ERIC Educational Resources Information Center
Conway, Andrew R. A.; Cowan, Nelsin; Bunting, Michael F.; Therriault, David J.; Minkoff, Scott R. B.
2002-01-01
Studied the interrelationships among general fluid intelligence, short-term memory capacity, working memory capacity, and processing speed in 120 young adults and used structural equation modeling to determine the best predictor of general fluid intelligence. Results suggest that working memory capacity, but not short-term memory capacity or…
Rusli, Yazmin Ahmad; Montgomery, James W
2017-10-17
The aim of this study was to determine whether extant language (lexical) knowledge or domain-general working memory is the better predictor of comprehension of object relative sentences for children with typical development. We hypothesized that extant language knowledge, not domain-general working memory, is the better predictor. Fifty-three children (ages 9-11 years) completed a word-level verbal working-memory task, indexing extant language (lexical) knowledge; an analog nonverbal working-memory task, representing domain-general working memory; and a hybrid sentence comprehension task incorporating elements of both agent selection and cross-modal picture-priming paradigms. Images of the agent and patient were displayed at the syntactic gap in the object relative sentences, and the children were asked to select the agent of the sentence. Results of general linear modeling revealed that extant language knowledge accounted for a unique 21.3% of variance in the children's object relative sentence comprehension over and above age (8.3%). Domain-general working memory accounted for a nonsignificant 1.6% of variance. We interpret the results to suggest that extant language knowledge and not domain-general working memory is a critically important contributor to children's object relative sentence comprehension. Results support a connectionist view of the association between working memory and object relative sentence comprehension. https://doi.org/10.23641/asha.5404573.
Working memory capacity in generalized social phobia.
Amir, Nader; Bomyea, Jessica
2011-05-01
Research suggests that understanding complex social cues depends on the availability of cognitive resources (e.g., Phillips, Channon, Tunstall, Hedenstrom, & Lyons, 2008). In spite of evidence suggesting that executive control functioning may impact anxiety (e.g., Eysenck, Derakshan, Santos, & Calvo, 2007), relatively few studies have examined working memory in individuals with generalized social phobia. Moreover, few studies have examined the role of threat-relevant content in working memory performance in clinically anxious populations. To this end, the present study assessed working memory capacity (WMC) in individuals with generalized social phobia and nonanxious controls using an operation span task with threat-relevant and neutral stimuli. Results revealed that nonanxious individuals demonstrated better WMC than individuals with generalized social phobia for neutral words but not for social threat words. Individuals with generalized social phobia demonstrated better WMC performance for threat words relative to neutral words. These results suggest that individuals with generalized social phobia may have relatively enhanced working memory performance for salient, socially relevant information. This enhanced working memory capacity for threat-relevant information may be the result of practice with this information in generalized social phobia.
Relations between Working Memory and Emergent Writing among Preschool-Aged Children
ERIC Educational Resources Information Center
Hoskyn, Maureen; Tzoneva, Irina
2008-01-01
The authors examined the nature of the working memory system that underlies age differences of young, preschool-aged children. Measures of working memory, short-term memory, articulation speed, general intelligence, and writing were administered to 166 Canadian preschool-aged children aged 3 to 5 years. Findings generally support the hypothesis…
ERIC Educational Resources Information Center
Grandjean, Julien; Collette, Fabienne
2011-01-01
One conception of inhibitory functioning suggests that the ability to successfully inhibit a predominant response depends mainly on the strength of that response, the general functioning of working memory processes, and the working memory demand of the task (Roberts, Hager, & Heron, 1994). The proposal that inhibition and functional working memory…
Working memory training promotes general cognitive abilities in genetically heterogeneous mice.
Light, Kenneth R; Kolata, Stefan; Wass, Christopher; Denman-Brice, Alexander; Zagalsky, Ryan; Matzel, Louis D
2010-04-27
In both humans and mice, the efficacy of working memory capacity and its related process, selective attention, are each strongly predictive of individuals' aggregate performance in cognitive test batteries [1-9]. Because working memory is taxed during most cognitive tasks, the efficacy of working memory may have a causal influence on individuals' performance on tests of "intelligence" [10, 11]. Despite the attention this has received, supporting evidence has been largely correlational in nature (but see [12]). Here, genetically heterogeneous mice were assessed on a battery of five learning tasks. Animals' aggregate performance across the tasks was used to estimate their general cognitive abilities, a trait that is in some respects analogous to intelligence [13, 14]. Working memory training promoted an increase in animals' selective attention and their aggregate performance on these tasks. This enhancement of general cognitive performance by working memory training was attenuated if its selective attention demands were reduced. These results provide evidence that the efficacy of working memory capacity and selective attention may be causally related to an animal's general cognitive performance and provide a framework for behavioral strategies to promote those abilities. Furthermore, the pattern of behavior reported here reflects a conservation of the processes that regulate general cognitive performance in humans and infrahuman animals. Copyright © 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Shelton, Jill Talley; Elliott, Emily M.; Matthews, Russell A.; Hill, B. D.; Gouvier, Wm. Drew
2010-01-01
Recent efforts have been made to elucidate the commonly observed link between working memory and reasoning ability. The results have been inconsistent, with some work suggesting that the emphasis placed on retrieval from secondary memory by working memory tests is the driving force behind this association (Mogle, Lovett, Stawski, & Sliwinski,…
ERIC Educational Resources Information Center
Rusli, Yazmin Ahmad; Montgomery, James W.
2017-01-01
Purpose: The aim of this study was to determine whether extant language (lexical) knowledge or domain-general working memory is the better predictor of comprehension of object relative sentences for children with typical development. We hypothesized that extant language knowledge, not domain-general working memory, is the better predictor. Method:…
ERIC Educational Resources Information Center
Dunning, Darren L.; Holmes, Joni; Gathercole, Susan E.
2013-01-01
Children with low working memory typically make poor educational progress, and it has been speculated that difficulties in meeting the heavy working memory demands of the classroom may be a contributory factor. Intensive working memory training has been shown to boost performance on untrained memory tasks in a variety of populations. This first…
Kolata, Stefan; Light, Kenneth; Townsend, David A; Hale, Gregory; Grossman, Henya C; Matzel, Louis D
2005-11-01
Up to 50% of an individuals' performance across a wide variety of distinct cognitive tests can be accounted for by a single factor (i.e., "general intelligence"). Despite its ubiquity, the processes or mechanisms regulating this factor are a matter of considerable debate. Although it has been hypothesized that working memory may impact cognitive performance across various domains, tests have been inconclusive due to the difficulty in isolating working memory from its overlapping operations, such as verbal ability. We address this problem using genetically diverse mice, which exhibit a trait analogous to general intelligence. The general cognitive abilities of CD-1 mice were found to covary with individuals' working memory capacity, but not with variations in long-term retention. These results provide evidence that independent of verbal abilities, variations in working memory are associated with general cognitive abilities, and further, suggest a conservation across species of mechanisms and/or processes that regulate cognitive abilities.
Attention allocation: Relationships to general working memory or specific language processing.
Archibald, Lisa M D; Levee, Tyler; Olino, Thomas
2015-11-01
Attention allocation, updating working memory, and language processing are interdependent cognitive tasks related to the focused direction of limited resources, refreshing and substituting information in the current focus of attention, and receiving/sending verbal communication, respectively. The current study systematically examined the relationship among executive attention, working memory executive skills, and language abilities while adjusting for individual differences in short-term memory. School-age children completed a selective attention task requiring them to recall whether a presented shape was in the same place as a previous target shape shown in an array imposing a low or high working memory load. Results revealed a selective attention cost when working above but not within memory span capacity. Measures of general working memory were positively related to overall task performance, whereas language abilities were related to response time. In particular, higher language skills were associated with faster responses under low load conditions. These findings suggest that attentional control and storage demands have an additive impact on working memory resources but provide only limited evidence for a domain-general mechanism in language learning. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Domain-specific and domain-general constraints on word and sequence learning.
Archibald, Lisa M D; Joanisse, Marc F
2013-02-01
The relative influences of language-related and memory-related constraints on the learning of novel words and sequences were examined by comparing individual differences in performance of children with and without specific deficits in either language or working memory. Children recalled lists of words in a Hebbian learning protocol in which occasional lists repeated, yielding improved recall over the course of the task on the repeated lists. The task involved presentation of pictures of common nouns followed immediately by equivalent presentations of the spoken names. The same participants also completed a paired-associate learning task involving word-picture and nonword-picture pairs. Hebbian learning was observed for all groups. Domain-general working memory constrained immediate recall, whereas language abilities impacted recall in the auditory modality only. In addition, working memory constrained paired-associate learning generally, whereas language abilities disproportionately impacted novel word learning. Overall, all of the learning tasks were highly correlated with domain-general working memory. The learning of nonwords was additionally related to general intelligence, phonological short-term memory, language abilities, and implicit learning. The results suggest that distinct associations between language- and memory-related mechanisms support learning of familiar and unfamiliar phonological forms and sequences.
Richter, Kim Merle; Mödden, Claudia; Eling, Paul; Hildebrandt, Helmut
2015-01-01
Objectives. Memory training in combination with practice in semantic structuring and word fluency has been shown to improve memory performance. This study investigated the efficacy of a working memory training combined with exercises in semantic structuring and word fluency and examined whether training effects generalize to other cognitive tasks. Methods. In this double-blind randomized control study, 36 patients with memory impairments following brain damage were allocated to either the experimental or the active control condition, with both groups receiving 9 hours of therapy. The experimental group received a computer-based working memory training and exercises in word fluency and semantic structuring. The control group received the standard memory therapy provided in the rehabilitation center. Patients were tested on a neuropsychological test battery before and after therapy, resulting in composite scores for working memory; immediate, delayed, and prospective memory; word fluency; and attention. Results. The experimental group improved significantly in working memory and word fluency. The training effects also generalized to prospective memory tasks. No specific effect on episodic memory could be demonstrated. Conclusion. Combined treatment of working memory training with exercises in semantic structuring is an effective method for cognitive rehabilitation of organic memory impairment. © The Author(s) 2014.
ERIC Educational Resources Information Center
Dang, Cai-Ping; Braeken, Johan; Ferrer, Emilio; Liu, Chang
2012-01-01
This study explored the controversy surrounding working memory: whether it is a unitary system providing general purpose resources or a more differentiated system with domain-specific sub-components. A total of 348 participants completed a set of 6 working memory tasks that systematically varied in storage target contents and type of information…
ERIC Educational Resources Information Center
Wass, Christopher; Pizzo, Alessandro; Sauce, Bruno; Kawasumi, Yushi; Sturzoiu, Tudor; Ree, Fred; Otto, Tim; Matzel, Louis D.
2013-01-01
A common source of variance (i.e., "general intelligence") underlies an individual's performance across diverse tests of cognitive ability, and evidence indicates that the processing efficacy of working memory may serve as one such source of common variance. One component of working memory, selective attention, has been reported to…
Furley, Philip; Memmert, Daniel
2015-01-01
The goal of the study was to investigate the relationship between domain-general working memory capacity and domain-specific creativity amongst experienced soccer players. We administered the automated operation span task in combination with a domain-specific soccer creativity task to a group of 61 experienced soccer players to address the question whether an athlete's domain-specific creativity is restricted by their domain-general cognitive abilities (i.e., working memory capacity). Given that previous studies have either found a positive correlation, a negative correlation, or no correlation between working memory capacity and creativity, we analyzed the data in an exploratory manner by following recent recommendations to report effect-size estimations and their precision in form of 95% confidence intervals. The pattern of results provided evidence that domain-general working memory capacity is not associated with creativity in a soccer-specific creativity task. This pattern of results suggests that future research and theorizing on the role of working memory in everyday creative performance needs to distinguish between different types of creative performance while also taking the role of domain-specific experience into account.
Furley, Philip; Memmert, Daniel
2015-01-01
The goal of the study was to investigate the relationship between domain-general working memory capacity and domain-specific creativity amongst experienced soccer players. We administered the automated operation span task in combination with a domain-specific soccer creativity task to a group of 61 experienced soccer players to address the question whether an athlete’s domain-specific creativity is restricted by their domain-general cognitive abilities (i.e., working memory capacity). Given that previous studies have either found a positive correlation, a negative correlation, or no correlation between working memory capacity and creativity, we analyzed the data in an exploratory manner by following recent recommendations to report effect-size estimations and their precision in form of 95% confidence intervals. The pattern of results provided evidence that domain-general working memory capacity is not associated with creativity in a soccer-specific creativity task. This pattern of results suggests that future research and theorizing on the role of working memory in everyday creative performance needs to distinguish between different types of creative performance while also taking the role of domain-specific experience into account. PMID:25713552
ERIC Educational Resources Information Center
Oakhill, Jane; Yuill, Nicola; Garnham, Alan
2011-01-01
Working memory predicts children's reading comprehension but it is not clear whether this relation is due to a modality-specific or general working memory. This study, which investigated the relations between children's reading skills and working memory (WM) abilities in 3 modalities, extends previous work by including measures of both reading…
Is Working Memory Involved in the Transcribing and Editing of Texts?
ERIC Educational Resources Information Center
Hayes, John R.; Chenoweth, N. Ann
2006-01-01
Generally, researchers agree that verbal working memory plays an important role in cognitive processes involved in writing. However, there is disagreement about which cognitive processes make use of working memory. Kellogg has proposed that verbal working memory is involved in translating but not in editing or producing (i.e., typing) text. In…
Working memory training may increase working memory capacity but not fluid intelligence.
Harrison, Tyler L; Shipstead, Zach; Hicks, Kenny L; Hambrick, David Z; Redick, Thomas S; Engle, Randall W
2013-12-01
Working memory is a critical element of complex cognition, particularly under conditions of distraction and interference. Measures of working memory capacity correlate positively with many measures of real-world cognition, including fluid intelligence. There have been numerous attempts to use training procedures to increase working memory capacity and thereby performance on the real-world tasks that rely on working memory capacity. In the study reported here, we demonstrated that training on complex working memory span tasks leads to improvement on similar tasks with different materials but that such training does not generalize to measures of fluid intelligence.
The scope and control of attention: Sources of variance in working memory capacity.
Chow, Michael; Conway, Andrew R A
2015-04-01
Working memory capacity is a strong positive predictor of many cognitive abilities, across various domains. The pattern of positive correlations across domains has been interpreted as evidence for a unitary source of inter-individual differences in behavior. However, recent work suggests that there are multiple sources of variance contributing to working memory capacity. The current study (N = 71) investigates individual differences in the scope and control of attention, in addition to the number and resolution of items maintained in working memory. Latent variable analyses indicate that the scope and control of attention reflect independent sources of variance and each account for unique variance in general intelligence. Also, estimates of the number of items maintained in working memory are consistent across tasks and related to general intelligence whereas estimates of resolution are task-dependent and not predictive of intelligence. These results provide insight into the structure of working memory, as well as intelligence, and raise new questions about the distinction between number and resolution in visual short-term memory.
The effects of working memory on brain-computer interface performance.
Sprague, Samantha A; McBee, Matthew T; Sellers, Eric W
2016-02-01
The purpose of the present study is to evaluate the relationship between working memory and BCI performance. Participants took part in two separate sessions. The first session consisted of three computerized tasks. The List Sorting Working Memory Task was used to measure working memory, the Picture Vocabulary Test was used to measure general intelligence, and the Dimensional Change Card Sort Test was used to measure executive function, specifically cognitive flexibility. The second session consisted of a P300-based BCI copy-spelling task. The results indicate that both working memory and general intelligence are significant predictors of BCI performance. This suggests that working memory training could be used to improve performance on a BCI task. Working memory training may help to reduce a portion of the individual differences that exist in BCI performance allowing for a wider range of users to successfully operate the BCI system as well as increase the BCI performance of current users. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Working Memory From the Psychological and Neurosciences Perspectives: A Review.
Chai, Wen Jia; Abd Hamid, Aini Ismafairus; Abdullah, Jafri Malin
2018-01-01
Since the concept of working memory was introduced over 50 years ago, different schools of thought have offered different definitions for working memory based on the various cognitive domains that it encompasses. The general consensus regarding working memory supports the idea that working memory is extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. Before the emergence of other competing models, the concept of working memory was described by the multicomponent working memory model proposed by Baddeley and Hitch. In the present article, the authors provide an overview of several working memory-relevant studies in order to harmonize the findings of working memory from the neurosciences and psychological standpoints, especially after citing evidence from past studies of healthy, aging, diseased, and/or lesioned brains. In particular, the theoretical framework behind working memory, in which the related domains that are considered to play a part in different frameworks (such as memory's capacity limit and temporary storage) are presented and discussed. From the neuroscience perspective, it has been established that working memory activates the fronto-parietal brain regions, including the prefrontal, cingulate, and parietal cortices. Recent studies have subsequently implicated the roles of subcortical regions (such as the midbrain and cerebellum) in working memory. Aging also appears to have modulatory effects on working memory; age interactions with emotion, caffeine and hormones appear to affect working memory performances at the neurobiological level. Moreover, working memory deficits are apparent in older individuals, who are susceptible to cognitive deterioration. Another younger population with working memory impairment consists of those with mental, developmental, and/or neurological disorders such as major depressive disorder and others. A less coherent and organized neural pattern has been consistently reported in these disadvantaged groups. Working memory of patients with traumatic brain injury was similarly affected and shown to have unusual neural activity (hyper- or hypoactivation) as a general observation. Decoding the underlying neural mechanisms of working memory helps support the current theoretical understandings concerning working memory, and at the same time provides insights into rehabilitation programs that target working memory impairments from neurophysiological or psychological aspects.
The Effects of Working Memory on Brain-Computer Interface Performance
Sprague, Samantha A.; McBee, Matthew; Sellers, Eric W.
2015-01-01
Objective The purpose of the present study is to evaluate the relationship between working memory and BCI performance. Methods Participants took part in two separate sessions. The first session consisted of three computerized tasks. The LSWM was used to measure working memory, the TPVT was used to measure general intelligence, and the DCCS was used to measure executive function, specifically cognitive flexibility. The second session consisted of a P300-based BCI copy-spelling task. Results The results indicate that both working memory and general intelligence are significant predictors of BCI performance. Conclusions This suggests that working memory training could be used to improve performance on a BCI task. Significance Working memory training may help to reduce a portion of the individual differences that exist in BCI performance allowing for a wider range of users to successfully operate the BCI system as well as increase the BCI performance of current users. PMID:26620822
Working Memory From the Psychological and Neurosciences Perspectives: A Review
Chai, Wen Jia; Abd Hamid, Aini Ismafairus; Abdullah, Jafri Malin
2018-01-01
Since the concept of working memory was introduced over 50 years ago, different schools of thought have offered different definitions for working memory based on the various cognitive domains that it encompasses. The general consensus regarding working memory supports the idea that working memory is extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. Before the emergence of other competing models, the concept of working memory was described by the multicomponent working memory model proposed by Baddeley and Hitch. In the present article, the authors provide an overview of several working memory-relevant studies in order to harmonize the findings of working memory from the neurosciences and psychological standpoints, especially after citing evidence from past studies of healthy, aging, diseased, and/or lesioned brains. In particular, the theoretical framework behind working memory, in which the related domains that are considered to play a part in different frameworks (such as memory’s capacity limit and temporary storage) are presented and discussed. From the neuroscience perspective, it has been established that working memory activates the fronto-parietal brain regions, including the prefrontal, cingulate, and parietal cortices. Recent studies have subsequently implicated the roles of subcortical regions (such as the midbrain and cerebellum) in working memory. Aging also appears to have modulatory effects on working memory; age interactions with emotion, caffeine and hormones appear to affect working memory performances at the neurobiological level. Moreover, working memory deficits are apparent in older individuals, who are susceptible to cognitive deterioration. Another younger population with working memory impairment consists of those with mental, developmental, and/or neurological disorders such as major depressive disorder and others. A less coherent and organized neural pattern has been consistently reported in these disadvantaged groups. Working memory of patients with traumatic brain injury was similarly affected and shown to have unusual neural activity (hyper- or hypoactivation) as a general observation. Decoding the underlying neural mechanisms of working memory helps support the current theoretical understandings concerning working memory, and at the same time provides insights into rehabilitation programs that target working memory impairments from neurophysiological or psychological aspects. PMID:29636715
Spatial attention interacts with serial-order retrieval from verbal working memory.
van Dijck, Jean-Philippe; Abrahamse, Elger L; Majerus, Steve; Fias, Wim
2013-09-01
The ability to maintain the serial order of events is recognized as a major function of working memory. Although general models of working memory postulate a close link between working memory and attention, such a link has so far not been proposed specifically for serial-order working memory. The present study provided the first empirical demonstration of a direct link between serial order in verbal working memory and spatial selective attention. We show that the retrieval of later items of a sequence stored in working memory-compared with that of earlier items-produces covert attentional shifts toward the right. This observation suggests the conceptually surprising notion that serial-order working memory, even for nonspatially defined verbal items, draws on spatial attention.
Shelton, Jill Talley; Elliott, Emily M.; Matthews, Russell A.; Hill, B. D.; Gouvier, Wm. Drew
2010-01-01
Recent efforts have been made to elucidate the commonly observed link between working memory and reasoning ability. The results have been inconsistent, with some work suggesting the emphasis placed on retrieval from secondary memory by working memory tests is the driving force behind this association (Mogle, Lovett, Stawski, & Sliwinski, 2008), while other research suggests retrieval from secondary memory is only partly responsible for the observed link between working memory and reasoning (Unsworth & Engle, 2006, 2007b). The present study investigates the relationship between processing speed, working memory, secondary memory, primary memory, and fluid intelligence. Although our findings show all constructs are significantly correlated with fluid intelligence, working memory, but not secondary memory, accounts for significant unique variance in fluid intelligence. Our data support predictions made by Unsworth and Engle, and suggest that the combined need for maintenance and retrieval processes present in working memory tests makes them “special” in their prediction of higher-order cognition. PMID:20438278
Complex Span versus Updating Tasks of Working Memory: The Gap Is Not that Deep
ERIC Educational Resources Information Center
Schmiedek, Florian; Hildebrandt, Andrea; Lovden, Martin; Wilhelm, Oliver; Lindenberger, Ulman
2009-01-01
How to best measure working memory capacity is an issue of ongoing debate. Besides established complex span tasks, which combine short-term memory demands with generally unrelated secondary tasks, there exists a set of paradigms characterized by continuous and simultaneous updating of several items in working memory, such as the n-back, memory…
Smith, Andrew M.; Spiegler, Kevin M.; Sauce, Bruno; Wass, Christopher D.; Sturzoiu, Tudor; Matzel, Louis D.
2013-01-01
Increases in performance on tests of attention and learning are often observed shortly after a period of aerobic exercise, and evidence suggests that humans who engage in regular exercise are partially protected from age-related cognitive decline. However, the cognitive benefits of exercise are typically short-lived, limiting the practical application of these observations. We explored whether physical exercise would induce lasting changes in general cognitive ability if that exercise was combined with working memory training, which is purported to broadly impact on cognitive performance. Mice received either exercise (six weeks of voluntary running wheel access), working memory training, both treatments, or various control treatments. Near the completion of this period of exercise, working memory training (in a dual radial-arm maze) was initiated (alternating with days of exercise), and was continued for several weeks. Upon completion of these treatments, animals were assessed (2–4 weeks later) for performance on four diverse learning tasks, and the aggregate performance of individual animals across all four learning tasks was estimated. Working memory training alone promoted small increases in general cognitive performance, although any beneficial effects of exercise alone had dissipated by the time of learning assessments. However, the two treatments in combination more than doubled the improvement in general cognitive performance supported by working memory training alone. Unlike the transient effects that acute aerobic exercise can have on isolated learning tasks, these results indicate that an acute period of exercise combined with working memory training can have synergistic and lasting impact on general cognitive performance. PMID:24036169
Visuospatial and verbal memory in mental arithmetic.
Clearman, Jack; Klinger, Vojtěch; Szűcs, Dénes
2017-09-01
Working memory allows complex information to be remembered and manipulated over short periods of time. Correlations between working memory and mathematics achievement have been shown across the lifespan. However, only a few studies have examined the potentially distinct contributions of domain-specific visuospatial and verbal working memory resources in mental arithmetic computation. Here we aimed to fill this gap in a series of six experiments pairing addition and subtraction tasks with verbal and visuospatial working memory and interference tasks. In general, we found higher levels of interference between mental arithmetic and visuospatial working memory tasks than between mental arithmetic and verbal working memory tasks. Additionally, we found that interference that matched the working memory domain of the task (e.g., verbal task with verbal interference) lowered working memory performance more than mismatched interference (verbal task with visuospatial interference). Findings suggest that mental arithmetic relies on domain-specific working memory resources.
Working memory training in older adults: Bayesian evidence supporting the absence of transfer.
Guye, Sabrina; von Bastian, Claudia C
2017-12-01
The question of whether working memory training leads to generalized improvements in untrained cognitive abilities is a longstanding and heatedly debated one. Previous research provides mostly ambiguous evidence regarding the presence or absence of transfer effects in older adults. Thus, to draw decisive conclusions regarding the effectiveness of working memory training interventions, methodologically sound studies with larger sample sizes are needed. In this study, we investigated whether or not a computer-based working memory training intervention induced near and far transfer in a large sample of 142 healthy older adults (65 to 80 years). Therefore, we randomly assigned participants to either the experimental group, which completed 25 sessions of adaptive, process-based working memory training, or to the active, adaptive visual search control group. Bayesian linear mixed-effects models were used to estimate performance improvements on the level of abilities, using multiple indicator tasks for near (working memory) and far transfer (fluid intelligence, shifting, and inhibition). Our data provided consistent evidence supporting the absence of near transfer to untrained working memory tasks and the absence of far transfer effects to all of the assessed abilities. Our results suggest that working memory training is not an effective way to improve general cognitive functioning in old age. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Memory Span and General Intelligence: A Latent-Variable Approach
ERIC Educational Resources Information Center
Colom, Roberto; Abad, Francisco J.; Rebollo, Irene; Chun Shih, Pei
2005-01-01
There are several studies showing that working memory and intelligence are strongly related. However, working memory tasks require simultaneous processing and storage, so the causes of their relationship with intelligence are currently a matter of discussion. The present study examined the simultaneous relationships among short-term memory (STM),…
The development of a short domain-general measure of working memory capacity.
Oswald, Frederick L; McAbee, Samuel T; Redick, Thomas S; Hambrick, David Z
2015-12-01
Working memory capacity is one of the most frequently measured individual difference constructs in cognitive psychology and related fields. However, implementation of complex span and other working memory measures is generally time-consuming for administrators and examinees alike. Because researchers often must manage the tension between limited testing time and measuring numerous constructs reliably, a short and effective measure of working memory capacity would often be a major practical benefit in future research efforts. The current study developed a shortened computerized domain-general measure of working memory capacity by representatively sampling items from three existing complex working memory span tasks: operation span, reading span, and symmetry span. Using a large archival data set (Study 1, N = 4,845), we developed and applied a principled strategy for developing the reduced measure, based on testing a series of confirmatory factor analysis models. Adequate fit indices from these models lent support to this strategy. The resulting shortened measure was then administered to a second independent sample (Study 2, N = 172), demonstrating that the new measure saves roughly 15 min (30%) of testing time on average, and even up to 25 min depending on the test-taker. On the basis of these initial promising findings, several directions for future research are discussed.
Fairfield, Beth; Mammarella, Nicola; Franzago, Marica; Di Domenico, Alberto; Stuppia, Liborio; Gatta, Valentina
2018-02-01
Cannabinoid receptor 1 gene (CNR1) variants have been related to affective information processing and, in particular, to stress release. Here, we aimed to examine whether the endocannabinoid system via CNR1 signaling modulates affective working memory, the memory system that transiently maintains and manipulates emotionally charged material. We focused on rs2180619 (A > G) polymorphism and examined genotype data collected from 231 healthy females. Analyses showed how a general positivity bias in working memory (i.e., better memory for positive words) emerged as task strings lengthened only in carriers of the major allele (AA/AG). Differently, GG carriers showed better memory for affective items in general (i.e., positive and negative words). These findings are some of the first to directly highlight the role of variant on promoter of the CNR1 gene in affective working memory and to evidence a differentiation among CNR1 genotypes in terms of larger difficulties in disengaging from negative stimuli in GG carriers.
Berg, Derek H
2008-04-01
The cognitive underpinnings of arithmetic calculation in children are noted to involve working memory; however, cognitive processes related to arithmetic calculation and working memory suggest that this relationship is more complex than stated previously. The purpose of this investigation was to examine the relative contributions of processing speed, short-term memory, working memory, and reading to arithmetic calculation in children. Results suggested four important findings. First, processing speed emerged as a significant contributor of arithmetic calculation only in relation to age-related differences in the general sample. Second, processing speed and short-term memory did not eliminate the contribution of working memory to arithmetic calculation. Third, individual working memory components--verbal working memory and visual-spatial working memory--each contributed unique variance to arithmetic calculation in the presence of all other variables. Fourth, a full model indicated that chronological age remained a significant contributor to arithmetic calculation in the presence of significant contributions from all other variables. Results are discussed in terms of directions for future research on working memory in arithmetic calculation.
Working Memory, Cognitive Style, and Behavioural Predictors of GCSE Exam Success
ERIC Educational Resources Information Center
Grimley, Michael; Banner, Gloria
2008-01-01
This study investigates the interplay of working memory, cognitive style, and behaviour. Year 8 (aged 13 years) students (n = 205) at a UK urban secondary school were tested to ascertain predictors of General Certificate of School Education (GCSE) achievement. Assessment included Riding's cognitive style dimensions, working memory capacity, and a…
Pimperton, Hannah; Nation, Kate
2014-01-01
Differing etiological explanations have been proposed to account for poor comprehenders' difficulties with reading comprehension, with some researchers emphasizing working memory deficits and others arguing for oral language weaknesses playing a key causal role. The authors contrasted these two theoretical accounts using data obtained from direct measures of working memory and from teacher ratings of poor comprehenders' behavior in the classroom. At the group level, poor comprehenders showed weaknesses on verbal but not nonverbal working memory tasks, in keeping with the "language account." However, they also showed evidence of elevated levels of problem behaviors specifically associated with working memory deficits. Further analysis revealed that these group differences in working-memory-related problem behaviors were carried by a small subgroup of poor comprehenders who also displayed domain-general (verbal and nonverbal) working memory problems, argued to be reflective of "genuine" underlying working memory deficits.
Generalized memory associativity in a network model for the neuroses
NASA Astrophysics Data System (ADS)
Wedemann, Roseli S.; Donangelo, Raul; de Carvalho, Luís A. V.
2009-03-01
We review concepts introduced in earlier work, where a neural network mechanism describes some mental processes in neurotic pathology and psychoanalytic working-through, as associative memory functioning, according to the findings of Freud. We developed a complex network model, where modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's idea that consciousness is related to symbolic and linguistic memory activity in the brain. We have introduced a generalization of the Boltzmann machine to model memory associativity. Model behavior is illustrated with simulations and some of its properties are analyzed with methods from statistical mechanics.
ERIC Educational Resources Information Center
Unsworth, Nash; Spillers, Gregory J.; Brewer, Gene A.
2010-01-01
The present study tested the dual-component model of working memory capacity (WMC) by examining estimates of primary memory and secondary memory from an immediate free recall task. Participants completed multiple measures of WMC and general intellectual ability as well as multiple trials of an immediate free recall task. It was demonstrated that…
What is working memory capacity, and how can we measure it?
Wilhelm, Oliver; Hildebrandt, Andrea; Oberauer, Klaus
2013-01-01
A latent variable study examined whether different classes of working-memory tasks measure the same general construct of working-memory capacity (WMC). Data from 270 subjects were used to examine the relationship between Binding, Updating, Recall-N-back, and Complex Span tasks, and the relations of WMC with secondary memory measures, indicators of cognitive control from two response-conflict paradigms (Simon task and Eriksen flanker task), and fluid intelligence. Confirmatory factor analyses support the concept of a general WMC factor. Results from structural-equation modeling show negligible relations of WMC with response-conflict resolution, and very strong relations of WMC with secondary memory and fluid intelligence. The findings support the hypothesis that individual differences in WMC reflect the ability to build, maintain and update arbitrary bindings. PMID:23898309
Is the Binding of Visual Features in Working Memory Resource-Demanding?
ERIC Educational Resources Information Center
Allen, Richard J.; Baddeley, Alan D.; Hitch, Graham J.
2006-01-01
The episodic buffer component of working memory is assumed to play a role in the binding of features into chunks. A series of experiments compared memory for arrays of colors or shapes with memory for bound combinations of these features. Demanding concurrent verbal tasks were used to investigate the role of general attentional processes,…
Kuwajima, Mariko; Sawaguchi, Toshiyuki
2010-10-01
General fluid intelligence (gF) is a major component of intellect in both adults and children. Whereas its neural substrates have been studied relatively thoroughly in adults, those are poorly understood in children, particularly preschoolers. Here, we hypothesized that gF and visuospatial working memory share a common neural system within the lateral prefrontal cortex (LPFC) during the preschool years (4-6 years). At the behavioral level, we found that gF positively and significantly correlated with abilities (especially accuracy) in visuospatial working memory. Optical topography revealed that the LPFC of preschoolers was activated and deactivated during the visuospatial working memory task and the gF task. We found that the spatio-temporal features of neural activity in the LPFC were similar for both the visuospatial working memory task and the gF task. Further, 2 months of training for the visuospatial working memory task significantly increased gF in the preschoolers. These findings suggest that a common neural system in the LPFC is recruited to improve the visuospatial working memory and gF in preschoolers. Efficient recruitment of this neural system may be important for good performance in these functions in preschoolers, and behavioral training using this system would help to increase gF at these ages.
ERIC Educational Resources Information Center
Redick, Thomas S.; Shipstead, Zach; Harrison, Tyler L.; Hicks, Kenny L.; Fried, David E.; Hambrick, David Z.; Kane, Michael J.; Engle, Randall W.
2013-01-01
Numerous recent studies seem to provide evidence for the general intellectual benefits of working memory training. In reviews of the training literature, Shipstead, Redick, and Engle (2010, 2012) argued that the field should treat recent results with a critical eye. Many published working memory training studies suffer from design limitations…
Everyday memory and working memory in adolescents with mild intellectual disability.
Van der Molen, M J; Van Luit, J E H; Van der Molen, Maurits W; Jongmans, Marian J
2010-05-01
Everyday memory and its relationship to working memory was investigated in adolescents with mild intellectual disability and compared to typically developing adolescents of the same age (CA) and younger children matched on mental age (MA). Results showed a delay on almost all memory measures for the adolescents with mild intellectual disability compared to the CA control adolescents. Compared to the MA control children, the adolescents with mild intellectual disability performed less well on a general everyday memory index. Only some significant associations were found between everyday memory and working memory for the mild intellectual disability group. These findings were interpreted to suggest that adolescents with mild intellectual disability have difficulty in making optimal use of their working memory when new or complex situations tax their abilities.
Mental Imagery and Visual Working Memory
Keogh, Rebecca; Pearson, Joel
2011-01-01
Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory - but not iconic visual memory - can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage. PMID:22195024
Mental imagery and visual working memory.
Keogh, Rebecca; Pearson, Joel
2011-01-01
Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory--but not iconic visual memory--can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage.
Klein, Carina; Diaz Hernandez, Laura; Koenig, Thomas; Kottlow, Mara; Elmer, Stefan; Jäncke, Lutz
2016-01-01
Previous work highlighted the possibility that musical training has an influence on cognitive functioning. The suggested reason for this influence is the strong recruitment of attention, planning, and working memory functions during playing a musical instrument. The purpose of the present work was twofold, namely to evaluate the general relationship between pre-stimulus electrophysiological activity and cognition, and more specifically the influence of musical expertise on working memory functions. With this purpose in mind, we used covariance mapping analyses to evaluate whether pre-stimulus electroencephalographic activity is predictive for reaction time during a visual working memory task (Sternberg paradigm) in musicians and non-musicians. In line with our hypothesis, we replicated previous findings pointing to a general predictive value of pre-stimulus activity for working memory performance. Most importantly, we also provide first evidence for an influence of musical expertise on working memory performance that could distinctively be predicted by pre-stimulus spectral power. Our results open novel perspectives for better comprehending the vast influences of musical expertise on cognition.
Sörqvist, Patrik; Stenfelt, Stefan; Rönnberg, Jerker
2012-11-01
Two fundamental research questions have driven attention research in the past: One concerns whether selection of relevant information among competing, irrelevant, information takes place at an early or at a late processing stage; the other concerns whether the capacity of attention is limited by a central, domain-general pool of resources or by independent, modality-specific pools. In this article, we contribute to these debates by showing that the auditory-evoked brainstem response (an early stage of auditory processing) to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual-verbal version of the n-back task). Furthermore, individual differences in central/domain-general working memory capacity modulated the magnitude of the auditory-evoked brainstem response, but only in the high working memory load condition. The results support a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.
Barsegyan, Areg; Mackenzie, Scott M.; Kurose, Brian D.; McGaugh, James L.; Roozendaal, Benno
2010-01-01
It is well established that acute administration of adrenocortical hormones enhances the consolidation of memories of emotional experiences and, concurrently, impairs working memory. These different glucocorticoid effects on these two memory functions have generally been considered to be independently regulated processes. Here we report that a glucocorticoid receptor agonist administered into the medial prefrontal cortex (mPFC) of male Sprague-Dawley rats both enhances memory consolidation and impairs working memory. Both memory effects are mediated by activation of a membrane-bound steroid receptor and depend on noradrenergic activity within the mPFC to increase levels of cAMP-dependent protein kinase. These findings provide direct evidence that glucocorticoid effects on both memory consolidation and working memory share a common neural influence within the mPFC. PMID:20810923
Working memory and the memory distortion component of hindsight bias.
Calvillo, Dustin P
2012-01-01
One component of hindsight bias is memory distortion: Individuals' recollections of their predictions are biased towards known outcomes. The present study examined the role of working memory in the memory distortion component of hindsight bias. Participants answered almanac-like questions, completed a measure of working memory capacity, were provided with the correct answers, and attempted to recollect their original judgements in two conditions: with and without a concurrent working memory load. Participants' recalled judgements were more biased by feedback when they recalled these judgements with a concurrent memory load and working memory capacity was negatively correlated with memory distortion. These findings are consistent with reconstruction accounts of the memory distortion component of hindsight bias and, more generally, with dual process theories of cognition. These results also relate the memory distortion component of hindsight bias with other cognitive errors, such as source monitoring errors, the belief bias in syllogistic reasoning and anchoring effects. Implications for the separate components view of hindsight bias are discussed.
Individual differences in working memory: introduction to the special section.
Miyake, A
2001-06-01
This special section includes a set of 5 articles that examine the nature of inter- and intraindividual differences in working memory, using working memory span tasks as the main research tools. These span tasks are different from traditional short-term memory spans (e.g., digit or word span) in that they require participants to maintain some target memory items (e.g., words) while simultaneously performing some other tasks (e.g., reading sentences). In this introduction, a brief discussion of these working memory span tasks and their characteristics is provided first. This is followed by an overview of 2 major theoretical issues that are addressed by the subsequent articles--(a) the factors influencing the inter- and intraindividual differences in working memory performance and (b) the domain generality versus domain specificity of working memory--and also of some important issues that must be kept in mind when readers try to evaluate the claims regarding these 2 theoretical issues.
Verbal Working Memory Is Related to the Acquisition of Cross-Linguistic Phonological Regularities.
Bosma, Evelyn; Heeringa, Wilbert; Hoekstra, Eric; Versloot, Arjen; Blom, Elma
2017-01-01
Closely related languages share cross-linguistic phonological regularities, such as Frisian -âld [ͻ:t] and Dutch -oud [ʱut], as in the cognate pairs kâld [kͻ:t] - koud [kʱut] 'cold' and wâld [wͻ:t] - woud [wʱut] 'forest'. Within Bybee's (1995, 2001, 2008, 2010) network model, these regularities are, just like grammatical rules within a language, generalizations that emerge from schemas of phonologically and semantically related words. Previous research has shown that verbal working memory is related to the acquisition of grammar, but not vocabulary. This suggests that verbal working memory supports the acquisition of linguistic regularities. In order to test this hypothesis we investigated whether verbal working memory is also related to the acquisition of cross-linguistic phonological regularities. For three consecutive years, 5- to 8-year-old Frisian-Dutch bilingual children ( n = 120) were tested annually on verbal working memory and a Frisian receptive vocabulary task that comprised four cognate categories: (1) identical cognates, (2) non-identical cognates that either do or (3) do not exhibit a phonological regularity between Frisian and Dutch, and (4) non-cognates. The results showed that verbal working memory had a significantly stronger effect on cognate category (2) than on the other three cognate categories. This suggests that verbal working memory is related to the acquisition of cross-linguistic phonological regularities. More generally, it confirms the hypothesis that verbal working memory plays a role in the acquisition of linguistic regularities.
Memory systems in schizophrenia: Modularity is preserved but deficits are generalized.
Haut, Kristen M; Karlsgodt, Katherine H; Bilder, Robert M; Congdon, Eliza; Freimer, Nelson B; London, Edythe D; Sabb, Fred W; Ventura, Joseph; Cannon, Tyrone D
2015-10-01
Schizophrenia patients exhibit impaired working and episodic memory, but this may represent generalized impairment across memory modalities or performance deficits restricted to particular memory systems in subgroups of patients. Furthermore, it is unclear whether deficits are unique from those associated with other disorders. Healthy controls (n=1101) and patients with schizophrenia (n=58), bipolar disorder (n=49) and attention-deficit-hyperactivity-disorder (n=46) performed 18 tasks addressing primarily verbal and spatial episodic and working memory. Effect sizes for group contrasts were compared across tasks and the consistency of subjects' distributional positions across memory domains was measured. Schizophrenia patients performed poorly relative to the other groups on every test. While low to moderate correlation was found between memory domains (r=.320), supporting modularity of these systems, there was limited agreement between measures regarding each individual's task performance (ICC=.292) and in identifying those individuals falling into the lowest quintile (kappa=0.259). A general ability factor accounted for nearly all of the group differences in performance and agreement across measures in classifying low performers. Pathophysiological processes involved in schizophrenia appear to act primarily on general abilities required in all tasks rather than on specific abilities within different memory domains and modalities. These effects represent a general shift in the overall distribution of general ability (i.e., each case functioning at a lower level than they would have if not for the illness), rather than presence of a generally low-performing subgroup of patients. There is little evidence that memory impairments in schizophrenia are shared with bipolar disorder and ADHD. Copyright © 2015 Elsevier B.V. All rights reserved.
Memory systems in schizophrenia: Modularity is preserved but deficits are generalized
Haut, Kristen M.; Karlsgodt, Katherine H.; Bilder, Robert M.; Congdon, Eliza; Freimer, Nelson; London, Edythe D.; Sabb, Fred W.; Ventura, Joseph; Cannon, Tyrone D.
2015-01-01
Objective Schizophrenia patients exhibit impaired working and episodic memory, but this may represent generalized impairment across memory modalities or performance deficits restricted to particular memory systems in subgroups of patients. Furthermore, it is unclear whether deficits are unique from those associated with other disorders. Method Healthy controls (n=1101) and patients with schizophrenia (n=58), bipolar disorder (n=49) and attention-deficit-hyperactivity-disorder (n=46) performed 18 tasks addressing primarily verbal and spatial episodic and working memory. Effect sizes for group contrasts were compared across tasks and the consistency of subjects’ distributional positions across memory domains was measured. Results Schizophrenia patients performed poorly relative to the other groups on every test. While low to moderate correlation was found between memory domains (r=.320), supporting modularity of these systems, there was limited agreement between measures regarding each individual’s task performance (ICC=.292) and in identifying those individuals falling into the lowest quintile (kappa=0.259). A general ability factor accounted for nearly all of the group differences in performance and agreement across measures in classifying low performers. Conclusions Pathophysiological processes involved in schizophrenia appear to act primarily on general abilities required in all tasks rather than on specific abilities within different memory domains and modalities. These effects represent a general shift in the overall distribution of general ability (i.e., each case functioning at a lower level than they would have if not for the illness), rather than presence of a generally low-performing subgroup of patients. There is little evidence that memory impairments in schizophrenia are shared with bipolar disorder and ADHD. PMID:26299707
ERIC Educational Resources Information Center
Wiest, Dudley J.; Wong, Eugene H.; Minero, Laura P.; Pumaccahua, Tessy T.
2014-01-01
Working memory has been well documented as a significant predictor of academic outcomes (e.g., reading and math achievement as well as general life outcomes). The purpose of this study was to investigate the effectiveness of computerized cognitive training to improve both working memory and encoding abilities in a school setting. Thirty students…
Brady, Timothy F.; Störmer, Viola S.; Alvarez, George A.
2016-01-01
Visual working memory is the cognitive system that holds visual information active to make it resistant to interference from new perceptual input. Information about simple stimuli—colors and orientations—is encoded into working memory rapidly: In under 100 ms, working memory ‟fills up,” revealing a stark capacity limit. However, for real-world objects, the same behavioral limits do not hold: With increasing encoding time, people store more real-world objects and do so with more detail. This boost in performance for real-world objects is generally assumed to reflect the use of a separate episodic long-term memory system, rather than working memory. Here we show that this behavioral increase in capacity with real-world objects is not solely due to the use of separate episodic long-term memory systems. In particular, we show that this increase is a result of active storage in working memory, as shown by directly measuring neural activity during the delay period of a working memory task using EEG. These data challenge fixed-capacity working memory models and demonstrate that working memory and its capacity limitations are dependent upon our existing knowledge. PMID:27325767
Brady, Timothy F; Störmer, Viola S; Alvarez, George A
2016-07-05
Visual working memory is the cognitive system that holds visual information active to make it resistant to interference from new perceptual input. Information about simple stimuli-colors and orientations-is encoded into working memory rapidly: In under 100 ms, working memory ‟fills up," revealing a stark capacity limit. However, for real-world objects, the same behavioral limits do not hold: With increasing encoding time, people store more real-world objects and do so with more detail. This boost in performance for real-world objects is generally assumed to reflect the use of a separate episodic long-term memory system, rather than working memory. Here we show that this behavioral increase in capacity with real-world objects is not solely due to the use of separate episodic long-term memory systems. In particular, we show that this increase is a result of active storage in working memory, as shown by directly measuring neural activity during the delay period of a working memory task using EEG. These data challenge fixed-capacity working memory models and demonstrate that working memory and its capacity limitations are dependent upon our existing knowledge.
A generalized memory test algorithm
NASA Technical Reports Server (NTRS)
Milner, E. J.
1982-01-01
A general algorithm for testing digital computer memory is presented. The test checks that (1) every bit can be cleared and set in each memory work, and (2) bits are not erroneously cleared and/or set elsewhere in memory at the same time. The algorithm can be applied to any size memory block and any size memory word. It is concise and efficient, requiring the very few cycles through memory. For example, a test of 16-bit-word-size memory requries only 384 cycles through memory. Approximately 15 seconds were required to test a 32K block of such memory, using a microcomputer having a cycle time of 133 nanoseconds.
ERIC Educational Resources Information Center
Swanson, H. Lee
2011-01-01
This study examined whether children's growth on measures of fluid (Raven Colored Progressive Matrices) and crystallized (reading and math achievement) intelligence was attributable to domain-specific or domain-general functions of working memory (WM). A sample of 290 elementary school children was tested on measures of intelligence across three…
The effect of rehearsal rate and memory load on verbal working memory.
Fegen, David; Buchsbaum, Bradley R; D'Esposito, Mark
2015-01-15
While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory load in a verbal WM task with long 45-s delay periods. We found that middle frontal gyrus (MFG) and superior parietal lobule (SPL) exhibited memory load effects primarily early in the delay period and did not exhibit rehearsal rate effects. In contrast, we found that inferior frontal gyrus (IFG), premotor cortex (PM) and Sylvian-parietal-temporal region (area Spt) exhibited approximately linear memory load and rehearsal rate effects, with rehearsal rate effects lasting through the entire delay period. These results indicate that IFG, PM and area Spt comprise the core articulatory rehearsal areas involved in verbal WM, while MFG and SPL are recruited in a general supervisory role once a memory load threshold in the core rehearsal network has been exceeded. Copyright © 2014 Elsevier Inc. All rights reserved.
The Effect of Rehearsal Rate and Memory Load on Verbal Working Memory
Fegen, David; Buchsbaum, Bradley R.; D’Esposito, Mark
2014-01-01
While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory load in a verbal WM task with long 45-second delay periods. We found that middle frontal gyrus (MFG) and superior parietal lobule (SPL) exhibited memory load effects primarily early in the delay period and did not exhibit rehearsal rate effects. In contrast, we found that inferior frontal gyrus (IFG), premotor cortex (PM) and Sylvian-parietal-temporal region (area Spt) exhibited approximately linear memory load and rehearsal rate effects, with rehearsal rate effects lasting through the entire delay period. These results indicate that IFG, PM and area Spt comprise the core articulatory rehearsal areas involved in verbal WM, while MFG and SPL are recruited in a general supervisory role once a memory load threshold in the core rehearsal network has been exceeded. PMID:25467303
Bosman, Anna M T; Janssen, Marije
2017-01-01
In the Netherlands, Turkish-Dutch children constitute a substantial group of children who learn to speak Dutch at the age of four after they learned to speak Turkish. These children are generally academically less successful. Academic success appears to be affected by both language proficiency and working memory skill. The goal of this study was to investigate the relationship between language skills and working memory in Turkish-Dutch and native-Dutch children from low-income families. The findings revealed reduced Dutch language and Dutch working-memory skills for Turkish-Dutch children compared to native-Dutch children. Working memory in native-Dutch children was unrelated to their language skills, whereas in Turkish-Dutch children strong correlations were found both between Turkish language skills and Turkish working-memory performance and between Dutch language skills and Dutch working-memory performance. Reduced language proficiencies and reduced working-memory skills appear to manifest itself in strong relationships between working memory and language skills in Turkish-Dutch children. The findings seem to indicate that limited verbal working-memory and language deficiencies in bilingual children may have reciprocal effects that strongly warrants adequate language education.
Components of working memory and visual selective attention.
Burnham, Bryan R; Sabia, Matthew; Langan, Catherine
2014-02-01
Load theory (Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. [2004]. Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.) proposes that control of attention depends on the amount and type of load that is imposed by current processing. Specifically, perceptual load should lead to efficient distractor rejection, whereas working memory load (dual-task coordination) should hinder distractor rejection. Studies support load theory's prediction that working memory load will lead to larger distractor effects; however, these studies used secondary tasks that required only verbal working memory and the central executive. The present study examined which other working memory components (visual, spatial, and phonological) influence visual selective attention. Subjects completed an attentional capture task alone (single-task) or while engaged in a working memory task (dual-task). Results showed that along with the central executive, visual and spatial working memory influenced selective attention, but phonological working memory did not. Specifically, attentional capture was larger when visual or spatial working memory was loaded, but phonological working memory load did not affect attentional capture. The results are consistent with load theory and suggest specific components of working memory influence visual selective attention. PsycINFO Database Record (c) 2014 APA, all rights reserved.
ERIC Educational Resources Information Center
Simmering, Vanessa R.; Wood, Chelsey M.
2017-01-01
Working memory is a basic cognitive process that predicts higher-level skills. A central question in theories of working memory development is the generality of the mechanisms proposed to explain improvements in performance. Prior theories have been closely tied to particular tasks and/or age groups, limiting their generalizability. The cognitive…
Dynamic Search and Working Memory in Social Recall
ERIC Educational Resources Information Center
Hills, Thomas T.; Pachur, Thorsten
2012-01-01
What are the mechanisms underlying search in social memory (e.g., remembering the people one knows)? Do the search mechanisms involve dynamic local-to-global transitions similar to semantic search, and are these transitions governed by the general control of attention, associated with working memory span? To find out, we asked participants to…
ERIC Educational Resources Information Center
Jarrold, Christopher; Tam, Helen; Baddeley, Alan D.; Harvey, Caroline E.
2011-01-01
Two studies that examine whether the forgetting caused by the processing demands of working memory tasks is domain-general or domain-specific are presented. In each, separate groups of adult participants were asked to carry out either verbal or nonverbal operations on exactly the same processing materials while maintaining verbal storage items.…
Morey, Candice C; Miron, Monica D
2016-12-01
Among models of working memory, there is not yet a consensus about how to describe functions specific to storing verbal or visual-spatial memories. We presented aural-verbal and visual-spatial lists simultaneously and sometimes cued one type of information after presentation, comparing accuracy in conditions with and without informative retro-cues. This design isolates interference due specifically to maintenance, which appears most clearly in the uncued trials, from interference due to encoding, which occurs in all dual-task trials. When recall accuracy was comparable between tasks, we found that spatial memory was worse in uncued than in retro-cued trials, whereas verbal memory was not. Our findings bolster proposals that maintenance of spatial serial order, like maintenance of visual materials more broadly, relies on general rather than specialized resources, while maintenance of verbal sequences may rely on domain-specific resources. We argue that this asymmetry should be explicitly incorporated into models of working memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Hargreaves, A; Dillon, R; Anderson-Schmidt, H; Corvin, A; Fitzmaurice, B; Castorina, M; Robertson, I H; Donohoe, G
2015-12-01
Cognitive deficits are a core feature of schizophrenia and related psychotic disorders and are associated with decreased levels of functioning. Behavioural interventions have shown success in remediating these deficits; determining how best to maximise this benefit while minimising the cost is an important next step in optimising this intervention for clinical use. To examine the effects of a novel working-memory focused cognitive remediation (CR) training on cognitive difficulties based on internet delivery of training and weekly telephone support. Participants with a diagnosis of psychosis (n=56) underwent either 8 weeks of CR (approximately 20 h) or 8 weeks of treatment as usual (TAU). General cognitive ability, working memory and episodic memory were measured both pre and post intervention for all participants. In addition to improvements on trained working memory tasks, CR training was associated with significant improvements in two tests of verbal episodic memory. No association between CR and changes in general cognitive ability was observed. Effect sizes for statistically significant changes in memory were comparable to those reported in the literature based primarily on 1:1 training. The cognitive benefits observed in this non-randomised preliminary study indicate that internet-based working memory training can be an effective cognitive remediation therapy. The successes and challenges of an internet-based treatment are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Recognition Decisions From Visual Working Memory Are Mediated by Continuous Latent Strengths.
Ricker, Timothy J; Thiele, Jonathan E; Swagman, April R; Rouder, Jeffrey N
2017-08-01
Making recognition decisions often requires us to reference the contents of working memory, the information available for ongoing cognitive processing. As such, understanding how recognition decisions are made when based on the contents of working memory is of critical importance. In this work we examine whether recognition decisions based on the contents of visual working memory follow a continuous decision process of graded information about the correct choice or a discrete decision process reflecting only knowing and guessing. We find a clear pattern in favor of a continuous latent strength model of visual working memory-based decision making, supporting the notion that visual recognition decision processes are impacted by the degree of matching between the contents of working memory and the choices given. Relation to relevant findings and the implications for human information processing more generally are discussed. Copyright © 2016 Cognitive Science Society, Inc.
Is Word-Problem Solving a Form of Text Comprehension?
Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.; Hamlett, Carol L.; Wang, Amber Y.
2015-01-01
This study’s hypotheses were that (a) word-problem (WP) solving is a form of text comprehension that involves language comprehension processes, working memory, and reasoning, but (b) WP solving differs from other forms of text comprehension by requiring WP-specific language comprehension as well as general language comprehension. At the start of the 2nd grade, children (n = 206; on average, 7 years, 6 months) were assessed on general language comprehension, working memory, nonlinguistic reasoning, processing speed (a control variable), and foundational skill (arithmetic for WPs; word reading for text comprehension). In spring, they were assessed on WP-specific language comprehension, WPs, and text comprehension. Path analytic mediation analysis indicated that effects of general language comprehension on text comprehension were entirely direct, whereas effects of general language comprehension on WPs were partially mediated by WP-specific language. By contrast, effects of working memory and reasoning operated in parallel ways for both outcomes. PMID:25866461
Kane, Michael J; Hambrick, David Z; Tuholski, Stephen W; Wilhelm, Oliver; Payne, Tabitha W; Engle, Randall W
2004-06-01
A latent-variable study examined whether verbal and visuospatial working memory (WM) capacity measures reflect a primarily domain-general construct by testing 236 participants in 3 span tests each of verbal WM. visuospatial WM, verbal short-term memory (STM), and visuospatial STM. as well as in tests of verbal and spatial reasoning and general fluid intelligence (Gf). Confirmatory' factor analyses and structural equation models indicated that the WM tasks largely reflected a domain-general factor, whereas STM tasks, based on the same stimuli as the WM tasks, were much more domain specific. The WM construct was a strong predictor of Gf and a weaker predictor of domain-specific reasoning, and the reverse was true for the STM construct. The findings support a domain-general view of WM capacity, in which executive-attention processes drive the broad predictive utility of WM span measures, and domain-specific storage and rehearsal processes relate more strongly to domain-specific aspects of complex cognition. ((c) 2004 APA, all rights reserved)
Developmental gender differences in children in a virtual spatial memory task.
León, Irene; Cimadevilla, José Manuel; Tascón, Laura
2014-07-01
Behavioral achievements are the product of brain maturation. During postnatal development, the medial temporal lobe completes its maturation, and children acquire new memory abilities. In recent years, virtual reality-based tasks have been introduced in the neuropsychology field to assess different cognitive functions. In this work, desktop virtual reality tasks are combined with classic psychometric tests to assess spatial abilities in 4- to 10-year-old children. Fifty boys and 50 girls 4-10-years of age participated in this study. Spatial reference memory and spatial working memory were assessed using a desktop virtual reality-based task. Other classic psychometric tests were also included in this work (e.g., the Corsi Block Tapping Test, digit tests, 10/36 Spatial Recall Test). In general terms, 4- and 5-year-old groups showed poorer performance than the older groups. However, 5-year-old children showed basic spatial navigation abilities with little difficulty. In addition, boys outperformed girls from the 6-8-year-old groups. Gender differences only emerged in the reference-memory version of the spatial task, whereas both sexes displayed similar performances in the working-memory version. There was general improvement in the performance of different tasks in children older than 5 years. However, results also suggest that brain regions involved in allocentric memory are functional even at the age of 5. In addition, the brain structures underlying reference memory mature later in girls than those required for the working memory.
Reboreda, Antonio; Theissen, Frederik M; Valero-Aracama, Maria J; Arboit, Alberto; Corbu, Mihaela A; Yoshida, Motoharu
2018-03-01
Working memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information. In this review, we will focus on the role of transient receptor potential canonical (TRPC) channels as a mechanism underlying persistent firing. Many years of in vitro work have been suggesting a crucial role of TRPC channels in working memory and temporal association tasks. If TRPC channels are indeed a central mechanism for working memory, manipulations which impair or facilitate working memory should have a similar effect on TRPC channel modulation. However, modulations of working memory and TRPC channels were never systematically compared, and it remains unanswered whether TRPC channels indeed contribute to working memory in vivo or not. In this article, we review the effects of G-protein coupled receptors (GPCR) and neuromodulators, including acetylcholine, noradrenalin, serotonin and dopamine, on working memory and TRPC channels. Based on comparisons, we argue that GPCR and downstream signaling pathways that activate TRPC, generally support working memory, while those that suppress TRPC channels impair it. However, depending on the channel types, areas, and systems tested, this is not the case in all studies. Further work to clarify involvement of specific TRPC channels in working memory tasks and how they are affected by neuromodulators is still necessary in the future. Copyright © 2018 Elsevier B.V. All rights reserved.
Melby-Lervåg, Monica; Redick, Thomas S.; Hulme, Charles
2016-01-01
It has been claimed that working memory training programs produce diverse beneficial effects. This article presents a meta-analysis of working memory training studies (with a pretest-posttest design and a control group) that have examined transfer to other measures (nonverbal ability, verbal ability, word decoding, reading comprehension, or arithmetic; 87 publications with 145 experimental comparisons). Immediately following training there were reliable improvements on measures of intermediate transfer (verbal and visuospatial working memory). For measures of far transfer (nonverbal ability, verbal ability, word decoding, reading comprehension, arithmetic) there was no convincing evidence of any reliable improvements when working memory training was compared with a treated control condition. Furthermore, mediation analyses indicated that across studies, the degree of improvement on working memory measures was not related to the magnitude of far-transfer effects found. Finally, analysis of publication bias shows that there is no evidential value from the studies of working memory training using treated controls. The authors conclude that working memory training programs appear to produce short-term, specific training effects that do not generalize to measures of “real-world” cognitive skills. These results seriously question the practical and theoretical importance of current computerized working memory programs as methods of training working memory skills. PMID:27474138
ERIC Educational Resources Information Center
Morey, Candice C.; Miron, Monica D.
2016-01-01
Among models of working memory, there is not yet a consensus about how to describe functions specific to storing verbal or visual-spatial memories. We presented aural-verbal and visual-spatial lists simultaneously and sometimes cued one type of information after presentation, comparing accuracy in conditions with and without informative…
Vergauwe, Evie; Hartstra, Egbert; Barrouillet, Pierre; Brass, Marcel
2015-07-15
Working memory is often defined in cognitive psychology as a system devoted to the simultaneous processing and maintenance of information. In line with the time-based resource-sharing model of working memory (TBRS; Barrouillet and Camos, 2015; Barrouillet et al., 2004), there is accumulating evidence that, when memory items have to be maintained while performing a concurrent activity, memory performance depends on the cognitive load of this activity, independently of the domain involved. The present study used fMRI to identify regions in the brain that are sensitive to variations in cognitive load in a domain-general way. More precisely, we aimed at identifying brain areas that activate during maintenance of memory items as a direct function of the cognitive load induced by both verbal and spatial concurrent tasks. Results show that the right IFJ and bilateral SPL/IPS are the only areas showing an increased involvement as cognitive load increases and do so in a domain general manner. When correlating the fMRI signal with the approximated cognitive load as defined by the TBRS model, it was shown that the main focus of the cognitive load-related activation is located in the right IFJ. The present findings indicate that the IFJ makes domain-general contributions to time-based resource-sharing in working memory and allowed us to generate the novel hypothesis by which the IFJ might be the neural basis for the process of rapid switching. We argue that the IFJ might be a crucial part of a central attentional bottleneck in the brain because of its inability to upload more than one task rule at once. Copyright © 2015 Elsevier Inc. All rights reserved.
Xie, Yuanjun; Feng, Zhengquan; Xu, Yuanyuan; Bian, Chen; Li, Min
2016-10-28
A putative functional role for alpha oscillations in working memory remains controversial. However, recent evidence suggests that such oscillation may reflect distinct phases of working memory processing. The present study investigated alpha band (8-13Hz) activity during the maintenance stage of working memory using a modified Sternberg working memory task. Our results reveal that alpha power was concentrated primarily in the occipital cortex and was decreased during the early stage of maintenance (0-600ms), and subsequently increased during the later stage of maintenance (1000-1600ms). We suggest that reduced alpha power may be involved in focused attention during the working memory maintenance, whereas increased alpha power may reflect suppression of visual stimuli to facilitate internal processing related to the task. This interpretation is generally consistent with recent reports suggesting that variations in alpha power are associated with the representation and processing of information in the discrete time intervals during the working memory maintenance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Dynamic frontotemporal systems process space and time in working memory
Adams, Jenna N.; Solbakk, Anne-Kristin; Endestad, Tor; Larsson, Pål G.; Ivanovic, Jugoslav; Meling, Torstein R.; Lin, Jack J.; Knight, Robert T.
2018-01-01
How do we rapidly process incoming streams of information in working memory, a cognitive mechanism central to human behavior? Dominant views of working memory focus on the prefrontal cortex (PFC), but human hippocampal recordings provide a neurophysiological signature distinct from the PFC. Are these regions independent, or do they interact in the service of working memory? We addressed this core issue in behavior by recording directly from frontotemporal sites in humans performing a visuospatial working memory task that operationalizes the types of identity and spatiotemporal information we encounter every day. Theta band oscillations drove bidirectional interactions between the PFC and medial temporal lobe (MTL; including the hippocampus). MTL theta oscillations directed the PFC preferentially during the processing of spatiotemporal information, while PFC theta oscillations directed the MTL for all types of information being processed in working memory. These findings reveal an MTL theta mechanism for processing space and time and a domain-general PFC theta mechanism, providing evidence that rapid, dynamic MTL–PFC interactions underlie working memory for everyday experiences. PMID:29601574
Causal Evidence from Humans for the Role of Mediodorsal Nucleus of the Thalamus in Working Memory.
Peräkylä, Jari; Sun, Lihua; Lehtimäki, Kai; Peltola, Jukka; Öhman, Juha; Möttönen, Timo; Ogawa, Keith H; Hartikainen, Kaisa M
2017-12-01
The mediodorsal nucleus of the thalamus (MD), with its extensive connections to the lateral pFC, has been implicated in human working memory and executive functions. However, this understanding is based solely on indirect evidence from human lesion and imaging studies and animal studies. Direct, causal evidence from humans is missing. To obtain direct evidence for MD's role in humans, we studied patients treated with deep brain stimulation (DBS) for refractory epilepsy. This treatment is thought to prevent the generalization of a seizure by disrupting the functioning of the patient's anterior nuclei of the thalamus (ANT) with high-frequency electric stimulation. This structure is located superior and anterior to MD, and when the DBS lead is implanted in ANT, tip contacts of the lead typically penetrate through ANT into the adjoining MD. To study the role of MD in human executive functions and working memory, we periodically disrupted and recovered MD's function with high-frequency electric stimulation using DBS contacts reaching MD while participants performed a cognitive task engaging several aspects of executive functions. We hypothesized that the efficacy of executive functions, specifically working memory, is impaired when the functioning of MD is perturbed by high-frequency stimulation. Eight participants treated with ANT-DBS for refractory epilepsy performed a computer-based test of executive functions while DBS was repeatedly switched ON and OFF at MD and at the control location (ANT). In comparison to stimulation of the control location, when MD was stimulated, participants committed 2.26 times more errors in general (total errors; OR = 2.26, 95% CI [1.69, 3.01]) and 2.86 times more working memory-related errors specifically (incorrect button presses; OR = 2.88, CI [1.95, 4.24]). Similarly, participants committed 1.81 more errors in general ( OR = 1.81, CI [1.45, 2.24]) and 2.08 times more working memory-related errors ( OR = 2.08, CI [1.57, 2.75]) in comparison to no stimulation condition. "Total errors" is a composite score consisting of basic error types and was mostly driven by working memory-related errors. The facts that MD and a control location, ANT, are only few millimeters away from each other and that their stimulation produces very different results highlight the location-specific effect of DBS rather than regionally unspecific general effect. In conclusion, disrupting and recovering MD's function with high-frequency electric stimulation modulated participants' online working memory performance providing causal, in vivo evidence from humans for the role of MD in human working memory.
Starc, Martina; Anticevic, Alan; Repovš, Grega
2017-05-01
Pupillometry provides an accessible option to track working memory processes with high temporal resolution. Several studies showed that pupil size increases with the number of items held in working memory; however, no study has explored whether pupil size also reflects the quality of working memory representations. To address this question, we used a spatial working memory task to investigate the relationship of pupil size with spatial precision of responses and indicators of reliance on generalized spatial categories. We asked 30 participants (15 female, aged 19-31) to remember the position of targets presented at various locations along a hidden radial grid. After a delay, participants indicated the remembered location with a high-precision joystick providing a parametric measure of trial-to-trial accuracy. We recorded participants' pupil dilations continuously during task performance. Results showed a significant relation between pupil dilation during preparation/early encoding and the precision of responses, possibly reflecting the attentional resources devoted to memory encoding. In contrast, pupil dilation at late maintenance and response predicted larger shifts of responses toward prototypical locations, possibly reflecting larger reliance on categorical representation. On an intraindividual level, smaller pupil dilations during encoding predicted larger dilations during late maintenance and response. On an interindividual level, participants relying more on categorical representation also produced larger precision errors. The results confirm the link between pupil size and the quality of spatial working memory representation. They suggest compensatory strategies of spatial working memory performance-loss of precise spatial representation likely increases reliance on generalized spatial categories. © 2017 Society for Psychophysiological Research.
Aasvik, Julie K; Woodhouse, Astrid; Stiles, Tore C; Jacobsen, Henrik B; Landmark, Tormod; Glette, Mari; Borchgrevink, Petter C; Landrø, Nils I
2016-01-01
Introduction: The current study examined if adaptive working memory training (Cogmed QM) has the potential to improve inhibitory control, working memory capacity, and perceptions of memory functioning in a group of patients currently on sick leave due to symptoms of pain, insomnia, fatigue, depression and anxiety. Participants who were referred to a vocational rehabilitation center volunteered to take part in the study. Methods: Participants were randomly assigned to either a training condition ( N = 25) or a control condition ( N = 29). Participants in the training condition received working memory training in addition to the clinical intervention offered as part of the rehabilitation program, while participants in the control condition received treatment as usual i.e., the rehabilitation program only. Inhibitory control was measured by The Stop Signal Task, working memory was assessed by the Spatial Working Memory Test, while perceptions of memory functioning were assessed by The Everyday Memory Questionnaire-Revised. Results: Participants in the training group showed a significant improvement on the post-tests of inhibitory control when compared with the comparison group ( p = 0.025). The groups did not differ on the post-tests of working memory. Both groups reported less memory problems at post-testing, but there was no sizeable difference between the two groups. Conclusions: Results indicate that working memory training does not improve general working memory capacity per se . Nor does it seem to give any added effects in terms of targeting and improving self-perceived memory functioning. Results do, however, provide evidence to suggest that inhibitory control is accessible and susceptible to modification by adaptive working memory training.
The sensory strength of voluntary visual imagery predicts visual working memory capacity.
Keogh, Rebecca; Pearson, Joel
2014-10-09
How much we can actively hold in mind is severely limited and differs greatly from one person to the next. Why some individuals have greater capacities than others is largely unknown. Here, we investigated why such large variations in visual working memory (VWM) capacity might occur, by examining the relationship between visual working memory and visual mental imagery. To assess visual working memory capacity participants were required to remember the orientation of a number of Gabor patches and make subsequent judgments about relative changes in orientation. The sensory strength of voluntary imagery was measured using a previously documented binocular rivalry paradigm. Participants with greater imagery strength also had greater visual working memory capacity. However, they were no better on a verbal number working memory task. Introducing a uniform luminous background during the retention interval of the visual working memory task reduced memory capacity, but only for those with strong imagery. Likewise, for the good imagers increasing background luminance during imagery generation reduced its effect on subsequent binocular rivalry. Luminance increases did not affect any of the subgroups on the verbal number working memory task. Together, these results suggest that luminance was disrupting sensory mechanisms common to both visual working memory and imagery, and not a general working memory system. The disruptive selectivity of background luminance suggests that good imagers, unlike moderate or poor imagers, may use imagery as a mnemonic strategy to perform the visual working memory task. © 2014 ARVO.
Sweeney, Mary M.; Rass, Olga; Johnson, Patrick S.; Strain, Eric C.; Berry, Meredith S.; Vo, Hoa T.; Fishman, Marc J.; Munro, Cynthia A.; Rebok, George W.; Mintzer, Miriam Z.; Johnson, Matthew W.
2016-01-01
Individuals with substance use disorders have shown deficits in the ability to implement future intentions, called prospective memory. Deficits in prospective memory and working memory, a critical underlying component of prospective memory, likely contribute to substance use treatment failures. Thus, improvement of prospective memory and working memory in substance use patients is an innovative target for intervention. We sought to develop a feasible and valid prospective memory training program that incorporates working memory training and may serve as a useful adjunct to substance use disorder treatment. We administered a single session of the novel prospective memory and working memory training program to participants (n = 22; 13 male; 9 female) enrolled in outpatient substance use disorder treatment and correlated performance to existing measures of prospective memory and working memory. Generally accurate prospective memory performance in a single session suggests feasibility in a substance use treatment population. However, training difficulty should be increased to avoid ceiling effects across repeated sessions. Consistent with existing literature, we observed superior performance on event-based relative to time-based prospective memory tasks. Performance on the prospective memory and working memory training components correlated with validated assessments of prospective memory and working memory, respectively. Correlations between novel memory training program performance and established measures suggest that our training engages appropriate cognitive processes. Further, differential event- and time-based prospective memory task performance suggests internal validity of our training. These data support development of this intervention as an adjunctive therapy for substance use disorders. PMID:27690506
Sweeney, Mary M; Rass, Olga; Johnson, Patrick S; Strain, Eric C; Berry, Meredith S; Vo, Hoa T; Fishman, Marc J; Munro, Cynthia A; Rebok, George W; Mintzer, Miriam Z; Johnson, Matthew W
2016-10-01
Individuals with substance use disorders have shown deficits in the ability to implement future intentions, called prospective memory. Deficits in prospective memory and working memory, a critical underlying component of prospective memory, likely contribute to substance use treatment failures. Thus, improvement of prospective memory and working memory in substance use patients is an innovative target for intervention. We sought to develop a feasible and valid prospective memory training program that incorporates working memory training and may serve as a useful adjunct to substance use disorder treatment. We administered a single session of the novel prospective memory and working memory training program to participants (n = 22; 13 men, 9 women) enrolled in outpatient substance use disorder treatment and correlated performance to existing measures of prospective memory and working memory. Generally accurate prospective memory performance in a single session suggests feasibility in a substance use treatment population. However, training difficulty should be increased to avoid ceiling effects across repeated sessions. Consistent with existing literature, we observed superior performance on event-based relative to time-based prospective memory tasks. Performance on the prospective memory and working memory training components correlated with validated assessments of prospective memory and working memory, respectively. Correlations between novel memory training program performance and established measures suggest that our training engages appropriate cognitive processes. Further, differential event- and time-based prospective memory task performance suggests internal validity of our training. These data support the development of this intervention as an adjunctive therapy for substance use disorders. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Conceptualizing and Measuring Working Memory and its Relationship to Aphasia
Wright, Heather Harris; Fergadiotis, Gerasimos
2011-01-01
Background General agreement exists in the literature that individuals with aphasia can exhibit a working memory deficit that contributes to their language processing impairments. Though conceptualized within different working memory frameworks, researchers have suggested that individuals with aphasia have limited working memory capacity, impaired attention-control processes as well as impaired inhibitory mechanisms. However, across studies investigating working memory ability in individuals with aphasia, different measures have been used to quantify their working memory ability and identify the relationship between working memory and language performance. Aims The primary objectives of this article are to (1) review current working memory theoretical frameworks, (2) review tasks used to measure working memory, and (3) discuss findings from studies that have investigated working memory as they relate to language processing in aphasia. Main Contribution Though findings have been consistent across studies investigating working memory ability in individuals with aphasia, discussion of how working memory is conceptualized and defined is often missing, as is discussion of results within a theoretical framework. This is critical, as working memory is conceptualized differently across the different theoretical frameworks. They differ in explaining what limits capacity and the source of individual differences as well as how information is encoded, maintained, and retrieved. When test methods are considered within a theoretical framework, specific hypotheses can be tested and stronger conclusions that are less susceptible to different interpretations can be made. Conclusions Working memory ability has been investigated in numerous studies with individuals with aphasia. To better understand the underlying cognitive constructs that contribute to the language deficits exhibited by individuals with aphasia, future investigations should operationally define the cognitive constructs of interest and discuss findings within theoretical frameworks. PMID:22639480
Evans, Julia L.; Pollak, Seth D.
2011-01-01
This study examined the electrophysiological correlates of auditory and visual working memory in children with Specific Language Impairments (SLI). Children with SLI and age-matched controls (11;9 – 14;10) completed visual and auditory working memory tasks while event-related potentials (ERPs) were recorded. In the auditory condition, children with SLI performed similarly to controls when the memory load was kept low (1-back memory load). As expected, when demands for auditory working memory were higher, children with SLI showed decreases in accuracy and attenuated P3b responses. However, children with SLI also evinced difficulties in the visual working memory tasks. In both the low (1-back) and high (2-back) memory load conditions, P3b amplitude was significantly lower for the SLI as compared to CA groups. These data suggest a domain-general working memory deficit in SLI that is manifested across auditory and visual modalities. PMID:21316354
Dempere-Marco, Laura; Melcher, David P; Deco, Gustavo
2012-01-01
The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions.
Dempere-Marco, Laura; Melcher, David P.; Deco, Gustavo
2012-01-01
The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions. PMID:22952608
MacNamara, Annmarie; Proudfit, Greg Hajcak
2014-08-01
Generalized anxiety disorder (GAD) may be characterized by emotion regulation deficits attributable to an imbalance between top-down (i.e., goal-driven) and bottom-up (i.e., stimulus-driven) attention. In prior work, these attentional processes were examined by presenting unpleasant and neutral pictures within a working memory paradigm. The late positive potential (LPP) measured attention toward task-irrelevant pictures. Results from this prior work showed that working memory load reduced the LPP across participants; however, this effect was attenuated for individuals with greater self-reported state anxiety, suggesting reduced top-down control. In the current study, the same paradigm was used with 106 medication-free female participants-71 with GAD and 35 without GAD. Unpleasant pictures elicited larger LPPs, and working memory load reduced the picture-elicited LPP. Compared with healthy controls, participants with GAD showed large LPPs to unpleasant pictures presented under high working memory load. Self-reported symptoms of anhedonic depression were related to a reduced effect of working memory load on the LPP elicited by neutral pictures. These results indicate that individuals with GAD show less flexible modulation of attention when confronted with unpleasant stimuli. Furthermore, among those with GAD, anhedonic depression may broaden attentional deficits to neutral distracters. (c) 2014 APA, all rights reserved.
Sentence processing and verbal working memory in a white-matter-disconnection patient.
Meyer, Lars; Cunitz, Katrin; Obleser, Jonas; Friederici, Angela D
2014-08-01
The Arcuate Fasciculus/Superior Longitudinal Fasciculus (AF/SLF) is the white-matter bundle that connects posterior superior temporal and inferior frontal cortex. Its causal functional role in sentence processing and verbal working memory is currently under debate. While impairments of sentence processing and verbal working memory often co-occur in patients suffering from AF/SLF damage, it is unclear whether these impairments result from shared white-matter damage to the verbal-working-memory network. The present study sought to specify the behavioral consequences of focal AF/SLF damage for sentence processing and verbal working memory, which were assessed in a single patient suffering from a cleft-like lesion spanning the deep left superior temporal gyrus, sparing most surrounding gray matter. While tractography suggests that the ventral fronto-temporal white-matter bundle is intact in this patient, the AF/SLF was not visible to tractography. In line with the hypothesis that the AF/SLF is causally involved in sentence processing, the patient׳s performance was selectively impaired on sentences that jointly involve both complex word orders and long word-storage intervals. However, the patient was unimpaired on sentences that only involved long word-storage intervals without involving complex word orders. On the contrary, the patient performed generally worse than a control group across standard verbal-working-memory tests. We conclude that the AF/SLF not only plays a causal role in sentence processing, linking regions of the left dorsal inferior frontal gyrus to the temporo-parietal region, but moreover plays a crucial role in verbal working memory, linking regions of the left ventral inferior frontal gyrus to the left temporo-parietal region. Together, the specific sentence-processing impairment and the more general verbal-working-memory impairment may imply that the AF/SLF subserves both sentence processing and verbal working memory, possibly pointing to the AF and SLF respectively supporting each. Copyright © 2014 Elsevier Ltd. All rights reserved.
Melby-Lervåg, Monica; Redick, Thomas S; Hulme, Charles
2016-07-01
It has been claimed that working memory training programs produce diverse beneficial effects. This article presents a meta-analysis of working memory training studies (with a pretest-posttest design and a control group) that have examined transfer to other measures (nonverbal ability, verbal ability, word decoding, reading comprehension, or arithmetic; 87 publications with 145 experimental comparisons). Immediately following training there were reliable improvements on measures of intermediate transfer (verbal and visuospatial working memory). For measures of far transfer (nonverbal ability, verbal ability, word decoding, reading comprehension, arithmetic) there was no convincing evidence of any reliable improvements when working memory training was compared with a treated control condition. Furthermore, mediation analyses indicated that across studies, the degree of improvement on working memory measures was not related to the magnitude of far-transfer effects found. Finally, analysis of publication bias shows that there is no evidential value from the studies of working memory training using treated controls. The authors conclude that working memory training programs appear to produce short-term, specific training effects that do not generalize to measures of "real-world" cognitive skills. These results seriously question the practical and theoretical importance of current computerized working memory programs as methods of training working memory skills. © The Author(s) 2016.
Item-location binding in working memory: is it hippocampus-dependent?
Allen, Richard J; Vargha-Khadem, Faraneh; Baddeley, Alan D
2014-07-01
A general consensus is emerging that the hippocampus has an important and active role in the creation of new long-term memory representations of associations or bindings between elements. However, it is less clear whether this contribution can be extended to the creation of temporary bound representations in working memory, involving the retention of small numbers of items over short delays. We examined this by administering a series of recognition and recall tests of working memory for colour-location binding and object-location binding to a patient with highly selective hippocampal damage (Jon), and groups of control participants. Jon achieved high levels of accuracy in all working memory tests of recognition and recall binding across retention intervals of up to 10s. In contrast, Jon performed at chance on an unexpected delayed test of the same object-location binding information. These findings indicate a clear dissociation between working memory and long-term memory, with no evidence for a critical hippocampal contribution to item-location binding in working memory. Copyright © 2014 Elsevier Ltd. All rights reserved.
Working Memory and Neurofeedback.
YuLeung To, Eric; Abbott, Kathy; Foster, Dale S; Helmer, D'Arcy
2016-01-01
Impairments in working memory are typically associated with impairments in other cognitive faculties such as attentional processes and short-term memory. This paper briefly introduces neurofeedback as a treatment modality in general, and, more specifically, we review several of the current modalities successfully used in neurofeedback (NF) for the treatment of working memory deficits. Two case studies are presented to illustrate how neurofeedback is applied in treatment. The development of Low Resolution Electromagnetic Tomography (LORETA) and its application in neurofeedback now makes it possible to specifically target deep cortical/subcortical brain structures. Developments in neuroscience concerning neural networks, combined with highly specific yet practical NF technologies, makes neurofeedback of particular interest to neuropsychological practice, including the emergence of specific methodologies for treating very difficult working memory (WM) problems.
Control of interference during working memory updating.
Szmalec, Arnaud; Verbruggen, Frederick; Vandierendonck, André; Kemps, Eva
2011-02-01
The current study examined the nature of the processes underlying working memory updating. In 4 experiments using the n-back paradigm, the authors demonstrate that continuous updating of items in working memory prevents strong binding of those items to their contexts in working memory, and hence leads to an increased susceptibility to proactive interference. Results of Experiments 1 and 2 show that this interference reflects a competition between a process that reveals the degree of familiarity of an item and a context-sensitive recollection process that depends on the strength of bindings in working memory. Experiment 3 further clarifies the origins of interference during updating by demonstrating that even items that are semantically related to the updated working memory contents but that have not been maintained in working memory before cause proactive interference. Finally, the results of Experiment 4 indicate that the occurrence of interference leads to top-down behavioral adjustments that prioritize recollection over familiarity assessment. The implications of these findings for the construct validity of the n-back task, for the control processes involved in working memory updating, and for the concept of executive control more generally are discussed. (c) 2010 APA, all rights reserved.
ERIC Educational Resources Information Center
Chau, Kien Tsong; Samsudin, Zarina; Yahaya, Wan Ahmad Jaafar Wan
2018-01-01
Insignificant consideration in multimedia research has been given to the features that are associated with cognitive functioning in general, and working memory (WM) in particular for preschoolers. As correlational research works discovered a close association between WM and learning achievement, multimedia research works that are tapping into…
Age differences in proactive interference, working memory, and abstract reasoning
Emery, Lisa; Hale, Sandra; Myerson, Joel
2008-01-01
It has been hypothesized that older adults are especially susceptible to proactive interference (PI), and that this may contribute to age differences in working memory performance. In young adults, individual differences in PI affect both working memory and reasoning ability, but the relations between PI, working memory, and reasoning in older adults have not been examined. In the current study, young, old, and very old adults performed a modified operation span task that induced several cycles of PI buildup and release, as well as two tests of abstract reasoning ability. Age differences in working memory scores increased as PI built up, consistent with the hypothesis that older adults are more susceptible to PI, but both young and older adults showed complete release from PI. Young adults' reasoning ability was best predicted by working memory performance under high-PI conditions, replicating Bunting (2006). In contrast, older adults' reasoning ability was best predicted by their working memory performance under low-PI conditions, thereby raising questions regarding the general role of susceptibility to PI in differences in higher cognitive function among older adults. PMID:18808252
The selective disruption of spatial working memory by eye movements
Postle, Bradley R.; Idzikowski, Christopher; Sala, Sergio Della; Logie, Robert H.; Baddeley, Alan D.
2005-01-01
In the late 1970s/early 1980s, Baddeley and colleagues conducted a series of experiments investigating the role of eye movements in visual working memory. Although only described briefly in a book (Baddeley, 1986), these studies have influenced a remarkable number of empirical and theoretical developments in fields ranging from experimental psychology to human neuropsychology to nonhuman primate electrophysiology. This paper presents, in full detail, three critical studies from this series, together with a recently performed study that includes a level of eye movement measurement and control that was not available for the older studies. Together, the results demonstrate several facts about the sensitivity of visuospatial working memory to eye movements. First, it is eye movement control, not movement per se, that produces the disruptive effects. Second, these effects are limited to working memory for locations, and do not generalize to visual working memory for shapes. Third, they can be isolated to the storage/maintenance components of working memory (e.g., to the delay period of the delayed-recognition task). These facts have important implications for models of visual working memory. PMID:16556561
Morey, Candice Coker; Cowan, Nelson; Morey, Richard D; Rouder, Jeffery N
2011-02-01
Prominent roles for general attention resources are posited in many models of working memory, but the manner in which these can be allocated differs between models or is not sufficiently specified. We varied the payoffs for correct responses in two temporally-overlapping recognition tasks, a visual array comparison task and a tone sequence comparison task. In the critical conditions, an increase in reward for one task corresponded to a decrease in reward for the concurrent task, but memory load remained constant. Our results show patterns of interference consistent with a trade-off between the tasks, suggesting that a shared resource can be flexibly divided, rather than only fully allotted to either of the tasks. Our findings support a role for a domain-general resource in models of working memory, and furthermore suggest that this resource is flexibly divisible.
Neural basis for generalized quantifier comprehension.
McMillan, Corey T; Clark, Robin; Moore, Peachie; Devita, Christian; Grossman, Murray
2005-01-01
Generalized quantifiers like "all cars" are semantically well understood, yet we know little about their neural representation. Our model of quantifier processing includes a numerosity device, operations that combine number elements and working memory. Semantic theory posits two types of quantifiers: first-order quantifiers identify a number state (e.g. "at least 3") and higher-order quantifiers additionally require maintaining a number state actively in working memory for comparison with another state (e.g. "less than half"). We used BOLD fMRI to test the hypothesis that all quantifiers recruit inferior parietal cortex associated with numerosity, while only higher-order quantifiers recruit prefrontal cortex associated with executive resources like working memory. Our findings showed that first-order and higher-order quantifiers both recruit right inferior parietal cortex, suggesting that a numerosity component contributes to quantifier comprehension. Moreover, only probes of higher-order quantifiers recruited right dorsolateral prefrontal cortex, suggesting involvement of executive resources like working memory. We also observed activation of thalamus and anterior cingulate that may be associated with selective attention. Our findings are consistent with a large-scale neural network centered in frontal and parietal cortex that supports comprehension of generalized quantifiers.
Spatial working memory capacity predicts bias in estimates of location.
Crawford, L Elizabeth; Landy, David; Salthouse, Timothy A
2016-09-01
Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy memory trace with a prior structure that people impose on the space. Little is known about intraindividual stability and interindividual variation in these patterns of bias. In the current work, we align recent empirical and theoretical work on working memory capacity limits and spatial memory bias to generate the prediction that those with lower working memory capacity will show greater bias in memory of the location of a single item. Reanalyzing data from a large study of cognitive aging, we find support for this prediction. Fitting separate models to individuals' data revealed a surprising variety of strategies. Some were consistent with Bayesian models of spatial category use, however roughly half of participants biased estimates outward in a way not predicted by current models and others seemed to combine these strategies. These analyses highlight the importance of studying individuals when developing general models of cognition. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Spatial Working Memory Capacity Predicts Bias in Estimates of Location
Crawford, L. Elizabeth; Landy, David H.; Salthouse, Timothy A.
2016-01-01
Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy memory trace with a prior structure that people impose on the space. Little is known about intra-individual stability and inter-individual variation in these patterns of bias. In the current work we align recent empirical and theoretical work on working memory capacity limits and spatial memory bias to generate the prediction that those with lower working memory capacity will show greater bias in memory of the location of a single item. Reanalyzing data from a large study of cognitive aging, we find support for this prediction. Fitting separate models to individuals’ data revealed a surprising variety of strategies. Some were consistent with Bayesian models of spatial category use, however roughly half of participants biased estimates outward in a way not predicted by current models and others seemed to combine these strategies. These analyses highlight the importance of studying individuals when developing general models of cognition. PMID:26900708
University Students With Poor Reading Comprehension: The Hidden Cognitive Processing Deficit.
Georgiou, George K; Das, J P
2015-01-01
The present study aimed to examine the nature of the working memory and general cognitive ability deficits experienced by university students with a specific reading comprehension deficit. A total of 32 university students with poor reading comprehension but average word-reading skills and 60 age-matched controls with no comprehension difficulties participated in the study. The participants were assessed on three verbal working memory tasks that varied in terms of their processing demands and on the Das-Naglieri Cognitive Assessment System, which was used to operationalize intelligence. The results indicated first that the differences between poor and skilled comprehenders on working memory were amplified as the processing demands of the tasks increased. In addition, although poor comprehenders as a group had average intelligence, they experienced significant difficulties in simultaneous and successive processing. Considering that working memory and general cognitive ability are highly correlated processes, these findings suggest that the observed differences between poor and skilled comprehenders are likely a result of a deficient information processing system. © Hammill Institute on Disabilities 2013.
Science and Technology Text Mining: Text Mining of the Journal Cortex
2004-01-01
Amnesia Retrograde Amnesia GENERAL Semantic Memory Episodic Memory Working Memory TEST Serial Position Curve...in Cortex can be reasonably divided into four categories (papers in each category in parenthesis): Semantic Memory (151); Handedness (145); Amnesia ... Semantic Memory (151) is divided into Verbal/ Numerical (76) and Visual/ Spatial (75). Amnesia (119) is divided into Amnesia Symptoms (50) and
NIH Toolbox Cognition Battery (NIHTB-CB): list sorting test to measure working memory.
Tulsky, David S; Carlozzi, Noelle; Chiaravalloti, Nancy D; Beaumont, Jennifer L; Kisala, Pamela A; Mungas, Dan; Conway, Kevin; Gershon, Richard
2014-07-01
The List Sorting Working Memory Test was designed to assess working memory (WM) as part of the NIH Toolbox Cognition Battery. List Sorting is a sequencing task requiring children and adults to sort and sequence stimuli that are presented visually and auditorily. Validation data are presented for 268 participants ages 20 to 85 years. A subset of participants (N=89) was retested 7 to 21 days later. As expected, the List Sorting Test had moderately high correlations with other measures of working memory and executive functioning (convergent validity) but a low correlation with a test of receptive vocabulary (discriminant validity). Furthermore, List Sorting demonstrates expected changes over the age span and has excellent test-retest reliability. Collectively, these results provide initial support for the construct validity of the List Sorting Working Memory Measure as a measure of working memory. However, the relationship between the List Sorting Test and general executive function has yet to be determined.
Working memory as separable subsystems: a study with Portuguese primary school children.
Campos, Isabel S; Almeida, Leandro S; Ferreira, Aristides I; Martinez, Luis F
2013-01-01
Although much research has been done to study the working memory structure in children in their first school years, the relation of cognitive constructs involved in this process remains uncertain. In particular, it is unclear whether working memory is a domain general construct that coordinates separate codes of verbal and visuospatial storage or whether it is a domain-specific construct with distinct resources of verbal and visuospatial information. This paper investigates the structure of working memory, by using the Working Memory Test Battery for Children (WMTB-C) and by doing confirmatory factor analyses (CFAs) on a sample of Portuguese children (n = 103) between 8 and 9 years of age. The results of the confirmatory factor analyses that provide the best fit of the data correspond to the model that includes Central Executive and Visuospatial Sketchpad in the same factor, co-varying with a Phonological Loop factor. Moreover, the traditional working memory tripartite structure--based on the Baddeley and Hitch Model--revealed good fit to the data.
NIH Toolbox Cognition Battery (NIHTB-CB): The List Sorting Test to Measure Working Memory
Tulsky, David S.; Carlozzi, Noelle; Chiaravalloti, Nancy D.; Beaumont, Jennifer L.; Kisala, Pamela A.; Mungas, Dan; Conway, Kevin; Gershon, Richard
2015-01-01
The List Sorting Working Memory Test was designed to assess working memory (WM) as part of the NIH Toolbox Cognition Battery. List Sorting is a sequencing task requiring children and adults to sort and sequence stimuli that are presented visually and auditorily. Validation data are presented for 268 participants ages 20 to 85 years. A subset of participants (N=89) was retested 7 to 21 days later. As expected, the List Sorting Test had moderately high correlations with other measures of working memory and executive functioning (convergent validity) but a low correlation with a test of receptive vocabulary (discriminant validity). Furthermore, List Sorting demonstrates expected changes over the age span and has excellent test-retest reliability. Collectively, these results provide initial support the construct validity of the List Sorting Working Memory Measure as a measure of working memory. However, the relation between the List Sorting Test and general executive function has yet to be determined. PMID:24959983
Defining the "D" in ISD. Part 1: Task-General Instructional Methods.
ERIC Educational Resources Information Center
Clark, Ruth Colvin
1986-01-01
The first of two articles designed to provide guidelines for the instructional development phase of instructional systems development focuses on general instructional methods supporting all instructional tasks. Teaching methods that support selective attention, processing in working memory, and connecting in long-term memory are described and…
Wass, Christopher; Pizzo, Alessandro; Sauce, Bruno; Kawasumi, Yushi; Sturzoiu, Tudor; Ree, Fred; Otto, Tim; Matzel, Louis D.
2013-01-01
A common source of variance (i.e., “general intelligence”) underlies an individual's performance across diverse tests of cognitive ability, and evidence indicates that the processing efficacy of working memory may serve as one such source of common variance. One component of working memory, selective attention, has been reported to co-vary with general intelligence, and dopamine D1 signaling in prefrontal cortex can modulate attentional abilities. Based on their aggregate performance across five diverse tests of learning, here we characterized the general cognitive ability (GCA) of CD-1 outbred mice. In response to a D1 agonist (SKF82958, 1 mg/kg), we then assessed the relationship between GCA and activation of D1 receptor (D1R)-containing neurons in the prelimbic region of the medial prefrontal cortex, the agranular insular cortex, and the dorsomedial striatum. Increased activation of D1R-containing neurons in the prelimbic cortex (but not the agranular insular cortex or dorsomedial striatum) was observed in animals of high GCA relative to those of low GCA (quantified by c-Fos activation in response to the D1 agonist). However, a Western blot analysis revealed no differences in the density of D1Rs in the prelimbic cortex between animals of high and low GCA. Last, it was observed that working memory training promoted an increase in animals’ GCA and enhanced D1R-mediated neuronal activation in the prelimbic cortex. These results suggest that the sensitivity (but not density) of D1Rs in the prelimbic cortex may both regulate GCA and be a target for working memory training. PMID:24129098
Wass, Christopher; Pizzo, Alessandro; Sauce, Bruno; Kawasumi, Yushi; Sturzoiu, Tudor; Ree, Fred; Otto, Tim; Matzel, Louis D
2013-10-15
A common source of variance (i.e., "general intelligence") underlies an individual's performance across diverse tests of cognitive ability, and evidence indicates that the processing efficacy of working memory may serve as one such source of common variance. One component of working memory, selective attention, has been reported to co-vary with general intelligence, and dopamine D1 signaling in prefrontal cortex can modulate attentional abilities. Based on their aggregate performance across five diverse tests of learning, here we characterized the general cognitive ability (GCA) of CD-1 outbred mice. In response to a D1 agonist (SKF82958, 1 mg/kg), we then assessed the relationship between GCA and activation of D1 receptor (D1R)-containing neurons in the prelimbic region of the medial prefrontal cortex, the agranular insular cortex, and the dorsomedial striatum. Increased activation of D1R-containing neurons in the prelimbic cortex (but not the agranular insular cortex or dorsomedial striatum) was observed in animals of high GCA relative to those of low GCA (quantified by c-Fos activation in response to the D1 agonist). However, a Western blot analysis revealed no differences in the density of D1Rs in the prelimbic cortex between animals of high and low GCA. Last, it was observed that working memory training promoted an increase in animals' GCA and enhanced D1R-mediated neuronal activation in the prelimbic cortex. These results suggest that the sensitivity (but not density) of D1Rs in the prelimbic cortex may both regulate GCA and be a target for working memory training.
Stimulus-specific variability in color working memory with delayed estimation.
Bae, Gi-Yeul; Olkkonen, Maria; Allred, Sarah R; Wilson, Colin; Flombaum, Jonathan I
2014-04-08
Working memory for color has been the central focus in an ongoing debate concerning the structure and limits of visual working memory. Within this area, the delayed estimation task has played a key role. An implicit assumption in color working memory research generally, and delayed estimation in particular, is that the fidelity of memory does not depend on color value (and, relatedly, that experimental colors have been sampled homogeneously with respect to discriminability). This assumption is reflected in the common practice of collapsing across trials with different target colors when estimating memory precision and other model parameters. Here we investigated whether or not this assumption is secure. To do so, we conducted delayed estimation experiments following standard practice with a memory load of one. We discovered that different target colors evoked response distributions that differed widely in dispersion and that these stimulus-specific response properties were correlated across observers. Subsequent experiments demonstrated that stimulus-specific responses persist under higher memory loads and that at least part of the specificity arises in perception and is eventually propagated to working memory. Posthoc stimulus measurement revealed that rendered stimuli differed from nominal stimuli in both chromaticity and luminance. We discuss the implications of these deviations for both our results and those from other working memory studies.
Where to start? Bottom-up attention improves working memory by determining encoding order.
Ravizza, Susan M; Uitvlugt, Mitchell G; Hazeltine, Eliot
2016-12-01
The present study aimed to characterize the mechanism by which working memory is enhanced for items that capture attention because of their novelty or saliency-that is, via bottom-up attention. The first experiment replicated previous research by corroborating that bottom-up attention directed to an item is sufficient for enhancing working memory and, moreover, generalized the effect to the domain of verbal working memory. The subsequent 3 experiments sought to determine how bottom-up attention affects working memory. We considered 2 hypotheses: (1) Bottom-up attention enhances the encoded representation of the stimulus, similar to how voluntary attention functions, or (2) It affects the order of encoding by shifting priority onto the attended stimulus. By manipulating how stimuli were presented (simultaneous/sequential display) and whether the cue predicted the tested items, we found evidence that bottom-up attention improves working memory performance via the order of encoding hypothesis. This finding was observed across change detection and free recall paradigms. In contrast, voluntary attention improved working memory regardless of encoding order and showed greater effects on working memory. We conclude that when multiple information sources compete, bottom-up attention prioritizes the location at which encoding should begin. When encoding order is set, bottom-up attention has little or no benefit to working memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Content-specificity in verbal recall: a randomized controlled study.
Zirk-Sadowski, Jan; Szucs, Denes; Holmes, Joni
2013-01-01
In this controlled experiment we examined whether there are content effects in verbal short-term memory and working memory for verbal stimuli. Thirty-seven participants completed forward and backward digit and letter recall tasks, which were constructed to control for distance effects between stimuli. A maximum-likelihood mixed-effects logistic regression revealed main effects of direction of recall (forward vs backward) and content (digits vs letters). There was an interaction between type of recall and content, in which the recall of digits was superior to the recall of letters in verbal short-term memory but not in verbal working memory. These results demonstrate that the recall of information from verbal short-term memory is content-specific, whilst the recall of information from verbal working memory is content-general.
Kristian Hill, S; Buchholz, Alison; Amsbaugh, Hayley; Reilly, James L; Rubin, Leah H; Gold, James M; Keefe, Richard S E; Pearlson, Godfrey D; Keshavan, Matcheri S; Tamminga, Carol A; Sweeney, John A
2015-08-01
Working memory impairment is well established in psychotic disorders. However, the relative magnitude, diagnostic specificity, familiality pattern, and degree of independence from generalized cognitive deficits across psychotic disorders remain unclear. Participants from the Bipolar and Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study included probands with schizophrenia (N=289), psychotic bipolar disorder (N=227), schizoaffective disorder (N=165), their first-degree relatives (N=315, N=259, N=193, respectively), and healthy controls (N=289). All were administered the WMS-III Spatial Span working memory test and the Brief Assessment of Cognition in Schizophrenia (BACS) battery. All proband groups displayed significant deficits for both forward and backward span compared to controls. However, after covarying for generalized cognitive impairments (BACS composite), all proband groups showed a 74% or greater effect size reduction with only schizoaffective probands showing residual backward span deficits compared to controls. Significant familiality was seen in schizophrenia and bipolar pedigrees. In relatives, both forward and backward span deficits were again attenuated after covarying BACS scores and residual backward span deficits were seen in relatives of schizophrenia patients. Overall, both probands and relatives showed a similar pattern of robust working memory deficits that were largely attenuated when controlling for generalized cognitive deficits. Copyright © 2015 Elsevier B.V. All rights reserved.
Working Memory Training and Speech in Noise Comprehension in Older Adults.
Wayne, Rachel V; Hamilton, Cheryl; Jones Huyck, Julia; Johnsrude, Ingrid S
2016-01-01
Understanding speech in the presence of background sound can be challenging for older adults. Speech comprehension in noise appears to depend on working memory and executive-control processes (e.g., Heald and Nusbaum, 2014), and their augmentation through training may have rehabilitative potential for age-related hearing loss. We examined the efficacy of adaptive working-memory training (Cogmed; Klingberg et al., 2002) in 24 older adults, assessing generalization to other working-memory tasks (near-transfer) and to other cognitive domains (far-transfer) using a cognitive test battery, including the Reading Span test, sensitive to working memory (e.g., Daneman and Carpenter, 1980). We also assessed far transfer to speech-in-noise performance, including a closed-set sentence task (Kidd et al., 2008). To examine the effect of cognitive training on benefit obtained from semantic context, we also assessed transfer to open-set sentences; half were semantically coherent (high-context) and half were semantically anomalous (low-context). Subjects completed 25 sessions (0.5-1 h each; 5 sessions/week) of both adaptive working memory training and placebo training over 10 weeks in a crossover design. Subjects' scores on the adaptive working-memory training tasks improved as a result of training. However, training did not transfer to other working memory tasks, nor to tasks recruiting other cognitive domains. We did not observe any training-related improvement in speech-in-noise performance. Measures of working memory correlated with the intelligibility of low-context, but not high-context, sentences, suggesting that sentence context may reduce the load on working memory. The Reading Span test significantly correlated only with a test of visual episodic memory, suggesting that the Reading Span test is not a pure-test of working memory, as is commonly assumed.
Working Memory Training and Speech in Noise Comprehension in Older Adults
Wayne, Rachel V.; Hamilton, Cheryl; Jones Huyck, Julia; Johnsrude, Ingrid S.
2016-01-01
Understanding speech in the presence of background sound can be challenging for older adults. Speech comprehension in noise appears to depend on working memory and executive-control processes (e.g., Heald and Nusbaum, 2014), and their augmentation through training may have rehabilitative potential for age-related hearing loss. We examined the efficacy of adaptive working-memory training (Cogmed; Klingberg et al., 2002) in 24 older adults, assessing generalization to other working-memory tasks (near-transfer) and to other cognitive domains (far-transfer) using a cognitive test battery, including the Reading Span test, sensitive to working memory (e.g., Daneman and Carpenter, 1980). We also assessed far transfer to speech-in-noise performance, including a closed-set sentence task (Kidd et al., 2008). To examine the effect of cognitive training on benefit obtained from semantic context, we also assessed transfer to open-set sentences; half were semantically coherent (high-context) and half were semantically anomalous (low-context). Subjects completed 25 sessions (0.5–1 h each; 5 sessions/week) of both adaptive working memory training and placebo training over 10 weeks in a crossover design. Subjects' scores on the adaptive working-memory training tasks improved as a result of training. However, training did not transfer to other working memory tasks, nor to tasks recruiting other cognitive domains. We did not observe any training-related improvement in speech-in-noise performance. Measures of working memory correlated with the intelligibility of low-context, but not high-context, sentences, suggesting that sentence context may reduce the load on working memory. The Reading Span test significantly correlated only with a test of visual episodic memory, suggesting that the Reading Span test is not a pure-test of working memory, as is commonly assumed. PMID:27047370
Berntsen, Dorthe; Rubin, David C.
2011-01-01
Recurrent involuntary memories are autobiographical memories that come to mind with no preceding retrieval attempt and that are subjectively experienced as being repetitive. Clinically, they are classified as a symptom of Posttraumatic Stress Disorder (PTSD). The present work is the first to systematically examine recurrent involuntary memories outside clinical settings. Study 1 examines recurrent involuntary memories among survivors of the tsunami catastrophe in Southeast Asia in 2004. Study 2 examines recurrent involuntary memories in a large general population. Study 3 examines whether the contents of recurrent involuntary memories recorded in a diary study are duplicates of, or differ from, one another. We show that recurrent involuntary memories are not limited to clinical populations or to emotionally negative experiences, that they typically do not come to mind in a fixed and unchangeable form, and that they show the same pattern regarding accessibility as autobiographical memories in general. We argue that recurrent involuntary memories after traumas and in everyday life can be explained in terms of general and well-established mechanisms of autobiographical memory. PMID:18426073
Dynamic search and working memory in social recall.
Hills, Thomas T; Pachur, Thorsten
2012-01-01
What are the mechanisms underlying search in social memory (e.g., remembering the people one knows)? Do the search mechanisms involve dynamic local-to-global transitions similar to semantic search, and are these transitions governed by the general control of attention, associated with working memory span? To find out, we asked participants to recall individuals from their personal social networks and measured each participant's working memory capacity. Additionally, participants provided social-category and contact-frequency information about the recalled individuals as well as information about the social proximity among the recalled individuals. On the basis of these data, we tested various computational models of memory search regarding their ability to account for the patterns in which participants recalled from social memory. Although recall patterns showed clustering based on social categories, models assuming dynamic transitions between representations cued by social proximity and frequency information predicted participants' recall patterns best-no additional explanatory power was gained from social-category information. Moreover, individual differences in the time between transitions were positively correlated with differences in working memory capacity. These results highlight the role of social proximity in structuring social memory and elucidate the role of working memory for maintaining search criteria during search within that structure.
Hambrick, David Z; Engle, Randall W
2002-06-01
Domain knowledge facilitates performance in many cognitive tasks. However, very little is known about the interplay between domain knowledge and factors that are believed to reflect general, and relatively stable, characteristics of the individual. The primary goal of this study was to investigate the interplay between domain knowledge and one such factor: working memory capacity. Adults from wide ranges of working memory capacity, age, and knowledge about the game of baseball listened to, and then answered questions about, simulated radio broadcasts of baseball games. There was a strong facilitative effect of preexisting knowledge of baseball on memory performance, particularly for information judged to be directly relevant to the baseball games. However, there was a positive effect of working memory capacity on memory performance as well, and there was no indication that domain knowledge attenuated this effect. That is, working memory capacity contributed to memory performance even at high levels of domain knowledge. Similarly, there was no evidence that domain knowledge attenuated age-related differences (favoring young adults) in memory performance. We discuss implications of the results for understanding proficiency in cognitive domains from an individual-differences perspective. Copyright 2001 Elsevier Science (USA).
Kolata, Stefan; Light, Kenneth; Wass, Christopher D.; Colas-Zelin, Danielle; Roy, Debasri; Matzel, Louis D.
2010-01-01
Background Genetically heterogeneous mice express a trait that is qualitatively and psychometrically analogous to general intelligence in humans, and as in humans, this trait co-varies with the processing efficacy of working memory (including its dependence on selective attention). Dopamine signaling in the prefrontal cortex (PFC) has been established to play a critical role in animals' performance in both working memory and selective attention tasks. Owing to this role of the PFC in the regulation of working memory, here we compared PFC gene expression profiles of 60 genetically diverse CD-1 mice that exhibited a wide range of general learning abilities (i.e., aggregate performance across five diverse learning tasks). Methodology/Principal Findings Animals' general cognitive abilities were first determined based on their aggregate performance across a battery of five diverse learning tasks. With a procedure designed to minimize false positive identifications, analysis of gene expression microarrays (comprised of ≈25,000 genes) identified a small number (<20) of genes that were differentially expressed across animals that exhibited fast and slow aggregate learning abilities. Of these genes, one functional cluster was identified, and this cluster (Darpp-32, Drd1a, and Rgs9) is an established modulator of dopamine signaling. Subsequent quantitative PCR found that expression of these dopaminegic genes plus one vascular gene (Nudt6) were significantly correlated with individual animal's general cognitive performance. Conclusions/Significance These results indicate that D1-mediated dopamine signaling in the PFC, possibly through its modulation of working memory, is predictive of general cognitive abilities. Furthermore, these results provide the first direct evidence of specific molecular pathways that might potentially regulate general intelligence. PMID:21103339
Piccardi, L; Nori, R; Boccia, M; Barbetti, S; Verde, P; Guariglia, C; Ferlazzo, F
2015-08-01
In the present study, we used single- and dual-task conditions to investigate the nature of topographical working memory to better understand what type of task can hamper performance during navigation. During dual-task conditions, we considered four different sources of interference: motor (M), spatial motor (SM), verbal (i.e. articulatory suppression AS) and spatial environmental (SE). In order to assess the nature of topographical working memory, we used the Walking Corsi Test, asking the participants to perform two tasks simultaneously (M, SM, AS and SE). Our results showed that only spatial-environmental interference hampers the execution of a topographical working memory task, suggesting a task-domain-specific effect. We also found general gender differences in the topographical working memory capabilities: men were more proficient than women, regardless of the type of interferences. However, like men, women performed worse when a spatial-environmental interference was present.
Reactivation in Working Memory: An Attractor Network Model of Free Recall
Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran
2013-01-01
The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view. PMID:24023690
Reactivation in working memory: an attractor network model of free recall.
Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran
2013-01-01
The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view.
Effects and mechanisms of working memory training: a review.
von Bastian, Claudia C; Oberauer, Klaus
2014-11-01
Can cognitive abilities such as reasoning be improved through working memory training? This question is still highly controversial, with prior studies providing contradictory findings. The lack of theory-driven, systematic approaches and (occasionally serious) methodological shortcomings complicates this debate even more. This review suggests two general mechanisms mediating transfer effects that are (or are not) observed after working memory training: enhanced working memory capacity, enabling people to hold more items in working memory than before training, or enhanced efficiency using the working memory capacity available (e.g., using chunking strategies to remember more items correctly). We then highlight multiple factors that could influence these mechanisms of transfer and thus the success of training interventions. These factors include (1) the nature of the training regime (i.e., intensity, duration, and adaptivity of the training tasks) and, with it, the magnitude of improvements during training, and (2) individual differences in age, cognitive abilities, biological factors, and motivational and personality factors. Finally, we summarize the findings revealed by existing training studies for each of these factors, and thereby present a roadmap for accumulating further empirical evidence regarding the efficacy of working memory training in a systematic way.
Working memory capacity in social anxiety disorder: Revisiting prior conclusions.
Waechter, Stephanie; Moscovitch, David A; Vidovic, Vanja; Bielak, Tatiana; Rowa, Karen; McCabe, Randi E
2018-04-01
In one of the few studies examining working memory processes in social anxiety disorder (SAD), Amir and Bomyea (2011) recruited participants with and without SAD to complete a working memory span task with neutral and social threat words. Those with SAD showed better working memory performance for social threat words compared to neutral words, suggesting an enhancement in processing efficiency for socially threatening information in SAD. The current study sought to replicate and extend these findings. In this study, 25 participants with a principal diagnosis of SAD, 24 anxious control (AC) participants with anxiety disorders other than SAD, and 27 healthy control (HC) participants with no anxiety disorder completed a working memory task with social threat, general threat, and neutral stimuli. The groups in the current study demonstrated similar working memory performance within each of the word type conditions, thus failing to replicate the principal findings of Amir and Bomyea (2011). Post hoc analyses revealed a significant association between higher levels of anxiety symptomatology and poorer overall WM performance. These results inform our understanding of working memory in the anxiety disorders and support the importance of replication in psychological research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Swanson, H L; Trahan, M
1996-09-01
The present study investigates (a) whether learning disabled readers' working memory deficits that underlie poor reading comprehension are related to a general system, and (b) whether metacognition contributes to comprehension beyond what is predicted by working memory and word knowledge. To this end, performance between learning and disabled (N = 60) and average readers (N = 60) was compared on the reading comprehension, reading rate, and vocabulary subtests of the Nelson Skills Reading Test, Sentence Span test composed of high and low imagery words, and a Metacognitive Questionnaire. As expected, differences between groups in working memory, vocabulary, and reading measures emerged, whereas ability groups were statistically comparable on the Metacognitive Questionnaire. A within-group analysis indicated that the correlation patterns between working memory, vocabulary, metacognition, and reading comprehension were not the same between ability groups. For predicting reading comprehension, the metacognitive questionnaire best predicted learning disabled readers' performance, whereas the working memory span measure that included low-imagery words best predicted average achieving readers' comprehension. Overall, the results suggest that the relationship between learning disabled readers' generalised working memory deficits and poor reading comprehension may be mediated by metacognition.
Childhood Obesity and Academic Performance: The Role of Working Memory
Wu, Nan; Chen, Yulu; Yang, Jinhua; Li, Fei
2017-01-01
The present study examined the role of working memory in the association between childhood obesity and academic performance, and further determined whether memory deficits in obese children are domain-specific to certain tasks or domain-general. A total of 227 primary school students aged 10–13 years were analyzed for weight and height, of which 159 children (44 “obese,” 23 “overweight,” and 92 “normal weight”) filled out questionnaires on school performance and socioeconomic status. And then, all subjects finished three kinds of working memory tasks based on the digit memory task in 30 trials, which were image-generated with a series of numbers recall trial sets. After each trial set, subjects were given 5 s to recall and write down the numbers which hand appeared in the trial, in the inverse order in which they had appeared. The results showed there were significant academic performance differences among the three groups, with normal-weight children scoring higher than overweight and obese children after Bonferroni correction. A mediation model revealed a partial indirect effect of working memory in the relationship between obesity and academic performance. Although the performance of obese children in basic working memory tests was poorer than that of normal-weight children, they recalled more items than normal-weight children in working memory tasks involving with food/drink. Working memory deficits partially explain the poor academic performance of obese children. Those results indicated the obese children show domain-specific working memory deficits, whereas they recall more items than normal-weight children in working memory tasks associated with food/drink. PMID:28469593
Childhood Obesity and Academic Performance: The Role of Working Memory.
Wu, Nan; Chen, Yulu; Yang, Jinhua; Li, Fei
2017-01-01
The present study examined the role of working memory in the association between childhood obesity and academic performance, and further determined whether memory deficits in obese children are domain-specific to certain tasks or domain-general. A total of 227 primary school students aged 10-13 years were analyzed for weight and height, of which 159 children (44 "obese," 23 "overweight," and 92 "normal weight") filled out questionnaires on school performance and socioeconomic status. And then, all subjects finished three kinds of working memory tasks based on the digit memory task in 30 trials, which were image-generated with a series of numbers recall trial sets. After each trial set, subjects were given 5 s to recall and write down the numbers which hand appeared in the trial, in the inverse order in which they had appeared. The results showed there were significant academic performance differences among the three groups, with normal-weight children scoring higher than overweight and obese children after Bonferroni correction. A mediation model revealed a partial indirect effect of working memory in the relationship between obesity and academic performance. Although the performance of obese children in basic working memory tests was poorer than that of normal-weight children, they recalled more items than normal-weight children in working memory tasks involving with food/drink. Working memory deficits partially explain the poor academic performance of obese children. Those results indicated the obese children show domain-specific working memory deficits, whereas they recall more items than normal-weight children in working memory tasks associated with food/drink.
The Structure of Working Memory Abilities across the Adult Life Span
Hale, Sandra; Rose, Nathan S.; Myerson, Joel; Strube, Michael J; Sommers, Mitchell; Tye-Murray, Nancy; Spehar, Brent
2010-01-01
The present study addresses three questions regarding age differences in working memory: (1) whether performance on complex span tasks decreases as a function of age at a faster rate than performance on simple span tasks; (2) whether spatial working memory decreases at a faster rate than verbal working memory; and (3) whether the structure of working memory abilities is different for different age groups. Adults, ages 20–89 (n=388), performed three simple and three complex verbal span tasks and three simple and three complex spatial memory tasks. Performance on the spatial tasks decreased at faster rates as a function of age than performance on the verbal tasks, but within each domain, performance on complex and simple span tasks decreased at the same rates. Confirmatory factor analyses revealed that domain-differentiated models yielded better fits than models involving domain-general constructs, providing further evidence of the need to distinguish verbal and spatial working memory abilities. Regardless of which domain-differentiated model was examined, and despite the faster rates of decrease in the spatial domain, age group comparisons revealed that the factor structure of working memory abilities was highly similar in younger and older adults and showed no evidence of age-related dedifferentiation. PMID:21299306
Visual information can hinder working memory processing of speech.
Mishra, Sushmit; Lunner, Thomas; Stenfelt, Stefan; Rönnberg, Jerker; Rudner, Mary
2013-08-01
The purpose of the present study was to evaluate the new Cognitive Spare Capacity Test (CSCT), which measures aspects of working memory capacity for heard speech in the audiovisual and auditory-only modalities of presentation. In Experiment 1, 20 young adults with normal hearing performed the CSCT and an independent battery of cognitive tests. In the CSCT, they listened to and recalled 2-digit numbers according to instructions inducing executive processing at 2 different memory loads. In Experiment 2, 10 participants performed a less executively demanding free recall task using the same stimuli. CSCT performance demonstrated an effect of memory load and was associated with independent measures of executive function and inference making but not with general working memory capacity. Audiovisual presentation was associated with lower CSCT scores but higher free recall performance scores. CSCT is an executively challenging test of the ability to process heard speech. It captures cognitive aspects of listening related to sentence comprehension that are quantitatively and qualitatively different from working memory capacity. Visual information provided in the audiovisual modality of presentation can hinder executive processing in working memory of nondegraded speech material.
Emergent Bilingualism and Working Memory Development in School Aged Children
ERIC Educational Resources Information Center
Hansen, Laura Birke; Macizo, Pedro; Duñabeitia, Jon Andoni; Saldaña, David; Carreiras, Manuel; Fuentes, Luis J.; Bajo, M. Teresa
2016-01-01
The present research explores working memory (WM) development in monolingual as well as emergent bilingual children immersed in an L2 at school. Evidence from recent years suggests that bilingualism may boost domain-general executive control, but impair nonexecutive linguistic processing. Both are relevant for verbal WM, but different paradigms…
Working Memory and Language: Skill-Specific or Domain-General Relations to Mathematics?
ERIC Educational Resources Information Center
Purpura, David J.; Ganley, Colleen M.
2014-01-01
Children's early mathematics skills develop in a cumulative fashion; foundational skills form a basis for the acquisition of later skills. However, non-mathematical factors such as working memory and language skills have also been linked to mathematical development at a broad level. Unfortunately, little research has been conducted to evaluate the…
Is Working Memory Training Effective?
ERIC Educational Resources Information Center
Shipstead, Zach; Redick, Thomas S.; Engle, Randall W.
2012-01-01
Working memory (WM) is a cognitive system that strongly relates to a person's ability to reason with novel information and direct attention to goal-relevant information. Due to the central role that WM plays in general cognition, it has become the focus of a rapidly growing training literature that seeks to affect broad cognitive change through…
When Feedback Is Cognitively-Demanding: The Importance of Working Memory Capacity
ERIC Educational Resources Information Center
Fyfe, Emily R.; DeCaro, Marci S.; Rittle-Johnson, Bethany
2015-01-01
Feedback is generally considered a beneficial learning tool, and providing feedback is a recommended instructional practice. However, there are a variety of feedback types with little guidance on how to choose the most effective one. We examined individual differences in working memory capacity as a potential moderator of feedback type. Second-…
Theorizing and Measuring Working Memory in First and Second Language Research
ERIC Educational Resources Information Center
Wen, Zhisheng
2014-01-01
Working memory (WM) generally refers to the human ability to temporarily maintain and manipulate a limited amount of information in immediate consciousness when carrying out complex cognitive tasks such as problem-solving and language comprehension. Though much controversy has surrounded the WM concept since its inception by Baddeley & Hitch…
Hynes, S M; Fish, J; Manly, T
2014-01-01
Recent reports suggest that intensive, progressive training on working memory tasks can lead to generalized cognitive gains. A patient, following hypoxic brain damage, showed significant difficulties in working memory and time-perception. This study examined the impact and specificity of any benefits resulting from automated working memory training (AWMT) in comparison with the effects of an equivalent programme that emphasized automated novel problem-solving (APST) which served as an active control. Following initial assessment, the patient trained for 4 weeks (20 days), 20-30 minutes a day on the APST tasks before repeating key outcome measures. He then trained for an identical period on AWMT. There were no cognitive gains apparent following APST. Furthermore, there were no disproportionate gains on digit span following AWMT. AWMT was, however, associated with improvement in time-perception that had previously been resistant to rehabilitation. In line with previous reports, AWMT was also followed by gains on a measure of planning. The results provide encouraging evidence that AWMT may have generalized benefits in the context of impaired WM capacity following brain injury.
Barendse, Evelien M; Hendriks, Marc Ph; Jansen, Jacobus Fa; Backes, Walter H; Hofman, Paul Am; Thoonen, Geert; Kessels, Roy Pc; Aldenkamp, Albert P
2013-06-04
Working memory is a temporary storage system under attentional control. It is believed to play a central role in online processing of complex cognitive information and may also play a role in social cognition and interpersonal interactions. Adolescents with a disorder on the autism spectrum display problems in precisely these domains. Social impairments, communication difficulties, and repetitive interests and activities are core domains of autism spectrum disorders (ASD), and executive function problems are often seen throughout the spectrum. As the main cognitive theories of ASD, including the theory of mind deficit hypotheses, weak central coherence account, and the executive dysfunction theory, still fail to explain the broad spectrum of symptoms, a new perspective on the etiology of ASD is needed. Deficits in working memory are central to many theories of psychopathology, and are generally linked to frontal-lobe dysfunction. This article will review neuropsychological and (functional) brain imaging studies on working memory in adolescents with ASD. Although still disputed, it is concluded that within the working memory system specific problems of spatial working memory are often seen in adolescents with ASD. These problems increase when information is more complex and greater demands on working memory are made. Neuroimaging studies indicate a more global working memory processing or connectivity deficiency, rather than a focused deficit in the prefrontal cortex. More research is needed to relate these working memory difficulties and neuroimaging results in ASD to the behavioral difficulties as seen in individuals with a disorder on the autism spectrum.
Maroti, Daniel; Westerberg, Annika Fryxell; Saury, Jean-Michel; Bileviciute-Ljungar, Indre
2015-08-18
Patients with myalgic encephalomyelitis/chronic fatigue syndrome experience cognitive difficulties. The aim of this study was to evaluate the effect of computerized training on working memory in this syndrome. Non-randomized (quasi-experimental) study with no-treatment control group and non-equivalent dependent variable design in a myalgic encephalomyelitis/chronic fatigue syndrome-cohort. Patients with myalgic encephalomyelitis/chronic fatigue syndrome who participated in a 6-month outpatient rehabilitation programme were included in the study. Eleven patients who showed signs of working memory deficit were recruited for additional memory training and 12 patients with no working memory deficit served as controls. Cognitive training with computerized working memory tasks of increasing difficulty was performed 30-45 min/day, 5 days/week over a 5-week period. Short-term and working memory tests (Digit Span - forward, backward, total) were used as primary outcome measures. Nine of the 11 patients were able to complete the training. Cognitive training increased working memory (p = 0.003) and general attention (p = 0.004) to the mean level. Short-term memory was also improved, but the difference was not statistically significant (p = 0.052) vs prior training. The control group did not show any significant improvement in primary outcome measures. Cognitive training may be a new treatment for patients with myalgic encephalomyelitis/chronic fatigue syndrome.
Precision of working memory for visual motion sequences and transparent motion surfaces
Zokaei, Nahid; Gorgoraptis, Nikos; Bahrami, Bahador; Bays, Paul M; Husain, Masud
2012-01-01
Recent studies investigating working memory for location, colour and orientation support a dynamic resource model. We examined whether this might also apply to motion, using random dot kinematograms (RDKs) presented sequentially or simultaneously. Mean precision for motion direction declined as sequence length increased, with precision being lower for earlier RDKs. Two alternative models of working memory were compared specifically to distinguish between the contributions of different sources of error that corrupt memory (Zhang & Luck (2008) vs. Bays et al (2009)). The latter provided a significantly better fit for the data, revealing that decrease in memory precision for earlier items is explained by an increase in interference from other items in a sequence, rather than random guessing or a temporal decay of information. Misbinding feature attributes is an important source of error in working memory. Precision of memory for motion direction decreased when two RDKs were presented simultaneously as transparent surfaces, compared to sequential RDKs. However, precision was enhanced when one motion surface was prioritized, demonstrating that selective attention can improve recall precision. These results are consistent with a resource model that can be used as a general conceptual framework for understanding working memory across a range of visual features. PMID:22135378
Brydges, Christopher R; Ozolnieks, Krista L; Roberts, Gareth
2017-09-01
Attention deficit/hyperactivity disorder (ADHD) is a psychological condition characterized by inattention and hyperactivity. Cognitive deficits are commonly observed in ADHD patients, including impaired working memory, processing speed, and fluid intelligence, the three of which are theorized to be closely associated with one another. In this study, we aimed to determine if decreased fluid intelligence was associated with ADHD, and was mediated by deficits in working memory and processing speed. This study tested 142 young adults from the general population on a range of working memory, processing speed, and fluid intelligence tasks, and an ADHD self-report symptoms questionnaire. Results showed that total and hyperactive ADHD symptoms correlated significantly and negatively with fluid intelligence, but this association was fully mediated by working memory. However, inattentive symptoms were not associated with fluid intelligence. Additionally, processing speed was not associated with ADHD symptoms at all, and was not uniquely predictive of fluid intelligence. The results provide implications for working memory training programs for ADHD patients, and highlight potential differences between the neuropsychological profiles of ADHD subtypes. © 2015 The British Psychological Society.
Jarrold, Christopher; Tam, Helen; Baddeley, Alan D; Harvey, Caroline E
2011-05-01
Two studies that examine whether the forgetting caused by the processing demands of working memory tasks is domain-general or domain-specific are presented. In each, separate groups of adult participants were asked to carry out either verbal or nonverbal operations on exactly the same processing materials while maintaining verbal storage items. The imposition of verbal processing tended to produce greater forgetting even though verbal processing operations took no longer to complete than did nonverbal processing operations. However, nonverbal processing did cause forgetting relative to baseline control conditions, and evidence from the timing of individuals' processing responses suggests that individuals in both processing groups slowed their responses in order to "refresh" the memoranda. Taken together the data suggest that processing has a domain-general effect on working memory performance by impeding refreshment of memoranda but can also cause effects that appear domain-specific and that result from either blocking of rehearsal or interference.
Visual short-term memory always requires general attention.
Morey, Candice C; Bieler, Malte
2013-02-01
The role of attention in visual memory remains controversial; while some evidence has suggested that memory for binding between features demands no more attention than does memory for the same features, other evidence has indicated cognitive costs or mnemonic benefits for explicitly attending to bindings. We attempted to reconcile these findings by examining how memory for binding, for features, and for features during binding is affected by a concurrent attention-demanding task. We demonstrated that performing a concurrent task impairs memory for as few as two visual objects, regardless of whether each object includes one or more features. We argue that this pattern of results reflects an essential role for domain-general attention in visual memory, regardless of the simplicity of the to-be-remembered stimuli. We then discuss the implications of these findings for theories of visual working memory.
The composite complex span: French validation of a short working memory task.
Gonthier, Corentin; Thomassin, Noémylle; Roulin, Jean-Luc
2016-03-01
Most studies in individual differences in the field of working memory research use complex span tasks to measure working memory capacity. Various complex span tasks based on different materials have been developed, and these tasks have proven both reliable and valid; several complex span tasks are often combined to provide a domain-general estimate of working memory capacity with even better psychometric properties. The present work sought to address two issues. Firstly, having participants perform several full-length complex span tasks in succession makes for a long and tedious procedure. Secondly, few complex span tasks have been translated and validated in French. We constructed a French working memory task labeled the Composite Complex Span (CCS). The CCS includes shortened versions of three classic complex span tasks: the reading span, symmetry span, and operation span. We assessed the psychometric properties of the CCS, including test-retest reliability and convergent validity, with Raven's Advanced Progressive Matrices and with an alpha span task; the CCS demonstrated satisfying qualities in a sample of 1,093 participants. This work provides evidence that shorter versions of classic complex span tasks can yield valid working memory estimates. The materials and normative data for the CCS are also included.
Semantic and Syntactic Interference in Sentence Comprehension: A Comparison of Working Memory Models
Tan, Yingying; Martin, Randi C.; Van Dyke, Julie A.
2017-01-01
This study investigated the nature of the underlying working memory system supporting sentence processing through examining individual differences in sensitivity to retrieval interference effects during sentence comprehension. Interference effects occur when readers incorrectly retrieve sentence constituents which are similar to those required during integrative processes. We examined interference arising from a partial match between distracting constituents and syntactic and semantic cues, and related these interference effects to performance on working memory, short-term memory (STM), vocabulary, and executive function tasks. For online sentence comprehension, as measured by self-paced reading, the magnitude of individuals' syntactic interference effects was predicted by general WM capacity and the relation remained significant when partialling out vocabulary, indicating that the effects were not due to verbal knowledge. For offline sentence comprehension, as measured by responses to comprehension questions, both general WM capacity and vocabulary knowledge interacted with semantic interference for comprehension accuracy, suggesting that both general WM capacity and the quality of semantic representations played a role in determining how well interference was resolved offline. For comprehension question reaction times, a measure of semantic STM capacity interacted with semantic but not syntactic interference. However, a measure of phonological capacity (digit span) and a general measure of resistance to response interference (Stroop effect) did not predict individuals' interference resolution abilities in either online or offline sentence comprehension. The results are discussed in relation to the multiple capacities account of working memory (e.g., Martin and Romani, 1994; Martin and He, 2004), and the cue-based retrieval parsing approach (e.g., Lewis et al., 2006; Van Dyke et al., 2014). While neither approach was fully supported, a possible means of reconciling the two approaches and directions for future research are proposed. PMID:28261133
Computational principles of working memory in sentence comprehension.
Lewis, Richard L; Vasishth, Shravan; Van Dyke, Julie A
2006-10-01
Understanding a sentence requires a working memory of the partial products of comprehension, so that linguistic relations between temporally distal parts of the sentence can be rapidly computed. We describe an emerging theoretical framework for this working memory system that incorporates several independently motivated principles of memory: a sharply limited attentional focus, rapid retrieval of item (but not order) information subject to interference from similar items, and activation decay (forgetting over time). A computational model embodying these principles provides an explanation of the functional capacities and severe limitations of human processing, as well as accounts of reading times. The broad implication is that the detailed nature of cross-linguistic sentence processing emerges from the interaction of general principles of human memory with the specialized task of language comprehension.
Nelwan, Michel; Kroesbergen, Evelyn H
2016-01-01
The goal of this randomized controlled trial was to investigate whether Jungle Memory working memory training (JM) affects performance on working memory tasks, performance in mathematics and gains made on a mathematics training (MT) in school aged children between 9-12 years old ( N = 64) with both difficulties in mathematics, as well as attention and working memory. Children were randomly assigned to three groups and were trained in two periods: (1) JM first, followed by MT, (2) MT first, followed by JM, and (3) a control group that received MT only. Bayesian analyses showed possible short term effects of JM on near transfer measures of verbal working memory, but none on visual working memory. Furthermore, support was found for the hypothesis that children that received JM first, performed better after MT than children who did not follow JM first or did not train with JM at all. However, these effects could be explained at least partly by frequency of training effects, possibly due to motivational issues, and training-specific factors. Furthermore, it remains unclear whether the effects found on improving mathematics were actually mediated by gains in working memory. It is argued that JM might not train the components of working memory involved in mathematics sufficiently. Another possible explanation can be found in the training's lack of adaptivity, therefore failing to provide the children with tailored instruction and feedback. Finally, it was hypothesized that, since effect sizes are generally small, training effects are bound to a critical period in development.
Nelwan, Michel; Kroesbergen, Evelyn H.
2016-01-01
The goal of this randomized controlled trial was to investigate whether Jungle Memory working memory training (JM) affects performance on working memory tasks, performance in mathematics and gains made on a mathematics training (MT) in school aged children between 9–12 years old (N = 64) with both difficulties in mathematics, as well as attention and working memory. Children were randomly assigned to three groups and were trained in two periods: (1) JM first, followed by MT, (2) MT first, followed by JM, and (3) a control group that received MT only. Bayesian analyses showed possible short term effects of JM on near transfer measures of verbal working memory, but none on visual working memory. Furthermore, support was found for the hypothesis that children that received JM first, performed better after MT than children who did not follow JM first or did not train with JM at all. However, these effects could be explained at least partly by frequency of training effects, possibly due to motivational issues, and training-specific factors. Furthermore, it remains unclear whether the effects found on improving mathematics were actually mediated by gains in working memory. It is argued that JM might not train the components of working memory involved in mathematics sufficiently. Another possible explanation can be found in the training’s lack of adaptivity, therefore failing to provide the children with tailored instruction and feedback. Finally, it was hypothesized that, since effect sizes are generally small, training effects are bound to a critical period in development. PMID:27708595
Working Memory and Intelligence Are Highly Related Constructs, but Why?
ERIC Educational Resources Information Center
Colom, Roberto; Abad, Francisco J.; Quiroga, M. Angeles; Shih, Pei Chun; Flores-Mendoza, Carmen
2008-01-01
Working memory and the general factor of intelligence (g) are highly related constructs. However, we still don't know why. Some models support the central role of simple short-term storage, whereas others appeal to executive functions like the control of attention. Nevertheless, the available empirical evidence does not suffice to get an answer,…
ERIC Educational Resources Information Center
Stepankova, Hana; Lukavsky, Jiri; Buschkuehl, Martin; Kopecek, Miloslav; Ripova, Daniela; Jaeggi, Susanne M.
2014-01-01
There is accumulating evidence that training on working memory (WM) generalizes to other nontrained domains, and there are reports of transfer effects extending as far as to measures of fluid intelligence. Although there have been several demonstrations of such transfer effects in young adults and children, they have been difficult to demonstrate…
Individual Differences in the Fan Effect and Working Memory Capacity
ERIC Educational Resources Information Center
Bunting, M.F.; Conway, A.R.A.; Heitz, R.P.
2004-01-01
In opposition to conceptualizing working memory (WM) in terms of a general capacity, we present four experiments that favor the view that individual differences in WM depend on attentional control. High- and low-WM participants, as assessed by the operation span task, learned unrelated sentences for which the subject and predicate of the sentences…
ERIC Educational Resources Information Center
Kalish, Michael L.; Newell, Ben R.; Dunn, John C.
2017-01-01
It is sometimes supposed that category learning involves competing explicit and procedural systems, with only the former reliant on working memory capacity (WMC). In 2 experiments participants were trained for 3 blocks on both filtering (often said to be learned explicitly) and condensation (often said to be learned procedurally) category…
ERIC Educational Resources Information Center
Kane, Michael J.; Poole, Bradley J.; Tuholski, Stephen W.; Engle, Randall W.
2006-01-01
The executive attention theory of working memory capacity (WMC) proposes that measures of WMC broadly predict higher order cognitive abilities because they tap important and general attention capabilities (R. W. Engle & M. J. Kane, 2004). Previous research demonstrated WMC-related differences in attention tasks that required restraint of habitual…
The Effect of Non-Visual Working Memory Load on Top-Down Modulation of Visual Processing
ERIC Educational Resources Information Center
Rissman, Jesse; Gazzaley, Adam; D'Esposito, Mark
2009-01-01
While a core function of the working memory (WM) system is the active maintenance of behaviorally relevant sensory representations, it is also critical that distracting stimuli are appropriately ignored. We used functional magnetic resonance imaging to examine the role of domain-general WM resources in the top-down attentional modulation of…
A Steady State Visually Evoked Potential Investigation of Memory and Ageing
ERIC Educational Resources Information Center
Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard
2009-01-01
Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and…
McAuley, Tara; White, Desirée
2010-01-01
The present study addressed three related aims: (1) to replicate and extend previous work regarding the non-unitary nature of processing speed, response inhibition, and working memory during development, (2) to quantify the rate at which processing speed, response inhibition, and working memory develop and the extent to which the development of these latter abilities reflect general changes in processing speed, and (3) to evaluate whether commonly used tasks of processing speed, response inhibition, and working memory are valid and reliable when used with a developmentally diverse group. To address these aims, a latent variables approach was used to analyze data from 147 participants 6 to 24 years of age. Results showed that processing speed, response inhibition, and working memory were separable abilities and that the extent of this separability was stable cross the age range of participants. All three constructs improved as a function of age; however, only the effect of age on working memory remained significant after processing speed was controlled. The psychometric properties of tasks used to assess the constructs were age invariant, thus validating their use in studies of executive development. PMID:20888572
Effects of Working Memory Demand on Neural Mechanisms of Motor Response Selection and Control
Barber, Anita D.; Caffo, Brian S.; Pekar, James J.; Mostofsky, Stewart H.
2013-01-01
Inhibitory control commonly recruits a number of frontal regions: pre-supplementary motor area (pre-SMA), frontal eye fields (FEFs), and right-lateralized posterior inferior frontal gyrus (IFG), dorsal anterior insula (DAI), dorsolateral prefrontal cortex (DLPFC), and inferior frontal junction (IFJ). These regions may directly implement inhibitory motor control or may be more generally involved in executive control functions. Two go/no-go tasks were used to distinguish regions specifically recruited for inhibition from those that additionally show increased activity with working memory demand. The pre-SMA and IFG were recruited for inhibition in both tasks and did not have greater activation for working memory demand on no-go trials, consistent with a role in inhibitory control. Activation in pre-SMA also responded to response selection demand and was increased with working memory on go trials specifically. The bilateral FEF and right DAI were commonly active for no-go trials. The FEF was also recruited to a greater degree with working memory demand on go trials and may bias top–down information when stimulus–response mappings change. The DAI, additionally responded to increased working memory demand on both go and no-go trials and may be involved in accessing sustained task information, alerting, or autonomic changes when cognitive demands increase. DLPFC activation was consistent with a role in working memory retrieval on both go and no-go trials. The inferior frontal junction, on the other hand, had greater activation with working memory specifically for no-go trials and may detect salient stimuli when the task requires frequent updating of working memory representations. PMID:23530923
Working memory and language: skill-specific or domain-general relations to mathematics?
Purpura, David J; Ganley, Colleen M
2014-06-01
Children's early mathematics skills develop in a cumulative fashion; foundational skills form a basis for the acquisition of later skills. However, non-mathematical factors such as working memory and language skills have also been linked to mathematical development at a broad level. Unfortunately, little research has been conducted to evaluate the specific relations of these two non-mathematical factors to individual aspects of early mathematics. Thus, the focus of this study was to determine whether working memory and language were related to only individual aspects of early mathematics or related to many components of early mathematics skills. A total of 199 4- to 6-year-old preschool and kindergarten children were assessed on a battery of early mathematics tasks as well as measures of working memory and language. Results indicated that working memory has a specific relation to only a few-but critically important-early mathematics skills and language has a broad relation to nearly all early mathematics skills. Copyright © 2014 Elsevier Inc. All rights reserved.
Variability in visual working memory ability limits the efficiency of perceptual decision making.
Ester, Edward F; Ho, Tiffany C; Brown, Scott D; Serences, John T
2014-04-02
The ability to make rapid and accurate decisions based on limited sensory information is a critical component of visual cognition. Available evidence suggests that simple perceptual discriminations are based on the accumulation and integration of sensory evidence over time. However, the memory system(s) mediating this accumulation are unclear. One candidate system is working memory (WM), which enables the temporary maintenance of information in a readily accessible state. Here, we show that individual variability in WM capacity is strongly correlated with the speed of evidence accumulation in speeded two-alternative forced choice tasks. This relationship generalized across different decision-making tasks, and could not be easily explained by variability in general arousal or vigilance. Moreover, we show that performing a difficult discrimination task while maintaining a concurrent memory load has a deleterious effect on the latter, suggesting that WM storage and decision making are directly linked.
The relation between working memory components and ADHD symptoms from a developmental perspective.
Tillman, Carin; Eninger, Lilianne; Forssman, Linda; Bohlin, Gunilla
2011-01-01
The objective was to examine the relations between attention deficit hyperactivity disorder (ADHD) symptoms and four working memory (WM) components (short-term memory and central executive in verbal and visuospatial domains) in 284 6-16-year-old children from the general population. The results showed that verbal and visuospatial short-term memory and verbal central executive uniquely contributed to inattention symptoms. Age interacted with verbal short-term memory in predicting inattention, with the relation being stronger in older children. These findings support the notion of ADHD as a developmental disorder, with changes in associated neuropsychological deficits across time. The results further indicate ADHD-related deficits in several specific WM components.
Prehn, Kristin; Schulze, Lars; Rossmann, Sabine; Berger, Christoph; Vohs, Knut; Fleischer, Monika; Hauenstein, Karlheinz; Keiper, Peter; Domes, Gregor; Herpertz, Sabine C
2013-02-01
OBJECTIVE. In the present study, we aimed to investigate the influence of concurrently presented emotional stimuli on cognitive task processing in violent criminal offenders primarily characterized by affective instability. METHODS. Fifteen male criminal offenders with antisocial and borderline personality disorder (ASPD and BPD) and 17 healthy controls underwent functional magnetic resonance imaging (fMRI) while performing a working memory task with low and high working memory load. In a second experimental run, to investigate the interaction of emotion and cognition, we presented emotionally neutral, low, or high salient social scenes in the background of the task. RESULTS. During the memory task without pictures, both groups did not differ in general task performance and neural representation of working memory processes. During the memory task with emotional background pictures, however, ASPD-BPD subjects compared to healthy controls showed delayed responses and enhanced activation of the left amygdala in the presence of emotionally high salient pictures independent of working memory load. CONCLUSIONS. These results illustrate an interaction of emotion and cognition in affective instable individuals with enhanced reactivity to emotionally salient stimuli which might be an important factor regarding the understanding of aggressive and violent behaviour in these individuals.
Working memory deficits in adults with ADHD: is there evidence for subtype differences?
Schweitzer, Julie B; Hanford, Russell B; Medoff, Deborah R
2006-01-01
Background Working memory performance is important for maintaining functioning in cognitive, academic and social activities. Previous research suggests there are prevalent working memory deficits in children with attention deficit hyperactivity disorder (ADHD). There is now a growing body of literature characterizing working memory functioning according to ADHD subtypes in children. The expression of working memory deficits in adults with ADHD and how they vary according to subtype, however, remains to be more fully documented. Methods This study assessed differences in working memory functioning between Normal Control (NC) adults (N = 18); patients with ADHD, Combined (ADHD-CT) Type ADHD (N = 17); and ADHD, Inattentive (ADHD-IA) Type (N = 16) using subtests from the Wechsler Adult Intelligence Scale-III and Wechsler Memory Scale-III and the Paced Auditory Serial Addition Task (PASAT). Results The ADHD groups displayed significant weaknesses in contrast to the NC group on working memory tests requiring rapid processing and active stimulus manipulation. This included the Letter-Number-Sequencing test of the Wechsler scales, PASAT omission errors and the longest sequence of consecutive correct answers on the PASAT. No overall ADHD group subtype differences emerged; however differences between the ADHD groups and the NC group varied depending on the measure and the gender of the participants. Gender differences in performance were evident on some measures of working memory, regardless of group, with males performing better than females. Conclusion In general, the data support a dimensional interpretation of working memory deficits experienced by the ADHD-CT and ADHD-IA subtypes, rather than an absolute difference between subtypes. Future studies should test the effects of processing speed and load on subtype performance and how those variables interact with gender in adults with ADHD. PMID:17173676
Chein, Jason M; Morrison, Alexandra B
2010-04-01
In the present study, a novel working memory (WM) training paradigm was used to test the malleability of WM capacity and to determine the extent to which the benefits of this training could be transferred to other cognitive skills. Training involved verbal and spatial versions of a complex WM span task designed to emphasize simultaneous storage and processing requirements. Participants who completed 4 weeks of WM training demonstrated significant improvements on measures of temporary memory. These WM training benefits generalized to performance on the Stroop task and, in a novel finding, promoted significant increases in reading comprehension. The results are discussed in relation to the hypothesis that WM training affects domain-general attention control mechanisms and can thereby elicit far-reaching cognitive benefits. Implications include the use of WM training as a general tool for enhancing important cognitive skills.
Salis, Christos; Kelly, Helen; Code, Chris
2015-01-01
Aphasia following stroke refers to impairments that affect the comprehension and expression of spoken and/or written language, and co-occurring cognitive deficits are common. In this paper we focus on short-term and working memory impairments that impact on the ability to retain and manipulate auditory-verbal information. Evidence from diverse paradigms (large group studies, case studies) report close links between short-term/working memory and language functioning in aphasia. This evidence leads to the hypothesis that treating such memory impairments would improve language functioning. This link has only recently been acknowledged in aphasia treatment but has not been embraced widely by clinicians. To examine the association between language, and short-term and working memory impairments in aphasia. To describe practical ways of assessing short-term and working memory functioning that could be used in clinical practice. To discuss and critically appraise treatments of short-term and working memory reported in the literature. Taking a translational research approach, this paper provides clinicians with current evidence from the literature and practical information on how to assess and treat short-term and working memory impairments in people with aphasia. Published treatments of short-term and/or working memory in post-stroke aphasia are discussed through a narrative review. This paper provides the following. A theoretical rationale for adopting short-term and working memory treatments in aphasia. It highlights issues in differentially diagnosing between short-term, working memory disorders and other concomitant impairments, e.g. apraxia of speech. It describes short-term and working memory assessments with practical considerations for use with people with aphasia. It also offers a description of published treatments in terms of participants, treatments and outcomes. Finally, it critically appraises the current evidence base relating to the treatment of short-term and working memory treatments. The links between short-term/working memory functioning and language in aphasia are generally acknowledged. These strongly indicate the need to incorporate assessment of short-term/working memory functioning for people with aphasia. While the supportive evidence for treatment is growing and appears to highlight the benefits of including short-term/working memory in aphasia treatment, the quality of the evidence in its current state is poor. However, because of the clinical needs of people with aphasia and the prevalence of short-term/working memory impairments, incorporating related treatments through practice-based evidence is advocated. © 2015 Royal College of Speech and Language Therapists.
Hahn, Elizabeth A.; Lachman, Margie E.
2014-01-01
The present study examined the role of long-term working memory decline in the relationship between everyday experiences of memory problems and perceived control, and we also considered whether the use of accommodative strategies [selective optimization with compensation (SOC)] would be adaptive. The study included Boston-area participants (n=103) from the Midlife in the United States study (MIDUS) who completed two working memory assessments over ten years and weekly diaries following Time 2. In adjusted multi-level analyses, greater memory decline and lower general perceived control were associated with more everyday memory problems. Low perceived control reported in a weekly diary was associated with more everyday memory problems among those with greater memory decline and low SOC strategy use (Est.=−0.28, SE=0.13, p=.036). These results suggest that the use of SOC strategies in the context of declining memory may help to buffer the negative effects of low perceived control on everyday memory. PMID:24597768
Hahn, Elizabeth A; Lachman, Margie E
2015-01-01
The present study examined the role of long-term working memory decline in the relationship between everyday experiences of memory problems and perceived control, and we also considered whether the use of accommodative strategies [selective optimization with compensation (SOC)] would be adaptive. The study included Boston-area participants (n = 103) from the Midlife in the United States study (MIDUS) who completed two working memory assessments over 10 years and weekly diaries following Time 2. In adjusted multi-level analyses, greater memory decline and lower general perceived control were associated with more everyday memory problems. Low perceived control reported in a weekly diary was associated with more everyday memory problems among those with greater memory decline and low SOC strategy use (Est. = -0.28, SE= 0.13, p = .036). These results suggest that the use of SOC strategies in the context of declining memory may help to buffer the negative effects of low perceived control on everyday memory.
Precision of working memory for visual motion sequences and transparent motion surfaces.
Zokaei, Nahid; Gorgoraptis, Nikos; Bahrami, Bahador; Bays, Paul M; Husain, Masud
2011-12-01
Recent studies investigating working memory for location, color, and orientation support a dynamic resource model. We examined whether this might also apply to motion, using random dot kinematograms (RDKs) presented sequentially or simultaneously. Mean precision for motion direction declined as sequence length increased, with precision being lower for earlier RDKs. Two alternative models of working memory were compared specifically to distinguish between the contributions of different sources of error that corrupt memory (W. Zhang & S. J. Luck, 2008 vs. P. M. Bays, R. F. G. Catalao, & M. Husain, 2009). The latter provided a significantly better fit for the data, revealing that decrease in memory precision for earlier items is explained by an increase in interference from other items in a sequence rather than random guessing or a temporal decay of information. Misbinding feature attributes is an important source of error in working memory. Precision of memory for motion direction decreased when two RDKs were presented simultaneously as transparent surfaces, compared to sequential RDKs. However, precision was enhanced when one motion surface was prioritized, demonstrating that selective attention can improve recall precision. These results are consistent with a resource model that can be used as a general conceptual framework for understanding working memory across a range of visual features.
Validation of the human odor span task: effects of nicotine.
MacQueen, David A; Drobes, David J
2017-10-01
Amongst non-smokers, nicotine generally enhances performance on tasks of attention, with limited effect on working memory. In contrast, nicotine has been shown to produce robust enhancements of working memory in non-humans. To address this gap, the present study investigated the effects of nicotine on the performance of non-smokers on a cognitive battery which included a working memory task reverse-translated from use with rodents (the odor span task, OST). Nicotine has been reported to enhance OST performance in rats and the present study assessed whether this effect generalizes to human performance. Thirty non-smokers were tested on three occasions after consuming either placebo, 2 mg, or 4 mg nicotine gum. On each occasion, participants completed a battery of clinical and experimental tasks of working memory and attention. Nicotine was associated with dose-dependent enhancements in sustained attention, as evidenced by increased hit accuracy on the rapid visual information processing (RVIP) task. However, nicotine failed to produce main effects on OST performance or on alternative measures of working memory (digit span, spatial span, letter-number sequencing, 2-back) or attention (digits forward, 0-back). Interestingly, enhancement of RVIP performance occurred concomitant to significant reductions in self-reported attention/concentration. Human OST performance was significantly related to N-back performance, and as in rodents, OST accuracy declined with increasing memory load. Given the similarity of human and rodent OST performance under baseline conditions and the strong association between OST and visual 0-back accuracy, the OST may be particular useful in the study of conditions characterized by inattention.
Math anxiety differentially affects WAIS-IV arithmetic performance in undergraduates.
Buelow, Melissa T; Frakey, Laura L
2013-06-01
Previous research has shown that math anxiety can influence the math performance level; however, to date, it is unknown whether math anxiety influences performance on working memory tasks during neuropsychological evaluation. In the present study, 172 undergraduate students completed measures of math achievement (the Math Computation subtest from the Wide Range Achievement Test-IV), math anxiety (the Math Anxiety Rating Scale-Revised), general test anxiety (from the Adult Manifest Anxiety Scale-College version), and the three Working Memory Index tasks from the Wechsler Adult Intelligence Scale-IV Edition (WAIS-IV; Digit Span [DS], Arithmetic, Letter-Number Sequencing [LNS]). Results indicated that math anxiety predicted performance on Arithmetic, but not DS or LNS, above and beyond the effects of gender, general test anxiety, and math performance level. Our findings suggest that math anxiety can negatively influence WAIS-IV working memory subtest scores. Implications for clinical practice include the utilization of LNS in individuals expressing high math anxiety.
Effects of Transcranial Direct Current Stimulation (tDCS) on Human Memory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzen, Laura E.; Trumbo, Michael Christopher Stefan
Training a person in a new knowledge base or skill set is extremely time consuming and costly, particularly in highly specialized domains such as the military and the intelligence community. Recent research in cognitive neuroscience has suggested that a technique called transcranial direct current stimulation (tDCS) has the potential to revolutionize training by enabling learners to acquire new skills faster, more efficiently, and more robustly (Bullard et al., 2011). In this project, we tested the effects of tDCS on two types of memory performance that are critical for learning new skills: associative memory and working memory. Associative memory is memorymore » for the relationship between two items or events. It forms the foundation of all episodic memories, so enhancing associative memory could provide substantial benefits to the speed and robustness of learning new information. We tested the effects of tDCS on associative memory, using a real-world associative memory task: remembering the links between faces and names. Working memory refers to the amount of information that can be held in mind and processed at one time, and it forms the basis for all higher-level cognitive processing. We investigated the degree of transfer between various working memory tasks (the N-back task as a measure of verbal working memory, the rotation-span task as a measure of visuospatial working memory, and Raven's progressive matrices as a measure of fluid intelligence) in order to determine if tDCS-induced facilitation of performance is task-specific or general.« less
Gold, James M; Robinson, Benjamin; Leonard, Carly J; Hahn, Britta; Chen, Shuo; McMahon, Robert P; Luck, Steven J
2017-11-11
People with schizophrenia demonstrate impairments in selective attention, working memory, and executive function. Given the overlap in these constructs, it is unclear if these represent distinct impairments or different manifestations of one higher-order impairment. To examine this question, we administered tasks from the basic cognitive neuroscience literature to measure visual selective attention, working memory capacity, and executive function in 126 people with schizophrenia and 122 healthy volunteers. Patients demonstrated deficits on all tasks with the exception of selective attention guided by strong bottom-up inputs. Although the measures of top-down control of selective attention, working memory, and executive function were all intercorrelated, several sources of evidence indicate that working memory and executive function are separate sources of variance. Specifically, both working memory and executive function independently contributed to the discrimination of group status and independently accounted for variance in overall general cognitive ability as assessed by the MATRICS battery. These two cognitive functions appear to be separable features of the cognitive impairments observed in schizophrenia. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Banich, Marie T.; Mackiewicz, Kristen L.; Depue, Brendan E.; Whitmer, Anson; Miller, Gregory A.; Heller, Wendy
2009-01-01
In this paper we provide a focused review of the literature examining neural mechanisms involved in cognitive control over memory processes that can influence, and in turn are influenced, by emotional processes. The review is divided into two parts, the first focusing on working memory and the second on long-term memory. With regard to working memory, we discuss the neural bases of 1) control mechanisms that can select against distracting emotional information, 2) mechanisms that can regulate emotional reactions or responses, 3) how mood state influences cognitive control, and 4) individual differences in control mechanisms. For long-term memory, we briefly review 1) the neural substrates of emotional memory, 2) the cognitive and neural mechanisms that are involved in controlling emotional memories and 3) how these systems are altered in post-traumatic stress disorder. Finally, we consider tentative generalizations that can be drawn from this relatively unexplored conjunction of research endeavors. PMID:18948135
What People Believe about How Memory Works: A Representative Survey of the U.S. Population
Simons, Daniel J.; Chabris, Christopher F.
2011-01-01
Incorrect beliefs about the properties of memory have broad implications: The media conflate normal forgetting and inadvertent memory distortion with intentional deceit, juries issue verdicts based on flawed intuitions about the accuracy and confidence of testimony, and students misunderstand the role of memory in learning. We conducted a large representative telephone survey of the U.S. population to assess common beliefs about the properties of memory. Substantial numbers of respondents agreed with propositions that conflict with expert consensus: Amnesia results in the inability to remember one's own identity (83% of respondents agreed), unexpected objects generally grab attention (78%), memory works like a video camera (63%), memory can be enhanced through hypnosis (55%), memory is permanent (48%), and the testimony of a single confident eyewitness should be enough to convict a criminal defendant (37%). This discrepancy between popular belief and scientific consensus has implications from the classroom to the courtroom. PMID:21826204
ERIC Educational Resources Information Center
Gullick, Margaret M.; Sprute, Lisa A.; Temple, Elise
2011-01-01
Individual differences in mathematics performance may stem from domain-general factors like working memory and intelligence. Parietal and frontal brain areas have been implicated in number processing, but the influence of such cognitive factors on brain activity during mathematics processing is not known. The relationship between brain mechanisms…
Verbal Short-term Memory in Down's Syndrome: An Articulatory Loop Deficit?
ERIC Educational Resources Information Center
Vicari, S.; Marotta, L.; Carlesimo, G. A.
2004-01-01
Verbal short-term memory, as measured by digit or word span, is generally impaired in individuals with Down's syndrome (DS) compared to mental age-matched controls. Moving from the working memory model, the present authors investigated the hypothesis that impairment in some of the articulatory loop sub-components is at the base of the deficient…
A general purpose subroutine for fast fourier transform on a distributed memory parallel machine
NASA Technical Reports Server (NTRS)
Dubey, A.; Zubair, M.; Grosch, C. E.
1992-01-01
One issue which is central in developing a general purpose Fast Fourier Transform (FFT) subroutine on a distributed memory parallel machine is the data distribution. It is possible that different users would like to use the FFT routine with different data distributions. Thus, there is a need to design FFT schemes on distributed memory parallel machines which can support a variety of data distributions. An FFT implementation on a distributed memory parallel machine which works for a number of data distributions commonly encountered in scientific applications is presented. The problem of rearranging the data after computing the FFT is also addressed. The performance of the implementation on a distributed memory parallel machine Intel iPSC/860 is evaluated.
Swanson, H Lee; Luxenberg, Diana
2009-05-01
The study explored the contribution of two component processes (phonological and executive) to blind children's memory performance. Children with blindness and sight were matched on gender, chronological age, and verbal intelligence and compared on measures of short-term memory (STM) and working memory (WM). Although the measures were highly correlated, the results from two experiments indicated that the blind children were superior to sighted children on measures of STM, but not on measures of WM. The results supported the notion that children with blindness have advantages on memory tasks that draw upon resources from the phonological loop. However, comparable performance between the ability groups on WM measures suggests there are domain specific aspects in the executive system.
Multithreaded implicitly dealiased convolutions
NASA Astrophysics Data System (ADS)
Roberts, Malcolm; Bowman, John C.
2018-03-01
Implicit dealiasing is a method for computing in-place linear convolutions via fast Fourier transforms that decouples work memory from input data. It offers easier memory management and, for long one-dimensional input sequences, greater efficiency than conventional zero-padding. Furthermore, for convolutions of multidimensional data, the segregation of data and work buffers can be exploited to reduce memory usage and execution time significantly. This is accomplished by processing and discarding data as it is generated, allowing work memory to be reused, for greater data locality and performance. A multithreaded implementation of implicit dealiasing that accepts an arbitrary number of input and output vectors and a general multiplication operator is presented, along with an improved one-dimensional Hermitian convolution that avoids the loop dependency inherent in previous work. An alternate data format that can accommodate a Nyquist mode and enhance cache efficiency is also proposed.
Explicit processing demands reveal language modality-specific organization of working memory.
Rudner, Mary; Rönnberg, Jerker
2008-01-01
The working memory model for Ease of Language Understanding (ELU) predicts that processing differences between language modalities emerge when cognitive demands are explicit. This prediction was tested in three working memory experiments with participants who were Deaf Signers (DS), Hearing Signers (HS), or Hearing Nonsigners (HN). Easily nameable pictures were used as stimuli to avoid confounds relating to sensory modality. Performance was largely similar for DS, HS, and HN, suggesting that previously identified intermodal differences may be due to differences in retention of sensory information. When explicit processing demands were high, differences emerged between DS and HN, suggesting that although working memory storage in both groups is sensitive to temporal organization, retrieval is not sensitive to temporal organization in DS. A general effect of semantic similarity was also found. These findings are discussed in relation to the ELU model.
Grunewaldt, Kristine Hermansen; Skranes, Jon; Brubakk, Ann-Mari; Lähaugen, Gro C C
2016-02-01
Working memory deficits are frequently found in children born preterm and have been linked to learning disabilities, and cognitive and behavioural problems. Our aim was to evaluate if a computerized working memory training program has long-term positive effects on memory, learning, and behaviour in very-low-birthweight (VLBW) children at age 5 to 6 years. This prospective, intervention study included 20 VLBW preschool children in the intervention group and 17 age-matched, non-training VLBW children in the comparison group. The intervention group trained with the Cogmed JM working memory training program daily for 5 weeks (25 training sessions). Extensive neuropsychological assessment and parental questionnaires were performed 4 weeks after intervention and at follow-up 7 months later. For most of the statistical analyses, general linear models were applied. At follow-up, higher scores and increased or equal performance gain were found in the intervention group than the comparison group on memory for faces (p=0.012), narrative memory (p=0.002), and spatial span (p=0.003). No group differences in performance gain were found for attention and behaviour. Computerized working memory training seems to have positive and persisting effects on working memory, and visual and verbal learning, at 7-month follow-up in VLBW preschool children. We speculate that such training is beneficial by improving the ability to learn from the teaching at school and for further cognitive development. © 2015 Mac Keith Press.
Implications of Research on Human Memory for CALL Design.
ERIC Educational Resources Information Center
Forester, Lee
2002-01-01
Offers a brief overview of what is generally accepted about how human memory works as it applied to computer assisted language learning (CALL). Discusses a number of interactions from various CALL products in light of the research summarized. (Author/VWL)
Sharp wave/ripple network oscillations and learning-associated hippocampal maps.
Csicsvari, Jozsef; Dupret, David
2014-02-05
Sharp wave/ripple (SWR, 150-250 Hz) hippocampal events have long been postulated to be involved in memory consolidation. However, more recent work has investigated SWRs that occur during active waking behaviour: findings that suggest that SWRs may also play a role in cell assembly strengthening or spatial working memory. Do such theories of SWR function apply to animal learning? This review discusses how general theories linking SWRs to memory-related function may explain circuit mechanisms related to rodent spatial learning and to the associated stabilization of new cognitive maps.
Mesbah-Oskui, Lia; Georgiou, John; Roder, John C
2015-01-01
Background: Despite the prevalence of working memory deficits in schizophrenia, the neuronal mechanisms mediating these deficits are not fully understood. Importantly, deficits in spatial working memory are identified in numerous mouse models that exhibit schizophrenia-like endophenotypes. The hippocampus is one of the major brain regions that actively encodes spatial location, possessing pyramidal neurons, commonly referred to as ‘place cells’, that fire in a location-specific manner. This study tests the hypothesis that mice with a schizophrenia-like endophenotype exhibit impaired encoding of spatial location in the hippocampus. Aims: To characterize hippocampal place cell activity in mice that exhibit a schizophrenia-like endophenotype. Methods: We recorded CA1 place cell activity in six control mice and six mice that carry a point mutation in the disrupted-in-schizophrenia-1 gene (Disc1-L100P) and have previously been shown to exhibit deficits in spatial working memory. Results: The spatial specificity and stability of Disc1-L100P place cells were similar to wild-type place cells. Importantly, however, Disc1-L100P place cells exhibited a higher propensity to increase their firing rate in a single, large location of the environment, rather than multiple smaller locations, indicating a generalization in their spatial selectivity. Alterations in the signaling and numbers of CA1 putative inhibitory interneurons and decreased hippocampal theta (5–12 Hz) power were also identified in the Disc1-L100P mice. Conclusions: The generalized spatial selectivity of Disc1-L100P place cells suggests a simplification of the ensemble place codes that encode individual locations and subserve spatial working memory. Moreover, these results suggest that deficient working memory in schizophrenia results from an impaired ability to uniquely code the individual components of a memory sequence. PMID:27280123
First-Grade Predictors of Mathematical Learning Disability: A Latent Class Trajectory Analysis
Geary, David C.; Bailey, Drew H.; Littlefield, Andrew; Wood, Phillip; Hoard, Mary K.; Nugent, Lara
2009-01-01
Kindergarten to 3rd grade mathematics achievement scores from a prospective study of mathematical development were subjected to latent growth trajectory analyses (n = 306). The four corresponding classes included children with mathematical learning disability (MLD, 6% of sample), and low (LA, 50%), typically (TA, 39%) and high (HA, 5%) achieving children. The groups were administered a battery of intelligence (IQ), working memory, and mathematical-cognition measures in 1st grade. The children with MLD had general deficits in working memory and IQ, and potentially more specific deficits on measures of number sense. The LA children did not have working memory or IQ deficits, but showed moderate deficits on these number sense measures and for addition fact retrieval. The distinguishing features of the HA children were a strong visuospatial working memory, a strong number sense, and frequent use of memory-based processes to solve addition problems. Implications for the early identification of children at risk for poor mathematics achievement are discussed. PMID:20046817
ERIC Educational Resources Information Center
Bosman, Anna M. T.; Janssen, Marije
2017-01-01
In the Netherlands, Turkish-Dutch children constitute a substantial group of children who learn to speak Dutch at the age of four after they learned to speak Turkish. These children are generally academically less successful. Academic success appears to be affected by both language proficiency and working memory skill. The goal of this study was…
ERIC Educational Resources Information Center
Unsworth, Nash; Engle, Randall W.
2006-01-01
Complex (working memory) span tasks have generally shown larger and more consistent correlations with higher-order cognition than have simple (or short-term memory) span tasks. The relation between verbal complex and simple verbal span tasks to fluid abilities as a function of list-length was examined. The results suggest that the simple…
Working memory and decision processes in visual area v4.
Hayden, Benjamin Y; Gallant, Jack L
2013-01-01
Recognizing and responding to a remembered stimulus requires the coordination of perception, working memory, and decision-making. To investigate the role of visual cortex in these processes, we recorded responses of single V4 neurons during performance of a delayed match-to-sample task that incorporates rapid serial visual presentation of natural images. We found that neuronal activity during the delay period after the cue but before the images depends on the identity of the remembered image and that this change persists while distractors appear. This persistent response modulation has been identified as a diagnostic criterion for putative working memory signals; our data thus suggest that working memory may involve reactivation of sensory neurons. When the remembered image reappears in the neuron's receptive field, visually evoked responses are enhanced; this match enhancement is a diagnostic criterion for decision. One model that predicts these data is the matched filter hypothesis, which holds that during search V4 neurons change their tuning so as to match the remembered cue, and thus become detectors for that image. More generally, these results suggest that V4 neurons participate in the perceptual, working memory, and decision processes that are needed to perform memory-guided decision-making.
Nguyen, Tuong-Vi; Wu, Mia; Lew, Jimin; Albaugh, Matthew D; Botteron, Kelly N; Hudziak, James J; Fonov, Vladimir S; Collins, D Louis; Campbell, Benjamin C; Booij, Linda; Herba, Catherine; Monnier, Patricia; Ducharme, Simon; McCracken, James T
2017-12-01
Existing studies suggest that dehydroepiandrosterone (DHEA) may be important for human brain development and cognition. For example, molecular studies have hinted at the critical role of DHEA in enhancing brain plasticity. Studies of human brain development also support the notion that DHEA is involved in preserving cortical plasticity. Further, some, though not all, studies show that DHEA administration may lead to improvements in working memory in adults. Yet these findings remain limited by an incomplete understanding of the specific neuroanatomical mechanisms through which DHEA may impact the CNS during development. Here we examined associations between DHEA, cortico-hippocampal structural covariance, and working memory (216 participants [female=123], age range 6-22 years old, mean age: 13.6 +/-3.6 years, each followed for a maximum of 3 visits over the course of 4 years). In addition to administering performance-based, spatial working memory tests to these children, we also collected ecological, parent ratings of working memory in everyday situations. We found that increasingly higher DHEA levels were associated with a shift toward positive insular-hippocampal and occipito-hippocampal structural covariance. In turn, DHEA-related insular-hippocampal covariance was associated with lower spatial working memory but higher overall working memory as measured by the ecological parent ratings. Taken together with previous research, these results support the hypothesis that DHEA may optimize cortical functions related to general attentional and working memory processes, but impair the development of bottom-up, hippocampal-to-cortical connections, resulting in impaired encoding of spatial cues. Copyright © 2017 Elsevier Ltd. All rights reserved.
Age-Related Differences in Working Memory Performance in A 2-Back Task
Wild-Wall, Nele; Falkenstein, Michael; Gajewski, Patrick D.
2011-01-01
The present study aimed to elucidate the neuro-cognitive processes underlying age-related differences in working memory. Young and middle-aged participants performed a two-choice task with low and a 2-back task with high working memory load. The P300, an event-related potential reflecting controlled stimulus–response processing in working memory, and the underlying neuronal sources of expected age-related differences were analyzed using sLORETA. Response speed was generally slower for the middle-aged than the young group. Under low working memory load the middle-aged participants traded speed for accuracy. The middle-aged were less efficient in the 2-back task as they responded slower while the error rates did not differ for groups. An age-related decline of the P300 amplitude and characteristic topographical differences were especially evident in the 2-back task. A more detailed analysis of the P300 in non-target trials revealed that amplitudes in the young but not middle-aged group differentiate between correctly detected vs. missed targets in the following trial. For these trials, source analysis revealed higher activation for the young vs. middle-aged group in brain areas which support working memory processes. The relationship between P300 and overt performance was validated by significant correlations. To sum up, under high working memory load the young group showed an increased neuronal activity before a successful detected target, while the middle-aged group showed the same neuronal pattern regardless of whether a subsequent target will be detected or missed. This stable memory trace before detected targets was reflected by a specific activation enhancement in brain areas which orchestrate maintenance, update, storage, and retrieval of information in working memory. PMID:21909328
Domain-Specific Control of Selective Attention
Lin, Szu-Hung; Yeh, Yei-Yu
2014-01-01
Previous research has shown that loading information on working memory affects selective attention. However, whether the load effect on selective attention is domain-general or domain-specific remains unresolved. The domain-general effect refers to the findings that load in one content (e.g. phonological) domain in working memory influences processing in another content (e.g., visuospatial) domain. Attentional control supervises selection regardless of information domain. The domain-specific effect refers to the constraint of influence only when maintenance and processing operate in the same domain. Selective attention operates in a specific content domain. This study is designed to resolve this controversy. Across three experiments, we manipulated the type of representation maintained in working memory and the type of representation upon which the participants must exert control to resolve conflict and select a target into the focus of attention. In Experiments 1a and 1b, participants maintained digits and nonverbalized objects, respectively, in working memory while selecting a target in a letter array. In Experiment 2, we presented auditory digits with a letter flanker task to exclude the involvement of resource competition within the same input modality. In Experiments 3a and 3b, we replaced the letter flanker task with an object flanker task while manipulating the memory load on object and digit representation, respectively. The results consistently showed that memory load modulated distractibility only when the stimuli of the two tasks were represented in the same domain. The magnitude of distractor interference was larger under high load than under low load, reflecting a lower efficacy of information prioritization. When the stimuli of the two tasks were represented in different domains, memory load did not modulate distractibility. Control of processing priority in selective attention demands domain-specific resources. PMID:24866977
Lange, Nicholas D; Buttaccio, Daniel R; Davelaar, Eddy J; Thomas, Rick P
2014-02-01
Research investigating top-down capture has demonstrated a coupling of working memory content with attention and eye movements. By capitalizing on this relationship, we have developed a novel methodology, called the memory activation capture (MAC) procedure, for measuring the dynamics of working memory content supporting complex cognitive tasks (e.g., decision making, problem solving). The MAC procedure employs briefly presented visual arrays containing task-relevant information at critical points in a task. By observing which items are preferentially fixated, we gain a measure of working memory content as the task evolves through time. The efficacy of the MAC procedure was demonstrated in a dynamic hypothesis generation task in which some of its advantages over existing methods for measuring changes in the contents of working memory over time are highlighted. In two experiments, the MAC procedure was able to detect the hypothesis that was retrieved and placed into working memory. Moreover, the results from Experiment 2 suggest a two-stage process following hypothesis retrieval, whereby the hypothesis undergoes a brief period of heightened activation before entering a lower activation state in which it is maintained for output. The results of both experiments are of additional general interest, as they represent the first demonstrations of top-down capture driven by participant-established WM content retrieved from long-term memory.
Working memory capacity and redundant information processing efficiency.
Endres, Michael J; Houpt, Joseph W; Donkin, Chris; Finn, Peter R
2015-01-01
Working memory capacity (WMC) is typically measured by the amount of task-relevant information an individual can keep in mind while resisting distraction or interference from task-irrelevant information. The current research investigated the extent to which differences in WMC were associated with performance on a novel redundant memory probes (RMP) task that systematically varied the amount of to-be-remembered (targets) and to-be-ignored (distractor) information. The RMP task was designed to both facilitate and inhibit working memory search processes, as evidenced by differences in accuracy, response time, and Linear Ballistic Accumulator (LBA) model estimates of information processing efficiency. Participants (N = 170) completed standard intelligence tests and dual-span WMC tasks, along with the RMP task. As expected, accuracy, response-time, and LBA model results indicated memory search and retrieval processes were facilitated under redundant-target conditions, but also inhibited under mixed target/distractor and redundant-distractor conditions. Repeated measures analyses also indicated that, while individuals classified as high (n = 85) and low (n = 85) WMC did not differ in the magnitude of redundancy effects, groups did differ in the efficiency of memory search and retrieval processes overall. Results suggest that redundant information reliably facilitates and inhibits the efficiency or speed of working memory search, and these effects are independent of more general limits and individual differences in the capacity or space of working memory.
Benefits from retrieval practice are greater for students with lower working memory capacity.
Agarwal, Pooja K; Finley, Jason R; Rose, Nathan S; Roediger, Henry L
2017-07-01
We examined the effects of retrieval practice for students who varied in working memory capacity as a function of the lag between study of material and its initial test, whether or not feedback was given after the test, and the retention interval of the final test. We sought to determine whether a blend of these conditions exists that maximises benefits from retrieval practice for lower and higher working memory capacity students. College students learned general knowledge facts and then restudied the facts or were tested on them (with or without feedback) at lags of 0-9 intervening items. Final cued recall performance was better for tested items than for restudied items after both 10 minutes and 2 days, particularly for longer study-test lags. Furthermore, on the 2-day delayed test the benefits from retrieval practice with feedback were significantly greater for students with lower working memory capacity than for students with higher working memory capacity (r = -.42). Retrieval practice may be an especially effective learning strategy for lower ability students.
Theory of mind and verbal working memory deficits in parents of autistic children.
Gokcen, Sezen; Bora, Emre; Erermis, Serpil; Kesikci, Hande; Aydin, Cahide
2009-03-31
The objective of this study was to investigate the potential values of executive function and social cognition deficits as endophenotypes of autism. While theory of mind (ToM) is generally accepted as a unitary concept, some have suggested that ToM may be separated into two components (mental state reasoning and decoding). In this study, both aspects of ToM and verbal working memory abilities were investigated with relatively demanding tasks. The authors used a neurocognitive battery to compare the executive function and social cognition skills of 76 parents of autistic probands with 41 parents of healthy children. Both groups were matched for IQ, age and gender. Index parents had verbal working memory deficits. They had also low performance on a mental state reasoning task. Index parents had difficulties in reasoning about others' emotions. In contrast to findings in the control group, low performance of mental state reasoning ability was not associated with working memory deficit in index parents. Social cognition and working memory impairments may represent potential endophenotypes, related to an underlying vulnerability for autistic spectrum disorders.
Bays, Rebecca B; Zabrucky, Karen M; Gagne, Phill
2012-01-01
In the current study we examined whether prevalence information and imagery encoding influence participants' general plausibility, personal plausibility, belief, and memory ratings for suggested childhood events. Results showed decreases in general and personal plausibility ratings for low prevalence events when encoding instructions were not elaborate; however, instructions to repeatedly imagine suggested events elicited personal plausibility increases for low-prevalence events, evidence that elaborate imagery negated the effect of our prevalence manipulation. We found no evidence of imagination inflation or false memory construction. We discuss critical differences in researchers' manipulations of plausibility and imagery that may influence results of false memory studies in the literature. In future research investigators should focus on the specific nature of encoding instructions when examining the development of false memories.
Fuchs, Lynn S.; Geary, David C.; Fuchs, Douglas; Compton, Donald L.; Hamlett, Carol L.
2015-01-01
Children (n=747; 6.5 years) were assessed on domain-general processes and mathematics and reading-related competencies (start of 1st grade); addition retrieval (end of 2nd grade); and calculations and word reading (end of 3rd grade). Attentive behavior, reasoning, visuospatial memory, and rapid automatized naming (RAN) indirectly contributed to both outcomes, via retrieval. However, there was no overlap in domain-general direct effects on calculations (attentive behavior, reasoning, working memory) versus word reading (language, phonological memory, RAN). Results suggest ease of forming associative relations and abilities engaged during the formation of these long-term memories are common to both outcomes and can be indexed by addition fact retrieval, but further growth in calculations and word reading is driven by different constellations of domain-general abilities. PMID:26700885
An Ideal Observer Analysis of Visual Working Memory
Sims, Chris R.; Jacobs, Robert A.; Knill, David C.
2013-01-01
Limits in visual working memory (VWM) strongly constrain human performance across many tasks. However, the nature of these limits is not well understood. In this paper we develop an ideal observer analysis of human visual working memory, by deriving the expected behavior of an optimally performing, but limited-capacity memory system. This analysis is framed around rate–distortion theory, a branch of information theory that provides optimal bounds on the accuracy of information transmission subject to a fixed information capacity. The result of the ideal observer analysis is a theoretical framework that provides a task-independent and quantitative definition of visual memory capacity and yields novel predictions regarding human performance. These predictions are subsequently evaluated and confirmed in two empirical studies. Further, the framework is general enough to allow the specification and testing of alternative models of visual memory (for example, how capacity is distributed across multiple items). We demonstrate that a simple model developed on the basis of the ideal observer analysis—one which allows variability in the number of stored memory representations, but does not assume the presence of a fixed item limit—provides an excellent account of the empirical data, and further offers a principled re-interpretation of existing models of visual working memory. PMID:22946744
Gong, Pingyuan; Zheng, Anyun; Chen, Dongmei; Ge, Wanhua; Lv, Changchao; Zhang, Kejin; Gao, Xiaocai; Zhang, Fuchang
2009-07-01
Cognitive abilities are complex human traits influenced by genetic factors. Brain-derived neurotrophic factor (BDNF), a unique polypeptide growth factor, has an influence on the differentiation and survival of neurons in the nervous system. A single-nucleotide polymorphism (rs6265) in the human gene, resulting in a valine to methionine substitution in the pro-BDNF protein, was thought to associate with psychiatric disorders and might play roles in the individual difference of cognitive abilities. However, the specific roles of the gene in cognition remain unclear. To investigate the relationships between the substitution and cognitive abilities, a healthy population-based study and the PCR-SSCP method were performed. The results showed the substitution was associated with digital working memory (p = 0.02) and spatial localization (p = 0.03), but not with inhibition, shifting, updating, visuo-spatial working memory, long-term memory, and others (p > 0.05) among the compared genotype groups analyzed by general linear model. On the other hand, the participants with BDNF (GG) had higher average performance in digital working memory and spatial localization than the ones with BDNF (AA). The findings of the present work implied that the variation in BDNF might play positive roles in human digital working memory and spatial localization.
Brandenburg, Janin; Klesczewski, Julia; Fischbach, Anne; Schuchardt, Kirsten; Büttner, Gerhard; Hasselhorn, Marcus
2015-01-01
In transparent orthographies like German, isolated learning disabilities in either reading or spelling are common and occur as often as a combined reading and spelling disability. However, most issues surrounding the cognitive causes of these isolated or combined literacy difficulties are yet unresolved. Recently, working memory dysfunctions have been demonstrated to be promising in explaining the emergence of literacy difficulties. Thus, we applied a 2 (reading disability: yes vs. no) × 2 (spelling disability: yes vs. no) factorial design to examine distinct and overlapping working memory profiles associated with learning disabilities in reading versus spelling. Working memory was assessed in 204 third graders, and multivariate analyses of variance were conducted for each working memory component. Children with spelling disability suffered from more pronounced phonological loop impairments than those with reading disability. In contrast, domain-general central-executive dysfunctions were solely associated with reading disability, but not with spelling disability. Concerning the visuospatial sketchpad, no impairments were found. In sum, children with reading disability and those with spelling disability seem to be characterized by different working memory profiles. Thus, it is important to take both reading and spelling into account when investigating cognitive factors of literacy difficulties in transparent orthographies. © Hammill Institute on Disabilities 2014.
The fate of memory: Reconsolidation and the case of Prediction Error.
Fernández, Rodrigo S; Boccia, Mariano M; Pedreira, María E
2016-09-01
The ability to make predictions based on stored information is a general coding strategy. A Prediction-Error (PE) is a mismatch between expected and current events. It was proposed as the process by which memories are acquired. But, our memories like ourselves are subject to change. Thus, an acquired memory can become active and update its content or strength by a labilization-reconsolidation process. Within the reconsolidation framework, PE drives the updating of consolidated memories. Moreover, memory features, such as strength and age, are crucial boundary conditions that limit the initiation of the reconsolidation process. In order to disentangle these boundary conditions, we review the role of surprise, classical models of conditioning, and their neural correlates. Several forms of PE were found to be capable of inducing memory labilization-reconsolidation. Notably, many of the PE findings mirror those of memory-reconsolidation, suggesting a strong link between these signals and memory process. Altogether, the aim of the present work is to integrate a psychological and neuroscientific analysis of PE into a general framework for memory-reconsolidation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Selective attention, working memory, and animal intelligence.
Matzel, Louis D; Kolata, Stefan
2010-01-01
Accumulating evidence indicates that the storage and processing capabilities of the human working memory system co-vary with individuals' performance on a wide range of cognitive tasks. The ubiquitous nature of this relationship suggests that variations in these processes may underlie individual differences in intelligence. Here we briefly review relevant data which supports this view. Furthermore, we emphasize an emerging literature describing a trait in genetically heterogeneous mice that is quantitatively and qualitatively analogous to general intelligence (g) in humans. As in humans, this animal analog of g co-varies with individual differences in both storage and processing components of the working memory system. Absent some of the complications associated with work with human subjects (e.g., phonological processing), this work with laboratory animals has provided an opportunity to assess otherwise intractable hypotheses. For instance, it has been possible in animals to manipulate individual aspects of the working memory system (e.g., selective attention), and to observe causal relationships between these variables and the expression of general cognitive abilities. This work with laboratory animals has coincided with human imaging studies (briefly reviewed here) which suggest that common brain structures (e.g., prefrontal cortex) mediate the efficacy of selective attention and the performance of individuals on intelligence test batteries. In total, this evidence suggests an evolutionary conservation of the processes that co-vary with and/or regulate "intelligence" and provides a framework for promoting these abilities in both young and old animals.
Selective Attention, Working Memory, and Animal Intelligence
Matzel, Louis D.; Kolata, Stefan
2009-01-01
Accumulating evidence indicates that the storage and processing capabilities of the human working memory system co-vary with individuals’ performance on a wide range of cognitive tasks. The ubiquitous nature of this relationship suggests that variations in these processes may underlie individual differences in intelligence. Here we briefly review relevant data which supports this view. Furthermore, we emphasize an emerging literature describing a trait in genetically heterogeneous mice that is quantitatively and qualitatively analogous to general intelligence (g) in humans. As in humans, this animal analog of g co-varies with individual differences in both storage and processing components of the working memory system. Absent some of the complications associated with work with human subjects (e.g., phonological processing), this work with laboratory animals has provided an opportunity to assess otherwise intractable hypotheses. For instance, it has been possible in animals to manipulate individual aspects of the working memory system (e.g., selective attention), and to observe causal relationships between these variables and the expression of general cognitive abilities. This work with laboratory animals has coincided with human imaging studies (briefly reviewed here) which suggest that common brain structures (e.g., prefrontal cortex) mediate the efficacy of selective attention and the performance of individuals on intelligence test batteries. In total, this evidence suggests an evolutionary conservation of the processes that co-vary with and/or regulate “intelligence” and provides a framework for promoting these abilities in both young and old animals. PMID:19607858
Ihne, Jessica L; Gallagher, Natalie M; Sullivan, Marie; Callicott, Joseph H; Green, Adam E
2016-01-01
Perhaps the most widely studied effect to emerge from the combination of neuroimaging and human genetics is the association of the COMT-Val(108/158)Met polymorphism with prefrontal activity during working memory. COMT-Val is a putative risk factor in schizophrenia, which is characterized by disordered prefrontal function. Work in healthy populations has sought to characterize mechanisms by which the valine (Val) allele may lead to disadvantaged prefrontal cognition. Lower activity in methionine (Met) carriers has been interpreted as advantageous neural efficiency. Notably, however, studies reporting COMT effects on neural efficiency have generally not reported working memory performance effects. Those studies have employed relatively low/easy working memory loads. Higher loads are known to elicit individual differences in working memory performance that are not visible at lower loads. If COMT-Met confers greater neural efficiency when working memory is easy, a reasonable prediction is that Met carriers will be better able to cope with increasing demand for neural resources when working memory becomes difficult. To our knowledge, this prediction has thus far gone untested. Here, we tested performance on three working memory tasks. Performance on each task was measured at multiple levels of load/difficulty, including loads more demanding than those used in prior studies. We found no genotype-by-load interactions or main effects of COMT genotype on accuracy or reaction time. Indeed, even testing for performance differences at each load of each task failed to find a single significant effect of COMT genotype. Thus, even if COMT genotype has the effects on prefrontal efficiency that prior work has suggested, such effects may not directly impact high-load working memory ability. The present findings accord with previous evidence that behavioral effects of COMT are small or nonexistent and, more broadly, with a growing consensus that substantial effects on phenotype will not emerge from candidate gene studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Some neglected contributions of Wilhelm Wundt to the psychology of memory.
Carpenter, Shana K
2005-08-01
Wilhelm Wundt, whose name is rarely associated with the scientific study of memory, conducted a number of memory experiments that appear to have escaped the awareness of modern cognitive psychologists. Aspects of Wundt's system are reviewed, particularly with respect to his experimental work on memory. Wundt investigated phenomena that would fall under the modern headings of iconic memory, short-term memory, and the enactment and generation effects, but this research has been neglected. Revisiting the Wundtian perspective may provide insight into some of the reasons behind the historical course of memory research and in general into the progress of science in psychology.
Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory
Lee, Sue-Hyun; Baker, Chris I.
2016-01-01
The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a “sensory recruitment” model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance. PMID:26912997
Delayed Recall and Working Memory MMSE Domains Predict Delirium following Cardiac Surgery.
Price, Catherine C; Garvan, Cynthia; Hizel, Loren P; Lopez, Marcos G; Billings, Frederic T
2017-01-01
Reduced preoperative cognition is a risk factor for postoperative delirium. The significance for type of preoperative cognitive deficit, however, has yet to be explored and could provide important insights into mechanisms and prediction of delirium. Our goal was to determine if certain cognitive domains from the general cognitive screener, the Mini-Mental State Exam (MMSE), predict delirium after cardiac surgery. Patients completed a preoperative MMSE prior to undergoing elective cardiac surgery. Following surgery, delirium was assessed throughout ICU stay using the Confusion Assessment Method for ICU delirium and the Richmond Agitation and Sedation Scale. Cardiac surgery patients who developed delirium (n = 137) had lower total MMSE scores than patients who did not develop delirium (n = 457). In particular, orientation to place, working memory, delayed recall, and language domain scores were lower. Of these, only the working memory and delayed recall domains predicted delirium in a regression model adjusting for history of chronic obstructive pulmonary disease, age, sex, and duration of cardiopulmonary bypass. For each word not recalled on the three-word delayed recall assessment, the odds of delirium increased by 50%. For each item missed on the working memory index, the odds of delirium increased by 36%. Of the patients who developed delirium, 47% had a primary impairment in memory, 21% in working memory, and 33% in both domains. The area under the receiver operating characteristics curve using only the working memory and delayed recall domains was 0.75, compared to 0.76 for total MMSE score. Delirium risk is greater for individuals with reduced MMSE scores on the delayed recall and working memory domains. Research should address why patients with memory and executive vulnerabilities are more prone to postoperative delirium than those with other cognitive limitations.
Memory and cognitive control circuits in mathematical cognition and learning.
Menon, V
2016-01-01
Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal-frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal-frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. © 2016 Elsevier B.V. All rights reserved.
Memory and cognitive control circuits in mathematical cognition and learning
Menon, V.
2018-01-01
Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal–frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal–frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. PMID:27339012
Firth, Joseph; Stubbs, Brendon; Vancampfort, Davy; Firth, Josh A; Large, Matthew; Rosenbaum, Simon; Hallgren, Mats; Ward, Philip B; Sarris, Jerome; Yung, Alison R
2018-06-06
Handgrip strength may provide an easily-administered marker of cognitive functional status. However, further population-scale research examining relationships between grip strength and cognitive performance across multiple domains is needed. Additionally, relationships between grip strength and cognitive functioning in people with schizophrenia, who frequently experience cognitive deficits, has yet to be explored. Baseline data from the UK Biobank (2007-2010) was analyzed; including 475397 individuals from the general population, and 1162 individuals with schizophrenia. Linear mixed models and generalized linear mixed models were used to assess the relationship between grip strength and 5 cognitive domains (visual memory, reaction time, reasoning, prospective memory, and number memory), controlling for age, gender, bodyweight, education, and geographical region. In the general population, maximal grip strength was positively and significantly related to visual memory (coefficient [coeff] = -0.1601, standard error [SE] = 0.003), reaction time (coeff = -0.0346, SE = 0.0004), reasoning (coeff = 0.2304, SE = 0.0079), number memory (coeff = 0.1616, SE = 0.0092), and prospective memory (coeff = 0.3486, SE = 0.0092: all P < .001). In the schizophrenia sample, grip strength was strongly related to visual memory (coeff = -0.155, SE = 0.042, P < .001) and reaction time (coeff = -0.049, SE = 0.009, P < .001), while prospective memory approached statistical significance (coeff = 0.233, SE = 0.132, P = .078), and no statistically significant association was found with number memory and reasoning (P > .1). Grip strength is significantly associated with cognitive functioning in the general population and individuals with schizophrenia, particularly for working memory and processing speed. Future research should establish directionality, examine if grip strength also predicts functional and physical health outcomes in schizophrenia, and determine whether interventions which improve muscular strength impact on cognitive and real-world functioning.
Does visuo-spatial working memory generally contribute to immediate serial letter recall?
Fürstenberg, A; Rummer, R; Schweppe, J
2013-01-01
This work contributes to the understanding of the visual similarity effect in verbal working memory, a finding that suggests that the visuo-spatial sketch pad-the system in Baddeley's working memory model specialised in retaining nonverbal visual information-might be involved in the retention of visually presented verbal materials. Crucially this effect is implicitly interpreted by the most influential theory of multimedia learning as evidence for an obligatory involvement of the visuo-spatial sketch pad. We claim that it is only involved when the functioning of the working memory component normally used for processing verbal material is impaired. In this article we review the studies that give rise to the idea of obligatory involvement of the visuo-spatial sketch pad and suggest that some findings can be understood with reference to orthographic rather than visual similarity. We then test an alternative explanation of the finding that is most apt to serve as evidence for obligatory involvement of the visuo-spatial sketch pad. We conclude that, in healthy adults and under normal learning conditions, the visual similarity effect can be explained within the framework of verbal working memory proposed by Baddeley (e.g., 1986, 2000) without additional premises regarding the visuo-spatial sketch.
Willis, Suzi; Goldbart, Juliet; Stansfield, Jois
2014-07-01
To compare verbal short-term memory and visual working memory abilities of six children with congenital hearing-impairment identified as having significant language learning difficulties with normative data from typically hearing children using standardized memory assessments. Six children with hearing loss aged 8-15 years were assessed on measures of verbal short-term memory (Non-word and word recall) and visual working memory annually over a two year period. All children had cognitive abilities within normal limits and used spoken language as the primary mode of communication. The language assessment scores at the beginning of the study revealed that all six participants exhibited delays of two years or more on standardized assessments of receptive and expressive vocabulary and spoken language. The children with hearing-impairment scores were significantly higher on the non-word recall task than the "real" word recall task. They also exhibited significantly higher scores on visual working memory than those of the age-matched sample from the standardized memory assessment. Each of the six participants in this study displayed the same pattern of strengths and weaknesses in verbal short-term memory and visual working memory despite their very different chronological ages. The children's poor ability to recall single syllable words in relation to non-words is a clinical indicator of their difficulties in verbal short-term memory. However, the children with hearing-impairment do not display generalized processing difficulties and indeed demonstrate strengths in visual working memory. The poor ability to recall words, in combination with difficulties with early word learning may be indicators of children with hearing-impairment who will struggle to develop spoken language equal to that of their normally hearing peers. This early identification has the potential to allow for target specific intervention that may remediate their difficulties. Copyright © 2014. Published by Elsevier Ireland Ltd.
Welsh, Janet A.; Nix, Robert L.; Blair, Clancy; Bierman, Karen L.; Nelson, Keith E.
2010-01-01
This study examined developmental associations between growth in domain-general cognitive processes (working memory and attention control) and growth in domain-specific skills (emergent literacy and numeracy) across the pre-kindergarten year, and their relative contributions to kindergarten reading and math achievement. One hundred sixty-four Head Start children (44% African American or Latino; 57% female) were followed longitudinally. Path analyses revealed that working memory and attention control predicted growth in emergent literacy and numeracy skills during the pre-kindergarten year, and furthermore, that growth in these domain-general cognitive skills made unique contributions to the prediction of kindergarten math and reading achievement, controlling for growth in domain-specific skills. These findings extend research highlighting the importance of working memory and attention control for academic learning, demonstrating the effects in early childhood, prior to school entry. We discuss the implications of these findings for pre-kindergarten programs, particularly those designed to reduce the school readiness gaps associated with socio-economic disadvantage. PMID:20411025
Cornoldi, Cesare; Carretti, Barbara; Drusi, Silvia; Tencati, Chiara
2015-09-01
Despite doubts voiced on their efficacy, a series of studies has been carried out on the capacity of training programmes to improve academic and reasoning skills by focusing on underlying cognitive abilities and working memory in particular. No systematic efforts have been made, however, to test training programmes that involve both general and specific underlying abilities. If effective, these programmes could help to increase students' motivation and competence. This study examined the feasibility of improving problem-solving skills in school children by means of a training programme that addresses general and specific abilities involved in problem solving, focusing on metacognition and working memory. The project involved a sample of 135 primary school children attending eight classes in the third, fourth, and fifth grades (age range 8-10 years). The classes were assigned to two groups, one attending the training programme in the first 3 months of the study (Training Group 1) and the other serving as a waiting-list control group (Training Group 2). In the second phase of the study, the role of the two groups was reversed, with Training Group 2 attending the training instead of Training Group 1. The training programme led to improvements in both metacognitive and working memory tasks, with positive-related effects on the ability to solve problems. The gains seen in Training Group 1 were also maintained at the second post-test (after 3 months). Specific activities focusing on metacognition and working memory may contribute to modifying arithmetical problem-solving performance in primary school children. © 2015 The British Psychological Society.
Soar: A Unified Theory of Cognition?
ERIC Educational Resources Information Center
Waldrop, M. Mitchell
1988-01-01
Describes an artificial intelligence system known as SOAR that approximates a theory of human cognition. Discusses cognition as problem solving, working memory, long term memory, autonomy and adaptability, and learning from experience as they relate to artificial intelligence generally and to SOAR specifically. Highlights the status of the…
Milligan, Robyn; Cockcroft, Kate
2017-01-01
This study compared the working memory profiles of three groups of children, namely HIV-infected (HIV-I; n = 95), HIV-exposed, uninfected (HIV-EU; n = 86) and an HIV-unexposed, uninfected, (HIV-UU; n = 92) neurotypical control group. Working memory, an executive function, plays an important role in frontal lobe-controlled behaviors, such as motivation, planning, decision making, and social interaction, and is a strong predictor of academic success in school children. Memory impairments have been identified in HIV-I children, particularly in visuospatial processing. Verbal working memory has not been commonly investigated in this population, while it is unknown how the working memory profiles of HIV-EU children compare to their HIV-I and HIV-UU peers. Of interest was whether the working memory profiles of the HIV-EU children would be more similar to the HIV-I group or to the uninfected control group. The results revealed no significant differences in working memory performance between the HIV-I and HIV-EU groups. However, this does not mean that the etiology of the working memory deficits is the same in the two groups, as these groups showed important differences when compared to the control group. In comparison to the controls, the HIV-I group experienced difficulties with processing tasks irrespective of whether they drew on a verbal or visuospatial modality. This appears to stem from a generalized executive function deficit that also interferes with working memory. In the HIV-EU group, difficulties occurred with verbally based tasks, irrespective of whether they required storage or processing. For this group, the dual demands of complex processing and using a second language seem to result in demand exceeding capacity on verbal tasks. Both groups experienced the greatest difficulties with verbal processing tasks for these different reasons. Thus, disruption of different cognitive abilities could result in similar working memory profiles, as evidenced in this study. This has implications for the underlying developmental neurobiology of HIV-I and HIV-EU children, as well the choice of appropriate measures to assist affected children. PMID:28729828
Properties of a memory network in psychology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wedemann, Roseli S.; Donangelo, Raul; Carvalho, Luis A. V. de
We have previously described neurotic psychopathology and psychoanalytic working-through by an associative memory mechanism, based on a neural network model, where memory was modelled by a Boltzmann machine (BM). Since brain neural topology is selectively structured, we simulated known microscopic mechanisms that control synaptic properties, showing that the network self-organizes to a hierarchical, clustered structure. Here, we show some statistical mechanical properties of the complex networks which result from this self-organization. They indicate that a generalization of the BM may be necessary to model memory.
Properties of a memory network in psychology
NASA Astrophysics Data System (ADS)
Wedemann, Roseli S.; Donangelo, Raul; de Carvalho, Luís A. V.
2007-12-01
We have previously described neurotic psychopathology and psychoanalytic working-through by an associative memory mechanism, based on a neural network model, where memory was modelled by a Boltzmann machine (BM). Since brain neural topology is selectively structured, we simulated known microscopic mechanisms that control synaptic properties, showing that the network self-organizes to a hierarchical, clustered structure. Here, we show some statistical mechanical properties of the complex networks which result from this self-organization. They indicate that a generalization of the BM may be necessary to model memory.
Xu, Meng; Yan, Yaming; Liu, Yanying; Shi, Qiang
2018-04-28
The Nakajima-Zwanzig generalized master equation provides a formally exact framework to simulate quantum dynamics in condensed phases. Yet, the exact memory kernel is hard to obtain and calculations based on perturbative expansions are often employed. By using the spin-boson model as an example, we assess the convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation. The exact memory kernels are calculated by combining the hierarchical equation of motion approach and the Dyson expansion of the exact memory kernel. High order expansions of the memory kernels are obtained by extending our previous work to calculate perturbative expansions of open system quantum dynamics [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. It is found that the high order expansions do not necessarily converge in certain parameter regimes where the exact kernel show a long memory time, especially in cases of slow bath, weak system-bath coupling, and low temperature. Effectiveness of the Padé and Landau-Zener resummation approaches is tested, and the convergence of higher order rate constants beyond Fermi's golden rule is investigated.
NASA Astrophysics Data System (ADS)
Xu, Meng; Yan, Yaming; Liu, Yanying; Shi, Qiang
2018-04-01
The Nakajima-Zwanzig generalized master equation provides a formally exact framework to simulate quantum dynamics in condensed phases. Yet, the exact memory kernel is hard to obtain and calculations based on perturbative expansions are often employed. By using the spin-boson model as an example, we assess the convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation. The exact memory kernels are calculated by combining the hierarchical equation of motion approach and the Dyson expansion of the exact memory kernel. High order expansions of the memory kernels are obtained by extending our previous work to calculate perturbative expansions of open system quantum dynamics [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. It is found that the high order expansions do not necessarily converge in certain parameter regimes where the exact kernel show a long memory time, especially in cases of slow bath, weak system-bath coupling, and low temperature. Effectiveness of the Padé and Landau-Zener resummation approaches is tested, and the convergence of higher order rate constants beyond Fermi's golden rule is investigated.
Moossavi, Abdollah; Mehrkian, Saiedeh; Lotfi, Yones; Faghihzadeh, Soghrat; sajedi, Hamed
2014-11-01
Auditory processing disorder (APD) describes a complex and heterogeneous disorder characterized by poor speech perception, especially in noisy environments. APD may be responsible for a range of sensory processing deficits associated with learning difficulties. There is no general consensus about the nature of APD and how the disorder should be assessed or managed. This study assessed the effect of cognition abilities (working memory capacity) on sound lateralization in children with auditory processing disorders, in order to determine how "auditory cognition" interacts with APD. The participants in this cross-sectional comparative study were 20 typically developing and 17 children with a diagnosed auditory processing disorder (9-11 years old). Sound lateralization abilities investigated using inter-aural time (ITD) differences and inter-aural intensity (IID) differences with two stimuli (high pass and low pass noise) in nine perceived positions. Working memory capacity was evaluated using the non-word repetition, and forward and backward digits span tasks. Linear regression was employed to measure the degree of association between working memory capacity and localization tests between the two groups. Children in the APD group had consistently lower scores than typically developing subjects in lateralization and working memory capacity measures. The results showed working memory capacity had significantly negative correlation with ITD errors especially with high pass noise stimulus but not with IID errors in APD children. The study highlights the impact of working memory capacity on auditory lateralization. The finding of this research indicates that the extent to which working memory influences auditory processing depend on the type of auditory processing and the nature of stimulus/listening situation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Drummond, Sean P A; Anderson, Dane E; Straus, Laura D; Vogel, Edward K; Perez, Veronica B
2012-01-01
Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep deprivation and 4 nights of partial sleep deprivation (4 hours in bed/night) on two components of visual working memory: capacity and filtering efficiency. Forty-four healthy young adults were randomly assigned to one of the two sleep deprivation conditions. All participants were studied: 1) in a well-rested condition (following 6 nights of 9 hours in bed/night); and 2) following sleep deprivation, in a counter-balanced order. Visual working memory testing consisted of two related tasks. The first measured visual working memory capacity and the second measured the ability to ignore distractor stimuli in a visual scene (filtering efficiency). Results showed neither type of sleep deprivation reduced visual working memory capacity. Partial sleep deprivation also generally did not change filtering efficiency. Total sleep deprivation, on the other hand, did impair performance in the filtering task. These results suggest components of visual working memory are differentially vulnerable to the effects of sleep deprivation, and different types of sleep deprivation impact visual working memory to different degrees. Such findings have implications for operational settings where individuals may need to perform with inadequate sleep and whose jobs involve receiving an array of visual information and discriminating the relevant from the irrelevant prior to making decisions or taking actions (e.g., baggage screeners, air traffic controllers, military personnel, health care providers).
van Ede, Freek; Niklaus, Marcel; Nobre, Anna C
2017-01-11
Although working memory is generally considered a highly dynamic mnemonic store, popular laboratory tasks used to understand its psychological and neural mechanisms (such as change detection and continuous reproduction) often remain relatively "static," involving the retention of a set number of items throughout a shared delay interval. In the current study, we investigated visual working memory in a more dynamic setting, and assessed the following: (1) whether internally guided temporal expectations can dynamically and reversibly prioritize individual mnemonic items at specific times at which they are deemed most relevant; and (2) the neural substrates that support such dynamic prioritization. Participants encoded two differently colored oriented bars into visual working memory to retrieve the orientation of one bar with a precision judgment when subsequently probed. To test for the flexible temporal control to access and retrieve remembered items, we manipulated the probability for each of the two bars to be probed over time, and recorded EEG in healthy human volunteers. Temporal expectations had a profound influence on working memory performance, leading to faster access times as well as more accurate orientation reproductions for items that were probed at expected times. Furthermore, this dynamic prioritization was associated with the temporally specific attenuation of contralateral α (8-14 Hz) oscillations that, moreover, predicted working memory access times on a trial-by-trial basis. We conclude that attentional prioritization in working memory can be dynamically steered by internally guided temporal expectations, and is supported by the attenuation of α oscillations in task-relevant sensory brain areas. In dynamic, everyday-like, environments, flexible goal-directed behavior requires that mental representations that are kept in an active (working memory) store are dynamic, too. We investigated working memory in a more dynamic setting than is conventional, and demonstrate that expectations about when mnemonic items are most relevant can dynamically and reversibly prioritize these items in time. Moreover, we uncover a neural substrate of such dynamic prioritization in contralateral visual brain areas and show that this substrate predicts working memory retrieval times on a trial-by-trial basis. This places the experimental study of working memory, and its neuronal underpinnings, in a more dynamic and ecologically valid context, and provides new insights into the neural implementation of attentional prioritization within working memory. Copyright © 2017 van Ede et al.
Tough times call for bigger brains
Pravosudov, Vladimir V
2009-01-01
Memory is crucial for survival in many animals. Spatial memory in particular is important for food-caching species and may be influenced by selective pressures such as climate. The influence of climate on memory may be facilitated through the hippocampus (Hp), the part of the brain responsible in part for spatial memory. In a recent paper, we conducted the first large-scale test of the relationship between memory, the climate and the brain in a single food-caching species, the black-capped chickadee (Poecile atricapillus). We found that birds from more harsh northern climates had significantly larger hippocampal volumes and more neurons than those from more mild southern latitudes. This work suggests that environmental pressures are capable of influencing specific brain regions, which may result in enhanced memory, and hence survival, in harsh climates. This work gives us a better understanding of how the brain responds to different environments and how animals can adapt to their environment in general. PMID:19641741
Fuchs, Lynn S; Geary, David C; Fuchs, Douglas; Compton, Donald L; Hamlett, Carol L
2016-01-01
Children (n = 747; 6.5 years) were assessed on domain-general processes and mathematics and reading-related competencies (start of first grade), addition retrieval (end of second grade), and calculations and word reading (end of third grade). Attentive behavior, reasoning, visuospatial memory, and rapid automatized naming (RAN) indirectly contributed to both outcomes, via retrieval. However, there was no overlap in domain-general direct effects on calculations (attentive behavior, reasoning, working memory) versus word reading (language, phonological memory, RAN). Results suggest ease of forming associative relations and abilities engaged during the formation of these long-term memories are common to both outcomes and can be indexed by addition-fact retrieval, but further growth in calculations and word reading is driven by different constellations of domain-general abilities. © 2015 The Authors. Child Development © 2015 Society for Research in Child Development, Inc.
Crocker, N.; Riley, E.P.; Mattson, S.N.
2014-01-01
Objective The current study examined the relationship between mathematics and attention, working memory, and visual memory in children with heavy prenatal alcohol exposure and controls. Method Fifty-six children (29 AE, 27 CON) were administered measures of global mathematics achievement (WRAT-3 Arithmetic & WISC-III Written Arithmetic), attention, (WISC-III Digit Span forward and Spatial Span forward), working memory (WISC-III Digit Span backward and Spatial Span backward), and visual memory (CANTAB Spatial Recognition Memory and Pattern Recognition Memory). The contribution of cognitive domains to mathematics achievement was analyzed using linear regression techniques. Attention, working memory and visual memory data were entered together on step 1 followed by group on step 2, and the interaction terms on step 3. Results Model 1 accounted for a significant amount of variance in both mathematics achievement measures, however, model fit improved with the addition of group on step 2. Significant predictors of mathematics achievement were Spatial Span forward and backward and Spatial Recognition Memory. Conclusions These findings suggest that deficits in spatial processing may be related to math impairments seen in FASD. In addition, prenatal alcohol exposure was associated with deficits in mathematics achievement, above and beyond the contribution of general cognitive abilities. PMID:25000323
Crocker, Nicole; Riley, Edward P; Mattson, Sarah N
2015-01-01
The current study examined the relationship between mathematics and attention, working memory, and visual memory in children with heavy prenatal alcohol exposure and controls. Subjects were 56 children (29 AE, 27 CON) who were administered measures of global mathematics achievement (WRAT-3 Arithmetic & WISC-III Written Arithmetic), attention, (WISC-III Digit Span forward and Spatial Span forward), working memory (WISC-III Digit Span backward and Spatial Span backward), and visual memory (CANTAB Spatial Recognition Memory and Pattern Recognition Memory). The contribution of cognitive domains to mathematics achievement was analyzed using linear regression techniques. Attention, working memory, and visual memory data were entered together on Step 1 followed by group on Step 2, and the interaction terms on Step 3. Model 1 accounted for a significant amount of variance in both mathematics achievement measures; however, model fit improved with the addition of group on Step 2. Significant predictors of mathematics achievement were Spatial Span forward and backward and Spatial Recognition Memory. These findings suggest that deficits in spatial processing may be related to math impairments seen in FASD. In addition, prenatal alcohol exposure was associated with deficits in mathematics achievement, above and beyond the contribution of general cognitive abilities. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Ittig, S; Studerus, E; Papmeyer, M; Uttinger, M; Koranyi, S; Ramyead, A; Riecher-Rössler, A
2015-02-01
Several sex differences in schizophrenia have been reported including differences in cognitive functioning. Studies with schizophrenia patients and healthy controls (HC) indicate that the sex advantage for women in verbal domains is also present in schizophrenia patients. However, findings have been inconsistent. No study focused on sex-related cognitive performance differences in at-risk mental state for psychosis (ARMS) individuals yet. Thus, the aim of the present study was to investigate sex differences in cognitive functioning in ARMS, first episode psychosis (FEP) and HC subjects. We expected a better verbal learning and memory performance of women in all groups. The neuropsychological data analysed in this study were collected within the prospective Früherkennung von Psychosen (FePsy) study. In total, 118 ARMS, 88 FEP individuals and 86 HC completed a cognitive test battery covering the domains of executive functions, attention, working memory, verbal learning and memory, IQ and speed of processing. Women performed better in verbal learning and memory regardless of diagnostic group. By contrast, men as compared to women showed a shorter reaction time during the working memory task across all groups. The results provide evidence that women generally perform better in verbal learning and memory, independent of diagnostic group (ARMS, FEP, HC). The finding of a shorter reaction time for men in the working memory task could indicate that men have a superior working memory performance since they responded faster during the target trials, while maintaining a comparable overall working memory performance level. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Cross-modal working memory binding and word recognition skills: how specific is the link?
Wang, Shinmin; Allen, Richard J
2018-04-01
Recent research has suggested that the creation of temporary bound representations of information from different sources within working memory uniquely relates to word recognition abilities in school-age children. However, it is unclear to what extent this link is attributable specifically to the binding ability for cross-modal information. This study examined the performance of Grade 3 (8-9 years old) children on binding tasks requiring either temporary association formation of two visual items (i.e., within-modal binding) or pairs of visually presented abstract shapes and auditorily presented nonwords (i.e., cross-modal binding). Children's word recognition skills were related to performance on the cross-modal binding task but not on the within-modal binding task. Further regression models showed that cross-modal binding memory was a significant predictor of word recognition when memory for its constituent elements, general abilities, and crucially, within-modal binding memory were taken into account. These findings may suggest a specific link between the ability to bind information across modalities within working memory and word recognition skills.
Etiological Distinction of Working Memory Components in Relation to Mathematics
Lukowski, Sarah L.; Soden, Brooke; Hart, Sara A.; Thompson, Lee A.; Kovas, Yulia; Petrill, Stephen A.
2014-01-01
Working memory has been consistently associated with mathematics achievement, although the etiology of these relations remains poorly understood. The present study examined the genetic and environmental underpinnings of math story problem solving, timed calculation, and untimed calculation alongside working memory components in 12-year-old monozygotic (n = 105) and same-sex dizygotic (n = 143) twin pairs. Results indicated significant phenotypic correlation between each working memory component and all mathematics outcomes (r = 0.18 – 0.33). Additive genetic influences shared between the visuo-spatial sketchpad and mathematics achievement was significant, accounting for roughly 89% of the observed correlation. In addition, genetic covariance was found between the phonological loop and math story problem solving. In contrast, despite there being a significant observed relationship between phonological loop and timed and untimed calculation, there was no significant genetic or environmental covariance between the phonological loop and timed or untimed calculation skills. Further analyses indicated that genetic overlap between the visuo-spatial sketchpad and math story problem solving and math fluency was distinct from general genetic factors, whereas g, phonological loop, and mathematics shared generalist genes. Thus, although each working memory component was related to mathematics, the etiology of their relationships may be distinct. PMID:25477699
Sonuga-Barke, Edmund J S; Dalen, Lindy; Daley, Dave; Remington, Bob
2002-01-01
The association between executive function (EF; planning, working memory, and inhibition) and individual differences in symptoms of attention deficit hyperactivity disorder (ADHD) was explored in a sample of preschool children. One hundred sixty children (between the ages of 3 years, 0 months and 5 years, 6 months), selected so as to oversample high ADHD scorers, performed 3 tasks previously shown to measure planning (Tower of London), working memory (Noisy Book) and inhibition ("Puppet Says..."). EF measures were reliable (kappa > .77) and were correlated with IQ (rs > .38) and age (rs > .59). Once IQ and age were controlled, planning and working memory (r = .41) were correlated. Planning and working memory were not correlated with inhibition (rs < .20). There was no association between ADHD and working memory or planning (rs < .12). There was a significant negative association between ADHD and conduct problems and inhibition (r = -.30 and r = -.25, respectively). Only the link with ADHD persisted after the effects of other factors were controlled for in a multiple regression. Specific deficits in inhibitory control rather than general EF deficits are associated with ADHD in the preschool period. This association is linear in nature, supporting the idea that ADHD is better seen as a continuum rather than a discrete category. This association provides evidence for Barkley's (1997) view that ADHD is underpinned by inhibitory deficits in the preschool period.
Lewis, Simon J G; Slabosz, Aleksandra; Robbins, Trevor W; Barker, Roger A; Owen, Adrian M
2005-01-01
Although Parkinson's disease is a common neurodegenerative disorder characterised by its motoric symptoms, there is an increasing recognition of accompanying impairments in cognition that have a profound impact on the quality of life of these patients. These deficits predominantly affect executive function and impairments of working memory have been frequently reported. However, the underlying neurochemical and pathological basis for these deficits are not well understood. In this study, 20 patients were tested 'on' and 'off' levodopa (L-dopa) medication on a task that allowed different aspects of working memory function such as maintenance, retrieval and manipulation to be tested within the same general paradigm as well as on an unrelated test of attentional set-shifting, which is known to be sensitive to deficits in early Parkinson's disease. Compared to healthy volunteers, PD patients were impaired at manipulation more than maintenance or retrieval of information within working memory. The patients were also impaired at the attentional set-shifting task. However, whereas L-dopa ameliorated the working memory deficit in manipulation (improving both accuracy and cognitive response time), it had no effect on the attentional set-shifting impairment. These results confirm that working memory deficits in PD are both psychologically specific and related to dopamine depletion. It is anticipated that greater understanding of these mechanisms will lead to future therapeutic improvements.
Varvel, Stephen A; Cravatt, Benjamin F; Engram, April E; Lichtman, Aron H
2006-04-01
Although recent evidence suggests that fatty acid amide hydrolase (FAAH) may represent a potential therapeutic target, few published studies have investigated FAAH or its fatty acid amide substrates (FAAs) in animal models of learning and memory. Therefore, our primary goal was to determine whether FAAH (-/-) mice, which possess elevated levels of anandamide and other FAAs, would display altered performance in four Morris water maze tasks: acquisition of a hidden fixed platform, reversal learning, working memory, and probe trials. FAAH (-/-) mice failed to exhibit deficits in any task; in fact, they initially acquired the working memory task more rapidly than FAAH (+/+) mice. The second goal of this study was to investigate whether the FAAH inhibitor OL-135 (1-oxo-1[5-(2-pyridyl)-2-yl]-7-phenylheptane), anandamide, other FAAs, and methanandamide would affect working memory in both genotypes. FAAH (-/-), but not (+/+), mice displayed working memory impairments following exogenous administration of anandamide (ED(50) = 6 mg/kg) or oleamide (50 mg/kg). However, the central cannabinoid receptor (CB(1)) receptor antagonist SR141716 [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide HCl] only blocked the disruptive effects of anandamide. Methanandamide, which is not metabolized by FAAH, disrupted working memory performance in both genotypes (ED(50) = 10 mg/kg), suggesting that CB(1) receptor signaling is unaltered by FAAH deletion. In contrast, OL-135 and other FAAs failed to affect working memory in either genotype. These results suggest that FAAH deletion does not impair spatial learning but may enhance acquisition under certain conditions. More generally, FAAH may represent a novel therapeutic target that circumvents the undesirable cognitive side effects commonly associated with direct-acting cannabinoid agonists.
Wassenburg, Stephanie I.; de Koning, Björn B.; de Vries, Meinou H.; van der Schoot, Menno
2016-01-01
Using a component processes task (CPT) that differentiates between higher-level cognitive processes of reading comprehension provides important advantages over commonly used general reading comprehension assessments. The present study contributes to further development of the CPT by evaluating the relative contributions of its components (text memory, text inferencing, and knowledge integration) and working memory to general reading comprehension within a single study using path analyses. Participants were 173 third- and fourth-grade children. As hypothesized, knowledge integration was the only component of the CPT that directly contributed to reading comprehension, indicating that the text-inferencing component did not assess inferential processes related to reading comprehension. Working memory was a significant predictor of reading comprehension over and above the component processes. Future research should focus on finding ways to ensure that the text-inferencing component taps into processes important for reading comprehension. PMID:27378989
Ebert, Kerry Danahy
2014-01-01
Sentence repetition performance is attracting increasing interest as a valuable clinical marker for primary (or specific) language impairment (LI) in both monolingual and bilingual populations. Multiple aspects of memory appear to contribute to sentence repetition performance, but non-verbal memory has not yet been considered. To explore the relationship between a measure of non-verbal auditory working memory (NVWM) and sentence repetition performance in a sample of bilingual children with LI. Forty-seven school-aged Spanish-English bilingual children with LI completed sentence repetition and non-word repetition tasks in both Spanish and English as well as an NVWM task. Hierarchical multiple linear regression was used to predict sentence repetition in each language using age, non-word repetition and NVWM. NVWM predicted unique variance in sentence repetition performance in both languages after accounting for chronological age and language-specific phonological memory, as measured by non-word repetition. Domain-general memory resources play a unique role in sentence repetition performance in children with LI. Non-verbal working memory weaknesses may contribute to the poor performance of children with LI on sentence repetition tasks. © 2014 Royal College of Speech and Language Therapists.
Ebert, Kerry Danahy
2015-01-01
Background Sentence repetition performance is attracting increasing interest as a valuable clinical marker for Primary (or Specific) Language Impairment (LI) in both monolingual and bilingual populations. Multiple aspects of memory appear to contribute to sentence repetition performance, but nonverbal memory has not yet been considered. Aims The purpose of this study was to explore the relationship between a measure of nonverbal auditory working memory (NVWM) and sentence repetition performance in a sample of bilingual children with LI. Methods & Procedures Forty-seven school-aged Spanish-English bilingual children with LI completed sentence repetition and nonword repetition tasks in both Spanish and English as well as an NVWM task. Hierarchical multiple linear regression was used to predict sentence repetition in each language using age, nonword repetition, and NVWM. Outcomes & Results NVWM predicted unique variance in sentence repetition performance in both languages after accounting for chronological age and language-specific phonological memory, as measured by nonword repetition. Conclusions & Implications Domain-general memory resources play a unique role in sentence repetition performance in children with LI. Nonverbal working memory weaknesses may contribute to the poor performance of children with LI on sentence repetition tasks. PMID:24894308
What we remember affects how we see: spatial working memory steers saccade programming.
Wong, Jason H; Peterson, Matthew S
2013-02-01
Relationships between visual attention, saccade programming, and visual working memory have been hypothesized for over a decade. Awh, Jonides, and Reuter-Lorenz (Journal of Experimental Psychology: Human Perception and Performance 24(3):780-90, 1998) and Awh et al. (Psychological Science 10(5):433-437, 1999) proposed that rehearsing a location in memory also leads to enhanced attentional processing at that location. In regard to eye movements, Belopolsky and Theeuwes (Attention, Perception & Psychophysics 71(3):620-631, 2009) found that holding a location in working memory affects saccade programming, albeit negatively. In three experiments, we attempted to replicate the findings of Belopolsky and Theeuwes (Attention, Perception & Psychophysics 71(3):620-631, 2009) and determine whether the spatial memory effect can occur in other saccade-cuing paradigms, including endogenous central arrow cues and exogenous irrelevant singletons. In the first experiment, our results were the opposite of those in Belopolsky and Theeuwes (Attention, Perception & Psychophysics 71(3):620-631, 2009), in that we found facilitation (shorter saccade latencies) instead of inhibition when the saccade target matched the region in spatial working memory. In Experiment 2, we sought to determine whether the spatial working memory effect would generalize to other endogenous cuing tasks, such as a central arrow that pointed to one of six possible peripheral locations. As in Experiment 1, we found that saccade programming was facilitated when the cued location coincided with the saccade target. In Experiment 3, we explored how spatial memory interacts with other types of cues, such as a peripheral color singleton target or irrelevant onset. In both cases, the eyes were more likely to go to either singleton when it coincided with the location held in spatial working memory. On the basis of these results, we conclude that spatial working memory and saccade programming are likely to share common overlapping circuitry.
Morey, Rajendra A.; Dolcos, Florin; Petty, Christopher M.; Cooper, Debra A.; Hayes, Jasmeet Pannu; LaBar, Kevin S.; McCarthy, Gregory
2009-01-01
The relevance of emotional stimuli to threat and survival confers a privileged role in their processing. In PTSD, the ability of trauma-related information to divert attention is especially pronounced. Information unrelated to the trauma may also be highly distracting when it shares perceptual features with trauma material. Our goal was to study how trauma-related environmental cues modulate working memory networks in PTSD. We examined neural activity in participants performing a visual working memory task while distracted by task-irrelevant trauma and non-trauma material. Recent post-9/11 veterans were divided into a PTSD group (n = 22) and a trauma-exposed control group (n = 20) based on the Davidson trauma scale. Using fMRI, we measured hemodynamic change in response to emotional (trauma-related) and neutral distraction presented during the active maintenance period of a delayed-response working memory task. The goal was to examine differences in functional networks associated with working memory (dorsolateral prefrontal cortex and lateral parietal cortex) and emotion processing (amygdala, ventrolateral prefrontal cortex, and fusiform gyrus). The PTSD group showed markedly different neural activity compared to the trauma-exposed control group in response to task-irrelevant visual distractors. Enhanced activity in ventral emotion processing regions was associated with trauma distractors in the PTSD group, whereas activity in brain regions associated with working memory and attention regions was disrupted by distractor stimuli independent of trauma content. Neural evidence for the impact of distraction on working memory is consistent with PTSD symptoms of hypervigilance and general distractibility during goal-directed cognitive processing. PMID:19091328
Mapping the developmental constraints on working memory span performance.
Bayliss, Donna M; Jarrold, Christopher; Baddeley, Alan D; Gunn, Deborah M; Leigh, Eleanor
2005-07-01
This study investigated the constraints underlying developmental improvements in complex working memory span performance among 120 children of between 6 and 10 years of age. Independent measures of processing efficiency, storage capacity, rehearsal speed, and basic speed of processing were assessed to determine their contribution to age-related variance in complex span. Results showed that developmental improvements in complex span were driven by 2 age-related but separable factors: 1 associated with general speed of processing and 1 associated with storage ability. In addition, there was an age-related contribution shared between working memory, processing speed, and storage ability that was important for higher level cognition. These results pose a challenge for models of complex span performance that emphasize the importance of processing speed alone.
Briscoe, J; Rankin, P M
2009-01-01
Children with specific language impairment (SLI) often experience difficulties in the recall and repetition of verbal information. Archibald and Gathercole (2006) suggested that children with SLI are vulnerable across two separate components of a tripartite model of working memory (Baddeley and Hitch 1974). However, the hierarchical relationship between the 'slave' systems (temporary storage) and the central executive components places a particular challenge for interpreting working memory profiles within a tripartite model. This study aimed to examine whether a 'double-jeopardy' assumption is compatible with a hierarchical relationship between the phonological loop and central executive components of the working memory model in children with SLI. If a strong double-jeopardy assumption is valid for children with SLI, it was predicted that raw scores of working memory tests thought to tap phonological loop and central executive components of tripartite working memory would be lower than the scores of children matched for chronological age and those of children matched for language level, according to independent sources of constraint. In contrast, a hierarchical relationship would imply that a weakness in a slave component of working memory (the phonological loop) would also constrain performance on tests tapping a super-ordinate component (central executive). This locus of constraint would predict that scores of children with SLI on working memory tests that tap the central executive would be weaker relative to the scores of chronological age-matched controls only. Seven subtests of the Working Memory Test Battery for Children (Digit recall, Word recall, Non-word recall, Word matching, Listening recall, Backwards digit recall and Block recall; Pickering and Gathercole 2001) were administered to 14 children with SLI recruited via language resource bases and specialist schools, as well as two control groups matched on chronological age and vocabulary level, respectively. Mean group differences were ascertained by directly comparing raw scores on memory tests linked to different components of the tripartite model using a series of multivariate analyses. The majority of working memory scores of the SLI group were depressed relative to chronological age-matched controls, with the exception of spatial recall (block tapping) and word (order) matching tasks. Marked deficits in serial recall of words and digits were evident, with the SLI group scoring more poorly than the language-ability matched control group on these measures. Impairments of the SLI group on phonological loop tasks were robust, even when covariance with executive working memory scores was accounted for. There was no robust effect of group on complex working memory (central executive) tasks, despite a slight association between listening recall and phonological loop measures. A predominant feature of the working memory profile of SLI was a marked deficit on phonological loop tasks. Although scores on complex working memory tasks were also depressed, there was little evidence for a strong interpretation of double-jeopardy within working memory profiles for these children, rather these findings were consistent with an interpretation of a constraint on phonological loop for children with SLI that operated at all levels of a hierarchical tripartite model of working memory (Baddeley and Hitch 1974). These findings imply that low scores on complex working memory tasks alone do not unequivocally imply an independent deficit in central executive (domain-general) resources of working memory and should therefore be treated cautiously in a clinical context.
Nelson, James K.; Reuter-Lorenz, Patricia A.; Persson, Jonas; Sylvester, Ching-Yune C.; Jonides, John
2009-01-01
Work in functional neuroimaging has mapped interference resolution processing onto left inferior frontal regions for both verbal working memory and a variety of semantic processing tasks. The proximity of the identified regions from these different tasks suggests the existence of a common, domain-general interference resolution mechanism. The current research specifically tests this idea in a within-subject design using fMRI to assess the activation associated with variable selection requirements in a semantic retrieval task (verb generation) and a verbal working memory task with a trial-specific proactive interference manipulation (recent-probes). High interference trials on both tasks were associated with activity in the midventrolateral region of the left inferior frontal gyrus, and the regions activated in each task strongly overlapped. The results indicate that an elemental component of executive control associated with interference resolution during retrieval from working memory and from semantic memory can be mapped to a common portion of the left inferior frontal gyrus. PMID:19111526
Working memory training and transfer in older adults.
Richmond, Lauren L; Morrison, Alexandra B; Chein, Jason M; Olson, Ingrid R
2011-12-01
There has been a great deal of interest, both privately and commercially, in using working memory training exercises to improve general cognitive function. However, many of the laboratory findings for older adults, a group in which this training is of utmost interest, are discouraging due to the lack of transfer to other tasks and skills. Importantly, improvements in everyday functioning remain largely unexamined in relation to WM training. We trained working memory in older adults using a task that encourages transfer in young adults (Chein & Morrison, 2010). We tested transfer to measures of working memory (e.g., Reading Span), everyday cognitive functioning [the Test of Everyday Attention (TEA) and the California Verbal Learning Test (CVLT)], and other tasks of interest. Relative to controls, trained participants showed transfer improvements in Reading Span and the number of repetitions on the CVLT. Training group participants were also significantly more likely to self-report improvements in everyday attention. Our findings support the use of ecological tasks as a measure of transfer in an older adult population.
Working memory performance inversely predicts spontaneous delta and theta-band scaling relations.
Euler, Matthew J; Wiltshire, Travis J; Niermeyer, Madison A; Butner, Jonathan E
2016-04-15
Electrophysiological studies have strongly implicated theta-band activity in human working memory processes. Concurrently, work on spontaneous, non-task-related oscillations has revealed the presence of long-range temporal correlations (LRTCs) within sub-bands of the ongoing EEG, and has begun to demonstrate their functional significance. However, few studies have yet assessed the relation of LRTCs (also called scaling relations) to individual differences in cognitive abilities. The present study addressed the intersection of these two literatures by investigating the relation of narrow-band EEG scaling relations to individual differences in working memory ability, with a particular focus on the theta band. Fifty-four healthy adults completed standardized assessments of working memory and separate recordings of their spontaneous, non-task-related EEG. Scaling relations were quantified in each of the five classical EEG frequency bands via the estimation of the Hurst exponent obtained from detrended fluctuation analysis. A multilevel modeling framework was used to characterize the relation of working memory performance to scaling relations as a function of general scalp location in Cartesian space. Overall, results indicated an inverse relationship between both delta and theta scaling relations and working memory ability, which was most prominent at posterior sensors, and was independent of either spatial or individual variability in band-specific power. These findings add to the growing literature demonstrating the relevance of neural LRTCs for understanding brain functioning, and support a construct- and state-dependent view of their functional implications. Copyright © 2016 Elsevier B.V. All rights reserved.
Short-Term Memory as an Additional Predictor of School Achievement for Immigrant Children?
ERIC Educational Resources Information Center
te Nijenhuis, Jan; Resing, Wilma; Tolboom, Elsbeth; Bleichrodt, Nico
2004-01-01
The predictive validity and utility of assessment procedures can be increased by adding predictors to the prediction supplied by general ability tests. Of Jensen's early work comes the suggestion of focusing on the cognitive ability short-term memory (STM), especially for low-"g" Black children. Meta-analysis convincingly shows high…
Memory Processing: Ripples in the Resting Brain.
Walker, Matthew P; Robertson, Edwin M
2016-03-21
Recent work has shown that, during sleep, a functional circuit is created amidst a general breakdown in connectivity following fast-frequency bursts of brain activity. The findings question the unconscious nature of deep sleep, and provide an explanation for its contribution to memory processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Visual memory, the long and the short of it: A review of visual working memory and long-term memory.
Schurgin, Mark W
2018-04-23
The majority of research on visual memory has taken a compartmentalized approach, focusing exclusively on memory over shorter or longer durations, that is, visual working memory (VWM) or visual episodic long-term memory (VLTM), respectively. This tutorial provides a review spanning the two areas, with readers in mind who may only be familiar with one or the other. The review is divided into six sections. It starts by distinguishing VWM and VLTM from one another, in terms of how they are generally defined and their relative functions. This is followed by a review of the major theories and methods guiding VLTM and VWM research. The final section is devoted toward identifying points of overlap and distinction across the two literatures to provide a synthesis that will inform future research in both fields. By more intimately relating methods and theories from VWM and VLTM to one another, new advances can be made that may shed light on the kinds of representational content and structure supporting human visual memory.
Short-Term Memory Stages in Sign vs. Speech: The Source of the Serial Span Discrepancy
Hall, Matthew L.
2011-01-01
Speakers generally outperform signers when asked to recall a list of unrelated verbal items. This phenomenon is well established, but its source has remained unclear. In this study, we evaluate the relative contribution of the three main processing stages of short-term memory – perception, encoding, and recall – in this effect. The present study factorially manipulates whether American Sign Language (ASL) or English was used for perception, memory encoding, and recall in hearing ASL-English bilinguals. Results indicate that using ASL during both perception and encoding contributes to the serial span discrepancy. Interestingly, performing recall in ASL slightly increased span, ruling out the view that signing is in general a poor choice for short-term memory. These results suggest that despite the general equivalence of sign and speech in other memory domains, speech-based representations are better suited for the specific task of perception and memory encoding of a series of unrelated verbal items in serial order through the phonological loop. This work suggests that interpretation of performance on serial recall tasks in English may not translate straightforwardly to serial tasks in sign language. PMID:21450284
Deception and Cognitive Load: Expanding Our Horizon with a Working Memory Model
Sporer, Siegfried L.
2016-01-01
Recently, studies on deception and its detection have increased dramatically. Many of these studies rely on the “cognitive load approach” as the sole explanatory principle to understand deception. These studies have been exclusively on lies about negative actions (usually lies of suspects of [mock] crimes). Instead, we need to re-focus more generally on the cognitive processes involved in generating both lies and truths, not just on manipulations of cognitive load. Using Baddeley’s (2000, 2007, 2012) working memory model, which integrates verbal and visual processes in working memory with retrieval from long-term memory and control of action, not only verbal content cues but also nonverbal, paraverbal, and linguistic cues can be investigated within a single framework. The proposed model considers long-term semantic, episodic and autobiographical memory and their connections with working memory and action. It also incorporates ironic processes of mental control (Wegner, 1994, 2009), the role of scripts and schemata and retrieval cues and retrieval processes. Specific predictions of the model are outlined and support from selective studies is presented. The model is applicable to different types of reports, particularly about lies and truths about complex events, and to different modes of production (oral, hand-written, typed). Predictions regarding several moderator variables and methods to investigate them are proposed. PMID:27092090
Deception and Cognitive Load: Expanding Our Horizon with a Working Memory Model.
Sporer, Siegfried L
2016-01-01
Recently, studies on deception and its detection have increased dramatically. Many of these studies rely on the "cognitive load approach" as the sole explanatory principle to understand deception. These studies have been exclusively on lies about negative actions (usually lies of suspects of [mock] crimes). Instead, we need to re-focus more generally on the cognitive processes involved in generating both lies and truths, not just on manipulations of cognitive load. Using Baddeley's (2000, 2007, 2012) working memory model, which integrates verbal and visual processes in working memory with retrieval from long-term memory and control of action, not only verbal content cues but also nonverbal, paraverbal, and linguistic cues can be investigated within a single framework. The proposed model considers long-term semantic, episodic and autobiographical memory and their connections with working memory and action. It also incorporates ironic processes of mental control (Wegner, 1994, 2009), the role of scripts and schemata and retrieval cues and retrieval processes. Specific predictions of the model are outlined and support from selective studies is presented. The model is applicable to different types of reports, particularly about lies and truths about complex events, and to different modes of production (oral, hand-written, typed). Predictions regarding several moderator variables and methods to investigate them are proposed.
Time estimation predicts mathematical intelligence.
Kramer, Peter; Bressan, Paola; Grassi, Massimo
2011-01-01
Performing mental subtractions affects time (duration) estimates, and making time estimates disrupts mental subtractions. This interaction has been attributed to the concurrent involvement of time estimation and arithmetic with general intelligence and working memory. Given the extant evidence of a relationship between time and number, here we test the stronger hypothesis that time estimation correlates specifically with mathematical intelligence, and not with general intelligence or working-memory capacity. Participants performed a (prospective) time estimation experiment, completed several subtests of the WAIS intelligence test, and self-rated their mathematical skill. For five different durations, we found that time estimation correlated with both arithmetic ability and self-rated mathematical skill. Controlling for non-mathematical intelligence (including working memory capacity) did not change the results. Conversely, correlations between time estimation and non-mathematical intelligence either were nonsignificant, or disappeared after controlling for mathematical intelligence. We conclude that time estimation specifically predicts mathematical intelligence. On the basis of the relevant literature, we furthermore conclude that the relationship between time estimation and mathematical intelligence is likely due to a common reliance on spatial ability.
Pflueger, Marlon O; Calabrese, Pasquale; Studerus, Erich; Zimmermann, Ronan; Gschwandtner, Ute; Borgwardt, Stefan; Aston, Jacqueline; Stieglitz, Rolf-Dieter; Riecher-Rössler, Anita
2018-01-01
Episodic memory encoding and working memory (WM) deficits are among the first cognitive signs and symptoms in the course of schizophrenia spectrum disorders. However, it is not clear whether the deficit pattern is generalized or specific in nature. We hypothesized that encoding deficits at an early stage of the disease might be due to the more fundamental WM deficits. We examined episodic memory encoding and WM by administering the California Verbal Learning Test, a 2-back task, and the Wisconsin Card Sorting Test in 90 first-episode psychosis (FE) patients and 116 individuals with an at-risk mental state for psychosis (ARMS) compared to 57 healthy subjects. Learning progress, but not span of apprehension, was diminished to a similar extent in both the ARMS and the FE. We showed that this was due to WM impairment by applying a structural equation approach. Thus, we conclude that verbal memory encoding deficits are secondary to primary WM impairment in emerging psychosis.
Short term memory and working memory in blind versus sighted children.
Withagen, Ans; Kappers, Astrid M L; Vervloed, Mathijs P J; Knoors, Harry; Verhoeven, Ludo
2013-07-01
There is evidence that blind people may strengthen their memory skills to compensate for absence of vision. However, which aspects of memory are involved is open to debate and a developmental perspective is generally lacking. In the present study, we compared the short term memory (STM) and working memory (WM) of 10-year-old blind children and sighted children. STM was measured using digit span forward, name learning, and word span tasks; WM was measured using listening span and digit span backward tasks. The blind children outperformed their sighted peers on both STM and WM tasks. The enhanced capacity of the blind children on digit span and other STM tasks confirms the results of earlier research; the significantly better performance of the blind children relative to their sighted peers on verbal WM tasks is a new interesting finding. Task characteristics, including the verbal nature of the WM tasks and strategies used to perform these tasks, are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of working memory load and repeated scenario exposure on emergency braking performance.
Engström, Johan; Aust, Mikael Ljung; Viström, Matias
2010-10-01
The objective of the present study was to examine the effect of working memory load on drivers' responses to a suddenly braking lead vehicle and whether this effect (if any) is moderated by repeated scenario exposure. Several experimental studies have found delayed braking responses to lead vehicle braking events during concurrent performance of nonvisual, working memory-loading tasks, such as hands-free phone conversation. However, the common use of repeated, and hence somewhat expected, braking events may undermine the generalizability of these results to naturalistic, unexpected, emergency braking scenarios. A critical lead vehicle braking scenario was implemented in a fixed-based simulator.The effects of working memory load and repeated scenario exposure on braking performance were examined. Brake response time was decomposed into accelerator pedal release time and accelerator-to-brake pedal movement time. Accelerator pedal release times were strongly reduced with repeated scenario exposure and were delayed by working memory load with a small but significant amount (178 ms).The two factors did not interact. There were no effects on accelerator-to-brake pedal movement time. The results suggest that effects of working memory load on response performance obtained from repeated critical lead vehicle braking scenarios may be validly generalized to real world unexpected events. The results have important implications for the interpretation of braking performance in experimental settings, in particular in the context of safety-related evaluation of in-vehicle information and communication technologies.
Jipp, Meike
2016-12-01
This study explored whether working memory and sustained attention influence cognitive lock-up, which is a delay in the response to consecutive automation failures. Previous research has demonstrated that the information that automation provides about failures and the time pressure that is associated with a task influence cognitive lock-up. Previous research has also demonstrated considerable variability in cognitive lock-up between participants. This is why individual differences might influence cognitive lock-up. The present study tested whether working memory-including flexibility in executive functioning-and sustained attention might be crucial in this regard. Eighty-five participants were asked to monitor automated aircraft functions. The experimental manipulation consisted of whether or not an initial automation failure was followed by a consecutive failure. Reaction times to the failures were recorded. Participants' working-memory and sustained-attention abilities were assessed with standardized tests. As expected, participants' reactions to consecutive failures were slower than their reactions to initial failures. In addition, working-memory and sustained-attention abilities enhanced the speed with which participants reacted to failures, more so with regard to consecutive than to initial failures. The findings highlight that operators with better working memory and sustained attention have small advantages when initial failures occur, but their advantages increase across consecutive failures. The results stress the need to consider personnel selection strategies to mitigate cognitive lock-up in general and training procedures to enhance the performance of low ability operators. © 2016, Human Factors and Ergonomics Society.
Kinno, Ryuta; Shiromaru, Azusa; Mori, Yukiko; Futamura, Akinori; Kuroda, Takeshi; Yano, Satoshi; Murakami, Hidetomo; Ono, Kenjiro
2017-01-01
The Wechsler Memory Scale-Revised (WMS-R) is one of the internationally well-known batteries for memory assessment in a general memory clinic setting. Several factor structures of the WMS-R for patients aged under 74 have been proposed. However, little is known about the factor structure of the WMS-R for patients aged over 75 years and its neurological significance. Thus, we conducted exploratory factor analysis to determine the factor structure of the WMS-R for patients aged over 75 years in a memory clinic setting. Regional cerebral blood flow (rCBF) was calculated from single-photon emission computed tomography data. Cortical thickness and cortical fractal dimension, as the marker of cortical complexity, were calculated from high resolution magnetic resonance imaging data. We found that the four factors appeared to be the most appropriate solution to the model, including recognition memory, paired associate memory, visual-and-working memory, and attention as factors. Patients with mild cognitive impairments showed significantly higher factor scores for paired associate memory, visual-and-working memory, and attention than patients with Alzheimer's disease. Regarding the neuroimaging data, the factor scores for paired associate memory positively correlated with rCBF in the left pericallosal and hippocampal regions. Moreover, the factor score for paired associate memory showed most robust correlations with the cortical thickness in the limbic system, whereas the factor score for attention correlated with the cortical thickness in the bilateral precuneus. Furthermore, each factor score correlated with the cortical fractal dimension in the bilateral frontotemporal regions. Interestingly, the factor scores for the visual-and-working memory and attention selectively correlated with the cortical fractal dimension in the right posterior cingulate cortex and right precuneus cortex, respectively. These findings demonstrate that recognition memory, paired associate memory, visual-and-working memory, and attention can be crucial factors for interpreting the WMS-R results of elderly patients aged over 75 years in a memory clinic setting. Considering these findings, the results of WMS-R in elderly patients aged over 75 years in a memory clinic setting should be cautiously interpreted.
Napping on the Night Shift: A Study of Sleep, Performance, and Learning in Physicians-in-Training.
McDonald, Jennifer; Potyk, Darryl; Fischer, David; Parmenter, Brett; Lillis, Teresa; Tompkins, Lindsey; Bowen, Angela; Grant, Devon; Lamp, Amanda; Belenky, Gregory
2013-12-01
Physicians in training experience fatigue from sleep loss, high workload, and working at an adverse phase of the circadian rhythm, which collectively degrades task performance and the ability to learn and remember. To minimize fatigue and sustain performance, learning, and memory, humans generally need 7 to 8 hours of sleep in every 24-hour period. In a naturalistic, within-subjects design, we studied 17 first- and second-year internal medicine residents working in a tertiary care medical center, rotating between day shift and night float every 4 weeks. We studied each resident for 2 weeks while he/she worked the day shift and for 2 weeks while he/she worked the night float, objectively measuring sleep by wrist actigraphy, vigilance by the Psychomotor Vigilance Task test, and visual-spatial and verbal learning and memory by the Brief Visuospatial Memory Test-Revised and the Rey Auditory-Verbal Learning Test. Residents, whether working day shift or night float, slept approximately 7 hours in every 24-hour period. Residents, when working day shift, consolidated their sleep into 1 main sleep period at night. Residents working night float split their sleep, supplementing their truncated daytime sleep with nighttime on-duty naps. There was no difference in vigilance or learning and memory, whether residents worked day shift or night float. Off-duty sleep supplemented with naps while on duty appears to be an effective strategy for sustaining vigilance, learning, and memory when working night float.
Generalized Hough Transform for Object Classification in the Maritime Domain
2015-12-01
and memory storage problems of the GHT in this work . Neural networks have been used to provide excellent solutions to real-world problems in many...1 A. THESIS OBJECTIVE ...............................................................................1 B. RELATED WORK ...SIGNIFICANT CONTRIBUTIONS ......................................................47 B. RECOMMENDATIONS FOR FUTURE WORK ................................48
van Iterson, Loretta; de Jong, Peter F
2018-01-01
While short-term memory (STM) and working memory (WM) are understood as being crucial for learning, and children with epilepsy often experience learning difficulties, little is known about the age-related development of memory span tasks in children with epilepsy. Short-term memory and WM, operationalized as digit span forwards (DSF) or digit span backwards (DSB), respectively, were studied. Participants were 314 children with epilepsy and 327 typically developing children in ages between 5 and 15years and full scale intelligence quotient (FS-IQ)≥75. Cross-sectional analyses of the data were done with analyses of variance and analyses of covariance ((M)ANCOVAs) and generalized linear analyses. The analyses revealed that STM problems in epilepsy were mediated by age-related gains in WM as well as by differences in IQ. Working memory developed at a quick pace in the younger children, the pace slowed down to some extent in the later primary school years and resumed again later on. Working memory problems prevailed in epilepsy, independent of IQ and development of STM. Timing of the epilepsy in terms of age at onset and duration determined memory development. The youngest children with epilepsy showed age-appropriate development in STM but were the most vulnerable in terms of WM development. Later in the course of the epilepsy, the WM problems of the young children attenuated. In later onset epilepsy, WM problems were smaller but persisted over time. Copyright © 2017 Elsevier Inc. All rights reserved.
Spatial-sequential and spatial-simultaneous working memory in individuals with Williams syndrome.
Lanfranchi, Silvia; De Mori, Letizia; Mammarella, Irene C; Carretti, Barbara; Vianello, Renzo
2015-05-01
The aim of the present study was to compare visuospatial working memory performance in 18 individuals with Williams syndrome (WS) and 18 typically developing (TD) children matched for nonverbal mental age. Two aspects were considered: task presentation format (i.e., spatial-sequential or spatial-simultaneous), and level of attentional control (i.e., passive or active tasks). Our results showed that individuals with WS performed less well than TD children in passive spatial-simultaneous tasks, but not in passive spatial-sequential tasks. The former's performance was also worse in both active tasks. These findings suggest an impairment in the spatial-simultaneous working memory of individuals with WS, together with a more generalized difficulty in tasks requiring information storage and concurrent processing, as seen in other etiologies of intellectual disability.
Calhoun, Susan L.; Fernandez-Mendoza, Julio; Vgontzas, Alexandros N.; Mayes, Susan D.; Tsaoussoglou, Marina; Rodriguez-Muñoz, Alfredo; Bixler, Edward O.
2012-01-01
Study Objectives: Although excessive daytime sleepiness (EDS) is a common problem in children, with estimates of 15%; few studies have investigated the sequelae of EDS in young children. We investigated the association of EDS with objective neurocognitive measures and parent reported learning, attention/hyperactivity, and conduct problems in a large general population sample of children. Design: Cross-sectional. Setting: Population based. Participants: 508 children from The Penn State Child Cohort. Interventions: N/A. Measurements and Results: Children underwent a 9-h polysomnogram, comprehensive neurocognitive testing, and parent rating scales. Children were divided into 2 groups: those with and without parent-reported EDS. Structural equation modeling was used to examine whether processing speed and working memory performance would mediate the relationship between EDS and learning, attention/hyperactivity, and conduct problems. Logistic regression models suggest that parent-reported learning, attention/hyperactivity, and conduct problems, as well as objective measurement of processing speed and working memory are significant sequelae of EDS, even when controlling for AHI and objective markers of sleep. Path analysis demonstrates that processing speed and working memory performance are strong mediators of the association of EDS with learning and attention/hyperactivity problems, while to a slightly lesser degree are mediators from EDS to conduct problems. Conclusions: This study suggests that in a large general population sample of young children, parent-reported EDS is associated with neurobehavioral (learning, attention/hyperactivity, conduct) problems and poorer performance in processing speed and working memory. Impairment due to EDS in daytime cognitive and behavioral functioning can have a significant impact on children's development. Citation: Calhoun SL; Fernandez-Mendoza J; Vgontzas AN; Mayes SD; Tsaoussoglou M; Rodriguez-Muñoz A; Bixler EO. Learning, attention/hyperactivity, and conduct problems as sequelae of excessive daytime sleepiness in a general population study of young children. SLEEP 2012;35(5):627-632. PMID:22547888
Hornung, Caroline; Schiltz, Christine; Brunner, Martin; Martin, Romain
2014-01-01
Early number competence, grounded in number-specific and domain-general cognitive abilities, is theorized to lay the foundation for later math achievement. Few longitudinal studies have tested a comprehensive model for early math development. Using structural equation modeling and mediation analyses, the present work examined the influence of kindergarteners' nonverbal number sense and domain-general abilities (i.e., working memory, fluid intelligence, and receptive vocabulary) and their early number competence (i.e., symbolic number skills) on first grade math achievement (i.e., arithmetic, shape and space skills, and number line estimation) assessed 1 year later. Latent regression models revealed that nonverbal number sense and working memory are central building blocks for developing early number competence in kindergarten and that early number competence is key for first grade math achievement. After controlling for early number competence, fluid intelligence significantly predicted arithmetic and number line estimation while receptive vocabulary significantly predicted shape and space skills. In sum we suggest that early math achievement draws on different constellations of number-specific and domain-general mechanisms.
Hornung, Caroline; Schiltz, Christine; Brunner, Martin; Martin, Romain
2014-01-01
Early number competence, grounded in number-specific and domain-general cognitive abilities, is theorized to lay the foundation for later math achievement. Few longitudinal studies have tested a comprehensive model for early math development. Using structural equation modeling and mediation analyses, the present work examined the influence of kindergarteners' nonverbal number sense and domain-general abilities (i.e., working memory, fluid intelligence, and receptive vocabulary) and their early number competence (i.e., symbolic number skills) on first grade math achievement (i.e., arithmetic, shape and space skills, and number line estimation) assessed 1 year later. Latent regression models revealed that nonverbal number sense and working memory are central building blocks for developing early number competence in kindergarten and that early number competence is key for first grade math achievement. After controlling for early number competence, fluid intelligence significantly predicted arithmetic and number line estimation while receptive vocabulary significantly predicted shape and space skills. In sum we suggest that early math achievement draws on different constellations of number-specific and domain-general mechanisms. PMID:24772098
Neuropsychological factors related to returning to work in patients with higher brain dysfunction.
Kai, Akiko; Hashimoto, Manabu; Okazaki, Tetsuya; Hachisuka, Kenji
2008-12-01
We conducted neuropsychological tests of patients with higher brain dysfunction to examine the characteristics of barriers to employment. We tested 92 patients with higher brain dysfunction (average age of 36.3 +/- 13.8 years old, ranging between 16 and 63 years old, with an average post-injury period of 35.6 +/- 67.8 months) who were hospitalized at the university hospital between February 2002 and June 2007 for further neuropsychological evaluation, conducting the Wechsler Adult Intelligence Scale-Revised (WAIS-R), Wechsler Memory Scale-Revised (WMS-R), the Rivermead Behavioral Memory Test (RBMT), Frontal Assessment Battery (FAB) and Behavioral Assessment of Dysexecutive Syndrome (BADS). The outcomes after discharge were classified between competitive employment, sheltered employment and non-employment, and the three groups were compared using one-way analysis of variance and the Scheffe test. The WAIS-R subtests were mutually compared based on the standard values of significant differences described in the WAIS-R manual. Verbal performance and full scale Intelligence Quotient (IQ) of WAIS-R were 87.7 +/- 15.6 (mean +/- standard deviation), 78.5 +/- 18.1 and 81.0 +/- 17.2, respectively, and verbal memory, visual memory, general memory, attention/concentration and delayed recall were 74.6 +/- 20.0, 76.6 +/- 21.4, 72.0 +/- 20.4, 89.0 +/- 16.5 and 65.2 +/- 20.8, respectively. The competitive employment group showed significantly higher scores in performance IQ and full IQ on the WAIS-R and verbal memory, visual memory, general memory and delayed recall on the WMS-R and RBMT than the non-employment group. The sheltered employment group showed a significantly higher score in delayed recall than the non-employment group. No difference was observed in the FAB or BADS between the three groups. In the subtests of the WAIS-R, the score for Digit Symbol-Coding was significantly lower than almost all the other subtests. For patients with higher brain dysfunction, IQ (full scale IQ > 53.2) and memory (general memory > 74.1) are important indicators in returning to work under the conditions of competitive employment.
Kuhn, Jörg-Tobias; Ise, Elena; Raddatz, Julia; Schwenk, Christin; Dobel, Christian
2016-09-01
Deficits in basic numerical skills, calculation, and working memory have been found in children with developmental dyscalculia (DD) as well as children with attention-deficit/hyperactivity disorder (ADHD). This paper investigates cognitive profiles of children with DD and/or ADHD symptoms (AS) in a double dissociation design to obtain a better understanding of the comorbidity of DD and ADHD. Children with DD-only (N = 33), AS-only (N = 16), comorbid DD+AS (N = 20), and typically developing controls (TD, N = 40) were assessed on measures of basic numerical processing, calculation, working memory, processing speed, and neurocognitive measures of attention. Children with DD (DD, DD+AS) showed deficits in all basic numerical skills, calculation, working memory, and sustained attention. Children with AS (AS, DD+AS) displayed more selective difficulties in dot enumeration, subtraction, verbal working memory, and processing speed. Also, they generally performed more poorly in neurocognitive measures of attention, especially alertness. Children with DD+AS mostly showed an additive combination of the deficits associated with DD-only and A_Sonly, except for subtraction tasks, in which they were less impaired than expected. DD and AS appear to be related to largely distinct patterns of cognitive deficits, which are present in combination in children with DD+AS.
Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Metcalfe, Arron W.S.; Swigart, Anna G.; Menon, Vinod
2014-01-01
The study of developmental disorders can provide a unique window into the role of domain-general cognitive abilities and neural systems in typical and atypical development. Mathematical disabilities (MD) are characterized by marked difficulty in mathematical cognition in the presence of preserved intelligence and verbal ability. Although studies of MD have most often focused on the role of core deficits in numerical processing, domain-general cognitive abilities, in particular working memory (WM), have also been implicated. Here we identify specific WM components that are impaired in children with MD and then examine their role in arithmetic problem solving. Compared to typically developing (TD) children, the MD group demonstrated lower arithmetic performance and lower visuo-spatial working memory (VSWM) scores with preserved abilities on the phonological and central executive components of WM. Whole brain analysis revealed that, during arithmetic problem solving, left posterior parietal cortex, bilateral dorsolateral and ventrolateral prefrontal cortex, cingulate gyrus and precuneus, and fusiform gyrus responses were positively correlated with VSWM ability in TD children, but not in the MD group. Additional analyses using a priori posterior parietal cortex regions previously implicated in WM tasks, demonstrated a convergent pattern of results during arithmetic problem solving. These results suggest that MD is characterized by a common locus of arithmetic and VSWM deficits at both the cognitive and functional neuroanatomical levels. Unlike TD children, children with MD do not use VSWM resources appropriately during arithmetic problem solving. This work advances our understanding of VSWM as an important domain-general cognitive process in both typical and atypical mathematical skill development. PMID:23896444
Visuo-spatialWorking Memory as a Limited Resource of Cognitive Processing
NASA Astrophysics Data System (ADS)
Zimmer, Hubert D.; Münzer, Stefan; Umla-Runge, Katja
Working memory is considered a cognitive component that mainly serves two functions. It temporarily maintains information that was either perceived but is no longer present in the environment, or that was internally generated, and it supplies a work space for transforming and manipulating elements of perception and thinking. Both functions are relevant for a successful interaction with the environment and it is therefore not surprising that WM is a central topic of research in the field of general psychology. This interest is further increased by the fact that WM is seen as a limited resource that constrains cognitive performances.
Moll, Kristina; Göbel, Silke M; Gooch, Debbie; Landerl, Karin; Snowling, Margaret J
2016-01-01
High comorbidity rates between reading disorder (RD) and mathematics disorder (MD) indicate that, although the cognitive core deficits underlying these disorders are distinct, additional domain-general risk factors might be shared between the disorders. Three domain-general cognitive abilities were investigated in children with RD and MD: processing speed, temporal processing, and working memory. Since attention problems frequently co-occur with learning disorders, the study examined whether these three factors, which are known to be associated with attention problems, account for the comorbidity between these disorders. The sample comprised 99 primary school children in four groups: children with RD, children with MD, children with both disorders (RD+MD), and typically developing children (TD controls). Measures of processing speed, temporal processing, and memory were analyzed in a series of ANCOVAs including attention ratings as covariate. All three risk factors were associated with poor attention. After controlling for attention, associations with RD and MD differed: Although deficits in verbal memory were associated with both RD and MD, reduced processing speed was related to RD, but not MD; and the association with RD was restricted to processing speed for familiar nameable symbols. In contrast, impairments in temporal processing and visuospatial memory were associated with MD, but not RD. © Hammill Institute on Disabilities 2014.
Geary, David C.; Hoard, Mary K.; Nugent, Lara; Rouder, Jeffrey N.
2015-01-01
The relation between performance on measures of algebraic cognition and acuity of the approximate number system (ANS) and memory for addition facts was assessed for 171 (92 girls) 9th graders, controlling parental education, sex, reading achievement, speed of numeral processing, fluency of symbolic number processing, intelligence, and the central executive component of working memory. The algebraic tasks assessed accuracy in placing x,y pairs in the coordinate plane, speed and accuracy of expression evaluation, and schema memory for algebra equations. ANS acuity was related to accuracy of placements in the coordinate plane and expression evaluation, but not schema memory. Frequency of fact-retrieval errors was related to schema memory but not coordinate plane or expression evaluation accuracy. The results suggest the ANS may contribute to or is influenced by spatial-numerical and numerical only quantity judgments in algebraic contexts, whereas difficulties in committing addition facts to long-term memory may presage slow formation of memories for the basic structure of algebra equations. More generally, the results suggest different brain and cognitive systems are engaged during the learning of different components of algebraic competence, controlling demographic and domain general abilities. PMID:26255604
Honan, Cynthia A; Brown, Rhonda F; Batchelor, Jennifer
2015-02-01
Perceived cognitive difficulties and cognitive impairment are important determinants of employment in people with multiple sclerosis (pwMS). However, it is not clear how they are related to adverse work outcomes and whether the relationship is influenced by depressive symptoms. Thus, this study examined perceived and actual general cognitive and prospective memory function, and cognitive appraisal accuracy, in relation to adverse work outcomes. The possible mediating and/or moderating role of depression was also examined. A cross-sectional community-based sample of 111 participants (33 males, 78 females) completed the Multiple Sclerosis Work Difficulties Questionnaire (MSWDQ), Beck Depression Inventory - Fast Screen (BDI-FS), and questions related to their current or past employment. They then underwent cognitive testing using the Screening Examination for Cognitive Impairment, Auditory Consonant Trigrams test, Zoo Map Test, and Cambridge Prospective Memory Test. Perceived general cognitive and prospective memory difficulties in the workplace and performance on the respective cognitive tests were found to predict unemployment and reduced work hours since MS diagnosis due to MS. Depression was also related to reduced work hours, but it did not explain the relationship between perceived cognitive difficulties and the work outcomes. Nor was it related to cognitive test performance. The results highlight a need to address the perceptions of cognitive difficulties together with cognitive impairment and levels of depression in vocational rehabilitation programs in pwMS.
Wingen, M; Kuypers, K P C; Ramaekers, J G
2007-07-01
Serotonergic neurotransmission has been implicated in memory impairment. It is unclear however if memory performance is mediated through general 5-HT availability, through specific 5-HT receptors or both. The aim of the present study was to assess the contribution of 5-HT reuptake inhibition and specific blockade of 5-HT(1A) and 5-HT(2A) receptors to memory impairment. The study was conducted according to a randomized, double-blind, placebo-controlled, four-way cross-over design including 16 healthy volunteers. The treatment consisted of oral administration of escitalopram 20 mg + placebo, escitalopram 20 mg + ketanserin 50 mg, escitalopram 20 mg + pindolol 10 mg and placebo on 4 separate days with a washout period of minimum 7 days. Different memory tasks were performed including verbal memory, spatial working memory and reversal learning. Escitalopram showed an impairing effect on immediate verbal recall which nearly reached statistical significance. No effects of escitalopram were found on other types of memory. In combination with pindolol, immediate verbal recall was significantly impaired. Escitalopram in combination with ketanserin impaired spatial working memory significantly. No effects were found on reversal learning. Selective impairment of immediate verbal recall after a 5-HT(1A) partial agonist and selective impairment of spatial working memory performance after 5-HT(2A) receptor antagonist, both in combination with a selective serotonergic reuptake inhibitor (escitalopram), suggests that 5-HT(1A) and 5-HT(2A) receptors are distinctly involved in verbal and spatial memory.
Supramodal parametric working memory processing in humans.
Spitzer, Bernhard; Blankenburg, Felix
2012-03-07
Previous studies of delayed-match-to-sample (DMTS) frequency discrimination in animals and humans have succeeded in delineating the neural signature of frequency processing in somatosensory working memory (WM). During retention of vibrotactile frequencies, stimulus-dependent single-cell and population activity in prefrontal cortex was found to reflect the task-relevant memory content, whereas increases in occipital alpha activity signaled the disengagement of areas not relevant for the tactile task. Here, we recorded EEG from human participants to determine the extent to which these mechanisms can be generalized to frequency retention in the visual and auditory domains. Subjects performed analogous variants of a DMTS frequency discrimination task, with the frequency information presented either visually, auditorily, or by vibrotactile stimulation. Examining oscillatory EEG activity during frequency retention, we found characteristic topographical distributions of alpha power over visual, auditory, and somatosensory cortices, indicating systematic patterns of inhibition and engagement of early sensory areas, depending on stimulus modality. The task-relevant frequency information, in contrast, was found to be represented in right prefrontal cortex, independent of presentation mode. In each of the three modality conditions, parametric modulations of prefrontal upper beta activity (20-30 Hz) emerged, in a very similar manner as recently found in vibrotactile tasks. Together, the findings corroborate a view of parametric WM as supramodal internal scaling of abstract quantity information and suggest strong relevance of previous evidence from vibrotactile work for a more general framework of quantity processing in human working memory.
De Vito, David; Ferrey, Anne E; Fenske, Mark J; Al-Aidroos, Naseem
2018-06-01
Ignoring visual stimuli in the external environment leads to decreased liking of those items, a phenomenon attributed to the affective consequences of attentional inhibition. Here we investigated the generality of this "distractor devaluation" phenomenon by asking whether ignoring stimuli represented internally within visual working memory has the same affective consequences. In two experiments we presented participants with two or three visual stimuli and then, after the stimuli were no longer visible, provided an attentional cue indicating which item in memory was the target they would have to later recall, and which were task-irrelevant distractors. Participants subsequently judged how much they liked these stimuli. Previously-ignored distractors were consistently rated less favorably than targets, replicating prior findings of distractor devaluation. To gain converging evidence, in Experiment 2, we also examined the electrophysiological processes associated with devaluation by measuring individual differences in attention (N2pc) and working memory (CDA) event-related potentials following the attention cue. Larger amplitude of an N2pc-like component was associated with greater devaluation, suggesting that individuals displaying more effective selection of memory targets-an act aided by distractor inhibition-displayed greater levels of distractor devaluation. Individuals showing a larger post-cue CDA amplitude (but not pre-cue CDA amplitude) also showed greater distractor devaluation, supporting prior evidence that visual working-memory resources have a functional role in effecting devaluation. Together, these findings demonstrate that ignoring working-memory representations has affective consequences, and adds to the growing evidence that the contribution of selective-attention mechanisms to a wide range of human thoughts and behaviors leads to devaluation.
Working Memory Capacity Predicts Effects of Methylphenidate on Reversal Learning
van der Schaaf, Marieke E; Fallon, Sean J; ter Huurne, Niels; Buitelaar, Jan; Cools, Roshan
2013-01-01
Increased use of stimulant medication, such as methylphenidate, by healthy college students has raised questions about its cognitive-enhancing effects. Methylphenidate acts by increasing extracellular catecholamine levels and is generally accepted to remediate cognitive and reward deficits in patients with attention deficit hyperactivity disorder. However, the cognitive-enhancing effects of such ‘smart drugs' in the healthy population are still unclear. Here, we investigated effects of methylphenidate (Ritalin, 20 mg) on reward and punishment learning in healthy students (N=19) in a within-subject, double-blind, placebo-controlled cross-over design. Results revealed that methylphenidate effects varied both as a function of task demands and as a function of baseline working memory capacity. Specifically, methylphenidate improved reward vs punishment learning in high-working memory subjects, whereas it impaired reward vs punishment learning in low-working memory subjects. These results contribute to our understanding of individual differences in the cognitive-enhancing effects of methylphenidate in the healthy population. Moreover, they highlight the importance of taking into account both inter- and intra-individual differences in dopaminergic drug research. PMID:23612436
Chevalier, Nicolas; James, Tiffany D; Wiebe, Sandra A; Nelson, Jennifer Mize; Espy, Kimberly Andrews
2014-07-01
The present study addressed whether developmental improvement in working memory span task performance relies upon a growing ability to proactively plan response sequences during childhood. Two hundred thirteen children completed a working memory span task in which they used a touchscreen to reproduce orally presented sequences of animal names. Children were assessed longitudinally at 7 time points between 3 and 10 years of age. Twenty-one young adults also completed the same task. Proactive response sequence planning was assessed by comparing recall durations for the 1st item (preparatory interval) and subsequent items. At preschool age, the preparatory interval was generally shorter than subsequent item recall durations, whereas it was systematically longer during elementary school and in adults. Although children mostly approached the task reactively at preschool, they proactively planned response sequences with increasing efficiency from age 7 on, like adults. These findings clarify the nature of the changes in executive control that support working memory performance with age. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Training of the executive component of working memory: subcortical areas mediate transfer effects.
Dahlin, Erika; Bäckman, Lars; Neely, Anna Stigsdotter; Nyberg, Lars
2009-01-01
Several recent studies show that training can improve working memory (WM) performance. In this review, many issues related to WM training, such as neural basis, transfer effects, and age-related changes are addressed. We focus on our own studies investigating training on tasks taxing the executive updating function and discuss our findings in relation to results from other studies investigating training of the executive component of WM. The review confirms positive behavioral effects of training on working memory. The most common neural pattern following training is fronto-parietal activity decreases. Increases in sub-cortical areas are also frequently reported after training, and we suggest that such increases indicate changes in the underlying skill following training. Transfer effects are in general difficult to demonstrate. Some studies show that older adults increase their performance after WM training. However, transfer effects are small or nonexistent in old age. The main finding in this review is that sub-cortical areas seem to have a critical role in mediating transfer effects to untrained tasks after at least some forms of working memory training (such as updating).
Smeets, Tom; Giesbrecht, Timo; Raymaekers, Linsey; Shaw, Julia; Merckelbach, Harald
2010-01-01
What differentiates those who are able to adapt well to adverse life events (i.e., persons who are resilient) from those who are not (e.g., persons who develop post-traumatic stress symptoms)? Previous work suggests that enhanced autobiographical integration of trauma memories is associated with more severe post-traumatic stress symptoms. Extending this line of work, the present study looked at whether the integration of trauma memories, repressive coping and cognitive reactivity are related to post-traumatic stress symptomatology following negative life events among otherwise healthy young adults (N = 213). Results show that while enhanced integration of trauma memories and high levels of dissociation are related to elevated levels of post-traumatic stress, people who generally engage in repressive coping report fewer post-traumatic stress symptoms. Copyright (c) 2009 John Wiley & Sons, Ltd.
The scope and control of attention as separate aspects of working memory.
Shipstead, Zach; Redick, Thomas S; Hicks, Kenny L; Engle, Randall W
2012-01-01
The present study examines two varieties of working memory (WM) capacity task: visual arrays (i.e., a measure of the amount of information that can be maintained in working memory) and complex span (i.e., a task that taps WM-related attentional control). Using previously collected data sets we employ confirmatory factor analysis to demonstrate that visual arrays and complex span tasks load on separate, but correlated, factors. A subsequent series of structural equation models and regression analyses demonstrate that these factors contribute both common and unique variance to the prediction of general fluid intelligence (Gf). However, while visual arrays does contribute uniquely to higher cognition, its overall correlation to Gf is largely mediated by variance associated with the complex span factor. Thus we argue that visual arrays performance is not strictly driven by a limited-capacity storage system (e.g., the focus of attention; Cowan, 2001), but may also rely on control processes such as selective attention and controlled memory search.
Berggren, Nick; Eimer, Martin
2016-12-01
During the retention of visual information in working memory, event-related brain potentials show a sustained negativity over posterior visual regions contralateral to the side where memorized stimuli were presented. This contralateral delay activity (CDA) is generally believed to be a neural marker of working memory storage. In two experiments, we contrasted this storage account of the CDA with the alternative hypothesis that the CDA reflects the current focus of spatial attention on a subset of memorized items set up during the most recent encoding episode. We employed a sequential loading procedure where participants memorized four task-relevant items that were presented in two successive memory displays (M1 and M2). In both experiments, CDA components were initially elicited contralateral to task-relevant items in M1. Critically, the CDA switched polarity when M2 displays appeared on the opposite side. In line with the attentional activation account, these reversed CDA components exclusively reflected the number of items that were encoded from M2 displays, irrespective of how many M1 items were already held in working memory. On trials where M1 and M2 displays were presented on the same side and on trials where M2 displays appeared nonlaterally, CDA components elicited in the interval after M2 remained sensitive to a residual trace of M1 items, indicating that some activation of previously stored items was maintained across encoding episodes. These results challenge the hypothesis that CDA amplitudes directly reflect the total number of stored objects and suggest that the CDA is primarily sensitive to the activation of a subset of working memory representations within the current focus of spatial attention.
Simmering, Vanessa R; Wood, Chelsey M
2017-08-01
Working memory is a basic cognitive process that predicts higher-level skills. A central question in theories of working memory development is the generality of the mechanisms proposed to explain improvements in performance. Prior theories have been closely tied to particular tasks and/or age groups, limiting their generalizability. The cognitive dynamics theory of visual working memory development has been proposed to overcome this limitation. From this perspective, developmental improvements arise through the coordination of cognitive processes to meet demands of different behavioral tasks. This notion is described as real-time stability, and can be probed through experiments that assess how changing task demands impact children's performance. The current studies test this account by probing visual working memory for colors and shapes in a change detection task that compares detection of changes to new features versus swaps in color-shape binding. In Experiment 1, 3- to 4-year-old children showed impairments specific to binding swaps, as predicted by decreased real-time stability early in development; 5- to 6-year-old children showed a slight advantage on binding swaps, but 7- to 8-year-old children and adults showed no difference across trial types. Experiment 2 tested the proposed explanation of young children's binding impairment through added perceptual structure, which supported the stability and precision of feature localization in memory-a process key to detecting binding swaps. This additional structure improved young children's binding swap detection, but not new-feature detection or adults' performance. These results provide further evidence for the cognitive dynamics and real-time stability explanation of visual working memory development. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Modelling neural correlates of working memory: A coordinate-based meta-analysis
Rottschy, C.; Langner, R.; Dogan, I.; Reetz, K.; Laird, A.R.; Schulz, J.B.; Fox, P.T.; Eickhoff, S.B.
2011-01-01
Working memory subsumes the capability to memorize, retrieve and utilize information for a limited period of time which is essential to many human behaviours. Moreover, impairments of working memory functions may be found in nearly all neurological and psychiatric diseases. To examine what brain regions are commonly and differently active during various working memory tasks, we performed a coordinate-based meta-analysis over 189 fMRI experiments on healthy subjects. The main effect yielded a widespread bilateral fronto-parietal network. Further meta-analyses revealed that several regions were sensitive to specific task components, e.g. Broca’s region was selectively active during verbal tasks or ventral and dorsal premotor cortex were preferentially involved in memory for object identity and location, respectively. Moreover, the lateral prefrontal cortex showed a division in a rostral and a caudal part based on differential involvement in task-set and load effects. Nevertheless, a consistent but more restricted “core” network emerged from conjunctions across analyses of specific task designs and contrasts. This “core” network appears to comprise the quintessence of regions, which are necessary during working memory tasks. It may be argued that the core regions form a distributed executive network with potentially generalized functions for focusing on competing representations in the brain. The present study demonstrates that meta-analyses are a powerful tool to integrate the data of functional imaging studies on a (broader) psychological construct, probing the consistency across various paradigms as well as the differential effects of different experimental implementations. PMID:22178808
Memory effects in nanoparticle dynamics and transport
NASA Astrophysics Data System (ADS)
Sanghi, Tarun; Bhadauria, Ravi; Aluru, N. R.
2016-10-01
In this work, we use the generalized Langevin equation (GLE) to characterize and understand memory effects in nanoparticle dynamics and transport. Using the GLE formulation, we compute the memory function and investigate its scaling with the mass, shape, and size of the nanoparticle. It is observed that changing the mass of the nanoparticle leads to a rescaling of the memory function with the reduced mass of the system. Further, we show that for different mass nanoparticles it is the initial value of the memory function and not its relaxation time that determines the "memory" or "memoryless" dynamics. The size and the shape of the nanoparticle are found to influence both the functional-form and the initial value of the memory function. For a fixed mass nanoparticle, increasing its size enhances the memory effects. Using GLE simulations we also investigate and highlight the role of memory in nanoparticle dynamics and transport.
Executive functioning and general cognitive ability in pregnant women and matched controls.
Onyper, Serge V; Searleman, Alan; Thacher, Pamela V; Maine, Emily E; Johnson, Alicia G
2010-11-01
The current study compared the performances of pregnant women with education- and age-matched controls on a variety of measures that assessed perceptual speed, short-term and working memory capacity, subjective memory complaints, sleep quality, level of fatigue, executive functioning, episodic and prospective memory, and crystallized and fluid intelligence. A primary purpose was to test the hypothesis of Henry and Rendell (2007) that pregnancy-related declines in cognitive functioning would be especially evident in tasks that place a high demand on executive processes. We also investigated a parallel hypothesis: that the pregnant women would experience a broad-based reduction in cognitive capability. Very limited support was found for the executive functioning hypothesis. Pregnant women scored lower only on the measure of verbal fluency (Controlled Oral Word Association Test, COWAT) but not on the Wisconsin Card Sorting Task or on any working memory measures. Furthermore, group differences in COWAT performance disappeared after controlling for verbal IQ (Shipley vocabulary). In addition, there was no support for the general decline hypothesis. We conclude that pregnancy-associated differences in performance observed in the current study were relatively mild and rarely reached either clinical or practical significance.
Pailian, Hrag; Libertus, Melissa E; Feigenson, Lisa; Halberda, Justin
2016-08-01
Research in adults has aimed to characterize constraints on the capacity of Visual Working Memory (VWM), in part because of the system's broader impacts throughout cognition. However, less is known about how VWM develops in childhood. Existing work has reached conflicting conclusions as to whether VWM storage capacity increases after infancy, and if so, when and by how much. One challenge is that previous studies did not control for developmental changes in attention and executive processing, which also may undergo improvement. We investigated the development of VWM storage capacity in children from 3 to 8 years of age, and in adults, while controlling for developmental change in exogenous and endogenous attention and executive control. Our results reveal that, when controlling for improvements in these abilities, VWM storage capacity increases across development and approaches adult-like levels between ages 6 and 8 years. More generally, this work highlights the value of estimating working memory, attention, perception, and decision-making components together.
Napping on the Night Shift: A Study of Sleep, Performance, and Learning in Physicians-in-Training
McDonald, Jennifer; Potyk, Darryl; Fischer, David; Parmenter, Brett; Lillis, Teresa; Tompkins, Lindsey; Bowen, Angela; Grant, Devon; Lamp, Amanda; Belenky, Gregory
2013-01-01
Background Physicians in training experience fatigue from sleep loss, high workload, and working at an adverse phase of the circadian rhythm, which collectively degrades task performance and the ability to learn and remember. To minimize fatigue and sustain performance, learning, and memory, humans generally need 7 to 8 hours of sleep in every 24-hour period. Methods In a naturalistic, within-subjects design, we studied 17 first- and second-year internal medicine residents working in a tertiary care medical center, rotating between day shift and night float every 4 weeks. We studied each resident for 2 weeks while he/she worked the day shift and for 2 weeks while he/she worked the night float, objectively measuring sleep by wrist actigraphy, vigilance by the Psychomotor Vigilance Task test, and visual-spatial and verbal learning and memory by the Brief Visuospatial Memory Test-Revised and the Rey Auditory-Verbal Learning Test. Results Residents, whether working day shift or night float, slept approximately 7 hours in every 24-hour period. Residents, when working day shift, consolidated their sleep into 1 main sleep period at night. Residents working night float split their sleep, supplementing their truncated daytime sleep with nighttime on-duty naps. There was no difference in vigilance or learning and memory, whether residents worked day shift or night float. Conclusions Off-duty sleep supplemented with naps while on duty appears to be an effective strategy for sustaining vigilance, learning, and memory when working night float. PMID:24455014
Gosseries, Olivia; Yu, Qing; LaRocque, Joshua J; Starrett, Michael J; Rose, Nathan S; Cowan, Nelson; Postle, Bradley R
2018-05-02
Although the manipulation of load is popular in visual working memory research, many studies confound general attentional demands with context binding by drawing memoranda from the same stimulus category. In this fMRI study of human observers (both sexes), we created high- versus low-binding conditions, while holding load constant, by comparing trials requiring memory for the direction of motion of one random dot kinematogram (RDK; 1M trials) versus for three RDKs (3M), or versus one RDK and two color patches (1M2C). Memory precision was highest for 1M trials and comparable for 3M and 1M2C trials. And although delay-period activity in occipital cortex did not differ between the three conditions, returning to baseline for all three, multivariate pattern analysis decoding of a remembered RDK from occipital cortex was also highest for 1M trials and comparable for 3M and 1M2C trials. Delay-period activity in intraparietal sulcus (IPS), although elevated for all three conditions, displayed more sensitivity to demands on context binding than to load per se. The 1M-to-3M increase in IPS signal predicted the 1M-to-3M declines in both behavioral and neural estimates of working memory precision. These effects strengthened along a caudal-to-rostral gradient, from IPS0 to IPS5. Context binding-independent load sensitivity was observed when analyses were lateralized and extended into PFC, with trend-level effects evident in left IPS and strong effects in left lateral PFC. These findings illustrate how visual working memory capacity limitations arise from multiple factors that each recruit dissociable brain systems. SIGNIFICANCE STATEMENT Visual working memory capacity predicts performance on a wide array of cognitive and real-world outcomes. At least two theoretically distinct factors are proposed to influence visual working memory capacity limitations: an amodal attentional resource that must be shared across remembered items; and the demands on context binding. We unconfounded these two factors by varying load with items drawn from the same stimulus category ("high demands on context binding") versus items drawn from different stimulus categories ("low demands on context binding"). The results provide evidence for the dissociability, and the neural bases, of these two theorized factors, and they specify that the functions of intraparietal sulcus may relate more strongly to the control of representations than to the general allocation of attention. Copyright © 2018 the authors 0270-6474/18/384357-10$15.00/0.
[Developmental amnesia as a focal cognitive sequela of a neonatal pathology].
Sans, Anna; Colomé, Roser; López-Sala, Anna; Boix, Cristina; Muchart, Jordi; Rebollo, Mónica; Guitet, Montse; Callejón-Póo, Laura; Campistol, Jaume
2011-03-01
The developmental amnesia is a recently known entity that occurs as a consequence of hypoxic-ischemic events in the perinatal period. This is a specific deficit of episodic memory with greater preservation of semantic memory and other memory components such as the immediate and working memory. It occurs in patients without apparent neurological sequelae, with normal psychomotor development and general intelligence. The developmental amnesia has been associated with bilateral involvement of the hippocampus, which is evident in some cases on magnetic resonance imaging (MRI) as signal disturbance and signs of atrophy, or reduced size of the hippocampus in brain volumetric studies. We present six observations of developmental amnesia, their clinical, neuropsychological and neuroimaging findings. All of them show impaired episodic memory with preservation of semantic memory, have a normal general intelligence and follow a regular school with special educational needs. It is necessary to keep in mind this entity in monitoring risk newborns by their perinatal history and include the exploration of memory in neuropsychological study of these subjects. On the other hand, we highlight the specificity of the clinical and neuropsychological profile for the diagnosis of developmental amnesia even in the absence of hippocampal lesions on conventional MRI.
Attentional priority determines working memory precision.
Klyszejko, Zuzanna; Rahmati, Masih; Curtis, Clayton E
2014-12-01
Visual working memory is a system used to hold information actively in mind for a limited time. The number of items and the precision with which we can store information has limits that define its capacity. How much control do we have over the precision with which we store information when faced with these severe capacity limitations? Here, we tested the hypothesis that rank-ordered attentional priority determines the precision of multiple working memory representations. We conducted two psychophysical experiments that manipulated the priority of multiple items in a two-alternative forced choice task (2AFC) with distance discrimination. In Experiment 1, we varied the probabilities with which memorized items were likely to be tested. To generalize the effects of priority beyond simple cueing, in Experiment 2, we manipulated priority by varying monetary incentives contingent upon successful memory for items tested. Moreover, we illustrate our hypothesis using a simple model that distributed attentional resources across items with rank-ordered priorities. Indeed, we found evidence in both experiments that priority affects the precision of working memory in a monotonic fashion. Our results demonstrate that representations of priority may provide a mechanism by which resources can be allocated to increase the precision with which we encode and briefly store information. Copyright © 2014 Elsevier Ltd. All rights reserved.
Infant motor and cognitive abilities and subsequent executive function.
Wu, Meng; Liang, Xi; Lu, Shan; Wang, Zhengyan
2017-11-01
Although executive function (EF) is widely considered crucial to several aspects of life, the mechanisms underlying EF development remain largely unexplored, especially for infants. From a behavioral or neurodevelopmental perspective, motor and general cognitive abilities are linked with EF. EF development is a multistage process that starts with sensorimotor interactive behaviors, which become basic cognitive abilities and, in turn, mature EF. This study aims to examine how infant motor and general cognitive abilities are linked with their EF at 3 years of age. This work also aims to explore the potential processes of EF development from early movement. A longitudinal study was conducted with 96 infants (55 girls and 41 boys). The infants' motor and general cognitive abilities were assessed at 1 and 2 years of age with Bayley Scales of Infant and Toddler Development, Second and Third Editions, respectively. Infants' EFs were assessed at 3 years of age with Working Memory Span task, Day-Night task, Wrapped Gift task, and modified Gift-in-Bag task. Children with higher scores for cognitive ability at 2 years of age performed better in working memory, and children with higher scores for gross motor ability at 2 years performed better in cognitive inhibitory control (IC). Motor ability at 1 year and fine/gross motor ability at 2 years indirectly affected cognitive IC via general cognitive ability at 2 years and working memory. EF development is a multistage process that originates from physical movement to simple cognitive function, and then to complex cognitive function. Infants and toddlers can undergo targeted motor training to promote EF development. Copyright © 2017 Elsevier Inc. All rights reserved.
Curvilinear relationship between phonological working memory load and social-emotional modulation
Mano, Quintino R.; Brown, Gregory G.; Bolden, Khalima; Aupperle, Robin; Sullivan, Sarah; Paulus, Martin P.; Stein, Murray B.
2015-01-01
Accumulating evidence suggests that working memory load is an important factor for the interplay between cognitive and facial-affective processing. However, it is unclear how distraction caused by perception of faces interacts with load-related performance. We developed a modified version of the delayed match-to-sample task wherein task-irrelevant facial distracters were presented early in the rehearsal of pseudoword memoranda that varied incrementally in load size (1-syllable, 2-syllables, or 3-syllables). Facial distracters displayed happy, sad, or neutral expressions in Experiment 1 (N=60) and happy, fearful, or neutral expressions in Experiment 2 (N=29). Facial distracters significantly disrupted task performance in the intermediate load condition (2-syllable) but not in the low or high load conditions (1- and 3-syllables, respectively), an interaction replicated and generalised in Experiment 2. All facial distracters disrupted working memory in the intermediate load condition irrespective of valence, suggesting a primary and general effect of distraction caused by faces. However, sad and fearful faces tended to be less disruptive than happy faces, suggesting a secondary and specific valence effect. Working memory appears to be most vulnerable to social-emotional information at intermediate loads. At low loads, spare capacity is capable of accommodating the combinatorial load (1-syllable plus facial distracter), whereas high loads maximised capacity and deprived facial stimuli from occupying working memory slots to cause disruption. PMID:22928750
Reading disabilities in children: A selective meta-analysis of the cognitive literature.
Kudo, Milagros F; Lussier, Cathy M; Swanson, H Lee
2015-05-01
This article synthesizes literature that compares the academic, cognitive, and behavioral performance of children with and without reading disabilities (RD). Forty-eight studies met the criteria for the meta-analysis, yielding 735 effect sizes (ESs) with an overall weighted ES of 0.98. Small to high ESs in favor of children without RD emerged on measures of cognition (rapid naming [ES = 0.89], phonological awareness [ES = 1.00], verbal working memory [ES = 0.79], short-term memory [ES = 0.56], visual-spatial memory [ES = 0.48], and executive processing [ES = 0.67]), academic achievement (pseudoword reading [ES = 1.85], math [ES = 1.20], vocabulary [ES = 0.83], spelling [ES = 1.25], and writing [ES = 1.20]), and behavior skills (ES = 0.80). Hierarchical linear modeling indicated that specific cognitive process measures (verbal working memory, visual-spatial memory, executive processing, and short-term memory) and intelligence measures (general and verbal intelligence) significantly moderated overall group effect size differences. Overall, the results supported the assumption that cognitive deficits in children with RD are persistent. Copyright © 2015. Published by Elsevier Ltd.
Takao, Keizo; Toyama, Keiko; Nakanishi, Kazuo; Hattori, Satoko; Takamura, Hironori; Takeda, Masatoshi; Miyakawa, Tsuyoshi; Hashimoto, Ryota
2008-01-01
Background Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1) gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy) mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. Results In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. Conclusion Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder. PMID:18945333
Takao, Keizo; Toyama, Keiko; Nakanishi, Kazuo; Hattori, Satoko; Takamura, Hironori; Takeda, Masatoshi; Miyakawa, Tsuyoshi; Hashimoto, Ryota
2008-10-22
Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1) gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy) mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder.
Stochastic memory: getting memory out of noise
NASA Astrophysics Data System (ADS)
Stotland, Alexander; di Ventra, Massimiliano
2011-03-01
Memory circuit elements, namely memristors, memcapacitors and meminductors, can store information without the need of a power source. These systems are generally defined in terms of deterministic equations of motion for the state variables that are responsible for memory. However, in real systems noise sources can never be eliminated completely. One would then expect noise to be detrimental for memory. Here, we show that under specific conditions on the noise intensity memory can actually be enhanced. We illustrate this phenomenon using a physical model of a memristor in which the addition of white noise into the state variable equation improves the memory and helps the operation of the system. We discuss under which conditions this effect can be realized experimentally, discuss its implications on existing memory systems discussed in the literature, and also analyze the effects of colored noise. Work supported in part by NSF.
Geary, David C; Hoard, Mary K; Nugent, Lara; Rouder, Jeffrey N
2015-12-01
The relation between performance on measures of algebraic cognition and acuity of the approximate number system (ANS) and memory for addition facts was assessed for 171 ninth graders (92 girls) while controlling for parental education, sex, reading achievement, speed of numeral processing, fluency of symbolic number processing, intelligence, and the central executive component of working memory. The algebraic tasks assessed accuracy in placing x,y pairs in the coordinate plane, speed and accuracy of expression evaluation, and schema memory for algebra equations. ANS acuity was related to accuracy of placements in the coordinate plane and expression evaluation but not to schema memory. Frequency of fact retrieval errors was related to schema memory but not to coordinate plane or expression evaluation accuracy. The results suggest that the ANS may contribute to or be influenced by spatial-numerical and numerical-only quantity judgments in algebraic contexts, whereas difficulties in committing addition facts to long-term memory may presage slow formation of memories for the basic structure of algebra equations. More generally, the results suggest that different brain and cognitive systems are engaged during the learning of different components of algebraic competence while controlling for demographic and domain general abilities. Copyright © 2015 Elsevier Inc. All rights reserved.
Fenton, Olivia; Ecker, Ullrich K H
2015-04-01
The present study investigated how eating disorder (ED) relevant information is updated in working memory in people with high vs. low scores on a measure of eating disorder pathology (the Eating Disorder Examination Questionnaire, EDE-Q). Participants performed two memory updating tasks. One was a neutral control task using digits; the other task involved food words and words relating to body-shape, and provided measures of updating speed and post-updating recall. We found that high EDE-Q participants (1) showed no sign of general memory updating impairment as indicated by performance in the control task; (2) showed a general recall deficit in the task involving ED-relevant stimuli, suggesting a general distraction of cognitive resources in the presence of ED-related items; (3) showed a relative facilitation in the recall of food words; and (4) showed quicker updating toward food words and relatively slower updating toward body-shape-related words. Results are discussed in the context of cognitive theories of eating disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.
Béracochéa, Daniel
2005-01-01
Chronic alcohol consumption (CAC) can lead to the Korsakoff syndrome (KS), a memory deficiency attributed to diencephalic damage and/or to medial temporal or cortical related dysfunction. The etiology of KS remains unclear. Most animal models of KS involve thiamine-deficient diets associated with pyrithiamine treatment. Here we present a mouse model of CAC-induced KS. We demonstrate that CAC-generated retrieval memory deficits in working/ episodic memory tasks, together with a reduction of fear reactivity, result from damage to the mammillary bodies (MB). Experimental lesions of MB in non-alcoholic mice produced the same memory and emotional impairments. Drugs having anxiogenic-like properties counteract such impairments produced by CAC or by MB lesions. We suggest (a) that MB are the essential components of a brain network underlying emotional processes, which would be critically important in the retrieval processes involved in working/ episodic memory tasks, and (b) that failure to maintain emotional arousal due to MB damage can be a main factor of CAC-induced memory deficits. Overall, our animal model fits well with general neuropsychological and anatomic impairments observed in KS.
Béracochéa, Daniel
2005-01-01
Chronic alcohol consumption (CAC) can lead to the Korsakoff syndrome (KS), a memory deficiency attributed to diencephalie damage and/or to medial temporal or cortical related dysfunction. The etiology of KS remains unclear. Most animal models of KS involve thiaminedeficient diets associated with pyrithiamine treatment. Here we present a mouse model of CAC-induced KS. We demonstrate that CAC-generated retrieval memory deficits in working/ episodic memory tasks, together with a reduction of fear reactivity, result from damage to the mammillary bodies (MB). Experimental lesions of MB in non-alcoholic mice produced the same memory and emotional impairments. Drugs having anxiogenic-like properties counteract such impairments produced by CAC or by MB lesions. We suggest (a) that MB are the essential components of a brain network underlying emotional processes, which would be critically important in the retrieval processes involved in working/ episodic memory tasks, and (b) that failure to maintain emotional arousal due to MB damage can be a main factor of CAC-induced memory deficits. Overall, our animal model fits well with general neuropsychological and anatomic impairments observed in KS. PMID:16444899
Memory and cognitive control in an integrated theory of language processing.
Slevc, L Robert; Novick, Jared M
2013-08-01
Pickering & Garrod's (P&G's) integrated model of production and comprehension includes no explicit role for nonlinguistic cognitive processes. Yet, how domain-general cognitive functions contribute to language processing has become clearer with well-specified theories and supporting data. We therefore believe that their account can benefit by incorporating functions like working memory and cognitive control into a unified model of language processing.
Cognitive training with casual video games: points to consider.
Baniqued, Pauline L; Kranz, Michael B; Voss, Michelle W; Lee, Hyunkyu; Cosman, Joshua D; Severson, Joan; Kramer, Arthur F
2014-01-07
Brain training programs have proliferated in recent years, with claims that video games or computer-based tasks can broadly enhance cognitive function. However, benefits are commonly seen only in trained tasks. Assessing generalized improvement and practicality of laboratory exercises complicates interpretation and application of findings. In this study, we addressed these issues by using active control groups, training tasks that more closely resemble real-world demands and multiple tests to determine transfer of training. We examined whether casual video games can broadly improve cognition, and selected training games from a study of the relationship between game performance and cognitive abilities. A total of 209 young adults were randomized into a working memory-reasoning group, an adaptive working memory-reasoning group, an active control game group, and a no-contact control group. Before and after 15 h of training, participants completed tests of reasoning, working memory, attention, episodic memory, perceptual speed, and self-report measures of executive function, game experience, perceived improvement, knowledge of brain training research, and game play outside the laboratory. Participants improved on the training games, but transfer to untrained tasks was limited. No group showed gains in reasoning, working memory, episodic memory, or perceptual speed, but the working memory-reasoning groups improved in divided attention, with better performance in an attention-demanding game, a decreased attentional blink and smaller trail-making costs. Perceived improvements did not differ across training groups and those with low reasoning ability at baseline showed larger gains. Although there are important caveats, our study sheds light on the mixed effects in the training and transfer literature and offers a novel and potentially practical training approach. Still, more research is needed to determine the real-world benefits of computer programs such as casual games.
Eskildsen, Anita; Andersen, Lars Peter; Pedersen, Anders Degn; Vandborg, Sanne Kjær; Andersen, Johan Hviid
2015-01-01
Patients on sick leave due to work-related stress often complain about impaired concentration and memory. However, it is undetermined how widespread these impairments are, and which cognitive domains are most long-term stress sensitive. Previous studies show inconsistent results and are difficult to synthesize. The primary aim of this study was to examine whether patients with work-related stress complaints have cognitive impairments compared to a matched control group without stress. Our secondary aim was to examine whether the level of self-reported perceived stress is associated with neuropsychological test performance. We used a broad neuropsychological test battery to assess 59 outpatients with work-related stress complaints (without major depression) and 59 healthy controls. We matched the patients and controls pairwise by sex, age and educational level. Compared to controls, patients generally showed mildly reduced performance across all the measured domains of the neuropsychological test battery. However, only three comparisons reached statistical significance (p < 0.05). Effect sizes (Cohen's d) were generally small to medium. The most pronounced differences between patients and controls were seen on tests of prospective memory, speed and complex working memory. There were no statistical significant associations between self-reported perceived stress level and neuropsychological test performance. In conclusion, we recommend that cognitive functions should be considered when evaluating patients with work-related stress complaints, especially when given advice regarding return to work. Since this study had a cross-sectional design, it is still uncertain whether the impairments are permanent. Further study is required to establish causal links between work-related stress and cognitive deficits.
The impact of threat of shock-induced anxiety on memory encoding and retrieval
Bolton, Sorcha
2017-01-01
Anxiety disorders are the most common mental health disorders, and daily transient feelings of anxiety (or “stress”) are ubiquitous. However, the precise impact of both transient and pathological anxiety on higher-order cognitive functions, including short- and long-term memory, is poorly understood. A clearer understanding of the anxiety–memory relationship is important as one of the core symptoms of anxiety, most prominently in post-traumatic stress disorder (PTSD), is intrusive reexperiencing of traumatic events in the form of vivid memories. This study therefore aimed to examine the impact of induced anxiety (threat of shock) on memory encoding and retrieval. Eighty-six healthy participants completed tasks assessing: visuospatial working memory, verbal recognition, face recognition, and associative memory. Critically, anxiety was manipulated within-subjects: information was both encoded and retrieved under threat of shock and safe (no shock) conditions. Results revealed that visuospatial working memory was enhanced when information was encoded and subsequently retrieved under threat, and that threat impaired the encoding of faces regardless of the condition in which it was retrieved. Episodic memory and verbal short-term recognition were, however, unimpaired. These findings indicate that transient anxiety in healthy individuals has domain-specific, rather than domain-general, impacts on memory. Future studies would benefit from expanding these findings into anxiety disorder patients to delineate the differences between adaptive and maladaptive responding. PMID:28916628
Effects of levodopa on corticostriatal circuits supporting working memory in Parkinson's disease.
Simioni, Alison C; Dagher, Alain; Fellows, Lesley K
2017-08-01
Working memory dysfunction is common in Parkinson's disease, even in its early stages, but its neural basis is debated. Working memory performance likely reflects a balance between corticostriatal dysfunction and compensatory mechanisms. We tested this hypothesis by examining working memory performance with a letter n-back task in 19 patients with mild-moderate Parkinson's disease and 20 demographically matched healthy controls. Parkinson's disease patients were tested after an overnight washout of their usual dopamine replacement therapy, and again after a standard dose of levodopa. FMRI was used to assess task-related activation and resting state functional connectivity; changes in BOLD signal were related to performance to disentangle pathological and compensatory processes. Parkinson's disease patients off dopamine replacement therapy displayed significantly reduced spatial extent of task-related activation in left prefrontal and bilateral parietal cortex, and poorer working memory performance, compared to controls. Amongst the Parkinson's disease patients off dopamine replacement therapy, relatively better performance was associated with greater activation of right dorsolateral prefrontal cortex compared to controls, consistent with compensatory right hemisphere recruitment. Administration of levodopa remediated the working memory deficit in the Parkinson's disease group, and resulted in a different pattern of performance-correlated activity, with a shift to greater left ventrolateral prefrontal cortex activation in patients on, compared to off dopamine replacement therapy. Levodopa also significantly increased resting-state functional connectivity between caudate and right parietal cortex (within the right fronto-parietal attentional network). The strength of this connectivity contributed to better performance in patients and controls, suggesting a general compensatory mechanism. These findings argue that Parkinson's disease patients can recruit additional neural resources, here, the right fronto-parietal network, to optimize working memory performance despite impaired corticostriatal function. Levodopa seems to both boost engagement of a task-specific prefrontal region, and strengthen a putative compensatory caudate-cortical network to support this executive function. Copyright © 2017 Elsevier Ltd. All rights reserved.
Memory Transformation Enhances Reinforcement Learning in Dynamic Environments.
Santoro, Adam; Frankland, Paul W; Richards, Blake A
2016-11-30
Over the course of systems consolidation, there is a switch from a reliance on detailed episodic memories to generalized schematic memories. This switch is sometimes referred to as "memory transformation." Here we demonstrate a previously unappreciated benefit of memory transformation, namely, its ability to enhance reinforcement learning in a dynamic environment. We developed a neural network that is trained to find rewards in a foraging task where reward locations are continuously changing. The network can use memories for specific locations (episodic memories) and statistical patterns of locations (schematic memories) to guide its search. We find that switching from an episodic to a schematic strategy over time leads to enhanced performance due to the tendency for the reward location to be highly correlated with itself in the short-term, but regress to a stable distribution in the long-term. We also show that the statistics of the environment determine the optimal utilization of both types of memory. Our work recasts the theoretical question of why memory transformation occurs, shifting the focus from the avoidance of memory interference toward the enhancement of reinforcement learning across multiple timescales. As time passes, memories transform from a highly detailed state to a more gist-like state, in a process called "memory transformation." Theories of memory transformation speak to its advantages in terms of reducing memory interference, increasing memory robustness, and building models of the environment. However, the role of memory transformation from the perspective of an agent that continuously acts and receives reward in its environment is not well explored. In this work, we demonstrate a view of memory transformation that defines it as a way of optimizing behavior across multiple timescales. Copyright © 2016 the authors 0270-6474/16/3612228-15$15.00/0.
Episodic memories predict adaptive value-based decision-making
Murty, Vishnu; FeldmanHall, Oriel; Hunter, Lindsay E.; Phelps, Elizabeth A; Davachi, Lila
2016-01-01
Prior research illustrates that memory can guide value-based decision-making. For example, previous work has implicated both working memory and procedural memory (i.e., reinforcement learning) in guiding choice. However, other types of memories, such as episodic memory, may also influence decision-making. Here we test the role for episodic memory—specifically item versus associative memory—in supporting value-based choice. Participants completed a task where they first learned the value associated with trial unique lotteries. After a short delay, they completed a decision-making task where they could choose to re-engage with previously encountered lotteries, or new never before seen lotteries. Finally, participants completed a surprise memory test for the lotteries and their associated values. Results indicate that participants chose to re-engage more often with lotteries that resulted in high versus low rewards. Critically, participants not only formed detailed, associative memories for the reward values coupled with individual lotteries, but also exhibited adaptive decision-making only when they had intact associative memory. We further found that the relationship between adaptive choice and associative memory generalized to more complex, ecologically valid choice behavior, such as social decision-making. However, individuals more strongly encode experiences of social violations—such as being treated unfairly, suggesting a bias for how individuals form associative memories within social contexts. Together, these findings provide an important integration of episodic memory and decision-making literatures to better understand key mechanisms supporting adaptive behavior. PMID:26999046
Unsworth, Nash; McMillan, Brittany D
2013-05-01
Individual differences in mind wandering and reading comprehension were examined in the current study. In particular, individual differences in mind wandering, working memory capacity, interest in the current topic, motivation to do well on the task, and topic experience and their relations with reading comprehension were examined in the current study. Using confirmatory factor analysis and structural equation modeling it was found that variation in mind wandering while reading was influenced by working memory capacity, topic interest, and motivation. Furthermore, these same factors, along with topic experience, influenced individual differences in reading comprehension. Importantly, several factors had direct effects on reading comprehension (and mind wandering), while the relation between reading comprehension (and mind wandering) and other factors occurred via indirect effects. These results suggest that both domain-general and domain-specific factors contribute to mind wandering while reading and to reading comprehension.
How executive functions are related to intelligence in Williams syndrome.
Osório, Ana; Cruz, Raquel; Sampaio, Adriana; Garayzábal, Elena; Martínez-Regueiro, Rocío; Gonçalves, Óscar F; Carracedo, Ángel; Fernández-Prieto, Montse
2012-01-01
Williams syndrome is characterized by impairments in executive functions (EFs). However, it remains unknown how distinct types of EFs relate to intelligence in this syndrome. The present study analyzed performance on working memory, inhibiting and shifting, and its links to IQ in a sample of 17 individuals with WS, and compared them with a group of 17 typically developing individuals matched on chronological age and gender. In conclusion, our results suggest that working memory, inhibiting, and shifting relate differently to intelligence in WS as well as in typical development, with working memory being the EF most closely related to intelligence in both groups. Notably, the magnitude of the associations between the three EFs and IQ was substantially higher in the WS group than in the TD group, bringing further confirmation to the notion that frontal lobe impairments may produce a general compromise of several EFs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sherman, Aleksandra; Grabowecky, Marcia; Suzuki, Satoru
2015-08-01
What shapes art appreciation? Much research has focused on the importance of visual features themselves (e.g., symmetry, natural scene statistics) and of the viewer's experience and expertise with specific artworks. However, even after taking these factors into account, there are considerable individual differences in art preferences. Our new result suggests that art preference is also influenced by the compatibility between visual properties and the characteristics of the viewer's visual system. Specifically, we have demonstrated, using 120 artworks from diverse periods, cultures, genres, and styles, that art appreciation is increased when the level of visual complexity within an artwork is compatible with the viewer's visual working memory capacity. The result highlights the importance of the interaction between visual features and the beholder's general visual capacity in shaping art appreciation. (c) 2015 APA, all rights reserved).
ERP Correlates of Encoding Success and Encoding Selectivity in Attention Switching
Yeung, Nick
2016-01-01
Long-term memory encoding depends critically on effective processing of incoming information. The degree to which participants engage in effective encoding can be indexed in electroencephalographic (EEG) data by studying event-related potential (ERP) subsequent memory effects. The current study investigated ERP correlates of memory success operationalised with two different measures—memory selectivity and global memory—to assess whether previously observed ERP subsequent memory effects reflect focused encoding of task-relevant information (memory selectivity), general encoding success (global memory), or both. Building on previous work, the present study combined an attention switching paradigm—in which participants were presented with compound object-word stimuli and switched between attending to the object or the word across trials—with a later recognition memory test for those stimuli, while recording their EEG. Our results provided clear evidence that subsequent memory effects resulted from selective attentional focusing and effective top-down control (memory selectivity) in contrast to more general encoding success effects (global memory). Further analyses addressed the question of whether successful encoding depended on similar control mechanisms to those involved in attention switching. Interestingly, differences in the ERP correlates of attention switching and successful encoding, particularly during the poststimulus period, indicated that variability in encoding success occurred independently of prestimulus demands for top-down cognitive control. These results suggest that while effects of selective attention and selective encoding co-occur behaviourally their ERP correlates are at least partly dissociable. PMID:27907075
Hu, Meng; Clark, Kelsey L.; Gong, Xiajing; Noudoost, Behrad; Li, Mingyao; Moore, Tirin
2015-01-01
Inferotemporal (IT) neurons are known to exhibit persistent, stimulus-selective activity during the delay period of object-based working memory tasks. Frontal eye field (FEF) neurons show robust, spatially selective delay period activity during memory-guided saccade tasks. We present a copula regression paradigm to examine neural interaction of these two types of signals between areas IT and FEF of the monkey during a working memory task. This paradigm is based on copula models that can account for both marginal distribution over spiking activity of individual neurons within each area and joint distribution over ensemble activity of neurons between areas. Considering the popular GLMs as marginal models, we developed a general and flexible likelihood framework that uses the copula to integrate separate GLMs into a joint regression analysis. Such joint analysis essentially leads to a multivariate analog of the marginal GLM theory and hence efficient model estimation. In addition, we show that Granger causality between spike trains can be readily assessed via the likelihood ratio statistic. The performance of this method is validated by extensive simulations, and compared favorably to the widely used GLMs. When applied to spiking activity of simultaneously recorded FEF and IT neurons during working memory task, we observed significant Granger causality influence from FEF to IT, but not in the opposite direction, suggesting the role of the FEF in the selection and retention of visual information during working memory. The copula model has the potential to provide unique neurophysiological insights about network properties of the brain. PMID:26063909
Comparative effect of coffee robusta and coffee arabica (Qahwa) on memory and attention.
Alharbi, Waheeb D M; Azmat, Aisha; Ahmed, Muhammad
2018-04-13
The comparative effects of coffee robusta and coffee arabica (Qahwa) on different attention and memory related assignments were measured in a double-blind study of 300 healthy young adult women who were randomly assigned to one of three different drinks: Group I (coffee robusta sachet dissolved in 100 ml of hot water): Group II (coffee arabica): and group III (100 ml water only). Cognitive function was assessed by standardized tests. Several monitoring cognitive tests and tasks were specifically chosen and performed to investigate the comparative effects of coffee robusta (CR) and coffee arabica (Qahwa; AC) on sleepiness (sleep and clear headed scale), attention (trail A & B, symbol digit, letter cancellation), general cognitive ability (stroop test) and memory (card test). Data was interpreted by analysis of variance (ANOVA). The present study revealed that coffee robusta has beneficial effects on attention, general cognitive ability and memory. Higher though non-significant cognitive scores were associated with coffee robusta consumption. Although, consumption of coffee arabica (Qahwa) has significant effects (P < 0.05) on sleepiness, attention, general cognitive ability and memory and it significantly improve reaction time and correct responses. Since different tasks were related to the sustained attention and working memory processes, results would suggest that coffee arabica (qahwa) could increase the memory and efficiency of the attentional system might be due to the presence of chlorogenic acids (CGA) which are found in less quantity in coffee robusta. However, more studies using larger samples and different tasks are necessary to better understand the effects of coffee robusta and arabica (Qahwa) on attention and memory.
Geary, David C.; Nicholas, Alan; Li, Yaoran; Sun, Jianguo
2016-01-01
The contributions of domain-general abilities and domain-specific knowledge to subsequent mathematics achievement were longitudinally assessed (n = 167) through 8th grade. First grade intelligence and working memory and prior grade reading achievement indexed domain-general effects and domain-specific effects were indexed by prior grade mathematics achievement and mathematical cognition measures of prior grade number knowledge, addition skills, and fraction knowledge. Use of functional data analysis enabled grade-by-grade estimation of overall domain-general and domain-specific effects on subsequent mathematics achievement, the relative importance of individual domain-general and domain-specific variables on this achievement, and linear and non-linear across-grade estimates of these effects. The overall importance of domain-general abilities for subsequent achievement was stable across grades, with working memory emerging as the most important domain-general ability in later grades. The importance of prior mathematical competencies on subsequent mathematics achievement increased across grades, with number knowledge and arithmetic skills critical in all grades and fraction knowledge in later grades. Overall, domain-general abilities were more important than domain-specific knowledge for mathematics learning in early grades but general abilities and domain-specific knowledge were equally important in later grades. PMID:28781382
Hebb learning, verbal short-term memory, and the acquisition of phonological forms in children.
Mosse, Emma K; Jarrold, Christopher
2008-04-01
Recent work using the Hebb effect as a marker for implicit long-term acquisition of serial order has demonstrated a functional equivalence across verbal and visuospatial short-term memory. The current study extends this observation to a sample of five- to six-year-olds using verbal and spatial immediate serial recall and also correlates the magnitude of Hebb learning with explicit measures of word and nonword paired-associate learning. Comparable Hebb effects were observed in both domains, but only nonword learning was significantly related to the magnitude of Hebb learning. Nonword learning was also independently related to individuals' general level of verbal serial recall. This suggests that vocabulary acquisition depends on both a domain-specific short-term memory system and a domain-general process of learning through repetition.
Interference and memory capacity limitations.
Endress, Ansgar D; Szabó, Szilárd
2017-10-01
Working memory (WM) is thought to have a fixed and limited capacity. However, the origins of these capacity limitations are debated, and generally attributed to active, attentional processes. Here, we show that the existence of interference among items in memory mathematically guarantees fixed and limited capacity limits under very general conditions, irrespective of any processing assumptions. Assuming that interference (a) increases with the number of interfering items and (b) brings memory performance to chance levels for large numbers of interfering items, capacity limits are a simple function of the relative influence of memorization and interference. In contrast, we show that time-based memory limitations do not lead to fixed memory capacity limitations that are independent of the timing properties of an experiment. We show that interference can mimic both slot-like and continuous resource-like memory limitations, suggesting that these types of memory performance might not be as different as commonly believed. We speculate that slot-like WM limitations might arise from crowding-like phenomena in memory when participants have to retrieve items. Further, based on earlier research on parallel attention and enumeration, we suggest that crowding-like phenomena might be a common reason for the 3 major cognitive capacity limitations. As suggested by Miller (1956) and Cowan (2001), these capacity limitations might arise because of a common reason, even though they likely rely on distinct processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Prospective memory training in older adults and its relevance for successful aging.
Hering, Alexandra; Rendell, Peter G; Rose, Nathan S; Schnitzspahn, Katharina M; Kliegel, Matthias
2014-11-01
In research on cognitive plasticity, two training approaches have been established: (1) training of strategies to improve performance in a given task (e.g., encoding strategies to improve episodic memory performance) and (2) training of basic cognitive processes (e.g., working memory, inhibition) that underlie a range of more complex cognitive tasks (e.g., planning) to improve both the training target and the complex transfer tasks. Strategy training aims to compensate or circumvent limitations in underlying processes, while process training attempts to augment or to restore these processes. Although research on both approaches has produced some promising findings, results are still heterogeneous and the impact of most training regimes for everyday life is unknown. We, therefore, discuss recent proposals of training regimes aiming to improve prospective memory (i.e., forming and realizing delayed intentions) as this type of complex cognition is highly relevant for independent living. Furthermore, prospective memory is associated with working memory and executive functions and age-related decline is widely reported. We review initial evidence suggesting that both training regimes (i.e., strategy and/or process training) can successfully be applied to improve prospective memory. Conceptual and methodological implications of the findings for research on age-related prospective memory and for training research in general are discussed.
Zoladz, Phillip R; Kalchik, Andrea E; Hoffman, Mackenzie M; Aufdenkampe, Rachael L; Burke, Hanna M; Woelke, Sarah A; Pisansky, Julia M; Talbot, Jeffery N
2014-03-01
Previous work has indicated that stress generally impairs memory retrieval. However, little research has addressed discrepancies that exist in this line of work and the factors that could explain why stress can exert differential effects on retrieval processes. Therefore, we examined the influence of brief, pre-retrieval stress that was administered immediately before testing on long-term memory in males and females. Participants learned a list of 42 words varying in emotional valence and arousal. Following the learning phase, participants were given an immediate free recall test. Twenty-four hours later, participants submerged their non-dominant hand in a bath of ice cold (Stress) or warm (No Stress) water for 3 min. Immediately following this manipulation, participants' memory for the word list was assessed via free recall and recognition tests. We observed no group differences on short-term memory. However, male participants who showed a robust cortisol response to the stress exhibited enhanced long-term recognition memory, while male participants who demonstrated a blunted cortisol response to the stress exhibited impaired long-term recall and recognition memory. These findings suggest that the effects of brief, pre-retrieval stress on long-term memory are sex-specific and mediated by corticosteroid mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.
Lee, Junghee; Green, Michael F.; Calkins, Monica E.; Greenwood, Tiffany A.; Gur, Raquel E.; Gur, Ruben C.; Lazzeroni, Laura C.; Light, Gregory A.; Nuechterlein, Keith H.; Radant, Allen D.; Seidman, Larry J.; Siever, Larry J.; Silverman, Jeremy M.; Sprock, Joyce; Stone, William S.; Sugar, Catherine A.; Swerdlow, Neal R.; Tsuang, Debby W.; Tsuang, Ming T.; Turetsky, Bruce I.; Braff, David L.
2014-01-01
Objectives Working memory impairment has been extensively studied in schizophrenia, but less is known about moderators of the impairment. Using the Consortium on the Genetics of Schizophrenia case-control study (COGS-2), we examined smoking status, types of antipsychotic medication, and history of substance as moderators for working memory impairment in schizophrenia. Methods From 5 sites, 1377 patients with schizophrenia or schizoaffective, depressed type and 1037 healthy controls completed the Letter-Number Span (LNS) Task. The LNS uses intermixed letter and digit stimuli that increase from 2 up to 8 stimuli. In the Forward condition, participants repeated the letters and numbers in the order they were presented. In the Reorder condition, participants repeated the digits in ascending order followed by letters in alphabetical order. Results Schizophrenia patients performed more poorly than controls, with a larger difference on Reorder than Forward conditions. Deficits were associated with symptoms, functional capacity, and functional outcome. Patients who smoked showed larger impairment than nonsmoking patients, primarily due to deficits on the Reorder condition. The impairing association of smoking was more pronounced among patients taking first-generation than those taking second-generation antipsychotic medications. Correlations between working memory and community functioning were stronger for nonsmokers. History of substance use did not moderate working memory impairment. Conclusions Results confirm the working memory impairment in schizophrenia, and indicate smoking status as an important moderator for these deficits. The greater impairment in smokers may reflect added burden of smoking on general health or that patients with greater deficits are more likely to smoke. PMID:25248939
Roussos, Panos; Giakoumaki, Stella G; Adamaki, Eva; Anastasios, Georgakopoulos; Nikos, Robakis K; Bitsios, Panos
2011-01-01
There is evidence supporting a role for the -amino acid oxidase (DAO) locus in schizophrenia. This study aimed to determine the relationship of five single-nucleotide polymorphisms (SNPs) within the DAO gene identified as promising schizophrenia risk genes (rs4623951, rs2111902, rs3918346, rs3741775, and rs3825251) to acoustic startle, prepulse inhibition (PPI), working memory, and personality dimensions. A highly homogeneous study entry cohort (n=530) of healthy, young male army conscripts (n=703) originating from the Greek LOGOS project (Learning On Genetics Of Schizophrenia Spectrum) underwent PPI of the acoustic startle reflex, working memory, and personality assessment. The QTPHASE from the UNPHASED package was used for the association analysis of each SNP or haplotype data, with p-values corrected for multiple testing by running 10 000 permutations of the data. The rs4623951_T-rs3741775_G and rs4623951_T-rs2111902_T diplotypes were associated with reduced PPI and worse performance in working memory tasks and a personality pattern characterized by attenuated anxiety. Median stratification analysis of the risk diplotype group (ie, those individuals homozygous for the T and G alleles (TG+)) showed reduced PPI and working memory performance only in TG+ individuals with high trait anxiety. The rs4623951_T allele, which is the DAO polymorphism most strongly associated with schizophrenia, might tag a haplotype that affects PPI, cognition, and personality traits in general population. Our findings suggest an influence of the gene in the neural substrate mediating sensorimotor gating and working memory, especially when combined with high anxiety and further validate DAO as a candidate gene for schizophrenia and spectrum disorders. PMID:21471957
The Auditory-Visual Speech Benefit on Working Memory in Older Adults with Hearing Impairment
Frtusova, Jana B.; Phillips, Natalie A.
2016-01-01
This study examined the effect of auditory-visual (AV) speech stimuli on working memory in older adults with poorer-hearing (PH) in comparison to age- and education-matched older adults with better hearing (BH). Participants completed a working memory n-back task (0- to 2-back) in which sequences of digits were presented in visual-only (i.e., speech-reading), auditory-only (A-only), and AV conditions. Auditory event-related potentials (ERP) were collected to assess the relationship between perceptual and working memory processing. The behavioral results showed that both groups were faster in the AV condition in comparison to the unisensory conditions. The ERP data showed perceptual facilitation in the AV condition, in the form of reduced amplitudes and latencies of the auditory N1 and/or P1 components, in the PH group. Furthermore, a working memory ERP component, the P3, peaked earlier for both groups in the AV condition compared to the A-only condition. In general, the PH group showed a more robust AV benefit; however, the BH group showed a dose-response relationship between perceptual facilitation and working memory improvement, especially for facilitation of processing speed. Two measures, reaction time and P3 amplitude, suggested that the presence of visual speech cues may have helped the PH group to counteract the demanding auditory processing, to the level that no group differences were evident during the AV modality despite lower performance during the A-only condition. Overall, this study provides support for the theory of an integrated perceptual-cognitive system. The practical significance of these findings is also discussed. PMID:27148106
Lee, Junghee; Green, Michael F; Calkins, Monica E; Greenwood, Tiffany A; Gur, Raquel E; Gur, Ruben C; Lazzeroni, Laura C; Light, Gregory A; Nuechterlein, Keith H; Radant, Allen D; Seidman, Larry J; Siever, Larry J; Silverman, Jeremy M; Sprock, Joyce; Stone, William S; Sugar, Catherine A; Swerdlow, Neal R; Tsuang, Debby W; Tsuang, Ming T; Turetsky, Bruce I; Braff, David L
2015-04-01
Working memory impairment has been extensively studied in schizophrenia, but less is known about moderators of the impairment. Using the Consortium on the Genetics of Schizophrenia case-control study (COGS-2), we examined smoking status, types of antipsychotic medication, and history of substance as moderators for working memory impairment in schizophrenia. From 5 sites, 1377 patients with schizophrenia or schizoaffective, depressed type and 1037 healthy controls completed the letter-number span (LNS) task. The LNS uses intermixed letter and digit stimuli that increase from 2 up to 8 stimuli. In the forward condition, participants repeated the letters and numbers in the order they were presented. In the reorder condition, participants repeated the digits in ascending order followed by letters in alphabetical order. Schizophrenia patients performed more poorly than controls, with a larger difference on reorder than forward conditions. Deficits were associated with symptoms, functional capacity, and functional outcome. Patients who smoked showed larger impairment than nonsmoking patients, primarily due to deficits on the reorder condition. The impairing association of smoking was more pronounced among patients taking first-generation than those taking second-generation antipsychotic medications. Correlations between working memory and community functioning were stronger for nonsmokers. History of substance use did not moderate working memory impairment. Results confirm the working memory impairment in schizophrenia, and indicate smoking status as an important moderator for these deficits. The greater impairment in smokers may reflect added burden of smoking on general health or that patients with greater deficits are more likely to smoke. Copyright © 2014 Elsevier B.V. All rights reserved.
Resummed memory kernels in generalized system-bath master equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavros, Michael G.; Van Voorhis, Troy, E-mail: tvan@mit.edu
2014-08-07
Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between themore » two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the “Landau-Zener resummation” of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics.« less
Guan, Connie Qun; Ye, Feifei; Wagner, Richard K.; Meng, Wanjin; Leong, Che Kan
2014-01-01
The goal of the present study was to test opposing views about four issues concerning predictors of individual differences in Chinese written composition: (a) Whether morphological awareness, syntactic processing, and working memory represent distinct and measureable constructs in Chinese or are just manifestations of general language ability; (b) whether they are important predictors of Chinese written composition, and if so, the relative magnitudes and independence of their predictive relations; (c) whether observed predictive relations are mediated by text comprehension; and (d) whether these relations vary or are developmentally invariant across three years of writing development. Based on analyses of the performance of students in grades 4 (n = 246), 5 (n = 242) and 6 (n = 261), the results supported morphological awareness, syntactic processing, and working memory as distinct yet correlated abilities that made independent contributions to predicting Chinese written composition, with working memory as the strongest predictor. However, predictive relations were mediated by text comprehension. The final model accounted for approximately 75 percent of the variance in Chinese written composition. The results were largely developmentally invariant across the three grades from which participants were drawn. PMID:25530630
Enhanced emotional interference on working memory performance in adults with ADHD.
Marx, Ivo; Domes, Gregor; Havenstein, Carolin; Berger, Christoph; Schulze, Lars; Herpertz, Sabine C
2011-09-01
Subjects with attention-deficit/hyperactivity disorder (ADHD) suffer from both executive dysfunction and deficits in emotion regulation. However, up to now, there has been no research demonstrating a clear impact of emotional dysregulation on cognitive performance in subjects with ADHD. Male and female adults with ADHD (n=39) and gender- and IQ-matched control subjects (n=40) performed an emotional working memory task (n-back task). In the background of the task, we presented neutral and negative stimuli varied in emotional saliency (negative pictures with low saliency, negative pictures with high saliency), but subjects were instructed to ignore these pictures and to process the working memory task as quickly and as accurately as possible. Compared to control subjects, ADHD patients showed both a general working memory deficit and enhanced distractability by emotionally salient stimuli in terms of lower n-back performance accuracy. In particular, while controls showed impaired WM performance when presented with highly arousing negative background pictures, a comparable decrement was observed in the ADHD group already with lowly arousing pictures. Our results suggest that difficulties in suppressing attention towards emotionally laden stimuli might result from deficient executive control in ADHD.
Psychotic Experiences, Working Memory, and the Developing Brain: A Multimodal Neuroimaging Study
Fonville, Leon; Cohen Kadosh, Kathrin; Drakesmith, Mark; Dutt, Anirban; Zammit, Stanley; Mollon, Josephine; Reichenberg, Abraham; Lewis, Glyn; Jones, Derek K.; David, Anthony S.
2015-01-01
Psychotic experiences (PEs) occur in the general population, especially in children and adolescents, and are associated with poor psychosocial outcomes, impaired cognition, and increased risk of transition to psychosis. It is unknown how the presence and persistence of PEs during early adulthood affects cognition and brain function. The current study assessed working memory as well as brain function and structure in 149 individuals, with and without PEs, drawn from a population cohort. Observer-rated PEs were classified as persistent or transient on the basis of longitudinal assessments. Working memory was assessed using the n-back task during fMRI. Dynamic causal modeling (DCM) was used to characterize frontoparietal network configuration and voxel-based morphometry was utilized to examine gray matter. Those with persistent, but not transient, PEs performed worse on the n-back task, compared with controls, yet showed no significant differences in regional brain activation or brain structure. DCM analyses revealed greater emphasis on frontal connectivity within a frontoparietal network in those with PEs compared with controls. We propose that these findings portray an altered configuration of working memory function in the brain, potentially indicative of an adaptive response to atypical development associated with the manifestation of PEs. PMID:26286920
Betancourt, Laura M; Yang, Wei; Brodsky, Nancy L; Gallagher, Paul R; Malmud, Elsa K; Giannetta, Joan M; Farah, Martha J; Hurt, Hallam
2011-01-01
Preclinical studies of gestational cocaine exposure (GCE) show evidence of changes in brain function at the anatomical, physiological, and behavioral levels, to include effects on developing dopaminergic systems. In contrast, human studies have produced less consistent results, with most showing small effects or no effects on developmental outcomes. Important changes in brain structure and function occur through adolescence, therefore it is possible that prenatal cocaine exposure has latent effects on neurocognitive (NC) outcome that do not manifest until adolescence or young adulthood. We examined NC function using a set of 5 tasks designed to tap 4 different systems: inhibitory control, working memory, receptive language, and incidental memory. For each NC task, data were collected longitudinally at ages 12, 14.5 and 17 years and examined using generalized estimating equations. One hundred and nine children completed at least two of the three evaluations. Covariates included in the final model were assessment number, gender, participant age at first assessment, caregiver depression, and two composites from the Home Observation for Measurement of the Environment (HOME), Environmental Stimulation and Parental Nurturance. We found no cocaine effects on inhibitory control, working memory, or receptive language (p=0.18). GCE effects were observed on incidental face memory task (p=0.055), and GCE by assessment number interaction effects were seen on the incidental word memory task (p=0.031). Participant performance on inhibitory control, working memory, and receptive language tasks improved over time. HOME Environmental Stimulation composite was associated with better receptive language functioning. With a larger sample size smaller differences between groups may have been detected. This report shows no evidence of latent effects of GCE on inhibitory control, working memory, or receptive language. GCE effects were observed on the incidental face memory task, and GCE by assessment number interaction effects was seen on the incidental word memory task. Copyright © 2010 Elsevier Inc. All rights reserved.
Neonatal MRI is associated with future cognition and academic achievement in preterm children
Spencer-Smith, Megan; Thompson, Deanne K.; Doyle, Lex W.; Inder, Terrie E.; Anderson, Peter J.; Klingberg, Torkel
2015-01-01
School-age children born preterm are particularly at risk for low mathematical achievement, associated with reduced working memory and number skills. Early identification of preterm children at risk for future impairments using brain markers might assist in referral for early intervention. This study aimed to examine the use of neonatal magnetic resonance imaging measures derived from automated methods (Jacobian maps from deformation-based morphometry; fractional anisotropy maps from diffusion tensor images) to predict skills important for mathematical achievement (working memory, early mathematical skills) at 5 and 7 years in a cohort of preterm children using both univariable (general linear model) and multivariable models (support vector regression). Participants were preterm children born <30 weeks’ gestational age and healthy control children born ≥37 weeks’ gestational age at the Royal Women’s Hospital in Melbourne, Australia between July 2001 and December 2003 and recruited into a prospective longitudinal cohort study. At term-equivalent age ( ±2 weeks) 224 preterm and 46 control infants were recruited for magnetic resonance imaging. Working memory and early mathematics skills were assessed at 5 years (n = 195 preterm; n = 40 controls) and 7 years (n = 197 preterm; n = 43 controls). In the preterm group, results identified localized regions around the insula and putamen in the neonatal Jacobian map that were positively associated with early mathematics at 5 and 7 years (both P < 0.05), even after covarying for important perinatal clinical factors using general linear model but not support vector regression. The neonatal Jacobian map showed the same trend for association with working memory at 7 years (models ranging from P = 0.07 to P = 0.05). Neonatal fractional anisotropy was positively associated with working memory and early mathematics at 5 years (both P < 0.001) even after covarying for clinical factors using support vector regression but not general linear model. These significant relationships were not observed in the control group. In summary, we identified, in the preterm brain, regions around the insula and putamen using neonatal deformation-based morphometry, and brain microstructural organization using neonatal diffusion tensor imaging, associated with skills important for childhood mathematical achievement. Results contribute to the growing evidence for the clinical utility of neonatal magnetic resonance imaging for early identification of preterm infants at risk for childhood cognitive and academic impairment. PMID:26329284
The disruptive effects of pain on n-back task performance in a large general population sample
Attridge, Nina; Noonan, Donna; Eccleston, Christopher; Keogh, Edmund
2015-01-01
Abstract Pain captures attention, displaces current concerns, and prioritises escape and repair. This attentional capture can be measured by its effects on general cognition. Studies on induced pain, naturally occurring acute pain, and chronic pain all demonstrate a detrimental effect on specific tasks of attention, especially those that involve working memory. However, studies to date have relied on relatively small samples and/or one type of pain, thus restricting our ability to generalise to wider populations. We investigated the effect of pain on an n-back task in a large heterogeneous sample of 1318 adults. Participants were recruited from the general population and tested through the internet. Despite the heterogeneity of pain conditions, participant characteristics, and testing environments, we found a performance decrement on the n-back task for those with pain, compared with those without pain; there were significantly more false alarms on nontarget trials. Furthermore, we also found an effect of pain intensity; performance was poorer in participants with higher intensity compared with that in those with lower intensity pain. We suggest that the effects of pain on attention found in the laboratory occur in more naturalistic settings. Pain is common in the general population, and such interruption may have important, as yet uninvestigated, consequences for tasks of everyday cognition that involve working memory, such as concentration, reasoning, motor planning, and prospective memory. PMID:26020226
ERIC Educational Resources Information Center
Geary, David C.; Nicholas, Alan; Li, Yaoran; Sun, Jianguo
2017-01-01
The contributions of domain-general abilities and domain-specific knowledge to subsequent mathematics achievement were longitudinally assessed (n = 167) through 8th grade. First grade intelligence and working memory and prior grade reading achievement indexed domain-general effects, and domain-specific effects were indexed by prior grade…
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Geary, David C.; Compton, Donald L.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Bryant, Joan D.; Schatschneider, Christopher
2010-01-01
The purpose of this study was to examine the interplay between basic numerical cognition and domain-general abilities (such as working memory) in explaining school mathematics learning. First graders (N = 280; mean age = 5.77 years) were assessed on 2 types of basic numerical cognition, 8 domain-general abilities, procedural calculations, and word…
To hear or not to hear: Voice processing under visual load.
Zäske, Romi; Perlich, Marie-Christin; Schweinberger, Stefan R
2016-07-01
Adaptation to female voices causes subsequent voices to be perceived as more male, and vice versa. This contrastive aftereffect disappears under spatial inattention to adaptors, suggesting that voices are not encoded automatically. According to Lavie, Hirst, de Fockert, and Viding (2004), the processing of task-irrelevant stimuli during selective attention depends on perceptual resources and working memory. Possibly due to their social significance, faces may be an exceptional domain: That is, task-irrelevant faces can escape perceptual load effects. Here we tested voice processing, to study whether voice gender aftereffects (VGAEs) depend on low or high perceptual (Exp. 1) or working memory (Exp. 2) load in a relevant visual task. Participants adapted to irrelevant voices while either searching digit displays for a target (Exp. 1) or recognizing studied digits (Exp. 2). We found that the VGAE was unaffected by perceptual load, indicating that task-irrelevant voices, like faces, can also escape perceptual-load effects. Intriguingly, the VGAE was increased under high memory load. Therefore, visual working memory load, but not general perceptual load, determines the processing of task-irrelevant voices.
Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houshmand, Monireh; Hosseini-Khayat, Saied
2011-02-15
Quantum convolutional codes, like their classical counterparts, promise to offer higher error correction performance than block codes of equivalent encoding complexity, and are expected to find important applications in reliable quantum communication where a continuous stream of qubits is transmitted. Grassl and Roetteler devised an algorithm to encode a quantum convolutional code with a ''pearl-necklace'' encoder. Despite their algorithm's theoretical significance as a neat way of representing quantum convolutional codes, it is not well suited to practical realization. In fact, there is no straightforward way to implement any given pearl-necklace structure. This paper closes the gap between theoretical representation andmore » practical implementation. In our previous work, we presented an efficient algorithm to find a minimal-memory realization of a pearl-necklace encoder for Calderbank-Shor-Steane (CSS) convolutional codes. This work is an extension of our previous work and presents an algorithm for turning a pearl-necklace encoder for a general (non-CSS) quantum convolutional code into a realizable quantum convolutional encoder. We show that a minimal-memory realization depends on the commutativity relations between the gate strings in the pearl-necklace encoder. We find a realization by means of a weighted graph which details the noncommutative paths through the pearl necklace. The weight of the longest path in this graph is equal to the minimal amount of memory needed to implement the encoder. The algorithm has a polynomial-time complexity in the number of gate strings in the pearl-necklace encoder.« less
NASA Astrophysics Data System (ADS)
Siddiqui, Maheen; Wedemann, Roseli S.; Jensen, Henrik Jeldtoft
2018-01-01
We explore statistical characteristics of avalanches associated with the dynamics of a complex-network model, where two modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's ideas regarding the neuroses and that consciousness is related with symbolic and linguistic memory activity in the brain. It incorporates the Stariolo-Tsallis generalization of the Boltzmann Machine in order to model memory retrieval and associativity. In the present work, we define and measure avalanche size distributions during memory retrieval, in order to gain insight regarding basic aspects of the functioning of these complex networks. The avalanche sizes defined for our model should be related to the time consumed and also to the size of the neuronal region which is activated, during memory retrieval. This allows the qualitative comparison of the behaviour of the distribution of cluster sizes, obtained during fMRI measurements of the propagation of signals in the brain, with the distribution of avalanche sizes obtained in our simulation experiments. This comparison corroborates the indication that the Nonextensive Statistical Mechanics formalism may indeed be more well suited to model the complex networks which constitute brain and mental structure.
Cognitive Strategies and Skill Acquisition.
1981-02-09
Behavior (Acadmic Press, N.Y., 1974). ( 9). Craik , F.I.M., 8 Lockhart , R.S., Levels of processing : A frame- work for memory research, Journal of...C.D., a Stein, B.S., Some general constraints on learning and memory research, in: F.I.M. Craik 6 L.S. Cermak.(eds.), Levels of Processing and...instructions, or instructions in the use of particular strategies. (Belmont & Butterfield, 1971; Craik & Lockhart , 1972; Weinstein, 1978) have had
Hippocampal GABAB(1a) Receptors Constrain Generalized Contextual Fear
Lynch, Joseph F; Winiecki, Patrick; Gilman, T Lee; Adkins, Jordan M; Jasnow, Aaron M
2017-01-01
Many anxiety disorders are characterized by generalization of fear responses to neutral or ambiguous stimuli. Therefore, a comprehensive understanding of the mechanisms contributing to generalized fear is essential for formulating successful treatments for anxiety disorders. Previous research shows that GABA-mediated presynaptic inhibition has a critical role in cued fear generalization, as animals with genetically deleted presynaptic GABAB(1a) receptors cannot discriminate between CS+ and CS− tones. Work from our laboratory has further identified that GABAB(1a) receptors are necessary for maintaining contextual memory precision, thereby constraining generalized contextual fear. We previously found that GABAB(1a) KO mice show generalized fear to a neutral context 24 h after training, but not 2 h after training. A similar pattern was observed with object location and recognition, suggesting that this receptor subtype affects consolidation and/or retrieval of precise contextual and spatial memories. Here we sought to specifically examine the involvement of GABAB(1a) receptors in consolidation or retrieval of a precise fear memory. To do so, we infused a selective GABAB(1a) receptor antagonist, CGP 36216, intracerebroventricularly (ICV), or locally into the dorsal hippocampus, ventral hippocampus, or anterior cingulate cortex (ACC), during consolidation and retrieval of context fear training. Blockade of GABAB(1a) receptors through ICV, dorsal hippocampal, or ventral hippocampal infusions ‘after' training (consolidation) resulted in fear generalization to the neutral context when mice were tested 24, but not 6 h after training. Post-training infusions of CGP into the ACC, however, did not promote generalized fear. In addition, ICV, dorsal hippocampal, ventral hippocampal, or ACC infusions immediately ‘before' testing (retrieval) did not result in context fear generalization. These data suggest that GABA-mediated presynaptic inhibition is not critical for retrieval of precise contextual memory, but rather has an important role in the long-term consolidation of precise contextual memories and constrains generalized fear responses. PMID:27834391
Tibu, F; Sheridan, M A; McLaughlin, K A; Nelson, C A; Fox, N A; Zeanah, C H
2016-02-01
Young children raised in institutions are exposed to extreme psychosocial deprivation that is associated with elevated risk for psychopathology and other adverse developmental outcomes. The prevalence of attention deficit hyperactivity disorder (ADHD) is particularly high in previously institutionalized children, yet the mechanisms underlying this association are poorly understood. We investigated whether deficits in executive functioning (EF) explain the link between institutionalization and ADHD. A sample of 136 children (aged 6-30 months) was recruited from institutions in Bucharest, Romania, and 72 never institutionalized community children matched for age and gender were recruited through general practitioners' offices. At 8 years of age, children's performance on a number of EF components (working memory, response inhibition and planning) was evaluated. Teachers completed the Health and Behavior Questionnaire, which assesses two core features of ADHD, inattention and impulsivity. Children with history of institutionalization had higher inattention and impulsivity than community controls, and exhibited worse performance on working memory, response inhibition and planning tasks. Lower performances on working memory and response inhibition, but not planning, partially mediated the association between early institutionalization and inattention and impulsivity symptom scales at age 8 years. Institutionalization was associated with decreased EF performance and increased ADHD symptoms. Deficits in working memory and response inhibition were specific mechanisms leading to ADHD in previously institutionalized children. These findings suggest that interventions that foster the development of EF might reduce risk for psychiatric problems in children exposed to early deprivation.
Kerns, Kimberly A; Macoun, Sarah; MacSween, Jenny; Pei, Jacqueline; Hutchison, Marnie
2017-01-01
The current study investigated the efficacy of a game-based process specific intervention for improving attention and working memory in children with Fetal Alcohol Spectrum Disorders (FASD) and Autism Spectrum Disorders (ASD). The Caribbean Quest (CQ) is a 'serious game' that consists of five hierarchically structured tasks, delivered in an adaptive format, targeting different aspects of attention and/or working memory. In addition to game play, the intervention incorporates metacognitive strategies provided by trained educational assistants (EAs), to facilitate generalization and far transfer to academic and daily skills. EAs delivered the intervention to children (ages 6-13) during their regular school day, providing children with instruction in metacognitive strategies to improve game play, with participants completing approximately 12 hours of training over an 8 to 12 school week period. Pre- and post-test analyses revealed significant improvement on measures of working memory and attention, including reduced distractibility and improved divided attention skills. Additionally, children showed significant gains in performance on an academic measure of reading fluency, suggesting that training-related gains in attention and working memory transferred to classroom performance. Exit interviews with EAs revealed that the intervention was easily delivered within the school day, that children enjoyed the intervention, and that children transferred metacognitive strategies learned in game play into the classroom. Preliminary results support this game-based process specific intervention as a potentially effective treatment and useful tool for supporting cognitive improvements in children with FASD or ASD, when delivered as part of an overall treatment plan.
Inferential revision in narrative texts: An ERP study.
Pérez, Ana; Cain, Kate; Castellanos, María C; Bajo, Teresa
2015-11-01
We evaluated the process of inferential revision during text comprehension in adults. Participants with high or low working memory read short texts, in which the introduction supported two plausible concepts (e.g., 'guitar/violin'), although one was more probable ('guitar'). There were three possible continuations: a neutral sentence, which did not refer back to either concept; a no-revise sentence, which referred to a general property consistent with either concept (e.g., '…beautiful curved body'); and a revise sentence, which referred to a property that was consistent with only the less likely concept (e.g., '…matching bow'). Readers took longer to read the sentence in the revise condition, indicating that they were able to evaluate their comprehension and detect a mismatch. In a final sentence, a target noun referred to the alternative concept supported in the revise condition (e.g., 'violin'). ERPs indicated that both working memory groups were able to evaluate their comprehension of the text (P3a), but only high working memory readers were able to revise their initial incorrect interpretation (P3b) and integrate the new information (N400) when reading the revise sentence. Low working memory readers had difficulties inhibiting the no-longer-relevant interpretation and thus failed to revise their situation model, and they experienced problems integrating semantically related information into an accurate memory representation.
Divided attention interferes with fulfilling activity-based intentions.
Brewer, Gene A; Ball, B Hunter; Knight, Justin B; Dewitt, Michael R; Marsh, Richard L
2011-09-01
Two experiments were conducted to examine the effects of divided attention on activity-based prospective memory. After establishing a goal to fulfill an intention upon completion of an ongoing activity, successful completion of the intention generally suffered when attention was being devoted to an additional task (Experiment 1). Forming an implementation intention at encoding ameliorated the negative effects of divided attention (Experiment 2). The results from the present experiments demonstrate that activity-based prospective memory is susceptible to distraction and that implementing encoding strategies that enhance prospective memory performance can reduce this interference. The current work raises interesting questions about the similarities and differences between event- and activity-based prospective memories. Published by Elsevier B.V.
Long-Term Memory and the Control of Attentional Control
Mayr, Ulrich; Kuhns, David; Hubbard, Jason
2014-01-01
Task-switch costs and in particular the switch-cost asymmetry (i.e., the larger costs of switching to a dominant than a non-dominant task) are usually explained in terms of trial-to-trial carry-over of task-specific control settings. Here we argue that task switches are just one example of situations that trigger a transition from working-memory maintenance to updating, thereby opening working memory to interference from long-term memory. We used a new paradigm that requires selecting a spatial location either on the basis of a central cue (i.e., endogenous control of attention) or a peripheral, sudden onset (i.e., exogenous control of attention). We found a strong cost asymmetry that occurred even after short interruptions of otherwise single-task blocks (Exp. 1-3), but that was much stronger when participants had experienced the competing task under conditions of conflict (Exp. 1-2). Experiment 3 showed that the asymmetric costs were due to interruptions per se, rather than to associative interference tied to specific interruption activities. Experiment 4 generalized the basic pattern across interruptions varying in length or control demands and Experiment 5 across primary tasks with response-selection conflict rather than attentional conflict. Combined, the results support a model in which costs of selecting control settings arise when (a) potentially interfering memory traces have been encoded in long-term memory and (b) working-memory is forced from a maintenance mode into an updating mode (e.g., through task interruptions), thereby allowing unwanted retrieval of the encoded memory traces. PMID:24650696
Bull, Rebecca; Espy, Kimberly Andrews; Wiebe, Sandra A.
2009-01-01
This study examined whether measures of short-term memory, working memory, and executive functioning in preschool children predict later proficiency in academic achievement at 7 years of age (third year of primary school). Children were tested in preschool (M age = 4 years, 6 months) on a battery of cognitive measures, and mathematics and reading outcomes (from standardized, norm-referenced school-based assessments) were taken on entry to primary school, and at the end of the first and third year of primary school. Growth curve analyses examined predictors of math and reading achievement across the duration of the study and revealed that better digit span and executive function skills provided children with an immediate head start in math and reading that they maintained throughout the first three years of primary school. Visual-spatial short-term memory span was found to be a predictor specifically of math ability. Correlational and regression analyses revealed that visual short-term and working memory were found to specifically predict math achievement at each time point, while executive function skills predicted learning in general rather than learning in one specific domain. The implications of the findings are discussed in relation to further understanding the role of cognitive skills in different mathematical tasks, and in relation to the impact of limited cognitive skills in the classroom environment. PMID:18473197
ERIC Educational Resources Information Center
Cowan, Richard; Powell, Daisy
2014-01-01
Explanations of the marked individual differences in elementary school mathematical achievement and mathematical learning disability (MLD or dyscalculia) have involved domain-general factors (working memory, reasoning, processing speed, and oral language) and numerical factors that include single-digit processing efficiency and multidigit skills…
ERIC Educational Resources Information Center
Moll, Kristina; Göbel, Silke M.; Gooch, Debbie; Landerl, Karin; Snowling, Margaret J.
2016-01-01
High comorbidity rates between reading disorder (RD) and mathematics disorder (MD) indicate that, although the cognitive core deficits underlying these disorders are distinct, additional domain-general risk factors might be shared between the disorders. Three domain-general cognitive abilities were investigated in children with RD and MD:…
Domain-Specific Knowledge and Why Teaching Generic Skills Does Not Work
ERIC Educational Resources Information Center
Tricot, André; Sweller, John
2014-01-01
Domain-general cognitive knowledge has frequently been used to explain skill when domain-specific knowledge held in long-term memory may provide a better explanation. An emphasis on domain-general knowledge may be misplaced if domain-specific knowledge is the primary factor driving acquired intellectual skills. We trace the long history of…
Horizontal Structure: A Neo-Piagetian Analysis of Structural Parallels across Domains.
ERIC Educational Resources Information Center
McKeough, Anne M.
An analysis of children's narrative composition and art revealed concurrent development at both a general structural level and at a fine-grained detail level. A three-part study investigated whether this general cognitive pattern would be maintained across a different range of tasks: literary composition, scientific reasoning, and working memory.…
Richey, J. Elizabeth; Phillips, Jeffrey S.; Schunn, Christian D.; Schneider, Walter
2014-01-01
Analogical reasoning has been hypothesized to critically depend upon working memory through correlational data [1], but less work has tested this relationship through experimental manipulation [2]. An opportunity for examining the connection between working memory and analogical reasoning has emerged from the growing, although somewhat controversial, body of literature suggests complex working memory training can sometimes lead to working memory improvements that transfer to novel working memory tasks. This study investigated whether working memory improvements, if replicated, would increase analogical reasoning ability. We assessed participants’ performance on verbal and visual analogy tasks after a complex working memory training program incorporating verbal and spatial tasks [3], [4]. Participants’ improvements on the working memory training tasks transferred to other short-term and working memory tasks, supporting the possibility of broad effects of working memory training. However, we found no effects on analogical reasoning. We propose several possible explanations for the lack of an impact of working memory improvements on analogical reasoning. PMID:25188356
Vranić, Andrea; Španić, Ana Marija; Carretti, Barbara; Borella, Erika
2013-11-01
Several studies have shown an increase in memory performance after teaching mnemonic techniques to older participants. However, transfer effects to non-trained tasks are generally either very small, or not found. The present study investigates the efficacy of a multifactorial memory training program for older adults living in a residential care center. The program combines teaching of memory strategies with activities based on metacognitive (metamemory) and motivational aspects. Specific training-related gains in the Immediate list recall task (criterion task), as well as transfer effects on measures of short-term memory, long-term memory, working memory, motivational (need for cognition), and metacognitive aspects (subjective measure of one's memory) were examined. Maintenance of training benefits was assessed after seven months. Fifty-one older adults living in a residential care center, with no cognitive impairments, participated in the study. Participants were randomly assigned to two programs: the experimental group attended the training program, while the active control group was involved in a program in which different psychological issues were discussed. A benefit in the criterion task and substantial general transfer effects were found for the trained group, but not for the active control, and they were maintained at the seven months follow-up. Our results suggest that training procedures, which combine teaching of strategies with metacognitive-motivational aspects, can improve cognitive functioning and attitude toward cognitive activities in older adults.
Load-sensitive impairment of working memory for biological motion in schizophrenia.
Lee, Hannah; Kim, Jejoong
2017-01-01
Impaired working memory (WM) is a core cognitive deficit in schizophrenia. Nevertheless, past studies have reported that patients may also benefit from increasing salience of memory stimuli. Such efficient encoding largely depends upon precise perception. Thus an investigation on the relationship between perceptual processing and WM would be worthwhile. Here, we used biological motion (BM), a socially relevant stimulus that schizophrenics have difficulty discriminating from similar meaningless motions, in a delayed-response task. Non-BM stimuli and static polygons were also used for comparison. In each trial, one of the three types of stimuli was presented followed by two probes, with a short delay in between. Participants were asked to indicate whether one of them was identical to the memory item or both were novel. The number of memory items was one or two. Healthy controls were more accurate in recognizing BM than non-BM regardless of memory loads. Patients with schizophrenia exhibited similar accuracy patterns to those of controls in the Load 1 condition only. These results suggest that information contained in BM could facilitate WM encoding in general, but the effect is vulnerable to the increase of cognitive load in schizophrenia, implying inefficient encoding driven by imprecise perception.
Storbeck, Justin; Maswood, Raeya
2016-08-01
The effects of emotion on working memory and executive control are often studied in isolation. Positive mood enhances verbal and impairs spatial working memory, whereas negative mood enhances spatial and impairs verbal working memory. Moreover, positive mood enhances executive control, whereas negative mood has little influence. We examined how emotion influences verbal and spatial working memory capacity, which requires executive control to coordinate between holding information in working memory and completing a secondary task. We predicted that positive mood would improve both verbal and spatial working memory capacity because of its influence on executive control. Positive, negative and neutral moods were induced followed by completing a verbal (Experiment 1) or spatial (Experiment 2) working memory operation span task to assess working memory capacity. Positive mood enhanced working memory capacity irrespective of the working memory domain, whereas negative mood had no influence on performance. Thus, positive mood was more successful holding information in working memory while processing task-irrelevant information, suggesting that the influence mood has on executive control supersedes the independent effects mood has on domain-specific working memory.
ERIC Educational Resources Information Center
Kolata, Stefan; Light, Kenneth; Grossman, Henya C.; Hale, Gregory; Matzel, Louis D.
2007-01-01
A single factor (i.e., general intelligence) can account for much of an individuals' performance across a wide variety of cognitive tests. However, despite this factor's robustness, the underlying process is still a matter of debate. To address this question, we developed a novel battery of learning tasks to assess the general learning abilities…
[CMACPAR an modified parallel neuro-controller for control processes].
Ramos, E; Surós, R
1999-01-01
CMACPAR is a Parallel Neurocontroller oriented to real time systems as for example Control Processes. Its characteristics are mainly a fast learning algorithm, a reduced number of calculations, great generalization capacity, local learning and intrinsic parallelism. This type of neurocontroller is used in real time applications required by refineries, hydroelectric centers, factories, etc. In this work we present the analysis and the parallel implementation of a modified scheme of the Cerebellar Model CMAC for the n-dimensional space projection using a mean granularity parallel neurocontroller. The proposed memory management allows for a significant memory reduction in training time and required memory size.
NASA Astrophysics Data System (ADS)
Leite, Argentina; Paula Rocha, Ana; Eduarda Silva, Maria
2013-06-01
Heart Rate Variability (HRV) series exhibit long memory and time-varying conditional variance. This work considers the Fractionally Integrated AutoRegressive Moving Average (ARFIMA) models with Generalized AutoRegressive Conditional Heteroscedastic (GARCH) errors. ARFIMA-GARCH models may be used to capture and remove long memory and estimate the conditional volatility in 24 h HRV recordings. The ARFIMA-GARCH approach is applied to fifteen long term HRV series available at Physionet, leading to the discrimination among normal individuals, heart failure patients, and patients with atrial fibrillation.
ERIC Educational Resources Information Center
Matzel, Louis D.; Grossman, Henya; Light, Kenneth; Townsend, David; Kolata, Stefan
2008-01-01
A defining characteristic of age-related cognitive decline is a deficit in general cognitive performance. Here we use a testing and analysis regimen that allows us to characterize the general learning abilities of young (3-5 mo old) and aged (19-21 mo old) male and female Balb/C mice. Animals' performance was assessed on a battery of seven diverse…
Effects of Proactive Interference on Non-Verbal Working Memory
Cyr, Marilyn; Nee, Derek E.; Nelson, Eric; Senger, Thea; Jonides, John; Malapani, Chara
2016-01-01
Working memory (WM) is a cognitive system responsible for actively maintaining and processing relevant information and is central to successful cognition. A process critical to WM is the resolution of proactive interference (PI), which involves suppressing memory intrusions from prior memories that are no longer relevant. Most studies that have examined resistance to PI in a process-pure fashion used verbal material. By contrast, studies using non-verbal material are scarce, and it remains unclear whether the effect of PI is domain-general or whether it applies solely to the verbal domain. The aim of the present study was to examine the effect of PI in visual working memory using both objects with high and low nameability. Using a Directed-Forgetting paradigm, we varied discriminability between WM items on two dimensions, one verbal (high-nameability vs. low-nameability objects) and one perceptual (colored vs. gray objects). As in previous studies using verbal material, effects of PI were found with object stimuli, even after controlling for verbal labels being used (i.e., Low-Nameability condition). We also found that the addition of distinctive features (color, verbal label) increased performance in rejecting intrusion probes, most likely through an increase in discriminability between content-context bindings in WM. PMID:27838866
Working memory in children assessed with serial chaining and Simon tasks.
Parrish, Audrey E; Perdue, Bonnie M; Kelly, Andrew J; Beran, Michael J
2018-06-06
In the serial chaining task, participants are required to produce a sequence of responses to stimuli in the correct order, and sometimes must determine the sequence at trial outset if stimuli are masked after the first response is made. Similarly, the Simon memory span task presents a participant with a sequence of colors, and the participant must recreate the sequence after the full series is shown. In efforts to directly link the comparative literature on sequential planning behavior and working memory span with the developmental literature, we presented preschool children with the serial chaining task using masked Arabic numerals (N = 44) and the Simon memory span task (N = 65). Older children outperformed younger children in each task, sequencing a longer string of numbers in the serial chaining task and remembering a greater number of items in the Simon task. Controlling for the role of age, there was a significant positive relationship between task scores. These results highlight the emergence of working memory skills that might underlie planning capacities in children using a task developed for nonhuman animals, and the results indicate that improvement in general executive functions could be measured using either or both of these tasks among human children and nonhuman species. Copyright © 2018 Elsevier B.V. All rights reserved.
Vandierendonck, André
2016-01-01
Working memory researchers do not agree on whether order in serial recall is encoded by dedicated modality-specific systems or by a more general modality-independent system. Although previous research supports the existence of autonomous modality-specific systems, it has been shown that serial recognition memory is prone to cross-modal order interference by concurrent tasks. The present study used a serial recall task, which was performed in a single-task condition and in a dual-task condition with an embedded memory task in the retention interval. The modality of the serial task was either verbal or visuospatial, and the embedded tasks were in the other modality and required either serial or item recall. Care was taken to avoid modality overlaps during presentation and recall. In Experiment 1, visuospatial but not verbal serial recall was more impaired when the embedded task was an order than when it was an item task. Using a more difficult verbal serial recall task, verbal serial recall was also more impaired by another order recall task in Experiment 2. These findings are consistent with the hypothesis of modality-independent order coding. The implications for views on short-term recall and the multicomponent view of working memory are discussed.
Luchetti, Martina; Sutin, Angelina R
2018-01-01
As an individual's life story evolves across adulthood, the subjective experience (phenomenology) of autobiographical memory likely changes. In addition to age at retrieval, both the recency of the memory and the age when a memory is formed may be particularly important to its phenomenology. The present work examines the effect of three temporal factors on phenomenology ratings: (a) age of the participant, (b) age at the event reported in the memory, and (c) memory age (recency). A large sample of Americans (N = 1120), stratified by chronological age, recalled and rated two meaningful memories, a Turning Point and an Early Childhood Memory. Ratings of phenomenology (e.g., vividness of turning points) were higher among older adults compared to younger adults. Memories of events from the reminiscence bump were more positive in valence than events from other time periods but did not differ on other phenomenological dimensions; recent memories had stronger phenomenology than remote memories. In contrast to phenomenology, narrative content was generally unrelated to participant age, age at the event, or memory age. Overall, the findings indicate age-related differences in how meaningful memories are re-experienced.
Diffusion theory of decision making in continuous report.
Smith, Philip L
2016-07-01
I present a diffusion model for decision making in continuous report tasks, in which a continuous, circularly distributed, stimulus attribute in working memory is matched to a representation of the attribute in the stimulus display. Memory retrieval is modeled as a 2-dimensional diffusion process with vector-valued drift on a disk, whose bounding circle represents the decision criterion. The direction and magnitude of the drift vector describe the identity of the stimulus and the quality of its representation in memory, respectively. The point at which the diffusion exits the disk determines the reported value of the attribute and the time to exit the disk determines the decision time. Expressions for the joint distribution of decision times and report outcomes are obtained by means of the Girsanov change-of-measure theorem, which allows the properties of the nonzero-drift diffusion process to be characterized as a function of a Euclidian-distance Bessel process. Predicted report precision is equal to the product of the decision criterion and the drift magnitude and follows a von Mises distribution, in agreement with the treatment of precision in the working memory literature. Trial-to-trial variability in criterion and drift rate leads, respectively, to direct and inverse relationships between report accuracy and decision times, in agreement with, and generalizing, the standard diffusion model of 2-choice decisions. The 2-dimensional model provides a process account of working memory precision and its relationship with the diffusion model, and a new way to investigate the properties of working memory, via the distributions of decision times. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Olszewska, Justyna M; Reuter-Lorenz, Patricia A; Munier, Emily; Bendler, Sara A
2015-09-01
False working memories readily emerge using a visual item-recognition variant of the converging associates task. Two experiments, manipulating study and test modality, extended prior working memory results by demonstrating a reliable false recognition effect (more false alarms to associatively related lures than to unrelated lures) within seconds of encoding in either the visual or auditory modality. However, false memories were nearly twice as frequent when study lists were seen than when they were heard, regardless of test modality, although study-test modality mismatch was generally disadvantageous (consistent with encoding specificity). A final experiment that varied study-test modality using a hybrid short- and long-term memory test (Flegal, Atkins & Reuter-Lorenz, 2010) replicated the auditory advantage in the short term but revealed a reversal in the long term: The false memory effect was greater in the auditory study-test condition than in the visual study-test condition. Thus, the same encoding conditions gave rise to an opposite modality advantage depending on whether recognition was tested under short-term or long-term memory conditions. Although demonstrating continuity in associative processing across delay, the results indicate that delay condition affects the availability of modality-dependent features of the memory trace and, thus, distinctiveness, leading to dissociable patterns of short- and long-term memory performance. (c) 2015 APA, all rights reserved).
Bianchini, F; Di Vita, A; Palermo, L; Piccardi, L; Blundo, C; Guariglia, C
2014-12-01
The aim of this study was to determine whether an egocentric topographical working memory (WM) deficit is present in the early stages of Alzheimer's disease (AD) with respect to other forms of visuospatial WM. Further, we would investigate whether this deficit could be present in patients having AD without topographical disorientation (TD) signs in everyday life assessed through an informal interview to caregivers. Seven patients with AD and 20 healthy participants performed the Walking Corsi Test and the Corsi Block-Tapping Test. The former test requires memorizing a sequence of places by following a path and the latter is a well-known visuospatial memory task. Patients with AD also performed a verbal WM test to exclude the presence of general WM impairments. Preliminary results suggest that egocentric topographical WM is selectively impaired, with respect to visuospatial and verbal WM, even without TD suggesting an important role of this memory in the early stages of AD. © The Author(s) 2014.
Memory development in the second year: for events or locations?
Russell, James; Thompson, Doreen
2003-04-01
We employed an object-placement/object-removal design, inspired by recent work on 'episodic-like' memory in scrub jays (Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272-274), to examine the possibility that children in the second year of life have event-based memories. In one task, a successful search could have been due to the recall of an object-removal event. In the second task, a successful search could only have been caused by recall of where objects were located. Success was general in the oldest group of children (21-25 months), while performance was broadly similar on the two tasks. The parsimonious interpretation of this outcome is that the first task was performed by location memory, not by event memory. We place these data in the context of object permanence development.
Interregional synaptic maps among engram cells underlie memory formation.
Choi, Jun-Hyeok; Sim, Su-Eon; Kim, Ji-Il; Choi, Dong Il; Oh, Jihae; Ye, Sanghyun; Lee, Jaehyun; Kim, TaeHyun; Ko, Hyoung-Gon; Lim, Chae-Seok; Kaang, Bong-Kiun
2018-04-27
Memory resides in engram cells distributed across the brain. However, the site-specific substrate within these engram cells remains theoretical, even though it is generally accepted that synaptic plasticity encodes memories. We developed the dual-eGRASP (green fluorescent protein reconstitution across synaptic partners) technique to examine synapses between engram cells to identify the specific neuronal site for memory storage. We found an increased number and size of spines on CA1 engram cells receiving input from CA3 engram cells. In contextual fear conditioning, this enhanced connectivity between engram cells encoded memory strength. CA3 engram to CA1 engram projections strongly occluded long-term potentiation. These results indicate that enhanced structural and functional connectivity between engram cells across two directly connected brain regions forms the synaptic correlate for memory formation. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Derraugh, Lesley S; Neath, Ian; Surprenant, Aimée M; Beaudry, Olivia; Saint-Aubin, Jean
2017-03-01
The word-length effect, the finding that lists of short words are better recalled than lists of long words, is 1 of the 4 benchmark phenomena that guided development of the phonological loop component of working memory. However, previous work has noted a confound in word-length studies: The short words used had more orthographic neighbors (valid words that can be made by changing a single letter in the target word) than long words. The confound is that words with more neighbors are better recalled than otherwise comparable words with fewer neighbors. Two experiments are reported that address criticisms of the neighborhood-size account of the word-length effect by (1) testing 2 new stimulus sets, (2) using open rather than closed pools of words, and (3) using stimuli from a language other than English. In both experiments, words from large neighborhoods were better recalled than words from small neighborhoods. The results add to the growing number of studies demonstrating the substantial contribution of long-term memory to what have traditionally been identified as working memory tasks. The data are more easily explained by models incorporating the concept of redintegration rather than by frameworks such as the phonological loop that posit decay offset by rehearsal. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Simms, Victoria; Gilmore, Camilla; Cragg, Lucy; Clayton, Sarah; Marlow, Neil; Johnson, Samantha
2015-02-01
Children born very preterm (<32 wk) are at high risk for mathematics learning difficulties that are out of proportion to other academic and cognitive deficits. However, the etiology of mathematics difficulties in very preterm children is unknown. We sought to identify the nature and origins of preterm children's mathematics difficulties. One hundred and fifteen very preterm children aged 8-10 y were assessed in school with a control group of 77 term-born classmates. Achievement in mathematics, working memory, visuospatial processing, inhibition, and processing speed were assessed using standardized tests. Numerical representations and specific mathematics skills were assessed using experimental tests. Very preterm children had significantly poorer mathematics achievement, working memory, and visuospatial skills than term-born controls. Although preterm children had poorer performance in specific mathematics skills, there was no evidence of imprecise numerical representations. Difficulties in mathematics were associated with deficits in visuospatial processing and working memory. Mathematics difficulties in very preterm children are associated with deficits in working memory and visuospatial processing not numerical representations. Thus, very preterm children's mathematics difficulties are different in nature from those of children with developmental dyscalculia. Interventions targeting general cognitive problems, rather than numerical representations, may improve very preterm children's mathematics achievement.
Consciousness and working memory: Current trends and research perspectives.
Velichkovsky, Boris B
2017-10-01
Working memory has long been thought to be closely related to consciousness. However, recent empirical studies show that unconscious content may be maintained within working memory and that complex cognitive computations may be performed on-line. This promotes research on the exact relationships between consciousness and working memory. Current evidence for working memory being a conscious as well as an unconscious process is reviewed. Consciousness is shown to be considered a subset of working memory by major current theories of working memory. Evidence for unconscious elements in working memory is shown to come from visual masking and attentional blink paradigms, and from the studies of implicit working memory. It is concluded that more research is needed to explicate the relationship between consciousness and working memory. Future research directions regarding the relationship between consciousness and working memory are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Input from the Medial Geniculate Nucleus Modulates Amygdala Encoding of Fear Memory Discrimination
ERIC Educational Resources Information Center
Ferrara, Nicole C.; Cullen, Patrick K.; Pullins, Shane P.; Rotondo, Elena K.; Helmstetter, Fred J.
2017-01-01
Generalization of fear can involve abnormal responding to cues that signal safety and is common in people diagnosed with post-traumatic stress disorder. Differential auditory fear conditioning can be used as a tool to measure changes in fear discrimination and generalization. Most prior work in this area has focused on elevated amygdala activity…
ERIC Educational Resources Information Center
Unsworth, Nash; Engle, Randall W.
2007-01-01
Studies examining individual differences in working memory capacity have suggested that individuals with low working memory capacities demonstrate impaired performance on a variety of attention and memory tasks compared with individuals with high working memory capacities. This working memory limitation can be conceived of as arising from 2…
Does Far Transfer Exist? Negative Evidence From Chess, Music, and Working Memory Training.
Sala, Giovanni; Gobet, Fernand
2017-12-01
Chess masters and expert musicians appear to be, on average, more intelligent than the general population. Some researchers have thus claimed that playing chess or learning music enhances children's cognitive abilities and academic attainment. We here present two meta-analyses assessing the effect of chess and music instruction on children's cognitive and academic skills. A third meta-analysis evaluated the effects of working memory training-a cognitive skill correlated with music and chess expertise-on the same variables. The results show small to moderate effects. However, the effect sizes are inversely related to the quality of the experimental design (e.g., presence of active control groups). This pattern of results casts serious doubts on the effectiveness of chess, music, and working memory training. We discuss the theoretical and practical implications of these findings; extend the debate to other types of training such as spatial training, brain training, and video games; and conclude that far transfer of learning rarely occurs.
The stability of working memory: do previous tasks influence complex span?
Healey, M Karl; Hasher, Lynn; Danilova, Elena
2011-11-01
Schmeichel (2007) reported that performing an initial task before completing a working memory span task can lower span scores and suggested that the effect was due to depleted cognitive resources. We showed that the detrimental effect of prior tasks depends on a match between the stimuli used in the span task and the preceding task. A task requiring participants to ignore words reduced performance on a subsequent word-based verbal span task but not on an arrow-based spatial span task. Ignoring arrows had the opposite pattern of effects: reducing performance on the spatial span task but not on the word-based span task. Finally, we showed that antisaccade, a nonverbal task that taxes domain-general processes implicated in working memory, did not influence subsequent performance of either a verbal or a spatial span task. Together these results suggest that while span is sensitive to prior tasks, that sensitivity does not stem from depleted resources. (PsycINFO Database Record (c) 2011 APA, all rights reserved).
Karatekin, Canan; Bingham, Christopher; White, Tonya
2009-01-01
The goals of the current study were to use behavioral and pupillary measures to examine working memory on a spatial n-back task in 8-20-year-olds with youth-onset psychosis or ADHD (Combined subtype) and healthy controls to determine the contribution of different attentional factors to spatial working memory impairments, and to examine if age-related changes in performance differed across groups. Although both clinical groups had lower perceptual sensitivity on both 0- and 1-back, there was no evidence of an impairment in spatial working memory or differential order effects on the 0-back. Instead, results suggest that both clinical groups had difficulty encoding the stimuli. They also appeared to have difficulty maintaining attention and/or readiness to respond, and, to a lesser extent, recruiting resources on a trial-to-trial basis. It is likely that these attentional problems prevented the clinical groups from encoding the stimuli effectively and contributed to their general performance deficits. PMID:19427339
Marchetta, Natalie D J; Hurks, Petra P M; Krabbendam, Lydia; Jolles, Jelle
2008-01-01
In this study, the authors aimed to examine 4 domains of executive functioning in adults with attention-deficit/hyperactivity disorder (ADHD)--namely interference control, concept shifting, verbal fluency, and verbal working memory. Four groups of participants were included: (a) adults diagnosed with ADHD (ADHD-super(-); n = 20), (b) adults diagnosed with both ADHD and 1 or more comorbid disorder(s) (ADHD-super(+); n = 22), (c) adults referred for ADHD because of ADHD symptomatology but not diagnosed as such (non-ADHD; n = 34), and (d) healthy controls (n = 136). ADHD-related deficits (independent of comorbidity) were revealed for concept shifting and verbal working memory. In addition, the ADHD-super(+) and non-ADHD groups displayed deficits in terms of general processing speed. Given that these deficits were not found in the ADHD-super(-) group, the authors contend that these deficits are likely attributable to comorbidity rather than ADHD itself. Contrary to the authors' expectations, these findings do not correspond with the cognitive subtype hypothesis.
Draheim, Christopher; Hicks, Kenny L; Engle, Randall W
2016-01-01
It is generally agreed upon that the mechanisms underlying task switching heavily depend on working memory, yet numerous studies have failed to show a strong relationship between working memory capacity (WMC) and task-switching ability. We argue that this relationship does indeed exist but that the dependent variable used to measure task switching is problematic. To support our claim, we reanalyzed data from two studies with a new scoring procedure that combines reaction time (RT) and accuracy into a single score. The reanalysis revealed a strong relationship between task switching and WMC that was not present when RT-based switch costs were used as the dependent variable. We discuss the theoretical implications of this finding along with the potential uses and limitations of the scoring procedure we used. More broadly, we emphasize the importance of using measures that incorporate speed and accuracy in other areas of research, particularly in comparisons of subjects differing in cognitive and developmental levels. © The Author(s) 2015.
Leveraging Environmental Correlations: The Thermodynamics of Requisite Variety
NASA Astrophysics Data System (ADS)
Boyd, Alexander B.; Mandal, Dibyendu; Crutchfield, James P.
2017-06-01
Key to biological success, the requisite variety that confronts an adaptive organism is the set of detectable, accessible, and controllable states in its environment. We analyze its role in the thermodynamic functioning of information ratchets—a form of autonomous Maxwellian Demon capable of exploiting fluctuations in an external information reservoir to harvest useful work from a thermal bath. This establishes a quantitative paradigm for understanding how adaptive agents leverage structured thermal environments for their own thermodynamic benefit. General ratchets behave as memoryful communication channels, interacting with their environment sequentially and storing results to an output. The bulk of thermal ratchets analyzed to date, however, assume memoryless environments that generate input signals without temporal correlations. Employing computational mechanics and a new information-processing Second Law of Thermodynamics (IPSL) we remove these restrictions, analyzing general finite-state ratchets interacting with structured environments that generate correlated input signals. On the one hand, we demonstrate that a ratchet need not have memory to exploit an uncorrelated environment. On the other, and more appropriate to biological adaptation, we show that a ratchet must have memory to most effectively leverage structure and correlation in its environment. The lesson is that to optimally harvest work a ratchet's memory must reflect the input generator's memory. Finally, we investigate achieving the IPSL bounds on the amount of work a ratchet can extract from its environment, discovering that finite-state, optimal ratchets are unable to reach these bounds. In contrast, we show that infinite-state ratchets can go well beyond these bounds by utilizing their own infinite "negentropy". We conclude with an outline of the collective thermodynamics of information-ratchet swarms.
Effects of Childhood Gymnastics Program on Spatial Working Memory.
Hsieh, Shu-Shih; Lin, Chih-Chien; Chang, Yu-Kai; Huang, Chung-Ju; Hung, Tsung-Min
2017-12-01
A growing body of evidence has demonstrated the positive effects of physical exercise on cognition in children, and recent studies have specifically investigated the cognitive benefits of exercises involving cognitive-motor interactions, such as gymnastics. This study examined the effect of 8 wk of gymnastics training on behavioral and neurophysiological measures of spatial working memory in children. Forty-four children age 7 to 10 yr were recruited. The experimental group (n = 24; age, 8.7 ± 1.1 yr) was recruited from Yilan County in Taiwan, while the control group (n = 20; age, 8.6 ± 1.1 yr) resided in Taipei City. The experimental group undertook 8 wk of after-school gymnastics training (2 sessions per week, 90 min per session), whereas the control group received no intervention and were instructed to maintain their routine daily activities. Working memory was assessed by performance on a modified delayed match-to-sample test and by event-related potential including the P3 component. Data were collected before and after treatment for the experimental group and at the same time interval for the control group. Response accuracy improved after the experimental intervention regardless of working memory demands. Likewise, the P3 amplitude was larger at the parietal site after gymnastics training regardless of the task difficulty. Our results suggest that a short period of gymnastics training had a general facilitative effect on spatial working memory at both behavioral and neurophysiological levels in children. These finding highlight the potential importance of exercise programs involving cognitive-motor interactions in stimulating development of spatial cognition during childhood.
Piccardi, Laura; Matano, Alessandro; D'Antuono, Giovanni; Marin, Dario; Ciurli, Paola; Incoccia, Chiara; Verde, Paola; Guariglia, Paola
2016-01-01
The aim of the present study was to verify if gender differences in verbal and visuo-spatial working memory would persist following right cerebral lesions. To pursue our aim we investigated a large sample (n. 346) of right brain-damaged patients and healthy participants (n. 272) for the presence of gender effects in performing Corsi and Digit Test. We also assessed a subgroup of patients (n. 109) for the nature (active vs. passive) of working memory tasks. We tested working memory (WM) administering the Corsi Test (CBT) and the Digit Span (DS) using two different versions: forward (fCBT and fDS), subjects were required to repeat stimuli in the same order that they were presented; and backward (bCBT and bDS), subjects were required to repeat stimuli in the opposite order of presentation. In this way, passive storage and active processing of working memory were assessed. Our results showed the persistence of gender-related effects in spite of the presence of right brain lesions. We found that men outperformed women both in CBT and DS, regardless of active and passive processing of verbal and visuo-spatial stimuli. The presence of visuo-spatial disorders (i.e., hemineglect) can affect the performance on Corsi Test. In our sample, men and women were equally affected by hemineglect, therefore it did not mask the gender effect. Generally speaking, the persistence of the men's superiority in visuo-spatial tasks may be interpreted as a protective factor, at least for men, within other life factors such as level of education or kind of profession before retirement.
Set shifting and working memory in adults with attention-deficit/hyperactivity disorder.
Rohlf, Helena; Jucksch, Viola; Gawrilow, Caterina; Huss, Michael; Hein, Jakob; Lehmkuhl, Ulrike; Salbach-Andrae, Harriet
2012-01-01
Compared to the high number of studies that investigated executive functions (EF) in children with attention-deficit/hyperactivity disorder (ADHD), a little is known about the EF performance of adults with ADHD. This study compared 37 adults with ADHD (ADHD(total)) and 32 control participants who were equivalent in age, intelligence quotient (IQ), sex, and years of education, in two domains of EF--set shifting and working memory. Additionally, the ADHD(total) group was subdivided into two subgroups: ADHD patients without comorbidity (ADHD(-), n = 19) and patients with at least one comorbid disorder (ADHD(+), n = 18). Participants fulfilled two measures for set shifting (i.e., the trail making test, TMT and a computerized card sorting test, CKV) and one measure for working memory (i.e., digit span test, DS). Compared to the control group the ADHD(total) group displayed deficits in set shifting and working memory. The differences between the groups were of medium-to-large effect size (TMT: d = 0.48; DS: d = 0.51; CKV: d = 0.74). The subgroup comparison of the ADHD(+) group and the ADHD(-) group revealed a poorer performance in general information processing speed for the ADHD(+) group. With regard to set shifting and working memory, no significant differences could be found between the two subgroups. These results suggest that the deficits of the ADHD(total) group are attributable to ADHD rather than to comorbidity. An influence of comorbidity, however, could not be completely ruled out as there was a trend of a poorer performance in the ADHD(+) group on some of the outcome measures.
Contrasting single and multi-component working-memory systems in dual tasking.
Nijboer, Menno; Borst, Jelmer; van Rijn, Hedderik; Taatgen, Niels
2016-05-01
Working memory can be a major source of interference in dual tasking. However, there is no consensus on whether this interference is the result of a single working memory bottleneck, or of interactions between different working memory components that together form a complete working-memory system. We report a behavioral and an fMRI dataset in which working memory requirements are manipulated during multitasking. We show that a computational cognitive model that assumes a distributed version of working memory accounts for both behavioral and neuroimaging data better than a model that takes a more centralized approach. The model's working memory consists of an attentional focus, declarative memory, and a subvocalized rehearsal mechanism. Thus, the data and model favor an account where working memory interference in dual tasking is the result of interactions between different resources that together form a working-memory system. Copyright © 2016 Elsevier Inc. All rights reserved.
The contributions of handedness and working memory to episodic memory.
Sahu, Aparna; Christman, Stephen D; Propper, Ruth E
2016-11-01
Past studies have independently shown associations of working memory and degree of handedness with episodic memory retrieval. The current study takes a step ahead by examining whether handedness and working memory independently predict episodic memory. In agreement with past studies, there was an inconsistent-handed advantage for episodic memory; however, this advantage was absent for working memory tasks. Furthermore, regression analyses showed handedness, and complex working memory predicted episodic memory performance at different times. Results are discussed in light of theories of episodic memory and hemispheric interaction.
Mindfulness Enhances Episodic Memory Performance: Evidence from a Multimethod Investigation
Goodman, Robert J.; Ryan, Richard M.; Anālayo, Bhikkhu
2016-01-01
Training in mindfulness, classically described as a receptive attentiveness to present events and experiences, has been shown to improve attention and working memory. Both are key to long-term memory formation, and the present three-study series used multiple methods to examine whether mindfulness would enhance episodic memory, a key form of long-term memory. In Study 1 (N = 143), a self-reported state of mindful attention predicted better recognition performance in the Remember-Know (R-K) paradigm. In Study 2 (N = 93), very brief training in a focused attention form of mindfulness also produced better recognition memory performance on the R-K task relative to a randomized, well-matched active control condition. Study 3 (N = 57) extended these findings by showing that relative to randomized active and inactive control conditions the effect of very brief mindfulness training generalized to free-recall memory performance. This study also found evidence for mediation of the mindfulness training—episodic memory relation by intrinsic motivation. These findings indicate that mindful attention can beneficially impact motivation and episodic memory, with potential implications for educational and occupational performance. PMID:27115491
Mindfulness Enhances Episodic Memory Performance: Evidence from a Multimethod Investigation.
Brown, Kirk Warren; Goodman, Robert J; Ryan, Richard M; Anālayo, Bhikkhu
2016-01-01
Training in mindfulness, classically described as a receptive attentiveness to present events and experiences, has been shown to improve attention and working memory. Both are key to long-term memory formation, and the present three-study series used multiple methods to examine whether mindfulness would enhance episodic memory, a key form of long-term memory. In Study 1 (N = 143), a self-reported state of mindful attention predicted better recognition performance in the Remember-Know (R-K) paradigm. In Study 2 (N = 93), very brief training in a focused attention form of mindfulness also produced better recognition memory performance on the R-K task relative to a randomized, well-matched active control condition. Study 3 (N = 57) extended these findings by showing that relative to randomized active and inactive control conditions the effect of very brief mindfulness training generalized to free-recall memory performance. This study also found evidence for mediation of the mindfulness training-episodic memory relation by intrinsic motivation. These findings indicate that mindful attention can beneficially impact motivation and episodic memory, with potential implications for educational and occupational performance.
Predictors of change in life skills in schizophrenia after cognitive remediation.
Kurtz, Matthew M; Seltzer, James C; Fujimoto, Marco; Shagan, Dana S; Wexler, Bruce E
2009-02-01
Few studies have investigated predictors of response to cognitive remediation interventions in patients with schizophrenia. Predictor studies to date have selected treatment outcome measures that were either part of the remediation intervention itself or closely linked to the intervention with few studies investigating factors that predict generalization to measures of everyday life-skills as an index of treatment-related improvement. In the current study we investigated the relationship between four measures of neurocognitive function, crystallized verbal ability, auditory sustained attention and working memory, verbal learning and memory, and problem-solving, two measures of symptoms, total positive and negative symptoms, and the process variables of treatment intensity and duration, to change on a performance-based measure of everyday life-skills after a year of computer-assisted cognitive remediation offered as part of intensive outpatient rehabilitation treatment. Thirty-six patients with schizophrenia or schizoaffective disorder were studied. Results of a linear regression model revealed that auditory attention and working memory predicted a significant amount of the variance in change in performance-based measures of everyday life skills after cognitive remediation, even when variance for all other neurocognitive variables in the model was controlled. Stepwise regression revealed that auditory attention and working memory predicted change in everyday life-skills across the trial even when baseline life-skill scores, symptoms and treatment process variables were controlled. These findings emphasize the importance of sustained auditory attention and working memory for benefiting from extended programs of cognitive remediation.
Nelwan, Michel; Vissers, Constance; Kroesbergen, Evelyn H
2018-05-01
The goal of the present study was to test whether the amount of coaching influenced the results of working memory training on both visual and verbal working memory. Additionally, the effects of the working memory training on the amount of progress after specific training in mathematics were evaluated. In this study, 23 children between 9 and 12 years of age with both attentional and mathematical difficulties participated in a working memory training program with a high amount of coaching, while another 25 children received no working memory training. Results of these groups were compared to 21 children who completed the training with a lower amount of coaching. The quality of working memory, as well as mathematic skills, were measured three times using untrained transfer tasks. Bayesian statistics were used to test informative hypotheses. After receiving working memory training, the highly coached group performed better than the group that received less coaching on visual working memory and mathematics, but not on verbal working memory. The highly coached group retained their advantage in mathematics, even though the effect on visual working memory decreased. However, no added effect of working memory training was found on the learning curve during mathematical training. Moreover, the less-coached group was outperformed by the group that did not receive working memory training, both in visual working memory and mathematics. These results suggest that motivation and proper coaching might be crucial for ensuring compliance and effects of working memory training, and that far transfer might be possible. Copyright © 2018 Elsevier Ltd. All rights reserved.
The role of executive functioning in memory performance in pediatric focal epilepsy
Sepeta, Leigh N.; Casaletto, Kaitlin Blackstone; Terwilliger, Virginia; Facella-Ervolini, Joy; Sady, Maegan; Mayo, Jessica; Gaillard, William D.; Berl, Madison M.
2016-01-01
Objective Learning and memory are essential for academic success and everyday functioning, but the pattern of memory skills and its relationship to executive functioning in children with focal epilepsy is not fully delineated. We address a gap in the literature by examining the relationship between memory and executive functioning in a pediatric focal epilepsy population. Methods Seventy children with focal epilepsy and 70 typically developing children matched on age, intellectual functioning, and gender underwent neuropsychological assessment, including measures of intelligence (WASI/DAS), as well as visual (CMS Dot Locations) and verbal episodic memory (WRAML Story Memory and CVLT-C). Executive functioning was measured directly (WISC-IV Digit Span Backward; CELF-IV Recalling Sentences) and by parent report (Behavior Rating Inventory of Executive Function (BRIEF)). Results Children with focal epilepsy had lower delayed free recall scores than controls across visual and verbal memory tasks (p = 0.02; partial η2 = .12). In contrast, recognition memory performance was similar for patients and controls (p = 0.36; partial η2 = .03). Children with focal epilepsy demonstrated difficulties in working memory (p = 0.02; partial η2 = .08) and planning/organization (p = 0.02) compared to controls. Working memory predicted 9–19% of the variance in delayed free recall for verbal and visual memory; organization predicted 9–10% of the variance in verbal memory. Patients with both left and right focal epilepsy demonstrated more difficulty on verbal versus visual tasks (p = 0.002). Memory performance did not differ by location of seizure foci (temporal vs. extra-temporal, frontal vs. extra-frontal). Significance Children with focal epilepsy demonstrated memory ability within age-level expectations, but delayed free recall was inefficient compared to typically developing controls. Memory difficulties were not related to general cognitive impairment or seizure localization. Executive functioning accounted for significant variance in memory performance, suggesting that poor executive control negatively influences memory retrieval. PMID:28111742
Grizzell, J Alex; Iarkov, Alexandre; Holmes, Rosalee; Mori, Takahashi; Echeverria, Valentina
2014-07-15
Chronic stress underlies and/or exacerbates many psychiatric conditions and often results in memory impairment as well as depressive symptoms. Such afflicted individuals use tobacco more than the general population and this has been suggested as a form of self-medication. Cotinine, the predominant metabolite of nicotine, may underlie such behavior as it has been shown to ameliorate anxiety and memory loss in animal models. In this study, we sought to investigate the effects of cotinine on working memory and depressive-like behavior in mice subjected to prolonged restraint. Cotinine-treated mice displayed better performance than vehicle-treated cohorts on the working memory task, the radial arm water maze test. In addition, with or without chronic stress exposure, cotinine-treated mice engaged in fewer depressive-like behaviors as assessed using the tail suspension and Porsolt's forced swim tests. These antidepressant and nootropic effects of cotinine were associated with an increase in the synaptophysin expression, a commonly used marker of synaptic density, in the hippocampus as well as the prefrontal and entorhinal cortices of restrained mice. The beneficial effects of cotinine in preventing various consequences of chronic stress were underscored by the inhibition of the glycogen synthase kinase 3 β in the hippocampus and prefrontal cortex. Taken together, our results show for the first time that cotinine reduces the negative effects of stress on mood, memory, and the synapse. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Padula, Santo, II; Bigelow, Glen; Noebe, Ronald; Gaydosh, Darrell; Garg, Anita
2006-01-01
Interest in high-temperature shape memory alloys (HTSMA) has been growing in the aerospace, automotive, process control, and energy industries. However, actual materials development has seriously lagged component design, with current commercial NiTi alloys severely limited in their temperature capability. Additions of Pd, Pt, Au, Hf, and Zr at levels greater than 10 at.% have been shown to increase the transformation temperature of NiTi alloys, but with few exceptions, the shape memory behavior (strain recovery) of these NiTiX systems has been determined only under stress free conditions. Given the limited amount of basic mechanical test data and general lack of information regarding the work attributes of these materials, a program to investigate the mechanical behavior of potential HTSMAs, with transformation temperatures between 100 and 500 C, was initiated. This paper summarizes the results of studies, focusing on both the practical temperature limitations for ternary TiNiPd and TiNiPt systems based on the work output of these alloys and the ability of these alloys to undergo repeated thermal cycling under load without significant permanent deformation or "walking". These issues are ultimately controlled by the detwinning stress of the martensite and resistance to dislocation slip of the individual martensite and austenite phases. Finally, general rules that govern the development of useful, high work output, next-generation HTSMA materials, based on the lessons learned in this work, will be provided
Can verbal working memory training improve reading?
Banales, Erin; Kohnen, Saskia; McArthur, Genevieve
2015-01-01
The aim of the current study was to determine whether poor verbal working memory is associated with poor word reading accuracy because the former causes the latter, or the latter causes the former. To this end, we tested whether (a) verbal working memory training improves poor verbal working memory or poor word reading accuracy, and whether (b) reading training improves poor reading accuracy or verbal working memory in a case series of four children with poor word reading accuracy and verbal working memory. Each child completed 8 weeks of verbal working memory training and 8 weeks of reading training. Verbal working memory training improved verbal working memory in two of the four children, but did not improve their reading accuracy. Similarly, reading training improved word reading accuracy in all children, but did not improve their verbal working memory. These results suggest that the causal links between verbal working memory and reading accuracy may not be as direct as has been assumed.
A functional magnetic resonance imaging study of working memory abnormalities in schizophrenia.
Johnson, Matthew R; Morris, Nicholas A; Astur, Robert S; Calhoun, Vince D; Mathalon, Daniel H; Kiehl, Kent A; Pearlson, Godfrey D
2006-07-01
Previous neuroimaging studies of working memory (WM) in schizophrenia, typically focusing on dorsolateral prefrontal cortex, yield conflicting results, possibly because of varied choice of tasks and analysis techniques. We examined neural function changes at several WM loads to derive a more complete picture of WM dysfunction in schizophrenia. We used a version of the Sternberg Item Recognition Paradigm to test WM function at five distinct loads. Eighteen schizophrenia patients and 18 matched healthy controls were scanned with functional magnetic resonance imaging at 3 Tesla. Patterns of both overactivation and underactivation in patients were observed depending on WM load. Patients' activation was generally less responsive to load changes than control subjects', and different patterns of between-group differences were observed for memory encoding and retrieval. In the specific case of successful retrieval, patients recruited additional neural circuits unused by control subjects. Behavioral effects were generally consistent with these imaging results. Differential findings of overactivation and underactivation may be attributable to patients' decreased ability to focus and allocate neural resources at task-appropriate levels. Additionally, differences between encoding and retrieval suggest that WM dysfunction may be manifested differently during the distinct phases of encoding, maintenance, and retrieval.
Visual working memory buffers information retrieved from visual long-term memory.
Fukuda, Keisuke; Woodman, Geoffrey F
2017-05-16
Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects' worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved.
Visual working memory buffers information retrieved from visual long-term memory
Fukuda, Keisuke; Woodman, Geoffrey F.
2017-01-01
Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects’ worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved. PMID:28461479
Working and strategic memory deficits in schizophrenia
NASA Technical Reports Server (NTRS)
Stone, M.; Gabrieli, J. D.; Stebbins, G. T.; Sullivan, E. V.
1998-01-01
Working memory and its contribution to performance on strategic memory tests in schizophrenia were studied. Patients (n = 18) and control participants (n = 15), all men, received tests of immediate memory (forward digit span), working memory (listening, computation, and backward digit span), and long-term strategic (free recall, temporal order, and self-ordered pointing) and nonstrategic (recognition) memory. Schizophrenia patients performed worse on all tests. Education, verbal intelligence, and immediate memory capacity did not account for deficits in working memory in schizophrenia patients. Reduced working memory capacity accounted for group differences in strategic memory but not in recognition memory. Working memory impairment may be central to the profile of impaired cognitive performance in schizophrenia and is consistent with hypothesized frontal lobe dysfunction associated with this disease. Additional medial-temporal dysfunction may account for the recognition memory deficit.
Memory systems interaction in the pigeon: working and reference memory.
Roberts, William A; Strang, Caroline; Macpherson, Krista
2015-04-01
Pigeons' performance on a working memory task, symbolic delayed matching-to-sample, was used to examine the interaction between working memory and reference memory. Reference memory was established by training pigeons to discriminate between the comparison cues used in delayed matching as S+ and S- stimuli. Delayed matching retention tests then measured accuracy when working and reference memory were congruent and incongruent. In 4 experiments, it was shown that the interaction between working and reference memory is reciprocal: Strengthening either type of memory leads to a decrease in the influence of the other type of memory. A process dissociation procedure analysis of the data from Experiment 4 showed independence of working and reference memory, and a model of working memory and reference memory interaction was shown to predict the findings reported in the 4 experiments. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
An ideal observer analysis of visual working memory.
Sims, Chris R; Jacobs, Robert A; Knill, David C
2012-10-01
Limits in visual working memory (VWM) strongly constrain human performance across many tasks. However, the nature of these limits is not well understood. In this article we develop an ideal observer analysis of human VWM by deriving the expected behavior of an optimally performing but limited-capacity memory system. This analysis is framed around rate-distortion theory, a branch of information theory that provides optimal bounds on the accuracy of information transmission subject to a fixed information capacity. The result of the ideal observer analysis is a theoretical framework that provides a task-independent and quantitative definition of visual memory capacity and yields novel predictions regarding human performance. These predictions are subsequently evaluated and confirmed in 2 empirical studies. Further, the framework is general enough to allow the specification and testing of alternative models of visual memory (e.g., how capacity is distributed across multiple items). We demonstrate that a simple model developed on the basis of the ideal observer analysis-one that allows variability in the number of stored memory representations but does not assume the presence of a fixed item limit-provides an excellent account of the empirical data and further offers a principled reinterpretation of existing models of VWM. PsycINFO Database Record (c) 2012 APA, all rights reserved.
A steady state visually evoked potential investigation of memory and ageing.
Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard
2009-04-01
Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and latency associated with memory performance. Participants were 15 older (59-67 years) and 14 younger (20-30 years) adults who performed an object working memory (OWM) task and a contextual recognition memory (CRM) task, whilst the SSVEP was recorded from 64 electrode sites. Retention of a single object in the low demand OWM task was characterised by smaller frontal SSVEP amplitude and latency differences in older adults than in younger adults, indicative of an age-associated reduction in neural processes. Recognition of visual images in the more difficult CRM task was accompanied by larger, more sustained SSVEP amplitude and latency decreases over temporal parietal regions in older adults. In contrast, the more transient, frontally mediated pattern of activity demonstrated by younger adults suggests that younger and older adults utilize different neural resources to perform recognition judgements. The results provide support for compensatory processes in the aging brain; at lower task demands, older adults demonstrate reduced neural activity, whereas at greater task demands neural activity is increased.
Interactions Between Modality of Working Memory Load and Perceptual Load in Distractor Processing.
Koshino, Hideya; Olid, Pilar
2015-01-01
The present study investigated interactions between working memory load and perceptual load. The load theory (Lavie, Hirst, de Fockert, & Viding, 2004 ) claims that perceptual load decreases distractor interference, whereas working memory load increases interference. However, recent studies showed that effects of working memory might depend on the relationship between modalities of working memory and task stimuli. Here, we examined whether the relationship between working memory load and perceptual load would remain the same across modalities. The results of Experiment 1 showed that verbal working memory load did not affect a compatibility effect for low perceptual load, whereas it increased the compatibility effect for high perceptual load. In Experiment 2, the compatibility effect remained the same regardless of visual working memory load. These results suggest that the effects of working memory load and perceptual load depend on the relationship between the modalities of working memory and stimuli.
Working-memory performance is related to spatial breadth of attention.
Kreitz, Carina; Furley, Philip; Memmert, Daniel; Simons, Daniel J
2015-11-01
Working memory and attention are closely related constructs. Models of working memory often incorporate an attention component, and some even equate working memory and attentional control. Although some attention-related processes, including inhibitory control of response conflict and interference resolution, are strongly associated with working memory, for other aspects of attention the link is less clear. We examined the association between working-memory performance and attentional breadth, the ability to spread attention spatially. If the link between attention and working memory is broader than inhibitory and interference resolution processes, then working-memory performance might also be associated with other attentional abilities, including attentional breadth. We tested 123 participants on a variety of working-memory and attentional-breadth measures, finding a strong correlation between performances on these two types of tasks. This finding demonstrates that the link between working memory and attention extends beyond inhibitory processes.
Nienow, Tasha; MacDonald, Angus
2017-01-01
Abstract Background: Cognitive deficits contribute to the functional disability associated with schizophrenia. Cognitive training has shown promise as a method of intervention; however, there is considerable variability in the implementation of this approach. The aim of this study was to test the efficacy of a high dose of cognitive training that targeted working memory-related functions. Methods: A randomized, double blind, active placebo-controlled, clinical trial was conducted with 80 outpatients with schizophrenia (mean age 46.44 years, 25% female). Patients were randomized to either working memory-based cognitive training or a computer skills training course that taught computer applications. In both conditions, participants received an average of 3 hours of training weekly for 16 weeks. Cognitive and functional outcomes were assessed with the MATRICS Consensus Cognitive Battery, N-Back performance, 2 measures of functional capacity (UPSA and SSPA) and a measure of community functioning, the Social Functioning Scale. Results: An intent-to-treat analysis found that patients who received cognitive training demonstrated significantly greater change on a trained task (Word N-Back), F(78) = 21.69, P < .0001, and a novel version of a trained task (Picture N-Back) as compared to those in the comparison condition, F(78) = 13.59, P = .002. However, only very modest support was found for generalization of training gains. A trend for an interaction was found on the MCCB Attention Domain score, F(78) = 2.56, P = .12. Participants who received cognitive training demonstrated significantly improved performance, t(39) = 3.79, P = .001, while those in computer skills did not, t(39) = 1.07, P = .37. Conclusion: A well-powered, high-dose, working memory focused, computer-based, cognitive training protocol produced only a small effect in patients with schizophrenia. Results indicate the importance of measuring generalization from training tasks in cognitive remediation studies. Computer-based training was not an effective method of producing change in cognition in patients with schizophrenia.
Visual Working Memory Capacity Can Be Increased by Training on Distractor Filtering Efficiency.
Li, Cui-Hong; He, Xu; Wang, Yu-Juan; Hu, Zhe; Guo, Chun-Yan
2017-01-01
It is generally considered that working memory (WM) capacity is limited and that WM capacity affects cognitive processes. Distractor filtering efficiency has been suggested to be an important factor in determining the visual working memory (VWM) capacity of individuals. In the present study, we investigated whether training in visual filtering efficiency (FE) could improve VWM capacity, as measured by performance on the change detection task (CDT) and changes of contralateral delay activity (CDA) (contralateral delay activity) of different conditions, and evaluated the transfer effect of visual FE training on verbal WM and fluid intelligence, as indexed by performance on the verbal WM span task and Raven's Standard Progressive Matrices (RSPM) test, respectively. Participants were divided into high- and low-capacity groups based on their performance in a CDT designed to test VWM capacity, and then the low-capacity individuals received 20 days of FE training. The training significantly improved the group's performance in the CDT, and their CDA models of different conditions became more similar with high capacity group, and the effect generalized to improve verbal WM span. These gains were maintained at a 3-month follow-up test. Participants' RSPM scores were not changed by the training. These findings support the notion that WM capacity is determined, at least in part, by distractor FE and can be enhanced through training.
ERIC Educational Resources Information Center
De Kleine, Elian; Van der Lubbe, Rob H. J.
2011-01-01
Learning movement sequences is thought to develop from an initial controlled attentive phase to a more automatic inattentive phase. Furthermore, execution of sequences becomes faster with practice, which may result from changes at a general motor processing level rather than at an effector specific motor processing level. In the current study, we…
How a high working memory capacity can increase proactive interference.
Steinwascher, Merle A; Meiser, Thorsten
2016-08-01
Previous findings suggested that a high working memory capacity (WMC) is potentially associated with a higher susceptibility to proactive interference (PI) if the latter is measured under high cognitive load. To explain such a finding, we propose to consider susceptibility to PI as a net effect of individual executive processes and the intrinsic potential for PI. With the latter, we refer to the amount of information that is activated at a given time and that has the potential to exert PI subsequently. In two studies deploying generalized linear mixed models, susceptibility to PI was modeled as the decline of performance over trials of a complex span task. The results revealed that a higher WMC was associated with a higher susceptibility to PI. Moreover, the number of stimuli recalled in one trial as a proxy variable for the intrinsic potential for PI negatively affected memory performance in the subsequent trial. Copyright © 2016 Elsevier Inc. All rights reserved.
Working memory training in older adults: evidence of transfer and maintenance effects.
Borella, Erika; Carretti, Barbara; Riboldi, Francesco; De Beni, Rossana
2010-12-01
Few studies have examined working memory (WM) training-related gains and their transfer and maintenance effects in older adults. This present research investigates the efficacy of a verbal WM training program in adults aged 65-75 years, considering specific training gains on a verbal WM (criterion) task as well as transfer effects on measures of visuospatial WM, short-term memory, inhibition, processing speed, and fluid intelligence. Maintenance of training benefits was evaluated at 8-month follow-up. Trained older adults showed higher performance than did controls on the criterion task and maintained this benefit after 8 months. Substantial general transfer effects were found for the trained group, but not for the control one. Transfer maintenance gains were found at follow-up, but only for fluid intelligence and processing speed tasks. The results are discussed in terms of cognitive plasticity in older adults. (c) 2010 APA, all rights reserved).
Working Memory in the Classroom: An Inside Look at the Central Executive.
Barker, Lauren A
2016-01-01
This article provides a review of working memory and its application to educational settings. A discussion of the varying definitions of working memory is presented. Special attention is given to the various multidisciplinary professionals who work with students with working memory deficits, and their unique understanding of the construct. Definitions and theories of working memory are briefly summarized and provide the foundation for understanding practical applications of working memory to assessment and intervention. Although definitions and models of working memory abound, there is limited consensus regarding universally accepted definitions and models. Current research indicates that developing new models of working memory may be an appropriate paradigm shift at this time. The integration of individual practitioner's knowledge regarding academic achievement, working memory and processing speed could provide a foundation for the future development of new working memory models. Future directions for research should aim to explain how tasks and behaviors are supported by the substrates of the cortico-striatal and the cerebro-cerebellar systems. Translation of neurobiological information into educational contexts will be helpful to inform all practitioners' knowledge of working memory constructs. It will also allow for universally accepted definitions and models of working memory to arise and facilitate more effective collaboration between disciplines working in educational setting.
Banks, Jonathan B; Tartar, Jaime L; Tamayo, Brittney A
2015-12-01
A large and growing body of research demonstrates the impact of psychological stress on working memory. However, the typical study approach tests the effects of a single biological or psychological factor on changes in working memory. The current study attempted to move beyond the standard single-factor assessment by examining the impact of 2 possible factors in stress-related working memory impairments. To this end, 60 participants completed a working memory task before and after either a psychological stressor writing task or a control writing task and completed measures of both cortisol and mind wandering. We also included a measure of state anxiety to examine the direct and indirect effect on working memory. We found that mind wandering mediated the relationship between state anxiety and working memory at the baseline measurement. This indirect relationship was moderated by cortisol, such that the impact of mind wandering on working memory increased as cortisol levels increased. No overall working memory impairment was observed following the stress manipulation, but increases in state anxiety and mind wandering were observed. State anxiety and mind wandering independently mediated the relationship between change in working memory and threat perception. The indirect paths resulted in opposing effects on working memory. Combined, the findings from this study suggest that cortisol enhances the impact of mind wandering on working memory, that state anxiety may not always result in stress-related working memory impairments, and that high working memory performance can protect against mind wandering. (c) 2015 APA, all rights reserved).
"Shape function + memory mechanism"-based hysteresis modeling of magnetorheological fluid actuators
NASA Astrophysics Data System (ADS)
Qian, Li-Jun; Chen, Peng; Cai, Fei-Long; Bai, Xian-Xu
2018-03-01
A hysteresis model based on "shape function + memory mechanism" is presented and its feasibility is verified through modeling the hysteresis behavior of a magnetorheological (MR) damper. A hysteresis phenomenon in resistor-capacitor (RC) circuit is first presented and analyzed. In the hysteresis model, the "memory mechanism" originating from the charging and discharging processes of the RC circuit is constructed by adopting a virtual displacement variable and updating laws for the reference points. The "shape function" is achieved and generalized from analytical solutions of the simple semi-linear Duhem model. Using the approach, the memory mechanism reveals the essence of specific Duhem model and the general shape function provides a direct and clear means to fit the hysteresis loop. In the frame of the structure of a "Restructured phenomenological model", the original hysteresis operator, i.e., the Bouc-Wen operator, is replaced with the new hysteresis operator. The comparative work with the Bouc-Wen operator based model demonstrates superior performances of high computational efficiency and comparable accuracy of the new hysteresis operator-based model.
A Diffusion Model Analysis of Decision Biases Affecting Delayed Recognition of Emotional Stimuli.
Bowen, Holly J; Spaniol, Julia; Patel, Ronak; Voss, Andreas
2016-01-01
Previous empirical work suggests that emotion can influence accuracy and cognitive biases underlying recognition memory, depending on the experimental conditions. The current study examines the effects of arousal and valence on delayed recognition memory using the diffusion model, which allows the separation of two decision biases thought to underlie memory: response bias and memory bias. Memory bias has not been given much attention in the literature but can provide insight into the retrieval dynamics of emotion modulated memory. Participants viewed emotional pictorial stimuli; half were given a recognition test 1-day later and the other half 7-days later. Analyses revealed that emotional valence generally evokes liberal responding, whereas high arousal evokes liberal responding only at a short retention interval. The memory bias analyses indicated that participants experienced greater familiarity with high-arousal compared to low-arousal items and this pattern became more pronounced as study-test lag increased; positive items evoke greater familiarity compared to negative and this pattern remained stable across retention interval. The findings provide insight into the separate contributions of valence and arousal to the cognitive mechanisms underlying delayed emotion modulated memory.
Transfer after Working Memory Updating Training
Waris, Otto; Soveri, Anna; Laine, Matti
2015-01-01
During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active control group. The working memory training group practiced with three working memory tasks, while the control group trained with three commercial computer games with a low working memory load. The participants trained thrice a week for five weeks, with one training session lasting about 45 minutes. Compared to the control group, the working memory training group showed strongest transfer to an n-back task, followed by working memory updating, which in turn was followed by active working memory capacity. Our results support the view that working memory training produces near transfer effects, and that the degree of transfer depends on the cognitive overlap between the training and transfer measures. PMID:26406319
Transfer after Working Memory Updating Training.
Waris, Otto; Soveri, Anna; Laine, Matti
2015-01-01
During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active control group. The working memory training group practiced with three working memory tasks, while the control group trained with three commercial computer games with a low working memory load. The participants trained thrice a week for five weeks, with one training session lasting about 45 minutes. Compared to the control group, the working memory training group showed strongest transfer to an n-back task, followed by working memory updating, which in turn was followed by active working memory capacity. Our results support the view that working memory training produces near transfer effects, and that the degree of transfer depends on the cognitive overlap between the training and transfer measures.
Ball, S L; Holland, A J; Watson, P C; Huppert, F A
2010-04-01
Recent research has suggested a specific impairment in frontal-lobe functioning in the preclinical stages of Alzheimer's disease (AD) in people with Down's syndrome (DS), characterised by prominent changes in personality or behaviour. The aim of the current paper is to explore whether particular kinds of change (namely executive dysfunction (EDF), disinhibition and apathy), associated in the literature with disruption of different underlying frontal-subcortical circuits, are a) more or less frequently reported than others and b) related to poor performance on tasks involving different cognitive processes. Seventy-eight participants (mean age 47 years, range 36-72) with DS and mild to moderate intellectual disability (based on ICD-10 criteria), without a diagnosis of dementia of Alzheimer's type (DAT) or other psychiatric disorders, were selected from a larger sample of older adults with DS (n = 122). Dementia diagnosis was based on the CAMDEX informant interview, conducted with each participant's main carer. Informant-reported changes in personality/behaviour and memory were recorded. Participants were scored based on symptoms falling into three behavioural domains and completed five executive function (EF) tasks, six memory tasks (two of which also had a strong executive component) and the BPVS (as a measure of general intellectual ability). Multiple regression analyses were conducted to determine the degree to which the behavioural variables of 'EDF', 'disinhibition' and 'apathy', along with informant-reported memory decline and antidepressant medication use, predicted performance on the cognitive tasks (whilst controlling for the effects of age and general intellectual ability). Strikingly, disinhibited behaviour was reported for 95.7% of participants with one or more behavioural change (n = 47) compared to 57.4% with reported apathy and 36.2% with reported EDF. 'Disinhibition' score significantly predicted performance on three EF tasks (designed to measure planning, response inhibition and working memory) and an object memory task, (also thought to place high demands on working memory), while 'apathy' score significantly predicted performance on two different tasks, those measuring spatial reversal and prospective memory (p < 0.05). Informant reported memory decline was associated only with performance on a delayed recall task while antidepressant medication use was associated with better performance on a working memory task (p < 0.05). Observed dissociation between performance on cognitive tasks associated with reported apathy and disinhibition is in keeping with proposed differences underlying neural circuitry and supports the involvement of multiple frontal-subcortical circuits in the early stages of DAT in DS. However, the prominence of disinhibition in the behavioural profile (which more closely resembles that of disinhibited subtype of DFT than that of AD in the general population) leads us to postulate that the serotonergically mediated orbitofrontal circuit may be disproportionately affected. A speculative theory is developed regarding the biological basis for observed changes and discussion is focused on how this understanding may aid us in the development of treatments directly targeting underlying abnormalities.
Bartsch, Lea M; Singmann, Henrik; Oberauer, Klaus
2018-03-19
Refreshing and elaboration are cognitive processes assumed to underlie verbal working-memory maintenance and assumed to support long-term memory formation. Whereas refreshing refers to the attentional focussing on representations, elaboration refers to linking representations in working memory into existing semantic networks. We measured the impact of instructed refreshing and elaboration on working and long-term memory separately, and investigated to what extent both processes are distinct in their contributions to working as well as long-term memory. Compared with a no-processing baseline, immediate memory was improved by repeating the items, but not by refreshing them. There was no credible effect of elaboration on working memory, except when items were repeated at the same time. Long-term memory benefited from elaboration, but not from refreshing the words. The results replicate the long-term memory benefit for elaboration, but do not support its beneficial role for working memory. Further, refreshing preserves immediate memory, but does not improve it beyond the level achieved without any processing.
Prefrontal neuronal circuits of contextual fear conditioning.
Rozeske, R R; Valerio, S; Chaudun, F; Herry, C
2015-01-01
Over the past years, numerous studies have provided a clear understanding of the neuronal circuits and mechanisms involved in the formation, expression and extinction phases of conditioned cued fear memories. Yet, despite a strong clinical interest, a detailed understanding of these memory phases for contextual fear memories is still missing. Besides the well-known role of the hippocampus in encoding contextual fear behavior, growing evidence indicates that specific regions of the medial prefrontal cortex differentially regulate contextual fear acquisition and storage in both animals and humans that ultimately leads to expression of contextual fear memories. In this review, we provide a detailed description of the recent literature on the role of distinct prefrontal subregions in contextual fear behavior and provide a working model of the neuronal circuits involved in the acquisition, expression and generalization of contextual fear memories. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Johnston, Stephen T; Shtrahman, Matthew; Parylak, Sarah; Gonçalves, J Tiago; Gage, Fred H
2016-03-01
Hippocampal adult neurogenesis is thought to subserve pattern separation, the process by which similar patterns of neuronal inputs are transformed into distinct neuronal representations, permitting the discrimination of highly similar stimuli in hippocampus-dependent tasks. However, the mechanism by which immature adult-born dentate granule neurons cells (abDGCs) perform this function remains unknown. Two theories of abDGC function, one by which abDGCs modulate and sparsify activity in the dentate gyrus and one by which abDGCs act as autonomous coding units, are generally suggested to be mutually exclusive. This review suggests that these two mechanisms work in tandem to dynamically regulate memory resolution while avoiding memory interference and maintaining memory robustness. Copyright © 2015 Elsevier Inc. All rights reserved.
Visual Working Memory Capacity and Proactive Interference
Hartshorne, Joshua K.
2008-01-01
Background Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Methodology/Principal Findings Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. Conclusions/Significance This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals. PMID:18648493
Visual working memory capacity and proactive interference.
Hartshorne, Joshua K
2008-07-23
Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals.
Orlov, Natasza D; Tracy, Derek K; Joyce, Daniel; Patel, Shinal; Rodzinka-Pasko, Joanna; Dolan, Hayley; Hodsoll, John; Collier, Tracy; Rothwell, John; Shergill, Sukhwinder S
Schizophrenia is characterized by prominent cognitive deficits, impacting on memory and learning; these are strongly associated with the prefrontal cortex. To combine two interventions, transcranial direct current stimulation (tDCS) over the prefrontal cortex and cognitive training, to examine change in cognitive performance in patients with schizophrenia. A double blind, sham-controlled pilot study of 49 patients with schizophrenia, randomized into real or sham tDCS stimulation groups. Subjects participated in 4 days of cognitive training (days 1, 2, 14, 56) with tDCS applied at day-1 and day-14. The primary outcome measure was change in accuracy on working memory and implicit learning tasks from baseline. The secondary outcome measure was the generalization of learning to non-trained task, indexed by the CogState neuropsychological battery. Data analysis was conducted using multilevel modelling and multiple regressions. 24 participants were randomized to real tDCS and 25 to sham. The working memory task demonstrated a significant mean difference in performance in the tDCS treatment group: at day-2 (b = 0.68, CI 0.14-1.21; p = 0.044) and at day-56 (b = 0.71, 0.16-1.26; p = 0.044). There were no significant effects of tDCS on implicit learning. Trend evidence of generalization onto untrained tasks of attention and vigilance task (b = 0.40, 0.43-0.77; p = 0.058) was found. This is the first study to show a significant longer-term effect of tDCS on working memory in schizophrenia. Given the current lack of effective therapies for cognitive deficits, tDCS may offer an important novel approach to modulating brain networks to ameliorate cognitive deficits in schizophrenia. Copyright © 2016 Elsevier Inc. All rights reserved.
Novices and Experts in Geoinformatics: the Cognitive Gap.
NASA Astrophysics Data System (ADS)
Zhilin, M.
2012-04-01
Modern geoinformatics is an extremely powerful tool for problem analysis and decision making in various fields. Currently general public uses geoinformatics predominantly for navigating (GPS) and sharing information about particular places (GoogleMaps, Wikimapia). Communities also use geoinformatics for particular purposes: fans of history use it to correspond historical and actual maps (www.retromap.ru), birdwatchers point places where they met birds (geobirds.com/rangemaps) etc. However the majority of stakeholders local authorities are not aware of advantages and possibilities of geoinformatics. The same problem is observed for students. At the same time many professional geoinformatic tools are developed, but sometimes the experts even can't explain their purpose to non-experts. So the question is how to shrink the gap between experts and non-experts in understanding and application of geoinformatics. We think that this gap has a cognitive basis. According to modern cognitive theories (Shiffrin-Atkinson and descending) the information primary has to pass through the perceptual filter that cuts off the information that seems to be irrelevant. The mind estimates the relevance implicitly (unconsciously) basing on previous knowledge and judgments what is important. Then it comes to the working memory which is used (a) for proceeding and (b) for problem solving. The working memory has limited capacity and can operate only with about 7 objects simultaneously. Then information passes to the long-term memory that is of unlimited capacity. There it is stored as more or less complex structures with associative links. When necessary it is extracted into the working memory. If great amount of information is linked ("chunked") the working memory operates with it as one object of seven thus overcoming the limitations of the working memory capacity. To adopt any information it should (a) pass through the perceptual filter, (b) not to overload the working memory and (c) to be structured in the long-term memory. Expert easily adopt domain-specific information because they (a) understand terminology and consider the information to be important thus passing it through the perceptual filter and (b) have a lot of complex domain-specific chunks that are processed by the working memory as a whole thus avoiding to overload it. Novices (students and general public) have neither understanding and feeling importance nor necessary chunks. The following measures should be taken to bridge experts' and novices' understanding of geoinformatics. Expert community should popularize geoscientific problems developing understandable language and available tools for their solving. This requires close collaboration with educational system (especially second education). If students understand a problem, they can find and apply appropriate tool for it. Geoscientific problems and models are extremely complex. In cognitive terms, they require hierarchy of chunks. This hierarchy should coherently develop beginning from simple ones later joining them to complex. It requires an appropriate sequence of learning tasks. There is no necessity in correct solutions - the students should understand how are they solved and realize limitations of models. We think that tasks of weather forecast, global climate modeling etc are suitable. The first step on bridging experts and novices is the elaboration of a set and a sequence of learning tasks and its sequence as well as tools for their solution. The tools should be easy for everybody who understands the task and as versatile as possible - otherwise students will waste a lot of time mastering it. This development requires close collaboration between geoscientists and educators.
Attout, Lucie; Salmon, Eric; Majerus, Steve
2015-01-01
Recent studies suggest that order working memory (WM) may be specifically associated with numerical abilities. This study explored behavioral performance and neural networks associated with verbal WM in adults with a history of developmental dyscalculia (DD). The DD group performed significantly poorer but with the same precision than the control group in order WM tasks and showed a lower activation of the right middle frontal gyrus during the order WM and the alphabetical order judgment tasks. This study suggests a persistent impairment in order WM in adults with DD, characterized by more general difficulties in controlled activation of order information.
Rosi, Alessia; Bruine de Bruin, Wändi; Del Missier, Fabio; Cavallini, Elena; Russo, Riccardo
2017-12-28
Older adults perform worse than younger adults when applying decision rules to choose between options that vary along multiple attributes. Although previous studies have shown that general fluid cognitive abilities contribute to the accurate application of decision rules, relatively little is known about which specific cognitive abilities play the most important role. We examined the independent roles of working memory, verbal fluency, semantic knowledge, and components of executive functioning. We found that age-related decline in applying decision rules was statistically mediated by age-related decline in working memory and verbal fluency. Our results have implications for theories of aging and decision-making.
Mattfeld, Aaron T; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D E
2016-01-01
Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity.
Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain
Mattfeld, Aaron T.; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D.E.
2015-01-01
Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity. PMID:26900567
Working, declarative and procedural memory in specific language impairment
Lum, Jarrad A.G.; Conti-Ramsden, Gina; Page, Debra; Ullman, Michael T.
2012-01-01
According to the Procedural Deficit Hypothesis (PDH), abnormalities of brain structures underlying procedural memory largely explain the language deficits in children with specific language impairment (SLI). These abnormalities are posited to result in core deficits of procedural memory, which in turn explain the grammar problems in the disorder. The abnormalities are also likely to lead to problems with other, non-procedural functions, such as working memory, that rely at least partly on the affected brain structures. In contrast, declarative memory is expected to remain largely intact, and should play an important compensatory role for grammar. These claims were tested by examining measures of working, declarative and procedural memory in 51 children with SLI and 51 matched typically-developing (TD) children (mean age 10). Working memory was assessed with the Working Memory Test Battery for Children, declarative memory with the Children’s Memory Scale, and procedural memory with a visuo-spatial Serial Reaction Time task. As compared to the TD children, the children with SLI were impaired at procedural memory, even when holding working memory constant. In contrast, they were spared at declarative memory for visual information, and at declarative memory in the verbal domain after controlling for working memory and language. Visuo-spatial short-term memory was intact, whereas verbal working memory was impaired, even when language deficits were held constant. Correlation analyses showed neither visuo-spatial nor verbal working memory was associated with either lexical or grammatical abilities in either the SLI or TD children. Declarative memory correlated with lexical abilities in both groups of children. Finally, grammatical abilities were associated with procedural memory in the TD children, but with declarative memory in the children with SLI. These findings replicate and extend previous studies of working, declarative and procedural memory in SLI. Overall, we suggest that the evidence largely supports the predictions of the PDH. PMID:21774923
Bona, Silvia; Silvanto, Juha
2014-01-01
Currently influential models of working memory posit that memory content is highly accessible to conscious inspection. These models predict that metacognition of memory performance should go hand-in-hand with the accuracy of the underlying memory representation. To test this view, we investigated how visual information presented during the maintenance period affects VSTM accuracy and confidence. We used a delayed cue-target orientation discrimination task in which participants were asked to hold in memory a grating, and during the maintenance period a second memory cue could be presented. VSTM accuracy of the first memory cue was impaired when the orientation of the second memory cue was sufficiently different. However, participants' response confidence was reduced whenever the second memory cue was presented; thus VSTM accuracy and confidence were dissociated. In a second experiment, we applied transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex (DLPFC) to investigate the causal role of this region in VSTM metacognition. Relative to the sham condition, anodal tDCS induced a general reduction in confidence ratings but did not affect VSTM accuracy. Overall, these results indicate that our metacognition of memory performance is influenced by factors other than the accuracy of the underlying memory representation.
Remote memory in a patient with amnesia due to hypoxia.
Beatty, W W; Salmon, D P; Bernstein, N; Butters, N
1987-08-01
It has been suggested that amnesic patients suffer a selective loss of episodic memory while semantic memory remains well preserved. To assess the validity of this idea we studied remote memory in an amnesic patient, (M.R.L.), using several different measures that differ in the extent to which they engage episodic or semantic memory. On two different versions of the Albert et al. (1979) remote memory battery M.R.L. displayed severe retrograde amnesia (RA) extending backwards in time for about 15 years with excellent preservation of older memories. With standard recall instructions his overall performance on the Crovitz test of autobiographical memory was impaired and all of M.R.L.'s specific, temporally dated memories were given from the first half of his life. When asked to reconstruct his past residential history in detail, M.R.L. provide specific and generally accurate information for residences occupied from his boyhood until 1970, but thereafter his memory became quite unreliable. On a test of knowledge of terms commonly employed in the surveying profession, in which he worked for the past 20 years, M.R.L.'s performance was also impaired. The consistent pattern of RA displayed by this patient on all of the tests of remote memory indicates that both episodic and semantic memory are impaired in amnesia.
Bona, Silvia; Silvanto, Juha
2014-01-01
Currently influential models of working memory posit that memory content is highly accessible to conscious inspection. These models predict that metacognition of memory performance should go hand-in-hand with the accuracy of the underlying memory representation. To test this view, we investigated how visual information presented during the maintenance period affects VSTM accuracy and confidence. We used a delayed cue–target orientation discrimination task in which participants were asked to hold in memory a grating, and during the maintenance period a second memory cue could be presented. VSTM accuracy of the first memory cue was impaired when the orientation of the second memory cue was sufficiently different. However, participants' response confidence was reduced whenever the second memory cue was presented; thus VSTM accuracy and confidence were dissociated. In a second experiment, we applied transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex (DLPFC) to investigate the causal role of this region in VSTM metacognition. Relative to the sham condition, anodal tDCS induced a general reduction in confidence ratings but did not affect VSTM accuracy. Overall, these results indicate that our metacognition of memory performance is influenced by factors other than the accuracy of the underlying memory representation. PMID:24663094
Spatial working memory load affects counting but not subitizing in enumeration.
Shimomura, Tomonari; Kumada, Takatsune
2011-08-01
The present study investigated whether subitizing reflects capacity limitations associated with two types of working memory tasks. Under a dual-task situation, participants performed an enumeration task in conjunction with either a spatial (Experiment 1) or a nonspatial visual (Experiment 2) working memory task. Experiment 1 showed that spatial working memory load affected the slope of a counting function but did not affect subitizing performance or subitizing range. Experiment 2 showed that nonspatial visual working memory load affected neither enumeration efficiency nor subitizing range. Furthermore, in both spatial and nonspatial memory tasks, neither subitizing efficiency nor subitizing range was affected by amount of imposed memory load. In all the experiments, working memory load failed to influence slope, subitizing range, or overall reaction time. These findings suggest that subitizing is performed without either spatial or nonspatial working memory. A possible mechanism of subitizing with independent capacity of working memory is discussed.
Working memory involvement in stuttering: exploring the evidence and research implications.
Bajaj, Amit
2007-01-01
Several studies of utterance planning and attention processes in stuttering have raised the prospect of working memory involvement in the disorder. In this paper, potential connections between stuttering and two elements of Baddeley's [Baddeley, A. D. (2003). Working memory: Looking back and looking forward. Neuroscience, 4, 829-839] working memory model, phonological memory and central executive, are posited. Empirical evidence is drawn from studies on phonological memory and dual-task performance among children and adults who stutter to examine support for the posited connections. Implications for research to examine working memory as one of the psycholinguistic bases of stuttering are presented. The reader will learn about and be able to: (1) appraise potential relationships between working memory and stuttering; (2) evaluate empirical evidence that suggests the possibility of working memory involvement in stuttering; and (3) identify research directions to explore the role of working memory in stuttering.
Nicolaou, E; Quach, J; Lum, J; Roberts, G; Spencer-Smith, M; Gathercole, S; Anderson, P J; Mensah, F K; Wake, M
2018-05-01
Adaptive working memory training is being implemented without an adequate understanding of developmental trajectories of working memory. We aimed to quantify from Grade 1 to Grade 3 of primary school (1) changes in verbal and visuospatial working memory and (2) whether low verbal and visuospatial working memory in Grade 1 predicts low working memory in Grade 3. The study design includes a population-based longitudinal study of 1,802 children (66% uptake from all 2,747 Grade 1 students) at 44 randomly selected primary schools in Melbourne, Australia. Backwards Digit Recall (verbal working memory) and Mister X (visuospatial working memory) screening measures from the Automated Working Memory Assessment (M = 100; SD = 15) were used to assess Grades 1 and 3 (ages 6-7 and 8-9 years) students. Low working memory was defined as ≥1 standard deviation below the standard score mean. Descriptive statistics addressed Aim 1, and predictive parameters addressed Aim 2. One thousand seventy (59%) of 1802 Grade 1 participants were reassessed in Grade 3. As expected for typically developing children, group mean standard scores were similar in Grades 1 and 3 for verbal, visuospatial, and overall working memory, but group mean raw scores increased markedly. Compared to "not low" children, those classified as having low working memory in Grade 1 showed much larger increases in both standard and raw scores across verbal, visuospatial, and overall working memory. Sensitivity was very low for Grade 1 low working memory predicting Grade 3 low classifications. Although mean changes in working memory standard scores between Grades 1 and 3 were minimal, we found that individual development varied widely, with marked natural resolution by Grade 3 in children who initially had low working memory. This may render brain-training interventions ineffective in the early school year ages, particularly if (as population-based programmes usually mandate) selection occurs within a screening paradigm. © 2017 John Wiley & Sons Ltd.
Tao, Duoduo; Deng, Rui; Jiang, Ye; Galvin, John J; Fu, Qian-Jie; Chen, Bing
2014-01-01
To investigate how auditory working memory relates to speech perception performance by Mandarin-speaking cochlear implant (CI) users. Auditory working memory and speech perception was measured in Mandarin-speaking CI and normal-hearing (NH) participants. Working memory capacity was measured using forward digit span and backward digit span; working memory efficiency was measured using articulation rate. Speech perception was assessed with: (a) word-in-sentence recognition in quiet, (b) word-in-sentence recognition in speech-shaped steady noise at +5 dB signal-to-noise ratio, (c) Chinese disyllable recognition in quiet, (d) Chinese lexical tone recognition in quiet. Self-reported school rank was also collected regarding performance in schoolwork. There was large inter-subject variability in auditory working memory and speech performance for CI participants. Working memory and speech performance were significantly poorer for CI than for NH participants. All three working memory measures were strongly correlated with each other for both CI and NH participants. Partial correlation analyses were performed on the CI data while controlling for demographic variables. Working memory efficiency was significantly correlated only with sentence recognition in quiet when working memory capacity was partialled out. Working memory capacity was correlated with disyllable recognition and school rank when efficiency was partialled out. There was no correlation between working memory and lexical tone recognition in the present CI participants. Mandarin-speaking CI users experience significant deficits in auditory working memory and speech performance compared with NH listeners. The present data suggest that auditory working memory may contribute to CI users' difficulties in speech understanding. The present pattern of results with Mandarin-speaking CI users is consistent with previous auditory working memory studies with English-speaking CI users, suggesting that the lexical importance of voice pitch cues (albeit poorly coded by the CI) did not influence the relationship between working memory and speech perception.
Working-memory training improves developmental dyslexia in Chinese children.
Luo, Yan; Wang, Jing; Wu, Hanrong; Zhu, Dongmei; Zhang, Yu
2013-02-15
Although plasticity in the neural system underlies working memory, and working memory can be improved by training, there is thus far no evidence that children with developmental dyslexia can benefit from working-memory training. In the present study, thirty dyslexic children aged 8-11 years were recruited from an elementary school in Wuhan, China. They received working-memory training, including training in visuospatial memory, verbal memory, and central executive tasks. The difficulty of the tasks was adjusted based on the performance of each subject, and the training sessions lasted 40 minutes per day, for 5 weeks. The results showed that working-memory training significantly enhanced performance on the nontrained working memory tasks such as the visuospatial, the verbal domains, and central executive tasks in children with developmental dyslexia. More importantly, the visual rhyming task and reading fluency task were also significantly improved by training. Progress on working memory measures was related to changes in reading skills. These experimental findings indicate that working memory is a pivotal factor in reading development among children with developmental dyslexia, and interventions to improve working memory may help dyslexic children to become more proficient in reading.
Chen, Xingui; Tao, Longxiang; Li, Jingjing; Wu, Jiaonan; Zhu, Chunyan; Yu, Fengqiong; Zhang, Lei; Zhang, Jingjie; Qiu, Bensheng; Yu, Yongqiang; He, Xiaoxuan
2017-01-01
Abstract Background: Tamoxifen is the most widely used drug for treating patients with estrogen receptor-sensitive breast cancer. There is evidence that breast cancer patients treated with tamoxifen exhibit cognitive dysfunction. However, the underlying neural mechanism remains unclear. The present study aimed to investigate the neural mechanisms underlying working memory deficits in combination with functional connectivity changes in premenopausal women with breast cancer who received long-term tamoxifen treatment. Methods: A total of 31 premenopausal women with breast cancer who received tamoxifen and 32 matched healthy control participants were included. The participants completed n-back tasks and underwent resting-state functional magnetic resonance imaging, which measure working memory performance and brain functional connectivity, respectively. A seed-based functional connectivity analysis within the whole brain was conducted, for which the dorsolateral prefrontal cortex was chosen as the seed region. Results: Our results indicated that the tamoxifen group had significant deficits in working memory and general executive function performance and significantly lower functional connectivity of the right dorsolateral prefrontal cortex with the right hippocampus compared with the healthy controls. There were no significant changes in functional connectivity in the left dorsolateral prefrontal cortex within the whole brain between the tamoxifen group and healthy controls. Moreover, significant correlations were found in the tamoxifen group between the functional connectivity strength of the dorsolateral prefrontal cortex with the right hippocampus and decreased working memory performance. Conclusion: This study demonstrates that the prefrontal cortex and hippocampus may be affected by tamoxifen treatment, supporting an antagonistic role of tamoxifen in the long-term treatment of breast cancer patients. PMID:28177081
Piccardi, Laura; Matano, Alessandro; D’Antuono, Giovanni; Marin, Dario; Ciurli, Paola; Incoccia, Chiara; Verde, Paola; Guariglia, Paola
2016-01-01
The aim of the present study was to verify if gender differences in verbal and visuo-spatial working memory would persist following right cerebral lesions. To pursue our aim we investigated a large sample (n. 346) of right brain-damaged patients and healthy participants (n. 272) for the presence of gender effects in performing Corsi and Digit Test. We also assessed a subgroup of patients (n. 109) for the nature (active vs. passive) of working memory tasks. We tested working memory (WM) administering the Corsi Test (CBT) and the Digit Span (DS) using two different versions: forward (fCBT and fDS), subjects were required to repeat stimuli in the same order that they were presented; and backward (bCBT and bDS), subjects were required to repeat stimuli in the opposite order of presentation. In this way, passive storage and active processing of working memory were assessed. Our results showed the persistence of gender-related effects in spite of the presence of right brain lesions. We found that men outperformed women both in CBT and DS, regardless of active and passive processing of verbal and visuo-spatial stimuli. The presence of visuo-spatial disorders (i.e., hemineglect) can affect the performance on Corsi Test. In our sample, men and women were equally affected by hemineglect, therefore it did not mask the gender effect. Generally speaking, the persistence of the men’s superiority in visuo-spatial tasks may be interpreted as a protective factor, at least for men, within other life factors such as level of education or kind of profession before retirement. PMID:27445734
Ruiz-Contreras, A E; Carrillo-Sánchez, K; Ortega-Mora, I; Barrera-Tlapa, M A; Román-López, T V; Rosas-Escobar, C B; Flores-Barrera, L; Caballero-Sánchez, U; Muñoz-Torres, Z; Romero-Hidalgo, S; Hernández-Morales, S; González-Barrios, J A; Vadillo-Ortega, F; Méndez-Díaz, M; Aguilar-Roblero, R; Prospéro-García, O
2014-02-01
Individual differences in cognitive performance are partly dependent, on genetic polymporhisms. One of the single-nucleotide polymorphisms (SNP) of the CNR1 gene, which codes for cannabinoid receptor 1 (CB1R), is the rs2180619, located in a regulatory region of this gene (6q14-q15). The alleles of the rs2180619 are A > G; the G allele has been associated with addiction and high levels of anxiety (when the G allele interacts with the SS genotype of the 5-HTTLPR gene). However, GG genotype is observed also in healthy subjects. Considering G allele as risk for 'psychopathological conditions', it is possible that GG healthy subjects do not be addicted or anxious, but would have reduced performance, compared to AA subjects, in attentional control and working memory processing. One hundred and sixty-four healthy young Mexican-Mestizo subjects (100 women and 64, men; mean age: 22.86 years, SD=2.72) participated in this study, solving a task where attentional control and working memory were required. GG subjects, compared to AA subjects showed: (1) a general lower performance in the task (P = 0.02); (2) lower performance only when a high load of information was held in working memory (P = 0.02); and (3) a higher vulnerability to distractors (P = 0.03). Our results suggest that, although the performance of GG subjects was at normal levels, a lower efficiency of the endocannabinoid system, probably due to a lowered expression of CB1R, produced a reduction in the performance of these subjects when attentional control and working memory processing is challenged. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Noradrenergic Stimulation Impairs Memory Generalization in Women.
Kluen, Lisa Marieke; Agorastos, Agorastos; Wiedemann, Klaus; Schwabe, Lars
2017-07-01
Memory generalization is essential for adaptive decision-making and action. Our ability to generalize across past experiences relies on medial-temporal lobe structures, known to be highly sensitive to stress. Recent evidence suggests that stressful events may indeed interfere with memory generalization. Yet, the mechanisms involved in this generalization impairment are unknown. We tested here whether a pharmacological elevation of major stress mediators-noradrenaline and glucocorticoids-is sufficient to disrupt memory generalization. In a double-blind, placebo-controlled design, healthy men and women received orally a placebo, hydrocortisone, the α2-adrenoceptor antagonist yohimbine that leads to increased noradrenergic stimulation, or both drugs, before they completed an associative learning task probing memory generalization. Drugs left learning performance intact. Yohimbine, however, led to a striking generalization impairment in women, but not in men. Hydrocortisone, in turn, had no effect on memory generalization, neither in men nor in women. The present findings indicate that increased noradrenergic activity, but not cortisol, is sufficient to disrupt memory generalization in a sex-specific manner, with relevant implications for stress-related mental disorders characterized by generalization deficits.
Shaw, A M; Timpano, K R; Steketee, G; Tolin, D F; Frost, R O
2015-04-01
Hoarding disorder (HD) is characterized by difficulty discarding, clutter, and frequently excessive acquiring. Theories have pointed to intense negative emotional reactions (e.g., sadness) as one factor that may play a critical role in HD's etiology. Preliminary work with an analogue sample indicated that more intense negative emotions following emotional films were linked with greater hoarding symptoms. Symptom provocation imaging studies with HD patients have also found evidence for excessive activation in brain regions implicated in processing emotions. The current study utilized a sample with self-reported serious hoarding difficulties to examine how hoarding symptoms related to both general and hoarding-related emotional reactivity, taking into account the specificity of these relationships. We also examined how two cognitive factors, fear of decision-making and confidence in memory, modified this relationship. 628 participants with self-identified hoarding difficulties completed questionnaires about general emotional reactivity, depression, anxiety, decision-making, and confidence in memory. To assess hoarding-related emotional reactivity, participants reported their emotional reactions when imagining discarding various items. Heightened general emotional reactivity and more intense emotional reactions to imagined discarding were associated with both difficulty discarding and acquisition, but not clutter, controlling for age, gender, and co-occurring mood and anxiety symptoms. Fear of decision-making and confidence in memory interacted with general emotional reactivity to predict hoarding symptoms. These findings provide support for cognitive-behavioral models of hoarding. Experimental research should be conducted to discover whether emotional reactivity increases vulnerability for HD. Future work should also examine whether emotional reactivity should be targeted in interventions for hoarding. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shaw, A.M.; Timpano, K.R.; Steketee, G.; Tolin, D. F.; Frost, R.O.
2015-01-01
Hoarding disorder (HD) is characterized by difficulty discarding, clutter, and frequently excessive acquiring. Theories have pointed to intense negative emotional reactions (e.g., sadness) as one factor that may play a critical role in HD’s etiology. Preliminary work with an analogue sample indicated that more intense negative emotions following emotional films were linked with greater hoarding symptoms. Symptom provocation imaging studies with HD patients have also found evidence for excessive activation in brain regions implicated in processing emotions. The current study utilized a sample with self-reported serious hoarding difficulties to examine how hoarding symptoms related to both general and hoarding-related emotional reactivity, taking into account the specificity of these relationships. We also examined how two cognitive factors, fear of decision-making and confidence in memory, modified this relationship. 628 participants with self-identified hoarding difficulties completed questionnaires about general emotional reactivity, depression, anxiety, decision-making, and confidence in memory. To assess hoarding-related emotional reactivity, participants reported their emotional reactions when imagining discarding various items. Heightened general emotional reactivity and more intense emotional reactions to imagined discarding were associated with both difficulty discarding and acquisition, but not clutter, controlling for age, gender, and co-occurring mood and anxiety symptoms. Fear of decision-making and confidence in memory interacted with general emotional reactivity to predict hoarding symptoms. These findings provide support for cognitive-behavioral models of hoarding. Experimental research should be conducted to discover whether emotional reactivity increases vulnerability for HD. Future work should also examine whether emotional reactivity should be targeted in interventions for hoarding. PMID:25732668
Nyberg, Claudia Kim; Nordvik, Jan Egil; Becker, Frank; Rohani, Darius A; Sederevicius, Donatas; Fjell, Anders M; Walhovd, Kristine B
2018-05-01
Background Computerized cognitive training is suggested to enhance attention and working memory functioning following stroke, but effects on brain and behavior are not sufficiently studied and longitudinal studies assessing brain and behavior relationships are scarce. Objective The study objectives were to investigate relations between neuropsychological performance post-stroke and white matter microstructure measures derived from diffusion tensor imaging (DTI), including changes after 6 weeks of working memory training. Methods In this experimental training study, 26 stroke patients underwent DTI and neuropsychological tests at 3 time points - before and after a passive phase of 6 weeks, and again after 6 weeks of working memory training (Cogmed QM). Fractional anisotropy (FA) was extracted from stroke-free brain areas to assess the white matter microstructure. Twenty-two participants completed the majority of training (≥18/25 sessions) and were entered into longitudinal analyses. Results Significant correlations between FA and baseline cognitive functions were observed (r = 0.58, p = 0.004), however, no evidence was found of generally improved cognitive functions following training or of changes in white matter microstructure. Conclusions While white matter microstructure related to baseline cognitive function in stroke patients, the study revealed no effect on cognitive functions or microstructural changes in white matter in relation to computerized working memory training.
Mossaheb, Nilufar; Kaufmann, Rainer M; Schlögelhofer, Monika; Aninilkumparambil, Thushara; Himmelbauer, Claudia; Gold, Anna; Zehetmayer, Sonja; Hoffmann, Holger; Traue, Harald C; Aschauer, Harald
2018-01-01
Social interactive functions such as facial emotion recognition and smell identification have been shown to differ between women and men. However, little is known about how these differences are mirrored in patients with schizophrenia and how these abilities interact with each other and with other clinical variables in patients vs. healthy controls. Standardized instruments were used to assess facial emotion recognition [Facially Expressed Emotion Labelling (FEEL)] and smell identification [University of Pennsylvania Smell Identification Test (UPSIT)] in 51 patients with schizophrenia spectrum disorders and 79 healthy controls; furthermore, working memory functions and clinical variables were assessed. In both the univariate and the multivariate results, illness showed a significant influence on UPSIT and FEEL. The inclusion of age and working memory in the MANOVA resulted in a differential effect with sex and working memory as remaining significant factors. Duration of illness was correlated with both emotion recognition and smell identification in men only, whereas immediate general psychopathology and negative symptoms were associated with emotion recognition only in women. Being affected by schizophrenia spectrum disorder impacts one's ability to correctly recognize facial affects and identify odors. Converging evidence suggests a link between the investigated basic and social cognitive abilities in patients with schizophrenia spectrum disorders with a strong contribution of working memory and differential effects of modulators in women vs. men.
How we categorize objects is related to how we remember them: The shape bias as a memory bias
Vlach, Haley A.
2016-01-01
The “shape bias” describes the phenomenon that, after a certain point in development, children and adults generalize object categories based upon shape to a greater degree than other perceptual features. The focus of research on the shape bias has been to examine the types of information that learners attend to in one moment in time. The current work takes a different approach by examining whether learners' categorical biases are related to their retention of information across time. In three experiments, children's (N = 72) and adults' (N = 240) memory performance for features of objects was examined in relation to their categorical biases. The results of these experiments demonstrated that the number of shape matches chosen during the shape bias task significantly predicted shape memory. Moreover, children and adults with a shape bias were more likely to remember the shape of objects than they were the color and size of objects. Taken together, this work suggests the development of a shape bias may engender better memory for shape information. PMID:27454236
The role of attention in binding visual features in working memory: evidence from cognitive ageing.
Brown, Louise A; Brockmole, James R
2010-10-01
Two experiments were conducted to assess the costs of attentional load during a feature (colour-shape) binding task in younger and older adults. Experiment 1 showed that a demanding backwards counting task, which draws upon central executive/general attentional resources, reduced binding to a greater extent than individual feature memory, but the effect was no greater in older than in younger adults. Experiment 2 showed that presenting memory items sequentially rather than simultaneously, such that items are required to be maintained while new representations are created, selectively affects binding performance in both age groups. Although this experiment exhibited an age-related binding deficit overall, both age groups were affected by the attention manipulation to an equal extent. While a role for attentional processes in colour-shape binding was apparent across both experiments, manipulations of attention exerted equal effects in both age groups. We therefore conclude that age-related binding deficits neither emerge nor are exacerbated under conditions of high attentional load. Implications for theories of visual working memory and cognitive ageing are discussed.
How we categorize objects is related to how we remember them: The shape bias as a memory bias.
Vlach, Haley A
2016-12-01
The "shape bias" describes the phenomenon that, after a certain point in development, children and adults generalize object categories based on shape to a greater degree than other perceptual features. The focus of research on the shape bias has been to examine the types of information that learners attend to in one moment in time. The current work takes a different approach by examining whether learners' categorical biases are related to their retention of information across time. In three experiments, children's (N=72) and adults' (N=240) memory performance for features of objects was examined in relation to their categorical biases. The results of these experiments demonstrated that the number of shape matches chosen during the shape bias task significantly predicted shape memory. Moreover, children and adults with a shape bias were more likely to remember the shape of objects than the color and size of objects. Taken together, this work suggests that the development of a shape bias may engender better memory for shape information. Copyright © 2016 Elsevier Inc. All rights reserved.
The role of executive functioning in memory performance in pediatric focal epilepsy.
Sepeta, Leigh N; Casaletto, Kaitlin Blackstone; Terwilliger, Virginia; Facella-Ervolini, Joy; Sady, Maegan; Mayo, Jessica; Gaillard, William D; Berl, Madison M
2017-02-01
Learning and memory are essential for academic success and everyday functioning, but the pattern of memory skills and its relationship to executive functioning in children with focal epilepsy is not fully delineated. We address a gap in the literature by examining the relationship between memory and executive functioning in a pediatric focal epilepsy population. Seventy children with focal epilepsy and 70 typically developing children matched on age, intellectual functioning, and gender underwent neuropsychological assessment, including measures of intelligence (Wechsler Abbreviated Scale of Intelligence [WASI]/Differential Ability Scales [DAS]), as well as visual Children's Memory Scale (CMS Dot Locations) and verbal episodic memory (Wide Range Assessment of Memory and Learning [WRAML] Story Memory and California Verbal Learning Test for Children [CVLT-C]). Executive functioning was measured directly (WISC-IV Digit Span Backward; Clinical Evaluation of Language Fundamentals, Fourth Edition (CELF-IV) Recalling Sentences) and by parent report (Behavior Rating Inventory of Executive Function [BRIEF]). Children with focal epilepsy had lower delayed free-recall scores than controls across visual and verbal memory tasks (p = 0.02; partial η 2 = 0.12). In contrast, recognition memory performance was similar for patients and controls (p = 0.36; partial η 2 = 0.03). Children with focal epilepsy demonstrated difficulties in working memory (p = 0.02; partial η 2 = 0.08) and planning/organization (p = 0.02) compared to controls. Working memory predicted 9-19% of the variance in delayed free recall for verbal and visual memory; organization predicted 9-10% of the variance in verbal memory. Patients with both left and right focal epilepsy demonstrated more difficulty on verbal versus visual tasks (p = 0.002). Memory performance did not differ by location of seizure foci (temporal vs. extratemporal, frontal vs. extrafrontal). Children with focal epilepsy demonstrated memory ability within age-level expectations, but delayed free recall was inefficient compared to typically developing controls. Memory difficulties were not related to general cognitive impairment or seizure localization. Executive functioning accounted for significant variance in memory performance, suggesting that poor executive control negatively influences memory retrieval. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
NASA Astrophysics Data System (ADS)
Lotfy, K.; Sarkar, N.
2017-11-01
In this work, a novel generalized model of photothermal theory with two-temperature thermoelasticity theory based on memory-dependent derivative (MDD) theory is performed. A one-dimensional problem for an elastic semiconductor material with isotropic and homogeneous properties has been considered. The problem is solved with a new model (MDD) under the influence of a mechanical force with a photothermal excitation. The Laplace transform technique is used to remove the time-dependent terms in the governing equations. Moreover, the general solutions of some physical fields are obtained. The surface taken into consideration is free of traction and subjected to a time-dependent thermal shock. The numerical Laplace inversion is used to obtain the numerical results of the physical quantities of the problem. Finally, the obtained results are presented and discussed graphically.
Complexity, Training Paradigm Design, and the Contribution of Memory Subsystems to Grammar Learning
Ettlinger, Marc; Wong, Patrick C. M.
2016-01-01
Although there is variability in nonnative grammar learning outcomes, the contributions of training paradigm design and memory subsystems are not well understood. To examine this, we presented learners with an artificial grammar that formed words via simple and complex morphophonological rules. Across three experiments, we manipulated training paradigm design and measured subjects' declarative, procedural, and working memory subsystems. Experiment 1 demonstrated that passive, exposure-based training boosted learning of both simple and complex grammatical rules, relative to no training. Additionally, procedural memory correlated with simple rule learning, whereas declarative memory correlated with complex rule learning. Experiment 2 showed that presenting corrective feedback during the test phase did not improve learning. Experiment 3 revealed that structuring the order of training so that subjects are first exposed to the simple rule and then the complex improved learning. The cumulative findings shed light on the contributions of grammatical complexity, training paradigm design, and domain-general memory subsystems in determining grammar learning success. PMID:27391085
Explaining the association between music training and reading in adults.
Swaminathan, Swathi; Schellenberg, E Glenn; Venkatesan, Kirthika
2018-06-01
We sought to clarify whether the positive association between music lessons and reading ability is explained better by shared resources for processing pitch and temporal information, or by general cognitive abilities. Participants were native and nonnative speakers of English with varying levels of music training. We measured reading ability (comprehension and speed), music-perception skills (melody and rhythm), general cognitive ability (nonverbal intelligence, short-term memory, and working memory), and socioeconomic status (SES; family income, parents' education). Reading ability was associated positively with music training, English as a native language, and general cognitive ability. The association between reading and music training was significant after SES, native language, and music-perception skills were controlled. After general cognitive abilities were held constant, however, there was no longer an association between reading and music training. These findings suggest that the association between reading ability and music training is a consequence of general cognitive abilities. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Can Interactive Working Memory Training Improve Learning?
ERIC Educational Resources Information Center
Alloway, Tracy
2012-01-01
Background: Working memory is linked to learning outcomes and there is emerging evidence that training working memory can yield gains in working memory and fluid intelligence. Aims: The aim of the present study was to investigate whether interactive working memory training would transfer to acquired cognitive skills, such as vocabulary and…
Working Memory Underpins Cognitive Development, Learning, and Education
Cowan, Nelson
2014-01-01
Working memory is the retention of a small amount of information in a readily accessible form. It facilitates planning, comprehension, reasoning, and problem-solving. I examine the historical roots and conceptual development of the concept and the theoretical and practical implications of current debates about working memory mechanisms. Then I explore the nature of cognitive developmental improvements in working memory, the role of working memory in learning, and some potential implications of working memory and its development for the education of children and adults. The use of working memory is quite ubiquitous in human thought, but the best way to improve education using what we know about working memory is still controversial. I hope to provide some directions for research and educational practice. PMID:25346585
Working Memory Differences Between Children Living in Rural and Urban Poverty
Tine, Michele
2014-01-01
This study was designed to investigate if the working memory profiles of children living in rural poverty are distinct from the working memory profiles of children living in urban poverty. Verbal and visuospatial working memory tasks were administered to sixth-grade students living in low-income rural, low-income urban, high-income rural, and high-income urban developmental contexts. Both low-income rural and low-income urban children showed working memory deficits compared with their high-income counterparts, but their deficits were distinct. Low-income urban children exhibited symmetrical verbal and visuospatial working memory deficits compared with their high-income urban counterparts. Meanwhile, low-income rural children exhibited asymmetrical deficits when compared with their high-income rural counterparts, with more extreme visuospatial working memory deficits than verbal working memory deficits. These results suggest that different types of poverty are associated with different working memory abilities. PMID:25554726
Working Memory Differences Between Children Living in Rural and Urban Poverty.
Tine, Michele
2014-10-02
This study was designed to investigate if the working memory profiles of children living in rural poverty are distinct from the working memory profiles of children living in urban poverty. Verbal and visuospatial working memory tasks were administered to sixth-grade students living in low-income rural, low-income urban, high-income rural, and high-income urban developmental contexts. Both low-income rural and low-income urban children showed working memory deficits compared with their high-income counterparts, but their deficits were distinct. Low-income urban children exhibited symmetrical verbal and visuospatial working memory deficits compared with their high-income urban counterparts. Meanwhile, low-income rural children exhibited asymmetrical deficits when compared with their high-income rural counterparts, with more extreme visuospatial working memory deficits than verbal working memory deficits. These results suggest that different types of poverty are associated with different working memory abilities.
Colored noise and memory effects on formal spiking neuron models
NASA Astrophysics Data System (ADS)
da Silva, L. A.; Vilela, R. D.
2015-06-01
Simplified neuronal models capture the essence of the electrical activity of a generic neuron, besides being more interesting from the computational point of view when compared to higher-dimensional models such as the Hodgkin-Huxley one. In this work, we propose a generalized resonate-and-fire model described by a generalized Langevin equation that takes into account memory effects and colored noise. We perform a comprehensive numerical analysis to study the dynamics and the point process statistics of the proposed model, highlighting interesting new features such as (i) nonmonotonic behavior (emergence of peak structures, enhanced by the choice of colored noise characteristic time scale) of the coefficient of variation (CV) as a function of memory characteristic time scale, (ii) colored noise-induced shift in the CV, and (iii) emergence and suppression of multimodality in the interspike interval (ISI) distribution due to memory-induced subthreshold oscillations. Moreover, in the noise-induced spike regime, we study how memory and colored noise affect the coherence resonance (CR) phenomenon. We found that for sufficiently long memory, not only is CR suppressed but also the minimum of the CV-versus-noise intensity curve that characterizes the presence of CR may be replaced by a maximum. The aforementioned features allow to interpret the interplay between memory and colored noise as an effective control mechanism to neuronal variability. Since both variability and nontrivial temporal patterns in the ISI distribution are ubiquitous in biological cells, we hope the present model can be useful in modeling real aspects of neurons.
Changes in Brain Network Efficiency and Working Memory Performance in Aging
Stanley, Matthew L.; Simpson, Sean L.; Dagenbach, Dale; Lyday, Robert G.; Burdette, Jonathan H.; Laurienti, Paul J.
2015-01-01
Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and older (n = 15) adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency). Decreases in local efficiency during the working memory task were associated with better working memory performance in both age cohorts. In contrast, increases in global efficiency were associated with much better working performance for young participants; however, increases in global efficiency were associated with a slight decrease in working memory performance for older participants. Individual differences in local and global efficiency during resting-state sessions were not significant predictors of working memory performance. Significant group whole-brain functional network decreases in local efficiency also were observed during the working memory task compared to rest, whereas no significant differences were observed in network global efficiency. These results are discussed in relation to recently developed models of age-related differences in working memory. PMID:25875001
Changes in brain network efficiency and working memory performance in aging.
Stanley, Matthew L; Simpson, Sean L; Dagenbach, Dale; Lyday, Robert G; Burdette, Jonathan H; Laurienti, Paul J
2015-01-01
Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and older (n = 15) adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency). Decreases in local efficiency during the working memory task were associated with better working memory performance in both age cohorts. In contrast, increases in global efficiency were associated with much better working performance for young participants; however, increases in global efficiency were associated with a slight decrease in working memory performance for older participants. Individual differences in local and global efficiency during resting-state sessions were not significant predictors of working memory performance. Significant group whole-brain functional network decreases in local efficiency also were observed during the working memory task compared to rest, whereas no significant differences were observed in network global efficiency. These results are discussed in relation to recently developed models of age-related differences in working memory.
Altered Brain Dynamics in Patients With Type 1 Diabetes During Working Memory Processing.
Embury, Christine M; Wiesman, Alex I; Proskovec, Amy L; Heinrichs-Graham, Elizabeth; McDermott, Timothy J; Lord, Grace H; Brau, Kaitlin L; Drincic, Andjela T; Desouza, Cyrus V; Wilson, Tony W
2018-06-01
It is now generally accepted that diabetes increases the risk for cognitive impairment, but the precise mechanisms are poorly understood. A critical problem in linking diabetes to cognitive impairment is that patients often have multiple comorbidities (e.g., obesity, hypertension) that have been independently linked to cognitive deficits. In the study reported here we focused on young adults with and without type 1 diabetes who were virtually free of such comorbidities. The two groups were matched on major health and demographic factors, and all participants completed a verbal working memory task during magnetoencephalographic brain imaging. We hypothesized that patients would have altered neural dynamics in verbal working memory processing and that these differences would directly relate to clinical disease measures. Accordingly, we found that patients had significantly stronger neural responses in the superior parietal cortices during memory encoding and significantly weaker activity in parietal-occipital regions during maintenance compared with control subjects. Moreover, disease duration and glycemic control were both significantly correlated with neural responses in various brain regions. In conclusion, young healthy adults with type 1 diabetes already have aberrant neural processing relative to their peers without diabetes, using compensatory responses to perform the task, and glucose management and duration may play a central role. © 2018 by the American Diabetes Association.
The role of the episodic buffer in working memory for language processing.
Rudner, Mary; Rönnberg, Jerker
2008-03-01
A body of work has accumulated to show that the cognitive process of binding information from different mnemonic and sensory sources as well as in different linguistic modalities can be fractionated from general executive functions in working memory both functionally and neurally. This process has been defined in terms of the episodic buffer (Baddeley in Trends Cogn Sci 4(11):417-423, 2000). This paper considers behavioural, neuropsychological and neuroimaging data that elucidate the role of the episodic buffer in language processing. We argue that the episodic buffer seems to be truly multimodal in function and that while formation of unitary multidimensional representations in the episodic buffer seems to engage posterior neural networks, maintenance of such representations is supported by frontal networks. Although, the episodic buffer is not necessarily supported by executive processes and seems to be supported by different neural networks, it may operate in tandem with the central executive during effortful language processing. There is also evidence to suggest engagement of the phonological loop during buffer processing. The hippocampus seems to play a role in formation but not maintenance of representations in the episodic buffer of working memory.
Kahalley, Lisa S.; Winter-Greenberg, Amanda; Stancel, Heather; Ris, M. Douglas; Gragert, Marsha
2016-01-01
Introduction Pediatric brain tumor survivors are at risk for working memory and processing speed impairment. The General Ability Index (GAI) provides an estimate of intellectual functioning that is less influenced by working memory and processing speed than a Full Scale IQ (FSIQ). The Cognitive Proficiency Index (CPI) provides a measure of efficient information processing derived from working memory and processing speed tasks. We examined the utility of the GAI and CPI to quantify neurocognitive outcomes in a sample of pediatric brain tumor survivors. Methods GAI, CPI, and FSIQ scores from the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) were examined for 57 pediatric brain tumor survivors (ages 6–16) treated with cranial radiation therapy (RT). Results GAI scores were higher than FSIQ and CPI scores, both p < .001. Lower CPI scores were associated with history of craniospinal irradiation and time since RT. Lower FSIQ and GAI scores were associated with higher RT dose and time since RT. The rate of clinically significant GAI-FSIQ discrepancies in our sample was greater than observed in the WISC-IV standardization sample, p < .001. Estimated premorbid IQ scores were higher than GAI, p < .01, and FSIQ scores, p < .001. Conclusions Pediatric brain tumor survivors exhibit weaker cognitive proficiency than expected for age, while general reasoning ability remains relatively spared. The GAI may be useful to quantify the intellectual potential of a survivor when appropriate accommodations are in place for relative cognitive proficiency weaknesses. The CPI may be a particularly sensitive outcome measure of treatment-related cognitive change in this population. PMID:27295192
Classical capacity of Gaussian thermal memory channels
NASA Astrophysics Data System (ADS)
De Palma, G.; Mari, A.; Giovannetti, V.
2014-10-01
The classical capacity of phase-invariant Gaussian channels has been recently determined under the assumption that such channels are memoryless. In this work we generalize this result by deriving the classical capacity of a model of quantum memory channel, in which the output states depend on the previous input states. In particular we extend the analysis of Lupo et al. [Phys. Rev. Lett. 104, 030501 (2010), 10.1103/PhysRevLett.104.030501 and Phys. Rev. A 82, 032312 (2010), 10.1103/PhysRevA.82.032312] from quantum limited channels to thermal attenuators and thermal amplifiers. Our result applies in many situations in which the physical communication channel is affected by nonzero memory and by thermal noise.
Working Memory Systems in the Rat.
Bratch, Alexander; Kann, Spencer; Cain, Joshua A; Wu, Jie-En; Rivera-Reyes, Nilda; Dalecki, Stefan; Arman, Diana; Dunn, Austin; Cooper, Shiloh; Corbin, Hannah E; Doyle, Amanda R; Pizzo, Matthew J; Smith, Alexandra E; Crystal, Jonathon D
2016-02-08
A fundamental feature of memory in humans is the ability to simultaneously work with multiple types of information using independent memory systems. Working memory is conceptualized as two independent memory systems under executive control [1, 2]. Although there is a long history of using the term "working memory" to describe short-term memory in animals, it is not known whether multiple, independent memory systems exist in nonhumans. Here, we used two established short-term memory approaches to test the hypothesis that spatial and olfactory memory operate as independent working memory resources in the rat. In the olfactory memory task, rats chose a novel odor from a gradually incrementing set of old odors [3]. In the spatial memory task, rats searched for a depleting food source at multiple locations [4]. We presented rats with information to hold in memory in one domain (e.g., olfactory) while adding a memory load in the other domain (e.g., spatial). Control conditions equated the retention interval delay without adding a second memory load. In a further experiment, we used proactive interference [5-7] in the spatial domain to compromise spatial memory and evaluated the impact of adding an olfactory memory load. Olfactory and spatial memory are resistant to interference from the addition of a memory load in the other domain. Our data suggest that olfactory and spatial memory draw on independent working memory systems in the rat. Copyright © 2016 Elsevier Ltd. All rights reserved.
Koshino, Hideya
2017-01-01
Working memory and attention are closely related. Recent research has shown that working memory can be viewed as internally directed attention. Working memory can affect attention in at least two ways. One is the effect of working memory load on attention, and the other is the effect of working memory contents on attention. In the present study, an interaction between working memory contents and perceptual load in distractor processing was investigated. Participants performed a perceptual load task in a standard form in one condition (Single task). In the other condition, a response-related distractor was maintained in working memory, rather than presented in the same stimulus display as a target (Dual task). For the Dual task condition, a significant compatibility effect was found under high perceptual load; however, there was no compatibility effect under low perceptual load. These results suggest that the way the contents of working memory affect visual search depends on perceptual load. Copyright © 2016 Elsevier B.V. All rights reserved.
Motor learning and working memory in children born preterm: a systematic review.
Jongbloed-Pereboom, Marjolein; Janssen, Anjo J W M; Steenbergen, Bert; Nijhuis-van der Sanden, Maria W G
2012-04-01
Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has never been reviewed. The goal of this review was to provide an overview of motor learning, visual working memory and the role of working memory on motor learning in preterm children. A systematic review conducted in four databases identified 38 relevant articles, which were evaluated for methodological quality. Only 4 of 38 articles discussed motor learning in preterm children. Thirty-four studies reported on visual working memory; preterm birth affected performance on visual working memory tests. Information regarding motor learning and the role of working memory on the different components of motor learning was not available. Future research should address this issue. Insight in the relation between motor learning and visual working memory may contribute to the development of evidence based intervention programs for children born preterm. Copyright © 2012 Elsevier Ltd. All rights reserved.
Manipulations of attention dissociate fragile visual short-term memory from visual working memory.
Vandenbroucke, Annelinde R E; Sligte, Ilja G; Lamme, Victor A F
2011-05-01
People often rely on information that is no longer in view, but maintained in visual short-term memory (VSTM). Traditionally, VSTM is thought to operate on either a short time-scale with high capacity - iconic memory - or a long time scale with small capacity - visual working memory. Recent research suggests that in addition, an intermediate stage of memory in between iconic memory and visual working memory exists. This intermediate stage has a large capacity and a lifetime of several seconds, but is easily overwritten by new stimulation. We therefore termed it fragile VSTM. In previous studies, fragile VSTM has been dissociated from iconic memory by the characteristics of the memory trace. In the present study, we dissociated fragile VSTM from visual working memory by showing a differentiation in their dependency on attention. A decrease in attention during presentation of the stimulus array greatly reduced the capacity of visual working memory, while this had only a small effect on the capacity of fragile VSTM. We conclude that fragile VSTM is a separate memory store from visual working memory. Thus, a tripartite division of VSTM appears to be in place, comprising iconic memory, fragile VSTM and visual working memory. Copyright © 2011 Elsevier Ltd. All rights reserved.
Multilocus genetic profile in dopaminergic pathway modulates the striatum and working memory.
Wang, Chao; Liu, Bing; Zhang, Xiaolong; Cui, Yue; Yu, Chunshui; Jiang, Tianzi
2018-03-29
Dopamine is critical in pathophysiology and therapy of schizophrenia. Many studies have reported altered dopaminergic activity in the dorsal but not ventral striatum in schizophrenia. Based on the largest genome-wide association study of schizophrenia to date, we calculated the polygenic risk score (PGRS) of each subject in a healthy general group, including all variations in the set of functionally related genes involved in dopamine neurotransmitter system. We aimed to test whether the genetic variations in the dopaminergic pathway that have been identified as associated with schizophrenia are related to the function of the striatum and to working memory. We found that a higher PGRS was significantly associated with impairment in working memory. Moreover, resting-state functional connectivity analysis revealed that as the polygenic risk score increased, the connections between left putamen and caudate and the default mode network grew stronger, while the connections with the fronto-parietal network grew weaker. Our findings may shed light on the biological mechanism underlying the "dopamine hypothesis" of schizophrenia and provide some implications regarding the polygenic effects on the dopaminergic activity in the risk for schizophrenia.
Nelson, Jason M; Lindstrom, Will; Foels, Patricia A
2015-01-01
Test anxiety and its correlates were examined with college students with and without specific reading disability (RD; n = 50 in each group). Results indicated that college students with RD reported higher test anxiety than did those without RD, and the magnitude of these differences was in the medium range on two test anxiety scales. Relative to college students without RD, up to 5 times as many college students with RD reported clinically significant test anxiety. College students with RD reported significantly higher cognitively based test anxiety than physically based test anxiety. Reading skills, verbal ability, and processing speed were not correlated with test anxiety. General intelligence, nonverbal ability, and working memory were negatively correlated with test anxiety, and the magnitude of these correlations was medium to large. When these three cognitive constructs were considered together in multiple regression analyses, only working memory and nonverbal ability emerged as significant predictors and varied based on the test anxiety measure. Implications for assessment and intervention are discussed. © Hammill Institute on Disabilities 2013.
Kofler, Michael J; Rapport, Mark D; Bolden, Jennifer; Sarver, Dustin E; Raiker, Joseph S
2010-02-01
Inattentive behavior is considered a core and pervasive feature of ADHD; however, an alternative model challenges this premise and hypothesizes a functional relationship between working memory deficits and inattentive behavior. The current study investigated whether inattentive behavior in children with ADHD is functionally related to the domain-general central executive and/or subsidiary storage/rehearsal components of working memory. Objective observations of children's attentive behavior by independent observers were conducted while children with ADHD (n = 15) and typically developing children (n = 14) completed counterbalanced tasks that differentially manipulated central executive, phonological storage/rehearsal, and visuospatial storage/rehearsal demands. Results of latent variable and effect size confidence interval analyses revealed two conditions that completely accounted for the attentive behavior deficits in children with ADHD: (a) placing demands on central executive processing, the effect of which is evident under even low cognitive loads, and (b) exceeding storage/rehearsal capacity, which has similar effects on children with ADHD and typically developing children but occurs at lower cognitive loads for children with ADHD.
When high working memory capacity is and is not beneficial for predicting nonlinear processes.
Fischer, Helen; Holt, Daniel V
2017-04-01
Predicting the development of dynamic processes is vital in many areas of life. Previous findings are inconclusive as to whether higher working memory capacity (WMC) is always associated with using more accurate prediction strategies, or whether higher WMC can also be associated with using overly complex strategies that do not improve accuracy. In this study, participants predicted a range of systematically varied nonlinear processes based on exponential functions where prediction accuracy could or could not be enhanced using well-calibrated rules. Results indicate that higher WMC participants seem to rely more on well-calibrated strategies, leading to more accurate predictions for processes with highly nonlinear trajectories in the prediction region. Predictions of lower WMC participants, in contrast, point toward an increased use of simple exemplar-based prediction strategies, which perform just as well as more complex strategies when the prediction region is approximately linear. These results imply that with respect to predicting dynamic processes, working memory capacity limits are not generally a strength or a weakness, but that this depends on the process to be predicted.
Georgiou, George K; Tziraki, Niki; Manolitsis, George; Fella, Argyro
2013-07-01
We examined (a) what rapid automatized naming (RAN) components (articulation time and/or pause time) predict reading and mathematics ability and (b) what processing skills involved in RAN (speed of processing, response inhibition, working memory, and/or phonological awareness) may explain its relationship with reading and mathematics. A sample of 72 children were followed from the beginning of kindergarten until the end of Grade 1 and were assessed on measures of RAN, general cognitive ability, speed of processing, attention, working memory, phonological awareness, reading, and mathematics. The results indicated that pause time was the critical component in both the RAN-reading and RAN-mathematics relationships and that it shared most of its predictive variance in reading and mathematics with speed of processing and working memory. Our findings further suggested that, unlike the relationship between RAN and reading fluency in Grade 1, there is nothing in the RAN task that is uniquely related to math. Copyright © 2013 Elsevier Inc. All rights reserved.
Working memory consolidation: insights from studies on attention and working memory.
Ricker, Timothy J; Nieuwenstein, Mark R; Bayliss, Donna M; Barrouillet, Pierre
2018-04-10
Working memory, the system that maintains a limited set of representations for immediate use in cognition, is a central part of human cognition. Three processes have recently been proposed to govern information storage in working memory: consolidation, refreshing, and removal. Here, we discuss in detail the theoretical construct of working memory consolidation, a process critical to the creation of a stable working memory representation. We present a brief overview of the research that indicated the need for a construct such as working memory consolidation and the subsequent research that has helped to define the parameters of the construct. We then move on to explicitly state the points of agreement as to what processes are involved in working memory consolidation. © 2018 New York Academy of Sciences.
Visuospatial Working Memory Capacity Predicts Physiological Arousal in a Narrative Task.
Smithson, Lisa; Nicoladis, Elena
2016-06-01
Physiological arousal that occurs during narrative production is thought to reflect emotional processing and cognitive effort (Bar-Haim et al. in Dev Psychobiol 44:238-249, 2004). The purpose of this study was to determine whether individual differences in visuospatial working memory and/or verbal working memory capacity predict physiological arousal in a narrative task. Visuospatial working memory was a significant predictor of skin conductance level (SCL); verbal working memory was not. When visuospatial working memory interference was imposed, visuospatial working memory was no longer a significant predictor of SCL. Visuospatial interference also resulted in a significant reduction in SCL. Furthermore, listener ratings of narrative quality were contingent upon the visuospatial working memory resources of the narrator. Potential implications for educators and clinical practitioners are discussed.
Bharadwaj, Sneha V; Maricle, Denise; Green, Laura; Allman, Tamby
2015-10-01
The objective of the study was to examine short-term memory and working memory through both visual and auditory tasks in school-age children with cochlear implants. The relationship between the performance on these cognitive skills and reading as well as language outcomes were examined in these children. Ten children between the ages of 7 and 11 years with early-onset bilateral severe-profound hearing loss participated in the study. Auditory and visual short-term memory, auditory and visual working memory subtests and verbal knowledge measures were assessed using the Woodcock Johnson III Tests of Cognitive Abilities, the Wechsler Intelligence Scale for Children-IV Integrated and the Kaufman Assessment Battery for Children II. Reading outcomes were assessed using the Woodcock Reading Mastery Test III. Performance on visual short-term memory and visual working memory measures in children with cochlear implants was within the average range when compared to the normative mean. However, auditory short-term memory and auditory working memory measures were below average when compared to the normative mean. Performance was also below average on all verbal knowledge measures. Regarding reading outcomes, children with cochlear implants scored below average for listening and passage comprehension tasks and these measures were positively correlated to visual short-term memory, visual working memory and auditory short-term memory. Performance on auditory working memory subtests was not related to reading or language outcomes. The children with cochlear implants in this study demonstrated better performance in visual (spatial) working memory and short-term memory skills than in auditory working memory and auditory short-term memory skills. Significant positive relationships were found between visual working memory and reading outcomes. The results of the study provide support for the idea that WM capacity is modality specific in children with hearing loss. Based on these findings, reading instruction that capitalizes on the strengths in visual short-term memory and working memory is suggested for young children with early-onset hearing loss. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Cullen, Patrick K; Gilman, T Lee; Winiecki, Patrick; Riccio, David C; Jasnow, Aaron M
2015-10-01
Memories for context become less specific with time resulting in animals generalizing fear from training contexts to novel contexts. Though much attention has been given to the neural structures that underlie the long-term consolidation of a context fear memory, very little is known about the mechanisms responsible for the increase in fear generalization that occurs as the memory ages. Here, we examine the neural pattern of activation underlying the expression of a generalized context fear memory in male C57BL/6J mice. Animals were context fear conditioned and tested for fear in either the training context or a novel context at recent and remote time points. Animals were sacrificed and fluorescent in situ hybridization was performed to assay neural activation. Our results demonstrate activity of the prelimbic, infralimbic, and anterior cingulate (ACC) cortices as well as the ventral hippocampus (vHPC) underlie expression of a generalized fear memory. To verify the involvement of the ACC and vHPC in the expression of a generalized fear memory, animals were context fear conditioned and infused with 4% lidocaine into the ACC, dHPC, or vHPC prior to retrieval to temporarily inactivate these structures. The results demonstrate that activity of the ACC and vHPC is required for the expression of a generalized fear memory, as inactivation of these regions returned the memory to a contextually precise form. Current theories of time-dependent generalization of contextual memories do not predict involvement of the vHPC. Our data suggest a novel role of this region in generalized memory, which should be incorporated into current theories of time-dependent memory generalization. We also show that the dorsal hippocampus plays a prolonged role in contextually precise memories. Our findings suggest a possible interaction between the ACC and vHPC controls the expression of fear generalization. Copyright © 2015 Elsevier Inc. All rights reserved.
Examining procedural working memory processing in obsessive-compulsive disorder.
Shahar, Nitzan; Teodorescu, Andrei R; Anholt, Gideon E; Karmon-Presser, Anat; Meiran, Nachshon
2017-07-01
Previous research has suggested that a deficit in working memory might underlie the difficulty of obsessive-compulsive disorder (OCD) patients to control their thoughts and actions. However, a recent meta-analyses found only small effect sizes for working memory deficits in OCD. Recently, a distinction has been made between declarative and procedural working memory. Working memory in OCD was tested mostly using declarative measurements. However, OCD symptoms typically concerns actions, making procedural working-memory more relevant. Here, we tested the operation of procedural working memory in OCD. Participants with OCD and healthy controls performed a battery of choice reaction tasks under high and low procedural working memory demands. Reaction-times (RT) were estimated using ex-Gaussian distribution fitting, revealing no group differences in the size of the RT distribution tail (i.e., τ parameter), known to be sensitive to procedural working memory manipulations. Group differences, unrelated to working memory manipulations, were found in the leading-edge of the RT distribution and analyzed using a two-stage evidence accumulation model. Modeling results suggested that perceptual difficulties might underlie the current group differences. In conclusion, our results suggest that procedural working-memory processing is most likely intact in OCD, and raise a novel, yet untested assumption regarding perceptual deficits in OCD. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Negative emotion boosts quality of visual working memory representation.
Xie, Weizhen; Zhang, Weiwei
2016-08-01
Negative emotion impacts a variety of cognitive processes, including working memory (WM). The present study investigated whether negative emotion modulated WM capacity (quantity) or resolution (quality), 2 independent limits on WM storage. In Experiment 1, observers tried to remember several colors over 1-s delay and then recalled the color of a randomly picked memory item by clicking a best-matching color on a continuous color wheel. On each trial, before the visual WM task, 1 of 3 emotion conditions (negative, neutral, or positive) was induced by having observers to rate the valence of an International Affective Picture System image. Visual WM under negative emotion showed enhanced resolution compared with neutral and positive conditions, whereas the number of retained representations was comparable across the 3 emotion conditions. These effects were generalized to closed-contour shapes in Experiment 2. To isolate the locus of these effects, Experiment 3 adopted an iconic memory version of the color recall task by eliminating the 1-s retention interval. No significant change in the quantity or quality of iconic memory was observed, suggesting that the resolution effects in the first 2 experiments were critically dependent on the need to retain memory representations over a short period of time. Taken together, these results suggest that negative emotion selectively boosts visual WM quality, supporting the dissociable nature quantitative and qualitative aspects of visual WM representation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Working Memory and Reasoning: The Processing Loads Imposed by Analogies.
ERIC Educational Resources Information Center
Halford, Graeme S.
The proposals concerning working memory outlined in this paper involve the architecture of working memory, the reasoning mechanisms that draw on it, and the ways in which working memory may develop with age. Ways of assessing task demands and children's working memory capacities are also considered. It is noted that there is long-standing evidence…
Executive Functions and Working Memory Behaviours in Children with a Poor Working Memory
ERIC Educational Resources Information Center
St. Clair-Thompson, Helen L.
2011-01-01
Previous research has suggested that working memory difficulties play an integral role in children's underachievement at school. However, working memory is just one of several executive functions. The extent to which problems in working memory extend to other executive functions is not well understood. In the current study 38 children with a poor…
A dual-trace model for visual sensory memory.
Cappiello, Marcus; Zhang, Weiwei
2016-11-01
Visual sensory memory refers to a transient memory lingering briefly after the stimulus offset. Although previous literature suggests that visual sensory memory is supported by a fine-grained trace for continuous representation and a coarse-grained trace of categorical information, simultaneous separation and assessment of these traces can be difficult without a quantitative model. The present study used a continuous estimation procedure to test a novel mathematical model of the dual-trace hypothesis of visual sensory memory according to which visual sensory memory could be modeled as a mixture of 2 von Mises (2VM) distributions differing in standard deviation. When visual sensory memory and working memory (WM) for colors were distinguished using different experimental manipulations in the first 3 experiments, the 2VM model outperformed Zhang and Luck (2008) standard mixture model (SM) representing a mixture of a single memory trace and random guesses, even though SM outperformed 2VM for WM. Experiment 4 generalized 2VM's advantages of fitting visual sensory memory data over SM from color to orientation. Furthermore, a single trace model and 4 other alternative models were ruled out, suggesting the necessity and sufficiency of dual traces for visual sensory memory. Together these results support the dual-trace model of visual sensory memory and provide a preliminary inquiry into the nature of information loss from visual sensory memory to WM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Executive Functions Contribute Uniquely to Reading Competence in Minority Youth
ERIC Educational Resources Information Center
Jacobson, Lisa A.; Koriakin, Taylor; Lipkin, Paul; Boada, Richard; Frijters, Jan C.; Lovett, Maureen W.; Hill, Dina; Willcutt, Erik; Gottwald, Stephanie; Wolf, Maryanne; Bosson-Heenan, Joan; Gruen, Jeffrey R.; Mahone, E. Mark
2017-01-01
Competent reading requires various skills beyond those for basic word reading (i.e., core language skills, rapid naming, phonological processing). Contributing "higher-level" or domain-general processes include information processing speed and executive functions (working memory, strategic problem solving, attentional switching).…
Capodieci, Agnese; Serafini, Alice; Dessuki, Alice; Cornoldi, Cesare
2018-02-20
The writing abilities of children with ADHD symptoms were examined in a simple dictation task, and then in two conditions with concurrent verbal or visuospatial working memory (WM) loads. The children with ADHD symptoms generally made more spelling mistakes than controls, and the concurrent loads impaired their performance, but with partly different effects. The concurrent verbal WM task prompted an increase in the phonological errors, while the concurrent visuospatial WM task prompted more non-phonological errors, matching the Italian phonology, but not the Italian orthography. In the ADHD group, the children proving better able to cope with a concurrent verbal WM load had a better spelling performance too. The ADHD and control groups had a similar handwriting speed, but the former group's writing quality was poorer. Our results suggest that WM supports writing skills, and that children with ADHD symptoms have general writing difficulties, but strength in coping with concurrent verbal information may support their spelling performance.
The effect of stress induction on working memory in patients with psychogenic nonepileptic seizures.
Bakvis, Patricia; Spinhoven, Philip; Putman, Peter; Zitman, Frans G; Roelofs, Karin
2010-11-01
Although psychogenic nonepileptic seizures (PNES) are considered a stress-induced paroxysmal disintegration of cognitive functions, it remains unknown whether stress indeed impairs cognitive integrative functions, such as working memory (WM), in patients with PNES. An N-back task with emotional distracters (angry, happy, and neutral faces) was administered at baseline and after stress induction (Cold Pressor Test) to 19 patients with PNES and 20 matched healthy controls. At baseline, patients displayed increased WM interference for the facial distracters. After stress induction, group differences generalized to the no-distracter condition. Within patients, high cortisol stress responses were associated with larger stress-induced WM impairments in the no-distracter condition. These findings demonstrate that patients' cognitive integrative functions are impaired by social distracters and stress induction. Moreover, the stress- and cortisol-related generalization of the relative WM impairments offers a promising experimental model for the characteristic paroxysmal disintegration of attentional and mnemonic functions in patients with PNES associated with stress. Copyright © 2010 Elsevier Inc. All rights reserved.
Gade, Miriam; Souza, Alessandra S; Druey, Michel D; Oberauer, Klaus
2017-01-01
Working memory (WM) holds and manipulates representations for ongoing cognition. Oberauer (Psychology of Learning and Motivation, 51, 45-100, 2009) distinguishes between two analogous WM sub-systems: a declarative WM which handles the objects of thought, and a procedural WM which handles the representations of (cognitive) actions. Here, we assessed whether analogous effects are observed when participants switch between memory sets (declarative representations) and when they switch between task sets (procedural representations). One mechanism assumed to facilitate switching in procedural WM is the inhibition of previously used, but currently irrelevant task sets, as indexed by n-2 task-repetition costs (Mayr & Keele, Journal of Experimental Psychology: General, 129(1), 4-26, 2000). In this study we tested for an analogous effect in declarative WM. We assessed the evidence for n-2 list-repetition costs across eight experiments in which participants switched between memory lists to perform speeded classifications, mental arithmetic, or a local recognition test. N-2 list-repetition costs were obtained consistently in conditions assumed to increase interference between memory lists, and when lists formed chunks in long-term memory. Further analyses across experiments revealed a substantial contribution of episodic memory to n-2 list-repetition costs, thereby questioning the interpretation of n-2 repetition costs as reflecting inhibition. We reanalyzed the data of eight task-switching experiments, and observed that episodic memory also contributes to n-2 task-repetition costs. Taken together, these results show analogous processing principles in declarative and procedural WM, and question the relevance of inhibitory processes for efficient switching between mental sets.
Fine-grained, local maps and coarse, global representations support human spatial working memory.
Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni
2014-01-01
While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall.
Fine-Grained, Local Maps and Coarse, Global Representations Support Human Spatial Working Memory
Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni
2014-01-01
While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall. PMID:25259601
Perlow, Richard; Jattuso, Mia
2018-06-01
Researchers have operationalized working memory in different ways and although working memory-performance relationships are well documented, there has been relatively less attention devoted to determining whether seemingly similar measures yield comparable relations with performance outcomes. Our objective is to assess whether two working memory measures deploying the same processes but different item content yield different relations with two problem-solving criteria. Participants completed a computation-based working memory measure and a reading-based measure prior to performing a computerized simulation. Results reveal differential relations with one of the two criteria and support the notion that the two working memory measures tap working memory capacity and other cognitive abilities. One implication for theory development is that researchers should consider incorporating other cognitive abilities in their working memory models and that the selection of those abilities should correspond to the criterion of interest. One practical implication is that researchers and practitioners shouldn't automatically assume that different phonological loop-based working memory scales are interchangeable.
Lee, Hom-Yi; Yang, En-Lin
2018-01-01
Children with attention deficit hyperactivity disorder (ADHD) are often reported to have deficits of time perception. However, there is a strong relation between performance on tasks of working memory and time perception. Thus, it is possible that the poor performance of children with ADHD on time perception results from their deficit of working memory. In this study, the working memory of participants was separately assessed; therefore, we could explore the relationship between working memory and time perception of children with ADHD. Fifty-six children with ADHD and those of healthy controls completed tasks measuring working memory and time perception. The results showed that the time discrimination ability of children with ADHD was poorer than that of controls. However, there was a strong association between time perception and working memory. After controlling working memory and intelligence, the time discrimination ability of children with ADHD was not significantly poorer than that of controls. We suggest that there is an interdependent relationship between time perception and working memory for children with ADHD.
Borella, Erika; Carretti, Barbara; Cornoldi, Cesare; De Beni, Rossana
2007-06-01
A number of studies suggest that age differences in working memory may be attributed to age-related differences in inhibitory efficacy. Nevertheless, little is known about the impact of intrusive thoughts, which occurs in everyday situations on working memory performance. This study investigates the role of cognitive and everyday inhibition mechanisms in working memory performance. Young, young-old and old-old adults performed a working memory task and the White Bear Suppression Inventory (WBSI). Results showed a decrease in working memory, and in inhibitory efficacy with age. In addition, old-old adults obtained higher scores in the three factors of the WBSI. Working memory performance was related to working memory control of interfering information in all age groups, and also to the tendency to suppress thoughts in old-old adults. The latter result was in the opposite direction with respect to observations collected with younger adults. Taken together, our results suggest the crucial role of intrusive thoughts in the functional capacity of working memory in late adulthood.
Context controls access to working and reference memory in the pigeon (Columba livia).
Roberts, William A; Macpherson, Krista; Strang, Caroline
2016-01-01
The interaction between working and reference memory systems was examined under conditions in which salient contextual cues were presented during memory retrieval. Ambient colored lights (red or green) bathed the operant chamber during the presentation of comparison stimuli in delayed matching-to-sample training (working memory) and during the presentation of the comparison stimuli as S+ and S- cues in discrimination training (reference memory). Strong competition between memory systems appeared when the same contextual cue appeared during working and reference memory training. When different contextual cues were used, however, working memory was completely protected from reference memory interference. © 2016 Society for the Experimental Analysis of Behavior.
Working memory and organizational skills problems in ADHD.
Kofler, Michael J; Sarver, Dustin E; Harmon, Sherelle L; Moltisanti, Allison; Aduen, Paula A; Soto, Elia F; Ferretti, Nicole
2018-01-01
This study tested model-driven predictions regarding working memory's role in the organizational problems associated with ADHD. Children aged 8-13 (M = 10.33, SD = 1.42) with and without ADHD (N = 103; 39 girls; 73% Caucasian/Non-Hispanic) were assessed on multiple, counterbalanced working memory tasks. Parents and teachers completed norm-referenced measures of organizational problems (Children's Organizational Skills Scale; COSS). Results confirmed large magnitude working memory deficits (d = 1.24) and organizational problems in ADHD (d = 0.85). Bias-corrected, bootstrapped conditional effects models linked impaired working memory with greater parent- and teacher-reported inattention, hyperactivity/impulsivity, and organizational problems. Working memory predicted organization problems across all parent and teacher COSS subscales (R 2 = .19-.23). Approximately 38%-57% of working memory's effect on organization problems was conveyed by working memory's association with inattentive behavior. Unique effects of working memory remained significant for both parent- and teacher-reported task planning, as well as for teacher-reported memory/materials management and overall organization problems. Attention problems uniquely predicted worse organizational skills. Hyperactivity was unrelated to parent-reported organizational skills, but predicted better teacher-reported task planning. Children with ADHD exhibit multisetting, broad-based organizational impairment. These impaired organizational skills are attributable in part to performance deficits secondary to working memory dysfunction, both directly and indirectly via working memory's role in regulating attention. Impaired working memory in ADHD renders it extraordinarily difficult for these children to consistently anticipate, plan, enact, and maintain goal-directed actions. © 2017 Association for Child and Adolescent Mental Health.
The effects of autobiographical memory and visual perspective on working memory.
Cheng, Zenghu; She, Yugui
2018-08-01
The present research aims to explore whether recalling and writing about autobiographical memory from different perspectives (first-person perspective vs. third-person perspective) could affect cognitive function. The participants first performed a working memory task to evaluate their working memory capacity as a baseline and then were instructed to recall (Study 1) or write about (Study 2) personal events (failures vs. successes) from the first-person perspective or the third-person perspective. Finally, they performed the working memory task again. The results suggested that autobiographical memory and perspective influence working memory interactively. When recalling a success, the participants who recalled from the third-person perspective performed better than those who recalled from the first-person perspective on the working memory capacity task; when recalling a failure, the opposite was true.
The beneficial role of memory reactivation for language learning during sleep: A review.
Schreiner, Thomas; Rasch, Björn
2017-04-01
Sleep is essential for diverse aspects of language learning. According to a prominent concept these beneficial effects of sleep rely on spontaneous reactivation processes. A series of recent studies demonstrated that inducing such reactivation processes by re-exposure to memory cues during sleep enhances foreign vocabulary learning. Building upon these findings, the present article reviews recent models and empirical findings concerning the beneficial effects of sleep on language learning. Consequently, the memory function of sleep, its neural underpinnings and the role of the sleeping brain in language learning will be summarized. Finally, we will propose a working model concerning the oscillatory requirements for successful reactivation processes and future research questions to advance our understanding of the role of sleep on language learning and memory processes in general. Copyright © 2016 Elsevier Inc. All rights reserved.
Working memory dependence of spatial contextual cueing for visual search.
Pollmann, Stefan
2018-05-10
When spatial stimulus configurations repeat in visual search, a search facilitation, resulting in shorter search times, can be observed that is due to incidental learning. This contextual cueing effect appears to be rather implicit, uncorrelated with observers' explicit memory of display configurations. Nevertheless, as I review here, this search facilitation due to contextual cueing depends on visuospatial working memory resources, and it disappears when visuospatial working memory is loaded by a concurrent delayed match to sample task. However, the search facilitation immediately recovers for displays learnt under visuospatial working memory load when this load is removed in a subsequent test phase. Thus, latent learning of visuospatial configurations does not depend on visuospatial working memory, but the expression of learning, as memory-guided search in repeated displays, does. This working memory dependence has also consequences for visual search with foveal vision loss, where top-down controlled visual exploration strategies pose high demands on visuospatial working memory, in this way interfering with memory-guided search in repeated displays. Converging evidence for the contribution of working memory to contextual cueing comes from neuroimaging data demonstrating that distinct cortical areas along the intraparietal sulcus as well as more ventral parieto-occipital cortex are jointly activated by visual working memory and contextual cueing. © 2018 The British Psychological Society.
Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Fukushima, Ai; Kawashima, Ryuta
2011-10-01
Working memory is the limited capacity storage system involved in the maintenance and manipulation of information over short periods of time. Previous imaging studies have suggested that the frontoparietal regions are activated during working memory tasks; a putative association between the structure of the frontoparietal regions and working memory performance has been suggested based on the analysis of individuals with varying pathologies. This study aimed to identify correlations between white matter and individual differences in verbal working memory performance in normal young subjects. We performed voxel-based morphometry (VBM) analyses using T1-weighted structural images as well as voxel-based analyses of fractional anisotropy (FA) using diffusion tensor imaging. Using the letter span task, we measured verbal working memory performance in normal young adult men and women (mean age, 21.7 years, SD=1.44; 42 men and 13 women). We observed positive correlations between working memory performance and regional white matter volume (rWMV) in the frontoparietal regions. In addition, FA was found to be positively correlated with verbal working memory performance in a white matter region adjacent to the right precuneus. These regions are consistently recruited by working memory. Our findings suggest that, among normal young subjects, verbal working memory performance is associated with various regions that are recruited during working memory tasks, and this association is not limited to specific parts of the working memory network. Copyright © 2011 Elsevier Ltd. All rights reserved.
Memory Retrieval and Interference: Working Memory Issues
ERIC Educational Resources Information Center
Radvansky, Gabriel A.; Copeland, David E.
2006-01-01
Working memory capacity has been suggested as a factor that is involved in long-term memory retrieval, particularly when that retrieval involves a need to overcome some sort of interference (Bunting, Conway, & Heitz, 2004; Cantor & Engle, 1993). Previous work has suggested that working memory is related to the acquisition of information during…
Exascale Hardware Architectures Working Group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemmert, S; Ang, J; Chiang, P
2011-03-15
The ASC Exascale Hardware Architecture working group is challenged to provide input on the following areas impacting the future use and usability of potential exascale computer systems: processor, memory, and interconnect architectures, as well as the power and resilience of these systems. Going forward, there are many challenging issues that will need to be addressed. First, power constraints in processor technologies will lead to steady increases in parallelism within a socket. Additionally, all cores may not be fully independent nor fully general purpose. Second, there is a clear trend toward less balanced machines, in terms of compute capability compared tomore » memory and interconnect performance. In order to mitigate the memory issues, memory technologies will introduce 3D stacking, eventually moving on-socket and likely on-die, providing greatly increased bandwidth but unfortunately also likely providing smaller memory capacity per core. Off-socket memory, possibly in the form of non-volatile memory, will create a complex memory hierarchy. Third, communication energy will dominate the energy required to compute, such that interconnect power and bandwidth will have a significant impact. All of the above changes are driven by the need for greatly increased energy efficiency, as current technology will prove unsuitable for exascale, due to unsustainable power requirements of such a system. These changes will have the most significant impact on programming models and algorithms, but they will be felt across all layers of the machine. There is clear need to engage all ASC working groups in planning for how to deal with technological changes of this magnitude. The primary function of the Hardware Architecture Working Group is to facilitate codesign with hardware vendors to ensure future exascale platforms are capable of efficiently supporting the ASC applications, which in turn need to meet the mission needs of the NNSA Stockpile Stewardship Program. This issue is relatively immediate, as there is only a small window of opportunity to influence hardware design for 2018 machines. Given the short timeline a firm co-design methodology with vendors is of prime importance.« less
Brébion, Gildas; Bressan, Rodrigo A; Pilowsky, Lyn S; David, Anthony S
2011-05-01
Previous work has suggested that decrement in both processing speed and working memory span plays a role in the memory impairment observed in patients with schizophrenia. We undertook a study to examine simultaneously the effect of these two factors. A sample of 49 patients with schizophrenia and 43 healthy controls underwent a battery of verbal and visual memory tasks. Superficial and deep encoding memory measures were tallied. We conducted regression analyses on the various memory measures, using processing speed and working memory span as independent variables. In the patient group, processing speed was a significant predictor of superficial and deep memory measures in verbal and visual memory. Working memory span was an additional significant predictor of the deep memory measures only. Regression analyses involving all participants revealed that the effect of diagnosis on all the deep encoding memory measures was reduced to non-significance when processing speed was entered in the regression. Decreased processing speed is involved in verbal and visual memory deficit in patients, whether the task require superficial or deep encoding. Working memory is involved only insofar as the task requires a certain amount of effort.
Short-term and working memory impairments in aphasia.
Potagas, Constantin; Kasselimis, Dimitrios; Evdokimidis, Ioannis
2011-08-01
The aim of the present study is to investigate short-term memory and working memory deficits in aphasics in relation to the severity of their language impairment. Fifty-eight aphasic patients participated in this study. Based on language assessment, an aphasia score was calculated for each patient. Memory was assessed in two modalities, verbal and spatial. Mean scores for all memory tasks were lower than normal. Aphasia score was significantly correlated with performance on all memory tasks. Correlation coefficients for short-term memory and working memory were approximately of the same magnitude. According to our findings, severity of aphasia is related with both verbal and spatial memory deficits. Moreover, while aphasia score correlated with lower scores in both short-term memory and working memory tasks, the lack of substantial difference between corresponding correlation coefficients suggests a possible primary deficit in information retention rather than impairment in working memory. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zimmermann, Nicolle; Gindri, Gigiane; de Oliveira, Camila Rosa; Fonseca, Rochele Paz
2011-01-01
Objective To describe the frequency of pragmatic and executive deficits in right brain damaged (RBD) and in traumatic brain injury (TBI) patients, and to verify possible dissociations between pragmatic and executive functions in these two groups. Methods The sample comprised 7 cases of TBI and 7 cases of RBD. All participants were assessed by means of tasks from the Montreal Communication Evaluation Battery and executive functions tests including the Trail Making Test, Hayling Test, Wisconsin Card Sorting Test, semantic and phonemic verbal fluency tasks, and working memory tasks from the Brazilian Brief Neuropsychological Assessment Battery NEUPSILIN. Z-score was calculated and a descriptive analysis of frequency of deficits (Z< -1.5) was carried out. Results RBD patients presented with deficits predominantly on conversational and narrative discursive tasks, while TBI patients showed a wider spread pattern of pragmatic deficits. Regarding EF, RBD deficits included predominantly working memory and verbal initiation impairment. On the other hand, TBI individuals again exhibited a general profile of executive dysfunction, affecting mainly working memory, initiation, inhibition, planning and switching. Pragmatic and executive deficits were generally associated upon comparisons of RBD patients and TBI cases, except for two simple dissociations: two post-TBI cases showed executive deficits in the absence of pragmatic deficits. Discussion Pragmatic and executive deficits can be very frequent following TBI or vascular RBD. There seems to be an association between these abilities, indicating that although they can co-occur, a cause-consequence relationship cannot be the only hypothesis. PMID:29213762
Individual differences in multitasking ability and adaptability.
Morgan, Brent; D'Mello, Sidney; Abbott, Robert; Radvansky, Gabriel; Haass, Michael; Tamplin, Andrea
2013-08-01
The aim of this study was to identify the cognitive factors that predictability and adaptability during multitasking with a flight simulator. Multitasking has become increasingly prevalent as most professions require individuals to perform multiple tasks simultaneously. Considerable research has been undertaken to identify the characteristics of people (i.e., individual differences) that predict multitasking ability. Although working memory is a reliable predictor of general multitasking ability (i.e., performance in normal conditions), there is the question of whether different cognitive faculties are needed to rapidly respond to changing task demands (adaptability). Participants first completed a battery of cognitive individual differences tests followed by multitasking sessions with a flight simulator. After a baseline condition, difficulty of the flight simulator was incrementally increased via four experimental manipulations, and performance metrics were collected to assess multitasking ability and adaptability. Scholastic aptitude and working memory predicted general multitasking ability (i.e., performance at baseline difficulty), but spatial manipulation (in conjunction with working memory) was a major predictor of adaptability (performance in difficult conditions after accounting for baseline performance). Multitasking ability and adaptability may be overlapping but separate constructs that draw on overlapping (but not identical) sets of cognitive abilities. The results of this study are applicable to practitioners and researchers in human factors to assess multitasking performance in real-world contexts and with realistic task constraints. We also present a framework for conceptualizing multitasking adaptability on the basis of five adaptability profiles derived from performance on tasks with consistent versus increased difficulty.
Smith, Kelsey E.; Schatz, Jeffrey
2017-01-01
Children with sickle cell disease (SCD) are at risk for working memory deficits due to multiple disease processes. We assessed working memory abilities and related functions in 32 school-age children with SCD and 85 matched comparison children using Baddeley’s working memory model as a framework. Children with SCD performed worse than controls for working memory, central executive function, and processing/rehearsal speed. Central executive function was found to mediate the relationship between SCD status and working memory, but processing speed did not. Cognitive remediation strategies that focus on central executive processes may be important for remediating working memory deficits in SCD. PMID:27759435
Enhanced dimension-specific visual working memory in grapheme–color synesthesia☆
Terhune, Devin Blair; Wudarczyk, Olga Anna; Kochuparampil, Priya; Cohen Kadosh, Roi
2013-01-01
There is emerging evidence that the encoding of visual information and the maintenance of this information in a temporarily accessible state in working memory rely on the same neural mechanisms. A consequence of this overlap is that atypical forms of perception should influence working memory. We examined this by investigating whether having grapheme–color synesthesia, a condition characterized by the involuntary experience of color photisms when reading or representing graphemes, would confer benefits on working memory. Two competing hypotheses propose that superior memory in synesthesia results from information being coded in two information channels (dual-coding) or from superior dimension-specific visual processing (enhanced processing). We discriminated between these hypotheses in three n-back experiments in which controls and synesthetes viewed inducer and non-inducer graphemes and maintained color or grapheme information in working memory. Synesthetes displayed superior color working memory than controls for both grapheme types, whereas the two groups did not differ in grapheme working memory. Further analyses excluded the possibilities of enhanced working memory among synesthetes being due to greater color discrimination, stimulus color familiarity, or bidirectionality. These results reveal enhanced dimension-specific visual working memory in this population and supply further evidence for a close relationship between sensory processing and the maintenance of sensory information in working memory. PMID:23892185
Blankenship, Tashauna L; Keith, Kayla; Calkins, Susan D; Bell, Martha Ann
2018-01-01
Associations between working memory and academic achievement (math and reading) are well documented. Surprisingly, little is known of the contributions of episodic memory, segmented into temporal memory (recollection proxy) and item recognition (familiarity proxy), to academic achievement. This is the first study to observe these associations in typically developing 6-year old children. Overlap in neural correlates exists between working memory, episodic memory, and math and reading achievement. We attempted to tease apart the neural contributions of working memory, temporal memory, and item recognition to math and reading achievement. Results suggest that working memory and temporal memory, but not item recognition, are important contributors to both math and reading achievement, and that EEG power during a working memory task contributes to performance on tests of academic achievement.
Selective attention on representations in working memory: cognitive and neural mechanisms.
Ku, Yixuan
2018-01-01
Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory.
Selective attention on representations in working memory: cognitive and neural mechanisms
2018-01-01
Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory. PMID:29629245
Blurring emotional memories using eye movements: individual differences and speed of eye movements.
van Schie, Kevin; van Veen, Suzanne C; Engelhard, Iris M; Klugkist, Irene; van den Hout, Marcel A
2016-01-01
In eye movement desensitization and reprocessing (EMDR), patients make eye movements (EM) while recalling traumatic memories. Making EM taxes working memory (WM), which leaves less resources available for imagery of the memory. This reduces memory vividness and emotionality during future recalls. WM theory predicts that individuals with small working memory capacities (WMCs) benefit more from low levels of taxing (i.e., slow EM) whereas individuals with large WMC benefit more from high levels of taxing (i.e., fast EM). We experimentally examined and tested four prespecified hypotheses regarding the role of WMC and EM speed in reducing emotionality and vividness ratings: 1) EM-regardless of WMC and EM speed-are more effective compared to no dual task, 2) increasing EM speed only affects the decrease in memory ratings irrespective of WMC, 3) low-WMC individuals-compared to high-WMC individuals-benefit more from making either type of EM, 4) the EM intervention is most effective when-as predicted by WM theory-EM are adjusted to WMC. Undergraduates with low (n=31) or high (n=35) WMC recalled three emotional memories and rated vividness and emotionality before and after each condition (recall only, recall + slow EM, and recall + fast EM). Contrary to the theory, the data do not support the hypothesis that EM speed should be adjusted to WMC (hypothesis 4). However, the data show that a dual task in general is more effective in reducing memory ratings than no dual task (hypothesis 1), and that a more cognitively demanding dual task increases the intervention's effectiveness (hypothesis 2). Although adjusting EM speed to an individual's WMC seems a straightforward clinical implication, the data do not show any indication that such a titration is helpful.
Koeritzer, Margaret A; Rogers, Chad S; Van Engen, Kristin J; Peelle, Jonathan E
2018-03-15
The goal of this study was to determine how background noise, linguistic properties of spoken sentences, and listener abilities (hearing sensitivity and verbal working memory) affect cognitive demand during auditory sentence comprehension. We tested 30 young adults and 30 older adults. Participants heard lists of sentences in quiet and in 8-talker babble at signal-to-noise ratios of +15 dB and +5 dB, which increased acoustic challenge but left the speech largely intelligible. Half of the sentences contained semantically ambiguous words to additionally manipulate cognitive challenge. Following each list, participants performed a visual recognition memory task in which they viewed written sentences and indicated whether they remembered hearing the sentence previously. Recognition memory (indexed by d') was poorer for acoustically challenging sentences, poorer for sentences containing ambiguous words, and differentially poorer for noisy high-ambiguity sentences. Similar patterns were observed for Z-transformed response time data. There were no main effects of age, but age interacted with both acoustic clarity and semantic ambiguity such that older adults' recognition memory was poorer for acoustically degraded high-ambiguity sentences than the young adults'. Within the older adult group, exploratory correlation analyses suggested that poorer hearing ability was associated with poorer recognition memory for sentences in noise, and better verbal working memory was associated with better recognition memory for sentences in noise. Our results demonstrate listeners' reliance on domain-general cognitive processes when listening to acoustically challenging speech, even when speech is highly intelligible. Acoustic challenge and semantic ambiguity both reduce the accuracy of listeners' recognition memory for spoken sentences. https://doi.org/10.23641/asha.5848059.
Blurring emotional memories using eye movements: individual differences and speed of eye movements
van Schie, Kevin; van Veen, Suzanne C.; Engelhard, Iris M.; Klugkist, Irene; van den Hout, Marcel A.
2016-01-01
Background In eye movement desensitization and reprocessing (EMDR), patients make eye movements (EM) while recalling traumatic memories. Making EM taxes working memory (WM), which leaves less resources available for imagery of the memory. This reduces memory vividness and emotionality during future recalls. WM theory predicts that individuals with small working memory capacities (WMCs) benefit more from low levels of taxing (i.e., slow EM) whereas individuals with large WMC benefit more from high levels of taxing (i.e., fast EM). Objective We experimentally examined and tested four prespecified hypotheses regarding the role of WMC and EM speed in reducing emotionality and vividness ratings: 1) EM—regardless of WMC and EM speed—are more effective compared to no dual task, 2) increasing EM speed only affects the decrease in memory ratings irrespective of WMC, 3) low-WMC individuals—compared to high-WMC individuals—benefit more from making either type of EM, 4) the EM intervention is most effective when—as predicted by WM theory—EM are adjusted to WMC. Method Undergraduates with low (n=31) or high (n=35) WMC recalled three emotional memories and rated vividness and emotionality before and after each condition (recall only, recall + slow EM, and recall + fast EM). Results Contrary to the theory, the data do not support the hypothesis that EM speed should be adjusted to WMC (hypothesis 4). However, the data show that a dual task in general is more effective in reducing memory ratings than no dual task (hypothesis 1), and that a more cognitively demanding dual task increases the intervention's effectiveness (hypothesis 2). Conclusions Although adjusting EM speed to an individual's WMC seems a straightforward clinical implication, the data do not show any indication that such a titration is helpful. PMID:27387843
Effects of load on the guidance of visual attention from working memory.
Zhang, Bao; Zhang, John X; Huang, Sai; Kong, Lingyue; Wang, Suiping
2011-12-08
An active recent line of research on working memory and attention has shown that the visual attention can be top-down guided by working memory contents. The present study examined whether the guidance effect is modulated by memory load, i.e., the amount of information maintained in working memory. In a set of three experiments, participants were asked to perform a visual search task while maintaining several objects in working memory. The memory-driven attentional guidance effect was observed in all experiments when there were spare working memory resources. When memory load was increased from one item to two items, there was no sign that the guidance effect was attenuated. When load was further increased to four items, the guidance effect disappeared completely, indicating a clear impact of memory load on attentional guidance. Copyright © 2011 Elsevier Ltd. All rights reserved.
Working memory capacity and the spacing effect in cued recall.
Delaney, Peter F; Godbole, Namrata R; Holden, Latasha R; Chang, Yoojin
2018-07-01
Spacing repetitions typically improves memory (the spacing effect). In three cued recall experiments, we explored the relationship between working memory capacity and the spacing effect. People with higher working memory capacity are more accurate on memory tasks that require retrieval relative to people with lower working memory capacity. The experiments used different retention intervals and lags between repetitions, but were otherwise similar. Working memory capacity and spacing of repetitions both improved memory in most of conditions, but they did not interact, suggesting additive effects. The results are consistent with the ACT-R model's predictions, and with a study-phase recognition process underpinning the spacing effect in cued recall.
Memory Updating and Mental Arithmetic
Han, Cheng-Ching; Yang, Tsung-Han; Lin, Chia-Yuan; Yen, Nai-Shing
2016-01-01
Is domain-general memory updating ability predictive of calculation skills or are such skills better predicted by the capacity for updating specifically numerical information? Here, we used multidigit mental multiplication (MMM) as a measure for calculating skill as this operation requires the accurate maintenance and updating of information in addition to skills needed for arithmetic more generally. In Experiment 1, we found that only individual differences with regard to a task updating numerical information following addition (MUcalc) could predict the performance of MMM, perhaps owing to common elements between the task and MMM. In Experiment 2, new updating tasks were designed to clarify this: a spatial updating task with no numbers, a numerical task with no calculation, and a word task. The results showed that both MUcalc and the spatial task were able to predict the performance of MMM but only with the more difficult problems, while other updating tasks did not predict performance. It is concluded that relevant processes involved in updating the contents of working memory support mental arithmetic in adults. PMID:26869971
Working memory deficits in developmental dyscalculia: The importance of serial order.
Attout, Lucie; Majerus, Steve
2015-01-01
Although a number of studies suggests a link between working memory (WM) storage capacity of short-term memory and calculation abilities, the nature of verbal WM deficits in children with developmental dyscalculia (DD) remains poorly understood. We explored verbal WM capacity in DD by focusing on the distinction between memory for item information (the items to be retained) and memory for order information (the order of the items within a list). We hypothesized that WM for order could be specifically related to impaired numerical abilities given that recent studies suggest close interactions between the representation of order information in WM and ordinal numerical processing. We investigated item and order WM abilities as well as basic numerical processing abilities in 16 children with DD (age: 8-11 years) and 16 typically developing children matched on age, IQ, and reading abilities. The DD group performed significantly poorer than controls in the order WM condition but not in the item WM condition. In addition, the DD group performed significantly slower than the control group on a numerical order judgment task. The present results show significantly reduced serial order WM abilities in DD coupled with less efficient numerical ordinal processing abilities, reflecting more general difficulties in explicit processing of ordinal information.
ERIC Educational Resources Information Center
Schweppe, Judith; Rummer, Ralf
2014-01-01
Cognitive models of multimedia learning such as the Cognitive Theory of Multimedia Learning (Mayer 2009) or the Cognitive Load Theory (Sweller 1999) are based on different cognitive models of working memory (e.g., Baddeley 1986) and long-term memory. The current paper describes a working memory model that has recently gained popularity in basic…