights reserved.
Hine, P M; Wakefield, St J; Mackereth, G; Morrison, R
2016-09-26
The morphogenesis of large icosahedral viruses associated with lymphocystis-like lesions in the skin of parore Girella tricuspidata is described. The electron-lucent perinuclear viromatrix comprised putative DNA with open capsids at the periphery, very large arrays of smooth endoplasmic reticulum (sER), much of it with a reticulated appearance (rsER) or occurring as rows of vesicles. Lysosomes, degenerating mitochondria and virions in various stages of assembly, and paracrystalline arrays were also present. Long electron-dense inclusions (EDIs) with 15 nm repeating units split terminally and curled to form tubular structures internalising the 15 nm repeating structures. These tubular structures appeared to form the virion capsids. Large parallel arrays of sER sometimes alternated with aligned arrays of crinkled cisternae along which passed a uniformly wide (20 nm) thread-like structure. Strings of small vesicles near open capsids may also have been involved in formation of an inner lipid layer. Granules with a fine fibrillar appearance also occurred in the viromatrix, and from the presence of a halo around mature virions it appeared that the fibrils may form a layer around the capsid. The general features of virogenesis of large icosahedral dsDNA viruses, the large amount of ER, particularly rsER and the EDIs, are features of nucleo-cytoplasmic large DNA viruses, rather than features of 1 genus or family.
Feature Matching of Historical Images Based on Geometry of Quadrilaterals
NASA Astrophysics Data System (ADS)
Maiwald, F.; Schneider, D.; Henze, F.; Münster, S.; Niebling, F.
2018-05-01
This contribution shows an approach to match historical images from the photo library of the Saxon State and University Library Dresden (SLUB) in the context of a historical three-dimensional city model of Dresden. In comparison to recent images, historical photography provides diverse factors which make an automatical image analysis (feature detection, feature matching and relative orientation of images) difficult. Due to e.g. film grain, dust particles or the digitalization process, historical images are often covered by noise interfering with the image signal needed for a robust feature matching. The presented approach uses quadrilaterals in image space as these are commonly available in man-made structures and façade images (windows, stones, claddings). It is explained how to generally detect quadrilaterals in images. Consequently, the properties of the quadrilaterals as well as the relationship to neighbouring quadrilaterals are used for the description and matching of feature points. The results show that most of the matches are robust and correct but still small in numbers.
O'Rahilly, R; Müller, F; Hutchins, G M; Moore, G W
1984-11-01
The sequence of events in the development of the brain in staged human embryos was investigated in much greater detail than in previous studies by listing 100 features in 165 embryos of the first 5 weeks. Using a computerized bubble-sort algorithm, individual embryos were ranked in ascending order of the features present. This procedure made feasible an appreciation of the slight variation found in the developmental features. The vast majority of features appeared during either one or two stages (about 2 or 3 days). In general, the soundness of the Carnegie system of embryonic staging was amply confirmed. The rhombencephalon was found to show increasing complexity around stage 13, and the postoptic portion of the diencephalon underwent considerable differentiation by stage 15. The need for similar investigations of other systems of the body is emphasized, and the importance of such studies in assessing the timing of congenital malformations and in clarifying syndromic clusters is suggested.
Line group techniques in description of the structural phase transitions in some superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meszaros, C.; Bankuti, J.; Balint, A.
1994-12-31
The main features of the theory of line groups, and their irreducible representations are briefly discussed, as well as the most important applications of them. A new approach in the general symmetry analysis of the modulated systems is presented. It is shown, that the line group formalism could be a very effective tool in the examination of the structural phase transitions in High Temperature Superconductors. As an example, the material YBa{sub 2}Cu{sub 3}O{sub 7-x} is discussed briefly.
NASTRAN thermal analyzer: A general purpose finite element heat transfer computer program
NASA Technical Reports Server (NTRS)
Lee, H.; Mason, J. B.
1972-01-01
The program not only can render temperature distributions in solids subjected to various thermal boundary conditions, including effects of diffuse-gray thermal radiation, but is fully compatible in capacity and in the finite-element model representation with that of its structural counterpart in the NASTRAN system. The development history of the finite-element approach for determining temperatures is summarized. The scope of analysis capability, program structure, features, and limitations are given with the objective of providing NASTRAN users with an overall veiw of the NASTRAN thermal analyzer.
Pinpointing chiral structures with front-back polarized neutron reflectometry.
O'Donovan, K V; Borchers, J A; Majkrzak, C F; Hellwig, O; Fullerton, E E
2002-02-11
A new development in spin-polarized neutron reflectometry enables us to more fully characterize the nucleation and growth of buried domain walls in layered magnetic materials. We applied this technique to a thin-film exchange-spring magnet. After first measuring the reflectivity with the neutrons striking the front, we measure with the neutrons striking the back. Simultaneous fits are sensitive to the presence of spiral spin structures. The technique reveals previously unresolved features of field-dependent domain walls in exchange-spring systems and has sufficient generality to apply to a variety of magnetic systems.
Exact and approximate graph matching using random walks.
Gori, Marco; Maggini, Marco; Sarti, Lorenzo
2005-07-01
In this paper, we propose a general framework for graph matching which is suitable for different problems of pattern recognition. The pattern representation we assume is at the same time highly structured, like for classic syntactic and structural approaches, and of subsymbolic nature with real-valued features, like for connectionist and statistic approaches. We show that random walk based models, inspired by Google's PageRank, give rise to a spectral theory that nicely enhances the graph topological features at node level. As a straightforward consequence, we derive a polynomial algorithm for the classic graph isomorphism problem, under the restriction of dealing with Markovian spectrally distinguishable graphs (MSD), a class of graphs that does not seem to be easily reducible to others proposed in the literature. The experimental results that we found on different test-beds of the TC-15 graph database show that the defined MSD class "almost always" covers the database, and that the proposed algorithm is significantly more efficient than top scoring VF algorithm on the same data. Most interestingly, the proposed approach is very well-suited for dealing with partial and approximate graph matching problems, derived for instance from image retrieval tasks. We consider the objects of the COIL-100 visual collection and provide a graph-based representation, whose node's labels contain appropriate visual features. We show that the adoption of classic bipartite graph matching algorithms offers a straightforward generalization of the algorithm given for graph isomorphism and, finally, we report very promising experimental results on the COIL-100 visual collection.
Solomon, Gemma C; Reimers, Jeffrey R; Hush, Noel S
2005-06-08
In the calculation of conduction through single molecule's approximations about the geometry and electronic structure of the system are usually made in order to simplify the problem. Previously [G. C. Solomon, J. R. Reimers, and N. S. Hush, J. Chem. Phys. 121, 6615 (2004)], we have shown that, in calculations employing cluster models for the electrodes, proper treatment of the open-shell nature of the clusters is the most important computational feature required to make the results sensitive to variations in the structural and chemical features of the system. Here, we expand this and establish a general hierarchy of requirements involving treatment of geometrical approximations. These approximations are categorized into two classes: those associated with finite-dimensional methods for representing the semi-infinite electrodes, and those associated with the chemisorption topology. We show that ca. 100 unique atoms are required in order to properly characterize each electrode: using fewer atoms leads to nonsystematic variations in conductivity that can overwhelm the subtler changes. The choice of binding site is shown to be the next most important feature, while some effects that are difficult to control experimentally concerning the orientations at each binding site are actually shown to be insignificant. Verification of this result provides a general test for the precision of computational procedures for molecular conductivity. Predictions concerning the dependence of conduction on substituent and other effects on the central molecule are found to be meaningful only when they exceed the uncertainties of the effects associated with binding-site variation.
NASA Astrophysics Data System (ADS)
Solomon, Gemma C.; Reimers, Jeffrey R.; Hush, Noel S.
2005-06-01
In the calculation of conduction through single molecule's approximations about the geometry and electronic structure of the system are usually made in order to simplify the problem. Previously [G. C. Solomon, J. R. Reimers, and N. S. Hush, J. Chem. Phys. 121, 6615 (2004)], we have shown that, in calculations employing cluster models for the electrodes, proper treatment of the open-shell nature of the clusters is the most important computational feature required to make the results sensitive to variations in the structural and chemical features of the system. Here, we expand this and establish a general hierarchy of requirements involving treatment of geometrical approximations. These approximations are categorized into two classes: those associated with finite-dimensional methods for representing the semi-infinite electrodes, and those associated with the chemisorption topology. We show that ca. 100 unique atoms are required in order to properly characterize each electrode: using fewer atoms leads to nonsystematic variations in conductivity that can overwhelm the subtler changes. The choice of binding site is shown to be the next most important feature, while some effects that are difficult to control experimentally concerning the orientations at each binding site are actually shown to be insignificant. Verification of this result provides a general test for the precision of computational procedures for molecular conductivity. Predictions concerning the dependence of conduction on substituent and other effects on the central molecule are found to be meaningful only when they exceed the uncertainties of the effects associated with binding-site variation.
NASA Technical Reports Server (NTRS)
Fonte, P.; Peskov, V.; Ramsey, B. D.
1998-01-01
We have studied the rate and gain limits of diamond-coated Microstrip Gas Counters (MSGC's) and Micro-Gap Counters (MGC's) when combined with various preamplification structures: Gas Electron Multiplier (GEM), Parallel-Plate Avalanche Chamber (PPAC) or a MICROMEGAS-type structure. Measurements were done both with X rays and alpha particles with various detector geometries and in different gas mixtures at pressures from 0.05 to 10 atm. The results obtained varied significantly with detector design, gas mixture and pressure, but some general features can be identified. We found that in all cases, bare MSGC'S, MGC'S, PPAC's and MICROMEGAS, the maximum achievable gain drops with rate. The addition of preamplification structures significantly increases the gain of MSGC's and MGC'S, but this gain is still rate dependent. There would seem to be a general rate-dependent effect governing the usable gain of all these detectors. We speculate on possible mechanisms for this effect, and identify a safe, spark-free, operation zone for each system (detector + preamplification structure) in the rate-gain coordinate plane.
Investigation of lunar crustal structure and isostasy. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurber, C.H.
1987-07-01
The lunar mascon basins have strongly free air gravity anomalies, generally exceeding 100 milligals at an elevation of 100 km. The source of the anomalies is a combination of mantle uplift beneath the impact basins and subsequent infilling by high-density mare basalts. The relative contribution of these two components is still somewhat uncertain, although it is generally accepted that the amount of mantle uplift greatly exceeds the thickness of the basalts. Extensive studies have been carried out of the crustal structure of mare basins, based on gravity data, and their tectonic evolution, based on compressive and extensional tectonic features. Themore » present study endeavored to develop a unified, self-consistent model of the lunar crust and lithosphere incorporating both gravity and tectonic constraints.« less
Information-Theoretic Uncertainty of SCFG-Modeled Folding Space of The Non-coding RNA
Manzourolajdad, Amirhossein; Wang, Yingfeng; Shaw, Timothy I.; Malmberg, Russell L.
2012-01-01
RNA secondary structure ensembles define probability distributions for alternative equilibrium secondary structures of an RNA sequence. Shannon’s Entropy is a measure for the amount of diversity present in any ensemble. In this work, Shannon’s entropy of the SCFG ensemble on an RNA sequence is derived and implemented in polynomial time for both structurally ambiguous and unambiguous grammars. Micro RNA sequences generally have low folding entropy, as previously discovered. Surprisingly, signs of significantly high folding entropy were observed in certain ncRNA families. More effective models coupled with targeted randomization tests can lead to a better insight into folding features of these families. PMID:23160142
High Accuracy 3D Processing of Satellite Imagery
NASA Technical Reports Server (NTRS)
Gruen, A.; Zhang, L.; Kocaman, S.
2007-01-01
Automatic DSM/DTM generation reproduces not only general features, but also detailed features of the terrain relief. Height accuracy of around 1 pixel in cooperative terrain. RMSE values of 1.3-1.5 m (1.0-2.0 pixels) for IKONOS and RMSE values of 2.9-4.6 m (0.5-1.0 pixels) for SPOT5 HRS. For 3D city modeling, the manual and semi-automatic feature extraction capability of SAT-PP provides a good basis. The tools of SAT-PP allowed the stereo-measurements of points on the roofs in order to generate a 3D city model with CCM The results show that building models with main roof structures can be successfully extracted by HRSI. As expected, with Quickbird more details are visible.
Recent crustal movements and seismicity in the western coastal region of peninsular India
NASA Astrophysics Data System (ADS)
Kailasam, L. N.
1983-09-01
Recent crustal movements, tectonics and seismicity of the western coastal region of peninsular India have been studied in detail in the very recent past. Prominent geomorphic features and large-scale manifestation of Holocene deformation and crustal movements have been noticed and studied over this coastal region from the Gulf of Cambay to the southernmost parts of Kerala, evidence for which is afforded in the form of Recent and sub-Recent raised beaches, sandbars, raised old terraces, pebble beds, etc. The sedimentary formations in this narrow coastal belt include Neogene and Quaternary sediments. The Bouguer gravity map of the western coastal tract shows some prominent gravity features extending into the offshore regions, suggestive of some significant tectonic and structural features. The seismic data in the offshore regions bring out some prominent roughly northwest-southeast as well as east-west faults and shears, in addition to prominent structural "highs" off the Bombay and Ratnagiri coast which have proved oil. The seismicity in this coastal tract as well as the faulted western margin of the western continental shelf in the Arabian Sea is generally of magnitude 3-6.
2012-01-01
Background There is a need for automated methods to learn general features of the interactions of a ligand class with its diverse set of protein receptors. An appropriate machine learning approach is Inductive Logic Programming (ILP), which automatically generates comprehensible rules in addition to prediction. The development of ILP systems which can learn rules of the complexity required for studies on protein structure remains a challenge. In this work we use a new ILP system, ProGolem, and demonstrate its performance on learning features of hexose-protein interactions. Results The rules induced by ProGolem detect interactions mediated by aromatics and by planar-polar residues, in addition to less common features such as the aromatic sandwich. The rules also reveal a previously unreported dependency for residues cys and leu. They also specify interactions involving aromatic and hydrogen bonding residues. This paper shows that Inductive Logic Programming implemented in ProGolem can derive rules giving structural features of protein/ligand interactions. Several of these rules are consistent with descriptions in the literature. Conclusions In addition to confirming literature results, ProGolem’s model has a 10-fold cross-validated predictive accuracy that is superior, at the 95% confidence level, to another ILP system previously used to study protein/hexose interactions and is comparable with state-of-the-art statistical learners. PMID:22783946
Ordinal measures for iris recognition.
Sun, Zhenan; Tan, Tieniu
2009-12-01
Images of a human iris contain rich texture information useful for identity authentication. A key and still open issue in iris recognition is how best to represent such textural information using a compact set of features (iris features). In this paper, we propose using ordinal measures for iris feature representation with the objective of characterizing qualitative relationships between iris regions rather than precise measurements of iris image structures. Such a representation may lose some image-specific information, but it achieves a good trade-off between distinctiveness and robustness. We show that ordinal measures are intrinsic features of iris patterns and largely invariant to illumination changes. Moreover, compactness and low computational complexity of ordinal measures enable highly efficient iris recognition. Ordinal measures are a general concept useful for image analysis and many variants can be derived for ordinal feature extraction. In this paper, we develop multilobe differential filters to compute ordinal measures with flexible intralobe and interlobe parameters such as location, scale, orientation, and distance. Experimental results on three public iris image databases demonstrate the effectiveness of the proposed ordinal feature models.
NASA Technical Reports Server (NTRS)
Saunders, D. F.; Thomas, G. E. (Principal Investigator); Kinsman, F. E.; Beatty, D. F.
1973-01-01
The author has identified the following significant results. This study was performed to investigate applications of ERTS-1 imagery in commercial reconnaissance for mineral and hydrocarbon resources. ERTS-1 imagery collected over five areas in North America (Montana; Colorado; New Mexico-West Texas; Superior Province, Canada; and North Slope, Alaska) has been analyzed for data content including linears, lineaments, and curvilinear anomalies. Locations of these features were mapped and compared with known locations of mineral and hydrocarbon accumulations. Results were analyzed in the context of a simple-shear, block-coupling model. Data analyses have resulted in detection of new lineaments, some of which may be continental in extent, detection of many curvilinear patterns not generally seen on aerial photos, strong evidence of continental regmatic fracture patterns, and realization that geological features can be explained in terms of a simple-shear, block-coupling model. The conculsions are that ERTS-1 imagery is of great value in photogeologic/geomorphic interpretations of regional features, and the simple-shear, block-coupling model provides a means of relating data from ERTS imagery to structures that have controlled emplacement of ore deposits and hydrocarbon accumulations, thus providing a basis for a new approach for reconnaissance for mineral, uranium, gas, and oil deposits and structures.
AiResearch QCGAT engine, airplane, and nacelle design features
NASA Technical Reports Server (NTRS)
Heldenbrand, R. W.
1980-01-01
The quiet, clean, general aviation turbofan engine and nacelle system was designed and tested. The engine utilized the core of the AiResearch model TFE731-3 engine and incorporated several unique noise- and emissions-reduction features. Components that were successfully adapted to this core include the fan, gearbox, combustor, low-pressure turbine, and associated structure. A highly versatile workhorse nacelle incorporating interchangeable acoustic and hardwall duct liners, showed that large-engine attenuation technology could be applied to small propulsion engines. The application of the mixer compound nozzle demonstrated both performance and noise advantages on the engine. Major performance, emissions, and noise goals were demonstrated.
[Pulmonary reaction after furazidin (Furagin). Case report].
Zielonka, T M; Demkow, U; Kuś, J
1997-05-01
For the first time in Poland we present the case of pulmonary reaction to furazidin which is by chemical structure closely related to nitrofurantoin. 63 years old woman presented generalized symptoms of acute hypersensitivity reaction induced by furazidin as well as features of chronic pulmonary fibrosis. After few months of treatment with this drug patients complained of weight loss, dyspnea on effort, non-productive cough, chills and fever. Radiological and functional evaluation of respiratory system confirmed features of lung fibrosis. Drug provocation test was positive. In vitro furazidin in low concentrations stimulated proliferation of patient's lymphocytes. After cessation of treatment we have observed rapid improvement of clinical, radiological, biochemical and functional parameters.
Kelman, Lori M; Kelman, Zvi
2014-01-01
DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed.
Solar astrophysics - Ghettosis from, or symbiosis with, stellar and galactic astrophysics
NASA Technical Reports Server (NTRS)
Pecker, J.-C.; Thomas, R. N.
1976-01-01
The purpose of the paper is to show how the solar-stellar symbiotic approach has led to the modeling of a star as a concentration of matter and energy. By 'solar-stellar symbiosis' is meant the philosophy of investigation according to which one asks what change in our general understanding of stellar structure and of stellar spectroscopic diagnostics is required to satisfy both the sun and an unusual star when, for example, some feature of an unusual star is discovered. The evolution of stellar models is traced, from walled, thermodynamic-equilibrium models to de-isolated models featuring transition zones and nonlocal thermodynamic equilibrium.
Byström, Pär; Ask, Per; Andersson, Jens; Persson, Lennart
2013-01-01
Occurrence of cannibalism and inferior competitive ability of predators compared to their prey have been suggested to promote coexistence in size-structured intraguild predation (IGP) systems. The intrinsic size-structure of fish provides the necessary prerequisites to test whether the above mechanisms are general features of species interactions in fish communities where IGP is common. We first experimentally tested whether Arctic char (Salvelinus alpinus) were more efficient as a cannibal than as an interspecific predator on the prey fish ninespine stickleback (Pungitius pungitius) and whether ninespine stickleback were a more efficient competitor on the shared zooplankton prey than its predator, Arctic char. Secondly, we performed a literature survey to evaluate if piscivores in general are more efficient as cannibals than as interspecific predators and whether piscivores are inferior competitors on shared resources compared to their prey fish species. Both controlled pool experiments and outdoor pond experiments showed that char imposed a higher mortality on YOY char than on ninespine sticklebacks, suggesting that piscivorous char is a more efficient cannibal than interspecific predator. Estimates of size dependent attack rates on zooplankton further showed a consistently higher attack rate of ninespine sticklebacks compared to similar sized char on zooplankton, suggesting that ninespine stickleback is a more efficient competitor than char on zooplankton resources. The literature survey showed that piscivorous top consumers generally selected conspecifics over interspecific prey, and that prey species are competitively superior compared to juvenile piscivorous species in the zooplankton niche. We suggest that the observed selectivity for cannibal prey over interspecific prey and the competitive advantage of prey species over juvenile piscivores are common features in fish communities and that the observed selectivity for cannibalism over interspecific prey has the potential to mediate coexistence in size structured intraguild predation systems.
Byström, Pär; Ask, Per; Andersson, Jens; Persson, Lennart
2013-01-01
Occurrence of cannibalism and inferior competitive ability of predators compared to their prey have been suggested to promote coexistence in size-structured intraguild predation (IGP) systems. The intrinsic size-structure of fish provides the necessary prerequisites to test whether the above mechanisms are general features of species interactions in fish communities where IGP is common. We first experimentally tested whether Arctic char (Salvelinus alpinus) were more efficient as a cannibal than as an interspecific predator on the prey fish ninespine stickleback (Pungitius pungitius) and whether ninespine stickleback were a more efficient competitor on the shared zooplankton prey than its predator, Arctic char. Secondly, we performed a literature survey to evaluate if piscivores in general are more efficient as cannibals than as interspecific predators and whether piscivores are inferior competitors on shared resources compared to their prey fish species. Both controlled pool experiments and outdoor pond experiments showed that char imposed a higher mortality on YOY char than on ninespine sticklebacks, suggesting that piscivorous char is a more efficient cannibal than interspecific predator. Estimates of size dependent attack rates on zooplankton further showed a consistently higher attack rate of ninespine sticklebacks compared to similar sized char on zooplankton, suggesting that ninespine stickleback is a more efficient competitor than char on zooplankton resources. The literature survey showed that piscivorous top consumers generally selected conspecifics over interspecific prey, and that prey species are competitively superior compared to juvenile piscivorous species in the zooplankton niche. We suggest that the observed selectivity for cannibal prey over interspecific prey and the competitive advantage of prey species over juvenile piscivores are common features in fish communities and that the observed selectivity for cannibalism over interspecific prey has the potential to mediate coexistence in size structured intraguild predation systems. PMID:23894650
Grove, Rachel; Baillie, Andrew; Allison, Carrie; Baron-Cohen, Simon; Hoekstra, Rosa A
2013-05-01
The search for genes involved in autism spectrum conditions (ASC) may have been hindered by the assumption that the different symptoms that define the condition can be attributed to the same causal mechanism. Instead the social and nonsocial aspects of ASC may have distinct causes at genetic, cognitive, and neural levels. It has been posited that the core features of ASC can be explained by a deficit in empathizing alongside intact or superior systemizing; the drive to understand and derive rules about a system. First-degree relatives also show some mild manifestations that parallel the defining features of ASC, termed the broader autism phenotype. Factor analyses were conducted to assess whether the latent structure of empathizing, systemizing, and autistic traits differs across samples with a high (individuals on the spectrum), medium (first-degree relatives) or low (general population controls) genetic vulnerability to autism. Results highlighted a two-factor model, confirming an empathizing and a systemizing factor. The relationship between these two factors was significantly stronger in first-degree relatives and the autism group compared with controls. The same model provided the best fit among the three groups, suggesting a similar latent structure irrespective of genetic vulnerability. However, results also suggest that although these traits are relatively independent in the general population, they are substantially correlated in individuals with ASC and their parents. This implies that there is substantially more overlap between systemizing and empathizing among individuals with an increased genetic liability to autism. This has potential implications for the genetic, environmental, and cognitive explanations of autism spectrum conditions. © 2013 American Psychological Association
Neural networks: further insights into error function, generalized weights and others
2016-01-01
The article is a continuum of a previous one providing further insights into the structure of neural network (NN). Key concepts of NN including activation function, error function, learning rate and generalized weights are introduced. NN topology can be visualized with generic plot() function by passing a “nn” class object. Generalized weights assist interpretation of NN model with respect to the independent effect of individual input variables. A large variance of generalized weights for a covariate indicates non-linearity of its independent effect. If generalized weights of a covariate are approximately zero, the covariate is considered to have no effect on outcome. Finally, prediction of new observations can be performed using compute() function. Make sure that the feature variables passed to the compute() function are in the same order to that in the training NN. PMID:27668220
Free energy landscape of activation in a signaling protein at atomic resolution
Pontiggia, F.; Pachov, D.V.; Clarkson, M.W.; Villali, J.; Hagan, M.F.; Pande, V.S.; Kern, D.
2015-01-01
The interconversion between inactive and active protein states, traditionally described by two static structures, is at the heart of signaling. However, how folded states interconvert is largely unknown due to the inability to experimentally observe transition pathways. Here we explore the free energy landscape of the bacterial response regulator NtrC by combining computation and NMR, and discover unexpected features underlying efficient signaling. We find that functional states are defined purely in kinetic and not structural terms. The need of a well-defined conformer, crucial to the active state, is absent in the inactive state, which comprises a heterogeneous collection of conformers. The transition between active and inactive states occurs through multiple pathways, facilitated by a number of nonnative transient hydrogen bonds, thus lowering the transition barrier through both entropic and enthalpic contributions. These findings may represent general features for functional conformational transitions within the folded state. PMID:26073309
The widetilde{A}←widetilde{X} ABSORPTION SPECTRUM OF 2-NITROOXYBUTYL PEROXY RADICAL
NASA Astrophysics Data System (ADS)
Eddingsaas, Nathan; Takematsu, Kana; Okumura, Mitchio
2009-06-01
The nitrate radical is an important atmospheric oxidant in the nighttime sky. Nitrate radicals react by addition to alkenes, and in the presence of oxygen form nitrooxyalkyl peroxy radicals. The peroxy radical formed from the reaction of 2-butene, nitrate radical, and oxygen was detected by cavity ringdown spectroscopy (CRDS) via its widetilde{A}←widetilde{X} electronic absorption spectrum. The widetilde{A}←widetilde{X} electronic transition is a bound-bound transition with enough structure to distinguish between different peroxy radicals as well as different conformers of the same peroxy radical. Two conformers of the nitrooxybutyl peroxy radical have been observed; the absorption features are red shifted from the same absorption features of sec-butyl peroxy radical. Calculations on the structure of nitrooxyalkyl peroxy radicals and general trends of the position of the widetilde{A}←widetilde{X} absorption transitions have also been performed and compared to those of unsubstituted peroxy radicals.
SMOG 2: A Versatile Software Package for Generating Structure-Based Models.
Noel, Jeffrey K; Levi, Mariana; Raghunathan, Mohit; Lammert, Heiko; Hayes, Ryan L; Onuchic, José N; Whitford, Paul C
2016-03-01
Molecular dynamics simulations with coarse-grained or simplified Hamiltonians have proven to be an effective means of capturing the functionally important long-time and large-length scale motions of proteins and RNAs. Originally developed in the context of protein folding, structure-based models (SBMs) have since been extended to probe a diverse range of biomolecular processes, spanning from protein and RNA folding to functional transitions in molecular machines. The hallmark feature of a structure-based model is that part, or all, of the potential energy function is defined by a known structure. Within this general class of models, there exist many possible variations in resolution and energetic composition. SMOG 2 is a downloadable software package that reads user-designated structural information and user-defined energy definitions, in order to produce the files necessary to use SBMs with high performance molecular dynamics packages: GROMACS and NAMD. SMOG 2 is bundled with XML-formatted template files that define commonly used SBMs, and it can process template files that are altered according to the needs of each user. This computational infrastructure also allows for experimental or bioinformatics-derived restraints or novel structural features to be included, e.g. novel ligands, prosthetic groups and post-translational/transcriptional modifications. The code and user guide can be downloaded at http://smog-server.org/smog2.
ERIC Educational Resources Information Center
Simmering, Vanessa R.; Wood, Chelsey M.
2017-01-01
Working memory is a basic cognitive process that predicts higher-level skills. A central question in theories of working memory development is the generality of the mechanisms proposed to explain improvements in performance. Prior theories have been closely tied to particular tasks and/or age groups, limiting their generalizability. The cognitive…
Coherent perfect rotation theory: connections with, and consequences beyond, the anti-laser
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Andrews, James; Zhou, Chuanhong; Baker, Michael
2014-05-01
Coherent Perfect Rotation (CPR) phenomena are a reversible generalization of the anti-laser. By evaluating CPR in a broad variety of common optical systems, including optical cavities and DFB and DBR structures, we illustrate its unique threshold and resonance features. This study builds intuition critical to assessing the utility of CPR in optical devices, and we detail it in a concrete application.
Coughlin, Jane M; Kundu, Rituparna; Cooper, Julian C; Ball, Zachary T
2014-11-15
A small molecule containing a rhodium(II) tetracarboxylate fragment is shown to be a potent inhibitor of the prolyl isomerase FKBP12. The use of small molecules conjugates of rhodium(II) is presented as a general strategy for developing new protein inhibitors based on distinct structural and sequence features of the enzyme active site. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ems-Wilson, Janice
This study concerned (a) how general chemistry students learn to classify solvent polarity from animated molecules, (b) whether peer interaction increases the number of correct classifications, and (c) whether language, academic ability, logical thinking ability, or prior knowledge interact with rate of learning or posttest performance. Two types of interaction were compared, group discussion and elaborative interrogation. The study rested on three assumptions: (a) animated molecules are appropriate for learning the concept of solvent polarity, (b) question stems and a guided interrogation enhance learning of a visual concept, (c) general chemistry students can induce the concept of solvent polarity from animated molecules when no guiding cues, either visual or verbal, are given. After a review of molecular geometry and bonding theories, students were presented with four trials of ten animated molecular structures. Ten three-to-five minute discussions were distributed among the four trials. Prior to the trials the experimental group received a 45-minute training session on elaborative interrogation; the topic was what happens on the molecular level when a carbonated beverage is opened. The control group received a 45-minute expository lecture on the same carbonated beverage topic. Participants were given a four-part posttest immediately following the trials. Results of the study suggest that most students tend to classify the solvent polarity of animated molecules based on certain structural features using a prototype or feature-frequency categorization strategy. Elaborative interrogation did not show a significant effect on the rate of learning or on the performance of learners on posttest measures of recall and comprehension. The experimental group noted a significantly greater number and range of types of features, and offered higher quality generalizations and explanations of their polarity classification procedure. Finally, the results implied that learning from animations depends more on prior knowledge of relevant concepts than on academic ability, logical thinking ability, or preferred language. Although some benefits may arise from accompanying computer animation with an interactive discussion, additional visual and verbal, cueing may be necessary for optimal outcomes.
NASA Astrophysics Data System (ADS)
Ma, Chuang; Bao, Zhong-Kui; Zhang, Hai-Feng
2017-10-01
So far, many network-structure-based link prediction methods have been proposed. However, these methods only highlight one or two structural features of networks, and then use the methods to predict missing links in different networks. The performances of these existing methods are not always satisfied in all cases since each network has its unique underlying structural features. In this paper, by analyzing different real networks, we find that the structural features of different networks are remarkably different. In particular, even in the same network, their inner structural features are utterly different. Therefore, more structural features should be considered. However, owing to the remarkably different structural features, the contributions of different features are hard to be given in advance. Inspired by these facts, an adaptive fusion model regarding link prediction is proposed to incorporate multiple structural features. In the model, a logistic function combing multiple structural features is defined, then the weight of each feature in the logistic function is adaptively determined by exploiting the known structure information. Last, we use the "learnt" logistic function to predict the connection probabilities of missing links. According to our experimental results, we find that the performance of our adaptive fusion model is better than many similarity indices.
Self-organizing neural integration of pose-motion features for human action recognition
Parisi, German I.; Weber, Cornelius; Wermter, Stefan
2015-01-01
The visual recognition of complex, articulated human movements is fundamental for a wide range of artificial systems oriented toward human-robot communication, action classification, and action-driven perception. These challenging tasks may generally involve the processing of a huge amount of visual information and learning-based mechanisms for generalizing a set of training actions and classifying new samples. To operate in natural environments, a crucial property is the efficient and robust recognition of actions, also under noisy conditions caused by, for instance, systematic sensor errors and temporarily occluded persons. Studies of the mammalian visual system and its outperforming ability to process biological motion information suggest separate neural pathways for the distinct processing of pose and motion features at multiple levels and the subsequent integration of these visual cues for action perception. We present a neurobiologically-motivated approach to achieve noise-tolerant action recognition in real time. Our model consists of self-organizing Growing When Required (GWR) networks that obtain progressively generalized representations of sensory inputs and learn inherent spatio-temporal dependencies. During the training, the GWR networks dynamically change their topological structure to better match the input space. We first extract pose and motion features from video sequences and then cluster actions in terms of prototypical pose-motion trajectories. Multi-cue trajectories from matching action frames are subsequently combined to provide action dynamics in the joint feature space. Reported experiments show that our approach outperforms previous results on a dataset of full-body actions captured with a depth sensor, and ranks among the best results for a public benchmark of domestic daily actions. PMID:26106323
Formalized Epistemology, Logic, and Grammar
NASA Astrophysics Data System (ADS)
Bitbol, Michel
The task of a formal epistemology is defined. It appears that a formal epistemology must be a generalization of "logic" in the sense of Wittgenstein's Tractatus. The generalization is required because, whereas logic presupposes a strict relation between activity and language, this relation may be broken in some domains of experimental enquiry (e.g., in microscopic physics). However, a formal epistemology should also retain a major feature of Wittgenstein's "logic": It must not be a discourse about scientific knowledge, but rather a way of making manifest the structures usually implicit in knowledge-gaining activity. This strategy is applied to the formalism of quantum mechanics.
Generalized Processing Tree Models: Jointly Modeling Discrete and Continuous Variables.
Heck, Daniel W; Erdfelder, Edgar; Kieslich, Pascal J
2018-05-24
Multinomial processing tree models assume that discrete cognitive states determine observed response frequencies. Generalized processing tree (GPT) models extend this conceptual framework to continuous variables such as response times, process-tracing measures, or neurophysiological variables. GPT models assume finite-mixture distributions, with weights determined by a processing tree structure, and continuous components modeled by parameterized distributions such as Gaussians with separate or shared parameters across states. We discuss identifiability, parameter estimation, model testing, a modeling syntax, and the improved precision of GPT estimates. Finally, a GPT version of the feature comparison model of semantic categorization is applied to computer-mouse trajectories.
1979-07-01
General 5-1 b. Design Data 5-1 c. Experience Data 5-1 d. Visual Observation 5-1 e. Overtopping Potential 5-1 f. Dam Failure Analysis 5-2 6. STRUCTURAL...the Soil Conservation Service, Durham, New Hampshire. The construction * contractor was Robie Construction Company , Inc. i. Normal Operating...INVENTORY OF DAMS P 0O - ... - SECTION 5 HYDROLOGY AND HYDRAULIC ANALYSIS • 5.1 Evaluation of Features a. General. Baker Dam Site 11 is an earthen
Recognition and characterization of unstructured environmental sounds
NASA Astrophysics Data System (ADS)
Chu, Selina
2011-12-01
Environmental sounds are what we hear everyday, or more generally sounds that surround us ambient or background audio. Humans utilize both vision and hearing to respond to their surroundings, a capability still quite limited in machine processing. The first step toward achieving multimodal input applications is the ability to process unstructured audio and recognize audio scenes (or environments). Such ability would have applications in content analysis and mining of multimedia data or improving robustness in context aware applications through multi-modality, such as in assistive robotics, surveillances, or mobile device-based services. The goal of this thesis is on the characterization of unstructured environmental sounds for understanding and predicting the context surrounding of an agent or device. Most research on audio recognition has focused primarily on speech and music. Less attention has been paid to the challenges and opportunities for using audio to characterize unstructured audio. My research focuses on investigating challenging issues in characterizing unstructured environmental audio and to develop novel algorithms for modeling the variations of the environment. The first step in building a recognition system for unstructured auditory environment was to investigate on techniques and audio features for working with such audio data. We begin by performing a study that explore suitable features and the feasibility of designing an automatic environment recognition system using audio information. In my initial investigation to explore the feasibility of designing an automatic environment recognition system using audio information, I have found that traditional recognition and feature extraction for audio were not suitable for environmental sound, as they lack any type of structures, unlike those of speech and music which contain formantic and harmonic structures, thus dispelling the notion that traditional speech and music recognition techniques can simply be used for realistic environmental sound. Natural unstructured environment sounds contain a large variety of sounds, which are in fact noise-like and are not effectively modeled by Mel-frequency cepstral coefficients (MFCCs) or other commonly-used audio features, e.g. energy, zero-crossing, etc. Due to the lack of appropriate features that is suitable for environmental audio and to achieve a more effective representation, I proposed a specialized feature extraction algorithm for environmental sounds that utilizes the matching pursuit (MP) algorithm to learn the inherent structure of each type of sounds, which we called MP-features. MP-features have shown to capture and represent sounds from different sources and different ranges, where frequency domain features (e.g., MFCCs) fail and can be advantageous when combining with MFCCs to improve the overall performance. The third component leads to our investigation on modeling and detecting the background audio. One of the goals of this research is to characterize an environment. Since many events would blend into the background, I wanted to look for a way to achieve a general model for any particular environment. Once we have an idea of the background, it will enable us to identify foreground events even if we havent seen these events before. Therefore, the next step is to investigate into learning the audio background model for each environment type, despite the occurrences of different foreground events. In this work, I presented a framework for robust audio background modeling, which includes learning the models for prediction, data knowledge and persistent characteristics of the environment. This approach has the ability to model the background and detect foreground events as well as the ability to verify whether the predicted background is indeed the background or a foreground event that protracts for a longer period of time. In this work, I also investigated the use of a semi-supervised learning technique to exploit and label new unlabeled audio data. The final components of my thesis will involve investigating on learning sound structures for generalization and applying the proposed ideas to context aware applications. The inherent nature of environmental sound is noisy and contains relatively large amounts of overlapping events between different environments. Environmental sounds contain large variances even within a single environment type, and frequently, there are no divisible or clear boundaries between some types. Traditional methods of classification are generally not robust enough to handle classes with overlaps. This audio, hence, requires representation by complex models. Using deep learning architecture provides a way to obtain a generative model-based method for classification. Specifically, I considered the use of Deep Belief Networks (DBNs) to model environmental audio and investigate its applicability with noisy data to improve robustness and generalization. A framework was proposed using composite-DBNs to discover high-level representations and to learn a hierarchical structure for different acoustic environments in a data-driven fashion. Experimental results on real data sets demonstrate its effectiveness over traditional methods with over 90% accuracy on recognition for a high number of environmental sound types.
Statistical molecular design of balanced compound libraries for QSAR modeling.
Linusson, A; Elofsson, M; Andersson, I E; Dahlgren, M K
2010-01-01
A fundamental step in preclinical drug development is the computation of quantitative structure-activity relationship (QSAR) models, i.e. models that link chemical features of compounds with activities towards a target macromolecule associated with the initiation or progression of a disease. QSAR models are computed by combining information on the physicochemical and structural features of a library of congeneric compounds, typically assembled from two or more building blocks, and biological data from one or more in vitro assays. Since the models provide information on features affecting the compounds' biological activity they can be used as guides for further optimization. However, in order for a QSAR model to be relevant to the targeted disease, and drug development in general, the compound library used must contain molecules with balanced variation of the features spanning the chemical space believed to be important for interaction with the biological target. In addition, the assays used must be robust and deliver high quality data that are directly related to the function of the biological target and the associated disease state. In this review, we discuss and exemplify the concept of statistical molecular design (SMD) in the selection of building blocks and final synthetic targets (i.e. compounds to synthesize) to generate information-rich, balanced libraries for biological testing and computation of QSAR models.
The geometrical structure of quantum theory as a natural generalization of information geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reginatto, Marcel
2015-01-13
Quantum mechanics has a rich geometrical structure which allows for a geometrical formulation of the theory. This formalism was introduced by Kibble and later developed by a number of other authors. The usual approach has been to start from the standard description of quantum mechanics and identify the relevant geometrical features that can be used for the reformulation of the theory. Here this procedure is inverted: the geometrical structure of quantum theory is derived from information geometry, a geometrical structure that may be considered more fundamental, and the Hilbert space of the standard formulation of quantum mechanics is constructed usingmore » geometrical quantities. This suggests that quantum theory has its roots in information geometry.« less
EEG analysis of seizure patterns using visibility graphs for detection of generalized seizures.
Wang, Lei; Long, Xi; Arends, Johan B A M; Aarts, Ronald M
2017-10-01
The traditional EEG features in the time and frequency domain show limited seizure detection performance in the epileptic population with intellectual disability (ID). In addition, the influence of EEG seizure patterns on detection performance was less studied. A single-channel EEG signal can be mapped into visibility graphs (VGS), including basic visibility graph (VG), horizontal VG (HVG), and difference VG (DVG). These graphs were used to characterize different EEG seizure patterns. To demonstrate its effectiveness in identifying EEG seizure patterns and detecting generalized seizures, EEG recordings of 615h on one EEG channel from 29 epileptic patients with ID were analyzed. A novel feature set with discriminative power for seizure detection was obtained by using the VGS method. The degree distributions (DDs) of DVG can clearly distinguish EEG of each seizure pattern. The degree entropy and power-law degree power in DVG were proposed here for the first time, and they show significant difference between seizure and non-seizure EEG. The connecting structure measured by HVG can better distinguish seizure EEG from background than those by VG and DVG. A traditional EEG feature set based on frequency analysis was used here as a benchmark feature set. With a support vector machine (SVM) classifier, the seizure detection performance of the benchmark feature set (sensitivity of 24%, FD t /h of 1.8s) can be improved by combining our proposed VGS features extracted from one EEG channel (sensitivity of 38%, FD t /h of 1.4s). The proposed VGS-based features can help improve seizure detection for ID patients. Copyright © 2017 Elsevier B.V. All rights reserved.
A systematic investigation of computation models for predicting Adverse Drug Reactions (ADRs).
Kuang, Qifan; Wang, MinQi; Li, Rong; Dong, YongCheng; Li, Yizhou; Li, Menglong
2014-01-01
Early and accurate identification of adverse drug reactions (ADRs) is critically important for drug development and clinical safety. Computer-aided prediction of ADRs has attracted increasing attention in recent years, and many computational models have been proposed. However, because of the lack of systematic analysis and comparison of the different computational models, there remain limitations in designing more effective algorithms and selecting more useful features. There is therefore an urgent need to review and analyze previous computation models to obtain general conclusions that can provide useful guidance to construct more effective computational models to predict ADRs. In the current study, the main work is to compare and analyze the performance of existing computational methods to predict ADRs, by implementing and evaluating additional algorithms that have been earlier used for predicting drug targets. Our results indicated that topological and intrinsic features were complementary to an extent and the Jaccard coefficient had an important and general effect on the prediction of drug-ADR associations. By comparing the structure of each algorithm, final formulas of these algorithms were all converted to linear model in form, based on this finding we propose a new algorithm called the general weighted profile method and it yielded the best overall performance among the algorithms investigated in this paper. Several meaningful conclusions and useful findings regarding the prediction of ADRs are provided for selecting optimal features and algorithms.
Efficient methods for overlapping group lasso.
Yuan, Lei; Liu, Jun; Ye, Jieping
2013-09-01
The group Lasso is an extension of the Lasso for feature selection on (predefined) nonoverlapping groups of features. The nonoverlapping group structure limits its applicability in practice. There have been several recent attempts to study a more general formulation where groups of features are given, potentially with overlaps between the groups. The resulting optimization is, however, much more challenging to solve due to the group overlaps. In this paper, we consider the efficient optimization of the overlapping group Lasso penalized problem. We reveal several key properties of the proximal operator associated with the overlapping group Lasso, and compute the proximal operator by solving the smooth and convex dual problem, which allows the use of the gradient descent type of algorithms for the optimization. Our methods and theoretical results are then generalized to tackle the general overlapping group Lasso formulation based on the l(q) norm. We further extend our algorithm to solve a nonconvex overlapping group Lasso formulation based on the capped norm regularization, which reduces the estimation bias introduced by the convex penalty. We have performed empirical evaluations using both a synthetic and the breast cancer gene expression dataset, which consists of 8,141 genes organized into (overlapping) gene sets. Experimental results show that the proposed algorithm is more efficient than existing state-of-the-art algorithms. Results also demonstrate the effectiveness of the nonconvex formulation for overlapping group Lasso.
Fine-Scale Analysis Reveals Cryptic Landscape Genetic Structure in Desert Tortoises
Latch, Emily K.; Boarman, William I.; Walde, Andrew; Fleischer, Robert C.
2011-01-01
Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately. PMID:22132143
Fine-scale analysis reveals cryptic landscape genetic structure in desert tortoises.
Latch, Emily K; Boarman, William I; Walde, Andrew; Fleischer, Robert C
2011-01-01
Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately.
Nonlinear Thermoelastic Model for SMAs and SMA Hybrid Composites
NASA Technical Reports Server (NTRS)
Turner, Travis L.
2004-01-01
A constitutive mathematical model has been developed that predicts the nonlinear thermomechanical behaviors of shape-memory-alloys (SMAs) and of shape-memory-alloy hybrid composite (SMAHC) structures, which are composite-material structures that contain embedded SMA actuators. SMAHC structures have been investigated for their potential utility in a variety of applications in which there are requirements for static or dynamic control of the shapes of structures, control of the thermoelastic responses of structures, or control of noise and vibrations. The present model overcomes deficiencies of prior, overly simplistic or qualitative models that have proven ineffective or intractable for engineering of SMAHC structures. The model is sophisticated enough to capture the essential features of the mechanics of SMAHC structures yet simple enough to accommodate input from fundamental engineering measurements and is in a form that is amenable to implementation in general-purpose structural analysis environments.
Image counter-forensics based on feature injection
NASA Astrophysics Data System (ADS)
Iuliani, M.; Rossetto, S.; Bianchi, T.; De Rosa, Alessia; Piva, A.; Barni, M.
2014-02-01
Starting from the concept that many image forensic tools are based on the detection of some features revealing a particular aspect of the history of an image, in this work we model the counter-forensic attack as the injection of a specific fake feature pointing to the same history of an authentic reference image. We propose a general attack strategy that does not rely on a specific detector structure. Given a source image x and a target image y, the adversary processes x in the pixel domain producing an attacked image ~x, perceptually similar to x, whose feature f(~x) is as close as possible to f(y) computed on y. Our proposed counter-forensic attack consists in the constrained minimization of the feature distance Φ(z) =│ f(z) - f(y)│ through iterative methods based on gradient descent. To solve the intrinsic limit due to the numerical estimation of the gradient on large images, we propose the application of a feature decomposition process, that allows the problem to be reduced into many subproblems on the blocks the image is partitioned into. The proposed strategy has been tested by attacking three different features and its performance has been compared to state-of-the-art counter-forensic methods.
Quantum properties of double kicked systems with classical translational invariance in momentum
NASA Astrophysics Data System (ADS)
Dana, Itzhack
2015-01-01
Double kicked rotors (DKRs) appear to be the simplest nonintegrable Hamiltonian systems featuring classical translational symmetry in phase space (i.e., in angular momentum) for an infinite set of values (the rational ones) of a parameter η . The experimental realization of quantum DKRs by atom-optics methods motivates the study of the double kicked particle (DKP). The latter reduces, at any fixed value of the conserved quasimomentum β ℏ , to a generalized DKR, the "β -DKR ." We determine general quantum properties of β -DKRs and DKPs for arbitrary rational η . The quasienergy problem of β -DKRs is shown to be equivalent to the energy eigenvalue problem of a finite strip of coupled lattice chains. Exact connections are then obtained between quasienergy spectra of β -DKRs for all β in a generically infinite set. The general conditions of quantum resonance for β -DKRs are shown to be the simultaneous rationality of η ,β , and a scaled Planck constant ℏS. For rational ℏS and generic values of β , the quasienergy spectrum is found to have a staggered-ladder structure. Other spectral structures, resembling Hofstadter butterflies, are also found. Finally, we show the existence of particular DKP wave-packets whose quantum dynamics is free, i.e., the evolution frequencies of expectation values in these wave-packets are independent of the nonintegrability. All the results for rational ℏS exhibit unique number-theoretical features involving η ,ℏS, and β .
The structure of people's hair.
Yang, Fei-Chi; Zhang, Yuchen; Rheinstädter, Maikel C
2014-01-01
Hair is a filamentous biomaterial consisting mainly of proteins in particular keratin. The structure of human hair is well known: the medulla is a loosely packed, disordered region near the centre of the hair surrounded by the cortex, which contains the major part of the fibre mass, mainly consisting of keratin proteins and structural lipids. The cortex is surrounded by the cuticle, a layer of dead, overlapping cells forming a protective layer around the hair. The corresponding structures have been studied extensively using a variety of different techniques, such as light, electron and atomic force microscopes, and also X-ray diffraction. We were interested in the question how much the molecular hair structure differs from person to person, between male and female hair, hair of different appearances such as colour and waviness. We included hair from parent and child, identical and fraternal twins in the study to see if genetically similar hair would show similar structural features. The molecular structure of the hair samples was studied using high-resolution X-ray diffraction, which covers length scales from molecules up to the organization of secondary structures. Signals due to the coiled-coil phase of α-helical keratin proteins, intermediate keratin filaments in the cortex and from the lipid layers in the cell membrane complex were observed in the specimen of all individuals, with very small deviations. Despite the relatively small number of individuals (12) included in this study, some conclusions can be drawn. While the general features were observed in all individuals and the corresponding molecular structures were almost identical, additional signals were observed in some specimen and assigned to different types of lipids in the cell membrane complex. Genetics seem to play a role in this composition as identical patterns were observed in hair from father and daughter and identical twins, however, not for fraternal twins. Identification and characterization of these features is an important step towards the detection of abnormalities in the molecular structure of hair as a potential diagnostic tool for certain diseases.
2010-01-01
Background Protein-protein interaction (PPI) plays essential roles in cellular functions. The cost, time and other limitations associated with the current experimental methods have motivated the development of computational methods for predicting PPIs. As protein interactions generally occur via domains instead of the whole molecules, predicting domain-domain interaction (DDI) is an important step toward PPI prediction. Computational methods developed so far have utilized information from various sources at different levels, from primary sequences, to molecular structures, to evolutionary profiles. Results In this paper, we propose a computational method to predict DDI using support vector machines (SVMs), based on domains represented as interaction profile hidden Markov models (ipHMM) where interacting residues in domains are explicitly modeled according to the three dimensional structural information available at the Protein Data Bank (PDB). Features about the domains are extracted first as the Fisher scores derived from the ipHMM and then selected using singular value decomposition (SVD). Domain pairs are represented by concatenating their selected feature vectors, and classified by a support vector machine trained on these feature vectors. The method is tested by leave-one-out cross validation experiments with a set of interacting protein pairs adopted from the 3DID database. The prediction accuracy has shown significant improvement as compared to InterPreTS (Interaction Prediction through Tertiary Structure), an existing method for PPI prediction that also uses the sequences and complexes of known 3D structure. Conclusions We show that domain-domain interaction prediction can be significantly enhanced by exploiting information inherent in the domain profiles via feature selection based on Fisher scores, singular value decomposition and supervised learning based on support vector machines. Datasets and source code are freely available on the web at http://liao.cis.udel.edu/pub/svdsvm. Implemented in Matlab and supported on Linux and MS Windows. PMID:21034480
Structured sparse linear graph embedding.
Wang, Haixian
2012-03-01
Subspace learning is a core issue in pattern recognition and machine learning. Linear graph embedding (LGE) is a general framework for subspace learning. In this paper, we propose a structured sparse extension to LGE (SSLGE) by introducing a structured sparsity-inducing norm into LGE. Specifically, SSLGE casts the projection bases learning into a regression-type optimization problem, and then the structured sparsity regularization is applied to the regression coefficients. The regularization selects a subset of features and meanwhile encodes high-order information reflecting a priori structure information of the data. The SSLGE technique provides a unified framework for discovering structured sparse subspace. Computationally, by using a variational equality and the Procrustes transformation, SSLGE is efficiently solved with closed-form updates. Experimental results on face image show the effectiveness of the proposed method. Copyright © 2011 Elsevier Ltd. All rights reserved.
Homology‐based hydrogen bond information improves crystallographic structures in the PDB
van Beusekom, Bart; Touw, Wouter G.; Tatineni, Mahidhar; Somani, Sandeep; Rajagopal, Gunaretnam; Luo, Jinquan; Gilliland, Gary L.; Perrakis, Anastassis
2017-01-01
Abstract The Protein Data Bank (PDB) is the global archive for structural information on macromolecules, and a popular resource for researchers, teachers, and students, amassing more than one million unique users each year. Crystallographic structure models in the PDB (more than 100,000 entries) are optimized against the crystal diffraction data and geometrical restraints. This process of crystallographic refinement typically ignored hydrogen bond (H‐bond) distances as a source of information. However, H‐bond restraints can improve structures at low resolution where diffraction data are limited. To improve low‐resolution structure refinement, we present methods for deriving H‐bond information either globally from well‐refined high‐resolution structures from the PDB‐REDO databank, or specifically from on‐the‐fly constructed sets of homologous high‐resolution structures. Refinement incorporating HOmology DErived Restraints (HODER), improves geometrical quality and the fit to the diffraction data for many low‐resolution structures. To make these improvements readily available to the general public, we applied our new algorithms to all crystallographic structures in the PDB: using massively parallel computing, we constructed a new instance of the PDB‐REDO databank (https://pdb-redo.eu). This resource is useful for researchers to gain insight on individual structures, on specific protein families (as we demonstrate with examples), and on general features of protein structure using data mining approaches on a uniformly treated dataset. PMID:29168245
Homology-based hydrogen bond information improves crystallographic structures in the PDB.
van Beusekom, Bart; Touw, Wouter G; Tatineni, Mahidhar; Somani, Sandeep; Rajagopal, Gunaretnam; Luo, Jinquan; Gilliland, Gary L; Perrakis, Anastassis; Joosten, Robbie P
2018-03-01
The Protein Data Bank (PDB) is the global archive for structural information on macromolecules, and a popular resource for researchers, teachers, and students, amassing more than one million unique users each year. Crystallographic structure models in the PDB (more than 100,000 entries) are optimized against the crystal diffraction data and geometrical restraints. This process of crystallographic refinement typically ignored hydrogen bond (H-bond) distances as a source of information. However, H-bond restraints can improve structures at low resolution where diffraction data are limited. To improve low-resolution structure refinement, we present methods for deriving H-bond information either globally from well-refined high-resolution structures from the PDB-REDO databank, or specifically from on-the-fly constructed sets of homologous high-resolution structures. Refinement incorporating HOmology DErived Restraints (HODER), improves geometrical quality and the fit to the diffraction data for many low-resolution structures. To make these improvements readily available to the general public, we applied our new algorithms to all crystallographic structures in the PDB: using massively parallel computing, we constructed a new instance of the PDB-REDO databank (https://pdb-redo.eu). This resource is useful for researchers to gain insight on individual structures, on specific protein families (as we demonstrate with examples), and on general features of protein structure using data mining approaches on a uniformly treated dataset. © 2017 The Protein Society.
Reference Models for Structural Technology Assessment and Weight Estimation
NASA Technical Reports Server (NTRS)
Cerro, Jeff; Martinovic, Zoran; Eldred, Lloyd
2005-01-01
Previously the Exploration Concepts Branch of NASA Langley Research Center has developed techniques for automating the preliminary design level of launch vehicle airframe structural analysis for purposes of enhancing historical regression based mass estimating relationships. This past work was useful and greatly reduced design time, however its application area was very narrow in terms of being able to handle a large variety in structural and vehicle general arrangement alternatives. Implementation of the analysis approach presented herein also incorporates some newly developed computer programs. Loft is a program developed to create analysis meshes and simultaneously define structural element design regions. A simple component defining ASCII file is read by Loft to begin the design process. HSLoad is a Visual Basic implementation of the HyperSizer Application Programming Interface, which automates the structural element design process. Details of these two programs and their use are explained in this paper. A feature which falls naturally out of the above analysis paradigm is the concept of "reference models". The flexibility of the FEA based JAVA processing procedures and associated process control classes coupled with the general utility of Loft and HSLoad make it possible to create generic program template files for analysis of components ranging from something as simple as a stiffened flat panel, to curved panels, fuselage and cryogenic tank components, flight control surfaces, wings, through full air and space vehicle general arrangements.
NASA Astrophysics Data System (ADS)
Papalexiou, Simon Michael
2018-05-01
Hydroclimatic processes come in all "shapes and sizes". They are characterized by different spatiotemporal correlation structures and probability distributions that can be continuous, mixed-type, discrete or even binary. Simulating such processes by reproducing precisely their marginal distribution and linear correlation structure, including features like intermittency, can greatly improve hydrological analysis and design. Traditionally, modelling schemes are case specific and typically attempt to preserve few statistical moments providing inadequate and potentially risky distribution approximations. Here, a single framework is proposed that unifies, extends, and improves a general-purpose modelling strategy, based on the assumption that any process can emerge by transforming a specific "parent" Gaussian process. A novel mathematical representation of this scheme, introducing parametric correlation transformation functions, enables straightforward estimation of the parent-Gaussian process yielding the target process after the marginal back transformation, while it provides a general description that supersedes previous specific parameterizations, offering a simple, fast and efficient simulation procedure for every stationary process at any spatiotemporal scale. This framework, also applicable for cyclostationary and multivariate modelling, is augmented with flexible parametric correlation structures that parsimoniously describe observed correlations. Real-world simulations of various hydroclimatic processes with different correlation structures and marginals, such as precipitation, river discharge, wind speed, humidity, extreme events per year, etc., as well as a multivariate example, highlight the flexibility, advantages, and complete generality of the method.
Myosin MyTH4-FERM structures highlight important principles of convergent evolution.
Planelles-Herrero, Vicente José; Blanc, Florian; Sirigu, Serena; Sirkia, Helena; Clause, Jeffrey; Sourigues, Yannick; Johnsrud, Daniel O; Amigues, Beatrice; Cecchini, Marco; Gilbert, Susan P; Houdusse, Anne; Titus, Margaret A
2016-05-24
Myosins containing MyTH4-FERM (myosin tail homology 4-band 4.1, ezrin, radixin, moesin, or MF) domains in their tails are found in a wide range of phylogenetically divergent organisms, such as humans and the social amoeba Dictyostelium (Dd). Interestingly, evolutionarily distant MF myosins have similar roles in the extension of actin-filled membrane protrusions such as filopodia and bind to microtubules (MT), suggesting that the core functions of these MF myosins have been highly conserved over evolution. The structures of two DdMyo7 signature MF domains have been determined and comparison with mammalian MF structures reveals that characteristic features of MF domains are conserved. However, across millions of years of evolution conserved class-specific insertions are seen to alter the surfaces and the orientation of subdomains with respect to each other, likely resulting in new sites for binding partners. The MyTH4 domains of Myo10 and DdMyo7 bind to MT with micromolar affinity but, surprisingly, their MT binding sites are on opposite surfaces of the MyTH4 domain. The structural analysis in combination with comparison of diverse MF myosin sequences provides evidence that myosin tail domain features can be maintained without strict conservation of motifs. The results illustrate how tuning of existing features can give rise to new structures while preserving the general properties necessary for myosin tails. Thus, tinkering with the MF domain enables it to serve as a multifunctional platform for cooperative recruitment of various partners, allowing common properties such as autoinhibition of the motor and microtubule binding to arise through convergent evolution.
DDGui, a new and fast way to analyse DRAGON and DONJON code results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambon, R.; Marleau, G.
2012-07-01
With the largely increased performance of computer, the results from DRAGON and DONJON have increase in size and complexity. The scroll, copy and paste technique to get the result is not appropriate anymore. Many in-house script, software, macro have been developed to make the data gathering easier. However, the limit of these solutions is their specificity and the difficulty to export them from one place to another. A general tool usable and accessible by everyone was needed. The first bricks for a very fast and intuitive way to analyse the DRAGON and DONJON results have been put together in themore » graphic user interface DDGUI. Based on the extensive ROOT C++ package, the possible features are numerous. For this first version of the software, we have programmed the fundamental tools which may be the more useful on an everyday basis: view the data structures content, draw the geometry and draw the flux or power from a DONJON computation. The tests show how amazingly fast the user can get the information needed for a general overview or more precise analyses. Several other features will be implemented in the near feature. (authors)« less
Finite-frequency traveltime tomography of San Francisco Bay region crustal velocity structure
Pollitz, F.F.
2007-01-01
Seismic velocity structure of the San Francisco Bay region crust is derived using measurements of finite-frequency traveltimes. A total of 57 801 relative traveltimes are measured by cross-correlation over the frequency range 0.5-1.5 Hz. From these are derived 4862 'summary' traveltimes, which are used to derive 3-D P-wave velocity structure over a 341 ?? 140 km2 area from the surface to 25 km depth. The seismic tomography is based on sensitivity kernels calculated on a spherically symmetric reference model. Robust elements of the derived P-wave velocity structure are: a pronounced velocity contrast across the San Andreas fault in the south Bay region (west side faster); a moderate velocity contrast across the Hayward fault (west side faster); moderately low velocity crust around the Quien Sabe volcanic field and the Sacramento River delta; very low velocity crust around Lake Berryessa. These features are generally explicable with surface rock types being extrapolated to depth ???10 km in the upper crust. Generally high mid-lower crust velocity and high inferred Poisson's ratio suggest a mafic lower crust. ?? Journal compilation ?? 2007 RAS.
Does responsibility drive learning? Lessons from intern rotations in general practice.
Cantillon, Peter; Macdermott, Maeve
2008-01-01
The intern (or pre-registration) year has been criticised in the past for its emphasis on service delivery at the expense of educational achievement. It is hoped that new approaches to early postgraduate training such as the foundation programmes in the UK, will make clinical education more structured and effective. Intern placements in non-traditional settings such as general practice have been shown in the past to improve the quality of learning. Little is known however about which features of the general practice learning environment contribute most to the perception of improved learning. This aim of this study was to examine the learning environment in general practice from the perspective of interns, (the learners), to determine the factors that contribute most to motivating effective learning in a general practice setting. This study used a qualitative case study approach to explore the effects of two different learning environments, (general practice and hospital) on learner motivation amongst a small group of interns. We found that the biggest difference between the hospital and general practice learning environments was the increased individual responsibility for patient care experienced by interns in general practice. Greater responsibility was associated with greater motivation for learning. Increased intern responsibility for patient care does appear to motivate learning. More work needs to be done on providing interns in hospital posts with greater patient responsibility within an effective supervisory structure.
NASA Technical Reports Server (NTRS)
Roble, R. G.; Ridley, E. C.
1994-01-01
A new simulation model of the mesosphere, thermosphere, and ionosphere with coupled electrodynamics has been developed and used to calculate the global circulation, temperature and compositional structure between 30-500 km for equinox, solar cycle minimum, geomagnetic quiet conditions. The model incorporates all of the features of the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere- electrodynamics general circulation model (TIE-GCM) but the lower boundary has been extended downward from 97 to 30 km (10 mb) and it includes the physical and chemical processes appropriate for the mesosphere and upper stratosphere. The first simulation used Rayleigh friction to represent gravity wave drag in the middle atmosphere and although it was able to close the mesospheric jets it severely damped the diurnal tide. Reduced Rayleigh friction allowed the tide to penetrate to thermospheric heights but did not close the jets. A gravity wave parameterization developed by Fritts and Lu (1993) allows both features to exist simultaneously with the structure of tides and mean flow dependent upon the strength of the gravity wave source. The model calculates a changing dynamic structure with the mean flow and diurnal tide dominant in the mesosphere, the in-situ generated semi-diurnal tide dominating the lower thermosphere and an in-situ generated diurnal tide in the upper thermosphere. The results also show considerable interaction between dynamics and composition, especially atomic oxygen between 85 and 120 km.
NASA Astrophysics Data System (ADS)
Shin, C.
2017-12-01
Permeability estimation has been extensively researched in diverse fields; however, methods that suitably consider varying geometries and changes within the flow region, for example, hydraulic fracture closing for several years, are yet to be developed. Therefore, in the present study a new permeability estimation method is presented based on the generalized Darcy's friction flow relation, in particular, by examining frictional flow parameters and characteristics of their variations. For this examination, computational fluid dynamics (CFD) simulations of simple hydraulic fractures filled with five layers of structured microbeads and accompanied by geometry changes and flow transitions are performed. Consequently, it was checked whether the main structures and shapes of each flow path are preserved, even for geometry variations within porous media. However, the scarcity and discontinuity of streamlines increase dramatically in the transient- and turbulent-flow regions. The quantitative and analytic examinations of the frictional flow features were also performed. Accordingly, the modified frictional flow parameters were successfully presented as similarity parameters of porous flows. In conclusion, the generalized Darcy's friction flow relation and friction equivalent permeability (FEP) equation were both modified using the similarity parameters. For verification, the FEP values of the other aperture models were estimated and then it was checked whether they agreed well with the original permeability values. Ultimately, the proposed and verified method is expected to efficiently estimate permeability variations in porous media with changing geometric factors and flow regions, including such instances as hydraulic fracture closings.
NASA Astrophysics Data System (ADS)
Gao, H.; Lu, H.; Lu, Z.
2014-12-01
Gas hydrates were found in the permafrost of Qilian Mountain, Qinghai- Tibet Plateau, China in 2008. It has been found that gas hydrates occur in Jurassic sedimentary rocks, and the hydrated gases are mainly thermogenic. Different from the gas hydrates existing in loose sands in Mallik, Mackenzie Delta, Canada and North Slope, Alaska, USA, the gas hydrates in Qilian Mountain occurred in hard rocks. For understanding the occurrence and formation mechanism of gas hydrate in hard rcok, extensive experimental investigations have been conducted to study the pore features and hydrate formation in the rocks recovered from the hydrate layers in Qilian Mountain. The structures of sedimentary rock were observed by high-resolution X-ray CT, and pore size distribution of a rock specimen was measured with the mercury-injection method. Methane hydrate was synthesized in water-saturated rocks, and the saturations of hydrate in sedimentary rocks of various types were estimated from the amount of gas released from certain volume of rock. X-ray CT observation revealed that fractures were developed in the rocks associated with faults, while those away from faults were generally with massive structure. The mercury-injection analysis of pore features found that the porosities of the hydrate-existing rocks were generally less than 3%, and the pore sizes were generally smaller than 100 nm. The synthesizing experiments found that the saturation of methane hydrate were generally lower than 6% of pore space in rocks, but up to 16% when fractures developed. The low hydrate saturation in Qilian sedimentary rocks has been found mainly due to the small pore size of rock. The low hydrate saturation in the rocks might be the reason for the failure of regional seismic and logging detections of gas hydrates in Qilian Mountain.
Juliani, C M
1995-12-01
The study present analyse the process to buy and distribution of medicaments for the Basic Unit of Health in municipal district of state São Paulo. To achieve some general considerations about the National Politic of Medicaments in Brazil, to emphasize feature relative the its structuration in the Unique System of Health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatima, Bushra, E-mail: bushrafatima25@gmail.com; Acharya, Nikita; Sanyal, Sankar P.
2016-05-06
The structural stability, electronic structure, elastic and mechanical properties of TiZn and ZrZn intermetallics have been studied using ab-initio full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation for exchange and correlation potentials. The various structural parameters, such as lattice constant (a{sub 0}), bulk modulus (B), and its pressure derivative (B’) are analysed and compared. The investigation of elastic constants affirm that both TiZn and ZrZn are elastically stable in CsCl (B{sub 2} phase) structure. The electronic structures have been analysed quantitatively from the band structure which reveals the metallic nature of these compounds. To better illustratemore » the nature of bonding and charge transfer, we have also studied the Fermi surfaces. The three well known criterion of ductility namely Pugh’s rule, Cauchy’s pressure and Frantsevich rule elucidate the ductile nature of these compounds.« less
NASA Astrophysics Data System (ADS)
Mercier de Lépinay, J.; Munschy, M.; Géraud, Y.; Diraison, M.; Navelot, V.; Verati, C.; Corsini, M.; Lardeaux, J. M.
2016-12-01
In Les Saintes archipelago, the outcrop analysis of Terre-de-Haut island allows to point out several fault systems and geological objects such as lava domes and lava flows. Moreover an exhumed geothermal paleo-system was identified and is thought to be an interesting analogue of the active geothermal system of Bouillante, Guadeloupe. To fully understand this area, the offshore continuation of the geological features is a major concern. The previously known onshore features are visible on airborne magnetic maps due to the highly magnetized material in Les Saintes archipelago. Moreover hydrothermal processes alter the magnetized minerals of volcanic rocks, creating a significant variation in the magnetic measurements. Therefore an adapted marine magnetic study can help the geological understanding of this particular area. In order to correctly link the offshore and onshore structures, the magnetic survey must be close enough to the shoreline and detailed enough so as to correctly outline the tectonic structures. An appropriate solution for such a survey was to use a magnetometer aboard a speedboat. Such a boat allows more navigation flexibility than a classic oceanic vessel towing a magnetometer; it can sail at higher speed on calm seas and closer to the shoreline. This kind of set up is only viable because the magnetic effect of the ship can be compensated using the same algorithms than those used for airborne magnetometry. Studies were implemented through the GEOTREF program which benefits from the support of both the ADEME and the French public funds "Investments for the future". The use of magnetic field transformations allows a large variety of structures to be highlighted, providing insights that help to build a general understanding of the nature and distribution of the magnetic sources. Using a reduction to the pole map operator we are able to prolong the volcanic structures at sea. The marine part of the paleo-geothermal system extension is also roughly delineated. Linear geological features like fault systems tend to be well revealed by the tilt angle operator. With this map transformation, the main known faults of Terre-de-Haut can be prolonged at sea. Moreover, the general directions of magnetic outlines (major and minor) are in agreement with the directions of geological structures of this area.
Effects of convection electric field on the distribution of ring current type protons
NASA Technical Reports Server (NTRS)
Grebowsky, J. M.; Chen, A. J.
1975-01-01
The topology of the boundaries of penetration (or, inversely, the boundaries of the forbidden regions) of 90-deg pitch-angle equatorial protons with energies less than 100 keV are explored for an equatorial convection E-field which is directed in general from dawn to dusk. Due to the dependence of drift path on energy (or magnetic moment), complex structural features are expected in the proton energy spectra detected by satellites since the penetration distance of a proton is not a monotonically increasing or decreasing function of energy. During a storm when the convection E is enhanced, model calculations predict elongations of the forbidden regions analogous to tail extensions of the plasmasphere. Following a reduction in the convection field, spiral-structured forbidden regions can occur. Structural features inherent to large-scale convection field changes may be seen in the nose-like proton spectrograms observed near dusk by instrumentation on Explorer 45. These nose events are modelled by using an electric field model developed originally by Volland (1973). The strength of the field is related to the Kp index through night-time equatorial plasmapause measurements.
Plasmonic nanostructures through DNA-assisted lithography
Shen, Boxuan; Linko, Veikko; Tapio, Kosti; Pikker, Siim; Lemma, Tibebe; Gopinath, Ashwin; Gothelf, Kurt V.; Kostiainen, Mauri A.; Toppari, J. Jussi
2018-01-01
Programmable self-assembly of nucleic acids enables the fabrication of custom, precise objects with nanoscale dimensions. These structures can be further harnessed as templates to build novel materials such as metallic nanostructures, which are widely used and explored because of their unique optical properties and their potency to serve as components of novel metamaterials. However, approaches to transfer the spatial information of DNA constructions to metal nanostructures remain a challenge. We report a DNA-assisted lithography (DALI) method that combines the structural versatility of DNA origami with conventional lithography techniques to create discrete, well-defined, and entirely metallic nanostructures with designed plasmonic properties. DALI is a parallel, high-throughput fabrication method compatible with transparent substrates, thus providing an additional advantage for optical measurements, and yields structures with a feature size of ~10 nm. We demonstrate its feasibility by producing metal nanostructures with a chiral plasmonic response and bowtie-shaped nanoantennas for surface-enhanced Raman spectroscopy. We envisage that DALI can be generalized to large substrates, which would subsequently enable scale-up production of diverse metallic nanostructures with tailored plasmonic features. PMID:29423446
Ultrafast Bessel beams: advanced tools for laser materials processing
NASA Astrophysics Data System (ADS)
Stoian, Razvan; Bhuyan, Manoj K.; Zhang, Guodong; Cheng, Guanghua; Meyer, Remy; Courvoisier, Francois
2018-05-01
Ultrafast Bessel beams demonstrate a significant capacity of structuring transparent materials with a high degree of accuracy and exceptional aspect ratio. The ability to localize energy on the nanometer scale (bypassing the 100-nm milestone) makes them ideal tools for advanced laser nanoscale processing on surfaces and in the bulk. This allows to generate and combine micron and nano-sized features into hybrid structures that show novel functionalities. Their high aspect ratio and the accurate location can equally drive an efficient material modification and processing strategy on large dimensions. We review, here, the main concepts of generating and using Bessel non-diffractive beams and their remarkable features, discuss general characteristics of their interaction with matter in ablation and material modification regimes, and advocate their use for obtaining hybrid micro and nanoscale structures in two and three dimensions (2D and 3D) performing complex functions. High-throughput applications are indicated. The example list ranges from surface nanostructuring and laser cutting to ultrafast laser welding and the fabrication of 3D photonic systems embedded in the volume.
NASA Astrophysics Data System (ADS)
Wang, Xiao; Burghardt, Dirk
2018-05-01
This paper presents a new strategy for the generalization of discrete area features by using stroke grouping method and polarization transportation selection. The mentioned stroke is constructed on derive of the refined proximity graph of area features, and the refinement is under the control of four constraints to meet different grouping requirements. The area features which belong to the same stroke are detected into the same group. The stroke-based strategy decomposes the generalization process into two sub-processes by judging whether the area features related to strokes or not. For the area features which belong to the same one stroke, they normally present a linear like pat-tern, and in order to preserve this kind of pattern, typification is chosen as the operator to implement the generalization work. For the remaining area features which are not related by strokes, they are still distributed randomly and discretely, and the selection is chosen to conduct the generalization operation. For the purpose of retaining their original distribution characteristic, a Polarization Transportation (PT) method is introduced to implement the selection operation. Buildings and lakes are selected as the representatives of artificial area feature and natural area feature respectively to take the experiments. The generalized results indicate that by adopting this proposed strategy, the original distribution characteristics of building and lake data can be preserved, and the visual perception is pre-served as before.
Elements of the Chicxulub Impact Structure as revealed in SRTM and surface GPS topographic data
NASA Astrophysics Data System (ADS)
Kobrick, M.; Kinsland, G. L.; Sanchez, G.; Cardador, M. H.
2003-04-01
Pope et al have utilized elevations from the Petroleos Mexicanos (PEMEX) gravity data files to show that the main component of the surface expression of the Chicxu-lub Impact Structure is a roughly semi-circular, low-relief depression about 90 km in diameter. They also identified other topographic features and the elements of the buried impact which possibly led to the development of these features. Kinsland et al presented a connection between these topographic anomalies, small gravity anomalies and buried structure of the impact. Shaded relief images from recently acquired SRTM elevation data clearly show the circular depression of the crater and the moat/cenote ring. In addition we can readily identify Inner trough 1, Inner trough 2 and Outer trough as defined by Pope et al. The agreement between the topographic maps of Pope et al, Kinsland et al and SRTM data are remarkable considering that the distribution and types of data in the sets are so different. We also have ground topographic data collected with a special "autonomous differ-ential GPS" system during summer 2002. Profiles from these data generally agree with both the gravity data based topographic maps and profiles extracted from the SRTM data. Preliminary analyses of our new data, SRTM and GPS, have uncovered features not previously recognized: 1) as shown by the GPS data the moat/cenote ring consists of two distinct depressions separated by about 10 km...perhaps separate ring faults, 2) in the SRTM data over the southern part of the crater and on southward for perhaps 20 km beyond the moat/ cenote ring there exists a pattern, as yet unexplained, of roughly concentric topographic features whose center lies at about 21deg 40min N and 89deg 25min W, about 50km NNE of the moat/cenote ring center. The corroboration and better definition of the previously recognized topographic features yielded by the two new forms of data strengthens the cases for these fea-tures and for their relevance to the underlying collapsed crater structure.
Earth Observations taken by the Expedition 17 Crew
2008-10-21
ISS017-E-020538 (21 Oct. 2008) --- Arkenu Craters 1 and 2 in Libya are featured in this image photographed by an Expedition 17 crewmember on the International Space Station. Geologists often study features on Earth, such as impact craters, to gain insight into processes that occur on other planets. On Earth, more than 150 impact craters have been identified on the continents, but only a few of these are classified as double impact craters. One such example, the Arkenu Craters in northern Africa, is shown in this image. Arkenu 1 and 2 are double impact structures located in eastern Libya (22.04 degrees north latitude and 23.45 degrees east longitude) in the Sahara desert, with diameters of approximately 6.8 kilometers and 10.3 kilometers, respectively. The craters are unusual in that they both exhibit concentric annular ridge structures (gray circles in the image indicate the position of the outermost visible ridges). In many terrestrial complex craters these features are highly eroded and no longer visible. While the circular structure of these features had been noted, the impact origin hypothesis was strengthened in December 2003 when a field team observed shatter cones -- conical-shaped features in rocks created by the high shock pressures generated during impact. Large outcrops of impact breccias -- a jumble of rock fragments generated at the impact site that are now cemented together into an identifiable rock layer -- were also observed by the field team. Two impactors, each approximately 500 meters in diameter, are thought to have created the craters. According to scientists, the age of the impact event has been dated as occurring less than 140 million years ago. While the presence of shatter cones and impact breccias is generally considered to be strong evidence for meteor impact, some scientists now question the interpretation of these features observed at the Arkenu structures and suggest that they were caused by erosive and volcanic processes. At present, both craters are being crossed by linear dunes extending northeast-southwest -- the superposition of the dunes across the annular ridges indicates that they are much younger than the craters.
On type B cyclogenesis in a quasi-geostrophic model
NASA Astrophysics Data System (ADS)
Grotjahn, Richard
2005-01-01
A quasi-geostrophic (QG) model is used to approximate some aspects of 'type B' cyclogenesis as described in an observational paper that appeared several decades earlier in this journal. Though often cited, that earlier work has some ambiguity that has propagated into subsequent analyses. The novel aspects examined here include allowing advective nonlinearity to distort and amplify structures that are quasi-coherent and nearly stable in a linear form of the model; also, separate upper and lower structures are localized in space. Cases are studied separately where the upper trough tracks across different low-level features: an enhanced baroclinic zone (stronger horizontal temperature gradient) or a region of augmented temperature. Growth by superposition of lower and upper features is excluded by experimental design. The dynamics are evaluated with the vertical motion equation, the QG vorticity equation, the QG perturbation energy equation, and 'potential-vorticity thinking'. Results are compared against 'control' cases having no additional low-level features. Nonlinearity is examined relative to a corresponding linear calculation and is generally positive. The results are perhaps richer than the seminal article might imply, because growth is enhanced not only when properties of the lower feature reinforce growth but also when the lower feature opposes decay of the upper feature. For example, growth is enhanced where low-level warm advection introduces rising warm air to oppose the rising cold air ahead of the upper trough. Such growth is magnified when adjacent warm and cold anomalies have a strong baroclinic zone between them. The enhanced growth triggers an upstream tilt in the solution whose properties further accelerate the growth.
NASA Astrophysics Data System (ADS)
Pope, Michael C.; Bartley, Julie K.; Knoll, Andrew H.; Petrov, Peter Yu.
2003-05-01
Molar tooth structures are abundant in large (1-2 m diameter) carbonate nodules within fine-grained, subtidal carbonates of the early Neoproterozoic (lower Upper Riphean) Burovaya Formation along the Sukhaya Tunguska River, Turukhansk Uplift, northwestern Siberia. Although molar tooth structures are regionally abundant in this unit, here they occur only within the nodules. Stable isotopic compositions of molar-tooth-filling dolomicrospar cements and of thinly bedded dolomicrite within and surrounding the nodules are indistinguishable from one another. The carbon isotopic compositions (mean δ13C=+2.8‰ PDB±0.4) reflect mean average oceanic surface water composition during their formation; the light oxygen isotopic compositions (mean δ18O=-6.4‰ PDB±2.2) are generally similar to those of other little-altered Meso- to Neoproterozoic limestones and dolostones. These molar tooth structures have no features that would support a tectonic origin; they more likely formed through bacterial processes. Carbonate cement filling of these voids occurred soon after their formation, but the mechanism responsible for this carbonate precipitation is currently uncertain. Local restriction of molar tooth structures to early diagenetic nodules suggests that penecontemporaneous lithification was required for the formation, or at least preservation, of these widespread Mesoproterozoic to Neoproterozoic features.
NASA Astrophysics Data System (ADS)
Radaideh, Omar M. A.; Grasemann, Bernhard; Melichar, Rostislav; Mosar, Jon
2016-12-01
This study investigates the dominant orientations of morphological features and the relationship between these trends and the spatial orientation of tectonic structures in SW Jordan. Landsat 8 and hill-shaded images, constructed from 30 m-resolution ASTER-GDEM data, were used for automatically extracting and mapping geological lineaments. The ASTER-GDEM was further utilized to automatically identify and extract drainage network. Morphological features were analyzed by means of azimuth frequency and length density distributions. Tectonic controls on the land surface were evaluated using longitudinal profiles of many westerly flowing streams. The profiles were taken directly across the northerly trending faults within a strong topographic transition between the low-gradient uplands and the deeply incised mountain front on the east side of the Dead Sea Fault Zone. Streams of the area are widely divergent, and show numerous anomalies along their profiles when they transect faults and lineaments. Five types of drainage patterns were identified: dendritic, parallel, rectangular, trellis, and modified dendritic/trellis. Interpretation and analysis of the lineaments indicate the presence of four main lineament populations that trend E-W, N-S, NE-SW, and NW-SE. Azimuthal distribution analysis of both the measured structures and drainage channels shows similar trends, except for very few differences in the prevailing directions. The similarity in orientation of lineaments, drainage system, and subsurface structural trends highlights the degree of control exerted by underlying structure on the surface geomorphological features. Faults and lineaments serve as a preferential conduit for surface running waters. The extracted lineaments were divided into five populations based on the main age of host rocks outcropping in the study area to obtain information about the temporal evolution of the lineament trends through geologic time. A general consistency in lineament trends over the different lithological units was observed, most probably because repeated reactivation of tectonism along preexisting deep structural discontinuities which are apparently crustal weakness zones. The reactivation along such inherited discontinuities under the present-day stress field is the most probable explanation of the complicated pattern and style of present-day landscape features in SW Jordan.
NASA Astrophysics Data System (ADS)
Queiros-Conde, D.; Foucher, F.; Mounaïm-Rousselle, C.; Kassem, H.; Feidt, M.
2008-12-01
Multi-scale features of turbulent flames near a wall display two kinds of scale-dependent fractal features. In scale-space, an unique fractal dimension cannot be defined and the fractal dimension of the front is scale-dependent. Moreover, when the front approaches the wall, this dependency changes: fractal dimension also depends on the wall-distance. Our aim here is to propose a general geometrical framework that provides the possibility to integrate these two cases, in order to describe the multi-scale structure of turbulent flames interacting with a wall. Based on the scale-entropy quantity, which is simply linked to the roughness of the front, we thus introduce a general scale-entropy diffusion equation. We define the notion of “scale-evolutivity” which characterises the deviation of a multi-scale system from the pure fractal behaviour. The specific case of a constant “scale-evolutivity” over the scale-range is studied. In this case, called “parabolic scaling”, the fractal dimension is a linear function of the logarithm of scale. The case of a constant scale-evolutivity in the wall-distance space implies that the fractal dimension depends linearly on the logarithm of the wall-distance. We then verified experimentally, that parabolic scaling represents a good approximation of the real multi-scale features of turbulent flames near a wall.
Secondary structural entropy in RNA switch (Riboswitch) identification.
Manzourolajdad, Amirhossein; Arnold, Jonathan
2015-04-28
RNA regulatory elements play a significant role in gene regulation. Riboswitches, a widespread group of regulatory RNAs, are vital components of many bacterial genomes. These regulatory elements generally function by forming a ligand-induced alternative fold that controls access to ribosome binding sites or other regulatory sites in RNA. Riboswitch-mediated mechanisms are ubiquitous across bacterial genomes. A typical class of riboswitch has its own unique structural and biological complexity, making de novo riboswitch identification a formidable task. Traditionally, riboswitches have been identified through comparative genomics based on sequence and structural homology. The limitations of structural-homology-based approaches, coupled with the assumption that there is a great diversity of undiscovered riboswitches, suggests the need for alternative methods for riboswitch identification, possibly based on features intrinsic to their structure. As of yet, no such reliable method has been proposed. We used structural entropy of riboswitch sequences as a measure of their secondary structural dynamics. Entropy values of a diverse set of riboswitches were compared to that of their mutants, their dinucleotide shuffles, and their reverse complement sequences under different stochastic context-free grammar folding models. Significance of our results was evaluated by comparison to other approaches, such as the base-pairing entropy and energy landscapes dynamics. Classifiers based on structural entropy optimized via sequence and structural features were devised as riboswitch identifiers and tested on Bacillus subtilis, Escherichia coli, and Synechococcus elongatus as an exploration of structural entropy based approaches. The unusually long untranslated region of the cotH in Bacillus subtilis, as well as upstream regions of certain genes, such as the sucC genes were associated with significant structural entropy values in genome-wide examinations. Various tests show that there is in fact a relationship between higher structural entropy and the potential for the RNA sequence to have alternative structures, within the limitations of our methodology. This relationship, though modest, is consistent across various tests. Understanding the behavior of structural entropy as a fairly new feature for RNA conformational dynamics, however, may require extensive exploratory investigation both across RNA sequences and folding models.
A general route to hollow mesoporous rare-earth silicate nanospheres as a catalyst support.
Jin, Renxi; Yang, Yang; Zou, Yongcun; Liu, Xianchun; Xing, Yan
2014-02-17
Hollow mesoporous structures have recently aroused intense research interest owing to their unique structural features. Herein, an effective and precisely controlled synthesis of hollow rare-earth silicate spheres with mesoporous shells is reported for the first time, produced by a simple hydrothermal method, using silica spheres as the silica precursors. The as-prepared hollow rare-earth silicate spheres have large specific surface area, high pore volume, and controllable structure parameters. The results demonstrate that the selection of the chelating reagent plays critical roles in forming the hollow mesoporous structures. In addition, a simple and low-energy-consuming approach to synthesize highly stable and dispersive gold nanoparticle-yttrium silicate (AuNPs/YSiO) hollow nanocomposites has also been developed. The reduction of 4-nitrophenol with AuNPs/YSiO hollow nanocomposites as the catalyst has clearly demonstrated that the hollow rare-earth silicate spheres are good carriers for Au nanoparticles. This strategy can be extended as a general approach to prepare multifunctional yolk-shell structures with diverse compositions and morphologies simply by replacing silica spheres with silica-coated nanocomposites. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Three-dimensional radar imaging of structures and craters in the Martian polar caps.
Putzig, Nathaniel E; Smith, Isaac B; Perry, Matthew R; Foss, Frederick J; Campbell, Bruce A; Phillips, Roger J; Seu, Roberto
2018-07-01
Over the last decade, observations acquired by the Shallow Radar (SHARAD) sounder on individual passes of the Mars Reconnaissance Orbiter have revealed the internal structure of the Martian polar caps and provided new insights into the formation of the icy layers within and their relationship to climate. However, a complete picture of the cap interiors has been hampered by interfering reflections from off-nadir surface features and signal losses associated with sloping structures and scattering. Foss et al. (2017) addressed these limitations by assembling three-dimensional data volumes of SHARAD observations from thousands of orbital passes over each polar region and applying geometric corrections simultaneously. The radar volumes provide unprecedented views of subsurface features, readily imaging structures previously inferred from time-intensive manual analysis of single-orbit data (e.g., trough-bounding surfaces, a buried chasma, and a basal unit in the north, massive carbon-dioxide ice deposits and discontinuous layered sequences in the south). Our new mapping of the carbon-dioxide deposits yields a volume of 16,500 km 3 , 11% larger than the prior estimate. In addition, the radar volumes newly reveal other structures, including what appear to be buried impact craters with no surface expression. Our first assessment of 21 apparent craters at the base of the north polar layered deposits suggests a Hesperian age for the substrate, consistent with that of the surrounding plains as determined from statistics of surface cratering rates. Planned mapping of similar features throughout both polar volumes may provide new constraints on the age of the icy layered deposits. The radar volumes also provide new topographic data between the highest latitudes observed by the Mars Orbiter Laser Altimeter and those observed by SHARAD. In general, mapping of features in these radar volumes is placing new constraints on the nature and evolution of the polar deposits and associated climate changes.
Three-dimensional radar imaging of structures and craters in the Martian polar caps
NASA Astrophysics Data System (ADS)
Putzig, Nathaniel E.; Smith, Isaac B.; Perry, Matthew R.; Foss, Frederick J.; Campbell, Bruce A.; Phillips, Roger J.; Seu, Roberto
2018-07-01
Over the last decade, observations acquired by the Shallow Radar (SHARAD) sounder on individual passes of the Mars Reconnaissance Orbiter have revealed the internal structure of the Martian polar caps and provided new insights into the formation of the icy layers within and their relationship to climate. However, a complete picture of the cap interiors has been hampered by interfering reflections from off-nadir surface features and signal losses associated with sloping structures and scattering. Foss et al. (The Leading Edge 36, 43-57, 2017, https://doi.org/10.1190/tle36010043.1) addressed these limitations by assembling three-dimensional data volumes of SHARAD observations from thousands of orbital passes over each polar region and applying geometric corrections simultaneously. The radar volumes provide unprecedented views of subsurface features, readily imaging structures previously inferred from time-intensive manual analysis of single-orbit data (e.g., trough-bounding surfaces, a buried chasma, and a basal unit in the north, massive carbon-dioxide ice deposits and discontinuous layered sequences in the south). Our new mapping of the carbon-dioxide deposits yields a volume of 16,500 km3, 11% larger than the prior estimate. In addition, the radar volumes newly reveal other structures, including what appear to be buried impact craters with no surface expression. Our first assessment of 21 apparent craters at the base of the north polar layered deposits suggests a Hesperian age for the substrate, consistent with that of the surrounding plains as determined from statistics of surface cratering rates. Planned mapping of similar features throughout both polar volumes may provide new constraints on the age of the icy layered deposits. The radar volumes also provide new topographic data between the highest latitudes observed by the Mars Orbiter Laser Altimeter and those observed by SHARAD. In general, mapping of features in these radar volumes is placing new constraints on the nature and evolution of the polar deposits and associated climate changes.
Molecular clouds and galactic spiral structure
NASA Technical Reports Server (NTRS)
Dame, T. M.
1984-01-01
Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide.
Passion fruit-like nano-architectures: a general synthesis route
NASA Astrophysics Data System (ADS)
Cassano, D.; David, J.; Luin, S.; Voliani, V.
2017-03-01
Noble metal nanostructures have demonstrated a number of intriguing features for both medicine and catalysis. However, accumulation issues have prevented their clinical translation, while their use in catalysis has shown serious efficiency and stability hurdles. Here we introduce a simple and robust synthetic protocol for passion fruit-like nano-architectures composed by a silica shell embedding polymeric arrays of ultrasmall noble metal nanoparticles. These nano-architectures show interesting features for both oncology and catalysis. They avoid the issue of persistence in organism thanks to their fast biodegradation in renal clearable building blocks. Furthermore, their calcination results in yolk-shell structures composed by naked metal or alloy nanospheres shielded from aggregation by a silica shell.
Miller, Douglass R.; Rung, Alessandra; Parikh, Grishma
2014-01-01
Abstract We provide a general overview of features and technical specifications of an online, interactive tool for the identification of scale insects of concern to the U.S.A. ports-of-entry. Full lists of terminal taxa included in the keys (of which there are four), a list of features used in them, and a discussion of the structure of the tool are provided. We also briefly discuss the advantages of interactive keys for the identification of potential scale insect pests. The interactive key is freely accessible on http://idtools.org/id/scales/index.php PMID:25152668
Passion fruit-like nano-architectures: a general synthesis route
Cassano, D.; David, J.; Luin, S.; Voliani, V.
2017-01-01
Noble metal nanostructures have demonstrated a number of intriguing features for both medicine and catalysis. However, accumulation issues have prevented their clinical translation, while their use in catalysis has shown serious efficiency and stability hurdles. Here we introduce a simple and robust synthetic protocol for passion fruit-like nano-architectures composed by a silica shell embedding polymeric arrays of ultrasmall noble metal nanoparticles. These nano-architectures show interesting features for both oncology and catalysis. They avoid the issue of persistence in organism thanks to their fast biodegradation in renal clearable building blocks. Furthermore, their calcination results in yolk-shell structures composed by naked metal or alloy nanospheres shielded from aggregation by a silica shell. PMID:28256565
Rain volume estimation over areas using satellite and radar data
NASA Technical Reports Server (NTRS)
Doneaud, Andre A.; Vonderhaar, T. H.; Johnson, L. R.; Laybe, P.; Reinke, D.
1987-01-01
The analysis of 18 convective clusters demonstrates that the extension of the Area-Time-Integral (ATI) technique to the use of satellite data is possible. The differences of the internal structures of the radar reflectivity features, and of the satellite features, give rise to differences in estimating rain volumes by delineating area; however, by focusing upon the area integrated over the lifetime of the storm, it is suggested that some of the errors produced by the differences in the cloud geometries as viewed by radar or satellite are minimized. The results are good and future developments should consider data from different climatic regions and should allow for implementation of the technique in a general circulation model.
Davie, Stuart J; Di Pasquale, Nicodemo; Popelier, Paul L A
2016-10-15
Machine learning algorithms have been demonstrated to predict atomistic properties approaching the accuracy of quantum chemical calculations at significantly less computational cost. Difficulties arise, however, when attempting to apply these techniques to large systems, or systems possessing excessive conformational freedom. In this article, the machine learning method kriging is applied to predict both the intra-atomic and interatomic energies, as well as the electrostatic multipole moments, of the atoms of a water molecule at the center of a 10 water molecule (decamer) cluster. Unlike previous work, where the properties of small water clusters were predicted using a molecular local frame, and where training set inputs (features) were based on atomic index, a variety of feature definitions and coordinate frames are considered here to increase prediction accuracy. It is shown that, for a water molecule at the center of a decamer, no single method of defining features or coordinate schemes is optimal for every property. However, explicitly accounting for the structure of the first solvation shell in the definition of the features of the kriging training set, and centring the coordinate frame on the atom-of-interest will, in general, return better predictions than models that apply the standard methods of feature definition, or a molecular coordinate frame. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Automated detection of qualitative spatio-temporal features in electrocardiac activation maps.
Ironi, Liliana; Tentoni, Stefania
2007-02-01
This paper describes a piece of work aiming at the realization of a tool for the automated interpretation of electrocardiac maps. Such maps can capture a number of electrical conduction pathologies, such as arrhytmia, that can be missed by the analysis of traditional electrocardiograms. But, their introduction into the clinical practice is still far away as their interpretation requires skills that belongs to very few experts. Then, an automated interpretation tool would bridge the gap between the established research outcome and clinical practice with a consequent great impact on health care. Qualitative spatial reasoning can play a crucial role in the identification of spatio-temporal patterns and salient features that characterize the heart electrical activity. We adopted the spatial aggregation (SA) conceptual framework and an interplay of numerical and qualitative information to extract features from epicardial maps, and to make them available for reasoning tasks. Our focus is on epicardial activation isochrone maps as they are a synthetic representation of spatio-temporal aspects of the propagation of the electrical excitation. We provide a computational SA-based methodology to extract, from 3D epicardial data gathered over time, (1) the excitation wavefront structure, and (2) the salient features that characterize wavefront propagation and visually correspond to specific geometric objects. The proposed methodology provides a robust and efficient way to identify salient pieces of information in activation time maps. The hierarchical structure of the abstracted geometric objects, crucial in capturing the prominent information, facilitates the definition of general rules necessary to infer the correlation between pathophysiological patterns and wavefront structure and propagation.
Parsec-Scale Kinematic and Polarization Properties of MOJAVE AGN Jets
NASA Astrophysics Data System (ADS)
Lister, Matthew L.
2013-12-01
We describe the parsec-scale kinematics and statistical polarization properties of 200 AGN jets based on 15 GHz VLBA data obtained between 1994 Aug 31 and 2011 May 1. Nearly all of the 60 most heavily observed jets show significant changes in their innermost position angle over a 12 to 16 year interval, ranging from 10° to 150° on the sky, corresponding to intrinsic variations of ~ 0.5° to ~ 2°. The BL Lac jets show smaller variations than quasars. Roughly half of the heavily observed jets show systematic position angle trends with time, and 20 show indications of oscillatory behavior. The time spans of the data sets are too short compared to the fitted periods (5 to 12 y), however, to reliably establish periodicity. The rapid changes and large jumps in position angle seen in many cases suggest that the superluminal AGN jet features occupy only a portion of the entire jet cross section, and may be energized portions of thin instability structures within the jet. We have derived vector proper motions for 887 moving features in 200 jets having at least five VLBA epochs. For 557 well-sampled features, there are sufficient data to additionally study possible accelerations. The moving features are generally non-ballistic, with 70% of the well-sampled features showing either significant accelerations or non-radial motions. Inward motions are rare (2% of all features), are slow (< 0.1 mas per y), are more prevalent in BL Lac jets, and are typically found within 1 mas of the unresolved core feature. There is a general trend of increasing apparent speed with distance down the jet for both radio galaxies and BL Lac objects. In most jets, the speeds of the features cluster around a characteristic value, yet there is a considerable dispersion in the distribution. Orientation variations within the jet cannot fully account for the dispersion, implying that the features have a range of Lorentz factor and/or pattern speed. Very slow pattern speed features are rare, comprising only 4% of the sample, and are more prevalent in radio galaxy and BL Lac jets. We confirm a previously reported upper envelope to the distribution of speed versus beamed luminosity for moving jet features. Below 1026 W Hz-1 there is a fall-off in maximum speed with decreasing 15 GHz radio luminosity. A preliminary analysis of the multi-epoch jet polarization properties indicates a wide range of behavior in the core electric vector position angles over time, with the latter remaining relatively stable in some jets, and varying rapidly in others. The fractional polarization level generally increases down the jet, and high-synchrotron peaked (HSP) blazars tend to have lower core fractional polarization levels. A general trend of decreasing maximum jet speed for higher synchrotron peaked blazars further suggests lower Doppler factors in the radio-emitting jets of HSP BL Lac objects.
12 CFR Appendix M1 to Part 226 - Generic Repayment Estimates
Code of Federal Regulations, 2010 CFR
2010-01-01
... general revolving feature that applies to balances existing before January 1, 2009; a minimum payment formula applicable to a general revolving feature that applies to balances incurred on or after January 1... general revolving feature that applies to balances incurred on or after January 1, 2009, and apply that...
Chekmarev, Sergei F
2013-03-01
The transition from laminar to turbulent fluid motion occurring at large Reynolds numbers is generally associated with the instability of the laminar flow. On the other hand, since the turbulent flow characteristically appears in the form of spatially localized structures (e.g., eddies) filling the flow field, a tendency to occupy such a structured state of the flow cannot be ruled out as a driving force for turbulent transition. To examine this possibility, we propose a simple analytical model that treats the flow as a collection of localized spatial structures, each of which consists of elementary cells in which the behavior of the particles (atoms or molecules) is uncorrelated. This allows us to introduce the Reynolds number, associating it with the ratio between the total phase volume for the system and that for the elementary cell. Using the principle of maximum entropy to calculate the most probable size distribution of the localized structures, we show that as the Reynolds number increases, the elementary cells group into the localized structures, which successfully explains turbulent transition and some other general properties of turbulent flows. An important feature of the present model is that a bridge between the spatial-statistical description of the flow and hydrodynamic equations is established. We show that the basic assumptions underlying the model, i.e., that the particles are indistinguishable and elementary volumes of phase space exist in which the state of the particles is uncertain, are involved in the derivation of the Navier-Stokes equation. Taking into account that the model captures essential features of turbulent flows, this suggests that the driving force for the turbulent transition is basically the same as in the present model, i.e., the tendency of the system to occupy a statistically dominant state plays a key role. The instability of the flow at high Reynolds numbers can then be a mechanism to initiate structural rearrangement of the flow to find this state.
Extraction and LOD control of colored interval volumes
NASA Astrophysics Data System (ADS)
Miyamura, Hiroko N.; Takeshima, Yuriko; Fujishiro, Issei; Saito, Takafumi
2005-03-01
Interval volume serves as a generalized isosurface and represents a three-dimensional subvolume for which the associated scalar filed values lie within a user-specified closed interval. In general, it is not an easy task for novices to specify the scalar field interval corresponding to their ROIs. In order to extract interval volumes from which desirable geometric features can be mined effectively, we propose a suggestive technique which extracts interval volumes automatically based on the global examination of the field contrast structure. Also proposed here is a simplification scheme for decimating resultant triangle patches to realize efficient transmission and rendition of large-scale interval volumes. Color distributions as well as geometric features are taken into account to select best edges to be collapsed. In addition, when a user wants to selectively display and analyze the original dataset, the simplified dataset is restructured to the original quality. Several simulated and acquired datasets are used to demonstrate the effectiveness of the present methods.
Minimal modeling of the extratropical general circulation
NASA Technical Reports Server (NTRS)
O'Brien, Enda; Branscome, Lee E.
1989-01-01
The ability of low-order, two-layer models to reproduce basic features of the mid-latitude general circulation is investigated. Changes in model behavior with increased spectral resolution are examined in detail. Qualitatively correct time-mean heat and momentum balances are achieved in a beta-plane channel model which includes the first and third meridional modes. This minimal resolution also reproduces qualitatively realistic surface and upper-level winds and mean meridional circulations. Higher meridional resolution does not result in substantial changes in the latitudinal structure of the circulation. A qualitatively correct kinetic energy spectrum is produced when the resolution is high enough to include several linearly stable modes. A model with three zonal waves and the first three meridional modes has a reasonable energy spectrum and energy conversion cycle, while also satisfying heat and momentum budget requirements. This truncation reproduces the basic mechanisms and zonal circulation features that are obtained at higher resolution. The model performance improves gradually with higher resolution and is smoothly dependent on changes in external parameters.
The Influence of Local Geometric Effects on Mars Polar Processes
NASA Technical Reports Server (NTRS)
Hecht, M. H.
2005-01-01
Using simple, qualitative heat balance models, this paper addresses textures and structures that will result from the evolution of volatile layers by accretion and by ablation. Such phenomena may have global implications that are not apparent when only flat or sloped surfaces are modeled. In general, structures such as mounds or depressions formed out of volatile materials will evolve in shape such that the growth or retreat of any particular surface will be maximized. It can be shown that the local radius of curvature is proportional to the growth or retreat rate. For example, icy surfaces will tend to form facets that face the dominant sun direction. Two such cases are evaluated: a) Features associated with condensation of volatiles, include cold-trapping and redistribution, such as the concentration of frost around the Viking 2 lander [1]. Here I will focus on textures that likely result from the formation of seasonal CO2 deposits. b) Features associated with sublimation of volatiles, such as those described by Ingersoll et. al. [2] result in textured surfaces that affect both the apparent emissivity and albedo. Similar calculations have been performed with respect to the "Swiss cheese" features on the South Polar Cap [3]. Here, I evaluate the likely sublimation rates from optimal ice scarp structures and their implications for the long-term evolution of the polar caps and formation of layered terrain.
An in-depth understanding of biomass recalcitrance using natural poplar variants as the feedstock
Meng, Xianzhi; Pu, Yunqiao; Yoo, Chang Geun; ...
2016-12-12
Here, in an effort to better understand the biomass recalcitrance, six natural poplar variants were selected as feedstocks based on previous sugar release analysis. Compositional analysis and physicochemical characterizations of these poplars were performed and the correlations between these physicochemical properties and enzymatic hydrolysis yield were investigated. Gel permeation chromatography (GPC) and 13C solid state NMR were used to determine the degree of polymerization (DP) and crystallinity index (CrI) of cellulose, and the results along with the sugar release study indicated that cellulose DP likely played a more important role in enzymatic hydrolysis. Simons’ stain revealed that the accessible surface area of substrate significantly varied among these variants from 17.3 to 33.2 mg gmore » $$–1\\atop{biomass}$$ as reflected by dye adsorption, and cellulose accessibility was shown as one of the major factors governing substrates digestibility. HSQC and 31P NMR analysis detailed the structural features of poplar lignin variants. Overall, cellulose relevant factors appeared to have a stronger correlation with glucose release, if any, than lignin structural features. Lignin structural features, such as a phenolic hydroxyl group and the ratio of syringyl and guaiacyl (S/G), were found to have a more convincing impact on xylose release. Low lignin content, low cellulose DP, and high cellulose accessibility generally favor enzymatic hydrolysis; however, recalcitrance cannot be simply judged on any single substrate factor.« less
An in-depth understanding of biomass recalcitrance using natural poplar variants as the feedstock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Xianzhi; Pu, Yunqiao; Yoo, Chang Geun
Here, in an effort to better understand the biomass recalcitrance, six natural poplar variants were selected as feedstocks based on previous sugar release analysis. Compositional analysis and physicochemical characterizations of these poplars were performed and the correlations between these physicochemical properties and enzymatic hydrolysis yield were investigated. Gel permeation chromatography (GPC) and 13C solid state NMR were used to determine the degree of polymerization (DP) and crystallinity index (CrI) of cellulose, and the results along with the sugar release study indicated that cellulose DP likely played a more important role in enzymatic hydrolysis. Simons’ stain revealed that the accessible surface area of substrate significantly varied among these variants from 17.3 to 33.2 mg gmore » $$–1\\atop{biomass}$$ as reflected by dye adsorption, and cellulose accessibility was shown as one of the major factors governing substrates digestibility. HSQC and 31P NMR analysis detailed the structural features of poplar lignin variants. Overall, cellulose relevant factors appeared to have a stronger correlation with glucose release, if any, than lignin structural features. Lignin structural features, such as a phenolic hydroxyl group and the ratio of syringyl and guaiacyl (S/G), were found to have a more convincing impact on xylose release. Low lignin content, low cellulose DP, and high cellulose accessibility generally favor enzymatic hydrolysis; however, recalcitrance cannot be simply judged on any single substrate factor.« less
Protons, osmolytes, and fitness of internal milieu for protein function.
Somero, G N
1986-08-01
The composition of the intracellular milieu shows striking similarities among widely different species. Only certain values of intracellular pH, values that generally reflect alphastat regulation, and only narrow ranges of inorganic ion concentrations are found in the cytoplasm of the cells of most animals, plants, and microorganisms. In water-stressed organisms only a few types of low-molecular-weight organic molecules (osmolytes) are accumulated. These highly conserved characteristics of the intracellular fluids reflect the need to maintain critical features of macromolecules within narrow ranges optimal for life. For proteins these features include maintaining adequate rates of catalysis, a high level of regulatory responsiveness, and a precise balance between stability and lability of structure (tertiary conformation, subunit assembly, and multiprotein complexes). The optimal values for these functional and structural features of proteins often lie near the midrange of possible values for these properties, and only under specific conditions of intracellular pH, ionic strength, and osmolyte composition are these optimal midrange values conserved. In dormant cells the departure of solution conditions from values that are optimal for protein function and structure may be instrumental in reducing or shutting down metabolic functions. Seen from a broad evolutionary perspective, the evolution of the intracellular milieu is an important complement to macromolecular evolution. In certain instances appropriate modifications of the internal milieu may reduce the need for adaptive amino acid replacements in proteins.
Interplay of ICP and IXP over the Internet with power-law features
NASA Astrophysics Data System (ADS)
Fan, Zhongyan; Tang, Wallace Kit-Sang
The Internet is the largest artificial network consisting of billions of IP devices, managed by tens of thousands of autonomous systems (ASes). Due to its importance, the Internet has received much attention and its topological features, mainly in AS-level, have been widely explored from the complex network perspective. However, most of the previous studies assume a homogeneous model in which nodes are indistinguishable in nature. It may be good for a general study of topological structure, but unfortunately it fails to reflect the functionality. The Internet ecology is in fact heterogeneous and highly complex. It consists of various elements such as Internet Exchange Points (IXPs), Internet Content Providers (ICPs), and normal Autonomous System (ASes), realizing different roles in the Internet. In this paper, we propose level-structured network models for investigating how ICP performs under the AS-topology with power-law features and how IXP enhances its performance from a complex network perspective. Based on real data, our results reveal that the power-law nature of the Internet facilitates content delivery not only in efficiency but also in path redundancy. Moreover, the proposed multi-level framework is able to clearly illustrate the significant benefits gained by ICP from IXP peerings.
Chinese character recognition based on Gabor feature extraction and CNN
NASA Astrophysics Data System (ADS)
Xiong, Yudian; Lu, Tongwei; Jiang, Yongyuan
2018-03-01
As an important application in the field of text line recognition and office automation, Chinese character recognition has become an important subject of pattern recognition. However, due to the large number of Chinese characters and the complexity of its structure, there is a great difficulty in the Chinese character recognition. In order to solve this problem, this paper proposes a method of printed Chinese character recognition based on Gabor feature extraction and Convolution Neural Network(CNN). The main steps are preprocessing, feature extraction, training classification. First, the gray-scale Chinese character image is binarized and normalized to reduce the redundancy of the image data. Second, each image is convoluted with Gabor filter with different orientations, and the feature map of the eight orientations of Chinese characters is extracted. Third, the feature map through Gabor filters and the original image are convoluted with learning kernels, and the results of the convolution is the input of pooling layer. Finally, the feature vector is used to classify and recognition. In addition, the generalization capacity of the network is improved by Dropout technology. The experimental results show that this method can effectively extract the characteristics of Chinese characters and recognize Chinese characters.
Douglas, Pamela K.; Lau, Edward; Anderson, Ariana; Head, Austin; Kerr, Wesley; Wollner, Margalit; Moyer, Daniel; Li, Wei; Durnhofer, Mike; Bramen, Jennifer; Cohen, Mark S.
2013-01-01
The complex task of assessing the veracity of a statement is thought to activate uniquely distributed brain regions based on whether a subject believes or disbelieves a given assertion. In the current work, we present parallel machine learning methods for predicting a subject's decision response to a given propositional statement based on independent component (IC) features derived from EEG and fMRI data. Our results demonstrate that IC features outperformed features derived from event related spectral perturbations derived from any single spectral band, yet were similar to accuracy across all spectral bands combined. We compared our diagnostic IC spatial maps with our conventional general linear model (GLM) results, and found that informative ICs had significant spatial overlap with our GLM results, yet also revealed unique regions like amygdala that were not statistically significant in GLM analyses. Overall, these results suggest that ICs may yield a parsimonious feature set that can be used along with a decision tree structure for interpretation of features used in classifying complex cognitive processes such as belief and disbelief across both fMRI and EEG neuroimaging modalities. PMID:23914164
Oversampling the Minority Class in the Feature Space.
Perez-Ortiz, Maria; Gutierrez, Pedro Antonio; Tino, Peter; Hervas-Martinez, Cesar
2016-09-01
The imbalanced nature of some real-world data is one of the current challenges for machine learning researchers. One common approach oversamples the minority class through convex combination of its patterns. We explore the general idea of synthetic oversampling in the feature space induced by a kernel function (as opposed to input space). If the kernel function matches the underlying problem, the classes will be linearly separable and synthetically generated patterns will lie on the minority class region. Since the feature space is not directly accessible, we use the empirical feature space (EFS) (a Euclidean space isomorphic to the feature space) for oversampling purposes. The proposed method is framed in the context of support vector machines, where the imbalanced data sets can pose a serious hindrance. The idea is investigated in three scenarios: 1) oversampling in the full and reduced-rank EFSs; 2) a kernel learning technique maximizing the data class separation to study the influence of the feature space structure (implicitly defined by the kernel function); and 3) a unified framework for preferential oversampling that spans some of the previous approaches in the literature. We support our investigation with extensive experiments over 50 imbalanced data sets.
Effective Moment Feature Vectors for Protein Domain Structures
Shi, Jian-Yu; Yiu, Siu-Ming; Zhang, Yan-Ning; Chin, Francis Yuk-Lun
2013-01-01
Imaging processing techniques have been shown to be useful in studying protein domain structures. The idea is to represent the pairwise distances of any two residues of the structure in a 2D distance matrix (DM). Features and/or submatrices are extracted from this DM to represent a domain. Existing approaches, however, may involve a large number of features (100–400) or complicated mathematical operations. Finding fewer but more effective features is always desirable. In this paper, based on some key observations on DMs, we are able to decompose a DM image into four basic binary images, each representing the structural characteristics of a fundamental secondary structure element (SSE) or a motif in the domain. Using the concept of moments in image processing, we further derive 45 structural features based on the four binary images. Together with 4 features extracted from the basic images, we represent the structure of a domain using 49 features. We show that our feature vectors can represent domain structures effectively in terms of the following. (1) We show a higher accuracy for domain classification. (2) We show a clear and consistent distribution of domains using our proposed structural vector space. (3) We are able to cluster the domains according to our moment features and demonstrate a relationship between structural variation and functional diversity. PMID:24391828
Steckelberg, Anna-Lena; Akiyama, Benjamin M; Costantino, David A; Sit, Tim L; Nix, Jay C; Kieft, Jeffrey S
2018-06-19
Folded RNA elements that block processive 5' → 3' cellular exoribonucleases (xrRNAs) to produce biologically active viral noncoding RNAs have been discovered in flaviviruses, potentially revealing a new mode of RNA maturation. However, whether this RNA structure-dependent mechanism exists elsewhere and, if so, whether a singular RNA fold is required, have been unclear. Here we demonstrate the existence of authentic RNA structure-dependent xrRNAs in dianthoviruses, plant-infecting viruses unrelated to animal-infecting flaviviruses. These xrRNAs have no sequence similarity to known xrRNAs; thus, we used a combination of biochemistry and virology to characterize their sequence requirements and mechanism of stopping exoribonucleases. By solving the structure of a dianthovirus xrRNA by X-ray crystallography, we reveal a complex fold that is very different from that of the flavivirus xrRNAs. However, both versions of xrRNAs contain a unique topological feature, a pseudoknot that creates a protective ring around the 5' end of the RNA structure; this may be a defining structural feature of xrRNAs. Single-molecule FRET experiments reveal that the dianthovirus xrRNAs undergo conformational changes and can use "codegradational remodeling," exploiting the exoribonucleases' degradation-linked helicase activity to help form their resistant structure; such a mechanism has not previously been reported. Convergent evolution has created RNA structure-dependent exoribonuclease resistance in different contexts, which establishes it as a general RNA maturation mechanism and defines xrRNAs as an authentic functional class of RNAs.
Giraldo, Sergio I; Ramirez, Rafael
2016-01-01
Expert musicians introduce expression in their performances by manipulating sound properties such as timing, energy, pitch, and timbre. Here, we present a data driven computational approach to induce expressive performance rule models for note duration, onset, energy, and ornamentation transformations in jazz guitar music. We extract high-level features from a set of 16 commercial audio recordings (and corresponding music scores) of jazz guitarist Grant Green in order to characterize the expression in the pieces. We apply machine learning techniques to the resulting features to learn expressive performance rule models. We (1) quantitatively evaluate the accuracy of the induced models, (2) analyse the relative importance of the considered musical features, (3) discuss some of the learnt expressive performance rules in the context of previous work, and (4) assess their generailty. The accuracies of the induced predictive models is significantly above base-line levels indicating that the audio performances and the musical features extracted contain sufficient information to automatically learn informative expressive performance patterns. Feature analysis shows that the most important musical features for predicting expressive transformations are note duration, pitch, metrical strength, phrase position, Narmour structure, and tempo and key of the piece. Similarities and differences between the induced expressive rules and the rules reported in the literature were found. Differences may be due to the fact that most previously studied performance data has consisted of classical music recordings. Finally, the rules' performer specificity/generality is assessed by applying the induced rules to performances of the same pieces performed by two other professional jazz guitar players. Results show a consistency in the ornamentation patterns between Grant Green and the other two musicians, which may be interpreted as a good indicator for generality of the ornamentation rules.
Giraldo, Sergio I.; Ramirez, Rafael
2016-01-01
Expert musicians introduce expression in their performances by manipulating sound properties such as timing, energy, pitch, and timbre. Here, we present a data driven computational approach to induce expressive performance rule models for note duration, onset, energy, and ornamentation transformations in jazz guitar music. We extract high-level features from a set of 16 commercial audio recordings (and corresponding music scores) of jazz guitarist Grant Green in order to characterize the expression in the pieces. We apply machine learning techniques to the resulting features to learn expressive performance rule models. We (1) quantitatively evaluate the accuracy of the induced models, (2) analyse the relative importance of the considered musical features, (3) discuss some of the learnt expressive performance rules in the context of previous work, and (4) assess their generailty. The accuracies of the induced predictive models is significantly above base-line levels indicating that the audio performances and the musical features extracted contain sufficient information to automatically learn informative expressive performance patterns. Feature analysis shows that the most important musical features for predicting expressive transformations are note duration, pitch, metrical strength, phrase position, Narmour structure, and tempo and key of the piece. Similarities and differences between the induced expressive rules and the rules reported in the literature were found. Differences may be due to the fact that most previously studied performance data has consisted of classical music recordings. Finally, the rules' performer specificity/generality is assessed by applying the induced rules to performances of the same pieces performed by two other professional jazz guitar players. Results show a consistency in the ornamentation patterns between Grant Green and the other two musicians, which may be interpreted as a good indicator for generality of the ornamentation rules. PMID:28066290
Li, Junjie; Li, Xiaohu; Iyengar, Srinivasan S
2014-06-10
We discuss a multiconfigurational treatment of the "on-the-fly" electronic structure within the quantum wavepacket ab initio molecular dynamics (QWAIMD) method for coupled treatment of quantum nuclear effects with electronic structural effects. Here, multiple single-particle electronic density matrices are simultaneously propagated with a quantum nuclear wavepacket and other classical nuclear degrees of freedom. The multiple density matrices are coupled through a nonorthogonal configuration interaction (NOCI) procedure to construct the instantaneous potential surface. An adaptive-mesh-guided set of basis functions composed of Gaussian primitives are used to simplify the electronic structure calculations. Specifically, with the replacement of the atom-centered basis functions positioned on the centers of the quantum-mechanically treated nuclei by a mesh-guided band of basis functions, the two-electron integrals used to compute the electronic structure potential surface become independent of the quantum nuclear variable and hence reusable along the entire Cartesian grid representing the quantum nuclear coordinates. This reduces the computational complexity involved in obtaining a potential surface and facilitates the interpretation of the individual density matrices as representative diabatic states. The parametric nuclear position dependence of the diabatic states is evaluated at the initial time-step using a Shannon-entropy-based sampling function that depends on an approximation to the quantum nuclear wavepacket and the potential surface. This development is meant as a precursor to an on-the-fly fully multireference electronic structure procedure embedded, on-the-fly, within a quantum nuclear dynamics formalism. We benchmark the current development by computing structural, dynamic, and spectroscopic features for a series of bihalide hydrogen-bonded systems: FHF(-), ClHCl(-), BrHBr(-), and BrHCl(-). We find that the donor-acceptor structural features are in good agreement with experiments. Spectroscopic features are computed using a unified velocity/flux autocorrelation function and include vibrational fundamentals and combination bands. These agree well with experiments and other theories.
Antibody-protein interactions: benchmark datasets and prediction tools evaluation
Ponomarenko, Julia V; Bourne, Philip E
2007-01-01
Background The ability to predict antibody binding sites (aka antigenic determinants or B-cell epitopes) for a given protein is a precursor to new vaccine design and diagnostics. Among the various methods of B-cell epitope identification X-ray crystallography is one of the most reliable methods. Using these experimental data computational methods exist for B-cell epitope prediction. As the number of structures of antibody-protein complexes grows, further interest in prediction methods using 3D structure is anticipated. This work aims to establish a benchmark for 3D structure-based epitope prediction methods. Results Two B-cell epitope benchmark datasets inferred from the 3D structures of antibody-protein complexes were defined. The first is a dataset of 62 representative 3D structures of protein antigens with inferred structural epitopes. The second is a dataset of 82 structures of antibody-protein complexes containing different structural epitopes. Using these datasets, eight web-servers developed for antibody and protein binding sites prediction have been evaluated. In no method did performance exceed a 40% precision and 46% recall. The values of the area under the receiver operating characteristic curve for the evaluated methods were about 0.6 for ConSurf, DiscoTope, and PPI-PRED methods and above 0.65 but not exceeding 0.70 for protein-protein docking methods when the best of the top ten models for the bound docking were considered; the remaining methods performed close to random. The benchmark datasets are included as a supplement to this paper. Conclusion It may be possible to improve epitope prediction methods through training on datasets which include only immune epitopes and through utilizing more features characterizing epitopes, for example, the evolutionary conservation score. Notwithstanding, overall poor performance may reflect the generality of antigenicity and hence the inability to decipher B-cell epitopes as an intrinsic feature of the protein. It is an open question as to whether ultimately discriminatory features can be found. PMID:17910770
Poltev, V I; Anisimov, V M; Sanchez, C; Deriabina, A; Gonzalez, E; Garcia, D; Rivas, F; Polteva, N A
2016-01-01
It is generally accepted that the important characteristic features of the Watson-Crick duplex originate from the molecular structure of its subunits. However, it still remains to elucidate what properties of each subunit are responsible for the significant characteristic features of the DNA structure. The computations of desoxydinucleoside monophosphates complexes with Na-ions using density functional theory revealed a pivotal role of DNA conformational properties of single-chain minimal fragments in the development of unique features of the Watson-Crick duplex. We found that directionality of the sugar-phosphate backbone and the preferable ranges of its torsion angles, combined with the difference between purines and pyrimidines. in ring bases, define the dependence of three-dimensional structure of the Watson-Crick duplex on nucleotide base sequence. In this work, we extended these density functional theory computations to the minimal' fragments of DNA duplex, complementary desoxydinucleoside monophosphates complexes with Na-ions. Using several computational methods and various functionals, we performed a search for energy minima of BI-conformation for complementary desoxydinucleoside monophosphates complexes with different nucleoside sequences. Two sequences are optimized using ab initio method at the MP2/6-31++G** level of theory. The analysis of torsion angles, sugar ring puckering and mutual base positions of optimized structures demonstrates that the conformational characteristic features of complementary desoxydinucleoside monophosphates complexes with Na-ions remain within BI ranges and become closer to the corresponding characteristic features of the Watson-Crick duplex crystals. Qualitatively, the main characteristic features of each studied complementary desoxydinucleoside monophosphates complex remain invariant when different computational methods are used, although the quantitative values of some conformational parameters could vary lying within the limits typical for the corresponding family. We observe that popular functionals in density functional theory calculations lead to the overestimated distances between base pairs, while MP2 computations and the newer complex functionals produce the structures that have too close atom-atom contacts. A detailed study of some complementary desoxydinucleoside monophosphate complexes with Na-ions highlights the existence of several energy minima corresponding to BI-conformations, in other words, the complexity of the relief pattern of the potential energy surface of complementary desoxydinucleoside monophosphate complexes. This accounts for variability of conformational parameters of duplex fragments with the same base sequence. Popular molecular mechanics force fields AMBER and CHARMM reproduce most of the conformational characteristics of desoxydinucleoside monophosphates and their complementary complexes with Na-ions but fail to reproduce some details of the dependence of the Watson-Crick duplex conformation on the nucleotide sequence.
Mechanism of Resilin Elasticity
Qin, Guokui; Hu, Xiao; Cebe, Peggy; Kaplan, David L.
2012-01-01
Resilin is critical in the flight and jumping systems of insects as a polymeric rubber-like protein with outstanding elasticity. However, insight into the underlying molecular mechanisms responsible for resilin elasticity remains undefined. Here we report the structure and function of resilin from Drosophila CG15920. A reversible beta-turn transition was identified in the peptide encoded by exon III and for full length resilin during energy input and release, features that correlate to the rapid deformation of resilin during functions in vivo. Micellar structures and nano-porous patterns formed after beta-turn structures were present via changes in either the thermal or mechanical inputs. A model is proposed to explain the super elasticity and energy conversion mechanisms of resilin, providing important insight into structure-function relationships for this protein. Further, this model offers a view of elastomeric proteins in general where beta-turn related structures serve as fundamental units of the structure and elasticity. PMID:22893127
Decoherence and discrete symmetries in deformed relativistic kinematics
NASA Astrophysics Data System (ADS)
Arzano, Michele
2018-01-01
Models of deformed Poincaré symmetries based on group valued momenta have long been studied as effective modifications of relativistic kinematics possibly capturing quantum gravity effects. In this contribution we show how they naturally lead to a generalized quantum time evolution of the type proposed to model fundamental decoherence for quantum systems in the presence of an evaporating black hole. The same structures which determine such generalized evolution also lead to a modification of the action of discrete symmetries and of the CPT operator. These features can in principle be used to put phenomenological constraints on models of deformed relativistic symmetries using precision measurements of neutral kaons.
The importance of internal facial features in learning new faces.
Longmore, Christopher A; Liu, Chang Hong; Young, Andrew W
2015-01-01
For familiar faces, the internal features (eyes, nose, and mouth) are known to be differentially salient for recognition compared to external features such as hairstyle. Two experiments are reported that investigate how this internal feature advantage accrues as a face becomes familiar. In Experiment 1, we tested the contribution of internal and external features to the ability to generalize from a single studied photograph to different views of the same face. A recognition advantage for the internal features over the external features was found after a change of viewpoint, whereas there was no internal feature advantage when the same image was used at study and test. In Experiment 2, we removed the most salient external feature (hairstyle) from studied photographs and looked at how this affected generalization to a novel viewpoint. Removing the hair from images of the face assisted generalization to novel viewpoints, and this was especially the case when photographs showing more than one viewpoint were studied. The results suggest that the internal features play an important role in the generalization between different images of an individual's face by enabling the viewer to detect the common identity-diagnostic elements across non-identical instances of the face.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nascimento, Daniel R.; DePrince, A. Eugene, E-mail: deprince@chem.fsu.edu
2015-12-07
We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence ofmore » a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field.« less
Rich magneto-absorption spectra of AAB-stacked trilayer graphene.
Do, Thi-Nga; Shih, Po-Hsin; Chang, Cheng-Peng; Lin, Chiun-Yan; Lin, Ming-Fa
2016-06-29
A generalized tight-binding model is developed to investigate the feature-rich magneto-optical properties of AAB-stacked trilayer graphene. Three intragroup and six intergroup inter-Landau-level (inter-LL) optical excitations largely enrich magneto-absorption peaks. In general, the former are much higher than the latter, depending on the phases and amplitudes of LL wavefunctions. The absorption spectra exhibit single- or twin-peak structures which are determined by quantum modes, LL energy spectra and Fermion distribution. The splitting LLs, with different localization centers (2/6 and 4/6 positions in a unit cell), can generate very distinct absorption spectra. There exist extra single peaks because of LL anti-crossings. AAB, AAA, ABA, and ABC stackings considerably differ from one another in terms of the inter-LL category, frequency, intensity, and structure of absorption peaks. The main characteristics of LL wavefunctions and energy spectra and the Fermi-Dirac function are responsible for the configuration-enriched magneto-optical spectra.
The synthesis of monomers with pendent ethynyl groups for modified high performance thermoplastics
NASA Technical Reports Server (NTRS)
Nwokogu, Godson C.; Antoine, Miquel D.; Ansong, Omari
1994-01-01
Synthetic schemes were developed and optimized for twelve new monomers possessing unique structural features and one aspartimide. Two synthetic pathways were compared for preparation of the triarylethane monomers with pendent ethynyl groups. The results show that one of these pathways can be generally applied. The alternative pathway was applicable to the preparation of only one of the twelve compounds, the problem being secondary reactions of the initially formed desired product.
Liftings and stresses for planar periodic frameworks
Borcea, Ciprian; Streinu, Ileana
2015-01-01
We formulate and prove a periodic analog of Maxwell’s theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks. PMID:26973370
1 to 3-Year-Old Children in Day Care Centres in Finland: An Overview of Eight Doctoral Dissertations
ERIC Educational Resources Information Center
Hannikainen, Maritta
2010-01-01
This article gives a general picture of the policy and main structural features of early childhood education services for the younger children in Finland. It also provides an overview of the research on 1 to 3-year-old children in day care centres carried out in Finland during the last 15 years, the focus being on a review of all the eight…
Methods and strategies of object localization
NASA Technical Reports Server (NTRS)
Shao, Lejun; Volz, Richard A.
1989-01-01
An important property of an intelligent robot is to be able to determine the location of an object in 3-D space. A general object localization system structure is proposed, some important issues on localization discussed, and an overview given for current available object localization algorithms and systems. The algorithms reviewed are characterized by their feature extracting and matching strategies; the range finding methods; the types of locatable objects; and the mathematical formulating methods.
An efficient direct method for image registration of flat objects
NASA Astrophysics Data System (ADS)
Nikolaev, Dmitry; Tihonkih, Dmitrii; Makovetskii, Artyom; Voronin, Sergei
2017-09-01
Image alignment of rigid surfaces is a rapidly developing area of research and has many practical applications. Alignment methods can be roughly divided into two types: feature-based methods and direct methods. Known SURF and SIFT algorithms are examples of the feature-based methods. Direct methods refer to those that exploit the pixel intensities without resorting to image features and image-based deformations are general direct method to align images of deformable objects in 3D space. Nevertheless, it is not good for the registration of images of 3D rigid objects since the underlying structure cannot be directly evaluated. In the article, we propose a model that is suitable for image alignment of rigid flat objects under various illumination models. The brightness consistency assumptions used for reconstruction of optimal geometrical transformation. Computer simulation results are provided to illustrate the performance of the proposed algorithm for computing of an accordance between pixels of two images.
Petrography of shock features in the 1953 Manson 2-A drill core
NASA Technical Reports Server (NTRS)
Short, N. M.; Gold, D. P.
1993-01-01
Drilling of Nx core in late 1953 into an anomalous zone of disturbed rocks northwest of Manson, Iowa disclosed presence of extensive breccias including crystalline rocks brought to the surface from depths of 4 km or more. Hole 2-A penetrated breccias dominated by leucocratic igneous and metamorphic lithologies, later interpreted to be part of a general ringed peak complex within a 35 km wide impact structure produced about 65 Ma ago. Proof of this origin was given in 1966 by NMS through recognition of shock metamorphic features in 2-A materials during a cursory examination of samples provided by R.A. Hoppin, University of Iowa. A detailed study of this material now underway has revealed that most breccia clasts in 2-A show abundant and varied evidence of shock damage, including extensive planar deformation features (PDF) in quartz, K-feldspar, plagioclase, and a pyroxene and varying degrees of isotropization and incipient melting in feldspars.
Building Facade Reconstruction by Fusing Terrestrial Laser Points and Images
Pu, Shi; Vosselman, George
2009-01-01
Laser data and optical data have a complementary nature for three dimensional feature extraction. Efficient integration of the two data sources will lead to a more reliable and automated extraction of three dimensional features. This paper presents a semiautomatic building facade reconstruction approach, which efficiently combines information from terrestrial laser point clouds and close range images. A building facade's general structure is discovered and established using the planar features from laser data. Then strong lines in images are extracted using Canny extractor and Hough transformation, and compared with current model edges for necessary improvement. Finally, textures with optimal visibility are selected and applied according to accurate image orientations. Solutions to several challenge problems throughout the collaborated reconstruction, such as referencing between laser points and multiple images and automated texturing, are described. The limitations and remaining works of this approach are also discussed. PMID:22408539
A Systematic Investigation of Computation Models for Predicting Adverse Drug Reactions (ADRs)
Kuang, Qifan; Wang, MinQi; Li, Rong; Dong, YongCheng; Li, Yizhou; Li, Menglong
2014-01-01
Background Early and accurate identification of adverse drug reactions (ADRs) is critically important for drug development and clinical safety. Computer-aided prediction of ADRs has attracted increasing attention in recent years, and many computational models have been proposed. However, because of the lack of systematic analysis and comparison of the different computational models, there remain limitations in designing more effective algorithms and selecting more useful features. There is therefore an urgent need to review and analyze previous computation models to obtain general conclusions that can provide useful guidance to construct more effective computational models to predict ADRs. Principal Findings In the current study, the main work is to compare and analyze the performance of existing computational methods to predict ADRs, by implementing and evaluating additional algorithms that have been earlier used for predicting drug targets. Our results indicated that topological and intrinsic features were complementary to an extent and the Jaccard coefficient had an important and general effect on the prediction of drug-ADR associations. By comparing the structure of each algorithm, final formulas of these algorithms were all converted to linear model in form, based on this finding we propose a new algorithm called the general weighted profile method and it yielded the best overall performance among the algorithms investigated in this paper. Conclusion Several meaningful conclusions and useful findings regarding the prediction of ADRs are provided for selecting optimal features and algorithms. PMID:25180585
TRADITIONAL METALLURGY, NANOTECHNOLOGIES AND STRUCTURAL MATERIALS: A SORBY AWARD LECTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louthan, M
2007-07-17
Traditional metallurgical processes are among the many ''old fashion'' practices that use nanoparticles to control the behavior of materials. Many of these practices were developed long before microscopy could resolve nanoscale features, yet the practitioners learned to manipulate and control microstructural elements that they could neither see nor identify. Furthermore, these early practitioners used that control to modify microstructures and develop desired material properties. Centuries old colored glass, ancient high strength steels and medieval organ pipes derived many of their desirable features through control of nanoparticles in their microstructures. Henry Sorby was among the first to recognize that the propertiesmore » of rocks, minerals, metals and organic materials were controlled by microstructure. However, Mr. Sorby was accused of the folly of trying to study mountains with a microscope. Although he could not resolve nanoscale microstructural features, Mr. Sorby's observations revolutionized the study of materials. The importance of nanoscale microstructural elements should be emphasized, however, because the present foundation for structural materials was built by manipulating those features. That foundation currently supports several multibillion dollar industries but is not generally considered when the nanomaterials revolution is discussed. This lecture demonstrates that using nanotechnologies to control the behavior of metallic materials is almost as old as the practice of metallurgy and that many of the emergent nanomaterials technologists are walking along pathways previously paved by traditional metallurgists.« less
Rapid iterative reanalysis for automated design
NASA Technical Reports Server (NTRS)
Bhatia, K. G.
1973-01-01
A method for iterative reanalysis in automated structural design is presented for a finite-element analysis using the direct stiffness approach. A basic feature of the method is that the generalized stiffness and inertia matrices are expressed as functions of structural design parameters, and these generalized matrices are expanded in Taylor series about the initial design. Only the linear terms are retained in the expansions. The method is approximate because it uses static condensation, modal reduction, and the linear Taylor series expansions. The exact linear representation of the expansions of the generalized matrices is also described and a basis for the present method is established. Results of applications of the present method to the recalculation of the natural frequencies of two simple platelike structural models are presented and compared with results obtained by using a commonly applied analysis procedure used as a reference. In general, the results are in good agreement. A comparison of the computer times required for the use of the present method and the reference method indicated that the present method required substantially less time for reanalysis. Although the results presented are for relatively small-order problems, the present method will become more efficient relative to the reference method as the problem size increases. An extension of the present method to static reanalysis is described, ana a basis for unifying the static and dynamic reanalysis procedures is presented.
Crack propagation and arrest in CFRP materials with strain softening regions
NASA Astrophysics Data System (ADS)
Dilligan, Matthew Anthony
Understanding the growth and arrest of cracks in composite materials is critical for their effective utilization in fatigue-sensitive and damage susceptible applications such as primary aircraft structures. Local tailoring of the laminate stack to provide crack arrest capacity intermediate to major structural components has been investigated and demonstrated since some of the earliest efforts in composite aerostructural design, but to date no rigorous model of the crack arrest mechanism has been developed to allow effective sizing of these features. To address this shortcoming, the previous work in the field is reviewed, with particular attention to the analysis methodologies proposed for similar arrest features. The damage and arrest processes active in such features are investigated, and various models of these processes are discussed and evaluated. Governing equations are derived based on a proposed mechanistic model of the crack arrest process. The derived governing equations are implemented in a numerical model, and a series of simulations are performed to ascertain the general characteristics of the proposed model and allow qualitative comparison to existing experimental results. The sensitivity of the model and the arrest process to various parameters is investigated, and preliminary conclusions regarding the optimal feature configuration are developed. To address deficiencies in the available material and experimental data, a series of coupon tests are developed and conducted covering a range of arrest zone configurations. Test results are discussed and analyzed, with a particular focus on identification of the proposed failure and arrest mechanisms. Utilizing the experimentally derived material properties, the tests are reproduced with both the developed numerical tool as well as a FEA-based implementation of the arrest model. Correlation between the simulated and experimental results is analyzed, and future avenues of investigation are identified. Utilizing the developed model, a sensitivity study is conducted to assess the current proposed arrest configuration. Optimum distribution and sizing of the arrest zones is investigated, and general design guidelines are developed.
Rowan, L.C.; Trautwein, C.M.; Purdy, T.L.
1990-01-01
This study was undertaken as part of the Conterminous U.S. Mineral Assessment Program (CUSMAP). The purpose of the study was to map linear features on Landsat Multispectral Scanner (MSS) images and a proprietary side-looking airborne radar (SLAR) image mosaic and to determine the spatial relationship between these linear features and the locations of metallic mineral occurrE-nces. The results show a close spatial association of linear features with metallic mineral occurrences in parts of the quadrangle, but in other areas the association is less well defined. Linear features are defined as distinct linear and slightly curvilinear elements mappable on MSS and SLAR images. The features generally represent linear segments of streams, ridges, and terminations of topographic features; however, they may also represent tonal patterns that are related to variations in lithology and vegetation. Most linear features in the Butte quadrangle probably represent underlying structural elements, such as fractures (with and without displacement), dikes, and alignment of fold axes. However, in areas underlain by sedimentary rocks, some of the linear features may reflect bedding traces. This report describes the geologic setting of the Butte quadrangle, the procedures used in mapping and analyzing the linear features, and the results of the study. Relationship of these features to placer and non-metal deposits were not analyzed in this study and are not discussed in this report.
Structural features based genome-wide characterization and prediction of nucleosome organization
2012-01-01
Background Nucleosome distribution along chromatin dictates genomic DNA accessibility and thus profoundly influences gene expression. However, the underlying mechanism of nucleosome formation remains elusive. Here, taking a structural perspective, we systematically explored nucleosome formation potential of genomic sequences and the effect on chromatin organization and gene expression in S. cerevisiae. Results We analyzed twelve structural features related to flexibility, curvature and energy of DNA sequences. The results showed that some structural features such as DNA denaturation, DNA-bending stiffness, Stacking energy, Z-DNA, Propeller twist and free energy, were highly correlated with in vitro and in vivo nucleosome occupancy. Specifically, they can be classified into two classes, one positively and the other negatively correlated with nucleosome occupancy. These two kinds of structural features facilitated nucleosome binding in centromere regions and repressed nucleosome formation in the promoter regions of protein-coding genes to mediate transcriptional regulation. Based on these analyses, we integrated all twelve structural features in a model to predict more accurately nucleosome occupancy in vivo than the existing methods that mainly depend on sequence compositional features. Furthermore, we developed a novel approach, named DLaNe, that located nucleosomes by detecting peaks of structural profiles, and built a meta predictor to integrate information from different structural features. As a comparison, we also constructed a hidden Markov model (HMM) to locate nucleosomes based on the profiles of these structural features. The result showed that the meta DLaNe and HMM-based method performed better than the existing methods, demonstrating the power of these structural features in predicting nucleosome positions. Conclusions Our analysis revealed that DNA structures significantly contribute to nucleosome organization and influence chromatin structure and gene expression regulation. The results indicated that our proposed methods are effective in predicting nucleosome occupancy and positions and that these structural features are highly predictive of nucleosome organization. The implementation of our DLaNe method based on structural features is available online. PMID:22449207
Dependence of credit spread and macro-conditions based on an alterable structure model.
Xie, Yun; Tian, Yixiang; Xiao, Zhuang; Zhou, Xiangyun
2018-01-01
The fat-tail financial data and cyclical financial market makes it difficult for the fixed structure model based on Gaussian distribution to characterize the dynamics of corporate bonds spreads. Using a flexible structure model based on generalized error distribution, this paper focuses on the impact of macro-level factors on the spreads of corporate bonds in China. It is found that in China's corporate bonds market, macroeconomic conditions have obvious structural transformational effects on bonds spreads, and their structural features remain stable with the downgrade of bonds ratings. The impact of macroeconomic conditions on spreads is significant for different structures, and the differences between the structures increase as ratings decline. For different structures, the persistent characteristics of bonds spreads are obviously stronger than those of recursive ones, which suggest an obvious speculation in bonds market. It is also found that the structure switching of bonds with different ratings is not synchronous, which indicates the shift of investment between different grades of bonds.
Dependence of credit spread and macro-conditions based on an alterable structure model
2018-01-01
The fat-tail financial data and cyclical financial market makes it difficult for the fixed structure model based on Gaussian distribution to characterize the dynamics of corporate bonds spreads. Using a flexible structure model based on generalized error distribution, this paper focuses on the impact of macro-level factors on the spreads of corporate bonds in China. It is found that in China's corporate bonds market, macroeconomic conditions have obvious structural transformational effects on bonds spreads, and their structural features remain stable with the downgrade of bonds ratings. The impact of macroeconomic conditions on spreads is significant for different structures, and the differences between the structures increase as ratings decline. For different structures, the persistent characteristics of bonds spreads are obviously stronger than those of recursive ones, which suggest an obvious speculation in bonds market. It is also found that the structure switching of bonds with different ratings is not synchronous, which indicates the shift of investment between different grades of bonds. PMID:29723295
Evaluating Hierarchical Structure in Music Annotations
McFee, Brian; Nieto, Oriol; Farbood, Morwaread M.; Bello, Juan Pablo
2017-01-01
Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement. PMID:28824514
Alteration textures in terrestrial volcanic glass and the associated bacterial community.
Cockell, C S; Olsson-Francis, K; Herrera, A; Meunier, A
2009-01-01
Alteration textures were examined in subglacial (hyaloclastite) deposits at Valafell, Southern Iceland. Pitted and 'elongate' alteration features are observed in the glass similar to granular and tubular features reported previously in deep-ocean basaltic glasses, but elongate features generally did not have a length to width ratio greater than five. Elongate features were found in only 7% of surfaces. Crystalline basalt clasts, which are incorporated into the hyaloclastite, did not display elongate structures. Pitted alteration features were poorly defined in crystalline basalt, comprising only 4% of the surface compared to 47% in the case of basaltic glass. Examination of silica-rich glass (obsidian) and rhyolite similarly showed poorly defined pitted textures that comprised less than 15% of the surface and no elongate features were observed. These data highlight the differences in alteration textures between terrestrial basaltic glass and previously studied deep-ocean and subsurface basaltic glass, and the important role of mineralogy in controlling the type and abundance of alteration features. The hyaloclastite contains a diverse and abundant bacterial population, as determined by 16S rDNA analysis, which could be involved in weathering the glass. Despite the presence of phototrophs, we show that they were not involved in the production of most alteration textures in the basaltic glass materials we examined.
Automatic programming of arc welding robots
NASA Astrophysics Data System (ADS)
Padmanabhan, Srikanth
Automatic programming of arc welding robots requires the geometric description of a part from a solid modeling system, expert weld process knowledge and the kinematic arrangement of the robot and positioner automatically. Current commercial solid models are incapable of storing explicitly product and process definitions of weld features. This work presents a paradigm to develop a computer-aided engineering environment that supports complete weld feature information in a solid model and to create an automatic programming system for robotic arc welding. In the first part, welding features are treated as properties or attributes of an object, features which are portions of the object surface--the topological boundary. The structure for representing the features and attributes is a graph called the Welding Attribute Graph (WAGRAPH). The method associates appropriate weld features to geometric primitives, adds welding attributes, and checks the validity of welding specifications. A systematic structure is provided to incorporate welding attributes and coordinate system information in a CSG tree. The specific implementation of this structure using a hybrid solid modeler (IDEAS) and an object-oriented programming paradigm is described. The second part provides a comprehensive methodology to acquire and represent weld process knowledge required for the proper selection of welding schedules. A methodology of knowledge acquisition using statistical methods is proposed. It is shown that these procedures did little to capture the private knowledge of experts (heuristics), but helped in determining general dependencies, and trends. A need was established for building the knowledge-based system using handbook knowledge and to allow the experts further to build the system. A methodology to check the consistency and validity for such knowledge addition is proposed. A mapping shell designed to transform the design features to application specific weld process schedules is described. A new approach using fixed path modified continuation methods is proposed in the final section to plan continuously the trajectory of weld seams in an integrated welding robot and positioner environment. The joint displacement, velocity, and acceleration histories all along the path as a function of the path parameter for the best possible welding condition are provided for the robot and the positioner to track various paths normally encountered in arc welding.
Feature-to-Feature Inference Under Conditions of Cue Restriction and Dimensional Correlation.
Lancaster, Matthew E; Homa, Donald
2017-01-01
The present study explored feature-to-feature and label-to-feature inference in a category task for different category structures. In the correlated condition, each of the 4 dimensions comprising the category was positively correlated to each other and to the category label. In the uncorrelated condition, no correlation existed between the 4 dimensions comprising the category, although the dimension to category label correlation matched that of the correlated condition. After learning, participants made inference judgments of a missing feature, given 1, 2, or 3 feature cues; on half the trials, the category label was also included as a cue. The results showed superior inference of features following training on the correlated structure, with accurate inference when only a single feature was presented. In contrast, a single-feature cue resulted in chance levels of inference for the uncorrelated structure. Feature inference systematically improved with number of cues after training on the correlated structure. Surprisingly, a similar outcome was obtained for the uncorrelated structure, an outcome that must have reflected mediation via the category label. A descriptive model is briefly introduced to explain the results, with a suggestion that this paradigm might be profitably extended to hierarchical structures where the levels of feature-to-feature inference might vary with the depth of the hierarchy.
Novel chromatin texture features for the classification of pap smears
NASA Astrophysics Data System (ADS)
Bejnordi, Babak E.; Moshavegh, Ramin; Sujathan, K.; Malm, Patrik; Bengtsson, Ewert; Mehnert, Andrew
2013-03-01
This paper presents a set of novel structural texture features for quantifying nuclear chromatin patterns in cells on a conventional Pap smear. The features are derived from an initial segmentation of the chromatin into bloblike texture primitives. The results of a comprehensive feature selection experiment, including the set of proposed structural texture features and a range of different cytology features drawn from the literature, show that two of the four top ranking features are structural texture features. They also show that a combination of structural and conventional features yields a classification performance of 0.954±0.019 (AUC±SE) for the discrimination of normal (NILM) and abnormal (LSIL and HSIL) slides. The results of a second classification experiment, using only normal-appearing cells from both normal and abnormal slides, demonstrates that a single structural texture feature measuring chromatin margination yields a classification performance of 0.815±0.019. Overall the results demonstrate the efficacy of the proposed structural approach and that it is possible to detect malignancy associated changes (MACs) in Papanicoloau stain.
THE FINE STRUCTURE OF GREEN BACTERIA
Cohen-Bazire, Germaine; Pfennig, Norbert; Kunisawa, Riyo
1964-01-01
The fine structure of several strains of green bacteria belonging to the genus Chlorobium has been studied in thin sections with the electron microscope. In addition to having general cytological features typical of Gram-negative bacteria, the cells of these organisms always contain membranous mesosomal elements, connected with the cytoplasmic membrane, and an elaborate system of isolated cortical vesicles, some 300 to 400 A wide and 1000 to 1500 A long. The latter structures, chlorobium vesicles, have been isolated in a partly purified state by differential centrifugation of cell-free extracts. They are associated with a centrifugal fraction that has a very high specific chlorophyll content. In all probability, therefore, the chlorobium vesicles are the site of the photosynthetic apparatus of green bacteria. PMID:14195611
Music acquisition: effects of enculturation and formal training on development.
Hannon, Erin E; Trainor, Laurel J
2007-11-01
Musical structure is complex, consisting of a small set of elements that combine to form hierarchical levels of pitch and temporal structure according to grammatical rules. As with language, different systems use different elements and rules for combination. Drawing on recent findings, we propose that music acquisition begins with basic features, such as peripheral frequency-coding mechanisms and multisensory timing connections, and proceeds through enculturation, whereby everyday exposure to a particular music system creates, in a systematic order of acquisition, culture-specific brain structures and representations. Finally, we propose that formal musical training invokes domain-specific processes that affect salience of musical input and the amount of cortical tissue devoted to its processing, as well as domain-general processes of attention and executive functioning.
NASA Astrophysics Data System (ADS)
Hruszkewycz, S. O.; Zhang, Q.; Holt, M. V.; Highland, M. J.; Evans, P. G.; Fuoss, P. H.
2016-10-01
Bragg projection ptychography (BPP) is a coherent diffraction imaging technique capable of mapping the spatial distribution of the Bragg structure factor in nanostructured thin films. Here, we show that, because these images are projections, the structural sensitivity of the resulting images depends on the film thickness and the aspect ratio and orientation of the features of interest and that image interpretation depends on these factors. We model changes in contrast in the BPP reconstructions of simulated PbTiO3 ferroelectric thin films with meandering 180∘ stripe domains as a function of film thickness, discuss their origin, and comment on the implication of these factors on the design of BPP experiments of general nanostructured films.
Small, Neil; Green, John; Spink, Joanna; Forster, Anne; Young, John
2009-01-01
This article contrasts community hospital and general hospital philosophies of care and examines how they relate to patients' and caregivers' experiences. Semi-structured interviews with 42 staff were used to produce care setting vignettes in six community hospitals and four general hospitals in the midlands and north of England. The vignettes were used with 26 patients and 10 caregivers in semi-structured interviews. Community hospital and general hospital staff identified shared understandings of requirements for post-acute rehabilitation care for older people. Distinctive features were: general hospital--medical efficiency, helping patients get better, high standard of care, need for stimulation; community hospital--home-like setting, quiet, calm ambience, good views, orientated to elderly people, encouragement of social interaction, involvement of relatives in care. In the main there was symmetry between staff aspirations and patients' experience. However some concepts used and assumptions made by staff were not recognised by patients. These were characteristically reframed in patients' answers as if they were discussing subjective dimensions of care. There was patient and caregiver preference for the home-like environment of community hospitals. In care of older people, where the focus is rehabilitation, patient preferences are particularly pertinent and should be considered alongside clinical outcomes and cost-effectiveness.
Dawson, Colin; Gerken, Louann
2011-09-01
While many constraints on learning must be relatively experience-independent, past experience provides a rich source of guidance for subsequent learning. Discovering structure in some domain can inform a learner's future hypotheses about that domain. If a general property accounts for particular sub-patterns, a rational learner should not stipulate separate explanations for each detail without additional evidence, as the general structure has "explained away" the original evidence. In a grammar-learning experiment using tone sequences, manipulating learners' prior exposure to a tone environment affects their sensitivity to the grammar-defining feature, in this case consecutive repeated tones. Grammar-learning performance is worse if context melodies are "smooth" -- when small intervals occur more than large ones -- as Smoothness is a general property accounting for a high rate of repetition. We present an idealized Bayesian model as a "best case" benchmark for learning repetition grammars. When context melodies are Smooth, the model places greater weight on the small-interval constraint, and does not learn the repetition rule as well as when context melodies are not Smooth, paralleling the human learners. These findings support an account of abstract grammar-induction in which learners rationally assess the statistical evidence for underlying structure based on a generative model of the environment. Copyright © 2010 Elsevier B.V. All rights reserved.
An Integrated Account of Generalization across Objects and Features
ERIC Educational Resources Information Center
Kemp, Charles; Shafto, Patrick; Tenenbaum, Joshua B.
2012-01-01
Humans routinely make inductive generalizations about unobserved features of objects. Previous accounts of inductive reasoning often focus on inferences about a single object or feature: accounts of causal reasoning often focus on a single object with one or more unobserved features, and accounts of property induction often focus on a single…
Chen, Ying Pin; Liu, Tian Fu; Fordham, Stephen; Zhou, Hong Cai
2015-12-01
Two metal-organic frameworks [PCN-426(Ni) and PCN-427(Cu)] have been designed and synthesized to investigate the structure predictability using a SBB (supermolecular building blocks) approach. Tetratopic ligands featuring 120° angular carboxylate moieties were coordinated with a [Ni3(μ3-O)] cluster and a [Cu2O2] unit, respectively. As topologically predicted, 4-connected networks with square coordination adopted the nbo net for the Ni-MOF and ssb net for the Cu-MOF. PCN-426(Ni) was augmented with 12-connected octahedral SBBs, while PCN-427(Cu) was constructed with tetragonal open channels. After a CO2 supercritical drying procedure, the PCN-426(Ni) possessed a Brunauer-Emmett-Teller (BET) surface area as high as 3935 m(2) g(-1) and impressively high N2 uptake of 1500 cm(3) g(-1). This work demonstrates the generalization of the SBB strategy, finding an alternative to inconvenient synthetic processes to achieve the desired structural features.
The precision measurement and assembly for miniature parts based on double machine vision systems
NASA Astrophysics Data System (ADS)
Wang, X. D.; Zhang, L. F.; Xin, M. Z.; Qu, Y. Q.; Luo, Y.; Ma, T. M.; Chen, L.
2015-02-01
In the process of miniature parts' assembly, the structural features on the bottom or side of the parts often need to be aligned and positioned. The general assembly equipment integrated with one vertical downward machine vision system cannot satisfy the requirement. A precision automatic assembly equipment was developed with double machine vision systems integrated. In the system, a horizontal vision system is employed to measure the position of the feature structure at the parts' side view, which cannot be seen with the vertical one. The position measured by horizontal camera is converted to the vertical vision system with the calibration information. By careful calibration, the parts' alignment and positioning in the assembly process can be guaranteed. The developed assembly equipment has the characteristics of easy implementation, modularization and high cost performance. The handling of the miniature parts and assembly procedure were briefly introduced. The calibration procedure was given and the assembly error was analyzed for compensation.
Qudit hypergraph states and their properties
NASA Astrophysics Data System (ADS)
Xiong, Fei-Lei; Zhen, Yi-Zheng; Cao, Wen-Fei; Chen, Kai; Chen, Zeng-Bing
2018-01-01
Hypergraph states, a generalization of graph states, constitute a large class of quantum states with intriguing nonlocal properties, and they have promising applications in quantum information science and technology. In this paper, we study some features of an independently proposed generalization of hypergraph states to qudit hypergraph states, i.e., each vertex in the generalized hypergraph (multi-hypergraph) represents a d -level system instead of a two-level one. It is shown that multi-hypergraphs and d -level hypergraph states have a one-to-one correspondence, and the structure of a multi-hypergraph exhibits the entanglement property of the corresponding quantum state. We discuss their relationship with some well-known state classes, e.g., real equally weighted states and stabilizer states. The Bell nonlocality, an important resource in fulfilling many quantum information tasks, is also investigated.
Tsallis thermostatistics for finite systems: a Hamiltonian approach
NASA Astrophysics Data System (ADS)
Adib, Artur B.; Moreira, Andrã© A.; Andrade, José S., Jr.; Almeida, Murilo P.
2003-05-01
The derivation of the Tsallis generalized canonical distribution from the traditional approach of the Gibbs microcanonical ensemble is revisited (Phys. Lett. A 193 (1994) 140). We show that finite systems whose Hamiltonians obey a generalized homogeneity relation rigorously follow the nonextensive thermostatistics of Tsallis. In the thermodynamical limit, however, our results indicate that the Boltzmann-Gibbs statistics is always recovered, regardless of the type of potential among interacting particles. This approach provides, moreover, a one-to-one correspondence between the generalized entropy and the Hamiltonian structure of a wide class of systems, revealing a possible origin for the intrinsic nonlinear features present in the Tsallis formalism that lead naturally to power-law behavior. Finally, we confirm these exact results through extensive numerical simulations of the Fermi-Pasta-Ulam chain of anharmonic oscillators.
Colloquium: High pressure and road to room temperature superconductivity
NASA Astrophysics Data System (ADS)
Gor'kov, Lev P.; Kresin, Vladimir Z.
2018-01-01
This Colloquium is concerned with the superconducting state of new high-Tc compounds containing hydrogen ions (hydrides). Recently superconductivity with the record-setting transition temperature of Tc=203 K was reported for sulfur hydrides under high pressure. In general, high pressure serves as a path finding tool toward novel structures, including those with very high Tc . The field has a rich and interesting history. Currently, it is broadly recognized that superconductivity in sulfur hydrides owes its origin to the phonon mechanism. However, the picture differs from the conventional one in important ways. The phonon spectrum in sulfur hydride is both broad and has a complex structure. Superconductivity arises mainly due to strong coupling to the high-frequency optical modes, although the acoustic phonons also make a noticeable contribution. A new approach is described, which generalizes the standard treatment of the phonon mechanism and makes it possible to obtain an analytical expression for Tc in this phase. It turns out that, unlike in the conventional case, the value of the isotope coefficient (for the deuterium-hydrogen substitution) varies with the pressure and reflects the impact of the optical modes. The phase diagram, that is the pressure dependence of Tc , is rather peculiar. A crucial feature is that increasing pressure results in a series of structural transitions, including the one which yields the superconducting phase with the record Tc of 203 K. In a narrow region near P ≈150 GPa the critical temperature rises sharply from Tc≈120 to ≈200 K . It seems that the sharp structural transition, which produces the high-Tc phase, is a first-order phase transition caused by interaction between the order parameter and lattice deformations. A remarkable feature of the electronic spectrum in the high-Tc phase is the appearance of small pockets at the Fermi level. Their presence leads to a two-gap spectrum, which can, in principle, be observed with the future use of tunneling spectroscopy. This feature leads to nonmonotonic and strongly asymmetric pressure dependence of Tc . Other hydrides, e.g., CaH6 and MgH6 , can be expected to display even higher values of Tc up to room temperature. The fundamental challenge lies in the creation of a structure capable of displaying high Tc at ambient pressure.
Langenheim, V.E.; Jachens, Robert C.; Buesch, David C.
2014-01-01
Aeromagnetic data help provide the underpinnings of a hydrogeologic framework for Fort Irwin by locating inferred structural features or grain that influence groundwater flow. Magnetization boundaries defined by horizontal-gradient analyses coincide locally with Cenozoic faults and can be used to extend these faults beneath cover. These boundaries also highlight the structural grain within the crystalline rocks and may serve as a proxy for fracturing, an important source of permeability within the generally impermeable basement rocks, thus mapping potential groundwater pathways through and along the mountain ranges in the study area.
Toward intelligent information sysytem
NASA Astrophysics Data System (ADS)
Onodera, Natsuo
"Hypertext" means a concept of a novel computer-assisted tool for storage and retrieval of text information based on human association. Structure of knowledge in our idea processing is generally complicated and networked, but traditional paper documents merely express it in essentially linear and sequential forms. However, recent advances in work-station technology have allowed us to process easily electronic documents containing non-linear structure such as references or hierarchies. This paper describes concept, history and basic organization of hypertext, and shows the outline and features of existing main hypertext systems. Particularly, use of the hypertext database is illustrated by an example of Intermedia developed by Brown University.
Health Management Technology as a General Solution Framework
NASA Astrophysics Data System (ADS)
Nakajima, Hiroshi; Hasegawa, Yoshifumi; Tasaki, Hiroshi; Iwami, Taro; Tsuchiya, Naoki
Health maintenance and improvement of humans, artifacts, and nature are pressing requirements considering the problems human beings have faced. In this article, the health management technology is proposed by centering cause-effect structure. The important aspect of the technology is evolvement through human-machine collaboration in response to changes of target systems. One of the reasons why the cause-effect structure is centered in the technology is its feature of transparency to humans by instinct point of view. The notion has been spreaded over wide application areas such as quality control, energy management, and healthcare. Some experiments were conducted to prove effectiveness of the technology in the article.
Validation of cryo-EM structure of IP₃R1 channel.
Murray, Stephen C; Flanagan, John; Popova, Olga B; Chiu, Wah; Ludtke, Steven J; Serysheva, Irina I
2013-06-04
About a decade ago, three electron cryomicroscopy (cryo-EM) single-particle reconstructions of IP3R1 were reported at low resolution. It was disturbing that these structures bore little similarity to one another, even at the level of quaternary structure. Recently, we published an improved structure of IP3R1 at ∼1 nm resolution. However, this structure did not bear any resemblance to any of the three previously published structures, leading to the question of why the structure should be considered more reliable than the original three. Here, we apply several methods, including class-average/map comparisons, tilt-pair validation, and use of multiple refinement software packages, to give strong evidence for the reliability of our recent structure. The map resolution and feature resolvability are assessed with the gold standard criterion. This approach is generally applicable to assessing the validity of cryo-EM maps of other molecular machines. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sedat Çetiner, Ziya; Ertekin, Can; Filiz, Nurdan
2016-04-01
Representative geodiversity elements such as minerals, rocks, fossils, landforms, etc are key components in order to obtain data for the pursuit of geo-research. The scientific worth of geodiversity is not only related to how the geosphere works but also is connected with the conservation of earth materials for present and future geo-knowledge and geoscience milieu. Hence, the nonrenewable nature of geodiversity elements in the human time scale is taken into account for the conservation of natural diversity or simply geo-conservation. Geodiversity as an abiotic element ascribes to in situ or ex situ features both of which maintain scientific value and are used by various societies such as in teaching, tourism, etc. Ex situ elements are known as fossils, minerals and rocks found in museum collections on the other hand in situ features are known as geosites for which there are certain sub-categories such as geomorphological (landform), hydrogeological, paleontological, structural, stratigraphic sequence and lithological. Due to the plethora of geological data dispersed among geodiversity elements, the first crucial step is to execute an inventory solid study. The scope of this study is to survey geodiversity features of potential natural sites distributed the entire sectors of the Biga Peninsula of Northwestern Turkey. In the territory, there are 37 natural sites with their own data set. This data describing their boundaries and administrative features were acquired from Directorate General for Preservation of Natural Heritage. Then, site boundaries, regional published geological maps, surface hydrologic and anthropic attributes were overlaid conceiving as a single unit. Before initiating the inventory survey, the criteria scale were established for geoscience value and geo-tourism potential. In these two frames, geodiversity elements were labeled and tabulated by their representativeness, integrity, rarity, scientific knowledge, scenery, interpretative potential and accessibility to classify aforementioned natural sites. Our initial results show that western (the coast of Dalyan), southern west (Tuzla Geothermal Field) and northern (Çardak Lagoon) coasts are thought to be identify as a potential geosites and promising areas for geo-tourism as well. In general terms, potential geosites in coastal regions are recognized primarily by their geomorphological features whereas inland geosites are designated by their lithological and structural features.
Noel, Jeffrey K; Whitford, Paul C; Onuchic, José N
2012-07-26
Structure-based models (SBMs) are simplified models of the biomolecular dynamics that arise from funneled energy landscapes. We recently introduced an all-atom SBM that explicitly represents the atomic geometry of a biomolecule. While this initial study showed the robustness of the all-atom SBM Hamiltonian to changes in many of the energetic parameters, an important aspect, which has not been explored previously, is the definition of native interactions. In this study, we propose a general definition for generating atomically grained contact maps called "Shadow". The Shadow algorithm initially considers all atoms within a cutoff distance and then, controlled by a screening parameter, discards the occluded contacts. We show that this choice of contact map is not only well behaved for protein folding, since it produces consistently cooperative folding behavior in SBMs but also desirable for exploring the dynamics of macromolecular assemblies since, it distributes energy similarly between RNAs and proteins despite their disparate internal packing. All-atom structure-based models employing Shadow contact maps provide a general framework for exploring the geometrical features of biomolecules, especially the connections between folding and function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Koushik; Jawulski, Konrad; Pastorczak, Ewa
A perfect-pairing generalized valence bond (GVB) approximation is known to be one of the simplest approximations, which allows one to capture the essence of static correlation in molecular systems. In spite of its attractive feature of being relatively computationally efficient, this approximation misses a large portion of dynamic correlation and does not offer sufficient accuracy to be generally useful for studying electronic structure of molecules. We propose to correct the GVB model and alleviate some of its deficiencies by amending it with the correlation energy correction derived from the recently formulated extended random phase approximation (ERPA). On the examples ofmore » systems of diverse electronic structures, we show that the resulting ERPA-GVB method greatly improves upon the GVB model. ERPA-GVB recovers most of the electron correlation and it yields energy barrier heights of excellent accuracy. Thanks to a balanced treatment of static and dynamic correlation, ERPA-GVB stays reliable when one moves from systems dominated by dynamic electron correlation to those for which the static correlation comes into play.« less
A General-Purpose Optimization Engine for Multi-Disciplinary Design Applications
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.; Berke, Laszlo
1996-01-01
A general purpose optimization tool for multidisciplinary applications, which in the literature is known as COMETBOARDS, is being developed at NASA Lewis Research Center. The modular organization of COMETBOARDS includes several analyzers and state-of-the-art optimization algorithms along with their cascading strategy. The code structure allows quick integration of new analyzers and optimizers. The COMETBOARDS code reads input information from a number of data files, formulates a design as a set of multidisciplinary nonlinear programming problems, and then solves the resulting problems. COMETBOARDS can be used to solve a large problem which can be defined through multiple disciplines, each of which can be further broken down into several subproblems. Alternatively, a small portion of a large problem can be optimized in an effort to improve an existing system. Some of the other unique features of COMETBOARDS include design variable formulation, constraint formulation, subproblem coupling strategy, global scaling technique, analysis approximation, use of either sequential or parallel computational modes, and so forth. The special features and unique strengths of COMETBOARDS assist convergence and reduce the amount of CPU time used to solve the difficult optimization problems of aerospace industries. COMETBOARDS has been successfully used to solve a number of problems, including structural design of space station components, design of nozzle components of an air-breathing engine, configuration design of subsonic and supersonic aircraft, mixed flow turbofan engines, wave rotor topped engines, and so forth. This paper introduces the COMETBOARDS design tool and its versatility, which is illustrated by citing examples from structures, aircraft design, and air-breathing propulsion engine design.
Operationalization of diagnostic criteria of DSM-5 somatic symptom disorders.
Xiong, Nana; Zhang, Yaoyin; Wei, Jing; Leonhart, Rainer; Fritzsche, Kurt; Mewes, Ricarda; Hong, Xia; Cao, Jinya; Li, Tao; Jiang, Jing; Zhao, Xudong; Zhang, Lan; Schaefert, Rainer
2017-11-07
The aim of this study was to test the operationalization of DSM-5 somatic symptom disorder (SSD) psychological criteria among Chinese general hospital outpatients. This multicenter, cross-sectional study enrolled 491 patients from 10 general hospital outpatient departments. The structured clinical "interview about cognitive, affective, and behavioral features associated with somatic complaints" was used to operationalize the SSD criteria B. For comparison, DSM-IV somatoform disorders were assessed with the Mini International Neuropsychiatric Interview plus. Cohen's к scores were given to illustrate the agreement of the diagnoses. A three-structure model of the interview, within which items were classified as respectively assessing the cognitive (B1), affective (B2), and behavioral (B3) features, was examined. According to percentages of screening-positive persons and the receiver operator characteristic (ROC) analysis, a cut-off point of 2 was recommended for each subscale of the interview. With the operationalization, the frequency of DSM-5 SSD was estimated as 36.5% in our sample, and that of DSM-IV somatoform disorders was 8.2%. The agreement between them was small (Cohen's к = 0.152). Comparisons of sociodemographic features of SSD patients with different severity levels (mild, moderate, severe) showed that mild SSD patients were better-off in terms of financial and employment status, and that the severity subtypes were congruent with the level of depression, anxiety, quality of life impairment, and the frequency of doctor visits. The operationalization of the diagnosis and severity specifications of SSD was valid, but the diagnostic agreement between DSM-5 SSD and DSM-IV somatoform disorders was small. The interpretation the SSD criteria should be made cautiously, so that the diagnosis would not became over-inclusive.
Coordinated Optimization of Visual Cortical Maps (I) Symmetry-based Analysis
Reichl, Lars; Heide, Dominik; Löwel, Siegrid; Crowley, Justin C.; Kaschube, Matthias; Wolf, Fred
2012-01-01
In the primary visual cortex of primates and carnivores, functional architecture can be characterized by maps of various stimulus features such as orientation preference (OP), ocular dominance (OD), and spatial frequency. It is a long-standing question in theoretical neuroscience whether the observed maps should be interpreted as optima of a specific energy functional that summarizes the design principles of cortical functional architecture. A rigorous evaluation of this optimization hypothesis is particularly demanded by recent evidence that the functional architecture of orientation columns precisely follows species invariant quantitative laws. Because it would be desirable to infer the form of such an optimization principle from the biological data, the optimization approach to explain cortical functional architecture raises the following questions: i) What are the genuine ground states of candidate energy functionals and how can they be calculated with precision and rigor? ii) How do differences in candidate optimization principles impact on the predicted map structure and conversely what can be learned about a hypothetical underlying optimization principle from observations on map structure? iii) Is there a way to analyze the coordinated organization of cortical maps predicted by optimization principles in general? To answer these questions we developed a general dynamical systems approach to the combined optimization of visual cortical maps of OP and another scalar feature such as OD or spatial frequency preference. From basic symmetry assumptions we obtain a comprehensive phenomenological classification of possible inter-map coupling energies and examine representative examples. We show that each individual coupling energy leads to a different class of OP solutions with different correlations among the maps such that inferences about the optimization principle from map layout appear viable. We systematically assess whether quantitative laws resembling experimental observations can result from the coordinated optimization of orientation columns with other feature maps. PMID:23144599
Fault zone architecture within Miocene-Pliocene syn-rift sediments, Northwestern Red Sea, Egypt
NASA Astrophysics Data System (ADS)
Zaky, Khairy S.
2017-04-01
The present study focusses on field description of small normal fault zones in Upper Miocene-Pliocene sedimentary rocks on the northwestern side of the Red Sea, Egypt. The trend of these fault zones is mainly NW-SE. Paleostress analysis of 17 fault planes and slickenlines indicate that the tension direction is NE-SW. The minimum ( σ3) and intermediate ( σ2) paleostress axes are generally sub-horizontal and the maximum paleostress axis ( σ1) is sub-vertical. The fault zones are composed of damage zones and fault core. The damage zone is characterized by subsidiary faults and fractures that are asymmetrically developed on the hanging wall and footwall of the main fault. The width of the damage zone varies for each fault depending on the lithology, amount of displacement and irregularity of the fault trace. The average ratio between the hanging wall and the footwall damage zones width is about 3:1. The fault core consists of fault gouge and breccia. It is generally concentrated in a narrow zone of ˜0.5 to ˜8 cm width. The overall pattern of the fault core indicates that the width increases with increasing displacement. The faults with displacement < 1 m have fault cores ranging from 0.5 to 4.0 cm, while the faults with displacements of > 2 m have fault cores ranging from 4.0 to 8.0 cm. The fault zones are associated with sliver fault blocks, clay smear, segmented faults and fault lenses' structural features. These features are mechanically related to the growth and linkage of the fault arrays. The structural features may represent a neotectonic and indicate that the architecture of the fault zones is developed as several tectonic phases.
Role of indirect readout mechanism in TATA box binding protein-DNA interaction.
Mondal, Manas; Choudhury, Devapriya; Chakrabarti, Jaydeb; Bhattacharyya, Dhananjay
2015-03-01
Gene expression generally initiates from recognition of TATA-box binding protein (TBP) to the minor groove of DNA of TATA box sequence where the DNA structure is significantly different from B-DNA. We have carried out molecular dynamics simulation studies of TBP-DNA system to understand how the DNA structure alters for efficient binding. We observed rigid nature of the protein while the DNA of TATA box sequence has an inherent flexibility in terms of bending and minor groove widening. The bending analysis of the free DNA and the TBP bound DNA systems indicate presence of some similar structures. Principal coordinate ordination analysis also indicates some structural features of the protein bound and free DNA are similar. Thus we suggest that the DNA of TATA box sequence regularly oscillates between several alternate structures and the one suitable for TBP binding is induced further by the protein for proper complex formation.
NASA Technical Reports Server (NTRS)
Hopkins, D. A.
1984-01-01
A unique upward-integrated top-down-structured approach is presented for nonlinear analysis of high-temperature multilayered fiber composite structures. Based on this approach, a special purpose computer code was developed (nonlinear COBSTRAN) which is specifically tailored for the nonlinear analysis of tungsten-fiber-reinforced superalloy (TFRS) composite turbine blade/vane components of gas turbine engines. Special features of this computational capability include accounting of; micro- and macro-heterogeneity, nonlinear (stess-temperature-time dependent) and anisotropic material behavior, and fiber degradation. A demonstration problem is presented to mainfest the utility of the upward-integrated top-down-structured approach, in general, and to illustrate the present capability represented by the nonlinear COBSTRAN code. Preliminary results indicate that nonlinear COBSTRAN provides the means for relating the local nonlinear and anisotropic material behavior of the composite constituents to the global response of the turbine blade/vane structure.
Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale simulations.
Gumbart, James C; Beeby, Morgan; Jensen, Grant J; Roux, Benoît
2014-02-01
Bacteria face the challenging requirement to maintain their shape and avoid rupture due to the high internal turgor pressure, but simultaneously permit the import and export of nutrients, chemical signals, and virulence factors. The bacterial cell wall, a mesh-like structure composed of cross-linked strands of peptidoglycan, fulfills both needs by being semi-rigid, yet sufficiently porous to allow diffusion through it. How the mechanical properties of the cell wall are determined by the molecular features and the spatial arrangement of the relatively thin strands in the larger cellular-scale structure is not known. To examine this issue, we have developed and simulated atomic-scale models of Escherichia coli cell walls in a disordered circumferential arrangement. The cell-wall models are found to possess an anisotropic elasticity, as known experimentally, arising from the orthogonal orientation of the glycan strands and of the peptide cross-links. Other features such as thickness, pore size, and disorder are also found to generally agree with experiments, further supporting the disordered circumferential model of peptidoglycan. The validated constructs illustrate how mesoscopic structure and behavior emerge naturally from the underlying atomic-scale properties and, furthermore, demonstrate the ability of all-atom simulations to reproduce a range of macroscopic observables for extended polymer meshes.
Argüello-Astorga, G R; Herrera-Estrella, L R
1996-01-01
Regulation of plant gene transcription by light is mediated by multipartite cis-regulatory units. Previous attempts to identify structural features that are common to all light-responsive elements (LREs) have been unsuccessful. To address the question of what is needed to confer photoresponsiveness to a promoter, the upstream sequences from more than 110 light-regulated plant genes were analyzed by a new, phylogenetic-structural method. As a result, 30 distinct conserved DNA module arrays (CMAs) associated with light-responsive promoter regions were identified. Several of these CMAs have remained invariant throughout the evolutionary radiation of angiosperms and are conserved between homologous genes as well as between members of different gene families. The identified CMAs share a gene superfamily-specific core that correlates with the particular phytochrome-dependent transduction pathway that controls their expression, i.e. ACCTA(A/C)C(A/C) for the cGMP-dependent phenylpropanoid metabolism-associated genes, and GATA(A/T)GR for the Ca2+/calmodulin-dependent photosynthesis-associated nuclear genes. In addition to suggesting a general model for the functional and structural organization of LREs, the data obtained in this study indicate that angiosperm LREs probably evolved from complex cis-acting elements involved in regulatory processes other than photoregulation in gymnosperms. PMID:8938415
On the topology of the world exchange arrangements web
NASA Astrophysics Data System (ADS)
Li, Xiang; Jin, Yu Ying; Chen, Guanrong
2004-11-01
Exchange arrangements among different countries over the world are foundations of the world economy, which generally stand behind the daily economic evolution. As the first study of the world exchange arrangements web (WEAW), we built a bipartite network with countries as one type of nodes and currencies as the other, and found it to have a prominent scale-free feature with a power-law degree distribution. In a further empirical study of the currency section of the WEAW, we calculated the clustering coefficients, average nearest-neighbors degree, and average shortest distance. As an essential economic network, the WEAW is found to be a correlated disassortative network with a hierarchical structure, possessing a more prominent scale-free feature than the world trade web (WTW).
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra
2009-03-01
In this paper we generalize the concept of random networks to describe network ensembles with nontrivial features by a statistical mechanics approach. This framework is able to describe undirected and directed network ensembles as well as weighted network ensembles. These networks might have nontrivial community structure or, in the case of networks embedded in a given space, they might have a link probability with a nontrivial dependence on the distance between the nodes. These ensembles are characterized by their entropy, which evaluates the cardinality of networks in the ensemble. In particular, in this paper we define and evaluate the structural entropy, i.e., the entropy of the ensembles of undirected uncorrelated simple networks with given degree sequence. We stress the apparent paradox that scale-free degree distributions are characterized by having small structural entropy while they are so widely encountered in natural, social, and technological complex systems. We propose a solution to the paradox by proving that scale-free degree distributions are the most likely degree distribution with the corresponding value of the structural entropy. Finally, the general framework we present in this paper is able to describe microcanonical ensembles of networks as well as canonical or hidden-variable network ensembles with significant implications for the formulation of network-constructing algorithms.
Direct visualization of quasi-ordered oxygen chain structures on Au(110)-(1 × 2)
NASA Astrophysics Data System (ADS)
Hiebel, F.; Montemore, M. M.; Kaxiras, E.; Friend, C. M.
2016-08-01
The Au(110) surface offers unique advantages for atomically-resolved model studies of catalytic oxidation processes on gold. We investigate the adsorption of oxygen on Au(110) using a combination of scanning tunneling microscopy (STM) and density functional theory (DFT) methods. We identify the typical (empty-states) STM contrast resulting from adsorbed oxygen as atomic-sized dark features of electronic origin. DFT-based image simulations confirm that chemisorbed oxygen is generally detected indirectly, from the binding-induced electronic structure modification of gold. STM images show that adsorption occurs without affecting the general structure of the pristine Au(110) missing-row reconstruction. The tendency to form one-dimensional structures is observed already at low coverage (< 0.05 ML), with oxygen adsorbing on alternate sides of the reconstruction ridges. Consistently, calculations yield preferred adsorption on the (111) facets of the reconstruction, on a 3-fold coordination site, with increased stability when adsorbed in chains. Gold atoms with two oxygen neighbors exhibit enhanced electronic hybridization with the O states. Finally, the species observed are reactive to CO oxidation at 200 K and desorption of CO2 leaves a clean and ordered gold surface.
Synthesis of Hollow Sphere and 1D Structural Materials by Sol-Gel Process.
Li, Fa-Liang; Zhang, Hai-Jun
2017-08-25
The sol-gel method is a simple and facile wet chemical process for fabricating advanced materials with high homogeneity, high purity, and excellent chemical reactivity at a relatively low temperature. By adjusting the processing parameters, the sol-gel technique can be used to prepare hollow sphere and 1D structural materials that exhibit a wide application in the fields of catalyst, drug or gene carriers, photoactive, sensors and Li-ion batteries. This feature article reviewed the development of the preparation of hollow sphere and 1D structural materials using the sol-gel method. The effects of calcination temperature, soaking time, pH value, surfactant, etc., on the preparation of hollow sphere and 1D structural materials were summarized, and their formation mechanisms were generalized. Finally, possible future research directions of the sol-gel technique were outlined.
Synthesis of Hollow Sphere and 1D Structural Materials by Sol-Gel Process
Li, Fa-Liang; Zhang, Hai-Jun
2017-01-01
The sol-gel method is a simple and facile wet chemical process for fabricating advanced materials with high homogeneity, high purity, and excellent chemical reactivity at a relatively low temperature. By adjusting the processing parameters, the sol-gel technique can be used to prepare hollow sphere and 1D structural materials that exhibit a wide application in the fields of catalyst, drug or gene carriers, photoactive, sensors and Li-ion batteries. This feature article reviewed the development of the preparation of hollow sphere and 1D structural materials using the sol-gel method. The effects of calcination temperature, soaking time, pH value, surfactant, etc., on the preparation of hollow sphere and 1D structural materials were summarized, and their formation mechanisms were generalized. Finally, possible future research directions of the sol-gel technique were outlined. PMID:28841188
Hidden discriminative features extraction for supervised high-order time series modeling.
Nguyen, Ngoc Anh Thi; Yang, Hyung-Jeong; Kim, Sunhee
2016-11-01
In this paper, an orthogonal Tucker-decomposition-based extraction of high-order discriminative subspaces from a tensor-based time series data structure is presented, named as Tensor Discriminative Feature Extraction (TDFE). TDFE relies on the employment of category information for the maximization of the between-class scatter and the minimization of the within-class scatter to extract optimal hidden discriminative feature subspaces that are simultaneously spanned by every modality for supervised tensor modeling. In this context, the proposed tensor-decomposition method provides the following benefits: i) reduces dimensionality while robustly mining the underlying discriminative features, ii) results in effective interpretable features that lead to an improved classification and visualization, and iii) reduces the processing time during the training stage and the filtering of the projection by solving the generalized eigenvalue issue at each alternation step. Two real third-order tensor-structures of time series datasets (an epilepsy electroencephalogram (EEG) that is modeled as channel×frequency bin×time frame and a microarray data that is modeled as gene×sample×time) were used for the evaluation of the TDFE. The experiment results corroborate the advantages of the proposed method with averages of 98.26% and 89.63% for the classification accuracies of the epilepsy dataset and the microarray dataset, respectively. These performance averages represent an improvement on those of the matrix-based algorithms and recent tensor-based, discriminant-decomposition approaches; this is especially the case considering the small number of samples that are used in practice. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reference manual for a Requirements Specification Language (RSL), version 2.0
NASA Technical Reports Server (NTRS)
Fisher, Gene L.; Cohen, Gerald C.
1993-01-01
This report is a Reference Manual for a general-purpose Requirements Specification Language, RSL. The purpose of RSL is to specify precisely the external structure of a mechanized system and to define requirements that the system must meet. A system can be comprised of a mixture of hardware, software, and human processing elements. RSL is a hybrid of features found in several popular requirements specification languages and includes constructs for formal mathematical specification.
NASA Technical Reports Server (NTRS)
Vos, R. G.; Beste, D. L.; Gregg, J.
1984-01-01
The User Manual for the Integrated Analysis Capability (IAC) Level 1 system is presented. The IAC system currently supports the thermal, structures, controls and system dynamics technologies, and its development is influenced by the requirements for design/analysis of large space systems. The system has many features which make it applicable to general problems in engineering, and to management of data and software. Information includes basic IAC operation, executive commands, modules, solution paths, data organization and storage, IAC utilities, and module implementation.
Nesselroade, John R; Molenaar, Peter C M
2016-01-01
Three commentaries on the Nesselroade and Molenaar target article in this issue are responded to in the interest of elaborating and defending the points of view expressed in our article. The commentaries feature philosophy of science, general structural modeling, and broad behavioral research perspectives. Responding to the commentaries afforded us the opportunity to clarify further matters that we deem critical to the fundamental matter of measurement in behavioral science, especially as it emphasizes (properly, we believe) the individual as the primary unit of analysis.
Modular, Hierarchical Learning By Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Baldi, Pierre F.; Toomarian, Nikzad
1996-01-01
Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.
The planets of the Solar System
NASA Technical Reports Server (NTRS)
Marov, M. Y.
1986-01-01
This book is intended both for the lay person and the would-be scientist. The planets are discussed with a comparision of their basic natural features: mechanical characteristics and parameters of movement, surfaces, inner structure, physical properties of the atmosphere and meteorology. Also general problems of planetary cosmogony, thermal history and climatic evolution are considered briefly. The book is based on Soviet and foreign material, data from spacecraft, Earth optical and radio astronomical measurements and also data obtained from theoretical models.
Optical Model and Cross Section Uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman,M.W.; Pigni, M.T.; Dietrich, F.S.
2009-10-05
Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.
Simmering, Vanessa R; Wood, Chelsey M
2017-08-01
Working memory is a basic cognitive process that predicts higher-level skills. A central question in theories of working memory development is the generality of the mechanisms proposed to explain improvements in performance. Prior theories have been closely tied to particular tasks and/or age groups, limiting their generalizability. The cognitive dynamics theory of visual working memory development has been proposed to overcome this limitation. From this perspective, developmental improvements arise through the coordination of cognitive processes to meet demands of different behavioral tasks. This notion is described as real-time stability, and can be probed through experiments that assess how changing task demands impact children's performance. The current studies test this account by probing visual working memory for colors and shapes in a change detection task that compares detection of changes to new features versus swaps in color-shape binding. In Experiment 1, 3- to 4-year-old children showed impairments specific to binding swaps, as predicted by decreased real-time stability early in development; 5- to 6-year-old children showed a slight advantage on binding swaps, but 7- to 8-year-old children and adults showed no difference across trial types. Experiment 2 tested the proposed explanation of young children's binding impairment through added perceptual structure, which supported the stability and precision of feature localization in memory-a process key to detecting binding swaps. This additional structure improved young children's binding swap detection, but not new-feature detection or adults' performance. These results provide further evidence for the cognitive dynamics and real-time stability explanation of visual working memory development. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Radar HRRP Target Recognition Based on Stacked Autoencoder and Extreme Learning Machine
Liu, Yongxiang; Huo, Kai; Zhang, Zhongshuai
2018-01-01
A novel radar high-resolution range profile (HRRP) target recognition method based on a stacked autoencoder (SAE) and extreme learning machine (ELM) is presented in this paper. As a key component of deep structure, the SAE does not only learn features by making use of data, it also obtains feature expressions at different levels of data. However, with the deep structure, it is hard to achieve good generalization performance with a fast learning speed. ELM, as a new learning algorithm for single hidden layer feedforward neural networks (SLFNs), has attracted great interest from various fields for its fast learning speed and good generalization performance. However, ELM needs more hidden nodes than conventional tuning-based learning algorithms due to the random set of input weights and hidden biases. In addition, the existing ELM methods cannot utilize the class information of targets well. To solve this problem, a regularized ELM method based on the class information of the target is proposed. In this paper, SAE and the regularized ELM are combined to make full use of their advantages and make up for each of their shortcomings. The effectiveness of the proposed method is demonstrated by experiments with measured radar HRRP data. The experimental results show that the proposed method can achieve good performance in the two aspects of real-time and accuracy, especially when only a few training samples are available. PMID:29320453
Radar HRRP Target Recognition Based on Stacked Autoencoder and Extreme Learning Machine.
Zhao, Feixiang; Liu, Yongxiang; Huo, Kai; Zhang, Shuanghui; Zhang, Zhongshuai
2018-01-10
A novel radar high-resolution range profile (HRRP) target recognition method based on a stacked autoencoder (SAE) and extreme learning machine (ELM) is presented in this paper. As a key component of deep structure, the SAE does not only learn features by making use of data, it also obtains feature expressions at different levels of data. However, with the deep structure, it is hard to achieve good generalization performance with a fast learning speed. ELM, as a new learning algorithm for single hidden layer feedforward neural networks (SLFNs), has attracted great interest from various fields for its fast learning speed and good generalization performance. However, ELM needs more hidden nodes than conventional tuning-based learning algorithms due to the random set of input weights and hidden biases. In addition, the existing ELM methods cannot utilize the class information of targets well. To solve this problem, a regularized ELM method based on the class information of the target is proposed. In this paper, SAE and the regularized ELM are combined to make full use of their advantages and make up for each of their shortcomings. The effectiveness of the proposed method is demonstrated by experiments with measured radar HRRP data. The experimental results show that the proposed method can achieve good performance in the two aspects of real-time and accuracy, especially when only a few training samples are available.
Cross Flow Parameter Calculation for Aerodynamic Analysis
NASA Technical Reports Server (NTRS)
Norman, David, Jr. (Inventor)
2014-01-01
A system and method for determining a cross flow angle for a feature on a structure. A processor unit receives location information identifying a location of the feature on the structure, determines an angle of the feature, identifies flow information for the location, determines a flow angle using the flow information, and determines the cross flow angle for the feature using the flow angle and the angle of the feature. The flow information describes a flow of fluid across the structure. The flow angle comprises an angle of the flow of fluid across the structure for the location of the feature.
The effect of feature selection methods on computer-aided detection of masses in mammograms
NASA Astrophysics Data System (ADS)
Hupse, Rianne; Karssemeijer, Nico
2010-05-01
In computer-aided diagnosis (CAD) research, feature selection methods are often used to improve generalization performance of classifiers and shorten computation times. In an application that detects malignant masses in mammograms, we investigated the effect of using a selection criterion that is similar to the final performance measure we are optimizing, namely the mean sensitivity of the system in a predefined range of the free-response receiver operating characteristics (FROC). To obtain the generalization performance of the selected feature subsets, a cross validation procedure was performed on a dataset containing 351 abnormal and 7879 normal regions, each region providing a set of 71 mass features. The same number of noise features, not containing any information, were added to investigate the ability of the feature selection algorithms to distinguish between useful and non-useful features. It was found that significantly higher performances were obtained using feature sets selected by the general test statistic Wilks' lambda than using feature sets selected by the more specific FROC measure. Feature selection leads to better performance when compared to a system in which all features were used.
Modeling shape and topology of low-resolution density maps of biological macromolecules.
De-Alarcón, Pedro A; Pascual-Montano, Alberto; Gupta, Amarnath; Carazo, Jose M
2002-01-01
In the present work we develop an efficient way of representing the geometry and topology of volumetric datasets of biological structures from medium to low resolution, aiming at storing and querying them in a database framework. We make use of a new vector quantization algorithm to select the points within the macromolecule that best approximate the probability density function of the original volume data. Connectivity among points is obtained with the use of the alpha shapes theory. This novel data representation has a number of interesting characteristics, such as 1) it allows us to automatically segment and quantify a number of important structural features from low-resolution maps, such as cavities and channels, opening the possibility of querying large collections of maps on the basis of these quantitative structural features; 2) it provides a compact representation in terms of size; 3) it contains a subset of three-dimensional points that optimally quantify the densities of medium resolution data; and 4) a general model of the geometry and topology of the macromolecule (as opposite to a spatially unrelated bunch of voxels) is easily obtained by the use of the alpha shapes theory. PMID:12124252
NASA Astrophysics Data System (ADS)
Zhao, Wanqin; Wang, Wenjun; Mei, Xuesong; Jiang, Gedong; Liu, Bin
2014-06-01
Investigations on the morphological features of holes and grooves ablated on the surface of stainless steel using the picosecond dual-wavelength laser system with different powers combinations are presented based on the scarce researches on morphology of dual-wavelength laser ablation. The experimental results show the profiles of holes ablated by the visible beam appear V-shaped while those for the near-infrared have large openings and display U-shaped, which are independent of the ablation mechanism of ultrafast laser. For the dual-wavelength beam (a combination of visible beam and near-infrared), the holes resemble sunflower-like structures and have smoother ring patterns on the bottom. In general, the holes ablated by the dual-wavelength beam appear to have much flatter bottoms, linearly sloped side-walls and spinodal structures between the bottoms of the holes and the side-walls. Furthermore, through judiciously combining the powers of the dual-wavelength beam, high-quality grooves could be obtained with a flat worm-like structure at the bottom surface and less resolidified melt ejection edges. This study provides insight into optimizing ultrafast laser micromachining in order to obtain desired morphology.
Greedy feature selection for glycan chromatography data with the generalized Dirichlet distribution
2013-01-01
Background Glycoproteins are involved in a diverse range of biochemical and biological processes. Changes in protein glycosylation are believed to occur in many diseases, particularly during cancer initiation and progression. The identification of biomarkers for human disease states is becoming increasingly important, as early detection is key to improving survival and recovery rates. To this end, the serum glycome has been proposed as a potential source of biomarkers for different types of cancers. High-throughput hydrophilic interaction liquid chromatography (HILIC) technology for glycan analysis allows for the detailed quantification of the glycan content in human serum. However, the experimental data from this analysis is compositional by nature. Compositional data are subject to a constant-sum constraint, which restricts the sample space to a simplex. Statistical analysis of glycan chromatography datasets should account for their unusual mathematical properties. As the volume of glycan HILIC data being produced increases, there is a considerable need for a framework to support appropriate statistical analysis. Proposed here is a methodology for feature selection in compositional data. The principal objective is to provide a template for the analysis of glycan chromatography data that may be used to identify potential glycan biomarkers. Results A greedy search algorithm, based on the generalized Dirichlet distribution, is carried out over the feature space to search for the set of “grouping variables” that best discriminate between known group structures in the data, modelling the compositional variables using beta distributions. The algorithm is applied to two glycan chromatography datasets. Statistical classification methods are used to test the ability of the selected features to differentiate between known groups in the data. Two well-known methods are used for comparison: correlation-based feature selection (CFS) and recursive partitioning (rpart). CFS is a feature selection method, while recursive partitioning is a learning tree algorithm that has been used for feature selection in the past. Conclusions The proposed feature selection method performs well for both glycan chromatography datasets. It is computationally slower, but results in a lower misclassification rate and a higher sensitivity rate than both correlation-based feature selection and the classification tree method. PMID:23651459
NASA Technical Reports Server (NTRS)
Kvaternik, R. G.
1975-01-01
Two computational procedures for analyzing complex structural systems for their natural modes and frequencies of vibration are presented. Both procedures are based on a substructures methodology and both employ the finite-element stiffness method to model the constituent substructures. The first procedure is a direct method based on solving the eigenvalue problem associated with a finite-element representation of the complete structure. The second procedure is a component-mode synthesis scheme in which the vibration modes of the complete structure are synthesized from modes of substructures into which the structure is divided. The analytical basis of the methods contains a combination of features which enhance the generality of the procedures. The computational procedures exhibit a unique utilitarian character with respect to the versatility, computational convenience, and ease of computer implementation. The computational procedures were implemented in two special-purpose computer programs. The results of the application of these programs to several structural configurations are shown and comparisons are made with experiment.
NASA Astrophysics Data System (ADS)
Saha, Kanak; Graham, Alister W.; Rodríguez-Herranz, Isabel
2018-01-01
Peanut/x-shaped features observed in a significant fraction of disk galaxies are thought to have formed from vertically buckled bars. Despite being three-dimensional structures, they are preferentially detected in near edge-on projection. Only a few galaxies are found to have displayed such structures when their disks are relatively face-on—suggesting that either they are generally weak in face-on projection or many may be hidden by the light of their galaxy’s face-on disk. Here, we report on three (collisionless) simulated galaxies displaying peanut-shaped structures when their disks are seen both face-on and edge-on—resembling a three-dimensional peanut or dumbbell. Furthermore, these structures are accompanied by ansae and an outer ring at the end of the bar—as seen in real galaxies such as IC 5240. The same set of quantitative parameters used to measure peanut structures in real galaxies has been determined for the simulated galaxies, and a broad agreement is found. In addition, the peanut length grows in tandem with the bar, and is a maximum at half the length of the bar. Beyond the cutoff of these peanut structures, toward the end of the bar, we discover a new positive/negative feature in the B 6 radial profile associated with the isophotes of the ansae/ring. Our simulated, self-gravitating, three-dimensional peanut structures display cylindrical rotation even in the near-face-on disk projection. In addition, we report on a kinematic pinch in the velocity map along the bar minor axis, matching that seen in the surface density map.
Learning about the internal structure of categories through classification and feature inference.
Jee, Benjamin D; Wiley, Jennifer
2014-01-01
Previous research on category learning has found that classification tasks produce representations that are skewed toward diagnostic feature dimensions, whereas feature inference tasks lead to richer representations of within-category structure. Yet, prior studies often measure category knowledge through tasks that involve identifying only the typical features of a category. This neglects an important aspect of a category's internal structure: how typical and atypical features are distributed within a category. The present experiments tested the hypothesis that inference learning results in richer knowledge of internal category structure than classification learning. We introduced several new measures to probe learners' representations of within-category structure. Experiment 1 found that participants in the inference condition learned and used a wider range of feature dimensions than classification learners. Classification learners, however, were more sensitive to the presence of atypical features within categories. Experiment 2 provided converging evidence that classification learners were more likely to incorporate atypical features into their representations. Inference learners were less likely to encode atypical category features, even in a "partial inference" condition that focused learners' attention on the feature dimensions relevant to classification. Overall, these results are contrary to the hypothesis that inference learning produces superior knowledge of within-category structure. Although inference learning promoted representations that included a broad range of category-typical features, classification learning promoted greater sensitivity to the distribution of typical and atypical features within categories.
SIR-B image of Montreal from STS 41-G
NASA Technical Reports Server (NTRS)
1984-01-01
False-color image showing Montreal, Quebec, Canada, and was acquired by the Shuttle Imaging Radar-B (SIR-B) during STS 41-G. The St. lawrence River dominates the right portion of the photo. Several bridges cossing the river are visible. Pink and blue areas are generally buildings or pavement. Light green areas regions of natural vegetation; darker green areas are generally cultivated regions. A race track like structure is apparent at top left. The Riviere des Milles Illes and the Riviere des Prairies (left and right, respectively), join to form a U-shaped waterway at the center of the image. The large elliptical green-centered feature west of the St. Lawrence is Mt. Royal.
Dark matter phenomenology of high-speed galaxy cluster collisions
Mishchenko, Yuriy; Ji, Chueng-Ryong
2017-07-29
Here, we perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos’ distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark mattermore » expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90°. Our simulations indicate that as much as 20% of the total collision’s mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions.Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017.« less
Lu, Na; Li, Tengfei; Pan, Jinjin; Ren, Xiaodong; Feng, Zuren; Miao, Hongyu
2015-05-01
Electroencephalogram (EEG) provides a non-invasive approach to measure the electrical activities of brain neurons and has long been employed for the development of brain-computer interface (BCI). For this purpose, various patterns/features of EEG data need to be extracted and associated with specific events like cue-paced motor imagery. However, this is a challenging task since EEG data are usually non-stationary time series with a low signal-to-noise ratio. In this study, we propose a novel method, called structure constrained semi-nonnegative matrix factorization (SCS-NMF), to extract the key patterns of EEG data in time domain by imposing the mean envelopes of event-related potentials (ERPs) as constraints on the semi-NMF procedure. The proposed method is applicable to general EEG time series, and the extracted temporal features by SCS-NMF can also be combined with other features in frequency domain to improve the performance of motor imagery classification. Real data experiments have been performed using the SCS-NMF approach for motor imagery classification, and the results clearly suggest the superiority of the proposed method. Comparison experiments have also been conducted. The compared methods include ICA, PCA, Semi-NMF, Wavelets, EMD and CSP, which further verified the effectivity of SCS-NMF. The SCS-NMF method could obtain better or competitive performance over the state of the art methods, which provides a novel solution for brain pattern analysis from the perspective of structure constraint. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dark matter phenomenology of high-speed galaxy cluster collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishchenko, Yuriy; Ji, Chueng-Ryong
Here, we perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos’ distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark mattermore » expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90°. Our simulations indicate that as much as 20% of the total collision’s mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions.Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017.« less
Structural and functional features of lysine acetylation of plant and animal tubulins.
Rayevsky, Alexey V; Sharifi, Mohsen; Samofalova, Dariya A; Karpov, Pavel A; Blume, Yaroslav B
2017-10-10
The study of the genome and the proteome of different species and representatives of distinct kingdoms, especially detection of proteome via wide-scaled analyses has various challenges and pitfalls. Attempts to combine all available information together and isolate some common features for determination of the pathway and their mechanism of action generally have a highly complicated nature. However, microtubule (MT) monomers are highly conserved protein structures, and microtubules are structurally conserved from Homo sapiens to Arabidopsis thaliana. The interaction of MT elements with microtubule-associated proteins and post-translational modifiers is fully dependent on protein interfaces, and almost all MT modifications are well described except acetylation. Crystallography and interactome data using different approaches were combined to identify conserved proteins important in acetylation of microtubules. Application of computational methods and comparative analysis of binding modes generated a robust predictive model of acetylation of the ϵ-amino group of Lys40 in α-tubulins. In turn, the model discarded some probable mechanisms of interaction between elements of interest. Reconstruction of unresolved protein structures was carried out with modeling by homology to the existing crystal structure (PDBID: 1Z2B) from B. taurus using Swiss-model server, followed by a molecular dynamics simulation. Docking of the human tubulin fragment with Lys40 into the active site of α-tubulin acetyltransferase, reproduces the binding mode of peptidomimetic from X-ray structure (PDBID: 4PK3). © 2017 International Federation for Cell Biology.
Classification of large-scale fundus image data sets: a cloud-computing framework.
Roychowdhury, Sohini
2016-08-01
Large medical image data sets with high dimensionality require substantial amount of computation time for data creation and data processing. This paper presents a novel generalized method that finds optimal image-based feature sets that reduce computational time complexity while maximizing overall classification accuracy for detection of diabetic retinopathy (DR). First, region-based and pixel-based features are extracted from fundus images for classification of DR lesions and vessel-like structures. Next, feature ranking strategies are used to distinguish the optimal classification feature sets. DR lesion and vessel classification accuracies are computed using the boosted decision tree and decision forest classifiers in the Microsoft Azure Machine Learning Studio platform, respectively. For images from the DIARETDB1 data set, 40 of its highest-ranked features are used to classify four DR lesion types with an average classification accuracy of 90.1% in 792 seconds. Also, for classification of red lesion regions and hemorrhages from microaneurysms, accuracies of 85% and 72% are observed, respectively. For images from STARE data set, 40 high-ranked features can classify minor blood vessels with an accuracy of 83.5% in 326 seconds. Such cloud-based fundus image analysis systems can significantly enhance the borderline classification performances in automated screening systems.
Lancaster, Matthew E; Shelhamer, Ryan; Homa, Donald
2013-04-01
Two experiments investigated category inference when categories were composed of correlated or uncorrelated dimensions and the categories overlapped minimally or moderately. When the categories minimally overlapped, the dimensions were strongly correlated with the category label. Following a classification learning phase, subsequent transfer required the selection of either a category label or a feature when one, two, or three features were missing. Experiments 1 and 2 differed primarily in the number of learning blocks prior to transfer. In each experiment, the inference of the category label or category feature was influenced by both dimensional and category correlations, as well as their interaction. The number of cues available at test impacted performance more when the dimensional correlations were zero and category overlap was high. However, a minimal number of cues were sufficient to produce high levels of inference when the dimensions were highly correlated; additional cues had a positive but reduced impact, even when overlap was high. Subjects were generally more accurate in inferring the category label than a category feature regardless of dimensional correlation, category overlap, or number of cues available at test. Whether the category label functioned as a special feature or not was critically dependent upon these embedded correlations, with feature inference driven more strongly by dimensional correlations.
Classification of a wetland area along the upper Mississippi River with aerial videography
Jennings, C.A.; Vohs, P.A.; Dewey, M.R.
1992-01-01
We evaluated the use of aerial videography for classifying wetland habitats along the upper Mississippi River and found the prompt availability of habitat feature maps to be the major advantage of the video imagery technique. We successfully produced feature maps from digitized video images that generally agreed with the known distribution and areal coverages of the major habitat types independently identified and quantified with photointerpretation techniques. However, video images were not sufficiently detailed to allow us to consistently discriminate among the classes of aquatic macrophytes present or to quantify their areal coverage. Our inability to consistently distinguish among emergent, floating, and submergent macrophytes from the feature maps may have been related to the structural complexity of the site, to our limited vegetation sampling, and to limitations in video imagery. We expect that careful site selection (i.e., the desired level of resolution is available from video imagery) and additional vegetation samples (e.g., along a transect) will allow improved assignment of spectral values to specific plant types and enhance plant classification from feature maps produced from video imagery.
Foundations of quantum gravity: The role of principles grounded in empirical reality
NASA Astrophysics Data System (ADS)
Holman, Marc
2014-05-01
When attempting to assess the strengths and weaknesses of various principles in their potential role of guiding the formulation of a theory of quantum gravity, it is crucial to distinguish between principles which are strongly supported by empirical data - either directly or indirectly - and principles which instead (merely) rely heavily on theoretical arguments for their justification. Principles in the latter category are not necessarily invalid, but their a priori foundational significance should be regarded with due caution. These remarks are illustrated in terms of the current standard models of cosmology and particle physics, as well as their respective underlying theories, i.e., essentially general relativity and quantum (field) theory. For instance, it is clear that both standard models are severely constrained by symmetry principles: an effective homogeneity and isotropy of the known universe on the largest scales in the case of cosmology and an underlying exact gauge symmetry of nuclear and electromagnetic interactions in the case of particle physics. However, in sharp contrast to the cosmological situation, where the relevant symmetry structure is more or less established directly on observational grounds, all known, nontrivial arguments for the "gauge principle" are purely theoretical (and far less conclusive than usually advocated). Similar remarks apply to the larger theoretical structures represented by general relativity and quantum (field) theory, where - actual or potential - empirical principles, such as the (Einstein) equivalence principle or EPR-type nonlocality, should be clearly differentiated from theoretical ones, such as general covariance or renormalizability. It is argued that if history is to be of any guidance, the best chance to obtain the key structural features of a putative quantum gravity theory is by deducing them, in some form, from the appropriate empirical principles (analogous to the manner in which, say, the idea that gravitation is a curved spacetime phenomenon is arguably implied by the equivalence principle). Theoretical principles may still be useful however in formulating a concrete theory (analogous to the manner in which, say, a suitable form of general covariance can still act as a sieve for separating theories of gravity from one another). It is subsequently argued that the appropriate empirical principles for deducing the key structural features of quantum gravity should at least include (i) quantum nonlocality, (ii) irreducible indeterminacy (or, essentially equivalently, given (i), relativistic causality), (iii) the thermodynamic arrow of time, (iv) homogeneity and isotropy of the observable universe on the largest scales. In each case, it is explained - when appropriate - how the principle in question could be implemented mathematically in a theory of quantum gravity, why it is considered to be of fundamental significance and also why contemporary accounts of it are insufficient. For instance, the high degree of uniformity observed in the Cosmic Microwave Background is usually regarded as theoretically problematic because of the existence of particle horizons, whereas the currently popular attempts to resolve this situation in terms of inflationary models are, for a number of reasons, less than satisfactory. However, rather than trying to account for the required empirical features dynamically, an arguably much more fruitful approach consists in attempting to account for these features directly, in the form of a lawlike initial condition within a theory of quantum gravity.
Russo, Isa-Rita M.; Sole, Catherine L.; Barbato, Mario; von Bramann, Ullrich; Bruford, Michael W.
2016-01-01
Small mammals provide ecosystem services, acting, for example, as pollinators and seed dispersers. In addition, they are also disease reservoirs that can be detrimental to human health and they can also act as crop pests. Knowledge of their dispersal preferences is therefore useful for population management and landscape planning. Genetic data were used alongside landscape data to examine the influence of the landscape on the demographic connectedness of the Natal multimammate mouse (Mastomys natalensis) and to identify landscape characteristics that influence the genetic structure of this species across a spatially and temporally varying environment. The most significant landscape features shaping gene flow were aspect, vegetation cover, topographic complexity (TC) and rivers, with western facing slopes, topographic complexity and rivers restricting gene flow. In general, thicket vegetation was correlated with increased gene flow. Identifying features of the landscape that facilitate movement/dispersal in M. natalensis potentially has application for other small mammals in similar ecosystems. As the primary reservoir host of the zoonotic Lassa virus, a landscape genetics approach may have applications in determining areas of high disease risk to humans. Identifying these landscape features may also be important in crop management due to damage by rodent pests. PMID:27406468
Russo, Isa-Rita M; Sole, Catherine L; Barbato, Mario; von Bramann, Ullrich; Bruford, Michael W
2016-07-13
Small mammals provide ecosystem services, acting, for example, as pollinators and seed dispersers. In addition, they are also disease reservoirs that can be detrimental to human health and they can also act as crop pests. Knowledge of their dispersal preferences is therefore useful for population management and landscape planning. Genetic data were used alongside landscape data to examine the influence of the landscape on the demographic connectedness of the Natal multimammate mouse (Mastomys natalensis) and to identify landscape characteristics that influence the genetic structure of this species across a spatially and temporally varying environment. The most significant landscape features shaping gene flow were aspect, vegetation cover, topographic complexity (TC) and rivers, with western facing slopes, topographic complexity and rivers restricting gene flow. In general, thicket vegetation was correlated with increased gene flow. Identifying features of the landscape that facilitate movement/dispersal in M. natalensis potentially has application for other small mammals in similar ecosystems. As the primary reservoir host of the zoonotic Lassa virus, a landscape genetics approach may have applications in determining areas of high disease risk to humans. Identifying these landscape features may also be important in crop management due to damage by rodent pests.
NASA Astrophysics Data System (ADS)
Saha, P.; Rahane, A. B.; Kumar, V.; Sukumar, N.
2016-05-01
Boron atomic clusters show several interesting and unusual size-dependent features due to the small covalent radius, electron deficiency, and higher coordination number of boron as compared to carbon. These include aromaticity and a diverse array of structures such as quasi-planar, ring or tubular shaped, and fullerene-like. In the present work, we have analyzed features of the computed electron density distributions of small boron clusters having up to 11 boron atoms, and investigated the effect of doping with C, P, Al, Si, and Zn atoms on their structural and physical properties, in order to understand the bonding characteristics and discern trends in bonding and stability. We find that in general there are covalent bonds as well as delocalized charge distribution in these clusters. We associate the strong stability of some of these planar/quasiplanar disc-type clusters with the electronic shell closing with effectively twelve delocalized valence electrons using a disc-shaped jellium model. {{{{B}}}9}-, B10, B7P, and B8Si, in particular, are found to be exceptional with very large gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, and these are suggested to be magic clusters.
Marques, J Frederico
2007-12-01
The deterioration of semantic memory usually proceeds from more specific to more general superordinate categories, although rarer cases of superordinate knowledge impairment have also been reported. The nature of superordinate knowledge and the explanation of these two semantic impairments were evaluated from the analysis of superordinate and basic-level feature norms. The results show that, in comparison to basic-level concepts, superordinate concepts are not generally less informative and have similar feature distinctiveness and proportion of individual sensory features, but their features are less shared by their members. Results are in accord with explanations based on feature connection weights and/or concept confusability for the superordinate advantage cases. Results especially support an explanation for superordinate impairments in terms of higher semantic control requirements as related to features being less shared between concept members. Implications for patients with semantic impairments are also discussed.
Manifestly covariant classical correlation dynamics I. General theory
NASA Astrophysics Data System (ADS)
Lin, Shiru; Wang, Yanchao; Chen, Zhongfang
2018-06-01
By means of density functional theory (DFT) computations and particle-swarm optimization (PSO) structure searches, we herein predict five low-lying energy structures of two-dimensional (2D) aluminum monoxide (AlO) nanosheets. Their high cohesive energy, absence of imaginary phonon dispersion, and good thermal stability make them feasible targets for experimental realization. These monolayers exhibit diverse structural topologies, for instance, PmA- and Pmm-AlO possess buckled four- and six-membered AlO rings, whereas P62-, PmB-, and P6 m-AlO have pores of varied sizes. Interestingly, the most energetically preferred monolayers, PmA- and Pmm-AlO, feature wide band gaps (2.45 and 5.13 eV, respectively), which are promising for green and blue light-emitting devices (LEDs) and photodetectors.
Picornaviral Polymerase Structure, Function, and Fidelity Modulation
Peersen, Olve B.
2017-01-01
Like all positive strand RNA viruses, the picornaviruses replicate their genomes using a virally encoded RNA-dependent RNA polymerase enzyme known as 3Dpol. Over the past decade we have made tremendous advances in our understanding of 3Dpol structure and function, including the discovery of a novel mechanism for closing the active site that allows these viruses to easily fine tune replication fidelity and quasispecies distributions. This review summarizes current knowledge of picornaviral polymerase structure and how the enzyme interacts with RNA and other viral proteins to form stable and processive elongation complexes. The picornaviral RdRPs are among the smallest viral polymerases, but their fundamental molecular mechanism for catalysis appears to be generally applicable as a common feature of all positive strand RNA virus polymerases. PMID:28163093
NASA Astrophysics Data System (ADS)
Saib, S.; Bouarissa, N.
2017-10-01
In this study we report on the influence of hydrostatic pressure on structural, elastic, lattice dynamical and thermal properties of Li2S in the anti-fluorite structure using ab initio pseudopotential approach based on the density functional perturbation theory. Our results are found to be in good agreement with those existing in the literature. The present phonon dispersion spectra, dielectric constants and Born effective charges may be seen as the first investigation for the material under load. The pressure dependence of all features of interest has been examined and discussed. Besides, the temperature dependence of the lattice parameter and bulk modulus is predicted. The generalized elastic stability criteria showed that the material of interest is mechanically unstable for pressures beyond 55 GPa.
An implementation of the programming structural synthesis system (PROSSS)
NASA Technical Reports Server (NTRS)
Rogers, J. L., Jr.; Sobieszczanski-Sobieski, J.; Bhat, R. B.
1981-01-01
A particular implementation of the programming structural synthesis system (PROSSS) is described. This software system combines a state of the art optimization program, a production level structural analysis program, and user supplied, problem dependent interface programs. These programs are combined using standard command language features existing in modern computer operating systems. PROSSS is explained in general with respect to this implementation along with the steps for the preparation of the programs and input data. Each component of the system is described in detail with annotated listings for clarification. The components include options, procedures, programs and subroutines, and data files as they pertain to this implementation. An example exercising each option in this implementation to allow the user to anticipate the type of results that might be expected is presented.
Link, Jana; Jahn, Daniel; Alsheimer, Manfred
2015-01-01
Numerous studies in the past years provided definite evidence that the nuclear envelope is much more than just a simple barrier. It rather constitutes a multifunctional platform combining structural and dynamic features to fulfill many fundamental functions such as chromatin organization, regulation of transcription, signaling, but also structural duties like maintaining general nuclear architecture and shape. One additional and, without doubt, highly impressive aspect is the recently identified key function of selected nuclear envelope components in driving meiotic chromosome dynamics, which in turn is essential for accurate recombination and segregation of the homologous chromosomes. Here, we summarize the recent work identifying new key players in meiotic telomere attachment and movement and discuss the latest advances in our understanding of the actual function of the meiotic nuclear envelope.
Review on Material Synthesis and Characterization of Sodium (Na) Super-Ionic Conductor (NASICON)
NASA Astrophysics Data System (ADS)
Kimpa, M. I.; Mayzan, M. Z. H.; Yabagi, J. A.; Nmaya, M. M.; Isah, K. U.; Agam, M. A.
2018-04-01
Sodium (Na) Super Ionic Conductor (NASICON) has general formula Na1+ x Zr2P3- xSi x O12 (0 ≤x ≤ 3) derived from its parent compound, sodium zirconium phosphate NaZr2(PO4)3 (NZP) which belong to a rhombohedral crystal structure. This material consists of three-dimensional structure with interesting features such as low thermal expansion coefficient, thermal stability, gas sensor and nuclear waste immobilization that make it viable for industrial applications. Current study presents comprehensive studies on the synthesis and essential characteristics required to understand the theory behind the mechanism that justifies the study of NASICON structure and its application such as lithium ion rechargeable battery, gas sensor, and nuclear waste immobilization and so on.
Hruszkewycz, S. O.; Zhang, Q.; Holt, M. V.; ...
2016-10-04
Bragg projection ptychography (BPP) is a coherent diffraction imaging technique capable of mapping the spatial distribution of the Bragg structure factor in nanostructured thin films. Here, we show that, because these images are projections, the structural sensitivity of the resulting images depends on the film thickness and the aspect ratio and orientation of the features of interest and that image interpretation depends on these factors. Lastly, we model changes in contrast in the BPP reconstructions of simulated PbTiO 3 ferroelectric thin films with meandering 180° stripe domains as a function of film thickness, discuss their origin, and comment on themore » implication of these factors on the design of BPP experiments of general nanostructured films.« less
NASA Astrophysics Data System (ADS)
Klaa, K.; Labidi, S.; Masrour, R.; Jabar, A.; Labidi, M.; Amara, A.; Drici, A.; Hlil, E. K.; Ellouze, M.
2018-06-01
Structural, electronic, magnetic and thermodynamic main features for Ni1-xTixO ternary alloys in rock-salt structure with Ti content in the range ? were studied using the full potential Linearized augmented plane wave (FP-LAPW) method within density functional theory. The exchange-correlation potential was calculated by the generalized gradient approximation. The analysis of the electronic density of states curves allowed the computation of the magnetic moments which are considered to lie along (010) axes. The thermodynamic stability of this alloy was investigated by calculating the excess enthalpy of mixing ? as well as the phase diagram. In addition, the Monte Carlo simulations have been exploited to calculate the transition temperature and magnetic coercive field in the alloy.
Airborne spectrophotometry of Eta Carinae from 4.5 to 7.5 microns and a model for source morphology
NASA Technical Reports Server (NTRS)
Russell, Ray W.; Lynch, David K.; Hackwell, John A.; Rudy, Richard J.; Rossano, George S.; Castelaz, M. W.
1987-01-01
Spectrophotometric observations of Eta Car between 4.5 and 7.5 microns show a featureless thermal-like spectrum with no fine-structure lines or broad emission or absorption features. The color temperature of the spectrum is approximately 375 K. High spatial resolution maps at 3.5, 4.8, and 10 microns obtained from the ground are used to discuss the dust distribution and temperature structure, and to present a model for general source morphology. The upper limit to the brightness of the forbidden Ar II fine-structure emission line at 6.98 microns is less than 7 x 10 to the -16th W/sq cm, which still allows for a significant overabundance of argon and is consistent with the evolved nature of the source.
Arjunan, Palaniappa; Sax, Martin; Brunskill, Andrew; Chandrasekhar, Krishnamoorthy; Nemeria, Natalia; Zhang, Sheng; Jordan, Frank; Furey, William
2006-06-02
The crystal structure of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined with phosphonolactylthiamin diphosphate (PLThDP) in its active site. PLThDP serves as a structural and electrostatic analogue of the natural intermediate alpha-lactylthiamin diphosphate (LThDP), in which the carboxylate from the natural substrate pyruvate is replaced by a phosphonate group. This represents the first example of an experimentally determined, three-dimensional structure of a thiamin diphosphate (ThDP)-dependent enzyme containing a covalently bound, pre-decarboxylation reaction intermediate analogue and should serve as a model for the corresponding intermediates in other ThDP-dependent decarboxylases. Regarding the PDHc-specific reaction, the presence of PLThDP induces large scale conformational changes in the enzyme. In conjunction with the E1-PLThDP and E1-ThDP structures, analysis of a H407A E1-PLThDP variant structure shows that an interaction between His-407 and PLThDP is essential for stabilization of two loop regions in the active site that are otherwise disordered in the absence of intermediate analogue. This ordering completes formation of the active site and creates a new ordered surface likely involved in interactions with the lipoyl domains of E2s within the PDHc complex. The tetrahedral intermediate analogue is tightly held in the active site through direct hydrogen bonds to residues His-407, Tyr-599, and His-640 and reveals a new, enzyme-induced, strain-related feature that appears to aid in the decarboxylation process. This feature is almost certainly present in all ThDP-dependent decarboxylases; thus its inclusion in our understanding of general thiamin catalysis is important.
NASA Technical Reports Server (NTRS)
Davis, P. A.; Tanaka, Kenneth L.; Golombek, M. P.
1995-01-01
Using Viking Orbiter images, detailed photoclinometric profiles were obtained across 10 irregular depressions, 32 fretted fractures, 40 troughs and pits, 124 solitary scarps, and 370 simple grabens in the north Tharsis region of Mars. These data allow inferences to be made on the shallow crustal structure of this region. The frequency modes of measured scarp heights correspond with previous general thickness estimates of the heavily cratered and rigded plains units. The depths of the flat-floored irregular depressions (55-175 m), fretted fractures (85-890 m), and troughs and pits (60-1620 m) are also similar to scarp heights (thicknesses) of the geologic units in which these depressions occur, which suggests that the depths of these flat-floored features were controlled by erosional base levels created by lithologic contacts. Although the features have a similar age, both their depths and their observed local structural control increase in the order listed above, which suggests that the more advanced stages of associated fracturing facilitated the development of these depressions by increasing permeability. If a ground-ice zone is a factor in development of these features, as has been suggested, our observation that the depths of these features decrease with increasing latitude suggests that either the thickness of the ground-ice zone does not increase poleward or the depths of the depressions were controlled by the top of the ground-ice zone whose depth may decrease with latitude.
Neural dynamics underlying attentional orienting to auditory representations in short-term memory.
Backer, Kristina C; Binns, Malcolm A; Alain, Claude
2015-01-21
Sounds are ephemeral. Thus, coherent auditory perception depends on "hearing" back in time: retrospectively attending that which was lost externally but preserved in short-term memory (STM). Current theories of auditory attention assume that sound features are integrated into a perceptual object, that multiple objects can coexist in STM, and that attention can be deployed to an object in STM. Recording electroencephalography from humans, we tested these assumptions, elucidating feature-general and feature-specific neural correlates of auditory attention to STM. Alpha/beta oscillations and frontal and posterior event-related potentials indexed feature-general top-down attentional control to one of several coexisting auditory representations in STM. Particularly, task performance during attentional orienting was correlated with alpha/low-beta desynchronization (i.e., power suppression). However, attention to one feature could occur without simultaneous processing of the second feature of the representation. Therefore, auditory attention to memory relies on both feature-specific and feature-general neural dynamics. Copyright © 2015 the authors 0270-6474/15/351307-12$15.00/0.
Description and performance analysis of a generalized optimal algorithm for aerobraking guidance
NASA Technical Reports Server (NTRS)
Evans, Steven W.; Dukeman, Greg A.
1993-01-01
A practical real-time guidance algorithm has been developed for aerobraking vehicles which nearly minimizes the maximum heating rate, the maximum structural loads, and the post-aeropass delta V requirement for orbit insertion. The algorithm is general and reusable in the sense that a minimum of assumptions are made, thus greatly reducing the number of parameters that must be determined prior to a given mission. A particularly interesting feature is that in-plane guidance performance is tuned by adjusting one mission-dependent, the bank margin; similarly, the out-of-plane guidance performance is tuned by adjusting a plane controller time constant. Other features of the algorithm are simplicity, efficiency and ease of use. The trimmed vehicle with bank angle modulation as the method of trajectory control. Performance of this guidance algorithm is examined by its use in an aerobraking testbed program. The performance inquiry extends to a wide range of entry speeds covering a number of potential mission applications. Favorable results have been obtained with a minimum of development effort, and directions for improvement of performance are indicated.
NASA Technical Reports Server (NTRS)
Krainak, Michael; Merritt, Scott
2016-01-01
Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.
1981-03-30
Block 20. If dilfof mt Report) It. SjPPLEMIENTAR’V NOTES S Docuinent i’i a thesis aubmitted in partial fulfillmecnt of tho requirements for the...this type of warship. IlTe distin-tivo features of 1Witation are a similality in organittion, structure, design, uame* s or proceeses beyond a similar•.y...of Europe, especiall’- the military a,.tachgs and military educators, are studied. Additionally, the chapter analy:-. s the effect of Emory Upton and
NASA Astrophysics Data System (ADS)
Maisuradze, M. V.; Ryzhkov, M. A.; Yudin, Yu. V.; Kuklina, A. A.
2017-11-01
Special features of the transformations of supercooled austenite occurring under continuous cooling of a promising high-strength steel grade not standardized in the Russian Federation are determined. A method for evaluating the volume fractions of structure constituents formed in the steel as a result of cooling from 925°C at various constant rates within 0.025 - 75 K/sec is proposed and tested. The results are generalized in the form of a thermokinetic diagram of transformations of supercooled austenite.
2013-04-01
skills, (e) problems with generalization of previously acquired skills, (f) rigidity and resistance to change, (g) social and communication ...their known role in social behavior, communication , and stereotypic behavior results in identification of a structural component of functional deficits...neurons. These abnormalities may contribute to social and communication deficits, and restricted repetitive and stereotyped patterns of behavior. 3
Time and a physical Hamiltonian for quantum gravity.
Husain, Viqar; Pawłowski, Tomasz
2012-04-06
We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach. © 2012 American Physical Society
Collective learning modeling based on the kinetic theory of active particles
NASA Astrophysics Data System (ADS)
Burini, D.; De Lillo, S.; Gibelli, L.
2016-03-01
This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling is based on a generalization of kinetic theory methods where interactions are described by theoretical tools of game theory. As an application, the proposed approach is used to model the learning processes that take place in a classroom.
Nickel-aluminum alloy clusters -- structural and dynamical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jellinek, J.; Krissinel, E.B.
1997-08-01
Structural and dynamical properties of mixed Ni{sub n}Al{sub m} alloy clusters mimicked by a many-body potential are studied computationally for all the possible compositions n and m such that n + m = 13. It is shown that the manifold of the usually very large number of the different possible structural forms can be systematized by introducing classes of structures corresponding to the same concentration of the components, geometry and type of the central atom. General definitions of mixing energy and mixing coefficient are introduced, and it is shown that the energy ordering of the structural forms within each classmore » is governed by the mixing coefficient. The peculiarities of the solid-to-liquid-like transition are described as a function of the concentration of the two types of atoms. These peculiarities are correlated with and explained in terms of the energy spectra of the structural forms. Class-dependent features of the dynamics are described and analyzed.« less
Resilience of Adapting Networks: Results from a Stylized Infrastructure Model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyeler, Walter E.; Vugrin, Eric D.; Forden, Geoffrey Ethan
2015-01-01
Adaptation is believed to be a source of resilience in systems. It has been difficult to measure the contribution of adaptation to resilience, unlike other resilience mechanisms such as restoration and recovery. One difficulty comes from treating adaptation as a deus ex machina that is interjected after a disruption. This provides no basis for bounding possible adaptive responses. We can bracket the possible effects of adaptation when we recognize that it occurs continuously, and is in part responsible for the current system’s properties. In this way the dynamics of the system’s pre-disruption structure provides information about post-disruption adaptive reaction. Seenmore » as an ongoing process, adaptation has been argued to produce “robust-yet-fragile” systems. Such systems perform well under historical stresses but become committed to specific features of those stresses in a way that makes them vulnerable to system-level collapse when those features change. In effect adaptation lessens the cost of disruptions within a certain historical range, at the expense of increased cost from disruptions outside that range. Historical adaptive responses leave a signature in the structure of the system. Studies of ecological networks have suggested structural metrics that pick out systemic resilience in the underlying ecosystems. If these metrics are generally reliable indicators of resilience they provide another strategy for gaging adaptive resilience. To progress in understanding how the process of adaptation and the property of resilience interrelate in infrastructure systems, we pose some specific questions: Does adaptation confer resilience?; Does it confer resilience to novel shocks as well, or does it tune the system to fragility?; Can structural features predict resilience to novel shocks?; Are there policies or constraints on the adaptive process that improve resilience?.« less
Neural Measures Reveal Implicit Learning during Language Processing.
Batterink, Laura J; Cheng, Larry Y; Paller, Ken A
2016-10-01
Language input is highly variable; phonological, lexical, and syntactic features vary systematically across different speakers, geographic regions, and social contexts. Previous evidence shows that language users are sensitive to these contextual changes and that they can rapidly adapt to local regularities. For example, listeners quickly adjust to accented speech, facilitating comprehension. It has been proposed that this type of adaptation is a form of implicit learning. This study examined a similar type of adaptation, syntactic adaptation, to address two issues: (1) whether language comprehenders are sensitive to a subtle probabilistic contingency between an extraneous feature (font color) and syntactic structure and (2) whether this sensitivity should be attributed to implicit learning. Participants read a large set of sentences, 40% of which were garden-path sentences containing temporary syntactic ambiguities. Critically, but unbeknownst to participants, font color probabilistically predicted the presence of a garden-path structure, with 75% of garden-path sentences (and 25% of normative sentences) appearing in a given font color. ERPs were recorded during sentence processing. Almost all participants indicated no conscious awareness of the relationship between font color and sentence structure. Nonetheless, after sufficient time to learn this relationship, ERPs time-locked to the point of syntactic ambiguity resolution in garden-path sentences differed significantly as a function of font color. End-of-sentence grammaticality judgments were also influenced by font color, suggesting that a match between font color and sentence structure increased processing fluency. Overall, these findings indicate that participants can implicitly detect subtle co-occurrences between physical features of sentences and abstract, syntactic properties, supporting the notion that implicit learning mechanisms are generally operative during online language processing.
Franco-Echevarría, Elsa; Sanz-Aparicio, Julia; Brearley, Charles A.; González-Rubio, Juana M.; González, Beatriz
2017-01-01
Inositol 1,3,4,5,6-pentakisphosphate 2-kinases (IP5 2-Ks) are part of a family of enzymes in charge of synthesizing inositol hexakisphosphate (IP6) in eukaryotic cells. This protein and its product IP6 present many roles in cells, participating in mRNA export, embryonic development, and apoptosis. We reported previously that the full-length IP5 2-K from Arabidopsis thaliana is a zinc metallo-enzyme, including two separated lobes (the N- and C-lobes). We have also shown conformational changes in IP5 2-K and have identified the residues involved in substrate recognition and catalysis. However, the specific features of mammalian IP5 2-Ks remain unknown. To this end, we report here the first structure for a murine IP5 2-K in complex with ATP/IP5 or IP6. Our structural findings indicated that the general folding in N- and C-lobes is conserved with A. thaliana IP5 2-K. A helical scaffold in the C-lobe constitutes the inositol phosphate-binding site, which, along with the participation of the N-lobe, endows high specificity to this protein. However, we also noted large structural differences between the orthologues from these two eukaryotic kingdoms. These differences include a novel zinc-binding site and regions unique to the mammalian IP5 2-K, as an unexpected basic patch on the protein surface. In conclusion, our findings have uncovered distinct features of a mammalian IP5 2-K and set the stage for investigations into protein-protein or protein-RNA interactions important for IP5 2-K function and activity. PMID:28450399
Integrable nonlinear Schrödinger system on a lattice with three structural elements in the unit cell
NASA Astrophysics Data System (ADS)
Vakhnenko, Oleksiy O.
2018-05-01
Developing the idea of increasing the number of structural elements in the unit cell of a quasi-one-dimensional lattice as applied to the semi-discrete integrable systems of nonlinear Schrödinger type, we construct the zero-curvature representation for the general integrable nonlinear system on a lattice with three structural elements in the unit cell. The integrability of the obtained general system permits to find explicitly a number of local conservation laws responsible for the main features of system dynamics and in particular for the so-called natural constraints separating the field variables into the basic and the concomitant ones. Thus, considering the reduction to the semi-discrete integrable system of nonlinear Schrödinger type, we revealed the essentially nontrivial impact of concomitant fields on the Poisson structure and on the whole Hamiltonian formulation of system dynamics caused by the nonzero background values of these fields. On the other hand, the zero-curvature representation of a general nonlinear system serves as an indispensable key to the dressing procedure of system integration based upon the Darboux transformation of the auxiliary linear problem and the implicit Bäcklund transformation of field variables. Due to the symmetries inherent to the six-component semi-discrete integrable nonlinear Schrödinger system with attractive-type nonlinearities, the Darboux-Bäcklund dressing scheme is shown to be simplified considerably, giving rise to the appropriately parameterized multi-component soliton solution consisting of six basic and four concomitant components.
Strong Electron Correlation in Photoionization of Spin-Orbit Doublets
NASA Astrophysics Data System (ADS)
Amusia, M. Ya.; Chernsheva, L. V.; Mnason, S. T.; Msezane, A. Z.; Radojevic, V.
2002-05-01
A new and explicitly many-body aspect of the "leveraging" of the spin-orbit interaction is demonstrated, spin-orbit activated interchannel coupling, which can significantly alter the photoionization cross section of a spin-orbit doublet. As an example, using a modified version of the Spin-Polarized Random-Phase-Approximation with Exchange methodology, a recently observed structure in the photoionization of Xe 3d(A. Kivimaki et al, Phys. Rev. A 63), 012716 (2000) has been explained both qualitatively and quantitatively. The structure is entirely due to this new spin-orbit activated interchannel coupling effect, which should be a general feature of inner-shell photoionization. This work was supported by NSF, NASA, DOE and ISTC.
Superconducting heavy ion injector linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepard, K.W.
1985-01-01
A conceptual design for a very low velocity (.007 < v/c < .07) superconducting heavy-ion linac is reviewed. This type of linac may have significant cost and performance advantages over room-temperature linacs, at least for applications requiring modest beam currents. Some general features of the design of very-low velocity superconducting accelerating structures are discussed and a design for a 48.5 MHz, v/c = .009 structure, together with the status of a niobium prototype, is discussed in detail. Preliminary results of a beam dynamics study indicate that the low velocity linac may be able to produce heavy-ion beams with time-energy spreadsmore » of a few keV-nsec. 11 refs, 4 figs.« less
NASA Astrophysics Data System (ADS)
Fratzl, Peter
Biological tissues are naturally interactive and adaptive. In general, these features are due to the action of cells that provide sensing, actuation as well as tissue remodelling. There are also examples of materials synthesized by living organisms, such as plant seeds, which fulfil an active function without living cells working as mechanosensors and actuators. Thus the activity of these materials is based on physical principles alone, which provides inspiration for new concepts for artificial active materials. We will describe structural principles leading to movement in seed capsules triggered by ambient humidity and discuss the influence of internal architecture on the overall mechanical behaviour of materials, including actuation and motility. Several conceptual systems for actuating planar structures will be discussed.
An ignition key for atomic-scale engines
NASA Astrophysics Data System (ADS)
Dundas, Daniel; Cunningham, Brian; Buchanan, Claire; Terasawa, Asako; Paxton, Anthony T.; Todorov, Tchavdar N.
2012-10-01
A current-carrying resonant nanoscale device, simulated by non-adiabatic molecular dynamics, exhibits sharp activation of non-conservative current-induced forces with bias. The result, above the critical bias, is generalized rotational atomic motion with a large gain in kinetic energy. The activation exploits sharp features in the electronic structure, and constitutes, in effect, an ignition key for atomic-scale motors. A controlling factor for the effect is the non-equilibrium dynamical response matrix for small-amplitude atomic motion under current. This matrix can be found from the steady-state electronic structure by a simpler static calculation, providing a way to detect the likely appearance, or otherwise, of non-conservative dynamics, in advance of real-time modelling.
Automated extraction of knowledge for model-based diagnostics
NASA Technical Reports Server (NTRS)
Gonzalez, Avelino J.; Myler, Harley R.; Towhidnejad, Massood; Mckenzie, Frederic D.; Kladke, Robin R.
1990-01-01
The concept of accessing computer aided design (CAD) design databases and extracting a process model automatically is investigated as a possible source for the generation of knowledge bases for model-based reasoning systems. The resulting system, referred to as automated knowledge generation (AKG), uses an object-oriented programming structure and constraint techniques as well as internal database of component descriptions to generate a frame-based structure that describes the model. The procedure has been designed to be general enough to be easily coupled to CAD systems that feature a database capable of providing label and connectivity data from the drawn system. The AKG system is capable of defining knowledge bases in formats required by various model-based reasoning tools.
Navigating at Will on the Water Phase Diagram
NASA Astrophysics Data System (ADS)
Pipolo, S.; Salanne, M.; Ferlat, G.; Klotz, S.; Saitta, A. M.; Pietrucci, F.
2017-12-01
Despite the simplicity of its molecular unit, water is a challenging system because of its uniquely rich polymorphism and predicted but yet unconfirmed features. Introducing a novel space of generalized coordinates that capture changes in the topology of the interatomic network, we are able to systematically track transitions among liquid, amorphous, and crystalline forms throughout the whole phase diagram of water, including the nucleation of crystals above and below the melting point. Our approach, based on molecular dynamics and enhanced sampling or free energy calculation techniques, is not specific to water and could be applied to very different structural phase transitions, paving the way towards the prediction of kinetic routes connecting polymorphic structures in a range of materials.
Spherically symmetric conformal gravity and ''gravitational bubbles''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berezin, V.A.; Dokuchaev, V.I.; Eroshenko, Yu.N., E-mail: berezin@inr.ac.ru, E-mail: dokuchaev@inr.ac.ru, E-mail: eroshenko@inr.ac.ru
2016-01-01
The general structure of the spherically symmetric solutions in the Weyl conformal gravity is described. The corresponding Bach equations are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions is found. It consists of two classes. The first one contains the solutions with constant two-dimensional curvature scalar of our specific metrics, and the representatives are the famous Robertson-Walker metrics. One of them we called the ''gravitational bubbles'', which is compact and with zero Weyl tensor. Thus, we obtained the pure vacuum curved space-timesmore » (without any material sources, including the cosmological constant) what is absolutely impossible in General Relativity. Such a phenomenon makes it easier to create the universe from ''nothing''. The second class consists of the solutions with varying curvature scalar. We found its representative as the one-parameter family. It appears that it can be conformally covered by the thee-parameter Mannheim-Kazanas solution. We also investigated the general structure of the energy-momentum tensor in the spherical conformal gravity and constructed the vectorial equation that reveals clearly some features of non-vacuum solutions. Two of them are explicitly written, namely, the metrics à la Vaidya, and the electrovacuum space-time metrics.« less
Derkus, Burak; Emregul, Kaan Cebesoy; Emregul, Emel
2015-11-01
This study investigates effective immobilization of proteins, an important procedure in many fields of bioengineering and medicine, using various biomaterials. Gelatin, alginate and chitosan were chosen as polymeric carriers, and applied in both their composites and nanocomposite forms in combination with carbon nanotubes (CNTs). The prepared nano/composite structures were characterized using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TG) and contact angle analysis (CA). Electrochemical impedance spectroscopy analysis revealed gelatin composites in general to exhibit better immobilization performance relative to the native gelatin which can be attributed to enhanced film morphologies of the composite structures. Moreover, superior immobilization efficiencies were obtained with the addition of carbon nanotubes, due to their conducting and surface enhancement features, especially in the gelatin-chitosan structures due to the presence of structural active groups. Copyright © 2015 Elsevier B.V. All rights reserved.
Ivanova, A A; Ivanov, A A; Oliferenko, A A; Palyulin, V A; Zefirov, N S
2005-06-01
An improved strategy of quantitative structure-property relationship (QSPR) studies of diverse and inhomogeneous organic datasets has been proposed. A molecular connectivity term was successively corrected for different structural features encoded in fragmental descriptors. The so-called solvation index 1chis (a weighted Randic index) was used as a "leading" variable and standardized molecular fragments were employed as "corrective" class-specific variables. Performance of the new approach was illustrated by modelling a dataset of experimental normal boiling points of 833 organic compounds belonging to 20 structural classes. Firstly, separate QSPR models were derived for each class and for eight groups of structurally similar classes. Finally, a general model formed by combining all the classes together was derived (r2=0.957, s=12.9degreesC). The strategy outlined can find application in QSPR analyses of massive, highly diverse databases of organic compounds.
Hierarchical structure for audio-video based semantic classification of sports video sequences
NASA Astrophysics Data System (ADS)
Kolekar, M. H.; Sengupta, S.
2005-07-01
A hierarchical structure for sports event classification based on audio and video content analysis is proposed in this paper. Compared to the event classifications in other games, those of cricket are very challenging and yet unexplored. We have successfully solved cricket video classification problem using a six level hierarchical structure. The first level performs event detection based on audio energy and Zero Crossing Rate (ZCR) of short-time audio signal. In the subsequent levels, we classify the events based on video features using a Hidden Markov Model implemented through Dynamic Programming (HMM-DP) using color or motion as a likelihood function. For some of the game-specific decisions, a rule-based classification is also performed. Our proposed hierarchical structure can easily be applied to any other sports. Our results are very promising and we have moved a step forward towards addressing semantic classification problems in general.
Elegheert, Jonathan; Brigé, Ann; Van Beeumen, Jozef; Savvides, Savvas N
2017-10-01
Shewanella oneidensis, a Gram-negative γ-proteobacterium with an extensive redox capacity, possesses four old yellow enzyme (OYE) homologs. Of these, Shewanella yellow enzyme 4 (SYE4) is implicated in resistance to oxidative stress. Here, we present a series of high-resolution crystal structures for SYE4 in the oxidized and reduced states, and in complex with phenolic ligands and the nitro-aromatic explosive picric acid. The structures unmask new features, including the identification of a binding platform for long-chain hydrophobic molecules. Furthermore, we present the first structural observation of a hydride-Meisenheimer complex of picric acid with a flavoenzyme. Overall, our study exposes the binding promiscuity of SYE4 toward a variety of electrophilic substrates and is consistent with a general detoxification function for SYE4. © 2017 Federation of European Biochemical Societies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalbitzer, H.R.; Neidig, K.P.; Hengstenberg, W.
1991-11-19
Complete sequence-specific assignments of the {sup 1}H NMR spectrum of HPr protein from Staphylococcus aureus were obtained by two-dimensional NMR methods. Important secondary structure elements that can be derived from the observed nuclear Overhauser effects are a large antiparallel {beta}-pleated sheet consisting of four strands, A, B, C, D, a segment S{sub AB} consisting of an extended region around the active-center histidine (His-15) and an {alpha}-helix, a half-turn between strands B and C, a segment S{sub CD} which shows no typical secondary structure, and the {alpha}-helical, C-terminal segment S{sub term}. These general structural features are similar to those found earliermore » in HPr proteins from different microorganisms such as Escherichia coli, Bacillus subtilis, and Streptococcus faecalis.« less
Carton, Flavia; Calderan, Laura; Malatesta, Manuela
2017-11-28
Explanted organs and tissues represent suitable experimental systems mimicking the functional and structural complexity of the living organism, with positive ethical and economic impact on research activities. However, their preservation in culture is generally limited, thus hindering their application as experimental models for biomedical research. In the present study, we investigated the potential of an innovative fluid dynamic culture system to improve the structural preservation in vitro of explanted mouse skeletal muscles (soleus). We used light and transmission electron microscopy to compare the morphological features of muscles maintained either in multiwell plates under conventional conditions or in a bioreactor mimicking the flow of physiological fluids. Our results demonstrate that fluid dynamic conditions markedly slowed the progressive structural deterioration of the muscle tissue occurring during the permanence in the culture medium, prolonging the preservation of some organelles such as mitochondria up to 48 h.
Carton, Flavia; Calderan, Laura; Malatesta, Manuela
2017-01-01
Explanted organs and tissues represent suitable experimental systems mimicking the functional and structural complexity of the living organism, with positive ethical and economic impact on research activities. However, their preservation in culture is generally limited, thus hindering their application as experimental models for biomedical research. In the present study, we investigated the potential of an innovative fluid dynamic culture system to improve the structural preservation in vitro of explanted mouse skeletal muscles (soleus). We used light and transmission electron microscopy to compare the morphological features of muscles maintained either in multiwell plates under conventional conditions or in a bioreactor mimicking the flow of physiological fluids. Our results demonstrate that fluid dynamic conditions markedly slowed the progressive structural deterioration of the muscle tissue occurring during the permanence in the culture medium, prolonging the preservation of some organelles such as mitochondria up to 48 h. PMID:29313601
An Exemplar-Based Multi-View Domain Generalization Framework for Visual Recognition.
Niu, Li; Li, Wen; Xu, Dong; Cai, Jianfei
2018-02-01
In this paper, we propose a new exemplar-based multi-view domain generalization (EMVDG) framework for visual recognition by learning robust classifier that are able to generalize well to arbitrary target domain based on the training samples with multiple types of features (i.e., multi-view features). In this framework, we aim to address two issues simultaneously. First, the distribution of training samples (i.e., the source domain) is often considerably different from that of testing samples (i.e., the target domain), so the performance of the classifiers learnt on the source domain may drop significantly on the target domain. Moreover, the testing data are often unseen during the training procedure. Second, when the training data are associated with multi-view features, the recognition performance can be further improved by exploiting the relation among multiple types of features. To address the first issue, considering that it has been shown that fusing multiple SVM classifiers can enhance the domain generalization ability, we build our EMVDG framework upon exemplar SVMs (ESVMs), in which a set of ESVM classifiers are learnt with each one trained based on one positive training sample and all the negative training samples. When the source domain contains multiple latent domains, the learnt ESVM classifiers are expected to be grouped into multiple clusters. To address the second issue, we propose two approaches under the EMVDG framework based on the consensus principle and the complementary principle, respectively. Specifically, we propose an EMVDG_CO method by adding a co-regularizer to enforce the cluster structures of ESVM classifiers on different views to be consistent based on the consensus principle. Inspired by multiple kernel learning, we also propose another EMVDG_MK method by fusing the ESVM classifiers from different views based on the complementary principle. In addition, we further extend our EMVDG framework to exemplar-based multi-view domain adaptation (EMVDA) framework when the unlabeled target domain data are available during the training procedure. The effectiveness of our EMVDG and EMVDA frameworks for visual recognition is clearly demonstrated by comprehensive experiments on three benchmark data sets.
Imagine the Universe!. Version 2
NASA Technical Reports Server (NTRS)
Whitlock, Laura A.; Bene, Meredith; Cliffe, J. Allie; Lochner, James C.
1998-01-01
Imagine the Universe! gives students, teachers, and the general public a window on how high-energy astrophysics is used to probe the structure and evolution of the Universe. This is the universe as revealed by X-rays, gamma-rays and cosmic rays. Information about this exciting branch of astronomy is available in Imagine the Universe! at a variety of reading levels, and is illustrated with on-line graphics, animations, and movies. Information is presented on topics ranging from the Sun to black holes to X-ray and gamma-ray satellites. Imagine! also features a Teacher's Corner with study guides, lesson plans, and information on other education resources. Further descriptions of features of the Imagine! site and the other sites included on the CD-ROM may be found in sections V and VI of the booklet file.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, T. J.; Weisend, II, J. G.
The TESLA collaboration developed a unique variant of SRF cryomodule designs, the chief feature being use of the large, low pressure helium vapor return pipe as the structural support backbone of the cryomodule. Additional innovative features include all cryogenic piping within the cryomodule (no parallel external cryogenic transfer line), long strings of RF cavities within a single cryomodule, and cryomodules connected in series. Several projects, including FLASH and XFEL at DESY, LCLS-II at SLAC, and the ILC technical design have adopted this general design concept. Advantages include saving space by eliminating the external transfer line, relatively tight packing of RFmore » cavities along the beamline due to fewer warm-cold transitions, and potentially lower costs. However, a primary disadvantage is the relative lack of independence for warm-up, replacement, and cool-down of individual cryomodules.« less
NASA Astrophysics Data System (ADS)
de Sanctis, Luca; Galla, Tobias
2009-04-01
We study the effects of bounded confidence thresholds and of interaction and external noise on Axelrod’s model of social influence. Our study is based on a combination of numerical simulations and an integration of the mean-field master equation describing the system in the thermodynamic limit. We find that interaction thresholds affect the system only quantitatively, but that they do not alter the basic phase structure. The known crossover between an ordered and a disordered state in finite systems subject to external noise persists in models with general confidence threshold. Interaction noise here facilitates the dynamics and reduces relaxation times. We also study Axelrod systems with metric features and point out similarities and differences compared to models with nominal features.
Generalized Feature Extraction for Wrist Pulse Analysis: From 1-D Time Series to 2-D Matrix.
Dimin Wang; Zhang, David; Guangming Lu
2017-07-01
Traditional Chinese pulse diagnosis, known as an empirical science, depends on the subjective experience. Inconsistent diagnostic results may be obtained among different practitioners. A scientific way of studying the pulse should be to analyze the objectified wrist pulse waveforms. In recent years, many pulse acquisition platforms have been developed with the advances in sensor and computer technology. And the pulse diagnosis using pattern recognition theories is also increasingly attracting attentions. Though many literatures on pulse feature extraction have been published, they just handle the pulse signals as simple 1-D time series and ignore the information within the class. This paper presents a generalized method of pulse feature extraction, extending the feature dimension from 1-D time series to 2-D matrix. The conventional wrist pulse features correspond to a particular case of the generalized models. The proposed method is validated through pattern classification on actual pulse records. Both quantitative and qualitative results relative to the 1-D pulse features are given through diabetes diagnosis. The experimental results show that the generalized 2-D matrix feature is effective in extracting both the periodic and nonperiodic information. And it is practical for wrist pulse analysis.
NASA Technical Reports Server (NTRS)
Rasmussen, John
1990-01-01
Structural optimization has attracted the attention since the days of Galileo. Olhoff and Taylor have produced an excellent overview of the classical research within this field. However, the interest in structural optimization has increased greatly during the last decade due to the advent of reliable general numerical analysis methods and the computer power necessary to use them efficiently. This has created the possibility of developing general numerical systems for shape optimization. Several authors, eg., Esping; Braibant & Fleury; Bennet & Botkin; Botkin, Yang, and Bennet; and Stanton have published practical and successful applications of general optimization systems. Ding and Homlein have produced extensive overviews of available systems. Furthermore, a number of commercial optimization systems based on well-established finite element codes have been introduced. Systems like ANSYS, IDEAS, OASIS, and NISAOPT are widely known examples. In parallel to this development, the technology of computer aided design (CAD) has gained a large influence on the design process of mechanical engineering. The CAD technology has already lived through a rapid development driven by the drastically growing capabilities of digital computers. However, the systems of today are still considered as being only the first generation of a long row of computer integrated manufacturing (CIM) systems. These systems to come will offer an integrated environment for design, analysis, and fabrication of products of almost any character. Thus, the CAD system could be regarded as simply a database for geometrical information equipped with a number of tools with the purpose of helping the user in the design process. Among these tools are facilities for structural analysis and optimization as well as present standard CAD features like drawing, modeling, and visualization tools. The state of the art of structural optimization is that a large amount of mathematical and mechanical techniques are available for the solution of single problems. By implementing collections of the available techniques into general software systems, operational environments for structural optimization have been created. The forthcoming years must bring solutions to the problem of integrating such systems into more general design environments. The result of this work should be CAD systems for rational design in which structural optimization is one important design tool among many others.
The semiology of febrile seizures: Focal features are frequent.
Takasu, Michihiko; Kubota, Tetsuo; Tsuji, Takeshi; Kurahashi, Hirokazu; Numoto, Shingo; Watanabe, Kazuyoshi; Okumura, Akihisa
2017-08-01
To clarify the semiology of febrile seizures (FS) and to determine the frequency of FS with symptoms suggestive of focal onset. FS symptoms in children were reported within 24h of seizure onset by the parents using a structured questionnaire consisting principally of closed-ended questions. We focused on events at seizure commencement, including changes in behavior and facial expression, and ocular and oral symptoms. We also investigated the autonomic and motor symptoms developing during seizures. The presence or absence of focal and limbic features was determined for each patient. The associations of certain focal and limbic features with patient characteristics were assessed. Information was obtained on FS in 106 children. Various events were recorded at seizure commencement. Behavioral changes were observed in 35 children, changes in facial expression in 53, ocular symptoms in 78, and oral symptoms in 90. In terms of events during seizures, autonomic symptoms were recognized in 78, and convulsive motor symptoms were recognized in 68 children. Focal features were evident in 81 children; 38 children had two or more such features. Limbic features were observed in 44 children, 9 of whom had two or more such features. There was no significant relationship between any patient characteristic and the numbers of focal or limbic features. The semiology of FS varied widely among children, and symptoms suggestive of focal onset were frequent. FS of focal onset may be more common than is generally thought. Copyright © 2017 Elsevier Inc. All rights reserved.
Abnormal semantic knowledge in a case of developmental amnesia.
Blumenthal, Anna; Duke, Devin; Bowles, Ben; Gilboa, Asaf; Rosenbaum, R Shayna; Köhler, Stefan; McRae, Ken
2017-07-28
An important theory holds that semantic knowledge can develop independently of episodic memory. One strong source of evidence supporting this independence comes from the observation that individuals with early hippocampal damage leading to developmental amnesia generally perform normally on standard tests of semantic memory, despite their profound impairment in episodic memory. However, one aspect of semantic memory that has not been explored is conceptual structure. We built on the theoretically important distinction between intrinsic features of object concepts (e.g., shape, colour, parts) and extrinsic features (e.g., how something is used, where it is typically located). The accrual of extrinsic feature knowledge that is important for concepts such as chair or spoon may depend on binding mechanisms in the hippocampus. We tested HC, an individual with developmental amnesia due to a well-characterized lesion of the hippocampus, on her ability to generate semantic features for object concepts. HC generated fewer extrinsic features than controls, but a similar number of intrinsic features than controls. We also tested her on typicality ratings. Her typicality ratings were abnormal for nonliving things (which more strongly depend on extrinsic features), but normal for living things (which more strongly depend on intrinsic features). In contrast, NB, who has MTL but not hippocampal damage due to surgery, showed no impairments in either task. These results suggest that episodic and semantic memory are not entirely independent, and that the hippocampus is important for learning some aspects of conceptual knowledge. Copyright © 2017 Elsevier Ltd. All rights reserved.
CN rings in full protoplanetary disks around young stars as probes of disk structure
NASA Astrophysics Data System (ADS)
Cazzoletti, P.; van Dishoeck, E. F.; Visser, R.; Facchini, S.; Bruderer, S.
2018-01-01
Aims: Bright ring-like structure emission of the CN molecule has been observed in protoplanetary disks. We investigate whether such structures are due to the morphology of the disk itself or if they are instead an intrinsic feature of CN emission. With the intention of using CN as a diagnostic, we also address to which physical and chemical parameters CN is most sensitive. Methods: A set of disk models were run for different stellar spectra, masses, and physical structures via the 2D thermochemical code DALI. An updated chemical network that accounts for the most relevant CN reactions was adopted. Results: Ring-shaped emission is found to be a common feature of all adopted models; the highest abundance is found in the upper outer regions of the disk, and the column density peaks at 30-100 AU for T Tauri stars with standard accretion rates. Higher mass disks generally show brighter CN. Higher UV fields, such as those appropriate for T Tauri stars with high accretion rates or for Herbig Ae stars or for higher disk flaring, generally result in brighter and larger rings. These trends are due to the main formation paths of CN, which all start with vibrationally excited H_2^* molecules, that are produced through far ultraviolet (FUV) pumping of H2. The model results compare well with observed disk-integrated CN fluxes and the observed location of the CN ring for the TW Hya disk. Conclusions: CN rings are produced naturally in protoplanetary disks and do not require a specific underlying disk structure such as a dust cavity or gap. The strong link between FUV flux and CN emission can provide critical information regarding the vertical structure of the disk and the distribution of dust grains which affects the UV penetration, and could help to break some degeneracies in the SED fitting. In contrast with C2H or c-C3H2, the CN flux is not very sensitive to carbon and oxygen depletion.
NASA Astrophysics Data System (ADS)
Wan, Yi
2011-06-01
Chinese wines can be classification or graded by the micrographs. Micrographs of Chinese wines show floccules, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. Shape and structure of wines' particles in microstructure is the most important feature for recognition and classification of wines. So we introduce a feature extraction method which can describe the structure and region shape of micrograph efficiently. First, the micrographs are enhanced using total variation denoising, and segmented using a modified Otsu's method based on the Rayleigh Distribution. Then features are extracted using proposed method in the paper based on area, perimeter and traditional shape feature. Eight kinds total 26 features are selected. Finally, Chinese wine classification system based on micrograph using combination of shape and structure features and BP neural network have been presented. We compare the recognition results for different choices of features (traditional shape features or proposed features). The experimental results show that the better classification rate have been achieved using the combinational features proposed in this paper.
Geological and technological assessment of artificial reef sites, Louisiana outer continental shelf
Pope, D.L.; Moslow, T.F.; Wagner, J.B.
1993-01-01
This paper describes the general procedures used to select sites for obsolete oil and gas platforms as artificial reefs on the Louisiana outer continental shelf (OCS). The methods employed incorporate six basic steps designed to resolve multiple-use conflicts that might otherwise arise with daily industry and commercial fishery operations, and to identify and assess both geological and technological constraints that could affect placement of the structures. These steps include: (1) exclusion mapping; (2) establishment of artificial reef planning areas; (3) database compilation; (4) assessment and interpretation of database; (5) mapping of geological and man-made features within each proposed reef site; and (6) site selection. Nautical charts, bathymetric maps, and offshore oil and gas maps were used for exclusion mapping, and to select nine regional planning areas. Pipeline maps were acquired from federal agencies and private industry to determine their general locations within each planning area, and to establish exclusion fairways along each pipeline route. Approximately 1600 line kilometers of high-resolution geophysical data collected by federal agencies and private industry was acquired for the nine planning areas. These data were interpreted to determine the nature and extent of near-surface geologic features that could affect placement of the structures. Seismic reflection patterns were also characterized to evaluate near-bottom sedimentation processes in the vicinity of each reef site. Geotechnical borings were used to determine the lithological and physical properties of the sediment, and for correlation with the geophysical data. Since 1987, five sites containing 10 obsolete production platforms have been selected on the Louisiana OCS using these procedures. Industry participants have realized a total savings of approximately US $1 500 000 in salvaging costs by converting these structures into artificial reefs. ?? 1993.
NASA Astrophysics Data System (ADS)
Rousselet, Louise; de Verneil, Alain; Doglioli, Andrea M.; Petrenko, Anne A.; Duhamel, Solange; Maes, Christophe; Blanke, Bruno
2018-04-01
The patterns of the large-scale, meso- and submesoscale surface circulation on biogeochemical and biological distributions are examined in the western tropical South Pacific (WTSP) in the context of the OUTPACE cruise (February-April 2015). Multi-disciplinary original in situ observations were achieved along a zonal transect through the WTSP and their analysis was coupled with satellite data. The use of Lagrangian diagnostics allows for the identification of water mass pathways, mesoscale structures, and submesoscale features such as fronts. In particular, we confirmed the existence of a global wind-driven southward circulation of surface waters in the entire WTSP, using a new high-resolution altimetry-derived product, validated by in situ drifters, that includes cyclogeostrophy and Ekman components with geostrophy. The mesoscale activity is shown to be responsible for counter-intuitive water mass trajectories in two subregions: (i) the Coral Sea, with surface exchanges between the North Vanuatu Jet and the North Caledonian Jet, and (ii) around 170° W, with an eastward pathway, whereas a westward general direction dominates. Fronts and small-scale features, detected with finite-size Lyapunov exponents (FSLEs), are correlated with 25 % of surface tracer gradients, which reveals the significance of such structures in the generation of submesoscale surface gradients. Additionally, two high-frequency sampling transects of biogeochemical parameters and microorganism abundances demonstrate the influence of fronts in controlling the spatial distribution of bacteria and phytoplankton, and as a consequence the microbial community structure. All circulation scales play an important role that has to be taken into account not only when analysing the data from OUTPACE but also, more generally, for understanding the global distribution of biogeochemical components.
NASA Astrophysics Data System (ADS)
Tandon, K.; Egbert, G.; Siripunvaraporn, W.
2003-12-01
We are developing a modular system for three-dimensional inversion of electromagnetic (EM) induction data, using an object oriented programming approach. This approach allows us to modify the individual components of the inversion scheme proposed, and also reuse the components for variety of problems in earth science computing howsoever diverse they might be. In particular, the modularity allows us to (a) change modeling codes independently of inversion algorithm details; (b) experiment with new inversion algorithms; and (c) modify the way prior information is imposed in the inversion to test competing hypothesis and techniques required to solve an earth science problem. Our initial code development is for EM induction equations on a staggered grid, using iterative solution techniques in 3D. An example illustrated here is an experiment with the sensitivity of 3D magnetotelluric inversion to uncertainties in the boundary conditions required for regional induction problems. These boundary conditions should reflect the large-scale geoelectric structure of the study area, which is usually poorly constrained. In general for inversion of MT data, one fixes boundary conditions at the edge of the model domain, and adjusts the earth?s conductivity structure within the modeling domain. Allowing for errors in specification of the open boundary values is simple in principle, but no existing inversion codes that we are aware of have this feature. Adding a feature such as this is straightforward within the context of the modular approach. More generally, a modular approach provides an efficient methodology for setting up earth science computing problems to test various ideas. As a concrete illustration relevant to EM induction problems, we investigate the sensitivity of MT data near San Andreas Fault at Parkfield (California) to uncertainties in the regional geoelectric structure.
Quantum Interactive Dualism: An Alternative to Materialism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stapp, Henry P
2005-06-01
Materialism rest implicitly upon the general conception of nature promoted by Galileo and Newton during the seventeenth century. It features the causal closure of the physical: The course of physically described events for all time is fixed by laws that refer exclusively to the physically describeable features of nature, and initial conditions on these feature. No reference to subjective thoughts or feeling of human beings enter. That simple conception of nature was found during the first quarter of the twentieth century to be apparently incompatible with the empirical facts. The founders of quantum theory created a new fundamental physical theory,more » quantum theory, which introduced crucially into the causal structure certain conscious choices made by human agents about how they will act. These conscious human choices are ''free'' in the sense that they are not fixed by the known laws. But they can influence the course of physically described events. Thus the principle of the causal closure of the physical fails. Applications in psycho-neuro-dynamics are described.« less
Odor Impression Prediction from Mass Spectra.
Nozaki, Yuji; Nakamoto, Takamichi
2016-01-01
The sense of smell arises from the perception of odors from chemicals. However, the relationship between the impression of odor and the numerous physicochemical parameters has yet to be understood owing to its complexity. As such, there is no established general method for predicting the impression of odor of a chemical only from its physicochemical properties. In this study, we designed a novel predictive model based on an artificial neural network with a deep structure for predicting odor impression utilizing the mass spectra of chemicals, and we conducted a series of computational analyses to evaluate its performance. Feature vectors extracted from the original high-dimensional space using two autoencoders equipped with both input and output layers in the model are used to build a mapping function from the feature space of mass spectra to the feature space of sensory data. The results of predictions obtained by the proposed new method have notable accuracy (R≅0.76) in comparison with a conventional method (R≅0.61).
Silva Filho, Telmo M; Souza, Renata M C R; Prudêncio, Ricardo B C
2016-08-01
Some complex data types are capable of modeling data variability and imprecision. These data types are studied in the symbolic data analysis field. One such data type is interval data, which represents ranges of values and is more versatile than classic point data for many domains. This paper proposes a new prototype-based classifier for interval data, trained by a swarm optimization method. Our work has two main contributions: a swarm method which is capable of performing both automatic selection of features and pruning of unused prototypes and a generalized weighted squared Euclidean distance for interval data. By discarding unnecessary features and prototypes, the proposed algorithm deals with typical limitations of prototype-based methods, such as the problem of prototype initialization. The proposed distance is useful for learning classes in interval datasets with different shapes, sizes and structures. When compared to other prototype-based methods, the proposed method achieves lower error rates in both synthetic and real interval datasets. Copyright © 2016 Elsevier Ltd. All rights reserved.
Composing alarms: considering the musical aspects of auditory alarm design.
Gillard, Jessica; Schutz, Michael
2016-12-01
Short melodies are commonly linked to referents in jingles, ringtones, movie themes, and even auditory displays (i.e., sounds used in human-computer interactions). While melody associations can be quite effective, auditory alarms in medical devices are generally poorly learned and highly confused. Here, we draw on approaches and stimuli from both music cognition (melody recognition) and human factors (alarm design) to analyze the patterns of confusions in a paired-associate alarm-learning task involving both a standardized melodic alarm set (Experiment 1) and a set of novel melodies (Experiment 2). Although contour played a role in confusions (consistent with previous research), we observed several cases where melodies with similar contours were rarely confused - melodies holding musically distinctive features. This exploratory work suggests that salient features formed by an alarm's melodic structure (such as repeated notes, distinct contours, and easily recognizable intervals) can increase the likelihood of correct alarm identification. We conclude that the use of musical principles and features may help future efforts to improve the design of auditory alarms.
Structural features that predict real-value fluctuations of globular proteins.
Jamroz, Michal; Kolinski, Andrzej; Kihara, Daisuke
2012-05-01
It is crucial to consider dynamics for understanding the biological function of proteins. We used a large number of molecular dynamics (MD) trajectories of nonhomologous proteins as references and examined static structural features of proteins that are most relevant to fluctuations. We examined correlation of individual structural features with fluctuations and further investigated effective combinations of features for predicting the real value of residue fluctuations using the support vector regression (SVR). It was found that some structural features have higher correlation than crystallographic B-factors with fluctuations observed in MD trajectories. Moreover, SVR that uses combinations of static structural features showed accurate prediction of fluctuations with an average Pearson's correlation coefficient of 0.669 and a root mean square error of 1.04 Å. This correlation coefficient is higher than the one observed in predictions by the Gaussian network model (GNM). An advantage of the developed method over the GNMs is that the former predicts the real value of fluctuation. The results help improve our understanding of relationships between protein structure and fluctuation. Furthermore, the developed method provides a convienient practial way to predict fluctuations of proteins using easily computed static structural features of proteins. Copyright © 2012 Wiley Periodicals, Inc.
Structural features that predict real-value fluctuations of globular proteins
Jamroz, Michal; Kolinski, Andrzej; Kihara, Daisuke
2012-01-01
It is crucial to consider dynamics for understanding the biological function of proteins. We used a large number of molecular dynamics trajectories of non-homologous proteins as references and examined static structural features of proteins that are most relevant to fluctuations. We examined correlation of individual structural features with fluctuations and further investigated effective combinations of features for predicting the real-value of residue fluctuations using the support vector regression. It was found that some structural features have higher correlation than crystallographic B-factors with fluctuations observed in molecular dynamics trajectories. Moreover, support vector regression that uses combinations of static structural features showed accurate prediction of fluctuations with an average Pearson’s correlation coefficient of 0.669 and a root mean square error of 1.04 Å. This correlation coefficient is higher than the one observed for the prediction by the Gaussian network model. An advantage of the developed method over the Gaussian network models is that the former predicts the real-value of fluctuation. The results help improve our understanding of relationships between protein structure and fluctuation. Furthermore, the developed method provides a convienient practial way to predict fluctuations of proteins using easily computed static structural features of proteins. PMID:22328193
Finite-size correction scheme for supercell calculations in Dirac-point two-dimensional materials.
Rocha, C G; Rocha, A R; Venezuela, P; Garcia, J H; Ferreira, M S
2018-06-19
Modern electronic structure calculations are predominantly implemented within the super cell representation in which unit cells are periodically arranged in space. Even in the case of non-crystalline materials, defect-embedded unit cells are commonly used to describe doped structures. However, this type of computation becomes prohibitively demanding when convergence rates are sufficiently slow and may require calculations with very large unit cells. Here we show that a hitherto unexplored feature displayed by several 2D materials may be used to achieve convergence in formation- and adsorption-energy calculations with relatively small unit-cell sizes. The generality of our method is illustrated with Density Functional Theory calculations for different 2D hosts doped with different impurities, all of which providing accuracy levels that would otherwise require enormously large unit cells. This approach provides an efficient route to calculating the physical properties of 2D systems in general but is particularly suitable for Dirac-point materials doped with impurities that break their sublattice symmetry.
NASA Technical Reports Server (NTRS)
Hoff, Claus; Cady, Eric; Chainyk, Mike; Kissil, Andrew; Levine, Marie; Moore, Greg
2011-01-01
The efficient simulation of multidisciplinary thermo-opto-mechanical effects in precision deployable systems has for years been limited by numerical toolsets that do not necessarily share the same finite element basis, level of mesh discretization, data formats, or compute platforms. Cielo, a general purpose integrated modeling tool funded by the Jet Propulsion Laboratory and the Exoplanet Exploration Program, addresses shortcomings in the current state of the art via features that enable the use of a single, common model for thermal, structural and optical aberration analysis, producing results of greater accuracy, without the need for results interpolation or mapping. This paper will highlight some of these advances, and will demonstrate them within the context of detailed external occulter analyses, focusing on in-plane deformations of the petal edges for both steady-state and transient conditions, with subsequent optical performance metrics including intensity distributions at the pupil and image plane.
Design Protocols and Analytical Strategies that Incorporate Structural Reliability Models
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.
1995-01-01
The general goal of this project is to establish design protocols that enable the engineer to analyze and predict certain types of behavior in ceramic composites. Sections of the final report addresses the following: Description of the Problem that Motivated the Technology Development, Description of the New Technology that was Developed, Unique and Novel Features of the Technology and Results/Benefits of Application (year by year accomplishments), and Utilization of New Technology in Non-Aerospace Applications. Activities for this reporting period included the development of a design analysis as part of a cooperative agreement with general Electric Aircraft Engines. The effort focused on modifying the Toughened Ceramics Analysis and Reliability Evaluation of Structures (TCARES) algorithm for use in the design of engine components fabricated from NiAl. Other activities related to the development of an ASTM standard practice for estimating Weibull parameters. The standard focuses on the evaluation and reporting of uniaxial strength data, and the estimation of probability distribution parameters for ceramics which fail in a brittle fashion.
Feature Analysis of Generalized Data Base Management Systems.
ERIC Educational Resources Information Center
Conference on Data Systems Languages, Monroeville, PA. Systems Committee.
A more complete definition of the features offered in present day generalized data base management systems is provided by this second technical report of the CODASYL Systems Committee. In a tutorial format, each feature description is followed by either narrative information covering ten systems or by a table for all systems. The ten systems…
Surprise! Infants consider possible bases of generalization for a single input example.
Gerken, LouAnn; Dawson, Colin; Chatila, Razanne; Tenenbaum, Josh
2015-01-01
Infants have been shown to generalize from a small number of input examples. However, existing studies allow two possible means of generalization. One is via a process of noting similarities shared by several examples. Alternatively, generalization may reflect an implicit desire to explain the input. The latter view suggests that generalization might occur when even a single input example is surprising, given the learner's current model of the domain. To test the possibility that infants are able to generalize based on a single example, we familiarized 9-month-olds with a single three-syllable input example that contained either one surprising feature (syllable repetition, Experiment 1) or two features (repetition and a rare syllable, Experiment 2). In both experiments, infants generalized only to new strings that maintained all of the surprising features from familiarization. This research suggests that surprise can promote very rapid generalization. © 2014 John Wiley & Sons Ltd.
Sarrazin, Samuel; Poupon, Cyril; Linke, Julia; Wessa, Michèle; Phillips, Mary; Delavest, Marine; Versace, Amelia; Almeida, Jorge; Guevara, Pamela; Duclap, Delphine; Duchesnay, Edouard; Mangin, Jean-François; Le Dudal, Katia; Daban, Claire; Hamdani, Nora; D'Albis, Marc-Antoine; Leboyer, Marion; Houenou, Josselin
2014-04-01
Tractography studies investigating white matter (WM) abnormalities in patients with bipolar disorder have yielded heterogeneous results owing to small sample sizes. The small size limits their generalizability, a critical issue for neuroimaging studies of biomarkers of bipolar I disorder (BPI). To study WM abnormalities using whole-brain tractography in a large international multicenter sample of BPI patients and to compare these alterations between patients with or without a history of psychotic features during mood episodes. A cross-sectional, multicenter, international, Q-ball imaging tractography study comparing 118 BPI patients and 86 healthy control individuals. In addition, among the patient group, we compared those with and without a history of psychotic features. University hospitals in France, Germany, and the United States contributed participants. Participants underwent assessment using the Diagnostic Interview for Genetic Studies at the French sites or the Structured Clinical Interview for DSM-IV at the German and US sites. Diffusion-weighted magnetic resonance images were acquired using the same acquisition parameters and scanning hardware at each site. We reconstructed 22 known deep WM tracts using Q-ball imaging tractography and an automatized segmentation technique. Generalized fractional anisotropy values along each reconstructed WM tract. Compared with controls, BPI patients had significant reductions in mean generalized fractional anisotropy values along the body and the splenium of the corpus callosum, the left cingulum, and the anterior part of the left arcuate fasciculus when controlling for age, sex, and acquisition site (corrected for multiple testing). Patients with a history of psychotic features had a lower mean generalized fractional anisotropy value than those without along the body of the corpus callosum (corrected for multiple testing). In this multicenter sample, BPI patients had reduced WM integrity in interhemispheric, limbic, and arcuate WM tracts. Interhemispheric pathways are more disrupted in patients with than in those without psychotic symptoms. Together these results highlight the existence of an anatomic disconnectivity in BPI and further underscore a role for interhemispheric disconnectivity in the pathophysiological features of psychosis in BPI.
NASA Astrophysics Data System (ADS)
McKenzie, J. F.; Dubinin, E.; Sauer, K.; Doyle, T. B.
2004-08-01
Perturbation reductive procedures, as used to analyse various weakly nonlinear plasma waves (solitons and periodic waves), normally lead to the dynamical system being described by KdV, Burgers' or a nonlinear Schrödinger-type equation, with properties that can be deduced from an array of mathematical techniques. Here we develop a fully nonlinear theory of one-dimensional stationary plasma waves, which elucidates the common nature of various diverse wave phenomena. This is accomplished by adopting an essentially fluid dynamic viewpoint. In this unified treatment the constants of the motion (for mass, momentum and energy) lead naturally to the construction of the wave structure equations. It is shown, for example, that electrostatic, Hall magnetohydrodynamic and ion cyclotron acoustic nonlinear waves all obey first-order differential equations of the same generic type for the longitudinal flow field of the wave. The equilibrium points, which define the soliton amplitude, are given by the compressive and/or rarefactive roots of a total plasma ‘energy’ or ‘momentum’ function characterizing the wave type. This energy function, which is an algebraic combination of the Bernoulli momentum and energy functions for the longitudinal flow field, is the fluid dynamic counterpart of the pseudo-potentials, which are characteristic of system structure equations formulated in other than fluid variables. Another general feature of the structure equation is the phenomenon of choked flow, which occurs when the flow speed becomes sonic. It is this trans-sonic property that limits the soliton amplitudes and defines the critical collective Mach numbers of the waves. These features are also obtained in multi-component plasmas where, for example, in a bi-ion plasma, momentum exchanges between protons and heavier ions are mediated by the Maxwell magnetic stresses. With a suitable generalization of the concept of a sonic point in a bi-ion system and the corresponding choked flow feature, the wave structures, although now more complicated, can also be understood within this overall fluid framework. Particularly useful tools in this context are the momentum hodograph (an algebraic relation between the bi-ion speeds and the electron speed, or magnetic field, which follows from the conservation of mass, momentum and charge-neutrality) and a generalized Bernoulli energy density for each species. Analysis shows that the bi-ion solitons are essentially compressive, but contain the remarkable feature of the presence of a proton rarefactive core. A new type of soliton, called an ‘oscilliton’ because embedded spatial oscillations are superimposed on the classical soliton, is also described and discussed. A necessary condition for the existence of this type of wave is that the linear phase velocity must exhibit an extremum where the phase speed matches the group speed. The remarkable properties of this wave are illustrated for the case of both whistler waves and bi-ion waves where, for the latter, the requisite condition is met near the cross-over frequencies. In the case of the whistler oscilliton, which propagates at speeds in excess of one half of the Alfvén speed (based on the electrons), an analytic solution has been constructed through a phase-portrait integral of the system in which the proton and electron dynamics must be placed on the same footing. The relevance of the different wave structures to diverse space environments is briefly discussed in relation to recently available high-time and spatial resolution data from satellite observations.
NASA Astrophysics Data System (ADS)
Cheng, Win-Bin
2018-01-01
Crustal seismic velocity structure was determined for the northern Taiwan using seismic travel-time data to investigate the northeastern extension of the northern South China Sea's high-magnetic belt. In order to increase the model resolution, a joint analysis of gravity anomaly and seismic travel-time data have been conducted. A total of 3385 events had been used in the inversion that was collected by the Central Weather Bureau Seismological Network from 1990 to 2015. The main features of the obtained three-dimensional velocity model are: (1) a relatively high Vp zone with velocity greater than 6.5 km/s is observed in the middle to lower crust, (2) the high Vp zone generally parallels to the north-south structural trending of the Chuchih fault and Hsuehshan Range, (3) at 25 km depth-slice, the high Vp zone shows structural trends change from northeastward to northward in central Taiwan, where the values of high-magnetic anomalies are rapidly decreasing to low values. A combination of seismic, GPS, and structural interpretations suggests that the entire crust has been deformed and demagnetized in consequence of the collision between the Philippine Sea plate and the Asian continental margin. We suggest that the feature of sharp bending of the high Vp zone would migrate southwestward and cause further crustal deformation of the Peikang High in the future.
Gear fault diagnosis based on the structured sparsity time-frequency analysis
NASA Astrophysics Data System (ADS)
Sun, Ruobin; Yang, Zhibo; Chen, Xuefeng; Tian, Shaohua; Xie, Yong
2018-03-01
Over the last decade, sparse representation has become a powerful paradigm in mechanical fault diagnosis due to its excellent capability and the high flexibility for complex signal description. The structured sparsity time-frequency analysis (SSTFA) is a novel signal processing method, which utilizes mixed-norm priors on time-frequency coefficients to obtain a fine match for the structure of signals. In order to extract the transient feature from gear vibration signals, a gear fault diagnosis method based on SSTFA is proposed in this work. The steady modulation components and impulsive components of the defective gear vibration signals can be extracted simultaneously by choosing different time-frequency neighborhood and generalized thresholding operators. Besides, the time-frequency distribution with high resolution is obtained by piling different components in the same diagram. The diagnostic conclusion can be made according to the envelope spectrum of the impulsive components or by the periodicity of impulses. The effectiveness of the method is verified by numerical simulations, and the vibration signals registered from a gearbox fault simulator and a wind turbine. To validate the efficiency of the presented methodology, comparisons are made among some state-of-the-art vibration separation methods and the traditional time-frequency analysis methods. The comparisons show that the proposed method possesses advantages in separating feature signals under strong noise and accounting for the inner time-frequency structure of the gear vibration signals.