Wormholes in Einstein-Born-Infeld theory
Richarte, Martin G.; Simeone, Claudio
2009-11-15
Spherically symmetric thin-shell wormholes are studied within the framework of Einstein-Born-Infeld theory. We analyze the exotic matter content, and find that for certain values of the Born-Infeld parameter the amount of exotic matter on the shell can be reduced in relation to the Maxwell case. We also examine the mechanical stability of the wormhole configurations under radial perturbations preserving the spherical symmetry. In addition, in the Appendix the repulsive or attractive character of the wormhole geometries is briefly discussed.
Topological vortices in generalized Born-Infeld-Higgs electrodynamics
NASA Astrophysics Data System (ADS)
Casana, R.; Hora, E. da; Rubiera-Garcia, D.; Santos, C. dos
2015-08-01
A consistent BPS formalism to study the existence of topological axially symmetric vortices in generalized versions of the Born-Infeld-Higgs electrodynamics is implemented. Such a generalization modifies the field dynamics via the introduction of three nonnegative functions depending only in the Higgs field, namely, , , and . A set of first-order differential equations is attained when these functions satisfy a constraint related to the Ampère law. Such a constraint allows one to minimize the system's energy in such way that it becomes proportional to the magnetic flux. Our results provides an enhancement of the role of topological vortex solutions in Born-Infeld-Higgs electrodynamics. Finally, we analyze a set of models entailing the recovery of a generalized version of Maxwell-Higgs electrodynamics in a certain limit of the theory.
Generalized extended Lagrangian Born-Oppenheimer molecular dynamics
Niklasson, Anders M. N. Cawkwell, Marc J.
2014-10-28
Extended Lagrangian Born-Oppenheimer molecular dynamics based on Kohn-Sham density functional theory is generalized in the limit of vanishing self-consistent field optimization prior to the force evaluations. The equations of motion are derived directly from the extended Lagrangian under the condition of an adiabatic separation between the nuclear and the electronic degrees of freedom. We show how this separation is automatically fulfilled and system independent. The generalized equations of motion require only one diagonalization per time step and are applicable to a broader range of materials with improved accuracy and stability compared to previous formulations.
[Generalized candidiasis in a prematurely born infant].
Morpurgo, F G; Hack, W W; Ree, E F; Weyers, T; van der Harten, J J; Taets van Amerongen, A
1990-10-01
A male neonate born after spontaneous labor during the 25 3/7 week of gestation, developed a fatal course of disseminated candidiasis. Disseminated candidiasis is seen in newborns undergoing intensive care and has a high mortality rate. Important etiologic factors are low immunologic response, invasive monitoring techniques, systemic antibiotics and parenteral nutrition. Early diagnosis and efficient antimycotic therapy with amphotericin B and if necessary combined with flucytosine contribute a great deal to the chance of survival.
Beyond generalized Proca theories
NASA Astrophysics Data System (ADS)
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
2016-09-01
We consider higher-order derivative interactions beyond second-order generalized Proca theories that propagate only the three desired polarizations of a massive vector field besides the two tensor polarizations from gravity. These new interactions follow the similar construction criteria to those arising in the extension of scalar-tensor Horndeski theories to Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories. On the isotropic cosmological background, we show the existence of a constraint with a vanishing Hamiltonian that removes the would-be Ostrogradski ghost. We study the behavior of linear perturbations on top of the isotropic cosmological background in the presence of a matter perfect fluid and find the same number of propagating degrees of freedom as in generalized Proca theories (two tensor polarizations, two transverse vector modes, and two scalar modes). Moreover, we obtain the conditions for the avoidance of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations. We observe key differences in the scalar sound speed, which is mixed with the matter sound speed outside the domain of generalized Proca theories.
Generalized teleparallel theory
NASA Astrophysics Data System (ADS)
Junior, Ednaldo L. B.; Rodrigues, Manuel E.
2016-07-01
We construct a theory in which the gravitational interaction is described only by torsion, but that generalizes the teleparallel theory still keeping the invariance of local Lorentz transformations in one particular case. We show that our theory falls, in a certain limit of a real parameter, under f(bar{R}) gravity or, in another limit of the same real parameter, under modified f( T) gravity; on interpolating between these two theories it still can fall under several other theories. We explicitly show the equivalence with f(bar{R}) gravity for the cases of a Friedmann-Lemaître-Robertson-Walker flat metric for diagonal tetrads, and a metric with spherical symmetry for diagonal and non-diagonal tetrads. We study four applications, one in the reconstruction of the de Sitter universe cosmological model, for obtaining a static spherically symmetric solution of de Sitter type for a perfect fluid, for evolution of the state parameter ω _{DE}, and for the thermodynamics of the apparent horizon.
Born-Infeld thin-shell wormholes supported by generalized Cosmic Chaplygin gas
NASA Astrophysics Data System (ADS)
Azam, M.
2016-03-01
This paper investigates thin-shell wormholes in Born-Infeld theory supported by generalized Cosmic Chaplygin gas (GCCG). We study their stability via radial perturbations for distinct values of charge and Born-Infeld parameter. The comparison of wormhole solutions corresponding to generalized Chaplygin gas, modified Chaplygin gas with GCCG quation of state is established. It is found that similar type of wormhole solutions exists for small value of charge and Born-Infeld parameter for all type of equation of state, while some extra stable as well as unstable solution are found corresponding to large value of charge and Born-Infeld parameter. Thus, it is concluded that GCCG and large value of charge may responsible for such extra solutions.
The Born-Infeld vortices induced from a generalized Higgs mechanism
NASA Astrophysics Data System (ADS)
Han, Xiaosen
2016-04-01
We construct self-dual Born-Infeld vortices induced from a generalized Higgs mechanism. Two specific models of the theory are of focused interest where the Higgs potential is either of a |φ|4- or |φ|6-type. For the |φ|4-model, we obtain a sharp existence and uniqueness theorem for doubly periodic and planar vortices. For doubly periodic solutions, a necessary and sufficient condition for the existence is explicitly derived in terms of the vortex number, the Born-Infeld parameter, and the size of the periodic lattice domain. For the |φ|6-model, we show that both topological and non-topological vortices are present. This new phenomenon distinguishes the model from the classical Born-Infeld-Higgs theory studied earlier in the literature. A series of results regarding doubly periodic, topological, and non-topological vortices in the |φ|6-model are also established.
Coherent states, quantum gravity, and the Born-Oppenheimer approximation. I. General considerations
NASA Astrophysics Data System (ADS)
Stottmeister, Alexander; Thiemann, Thomas
2016-06-01
This article, as the first of three, aims at establishing the (time-dependent) Born-Oppenheimer approximation, in the sense of space adiabatic perturbation theory, for quantum systems constructed by techniques of the loop quantum gravity framework, especially the canonical formulation of the latter. The analysis presented here fits into a rather general framework and offers a solution to the problem of applying the usual Born-Oppenheimer ansatz for molecular (or structurally analogous) systems to more general quantum systems (e.g., spin-orbit models) by means of space adiabatic perturbation theory. The proposed solution is applied to a simple, finite dimensional model of interacting spin systems, which serves as a non-trivial, minimal model of the aforesaid problem. Furthermore, it is explained how the content of this article and its companion affect the possible extraction of quantum field theory on curved spacetime from loop quantum gravity (including matter fields).
Csányi, V
1980-01-01
The biological, neural, cultural and technical evolutions and their phenomena have been explored, and on the basis of our findings the formation of a general theory of evolution has been undertaken. In each of the systems studied, the presence of structural building units, excitable structures and an energy-flow going through the system can be observed. Under the organizing effect of this energy-flow, the spontaneous generation of the replicative information begins and the structures of the system establish functional relations with each other. It can be demonstrated that the evolution of structures has a replicative character. The evolution goes through a phase of non-identical replication, and reaches the phase of identical replication. The parts of the system become separated, that is, compartments develop within it. The replicative information becomes compartmentalized and it converges. As a consequence of the convergence, the compartments compose new structural units which is tantamount to the development of new evolutional levels. The direction of evolution is determined by the growth of replicative information, and this process is concluded when the total system becomes one replicative unit. In the last part of the paper a few of the basic principles of evolution concerning matter, energy and information are drawn up.
Screening of scalar fields in Dirac-Born-Infeld theory
NASA Astrophysics Data System (ADS)
Burrage, Clare; Khoury, Justin
2014-07-01
We study a new screening mechanism which is present in Dirac-Born-Infeld (DBI)-like theories. A scalar field with a DBI-like Lagrangian is minimally coupled to matter. In the vicinity of sufficiently dense sources, nonlinearities in the scalar dominate and result in an approximately constant acceleration on a test particle, thereby suppressing the scalar force relative to gravity. Unlike generic P(X) or chameleon theories, screening happens within the regime of validity of the effective field theory thanks to the DBI symmetry. We derive an exact form for the field profile around multiple sources and determine the constraints on the theory parameters from tests of gravity. Perturbations around the spherically-symmetric background propagate superluminally, but we argue for a chronology protection analogous to Galileons. This is the first example of a screening mechanism for which quantum corrections to the theory are under control and exact solutions to cosmological N-body problems can be found.
c-Map for Born-Infeld theories
NASA Astrophysics Data System (ADS)
Andrianopoli, L.; D'Auria, R.; Ferrara, S.; Trigiante, M.
2016-07-01
The c-map of four dimensional non-linear theories of electromagnetism is considered both in the rigid case and in its coupling to gravity. In this way theories with antisymmetric tensors and scalars are obtained, and the three non-linear representations of N = 2 supersymmetry partially broken to N = 1 related. The manifest Sp (2 n) and U (n) covariance of these theories in their multifield extensions is also exhibited. This construction extends to H-invariant non-linear theories of Born-Infeld type with non-dynamical scalars spanning a symmetric coset manifold G/H and the vector field strengths and their duals in a symplectic representation of G as is the case for extended supergravity.
Monopoles in non-Abelian Born-Infeld-Higgs theory and Born-Infeld collapse
NASA Astrophysics Data System (ADS)
Dyadichev, V. V.; Gal'Tsov, D. V.
2002-06-01
Regular magnetic monopoles in the non-Abelian Born-Infeld-Higgs theory are known to exist in the region of the field strength parameter β>βcr, bounded from below. Beyond this region, only pointlike (embedded Abelian) monopoles exist, and we show that the transition from the regular to singular structure is reminiscent of gravitational collapse. Near the threshold behavior is characterized by the rapidly increasing negative pressure, which typically arises in the high density non-Abelian Born-Infeld (NBI) matter. Another feature, shared by both the NBI and gravitating monopoles, is the existence of excited states, which can be thought of as bound states of monopoles and sphalerons. These are labeled by the number N of nodes of the Yang-Mills function. Their masses are greater than the mass of the ground state monopole, and they are expected to be unstable. The sequence of masses MN rapidly converges to the mass of the embedded Abelian solution with a constant Higgs boson. The ratio of the sphaleron size to that of the monopole grows with decreasing β, and, at the same time, both fall down until the solutions cease to exist, again exhibiting a collapse to the point-like monopole. The results are presented and compared both for the ordinary and the symmetrized trace NBI actions.
Introducing Charge Hydration Asymmetry into the Generalized Born Model.
Mukhopadhyay, Abhishek; Aguilar, Boris H; Tolokh, Igor S; Onufriev, Alexey V
2014-04-01
The effect of charge hydration asymmetry (CHA)-non-invariance of solvation free energy upon solute charge inversion-is missing from the standard linear response continuum electrostatics. The proposed charge hydration asymmetric-generalized Born (CHA-GB) approximation introduces this effect into the popular generalized Born (GB) model. The CHA is added to the GB equation via an analytical correction that quantifies the specific propensity of CHA of a given water model; the latter is determined by the charge distribution within the water model. Significant variations in CHA seen in explicit water (TIP3P, TIP4P-Ew, and TIP5P-E) free energy calculations on charge-inverted "molecular bracelets" are closely reproduced by CHA-GB, with the accuracy similar to models such as SEA and 3D-RISM that go beyond the linear response. Compared against reference explicit (TIP3P) electrostatic solvation free energies, CHA-GB shows about a 40% improvement in accuracy over the canonical GB, tested on a diverse set of 248 rigid small neutral molecules (root mean square error, rmse = 0.88 kcal/mol for CHA-GB vs 1.24 kcal/mol for GB) and 48 conformations of amino acid analogs (rmse = 0.81 kcal/mol vs 1.26 kcal/mol). CHA-GB employs a novel definition of the dielectric boundary that does not subsume the CHA effects into the intrinsic atomic radii. The strategy leads to finding a new set of intrinsic atomic radii optimized for CHA-GB; these radii show physically meaningful variation with the atom type, in contrast to the radii set optimized for GB. Compared to several popular radii sets used with the original GB model, the new radii set shows better transferability between different classes of molecules.
Generalized Heisenberg theory of turbulence
NASA Technical Reports Server (NTRS)
Uberoi, M. S.; Narain, J. P.
1974-01-01
Solutions of the generalized theory are obtained which are consistent with the previous work on energy transfer measurements. They also agree with the measurements of turbulent energy spectrum for wave numbers in the universal equilibrium range.
Rotating black branes in Brans-Dicke-Born-Infeld theory
NASA Astrophysics Data System (ADS)
Hendi, S. H.
2008-08-01
In this paper, we present a new class of charged rotating black brane solutions in the higher dimensional Brans-Dicke-Born-Infeld theory and investigate their properties. Solving the field equations directly is a nontrivial task because they include the second derivatives of the scalar field. We remove this difficulty through a conformal transformation. Also, we find that the suitable Lagrangian of Einstein-Born-Infeld-dilaton gravity is not the same as presented by Dehghani et al. [J. Cosmol. Astropart. Phys. 0702, 020 (2007)]. We show that the given solutions can present black brane, with inner and outer event horizons, an extreme black brane, or a naked singularity provided the parameters of the solutions are chosen suitably. These black brane solutions are neither asymptotically flat nor (anti-)de Sitter. Then we calculate finite Euclidean action, the conserved, and thermodynamic quantities through the use of counterterm method. Finally, we argue that these quantities satisfy the first law of thermodynamics, and the entropy does not follow the area law.
Generalized Brans-Dicke theories
De Felice, Antonio; Tsujikawa, Shinji E-mail: shinji@rs.kagu.tus.ac.jp
2010-07-01
In Brans-Dicke theory a non-linear self interaction of a scalar field φ allows a possibility of realizing the late-time cosmic acceleration, while recovering the General Relativistic behavior at early cosmological epochs. We extend this to more general modified gravitational theories in which a de Sitter solution for dark energy exists without using a field potential. We derive a condition for the stability of the de Sitter point and study the background cosmological dynamics of such theories. We also restrict the allowed region of model parameters from the demand for the avoidance of ghosts and instabilities. A peculiar evolution of the field propagation speed allows us to distinguish those theories from the ΛCDM model.
Testing general relativity in space-borne and astronomical laboratories
NASA Technical Reports Server (NTRS)
Will, Clifford M.
1989-01-01
The current status of space-based experiments and astronomical observations designed to test the theory of general relativity is surveyed. Consideration is given to tests of post-Newtonian gravity, searches for feeble short-range forces and gravitomagnetism, improved measurements of parameterized post-Newtonian parameter values, explorations of post-Newtonian physics, tests of the Einstein equivalence principle, observational tests of post-Newtonian orbital effects, and efforts to detect quadrupole and dipole radiation damping. Recent numerical results are presented in tables.
Corrections to the Born-Oppenheimer approximation by means of perturbation theory
Fernandez, F.M. )
1994-10-01
We develop an efficient method for the calculation of corrections to the Born-Oppenheimer approximation by means of perturbation theory. The perturbation terms through sixth order in the small parameter [kappa]=([ital m]/[ital M])[sup 1/4], where [ital m] and [ital M] are, respectively, electronic and nuclear masses, allow the construction of an effective vibrational Hamiltonian that takes into account adiabatic and nonadiabatic effects. The latter is negative and linearly dependent on the vibrational quantum numbers. We illustrate the application of the main equations and verify the general results by means of an exactly solvable model of two coupled harmonic oscillators.
On the generalized wormhole in the Eddington-inspired Born-Infeld gravity
NASA Astrophysics Data System (ADS)
Tamang, Amarjit; Potapov, Alexander A.; Lukmanova, Regina; Izmailov, Ramil; Nandi, Kamal K.
2015-12-01
In this paper, we wish to investigate certain observable effects in the recently obtained wormhole solution of the Eddington-inspired Born-Infeld (EiBI) theory, which generalizes the zero-mass Ellis-Bronnikov wormhole of general relativity. The solutions of EiBI theory contain an extra parameter κ having the inverse dimension of the cosmological constant Λ, and which is expected to modify various general relativistic observables such as the masses of wormhole mouths, tidal forces and light deflection. A remarkable result is that a non-zero κ could prevent the tidal forces in the geodesic orthonormal frame from becoming arbitrarily large near a small throat radius ({r}0˜ 0) contrary to what happens near a small Schwarzschild horizon radius (M˜ 0). The role of κ in the flare-out and energy conditions is also analyzed, which reveals that the energy conditions are violated. We show that the exotic matter in the EiBI wormhole cannot be interpreted as a phantom (ω =\\frac{{p}{{r}}}{ρ }\\lt -1) or ghost field ϕ of general relativity due to the fact that both ρ and p r are negative for all κ.
Gestalt Therapy and General System Theory.
ERIC Educational Resources Information Center
Whitner, Phillip A.
While General Systems Theory (GST) concepts appear to be applicable in explaining some of the phenomena that occur in a Gestalt Therapy group, research is needed to support this assumption. General Systems Theory may not be a group theory per se. Instead, GST may be a theory about groups. A meta-theory exists where its value and usefulness is…
Cosmology in generalized Proca theories
NASA Astrophysics Data System (ADS)
De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-06-01
We consider a massive vector field with derivative interactions that propagates only the 3 desired polarizations (besides two tensor polarizations from gravity) with second-order equations of motion in curved space-time. The cosmological implications of such generalized Proca theories are investigated for both the background and the linear perturbation by taking into account the Lagrangian up to quintic order. In the presence of a matter fluid with a temporal component of the vector field, we derive the background equations of motion and show the existence of de Sitter solutions relevant to the late-time cosmic acceleration. We also obtain conditions for the absence of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations in the small-scale limit. Our results are applied to concrete examples of the general functions in the theory, which encompass vector Galileons as a specific case. In such examples, we show that the de Sitter fixed point is always a stable attractor and study viable parameter spaces in which the no-ghost and stability conditions are satisfied during the cosmic expansion history.
Role of Local Response in Ion Solvation: Born Theory and Beyond.
Remsing, Richard C; Weeks, John D
2016-07-01
The nature of ion solvation has drawn the interest of scientists for over a century, yet a thorough theoretical understanding is still lacking. In this work, we focus on the microscopic origins underlying ionic charge asymmetric and nonlinear response contributions to ion solvation free energies. We first derive an exact expression for the charging component of the ionic free energy, the free energy change when the Coulomb interactions between a fixed ion and the solvent are gradually "turned on". We then introduce the concept of a Gaussian test charge distribution, a generalization of the classical electrostatic point test charge that can be used to probe dielectric response in atomically detailed models. This enables the study of a thermodynamic cycle that isolates a linear and charge-symmetric contribution to the free energy that is well-described by Born-model-like dielectric continuum theories. We give a simple physical derivation of the classic Born model that locally relates the induced charge density in a linear dielectric model to the applied ionic charge distribution. The nonlinear response and charge asymmetric contributions to the ion solvation free energy are then examined in the remaining steps of the cycle and compared to classic thermodynamic cycles for this process using computer simulations. The insights provided by this work will aid the development of quantitative theories for the solvation of charged solutes. PMID:27183036
More about wormholes in generalized Galileon theories
NASA Astrophysics Data System (ADS)
Rubakov, V. A.
2016-08-01
We consider a class of generalized Galileon theories within general relativity in space-times with more than two spatial dimensions. We show that these theories do not admit stable, static, spherically symmetric, asymptotically flat Lorentzian wormholes.
Tick-borne encephalitis in the age of general mobility.
Süss, Jochen; Kahl, Olaf; Aspöck, Horst; Hartelt, Kathrin; Vaheri, Antii; Oehme, Rainer; Hasle, Gunnar; Dautel, Hans; Kunz, Christian; Kupreviciene, Nerija; Randolph, Sarah; Zimmermann, Hans-Peter; Atkinson, Barry; Dobler, Gerhard; Kutsar, Kuulo; Heinz, Franz X; Steffen, Robert
2010-02-01
The 11th meeting of the International Scientific Working Group on Tick-borne Encephalitis (ISW-TBE) was conducted under the title of, "From childhood to golden age: increased mobility - increased risk of contracting TBE?" Participants from 26 countries, including the United States of America and China, presented reports on the latest developments and trends in local TBE cases, vaccination coverage and risk factors. In particular, the situation of children and the elderly (the "golden agers") was discussed. As the current evidence suggests, the location and extension of endemic areas for TBE have changed over the last few years, along with global warming and the shift of infected ticks to higher altitudes. The increased mobility of the human population adds to the heightened exposure; outdoor activities and international travel are on the rise also, and especially, amongst the 50+ generation, who are already per se at higher risk of disease manifestation, complications and case fatality. Most Europeans travel within Europe, often without sufficient awareness of endemic areas. Only high immunization rates can ensure low disease rates in the long run. To achieve this goal, public education is the sole effective approach for raising the level of awareness. Overall, the risk of any given person to contract TBE should not be regarded as a fixed entity, but rather it must be estimated individually, on the basis of knowledge of the TBE virus endemic areas and risk factors.
Engine-induced structural-borne noise in a general aviation aircraft
NASA Technical Reports Server (NTRS)
Unruh, J. F.; Scheidt, D. C.; Pomerening, D. J.
1979-01-01
Structural borne interior noise in a single engine general aviation aircraft was studied to determine the importance of engine induced structural borne noise and to determine the necessary modeling requirements for the prediction of structural borne interior noise. Engine attached/detached ground test data show that engine induced structural borne noise is a primary interior noise source for the single engine test aircraft, cabin noise is highly influenced by responses at the propeller tone, and cabin acoustic resonances can influence overall noise levels. Results from structural and acoustic finite element coupled models of the test aircraft show that wall flexibility has a strong influence on fundamental cabin acoustic resonances, the lightweight fuselage structure has a high modal density, and finite element analysis procedures are appropriate for the prediction of structural borne noise.
Is Eddington-Born-Infeld theory really free of cosmological singularities?
NASA Astrophysics Data System (ADS)
Bouhmadi-López, Mariam; Chen, Che-Yu; Chen, Pisin
2014-03-01
The Eddington-inspired-Born-Infeld (EiBI) theory has recently been resurrected. Such a theory is characterized by being equivalent to Einstein theory in vacuum but differing from it in the presence of matter. One of the virtues of the theory is that it avoids the Big Bang singularity for a radiation-filled universe. In this paper, we analyze singularity avoidance in this kind of model. More precisely, we analyze the behavior of a homogeneous and isotropic universe filled with phantom energy in addition to the dark and baryonic matter. Unlike the Big Bang singularity that can be avoided in this kind of model through a bounce or a loitering effect on the physical metric, we find that the Big Rip singularity is unavoidable in the EiBI phantom model even though it can be postponed towards a slightly further future cosmic time as compared with the same singularity in other models based on the standard general relativity and with the same matter content as described above.
Multiscale generalized Born modeling of ligand binding energies for virtual database screening
Liu, Hao-Yang; Grinter, Sam Z.; Zou, Xiaoqin
2009-01-01
Generalized Born (GB) models are widely used to study the electrostatic energetics of solute molecules including proteins. Previous work demonstrates that GB models may produce satisfactory solvation energies if accurate effective Born radii are computed for all atoms. Our previous study showed that a GB model which reproduces the solvation energy may not necessarily be suitable for ligand binding calculations. In this work, we studied binding energetics using the exact GB model, in which Born radii are computed from the Poisson-Boltzmann (PB) equation. Our results showed that accurate Born radii lead to very good agreement between GB and PB in electrostatic calculations for ligand binding. However, recently developed GB models with high Born radii accuracy, when used in large database screening, may suffer from time constraints which make accurate, large-scale Born radii calculations impractical. We therefore present a multiscale GB approach in which atoms are divided into two groups. For atoms in the first group, those few atoms which are most likely to be critical to binding electrostatics, the Born radii are computed accurately at the sacrifice of speed. We propose two alternative approaches for atoms in the second group. The Born radii of these atoms may simply be computed by a fast GB method. Alternatively, the Born radii of these atoms may be computed accurately in the free state, then a variational form of a fast GB method may be used to compute the change in Born radii experienced by these atoms during binding. This strategy provides an accuracy advantage while still being fast enough for use in the virtual screening of large databases. PMID:19678651
Corrected Article: Wormholes in Einstein-Born-Infeld theory [Phys. Rev. D 80, 104033 (2009)
Richarte, Martin G.; Simeone, Claudio
2010-05-15
Spherically symmetric thin-shell wormholes are studied within the framework of Einstein-Born-Infeld theory. We analyze the exotic matter content, and find that for certain values of the Born-Infeld parameter the amount of exotic matter on the shell can be reduced in relation with the Maxwell case. We also examine the mechanical stability of the wormhole configurations under radial perturbations preserving the spherical symmetry.
General Relativity Theory: Recognition through Time
NASA Astrophysics Data System (ADS)
Alexandrov, A. N.; Vavilova, I. B.; Zhdanov, V. I.; Zhuk, A. I.; Kudrya, Yu. N.; Parnovsky, S. L.; Fedorova, E. V.; Yatskiv, Ya. S.
2015-10-01
The book provides an overview of the current state of the General Relativity Theory on the eve of its centennial. The authors describe briefly the basis of this theory, systematize experimental verifications and outline the main areas of its applications in astrophysics, cosmology and astrometry in the light of the last decade. For researchers and students specializing in the Relativity Theory as well as for anyone interested in Relativity Theory, relativistic astrophysics and cosmology.
Analysis of regularizing properties of nonlinear electrodynamics in the Einstein-Born-Infeld theory
Denisov, V. I. Sokolov, V. A.
2011-12-15
New regularizing manifestations of the Einstein-Born-Infeld theory for a massive charged force center in the space-time are considered. The properties of isotropic geodesics in this space are analyzed. It is shown that the charge may exceed the maximum possible charge in the Reissner-Nordstroem solution; the possibility of eliminating one of the metric horizons is also noted.
Solitons and black holes in non-Abelian Einstein-Born-Infeld theory
NASA Astrophysics Data System (ADS)
Dyadichev, V. V.; Gal'tsov, D. V.
2000-08-01
Recently it was shown that the Born-Infeld modification of the quadratic Yang-Mills action gives rise to classical particle-like solutions in the flat space which have a striking similarity with the Bartnik-McKinnon solutions obtained within the gravity coupled Yang-Mills theory. We show that both families of solutions are continuously related within the framework of the Einstein-Born-Infeld theory via interpolating sequences of parameters. We also investigate an internal structure of the associated black holes and find that the Born-Infeld non-linearity changes drastically the black hole interior typical for the usual quadratic Yang-Mills theory. In the latter case a generic solution exhibits violent metric oscillations near the singularity. In the Born-Infeld case the generic interior solution is smooth, the metric tends to the standard Schwarzschild type singularity, and we did not observe internal horizons. Smoothing of the `violent' EYM singularity may be interpreted as a result of non-gravitational quantum effects.
Prevalence of Blood-Borne Pathogens in an Urban, University-Based General Surgical Practice
Weiss, Eric S.; Makary, Martin A.; Wang, Theresa; Syin, Dora; Pronovost, Peter J.; Chang, David; Cornwell, Edward E.
2005-01-01
Objective: To measure the current prevalence of blood-borne pathogens in an urban, university-based, general surgical practice. Summary Background Data: Human immunodeficiency virus (HIV), hepatitis B, and hepatitis C represent significant occupational hazards to the surgeon. While the incidence of these blood-borne pathogens is increasing in the general population, little is known about the current prevalence of these exposures among patients presenting for surgery. Methods: We studied 709 consecutive operative cases (July 2003 to June 2004) in a university practice that provides all inpatient, emergency department, and outpatient consultative general surgical services. Trauma cases and bedside procedures were excluded. Data collected included HIV, hepatitis B and C test results, type of operation, age, sex, and history of intravenous drug use. Results: Testing for blood-borne pathogens was performed in 53% (N = 373) of 709 patients based on abnormal liver function tests, neutropenia, history of IV drug use, or patient request. Thirty-eight percent of all operations (142/373) were found to involve a blood-borne pathogen when tested: HIV (26%), hepatitis B (4%), hepatitis C (35%), and coinfection with HIV and hepatitis C (17%). Forty-seven percent of men tested positive for at least 1 blood-borne pathogen. Seventy-three different types of operations were performed, ranging from Whipple procedures to amputations. Soft-tissue abscess procedures 48% (34/71) and lymph node biopsies 67% (10/15) (P < 0.01) were most often associated with blood-borne pathogens. Infections were more common among men (P < 0.01), patients 41 to 50 years of age (P < 0.01), and patients with a history of intravenous drug use (P < 0.01). Conclusions: HIV and hepatitis C infections are common in an urban university general surgical practice, while hepatitis B is less common. In addition, certain operations are associated with significantly increased exposure rates. Given the high incidence of
Generalized Yang-Mills theory and gravity
NASA Astrophysics Data System (ADS)
Ho, Pei-Ming
2016-02-01
We propose a generalization of Yang-Mills theory for which the symmetry algebra does not have to be factorized as mutually commuting algebras of a finite-dimensional Lie algebra and the algebra of functions on base space. The algebra of diffeomorphism can be constructed as an example, and a class of gravity theories can be interpreted as generalized Yang-Mills theories. These theories, in general, include a graviton, a dilaton and a rank-two antisymmetric field, although Einstein gravity is also included as a special case. We present calculations suggesting that the connection in scattering amplitudes between Yang-Mills theory and gravity via Bern-Carrasco-Johansson duality can be made more manifest in this formulation.
The general theory of relativity - Why 'It is probably the most beautiful of all existing theories'
NASA Astrophysics Data System (ADS)
Chandrasekhar, S.
1984-03-01
An attempt is made to objectively evaluate the frequent judgment of Einstein's general theory of relativity, by such distinguished physicists as Pauli (1921), Dirac, Born, and Rutherford, as 'beautiful' and 'a work of art'. The criteria applied are that of Francis Bacon ('There is no excellent beauty that hath not some strangeness in the proportions') and that of Heisenberg ('Beauty is the proper conformity of the parts to one another and to the whole'). The strangeness in the proportions of the theory of general relativity consists in its relating, through juxtaposition, the concepts of space and time and those of matter and motion; these had previously been considered entirely independent. The criterion of 'conformity' is illustrated through the directness with which the theory allows the description of black holes.
Teaching Evolutionary Theory as General Education.
ERIC Educational Resources Information Center
Todd, Paul
1984-01-01
Provides a rationale for including evolution as part of a college general education curriculum, discussing the content of evolutionary theory, instructional principles, Darwin's contributions, evolution and religion, and the relationship of evolution with current events. (DMM)
Random walk in generalized quantum theory
Martin, Xavier; O'Connor, Denjoe; Sorkin, Rafael D.
2005-01-15
One can view quantum mechanics as a generalization of classical probability theory that provides for pairwise interference among alternatives. Adopting this perspective, we 'quantize' the classical random walk by finding, subject to a certain condition of 'strong positivity', the most general Markovian, translationally invariant 'decoherence functional' with nearest neighbor transitions.
Generalized metric formulation of double field theory
NASA Astrophysics Data System (ADS)
Hohm, Olaf; Hull, Chris; Zwiebach, Barton
2010-08-01
The generalized metric is a T-duality covariant symmetric matrix constructed from the metric and two-form gauge field and arises in generalized geometry. We view it here as a metric on the doubled spacetime and use it to give a simple formulation with manifest T-duality of the double field theory that describes the massless sector of closed strings. The gauge transformations are written in terms of a generalized Lie derivative whose commutator algebra is defined by a double field theory extension of the Courant bracket.
Diffusion in the general theory of relativity
Herrmann, Joachim
2010-07-15
The Markovian diffusion theory in the phase space is generalized within the framework of the general theory of relativity. The introduction of moving orthonormal frame vectors both for the position as well the velocity space avoids difficulties in the general relativistic stochastic calculus. The general relativistic Kramers equation in the phase space is derived both in the parametrization of phase-space proper time and the coordinate time. The transformation of the obtained diffusion equation under hypersurface-preserving coordinate transformations is analyzed and diffusion in the expanding universe is studied. It is shown that the validity of the fluctuation-dissipation theorem ensures that in the quasisteady state regime, the result of the derived diffusion equation is consistent with the kinetic theory in thermodynamic equilibrium.
A theory of generalized Bloch oscillations.
Duggen, Lars; Lew Yan Voon, L C; Lassen, Benny; Willatzen, Morten
2016-04-20
Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics.
On adiabatic invariant in generalized Galileon theories
Ema, Yohei; Jinno, Ryusuke; Nakayama, Kazunori; Mukaida, Kyohei E-mail: jinno@hep-th.phys.s.u-tokyo.ac.jp E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp
2015-10-01
We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is useful in estimating the expansion law of the universe and also the particle production rate due to the oscillation of the Hubble parameter.
Transition operators in electromagnetic-wave diffraction theory - General theory
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
Dyonic (A)dS black holes in Einstein-Born-Infeld theory in diverse dimensions
NASA Astrophysics Data System (ADS)
Li, Shoulong; Lü, H.; Wei, Hao
2016-07-01
We study Einstein-Born-Infeld gravity and construct the dyonic (A)dS planar black holes in general even dimensions, that carry both the electric charge and magnetic fluxes along the planar space. In four dimensions, the solution can be constructed with also spherical and hyperbolic topologies. We study the black hole thermodynamics and obtain the first law. We also classify the singularity structure.
General Potential Theory of Arbitrary Wing Sections
NASA Technical Reports Server (NTRS)
Theodorsen, T.; Garrick, I. E.
1979-01-01
The problem of determining the two dimensional potential flow around wing sections of any shape is examined. The problem is condensed into the compact form of an integral equation capable of yielding numerical solutions by a direct process. An attempt is made to analyze and coordinate the results of earlier studies relating to properties of wing sections. The existing approximate theory of thin wing sections and the Joukowski theory with its numerous generalizations are reduced to special cases of the general theory of arbitrary sections, permitting a clearer perspective of the entire field. The method which permits the determination of the velocity at any point of an arbitrary section and the associated lift and moments is described. The method is also discussed in terms for developing new shapes of preassigned aerodynamical properties.
A Short Introduction to General Gyrokinetic Theory
H. Qin
2005-02-14
Interesting plasmas in the laboratory and space are magnetized. General gyrokinetic theory is about a symmetry, gyro-symmetry, in the Vlasov-Maxwell system for magnetized plasmas. The most general gyrokinetic theory can be geometrically formulated. First, the coordinate-free, geometric Vlasov-Maxwell equations are developed in the 7-D phase space, which is defined as a fiber bundle over the space-time. The Poincar{copyright}-Cartan-Einstein 1-form pullbacked onto the 7-D phase space determines particles' worldlines in the phase space, and realizes the momentum integrals in kinetic theory as fiber integrals. The infinite small generator of the gyro-symmetry is then asymptotically constructed as the base for the gyrophase coordinate of the gyrocenter coordinate system. This is accomplished by applying the Lie coordinate perturbation method to the Poincar{copyright}-Cartan-Einstein 1-form, which also generates the most relaxed condition under which the gyro-symmetry still exists. General gyrokinetic Vlasov-Maxwell equations are then developed as the Vlasov-Maxwell equations in the gyrocenter coordinate system, rather than a set of new equations. Since the general gyrokinetic system-developed is geometrically the same as the Vlasov-Maxwell equations, all the coordinate independent properties of the Vlasov-Maxwell equations, such as energy conservation, momentum conservation, and Liouville volume conservation, are automatically carried over to the general gyrokinetic system. The pullback transformation associated with the coordinate transformation is shown to be an indispensable part of the general gyrokinetic Vlasov-Maxwell equations. Without this vital element, a number of prominent physics features, such as the presence of the compressional Alfven wave and a proper description of the gyrokinetic equilibrium, cannot be readily recovered. Three examples of applications of the general gyrokinetic theory developed in the areas of plasma equilibrium and plasma waves are
A general relaxation theory of simple liquids
NASA Technical Reports Server (NTRS)
Merilo, M.; Morgan, E. J.
1973-01-01
A relatively simple relaxation theory to account for the behavior of liquids under dynamic conditions was proposed. The general dynamical equations are similar in form to the phenomenological relaxation equations used in theories of viscoelasticity, however, they differ in that all the coefficients of the present equations are expressed in terms of thermodynamic and molecular quantities. The theory is based on the concept that flow in a liquid distorts both the radial and the velocity distribution functions, and that relaxation equations describing the return of these functions to their isotropic distributions, characterizing a stationary liquid, can be written. The theory was applied to the problems of steady and oscillatory shear flows and to the propagation of longitudinal waves. In all cases classical results are predicted for strain rates, and an expression for the viscosity of a liquid, simular to the Macedo-Litovitz equation, is obtained.
D-branes in generalized geometry and Dirac-Born-Infeld action
NASA Astrophysics Data System (ADS)
Asakawa, T.; Sasa, S.; Watamura, S.
2012-10-01
The purpose of this paper is to formulate the Dirac-Born-Infeld (DBI) action in a framework of generalized geometry and clarify its symmetry. A D-brane is defined as a Dirac structure where scalar fields and gauge field are treated on an equal footing in a static gauge. We derive generalized Lie derivatives corresponding to the diffeomorphism and B- field gauge transformations and show that the DBI action is invariant under non-linearly realized symmetries for all types of diffeomorphisms and B-field gauge transformations. Consequently, we can interpret not only the scalar field but also the gauge field on the D-brane as the generalized Nambu-Goldstone boson.
Consistent theory for causal non-locality beyond the Born's rule
NASA Astrophysics Data System (ADS)
Son, Wonmin
2014-02-01
According to the theory of relativity and causality, a special type of correlation beyond quantum mechanics is possible in principle under the name of a non-local box. The concept has been introduced from the principle of non-locality, which satisfies relativistic causality. In this paper, we show that a correlation leading to the non-local box can be derived consistently if we release one of major axioms in quantum mechanics, Born's rule. This allows us to obtain a theory that in one end of the spectrum agrees with the classical probability and in the other end agrees with the theory of non-local causality. At the same time, we argue that the correlation lies in a space with special mathematical constraints such that a physical realization of the correlation through a probability measure is not possible in one direction of its limit, but is possible in the other limit.
Entanglement and thermodynamics in general probabilistic theories
NASA Astrophysics Data System (ADS)
Chiribella, Giulio; Scandolo, Carlo Maria
2015-10-01
Entanglement is one of the most striking features of quantum mechanics, and yet it is not specifically quantum. More specific to quantum mechanics is the connection between entanglement and thermodynamics, which leads to an identification between entropies and measures of pure state entanglement. Here we search for the roots of this connection, investigating the relation between entanglement and thermodynamics in the framework of general probabilistic theories. We first address the question whether an entangled state can be transformed into another by means of local operations and classical communication. Under two operational requirements, we prove a general version of the Lo-Popescu theorem, which lies at the foundations of the theory of pure-state entanglement. We then consider a resource theory of purity where free operations are random reversible transformations, modelling the scenario where an agent has limited control over the dynamics of a closed system. Our key result is a duality between the resource theory of entanglement and the resource theory of purity, valid for every physical theory where all processes arise from pure states and reversible interactions at the fundamental level. As an application of the main result, we establish a one-to-one correspondence between entropies and measures of pure bipartite entanglement. The correspondence is then used to define entanglement measures in the general probabilistic framework. Finally, we show a duality between the task of information erasure and the task of entanglement generation, whereby the existence of entropy sinks (systems that can absorb arbitrary amounts of information) becomes equivalent to the existence of entanglement sources (correlated systems from which arbitrary amounts of entanglement can be extracted).
Eleven theses of general systems theory (GST)
Waelchli, F.
1992-12-31
This paper chronicles an effort to distill and order (for purposes of discussion and elaboration) frequently mentioned and significant ideas encountered in the literature of General Systems theory (GST). The product is a set of eleven theses, representing the author`s selection and collation of seminal and recurrent GST themes. The author argues that attention to theory could aid the effort to develop practical applications of systems thinking. (Remember that a thesis is a statement or assertion, offered originally without proof, as the basis for an argument, discussion, or empirical test). 10 refs.
A general theory for the Uranian satellites
NASA Technical Reports Server (NTRS)
Laskar, J.
1986-01-01
A general analytical theory of the five main satellites of Uranus, including the secular and short period terms hereafter denoted by GUST, is presented. A comparison is made with an internal numerical integration with nominal masses of Veillet (1983). The precision of the theory goes from about 10 km for Miranda to 100 km for Oberon. The short period terms in the motions of Titania and Oberon are larger than 500 km. They should make possible the determination of the masses of the outer satellites through the optical data of Voyager encounter.
Recasting the theory of mosquito-borne pathogen transmission dynamics and control
Smith, David L.; Perkins, T. Alex; Reiner, Robert C.; Barker, Christopher M.; Niu, Tianchan; Chaves, Luis Fernando; Ellis, Alicia M.; George, Dylan B.; Le Menach, Arnaud; Pulliam, Juliet R. C.; Bisanzio, Donal; Buckee, Caroline; Chiyaka, Christinah; Cummings, Derek A. T.; Garcia, Andres J.; Gatton, Michelle L.; Gething, Peter W.; Hartley, David M.; Johnston, Geoffrey; Klein, Eili Y.; Michael, Edwin; Lloyd, Alun L.; Pigott, David M.; Reisen, William K.; Ruktanonchai, Nick; Singh, Brajendra K.; Stoller, Jeremy; Tatem, Andrew J.; Kitron, Uriel; Godfray, H. Charles J.; Cohen, Justin M.; Hay, Simon I.; Scott, Thomas W.
2014-01-01
Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of the world. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald's formula for R0 and its entomological derivative, vectorial capacity, are now used to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross–Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context for mosquito blood feeding, the movement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control. PMID:24591453
Recasting the theory of mosquito-borne pathogen transmission dynamics and control.
Smith, David L; Perkins, T Alex; Reiner, Robert C; Barker, Christopher M; Niu, Tianchan; Chaves, Luis Fernando; Ellis, Alicia M; George, Dylan B; Le Menach, Arnaud; Pulliam, Juliet R C; Bisanzio, Donal; Buckee, Caroline; Chiyaka, Christinah; Cummings, Derek A T; Garcia, Andres J; Gatton, Michelle L; Gething, Peter W; Hartley, David M; Johnston, Geoffrey; Klein, Eili Y; Michael, Edwin; Lloyd, Alun L; Pigott, David M; Reisen, William K; Ruktanonchai, Nick; Singh, Brajendra K; Stoller, Jeremy; Tatem, Andrew J; Kitron, Uriel; Godfray, H Charles J; Cohen, Justin M; Hay, Simon I; Scott, Thomas W
2014-04-01
Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of the world. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald's formula for R0 and its entomological derivative, vectorial capacity, are now used to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross-Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context for mosquito blood feeding, the movement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control.
NASA Technical Reports Server (NTRS)
Rosen, James M.; Hofmann, D. J.; Carpenter, J. R.; Harder, J. W.; Oltsmans, S. J.
1988-01-01
Balloon-borne frost point measurements were performed over Antarctica during September-October 1987 as part of the NOZE II effort at McMurdo. The results show water mixing ratios on the order of 2 ppmv in the 20 km region, suggesting that models of the springtime Antarctic stratosphere should be based on approximately 2 ppmv water vapor. Evidence indicating that some PSCs form at temperatures higher than the frost point in the 15 to 20 km region is discussed. This supports the binary HNO3-H2O theory of PSC composition.
Tanner, David E; Phillips, James C; Schulten, Klaus
2012-07-10
Molecular dynamics methodologies comprise a vital research tool for structural biology. Molecular dynamics has benefited from technological advances in computing, such as multi-core CPUs and graphics processing units (GPUs), but harnessing the full power of hybrid GPU/CPU computers remains difficult. The generalized Born/solvent-accessible surface area implicit solvent model (GB/SA) stands to benefit from hybrid GPU/CPU computers, employing the GPU for the GB calculation and the CPU for the SA calculation. Here, we explore the computational challenges facing GB/SA calculations on hybrid GPU/CPU computers and demonstrate how NAMD, a parallel molecular dynamics program, is able to efficiently utilize GPUs and CPUs simultaneously for fast GB/SA simulations. The hybrid computation principles demonstrated here are generally applicable to parallel applications employing hybrid GPU/CPU calculations.
Cosmology in general massive gravity theories
Comelli, D.; Nesti, F.; Pilo, L. E-mail: fabrizio.nesti@aquila.infn.it
2014-05-01
We study the cosmological FRW flat solutions generated in general massive gravity theories. Such a model are obtained adding to the Einstein General Relativity action a peculiar non derivative potentials, function of the metric components, that induce the propagation of five gravitational degrees of freedom. This large class of theories includes both the case with a residual Lorentz invariance as well as the case with rotational invariance only. It turns out that the Lorentz-breaking case is selected as the only possibility. Moreover it turns out that that perturbations around strict Minkowski or dS space are strongly coupled. The upshot is that even though dark energy can be simply accounted by massive gravity modifications, its equation of state w{sub eff} has to deviate from -1. Indeed, there is an explicit relation between the strong coupling scale of perturbations and the deviation of w{sub eff} from -1. Taking into account current limits on w{sub eff} and submillimiter tests of the Newton's law as a limit on the possible strong coupling scale, we find that it is still possible to have a weakly coupled theory in a quasi dS background. Future experimental improvements on short distance tests of the Newton's law may be used to tighten the deviation of w{sub eff} form -1 in a weakly coupled massive gravity theory.
Non-signalling Theories and Generalized Probability
NASA Astrophysics Data System (ADS)
Tylec, Tomasz I.; Kuś, Marek; Krajczok, Jacek
2016-09-01
We provide mathematically rigorous justification of using term probability in connection to the so called non-signalling theories, known also as Popescu's and Rohrlich's box worlds. No only do we prove correctness of these models (in the sense that they describe composite system of two independent subsystems) but we obtain new properties of non-signalling boxes and expose new tools for further investigation. Moreover, it allows strightforward generalization to more complicated systems.
Renormalization in general theories with intergeneration mixing
NASA Astrophysics Data System (ADS)
Kniehl, Bernd A.; Sirlin, Alberto
2012-02-01
We derive general and explicit expressions for the unrenormalized and renormalized dressed propagators of fermions in parity-nonconserving theories with intergeneration mixing. The mass eigenvalues, the corresponding mass counterterms, and the effect of intergeneration mixing on their determination are discussed. Invoking the Aoki-Hioki-Kawabe-Konuma-Muta renormalization conditions and employing a number of very useful relations from matrix algebra, we show explicitly that the renormalized dressed propagators satisfy important physical properties.
Hyperons in neutron stars within an Eddington-inspired Born-Infeld theory of gravity
NASA Astrophysics Data System (ADS)
Qauli, A. I.; Iqbal, M.; Sulaksono, A.; Ramadhan, H. S.
2016-05-01
We investigate the mass-radius relation of the neutron star (NS) with hyperons inside its core by using the Eddington-inspired Born-Infeld (EiBI) theory of gravity. The equation of state of the star is calculated by using the relativistic mean field model under which the standard SU(6) prescription and hyperon potential depths are used to determine the hyperon coupling constants. We found that, for 4 ×106 m2≲κ ≲6 ×106 m2 , the corresponding NS mass and radius predicted by the EiBI theory of gravity is compatible with observational constraints of maximum NS mass and radius. The corresponding κ value is also compatible with the κ range predicted by the astrophysical-cosmological constraints. We also found that the parameter κ could control the size and the compactness of a neutron star.
Generalized Onsager theory of liquid crystals
NASA Astrophysics Data System (ADS)
Xiao, Xiaobin
The Onsager theory of liquid crystals deserves a special place among all the liquid crystal theories, not only because it was the first theory on liquid crystals, but also because its approach is based on rigorous statistical mechanics and therefore offers a relatively straightforward path for its improvement. With the assumptions of the low density and large aspect ratio, Onsager treated liquid crystal molecules as hard rods in which the free energy can be expanded as virial coefficients, in terms of the orientational distribution function. While the Onsager theory succeeded to capture the orientational transition of liquid crystals as a function of increasing density, the predictions of the transition density do not agree well with the molecular dynamics (MD) simulation results. As we show in this thesis, the higher virial coefficients in the Onsager theory framework will decrease the transition density. However, in the range of the low aspect ratio, the prediction of the transition density is smaller than that of the MD simulations. We can not improve the Onsager theory by just considering the higher virial coefficients. The starting point of this thesis, i.e., the generalization of the Onsager theory, is to note that there can be a state in which there is very strong short-range orientational order but no long-range orientational order, obtained from hard-core molecular dynamics simulations in two-dimensional systems. Such a state obviously has a lower free energy (compared to the state of overall long-range orientational order), owing to the higher orientational entropy. In fact, in this particular case the Onsager theory's prediction is inaccurate to say the least. From this simple example it is clear that there is an aspect ratio regime which needs a more accurate theory. We did that by including short-range orientational order within the Onsager framework and extending the original theory along different directions. Besides the short range order, we have
General nonequilibrium theory of colloid dynamics.
Ramírez-González, Pedro; Medina-Noyola, Magdaleno
2010-12-01
A nonequilibrium extension of Onsager's canonical theory of thermal fluctuations is employed to derive a self-consistent theory for the description of the statistical properties of the instantaneous local concentration profile n(r,t) of a colloidal liquid in terms of the coupled time-evolution equations of its mean value n(r,t) and of the covariance [Formula in text] of its fluctuations δn(r,t)=n(r,t)-n(r,t). These two coarse-grained equations involve a local mobility function b(r,t) which, in its turn, is written in terms of the memory function of the two-time correlation function [Formula in text]. For given effective interactions between colloidal particles and applied external fields, the resulting self-consistent theory is aimed at describing the evolution of a strongly correlated colloidal liquid from an initial state with arbitrary mean and covariance n(0)(r) and σ(0)(r,r') toward its equilibrium state characterized by the equilibrium local concentration profile n(eq)(r) and equilibrium covariance σ(eq)(r,r'). This theory also provides a general theoretical framework to describe irreversible processes associated with dynamic arrest transitions, such as aging, and the effects of spatial heterogeneities.
Possibilistic systems within a general information theory
Joslyn, C.
1999-06-01
The author surveys possibilistic systems theory and place it in the context of Imprecise Probabilities and General Information Theory (GIT). In particular, he argues that possibilistic systems hold a distinct position within a broadly conceived, synthetic GIT. The focus is on systems and applications which are semantically grounded by empirical measurement methods (statistical counting), rather than epistemic or subjective knowledge elicitation or assessment methods. Regarding fuzzy measures as special provisions, and evidence measures (belief and plausibility measures) as special fuzzy measures, thereby he can measure imprecise probabilities directly and empirically from set-valued frequencies (random set measurement). More specifically, measurements of random intervals yield empirical fuzzy intervals. In the random set (Dempster-Shafer) context, probability and possibility measures stand as special plausibility measures in that their distributionality (decomposability) maps directly to an aggregable structure of the focal classes of their random sets. Further, possibility measures share with imprecise probabilities the ability to better handle open world problems where the universe of discourse is not specified in advance. In addition to empirically grounded measurement methods, possibility theory also provides another crucial component of a full systems theory, namely prediction methods in the form of finite (Markov) processes which are also strictly analogous to the probabilistic forms.
Massive General Relativity: Theory and Applications
NASA Astrophysics Data System (ADS)
Gabadadze, Gregory
The Universe, at very large scales, is expanding with acceleration. The fundamental reason for the accelerated expansion is not understood. One way to model such an expansion is to postulate a small cosmological constant in the Einstein equations. However, it could also be that Nature made a different choice: The acceleration could be a first observational evidence of a new scale at which laws of gravity itself are modified, and if so, the acceleration could have a purely gravitational origin. To account for the observed expansion, the new scale should roughly be equal to 1/H0 ~ 10^28 cm -- the present-day value of the Hubble length. Theories that may modify gravity consistently at these scales present a great challenge, and this has been a topic of an active research for the past decade or so. Furthermore, modified gravity models make predictions that could be distinguished from those of more conventional frameworks, e.g., from the scenario with a small cosmological constant. Moreover, the case for modified gravity is strengthened by a long-standing Cosmological Constant Problem (CCP). According to a well- known theorem, the CCP cannot be solved as long as one remains in a conventional framework of General Relativity (GR), or in other theory that reduces to GR at large scales. Contrary to this, theories that truly modify GR at large scales, can evade this theorem, and thus offer a hope for solving the CCP. The Principal Investigator (PI) is proposing to address the cosmic acceleration, and related to it CCP, in the framework of massive extension of GR. Construction of massive GR began as early as in 1939, however, for the last 40 years or so the theory was tabooed by no-go theorems. Only very recently, PI and his collaborators were able to show that there is a class of theories to which the no-go theorems do not apply, and proposed a candidate covariant theory for massive GR, that passes all the initial consistency tests. Moreover, PI with his collaborators found
Generalized Quantum Theory and Mathematical Foundations of Quantum Field Theory
NASA Astrophysics Data System (ADS)
Maroun, Michael Anthony
This dissertation is divided into two main topics. The first is the generalization of quantum dynamics when the Schrodinger partial differential equation is not defined even in the weak mathematical sense because the potential function itself is a distribution in the spatial variable, the same variable that is used to define the kinetic energy operator, i.e. the Laplace operator. The procedure is an extension and broadening of the distributional calculus and offers spectral results as an alternative to the only other two known methods to date, namely a) the functional calculi; and b) non-standard analysis. Furthermore, the generalizations of quantum dynamics presented within give a resolution to the time asymmetry paradox created by multi-particle quantum mechanics due to the time evolution still being unitary. A consequence is the randomization of phases needed for the fundamental justification Pauli master equation. The second topic is foundations of the quantum theory of fields. The title is phrased as ``foundations'' to emphasize that there is no claim of uniqueness but rather a proposal is put forth, which is markedly different than that of constructive or axiomatic field theory. In particular, the space of fields is defined as a space of generalized functions with involutive symmetry maps (the CPT invariance) that affect the topology of the field space. The space of quantum fields is then endowed the Frechet property and interactions change the topology in such a way as to cause some field spaces to be incompatible with others. This is seen in the consequences of the Haag theorem. Various examples and discussions are given that elucidate a new view of the quantum theory of fields and its (lack of) mathematical structure.
Comment on "Extended Born-Infeld theory and the bouncing magnetic universe"
NASA Astrophysics Data System (ADS)
García-Salcedo, Ricardo; Gonzalez, Tame; Horta-Rangel, Antonio; Quiros, Israel
2014-12-01
In a recent paper [Phys. Rev. D 85, 023528 (2012), 10.1103/PhysRevD.85.023528] the authors proposed a generalized Born-Infeld electrodynamics coupled to general relativity which produces a nonsingular bouncing universe. For a magnetic universe the resulting cosmic evolution inevitably interpolates between asymptotic de Sitter states. Here we show that (i) the conclusion about the inevitability of the asymptotic vacuum regime in a magnetic universe is wrong, (ii) a sudden curvature singularity—not better than the big bang—arises, but for spaces of positive curvature, (iii) the square sound speed can be a negative quantity, signaling instability against small perturbations of the background energy density, and (iv) the speed of sound can exceed the speed of light, which raises a causality issue.
Born Hartree Bethe approximation in the theory of inelastic electron molecule scattering
NASA Astrophysics Data System (ADS)
Kretinin, I. Yu; Krisilov, A. V.; Zon, B. A.
2008-11-01
We propose a new approximation in the theory of inelastic electron atom and electron molecule scattering. Taking into account the completeness property of atomic and molecular wavefunctions, considered in the Hartree approximation, and using Bethe's parametrization for electronic excitations during inelastic collisions via the mean excitation energy, we show that the calculation of the inelastic total integral cross-sections (TICS), in the framework of the first Born approximation, involves only the ground-state wavefunction. The final analytical formula obtained for the TICS, i.e. for the sum of elastic and inelastic ones, contains no adjusting parameters. Calculated TICS for electron scattering by light atoms and molecules (He, Ne, and H2) are in good agreement within the experimental data; results show asymptotic coincidence for heavier ones (Ar, Kr, Xe and N2).
Hoshino, Minoru; Nishizawa, Hiroaki; Nakai, Hiromi
2011-07-14
The present study proposes a rigorous non-Born-Oppenheimer theory combining between the explicitly correlated Gaussian (ECG) method and the nuclear orbital plus molecular orbital (NOMO) method. The new method, called ECG-NOMO, adopts the ECG functions between the electronic and nuclear coordinates and, therefore, is capable of describing the nucleus-electron correlation effect accurately. The basic formalism of the ECG-NOMO method is close to the NOMO method, which starts with the Hartree-Fock type equations for NOs and MOs. The present method requires more computational cost than the original NOMO method. However, its cost is significantly smaller than that of the ECG method. The numerical tests was performed for hydrogen-like atoms (H-Ne(9+)) and dihydrogen cations (H(2)(+), D(2)(+) and T(2)(+)), and clarified that the ECG-NOMO method shows the sufficient accuracy. PMID:21766929
Generalized Langevin Theory for Inhomogeneous Fluids.
NASA Astrophysics Data System (ADS)
Grant, Martin Garth
This thesis presents a molecular theory of the dynamics of inhomogeneous fluids. Dynamical correlations in a nonuniform system are studied through the generalized Langevin approach. The equations of motion (formally exact) are obtained for the number density, momentum density, energy density, stress tensor and heat flux. We evaluate all the relevant sum rules appearing in the frequency matrix exactly in terms of microscopic pair potentials and an external field. We show using functional derivatives how these microscopic sum rules relate to more familiar, though now nonlocal, hydrodynamic-like quantities. The set of equations is closed by a Markov approximation in the equations for stress tensor and heat flux. As a result, these equations become analogous to Grad's 13-moment equations for low density fluids and constitute a generalization to inhomogeneous fluids of the work of Schofield and Akcasu-Daniels. We apply this formalism to several problems. We study the correlation of currents orthogonal to a diffuse planar, liquid-vapour, interface, introducing new nonlocal elastic moduli and new nonlocal, frequency dependent, viscosities. Novel symmetry breaking contributions are obtained, which are related to the Young-Laplace equation for pressure balance. The normal modes, associated with the symmetry breaking interface in the liquid-vapour system, are analyzed, taking into account the nonlocal nature of the diffuse planar interface. We obtain the classical dispersion relation for capillary waves, observed in light scattering experiments, from an adiabatic (molecular) approach. We consider the 'capillary wave model' (CWM) of the equilibrium liquid-vapour interface. CWM is reformulated to be consistent with capillary waves; corrections to the standard CWM results, due to self-consistent long range coupling, are obtained for finite surface area and nonzero gravitational acceleration. Finally, we obtain the Landau-Lifshitz theory of fluctuating hydrodynamics from the
Inflation in general covariant theory of gravity
Huang, Yongqing; Wang, Anzhong; Wu, Qiang E-mail: anzhong_wang@baylor.edu
2012-10-01
In this paper, we study inflation in the framework of the nonrelativistic general covariant theory of the Hořava-Lifshitz gravity with the projectability condition and an arbitrary coupling constant λ. We find that the Friedmann-Robterson-Walker (FRW) universe is necessarily flat in such a setup. We work out explicitly the linear perturbations of the flat FRW universe without specifying to a particular gauge, and find that the perturbations are different from those obtained in general relativity, because of the presence of the high-order spatial derivative terms. Applying the general formulas to a single scalar field, we show that in the sub-horizon regions, the metric and scalar field are tightly coupled and have the same oscillating frequencies. In the super-horizon regions, the perturbations become adiabatic, and the comoving curvature perturbation is constant. We also calculate the power spectra and indices of both the scalar and tensor perturbations, and express them explicitly in terms of the slow roll parameters and the coupling constants of the high-order spatial derivative terms. In particular, we find that the perturbations, of both scalar and tensor, are almost scale-invariant, and, with some reasonable assumptions on the coupling coefficients, the spectrum index of the tensor perturbation is the same as that given in the minimum scenario in general relativity (GR), whereas the index for scalar perturbation in general depends on λ and is different from the standard GR value. The ratio of the scalar and tensor power spectra depends on the high-order spatial derivative terms, and can be different from that of GR significantly.
Asymptotic properties of a supposedly regular (Dirac-Born-Infeld) modification of general relativity
García-Salcedo, Ricardo; Gonzalez, Tame; Napoles, Yunelsy; Leyva, Yoelsy; Moreno, Claudia; Quiros, Israel E-mail: tame@uclv.edu.cu E-mail: yna@uclv.edu.cu E-mail: iquiros@fisica.ugto.mx
2010-02-01
We apply the dynamical systems tools to study the asymptotic properties of a cosmological model based on a non-linear modification of General Relativity in which the standard Einstein-Hilbert action is replaced by one of Dirac-Born-Infeld type. It is shown that the dynamics of this model is extremely rich: there are found equilibrium points in the phase space that can be associated with matter-dominated, matter-curvature scaling, de Sitter, and even phantom-like solutions. Depending on the value of the overall parameters the dynamics in phase space can show multi-attractor structure into the future (multiple future attractors may co-exist). This is a consequence of bifurcations in control parameter space, showing strong dependence of the model's dynamical properties on the free parameters. Contrary to what is expected from non-linear modifications of general relativity of this kind, removal of the initial spacetime singularity is not a generic feature of the corresponding cosmological model. Instead, the starting point of the cosmic dynamics — the past attractor in the phase space — is a state of infinitely large value of the Hubble rate squared, usually associated with the big bang singularity.
A generalized target theory and its applications
Zhao, Lei; Mi, Dong; Hu, Bei; Sun, Yeqing
2015-01-01
Different radiobiological models have been proposed to estimate the cell-killing effects, which are very important in radiotherapy and radiation risk assessment. However, most applied models have their own scopes of application. In this work, by generalizing the relationship between “hit” and “survival” in traditional target theory with Yager negation operator in Fuzzy mathematics, we propose a generalized target model of radiation-induced cell inactivation that takes into account both cellular repair effects and indirect effects of radiation. The simulation results of the model and the rethinking of “the number of targets in a cell” and “the number of hits per target” suggest that it is only necessary to investigate the generalized single-hit single-target (GSHST) in the present theoretical frame. Analysis shows that the GSHST model can be reduced to the linear quadratic model and multitarget model in the low-dose and high-dose regions, respectively. The fitting results show that the GSHST model agrees well with the usual experimental observations. In addition, the present model can be used to effectively predict cellular repair capacity, radiosensitivity, target size, especially the biologically effective dose for the treatment planning in clinical applications. PMID:26411887
General theory of the plasmoid instability
NASA Astrophysics Data System (ADS)
Comisso, L.; Lingam, M.; Huang, Y.-M.; Bhattacharjee, A.
2016-10-01
A general theory of the onset and development of the plasmoid instability is formulated by means of a principle of least time. The scaling relations for the final aspect ratio, transition time to rapid onset, growth rate, and number of plasmoids are derived and shown to depend on the initial perturbation amplitude (ŵ 0 ) , the characteristic rate of current sheet evolution (1/τ), and the Lundquist number (S). They are not simple power laws, and are proportional to Sατβ[lnf (S ,τ,ŵ 0) ] σ . The detailed dynamics of the instability is also elucidated, and shown to comprise of a period of quiescence followed by sudden growth over a short time scale.
Generalized Gibbs ensembles for quantum field theories
NASA Astrophysics Data System (ADS)
Essler, F. H. L.; Mussardo, G.; Panfil, M.
2015-05-01
We consider the nonequilibrium dynamics in quantum field theories (QFTs). After being prepared in a density matrix that is not an eigenstate of the Hamiltonian, such systems are expected to relax locally to a stationary state. In the presence of local conservation laws, these stationary states are believed to be described by appropriate generalized Gibbs ensembles. Here we demonstrate that in order to obtain a correct description of the stationary state, it is necessary to take into account conservation laws that are not (ultra)local in the usual sense of QFTs, but fulfill a significantly weaker form of locality. We discuss the implications of our results for integrable QFTs in one spatial dimension.
Screening fifth forces in generalized Proca theories
NASA Astrophysics Data System (ADS)
De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji; Zhang, Ying-li; Zhao, Gong-Bo
2016-05-01
For a massive vector field with derivative self-interactions, the breaking of the gauge invariance allows the propagation of a longitudinal mode in addition to the two transverse modes. We consider generalized Proca theories with second-order equations of motion in a curved space-time and study how the longitudinal scalar mode of the vector field gravitates on a spherically symmetric background. We show explicitly that cubic-order self-interactions lead to the suppression of the longitudinal mode through the Vainshtein mechanism. Provided that the dimensionless coupling of the interaction is not negligible, this screening mechanism is sufficiently efficient to give rise to tiny corrections to gravitational potentials consistent with solar-system tests of gravity. We also study the quartic interactions with the presence of nonminimal derivative coupling with the Ricci scalar and find the existence of solutions where the longitudinal mode completely vanishes. Finally, we discuss the case in which the effect of the quartic interactions dominates over the cubic one and show that local gravity constraints can be satisfied under a mild bound on the parameters of the theory.
Dynamical Correspondence in a Generalized Quantum Theory
NASA Astrophysics Data System (ADS)
Niestegge, Gerd
2015-05-01
In order to figure out why quantum physics needs the complex Hilbert space, many attempts have been made to distinguish the C*-algebras and von Neumann algebras in more general classes of abstractly defined Jordan algebras (JB- and JBW-algebras). One particularly important distinguishing property was identified by Alfsen and Shultz and is the existence of a dynamical correspondence. It reproduces the dual role of the selfadjoint operators as observables and generators of dynamical groups in quantum mechanics. In the paper, this concept is extended to another class of nonassociative algebras, arising from recent studies of the quantum logics with a conditional probability calculus and particularly of those that rule out third-order interference. The conditional probability calculus is a mathematical model of the Lüders-von Neumann quantum measurement process, and third-order interference is a property of the conditional probabilities which was discovered by Sorkin (Mod Phys Lett A 9:3119-3127, 1994) and which is ruled out by quantum mechanics. It is shown then that the postulates that a dynamical correspondence exists and that the square of any algebra element is positive still characterize, in the class considered, those algebras that emerge from the selfadjoint parts of C*-algebras equipped with the Jordan product. Within this class, the two postulates thus result in ordinary quantum mechanics using the complex Hilbert space or, vice versa, a genuine generalization of quantum theory must omit at least one of them.
Arthur, Evan J; Brooks, Charles L
2016-04-15
Two fundamental challenges of simulating biologically relevant systems are the rapid calculation of the energy of solvation and the trajectory length of a given simulation. The Generalized Born model with a Simple sWitching function (GBSW) addresses these issues by using an efficient approximation of Poisson-Boltzmann (PB) theory to calculate each solute atom's free energy of solvation, the gradient of this potential, and the subsequent forces of solvation without the need for explicit solvent molecules. This study presents a parallel refactoring of the original GBSW algorithm and its implementation on newly available, low cost graphics chips with thousands of processing cores. Depending on the system size and nonbonded force cutoffs, the new GBSW algorithm offers speed increases of between one and two orders of magnitude over previous implementations while maintaining similar levels of accuracy. We find that much of the algorithm scales linearly with an increase of system size, which makes this water model cost effective for solvating large systems. Additionally, we utilize our GPU-accelerated GBSW model to fold the model system chignolin, and in doing so we demonstrate that these speed enhancements now make accessible folding studies of peptides and potentially small proteins.
NASA Astrophysics Data System (ADS)
Nalewajski, Roman F.; Capitani, Joseph F.
1982-09-01
The Legendre-transformed representations of the non-Born-Oppenheimer (NBO) density functional theory are analyzed and the corresponding Maxwell relations are derived. These relations exhibit various couplings between parameters of the NBO ground-state energy hypersurfaces: ɛ[{Ni, Zi, Mi}] and ɛφ[{Ni, Zi, Mi},φ], where Ni, Zi, and Mi denote, respectively, the number of particles i, their charge and mass, while φ stands for an external electric field. The criteria for intrinsic equilibrium and stability of molecular systems are formulated and discussed within both the BO and NBO approximations. The physical content of stability criteria is interpreted in terms of the Le Châtelier and the Le Châtelier-Braun principles. The classical nature of these criteria is revealed through the introduction of internal partial scalar pressures of the system components (groups of identical particles) within the local formulation of the theory. It is then shown that the criteria of equilibrium and stability in isolated molecular systems become the classical criteria of the ''mechanical''-electrostatic equilibrium and stability.
NASA Technical Reports Server (NTRS)
Rosen, James M.; Hofmann, D. J.; Carpenter, J. R.; Harder, J. W.; Oltmans, S. J.
1988-01-01
The first balloon-borne frost point measurements over Antarctica were made during September and October, 1987 as part of the NOZE 2 effort at McMurdo. The results indicate water vapor mixing ratios on the order of 2 ppmv in the 15 to 20 km region which is somewhat smaller than the typical values currently being used significantly smaller than the typical values currently being used in polar stratospheric cloud (PSC) theories. The observed water vapor mixing ratio would correspond to saturated conditions for what is thought to be the lowest stratospheric temperatures encountered over the Antarctic. Through the use of available lidar observations there appears to be significant evidence that some PSCs form at temperatures higher than the local frost point (with respect to water) in the 10 to 20 km region thus supporting the nitric acid theory of PSC composition. Clouds near 15 km and below appear to form in regions saturated with respect to water and thus are probably mostly ice water clouds although they could contain relatively small amounts of other constituents. Photographic evidence suggests that the clouds forming above the frost point probably have an appearance quite different from the lower altitude iridescent, colored nacreous clouds.
Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born.
Götz, Andreas W; Williamson, Mark J; Xu, Dong; Poole, Duncan; Le Grand, Scott; Walker, Ross C
2012-05-01
We present an implementation of generalized Born implicit solvent all-atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA enabled NVIDIA graphics processing units (GPUs). We discuss the algorithms that are used to exploit the processing power of the GPUs and show the performance that can be achieved in comparison to simulations on conventional CPU clusters. The implementation supports three different precision models in which the contributions to the forces are calculated in single precision floating point arithmetic but accumulated in double precision (SPDP), or everything is computed in single precision (SPSP) or double precision (DPDP). In addition to performance, we have focused on understanding the implications of the different precision models on the outcome of implicit solvent MD simulations. We show results for a range of tests including the accuracy of single point force evaluations and energy conservation as well as structural properties pertainining to protein dynamics. The numerical noise due to rounding errors within the SPSP precision model is sufficiently large to lead to an accumulation of errors which can result in unphysical trajectories for long time scale simulations. We recommend the use of the mixed-precision SPDP model since the numerical results obtained are comparable with those of the full double precision DPDP model and the reference double precision CPU implementation but at significantly reduced computational cost. Our implementation provides performance for GB simulations on a single desktop that is on par with, and in some cases exceeds, that of traditional supercomputers. PMID:22582031
Nguyen, Hai; Pérez, Alberto; Bermeo, Sherry; Simmerling, Carlos
2015-08-11
The Generalized Born (GB) implicit solvent model has undergone significant improvements in accuracy for modeling of proteins and small molecules. However, GB still remains a less widely explored option for nucleic acid simulations, in part because fast GB models are often unable to maintain stable nucleic acid structures or they introduce structural bias in proteins, leading to difficulty in application of GB models in simulations of protein-nucleic acid complexes. Recently, GB-neck2 was developed to improve the behavior of protein simulations. In an effort to create a more accurate model for nucleic acids, a similar procedure to the development of GB-neck2 is described here for nucleic acids. The resulting parameter set significantly reduces absolute and relative energy error relative to Poisson-Boltzmann for both nucleic acids and nucleic acid-protein complexes, when compared to its predecessor GB-neck model. This improvement in solvation energy calculation translates to increased structural stability for simulations of DNA and RNA duplexes, quadruplexes, and protein-nucleic acid complexes. The GB-neck2 model also enables successful folding of small DNA and RNA hairpins to near native structures as determined from comparison with experiment. The functional form and all required parameters are provided here and also implemented in the AMBER software.
Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born
2012-01-01
We present an implementation of generalized Born implicit solvent all-atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA enabled NVIDIA graphics processing units (GPUs). We discuss the algorithms that are used to exploit the processing power of the GPUs and show the performance that can be achieved in comparison to simulations on conventional CPU clusters. The implementation supports three different precision models in which the contributions to the forces are calculated in single precision floating point arithmetic but accumulated in double precision (SPDP), or everything is computed in single precision (SPSP) or double precision (DPDP). In addition to performance, we have focused on understanding the implications of the different precision models on the outcome of implicit solvent MD simulations. We show results for a range of tests including the accuracy of single point force evaluations and energy conservation as well as structural properties pertainining to protein dynamics. The numerical noise due to rounding errors within the SPSP precision model is sufficiently large to lead to an accumulation of errors which can result in unphysical trajectories for long time scale simulations. We recommend the use of the mixed-precision SPDP model since the numerical results obtained are comparable with those of the full double precision DPDP model and the reference double precision CPU implementation but at significantly reduced computational cost. Our implementation provides performance for GB simulations on a single desktop that is on par with, and in some cases exceeds, that of traditional supercomputers. PMID:22582031
Panahi, Afra; Feig, Michael
2013-03-12
An extension to the heterogeneous dielectric generalized Born (HDGB) implicit membrane formalism is presented to allow dynamic membrane deformations in response to membrane-inserted biomolecules during molecular dynamic simulations. The flexible membrane is implemented through additional degrees of freedom that represent the membrane deformation at the contact points of a membrane-inserted solute with the membrane. The extra degrees of freedom determine the dielectric and non-polar solvation free energy profiles that are used to obtain the solvation free energy in the presence of the membrane and are used to calculate membrane deformation free energies according to an elastic membrane model. With the dynamic HDGB (DHDGB) model the membrane is able to deform in response to the insertion of charged molecules thereby avoiding the overestimation of insertion free energies with static membrane models. The DHDGB model also allows the membrane to respond to the insertion of membrane-spanning solutes with hydrophobic mismatch. The model is tested with the membrane insertion of amino acid side chain analogs, arginine-containing helices, the WALP23 peptide, and the gramicidin A channel.
Zhang, Haiyang; Tan, Tianwei; van der Spoel, David
2015-11-10
Evaluation of solvation (binding) free energies with implicit solvent models in different dielectric environments for biological simulations as well as high throughput ligand screening remain challenging endeavors. In order to address how well implicit solvent models approximate explicit ones we examined four generalized Born models (GB(Still), GB(HCT), GB(OBC)I, and GB(OBC)II) for determining the dimerization free energy (ΔG(0)) of β-cyclodextrin monomers in 17 implicit solvents with dielectric constants (D) ranging from 5 to 80 and compared the results to previous free energy calculations with explicit solvents ( Zhang et al. J. Phys. Chem. B 2012 , 116 , 12684 - 12693 ). The comparison indicates that neglecting the environmental dependence of Born radii appears acceptable for such calculations involving cyclodextrin and that the GB(Still) and GB(OBC)I models yield a reasonable estimation of ΔG(0), although the details of binding are quite different from explicit solvents. Large discrepancies between implicit and explicit solvent models occur in high-dielectric media with strong hydrogen bond (HB) interruption properties. ΔG(0) with the GB models is shown to correlate strongly to 2(D-1)/(2D+1) (R(2) ∼ 0.90) in line with the Onsager reaction field ( Onsager J. Am. Chem. Soc. 1936 , 58 , 1486 - 1493 ) but to be very sensitive to D (D < 10) as well. Both high-dielectric environments where hydrogen bonds are of interest and low-dielectric media such as protein binding pockets and membrane interiors therefore need to be considered with caution in GB-based calculations. Finally, a literature analysis of Gibbs energy of solvation of small molecules in organic liquids shows that the Onsager relation does not hold for real molecules since the correlation between ΔG(0) and 2(D-1)/(2D+1) is low for most solutes. Interestingly, explicit solvent calculations of the solvation free energy ( Zhang et al. J. Chem. Inf. Model . 2015 , 55 , 1192 - 1201 ) reproduce the weak
Incorporation of generalized uncertainty principle into Lifshitz field theories
Faizal, Mir; Majumder, Barun
2015-06-15
In this paper, we will incorporate the generalized uncertainty principle into field theories with Lifshitz scaling. We will first construct both bosonic and fermionic theories with Lifshitz scaling based on generalized uncertainty principle. After that we will incorporate the generalized uncertainty principle into a non-abelian gauge theory with Lifshitz scaling. We will observe that even though the action for this theory is non-local, it is invariant under local gauge transformations. We will also perform the stochastic quantization of this Lifshitz fermionic theory based generalized uncertainty principle.
NASA Astrophysics Data System (ADS)
Niklasson, Anders; Coe, Joshua; Cawkwell, Marc
2011-06-01
Linear response calculations based on density matrix perturbation theory [A. M. N. Niklasson and M. Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] have been developed within a self-consistent tight-binding method for extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett., 100, 123004 (2008)]. Besides the nuclear coordinates, extended auxiliary electronic degrees of freedom are added to the regular Born-Oppenheimer Lagrangian, both for the electronic ground state and response densities. This formalism enables highly efficient, on-the-fly, analytic computations of the polarizability autocorrelation functions and the Raman spectra during energy conserving Born-Oppenheimer molecular dynamics trajectories. We will illustrate these capabilities via time-resolved Raman spectra computed during explicit, reactive molecular dynamics simulations of the shock compression of methane, benzene, tert-butylacetylene. Comparisons will be made with experimental results where possible.
Critical flow: General theory and spurious solutions
Kestin, J.
1991-05-01
It is hardly necessary to emphasize the importance that an accurate prediction of the parameters of critical flow plays in a number of industries, notably in nuclear reactor safety calculations and in metering. In spite of its importance, the literature of the subject still contains erroneous statements. Many of them result from an unjustified belief in the generality of certain conclusions drawn in the elementary study of one-dimensional isentropic flow of a perfect gas with constant specific heats through a convergent-divergent (de Laval) nozzle. This lecture will present a complete and consistent theory of such flows, applicable to any fluid (single- or multiphase) and any channel shape. The study is restricted to the one-dimensional approximation, and, although only adiabatic conditions are discussed, the formalism can be extended to arbitrary conditions at the boundary of the channel. A scrutiny of some of the latest critical reviews of the state of the art of modelling thermal-hydraulic phenomena, especially in the context of LWR safety analysis, reveals the persistence of some misconceptions concerning the nature of the flow and of the relation between the preferred mathematical model and its discretized equivalent. It has recently become clear that the ensemble of trajectories in phase space of a mathematical model, expressed in the form of a set of differential equations, can be radically different from the ensemble of solutions implied in the numerical code, expressed as a set of linear algebraic equations employed in practical applications. This discrepancy becomes acute when critical flow rates are computed under conditions of choked flow. 7 refs.
Generalizing Prototype Theory: A Formal Quantum Framework
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2016-01-01
Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436
Generalizing Prototype Theory: A Formal Quantum Framework.
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2016-01-01
Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper.
Generalizing Prototype Theory: A Formal Quantum Framework.
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2016-01-01
Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436
Information processing in generalized probabilistic theories
Barrett, Jonathan
2007-03-15
I introduce a framework in which a variety of probabilistic theories can be defined, including classical and quantum theories, and many others. From two simple assumptions, a tensor product rule for combining separate systems can be derived. Certain features, usually thought of as specifically quantum, turn out to be generic in this framework, meaning that they are present in all except classical theories. These include the nonunique decomposition of a mixed state into pure states, a theorem involving disturbance of a system on measurement (suggesting that the possibility of secure key distribution is generic), and a no-cloning theorem. Two particular theories are then investigated in detail, for the sake of comparison with the classical and quantum cases. One of these includes states that can give rise to arbitrary nonsignaling correlations, including the superquantum correlations that have become known in the literature as nonlocal machines or Popescu-Rohrlich boxes. By investigating these correlations in the context of a theory with well-defined dynamics, I hope to make further progress with a question raised by Popescu and Rohrlich, which is why does quantum theory not allow these strongly nonlocal correlations? The existence of such correlations forces much of the dynamics in this theory to be, in a certain sense, classical, with consequences for teleportation, cryptography, and computation. I also investigate another theory in which all states are local. Finally, I raise the question of what further axiom(s) could be added to the framework in order to identify quantum theory uniquely, and hypothesize that quantum theory is optimal for computation.
de Lima, Ivana Cristina Vieira; Pedrosa, Nathália Lima; Aguiar, Larissa de Fátima Pontes; Galvão, Marli Teresinha Gimeniz
2013-09-01
The purpose of this study was to identify the demands of home care of children born exposed to HIV in the perspective of the environmental theory. It consists of an exploratory descriptive qualitative study, developed between January and April of 2011. Study participants were ten HIV-infected mothers with infants exposed to the virus, living in Fortaleza, Ceará. The data collection instruments included a disposable digital camera and forms to obtain information on health associated with the home environment. Results were contextualized according to the theory and organized into the following categories: vulnerabilities associated with the physical structure of the house; contaminated intra and peridomestic air; unclean water used for drinking; sanitation and sewerage system; lighting and ventilation of the house. In conclusion, the home environment offers unfavorable environmental conditions for the child. Targeted interventions in the home environment are necessary so as to promote the health of children born exposed to HIV. PMID:24344586
de Lima, Ivana Cristina Vieira; Pedrosa, Nathália Lima; Aguiar, Larissa de Fátima Pontes; Galvão, Marli Teresinha Gimeniz
2013-09-01
The purpose of this study was to identify the demands of home care of children born exposed to HIV in the perspective of the environmental theory. It consists of an exploratory descriptive qualitative study, developed between January and April of 2011. Study participants were ten HIV-infected mothers with infants exposed to the virus, living in Fortaleza, Ceará. The data collection instruments included a disposable digital camera and forms to obtain information on health associated with the home environment. Results were contextualized according to the theory and organized into the following categories: vulnerabilities associated with the physical structure of the house; contaminated intra and peridomestic air; unclean water used for drinking; sanitation and sewerage system; lighting and ventilation of the house. In conclusion, the home environment offers unfavorable environmental conditions for the child. Targeted interventions in the home environment are necessary so as to promote the health of children born exposed to HIV.
A survey of solutions in a gravitational Born-Infeld theory
Chern, Jann-Long Yang, Sze-Guang
2014-03-15
An elliptic equation that arises from a cosmic string model with the action of the Born-Infeld nonlinear electromagnetism, is considered. We classify and establish the uniqueness of radially symmetric solutions.
The general theory of convolutional codes
NASA Technical Reports Server (NTRS)
Mceliece, R. J.; Stanley, R. P.
1993-01-01
This article presents a self-contained introduction to the algebraic theory of convolutional codes. This introduction is partly a tutorial, but at the same time contains a number of new results which will prove useful for designers of advanced telecommunication systems. Among the new concepts introduced here are the Hilbert series for a convolutional code and the class of compact codes.
Engine isolation for structural-borne interior noise reduction in a general aviation aircraft
NASA Technical Reports Server (NTRS)
Unruh, J. F.; Scheidt, D. C.
1981-01-01
Engine vibration isolation for structural-borne interior noise reduction is investigated. A laboratory based test procedure to simulate engine induced structure-borne noise transmission, the testing of a range of candidate isolators for relative performance data, and the development of an analytical model of the transmission phenomena for isolator design evaluation are addressed. The isolator relative performance test data show that the elastomeric isolators do not appear to operate as single degree of freedom systems with respect to noise isolation. Noise isolation beyond 150 Hz levels off and begins to decrease somewhat above 600 Hz. Coupled analytical and empirical models were used to study the structure-borne noise transmission phenomena. Correlation of predicted results with measured data show that (1) the modeling procedures are reasonably accurate for isolator design evaluation, (2) the frequency dependent properties of the isolators must be included in the model if reasonably accurate noise prediction beyond 150 Hz is desired. The experimental and analytical studies were carried out in the frequency range from 10 Hz to 1000 Hz.
Empirical Predictions from a General Theory of Signs
ERIC Educational Resources Information Center
Oller, John W., Jr.; Chen, Liang; Oller, Stephen D.; Pan, Ning
2005-01-01
General sign theory (GST) deals with how distinct sign systems are grounded, developed with increasing abstractness over time, and differentiated in efficacies in experience and discourse. GST has 3 components: The theory of true narrative representations (TNR theory) shows that TNRs are unique in being relatively well determined with respect to…
Hypermass generalization of Einstein's gravitation theory
NASA Technical Reports Server (NTRS)
Edmonds, J. D., Jr.
1973-01-01
The curvilinear invariant quaternion formalism is examined for curved space time. Einstein's gravitation equation is shown to have a simple and natural form in this notation. The hypermass generalization of particle mass, which was generated in our studies of the Dirac equation, is incorporated in gravitation by generalizing Einstein's equation. Covariance requires that the gravitational constant be generalized to an invariant quaternion when the mass is. The modification appears minor and of no importance cosmologically, unless one begins considering time and mass dependence of G.
On iso-relativistic theories and general connections
NASA Astrophysics Data System (ADS)
Cirilo-Lombardo, Diego Julio
2012-09-01
The question wether geometrical formulations of gravity based on general connections, as introduced some time ago by Otsuki, can be interpreted as particular cases of iso-relativistic structures is analized. We show that, in sharp contrast with the Finsler theory or theories based on the generalization of the metric as a way of going beyond GR, that admit immediate iso-gravitational interpretation, for the Otsuki's theory it is not the case. The iso-gravitational Santilli's formulation clearly admits an Otsuki's type formulation with general connection, but the converse is not true in general.
General Theory versus ENA Theory: Comparing Their Predictive Accuracy and Scope.
Ellis, Lee; Hoskin, Anthony; Hartley, Richard; Walsh, Anthony; Widmayer, Alan; Ratnasingam, Malini
2015-12-01
General theory attributes criminal behavior primarily to low self-control, whereas evolutionary neuroandrogenic (ENA) theory envisions criminality as being a crude form of status-striving promoted by high brain exposure to androgens. General theory predicts that self-control will be negatively correlated with risk-taking, while ENA theory implies that these two variables should actually be positively correlated. According to ENA theory, traits such as pain tolerance and muscularity will be positively associated with risk-taking and criminality while general theory makes no predictions concerning these relationships. Data from Malaysia and the United States are used to test 10 hypotheses derived from one or both of these theories. As predicted by both theories, risk-taking was positively correlated with criminality in both countries. However, contrary to general theory and consistent with ENA theory, the correlation between self-control and risk-taking was positive in both countries. General theory's prediction of an inverse correlation between low self-control and criminality was largely supported by the U.S. data but only weakly supported by the Malaysian data. ENA theory's predictions of positive correlations between pain tolerance, muscularity, and offending were largely confirmed. For the 10 hypotheses tested, ENA theory surpassed general theory in predictive scope and accuracy.
Dynamics of generalized Palatini theories of gravity
NASA Astrophysics Data System (ADS)
Vitagliano, Vincenzo; Sotiriou, Thomas P.; Liberati, Stefano
2010-10-01
It is known that in f(R) theories of gravity with an independent connection which can be both nonmetric and nonsymmetric, this connection can always be algebraically eliminated in favor of the metric and the matter fields, so long as it is not coupled to the matter explicitly. We show here that this is a special characteristic of f(R) actions, and it is not true for actions that include other curvature invariants. This contradicts some recent claims in the literature. We clarify the reasons for this contradiction.
Covariant generalization of cosmological perturbation theory
Enqvist, Kari; Hoegdahl, Janne; Nurmi, Sami; Vernizzi, Filippo
2007-01-15
We present an approach to cosmological perturbations based on a covariant perturbative expansion between two worldlines in the real inhomogeneous universe. As an application, at an arbitrary order we define an exact scalar quantity which describes the inhomogeneities in the number of e-folds on uniform density hypersurfaces and which is conserved on all scales for a barotropic ideal fluid. We derive a compact form for its conservation equation at all orders and assign it a simple physical interpretation. To make a comparison with the standard perturbation theory, we develop a method to construct gauge-invariant quantities in a coordinate system at arbitrary order, which we apply to derive the form of the nth order perturbation in the number of e-folds on uniform density hypersurfaces and its exact evolution equation. On large scales, this provides the gauge-invariant expression for the curvature perturbation on uniform density hypersurfaces and its evolution equation at any order.
An alternative topological field theory of generalized complex geometry
NASA Astrophysics Data System (ADS)
Ikeda, Noriaki; Tokunaga, Tatsuya
2007-09-01
We propose a new topological field theory on generalized complex geometry in two dimension using AKSZ formulation. Zucchini's model is A model in the case that the generalized complex structure depends on only a symplectic structure. Our new model is B model in the case that the generalized complex structure depends on only a complex structure.
Generalized Courant-Snyder Theory for Charged-Particle Dynamics in General Focusing Lattices
NASA Astrophysics Data System (ADS)
Qin, Hong; Davidson, Ronald C.; Chung, Moses; Burby, Joshua W.
2013-09-01
The Courant-Snyder (CS) theory for one degree of freedom is generalized to the case of coupled transverse dynamics in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D sympletic rotation. The envelope equation, the transfer matrix, and the CS invariant of the original CS theory all have their counterparts, with remarkably similar expressions, in the generalized theory.
Towards a general theory of driver behaviour.
Fuller, Ray
2005-05-01
Taylor [Taylor, D.H., 1964. Drivers' galvanic skin response and the risk of accident. Ergonomics 7, 439-451] argued that drivers attempt to maintain a constant level of anxiety when driving which Wilde [Wilde, G.J.S., 1982. The theory of risk homeostasis: implications for safety and health. Risk Anal. 2, 209-225] interpreted to be coupled to subjective estimates of the probability of collision. This theoretical paper argues that what drivers attempt to maintain is a level of task difficulty. Naatanen and Summala [Naatanen, R., Summala, H., 1976. Road User Behaviour and Traffic Accidents. North Holland/Elsevier, Amsterdam, New York] similarly rejected the concept of statistical risk as a determinant of driver behaviour, but in so doing fell back on the learning process to generate a largely automatised selection of appropriate safety margins. However it is argued here that driver behaviour cannot be acquired and executed principally in such S-R terms. The concept of task difficulty is elaborated within the framework of the task-capability interface (TCI) model, which describes the dynamic interaction between the determinants of task demand and driver capability. It is this interaction which produces different levels of task difficulty. Implications of the model are discussed regarding variation in performance, resource allocation, hierarchical decision-making and the interdependence of demand and capability. Task difficulty homeostasis is proposed as a key sub-goal in driving and speed choice is argued to be the primary solution to the problem of keeping task difficulty within selected boundaries. The relationship between task difficulty and mental workload and calibration is clarified. Evidence is cited in support of the TCI model, which clearly distinguishes task difficulty from estimates of statistical risk. However, contrary to expectation, ratings of perceived risk depart from ratings of statistical risk but track difficulty ratings almost perfectly. It now
Eigenvector dynamics: General theory and some applications
NASA Astrophysics Data System (ADS)
Allez, Romain; Bouchaud, Jean-Philippe
2012-10-01
We propose a general framework to study the stability of the subspace spanned by P consecutive eigenvectors of a generic symmetric matrix H0 when a small perturbation is added. This problem is relevant in various contexts, including quantum dissipation (H0 is then the Hamiltonian) and financial risk control (in which case H0 is the assets' return covariance matrix). We argue that the problem can be formulated in terms of the singular values of an overlap matrix, which allows one to define an overlap distance. We specialize our results for the case of a Gaussian orthogonal H0, for which the full spectrum of singular values can be explicitly computed. We also consider the case when H0 is a covariance matrix and illustrate the usefulness of our results using financial data. The special case where the top eigenvalue is much larger than all the other ones can be investigated in full detail. In particular, the dynamics of the angle made by the top eigenvector and its true direction defines an interesting class of random processes.
Density perturbations in general modified gravitational theories
De Felice, Antonio; Tsujikawa, Shinji; Mukohyama, Shinji
2010-07-15
We derive the equations of linear cosmological perturbations for the general Lagrangian density f(R,{phi},X)/2+L{sub c}, where R is a Ricci scalar, {phi} is a scalar field, and X=-{partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}/}2 is a field kinetic energy. We take into account a nonlinear self-interaction term L{sub c}={xi}({phi}) {open_square}{phi}({partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}}) recently studied in the context of ''Galileon'' cosmology, which keeps the field equations at second order. Taking into account a scalar-field mass explicitly, the equations of matter density perturbations and gravitational potentials are obtained under a quasistatic approximation on subhorizon scales. We also derive conditions for the avoidance of ghosts and Laplacian instabilities associated with propagation speeds. Our analysis includes most of modified gravity models of dark energy proposed in literature; and thus it is convenient to test the viability of such models from both theoretical and observational points of view.
Gauge theories under incorporation of a generalized uncertainty principle
Kober, Martin
2010-10-15
There is considered an extension of gauge theories according to the assumption of a generalized uncertainty principle which implies a minimal length scale. A modification of the usual uncertainty principle implies an extended shape of matter field equations like the Dirac equation. If there is postulated invariance of such a generalized field equation under local gauge transformations, the usual covariant derivative containing the gauge potential has to be replaced by a generalized covariant derivative. This leads to a generalized interaction between the matter field and the gauge field as well as to an additional self-interaction of the gauge field. Since the existence of a minimal length scale seems to be a necessary assumption of any consistent quantum theory of gravity, the gauge principle is a constitutive ingredient of the standard model, and even gravity can be described as gauge theory of local translations or Lorentz transformations, the presented extension of gauge theories appears as a very important consideration.
Huang, Danhong; Lyo, S.K.
1999-08-09
The effect of higher-order corrections to the Born approximation is studied for the previously obtained giant conductance enhancement in tunnel-coupled double quantum wires in a parallel magnetic field. The relative correction is found to be significant and depends on various effects such as the magnetic field, electron and impurity densities, impurity positions, symmetric and asymmetric doping profiles, and center barrier thickness.
Skyrmions from a Born-Infeld action
NASA Astrophysics Data System (ADS)
Dion, B.; Marleau, L.; Simon, G.
1996-02-01
We consider geometrically motivated Higgs sector solitons based on a general covariant kinetic term proposed originally by Born and Infeld. We introduce this new term by generalizing the Born-Infeld action to a non-Abelian SU(2) gauge theory and by using the hidden gauge symmetry formalism. The static and stability properties of the solitons are then analyzed and compared with Skyrme-like models.
Magnetotail acceleration using generalized drift theory - A kinetic merging scenario
NASA Technical Reports Server (NTRS)
Whipple, E. C.; Rosenberg, M.; Brittnacher, M.
1990-01-01
It is possible to describe particle behavior in the magnetotail, including particle energization, by means of generalized drift theory. Generalized drift velocities are obtained by using the generalized first invariant which has been shown to be useful in such current sheet configurations. Particles whose generalized invariant is preserved gain energy entirely in the field-aligned direction. The form of the accelerated particle velocity distribution is obtained and self-consistency conditions are derived.
General Strain Theory, Peer Rejection, and Delinquency/Crime
ERIC Educational Resources Information Center
Higgins, George E.; Piquero, Nicole L.; Piquero, Alex R.
2011-01-01
The development of general strain theory (GST) has led to a renewed focus on the influence of negative life experiences on antisocial behavior. Although a number of studies have generated an impressive array of support for the theory, several avenues remain open for research. In this article, we examine how a specific noxious stimuli, peer…
A simplified approach to general scalar-tensor theories
Bloomfield, Jolyon
2013-12-01
The most general covariant action describing gravity coupled to a scalar field with only second order equations of motion, Horndeski's theory (also known as ''Generalized Galileons''), provides an all-encompassing model in which single scalar dark energy models may be constrained. However, the generality of the model makes it cumbersome to manipulate. In this paper, we demonstrate that when considering linear perturbations about a Friedmann-Robertson-Walker background, the theory is completely specified by only six functions of time, two of which are constrained by the background evolution. We utilise the ideas of the Effective Field Theory of Inflation/Dark Energy to explicitly construct these six functions of time in terms of the free functions appearing in Horndeski's theory. These results are used to investigate the behavior of the theory in the quasistatic approximation. We find that only four functions of time are required to completely specify the linear behavior of the theory in this limit, which can further be reduced if the background evolution is fixed. This presents a significantly reduced parameter space from the original presentation of Horndeski's theory, giving hope to the possibility of constraining the parameter space. This work provides a cross-check for previous work on linear perturbations in this theory, and also generalizes it to include spatial curvature.
A general theory for gauge-free lifting
Morrison, P. J.
2013-01-15
A theory for lifting equations of motion for charged particle dynamics, subject to given electromagnetic like forces, up to a gauge-free system of coupled Hamiltonian Vlasov-Maxwell like equations is given. The theory provides very general expressions for the polarization and magnetization vector fields in terms of the particle dynamics description of matter. Thus, as is common in plasma physics, the particle dynamics replaces conventional constitutive relations for matter. Several examples are considered including the usual Vlasov-Maxwell theory, a guiding center kinetic theory, Vlasov-Maxwell theory with the inclusion of spin, and a Vlasov-Maxwell theory with the inclusion of Dirac's magnetic monopoles. All are shown to be Hamiltonian field theories and the Jacobi identity is proven directly.
BLASTbus electronics: general-purpose readout and control for balloon-borne experiments
NASA Astrophysics Data System (ADS)
Benton, S. J.; Ade, P. A.; Amiri, M.; Angilè, F. E.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, H. C.; Contaldi, C. R.; Crill, B. P.; Devlin, M. J.; Dober, B.; Doré, O. P.; Farhang, M.; Filippini, J. P.; Fissel, L. M.; Fraisse, A. A.; Fukui, Y.; Galitzki, N.; Gambrel, A. E.; Gandilo, N. N.; Golwala, S. R.; Gudmundsson, J. E.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Holmes, W. A.; Hristov, V. V.; Irwin, K. D.; Jones, W. C.; Kermish, Z. D.; Klein, J.; Korotkov, A. L.; Kuo, C. L.; MacTavish, C. J.; Mason, P. V.; Matthews, T. G.; Megerian, K. G.; Moncelsi, L.; Morford, T. A.; Mroczkowski, T. K.; Nagy, J. M.; Netterfield, C. B.; Novak, G.; Nutter, D.; O'Brient, R.; Ogburn, R. W.; Pascale, E.; Poidevin, F.; Rahlin, A. S.; Reintsema, C. D.; Ruhl, J. E.; Runyan, M. C.; Savini, G.; Scott, D.; Shariff, J. A.; Soler, J. D.; Thomas, N. E.; Trangsrud, A.; Truch, M. D.; Tucker, C. E.; Tucker, G. S.; Tucker, R. S.; Turner, A. D.; Ward-Thompson, D.; Weber, A. C.; Wiebe, D. V.; Young, E. Y.
2014-07-01
We present the second generation BLASTbus electronics. The primary purposes of this system are detector readout, attitude control, and cryogenic housekeeping, for balloon-borne telescopes. Readout of neutron transmutation doped germanium (NTD-Ge) bolometers requires low noise and parallel acquisition of hundreds of analog signals. Controlling a telescope's attitude requires the capability to interface to a wide variety of sensors and motors, and to use them together in a fast, closed loop. To achieve these different goals, the BLASTbus system employs a flexible motherboard-daughterboard architecture. The programmable motherboard features a digital signal processor (DSP) and field-programmable gate array (FPGA), as well as slots for three daughterboards. The daughterboards provide the interface to the outside world, with versions for analog to digital conversion, and optoisolated digital input/output. With the versatility afforded by this design, the BLASTbus also finds uses in cryogenic, thermometry, and power systems. For accurate timing control to tie everything together, the system operates in a fully synchronous manner. BLASTbus electronics have been successfully deployed to the South Pole, and own on stratospheric balloons.
Do People Use Their Implicit Theories of Creativity as General Theories?
ERIC Educational Resources Information Center
Lee, Hong; Kim, Jungsik; Ryu, Yeonjae; Song, Seokjong
2015-01-01
This study examines whether people use the general implicit theories of creativity or not when applying them to themselves and others. On the basis of the actor-observer asymmetry theory, the authors propose that conception of creativity would be differently constructed depending on the targets of attention: general, self, and other. Three studies…
When West Meets East: Generalizing Theory and Expanding the Conceptual Toolkit of Criminology
Messner, Steven F.
2016-01-01
This paper considers the ways in which established criminological theories born and nurtured in the West might need to be transformed to be applicable to the context of East Asian societies. The analyses focus on two theoretical perspectives—Situational Action Theory and Institutional Anomie Theory—that are located at opposite ends of the continuum with respect to levels of analysis. I argue that the accumulated evidence from cross-cultural psychology and criminological research in East Asian societies raises serious questions about the feasibility of simply transporting these perspectives from the West to the East. Instead, my analyses suggest that the formulation of theoretical explanations of crime that are truly universal will require criminologists to create and incorporate new concepts that are more faithful to the social realities of non-Western societies, societies such as those in East Asia and Asia more generally. PMID:27087864
Hyperbolicity of physical theories with application to general relativity
NASA Astrophysics Data System (ADS)
Hilditch, David; Richter, Ronny
2016-08-01
We consider gauge theories from the free evolution point of view, in which initial data satisfying constraints of a theory are given, and because the constraints satisfy a closed evolution system, they remain so. We study a model constrained Hamiltonian theory and identify a particular structure in the equations of motion which we call the standard gauge freedom. The pure gauge subsystem of this model theory is identified, and the manner in which the gauge variables couple to the field equations is presented. We demonstrate that the set of gauge choices that can be coupled to the field equations to obtain a strongly hyperbolic formulation is exactly the set of strongly hyperbolic pure gauges. Consequently we analyze a parametrized family of formulations of general relativity. The generalization of the harmonic gauge formulation to a five parameter family of gauge conditions is obtained.
An extended Coleman-Noll procedure for generalized continuum theories
NASA Astrophysics Data System (ADS)
Hütter, Geralf
2016-11-01
Within rational continuum mechanics, the Coleman-Noll procedure is established to derive requirements to constitutive equations. Aiming in particular at generalized continuum theories, the present contribution demonstrates how this procedure can be extended to yield additionally the underlying balance equations of stress-type quantities. This is demonstrated for micromorphic and strain gradient media as well as for the microforce theory. The relation between the extended Coleman-Noll procedure and the method of virtual powers is pointed out.
General theory of Taylor dispersion phenomena. Part 3. Surface transport
Dill, L.H.; Brenner, H.
1982-01-01
An asymptotic theory of Brownian tracer particle transport phenomena within a bulk fluid, as augmented by surface transport, is presented in the context of generalized Taylor dispersion theory. The analysis expands upon prior work, which was limited to transport wholly within a continuous phase, so as to now include surface adsorption, diffusion, and convection of the tracer along a continuous surface bounding the continuous fluid phase.
Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S
2015-10-14
Using a simple model Hamiltonian, the three correction terms for Born-Oppenheimer (BO) breakdown, the adiabatic diagonal correction (DC), the first-derivative momentum non-adiabatic correction (FD), and the second-derivative kinetic-energy non-adiabatic correction (SD), are shown to all contribute to thermodynamic and spectroscopic properties as well as to thermal non-diabatic chemical reaction rates. While DC often accounts for >80% of thermodynamic and spectroscopic property changes, the commonly used practice of including only the FD correction in kinetics calculations is rarely found to be adequate. For electron-transfer reactions not in the inverted region, the common physical picture that diabatic processes occur because of surface hopping at the transition state is proven inadequate as the DC acts first to block access, increasing the transition state energy by (ℏω)(2)λ/16J(2) (where λ is the reorganization energy, J the electronic coupling and ω the vibration frequency). However, the rate constant in the weakly-coupled Golden-Rule limit is identified as being only inversely proportional to this change rather than exponentially damped, owing to the effects of tunneling and surface hopping. Such weakly-coupled long-range electron-transfer processes should therefore not be described as "non-adiabatic" processes as they are easily described by Born-Huang ground-state adiabatic surfaces made by adding the DC to the BO surfaces; instead, they should be called just "non-Born-Oppenheimer" processes. The model system studied consists of two diabatic harmonic potential-energy surfaces coupled linearly through a single vibration, the "two-site Holstein model". Analytical expressions are derived for the BO breakdown terms, and the model is solved over a large parameter space focusing on both the lowest-energy spectroscopic transitions and the quantum dynamics of coherent-state wavepackets. BO breakdown is investigated pertinent to: ammonia inversion, aromaticity
Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S
2015-10-14
Using a simple model Hamiltonian, the three correction terms for Born-Oppenheimer (BO) breakdown, the adiabatic diagonal correction (DC), the first-derivative momentum non-adiabatic correction (FD), and the second-derivative kinetic-energy non-adiabatic correction (SD), are shown to all contribute to thermodynamic and spectroscopic properties as well as to thermal non-diabatic chemical reaction rates. While DC often accounts for >80% of thermodynamic and spectroscopic property changes, the commonly used practice of including only the FD correction in kinetics calculations is rarely found to be adequate. For electron-transfer reactions not in the inverted region, the common physical picture that diabatic processes occur because of surface hopping at the transition state is proven inadequate as the DC acts first to block access, increasing the transition state energy by (ℏω)(2)λ/16J(2) (where λ is the reorganization energy, J the electronic coupling and ω the vibration frequency). However, the rate constant in the weakly-coupled Golden-Rule limit is identified as being only inversely proportional to this change rather than exponentially damped, owing to the effects of tunneling and surface hopping. Such weakly-coupled long-range electron-transfer processes should therefore not be described as "non-adiabatic" processes as they are easily described by Born-Huang ground-state adiabatic surfaces made by adding the DC to the BO surfaces; instead, they should be called just "non-Born-Oppenheimer" processes. The model system studied consists of two diabatic harmonic potential-energy surfaces coupled linearly through a single vibration, the "two-site Holstein model". Analytical expressions are derived for the BO breakdown terms, and the model is solved over a large parameter space focusing on both the lowest-energy spectroscopic transitions and the quantum dynamics of coherent-state wavepackets. BO breakdown is investigated pertinent to: ammonia inversion, aromaticity
Derivation of Einstein-Cartan theory from general relativity
NASA Astrophysics Data System (ADS)
Petti, Richard
2016-03-01
This article presents a derivation of Einstein-Cartan theory from general relativity with no additional assumptions or parameters. The derivation begins with distributions of Kerr masses that converge to a continuum with constant densities of mass, momentum, and angular momentum. The limit includes torsion and the spin-torsion relationship of Einstein-Cartan theory. The construction of curvature and torsion is equivalent to definition of curvature with Cartan forms on fiber bundles. Advantages of Einstein-Cartan theory include accommodating exchange of classical intrinsic and orbital angular momentum and generation of inflation-like expansion in high density cosmological models.
On the general theory of thin airfoils for nonuniform motion
NASA Technical Reports Server (NTRS)
Reissner, Eric
1944-01-01
General thin-airfoil theory for a compressible fluid is formulated as boundary problem for the velocity potential, without recourse to the theory of vortex motion. On the basis of this formulation the integral equation of lifting-surface theory for an incompressible fluid is derived with the chordwise component of the fluid velocity at the airfoil as the function to be determined. It is shown how by integration by parts this integral equation can be transformed into the Biot-Savart theorem. A clarification is gained regarding the use of principal value definitions for the integral which occur. The integral equation of lifting-surface theory is used a s the starting point for the establishment of a theory for the nonstationary airfoil which is a generalization of lifting-line theory for the stationary airfoil and which might be called "lifting-strip" theory. Explicit expressions are given for section lift and section moment in terms of the circulation function, which for any given wing deflection is to be determined from an integral equation which is of the type of the equation of lifting-line theory. The results obtained are for airfoils of uniform chord. They can be extended to tapered airfoils. One of the main uses of the results should be that they furnish a practical means for the analysis of the aerodynamic span effect in the problem of wing flutter. The range of applicability of "lifting-strip" theory is the same as that of lifting-line theory so that its results may be applied to airfoils with aspect ratios as low as three.
The general class of the vacuum spherically symmetric equations of the general relativity theory
Karbanovski, V. V. Sorokin, O. M.; Nesterova, M. I.; Bolotnyaya, V. A.; Markov, V. N. Kairov, T. V.; Lyash, A. A.; Tarasyuk, O. R.
2012-08-15
The system of the spherical-symmetric vacuum equations of the General Relativity Theory is considered. The general solution to a problem representing two classes of line elements with arbitrary functions g{sub 00} and g{sub 22} is obtained. The properties of the found solutions are analyzed.
Liu, Hao-Yang; Zou, Xiaoqin
2008-01-01
An accurate and fast evaluation of the electrostatics in ligand-protein interactions is crucial for computer-aided drug design. The pairwise generalized Born (GB) model, a fast analytical method originally developed for studying solvation of organic molecules, has been widely applied to macromolecular systems, including ligand-protein complexes. Yet, this model involves several empirical scaling parameters, which have been optimized for solvation of organic molecules, peptides and nucleic acids, but not for energetics of ligand binding. Studies have shown that a good solvation energy does not guarantee a correct model of solvent-mediated interactions. Thus in this study, we have used the Poisson-Boltzmann (PB) approach as a reference to optimize the GB model for studies of ligand-protein interactions. Specifically, we have employed the pairwise descreening approximation proposed by Hawkins et al [1] for GB calculations, and DelPhi for PB calculations. The AMBER all-atom force field parameters have been used in this work. Seventeen protein-ligand complexes have been used as a training database, and a set of atomic descreening parameters has been selected with which the pairwise GB model and the PB model yield comparable results on atomic Born radii, the electrostatic component of free energies of ligand binding, and desolvation energies of the ligands and proteins. The energetics of the fifteen test complexes calculated with the GB model using this set of parameters also agrees well with the energetics calculated with the PB method. This is the first time that the GB model is parameterized and thoroughly compared with the PB model for the electrostatics of ligand binding. PMID:16671749
Sinha, Urbasi
2011-09-23
This paper is based on work published in [1]. It describes a triple slit experiment using single photons that has been used to provide a bound on one of the most fundamental axioms of quantum mechanics i.e. Born's rule for probabilities [2]. In spite of being one of the most successful theories which describes various natural phenomena, quantum mechanics has enough intricacies and ''weirdness'' associated with it which makes many physicists believe that it may not be the final theory and hints towards the possibility of more generalized versions. Quantum interference as shown by a double slit diffraction experiment only occurs from pairs of paths. Even in multi-slit versions, interference can only occur between pairs of possibilities and increasing the number of slits does not increase the complexity of the theory that still remains second-order. However, more generalized versions of quantum mechanics may allow for multi-path i.e. higher than second order interference. This experiment also provides a bound on the magnitude of such higher order interference. We have been able to bound the magnitude of three-path interference to less than 10{sup -2} of the expected two-path interference, thus ruling out third and higher order interference and providing a bound on the accuracy of Born's rule.
NASA Astrophysics Data System (ADS)
Sinha, Urbasi
2011-09-01
This paper is based on work published in [1]. It describes a triple slit experiment using single photons that has been used to provide a bound on one of the most fundamental axioms of quantum mechanics i.e. Born's rule for probabilities [2]. In spite of being one of the most successful theories which describes various natural phenomena, quantum mechanics has enough intricacies and "weirdness" associated with it which makes many physicists believe that it may not be the final theory and hints towards the possibility of more generalized versions. Quantum interference as shown by a double slit diffraction experiment only occurs from pairs of paths. Even in multi-slit versions, interference can only occur between pairs of possibilities and increasing the number of slits does not increase the complexity of the theory that still remains second-order. However, more generalized versions of quantum mechanics may allow for multi-path i.e. higher than second order interference. This experiment also provides a bound on the magnitude of such higher order interference. We have been able to bound the magnitude of three-path interference to less than 10-2 of the expected two-path interference, thus ruling out third and higher order interference and providing a bound on the accuracy of Born's rule.
NASA Astrophysics Data System (ADS)
Zaghloul, Mofreh R.; Bourham, Mohamed A.; Doster, J. Michael
2000-02-01
An exact analytical expression for the energy-averaged electron-ion momentum transport cross section in the Born approximation and Debye-Hückel exponentially screened potential has been derived and compared with the formulae given by other authors. A quantitative comparison between cut-off theory and quantum mechanical perturbation theory has been presented. Based on results from the Born approximation and Spitzer's formula, a new approximate formula for the quantum Coulomb logarithm has been derived and shown to be more accurate than previous expressions.
NASA Astrophysics Data System (ADS)
Zaghloul, Mofreh R.; Bourham, Mohamed A.; Doster, J. Michael
2000-04-01
An exact analytical expression for the energy-averaged electron-ion momentum transport cross section in the Born approximation and Debye-Hückel exponentially screened potential has been derived and compared with the formulae given by other authors. A quantitative comparison between cut-off theory and quantum mechanical perturbation theory has been presented. Based on results from the Born approximation and Spitzer's formula, a new approximate formula for the quantum Coulomb logarithm has been derived and shown to be more accurate than previous expressions.
Gender, General Strain Theory, Negative Emotions, and Disordered Eating
ERIC Educational Resources Information Center
Piquero, Nicole Leeper; Fox, Kristan; Piquero, Alex R.; Capowich, George; Mazerolle, Paul
2010-01-01
Much of the prior work on General Strain Theory (GST) has focused on how strain and negative emotions interrelate to produce criminal--especially violent--activity. Very little research has extended GST to examine other types of non-criminal, negative behavior, such as self-harming behaviors associated with disordered eating, a traditionally…
The Generalized Optic Acceleration Cancellation Theory of Catching
ERIC Educational Resources Information Center
McLeod, Peter; Reed, Nick; Dienes, Zoltan
2006-01-01
The generalized optic acceleration cancellation (GOAC) theory of catching proposes that the path of a fielder running to catch a ball is determined by the attempt to satisfy 2 independent constraints. The 1st is to keep the angle of elevation of gaze to the ball increasing at a decreasing rate. The 2nd is to control the rate of horizontal rotation…
Analysis of general power counting rules in effective field theory
NASA Astrophysics Data System (ADS)
Gavela, Belen; Jenkins, Elizabeth E.; Manohar, Aneesh V.; Merlo, Luca
2016-09-01
We derive the general counting rules for a quantum effective field theory (EFT) in {d} dimensions. The rules are valid for strongly and weakly coupled theories, and they predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. We show that the size of the cross sections is controlled by the Λ power counting of EFT, not by chiral counting, even for chiral perturbation theory (χ PT). The relation between Λ and f is generalized to {d} dimensions. We show that the naive dimensional analysis 4π counting is related to hbar counting. The EFT counting rules are applied to χ PT, low-energy weak interactions, Standard Model EFT and the non-trivial case of Higgs EFT.
Generalized cable theory for neurons in complex and heterogeneous media
NASA Astrophysics Data System (ADS)
Bédard, Claude; Destexhe, Alain
2013-08-01
Cable theory has been developed over the last decade, usually assuming that the extracellular space around membranes is a perfect resistor. However, extracellular media may display more complex electrical properties due to various phenomena, such as polarization, ionic diffusion, or capacitive effects, but their impact on cable properties is not known. In this paper, we generalize cable theory for membranes embedded in arbitrarily complex extracellular media. We outline the generalized cable equations, then consider specific cases. The simplest case is a resistive medium, in which case the equations recover the traditional cable equations. We show that for more complex media, for example, in the presence of ionic diffusion, the impact on cable properties such as voltage attenuation can be significant. We illustrate this numerically, always by comparing the generalized cable to the traditional cable. We conclude that the nature of intracellular and extracellular media may have a strong influence on cable filtering as well as on the passive integrative properties of neurons.
Gravitation experiments at Stanford. [using general relativity theory
NASA Technical Reports Server (NTRS)
Lipa, J. A.
1980-01-01
The experimental situation in post-Newtonian gravitation is briefly reviewed in order to reexamine the extent to which experiment supports or refutes general relativity. A description is given of the equivalence principle project, the gyroscope experiment, and the search for gravity waves. It is noted that even though some doubt has been cast on the value of the perihelion advance and the gravitational redshift as precise tests of general relativity in the past few years, many competing theories have been ruled out; in particular, the results from the Viking mission significantly reduce the credibility of the Brans-Dicke theory (Brans and Dicke, 1961). The dimensionless constant omega in this theory is now forced to exceed 50, while the value originally proposed was 6 (omega being infinity in general relativity). It is noted that the gyro experiment described is capable of putting much tighter limits on this parameter, and together with the other experiments in progress will help place gravitational theory on a firmer experimental footing.
Entropy and information causality in general probabilistic theories
NASA Astrophysics Data System (ADS)
Barnum, Howard; Barrett, Jonathan; Orloff Clark, Lisa; Leifer, Matthew; Spekkens, Robert; Stepanik, Nicholas; Wilce, Alex; Wilke, Robin
2010-03-01
We investigate the concept of entropy in probabilistic theories more general than quantum mechanics, with particular reference to the notion of information causality (IC) recently proposed by Pawlowski et al (2009 arXiv:0905.2292). We consider two entropic quantities, which we term measurement and mixing entropy. In the context of classical and quantum theory, these coincide, being given by the Shannon and von Neumann entropies, respectively; in general, however, they are very different. In particular, while measurement entropy is easily seen to be concave, mixing entropy need not be. In fact, as we show, mixing entropy is not concave whenever the state space is a non-simplicial polytope. Thus, the condition that measurement and mixing entropies coincide is a strong constraint on possible theories. We call theories with this property monoentropic. Measurement entropy is subadditive, but not in general strongly subadditive. Equivalently, if we define the mutual information between two systems A and B by the usual formula I(A: B)=H(A)+H(B)-H(AB), where H denotes the measurement entropy and AB is a non-signaling composite of A and B, then it can happen that I(A:BC)theory in which measurement entropy is strongly subadditive, and also satisfies a version of the Holevo bound, is informationally causal, and on the other hand we observe that Popescu-Rohrlich boxes, which violate IC, also violate strong subadditivity. We also explore the interplay between measurement and mixing entropy and various natural conditions on theories that arise in quantum axiomatics.
Izzo, Theresa; Thacker, Leroy R.; Galloway, James Cole
2014-01-01
Background and Purpose Perception-action theory suggests a cyclical relationship between movement and perceptual information. In this case series, changes in postural complexity were used to quantify an infant's action and perception during the development of early motor behaviors. Case Description Three infants born preterm with periventricular white matter injury were included. Outcomes Longitudinal changes in postural complexity (approximate entropy of the center of pressure), head control, reaching, and global development, measured with the Test of Infant Motor Performance and the Bayley Scales of Infant and Toddler Development, were assessed every 0.5 to 3 months during the first year of life. All 3 infants demonstrated altered postural complexity and developmental delays. However, the timing of the altered postural complexity and the type of delays varied among the infants. For infant 1, reduced postural complexity or limited action while learning to control her head in the midline position may have contributed to her motor delay. However, her ability to adapt her postural complexity eventually may have supported her ability to learn from her environment, as reflected in her relative cognitive strength. For infant 2, limited early postural complexity may have negatively affected his learning through action, resulting in cognitive delay. For infant 3, an increase in postural complexity above typical levels was associated with declining neurological status. Discussion Postural complexity is proposed as a measure of perception and action in the postural control system during the development of early behaviors. An optimal, intermediate level of postural complexity supports the use of a variety of postural control strategies and enhances the perception-action cycle. Either excessive or reduced postural complexity may contribute to developmental delays in infants born preterm with white matter injury. PMID:24903116
Global Minimum Determination of the Born-Oppenheimer Surface within Density Functional Theory
Goedecker, Stefan; Hellmann, Waldemar; Lenosky, Thomas
2005-07-29
We present a novel method, which we refer to as the dual minima hopping method, that allows us to find the global minimum of the potential energy surface (PES) within density functional theory for systems where a fast but less accurate calculation of the PES is possible. This method can rapidly find the ground state configuration of clusters and other complex systems with present day computer power by performing a systematic search. We apply the new method to silicon clusters. Even though these systems have already been extensively studied by other methods, we find new global minimum candidates for Si{sub 16} and Si{sub 19}, as well as new low-lying isomers for Si{sub 16}, Si{sub 17}, and Si{sub 18}.
General theory for the mechanics of confined microtubule asters
NASA Astrophysics Data System (ADS)
Ma, Rui; Laan, Liedewij; Dogterom, Marileen; Pavin, Nenad; Jülicher, Frank
2014-01-01
In cells, dynamic microtubules organize into asters or spindles to assist positioning of organelles. Two types of forces are suggested to contribute to the positioning process: (i) microtubule-growth based pushing forces; and (ii) motor protein mediated pulling forces. In this paper, we present a general theory to account for aster positioning in a confinement of arbitrary shape. The theory takes account of microtubule nucleation, growth, catastrophe, slipping, as well as interaction with cortical force generators. We calculate microtubule distributions and forces acting on microtubule organizing centers in a sphere and in an ellipsoid. Positioning mechanisms based on both pushing forces and pulling forces can be distinguished in our theory for different parameter regimes or in different geometries. In addition, we investigate positioning of microtubule asters in the case of asymmetric distribution of motors. This analysis enables us to characterize situations relevant for Caenorrhabditis elegans embryos.
Testing general metric theories of gravity with bursting neutron stars
NASA Astrophysics Data System (ADS)
Psaltis, Dimitrios
2008-03-01
I show that several observable properties of bursting neutron stars in metric theories of gravity can be calculated using only conservation laws, Killing symmetries, and the Einstein equivalence principle, without requiring the validity of the general relativistic field equations. I calculate, in particular, the gravitational redshift of a surface atomic line, the touchdown luminosity of a radius-expansion burst, which is believed to be equal to the Eddington critical luminosity, and the apparent surface area of a neutron star as measured during the cooling tails of bursts. I show that, for a general metric theory of gravity, the apparent surface area of a neutron star depends on the coordinate radius of the stellar surface and on its gravitational redshift in the exact same way as in general relativity. On the other hand, the Eddington critical luminosity depends also on an additional parameter that measures the degree to which the general relativistic field equations are satisfied. These results can be used in conjunction with current and future high-energy observations of bursting neutron stars to test general relativity in the strong-field regime.
Testing general metric theories of gravity with bursting neutron stars
Psaltis, Dimitrios
2008-03-15
I show that several observable properties of bursting neutron stars in metric theories of gravity can be calculated using only conservation laws, Killing symmetries, and the Einstein equivalence principle, without requiring the validity of the general relativistic field equations. I calculate, in particular, the gravitational redshift of a surface atomic line, the touchdown luminosity of a radius-expansion burst, which is believed to be equal to the Eddington critical luminosity, and the apparent surface area of a neutron star as measured during the cooling tails of bursts. I show that, for a general metric theory of gravity, the apparent surface area of a neutron star depends on the coordinate radius of the stellar surface and on its gravitational redshift in the exact same way as in general relativity. On the other hand, the Eddington critical luminosity depends also on an additional parameter that measures the degree to which the general relativistic field equations are satisfied. These results can be used in conjunction with current and future high-energy observations of bursting neutron stars to test general relativity in the strong-field regime.
A general theory of linear cosmological perturbations: scalar-tensor and vector-tensor theories
NASA Astrophysics Data System (ADS)
Lagos, Macarena; Baker, Tessa; Ferreira, Pedro G.; Noller, Johannes
2016-08-01
We present a method for parametrizing linear cosmological perturbations of theories of gravity, around homogeneous and isotropic backgrounds. The method is sufficiently general and systematic that it can be applied to theories with any degrees of freedom (DoFs) and arbitrary gauge symmetries. In this paper, we focus on scalar-tensor and vector-tensor theories, invariant under linear coordinate transformations. In the case of scalar-tensor theories, we use our framework to recover the simple parametrizations of linearized Horndeski and ``Beyond Horndeski'' theories, and also find higher-derivative corrections. In the case of vector-tensor theories, we first construct the most general quadratic action for perturbations that leads to second-order equations of motion, which propagates two scalar DoFs. Then we specialize to the case in which the vector field is time-like (à la Einstein-Aether gravity), where the theory only propagates one scalar DoF. As a result, we identify the complete forms of the quadratic actions for perturbations, and the number of free parameters that need to be defined, to cosmologically characterize these two broad classes of theories.
Interacting scalar field theory in general curved space-time
Kodaira, J.
1986-05-15
The ultraviolet divergences of two-loop diagrams in general curved space-time are determined for the six-dimensional phi/sup 3/ theory. The background-field method is used to evaluate the effective action. In order to isolate the short-distance singularities, the Feynman propagator is expanded by the heat kernel and dimensional regularization is employed. The gravitational counterterms as well as those for the matter field are explicitly given to the two-loop order.
Magnetotail equilibrium theory - The general three-dimensional solution
NASA Technical Reports Server (NTRS)
Birn, J.
1987-01-01
The general magnetostatic equilibrium problem for the geomagnetic tail is reduced to the solution of ordinary differential equations and ordinary integrals. The theory allows the integration of the self-consistent magnetotail equilibrium field from the knowledge of four functions of two space variables: the neutral sheet location, the total pressure, the magnetic field strength, and the z component of the magnetic field at the neutral sheet.
Dirac-born-infeld and k-inflation: The CMB anisotropies from string theory
NASA Astrophysics Data System (ADS)
Ringeval, Christophe
2010-01-01
Inflationary models within string theory exhibit unusual scalar field dynamics involving non-minimal kinetic terms and generically referred to as k-inflation. In this situation, the standard slow-roll approach used to determine the behavior of the primordial cosmological perturbations cannot longer be used. We present a generic method, based on the uniform approximation, to analytically derive the primordial power spectra of scalar and tensor perturbations. At leading order, the scalar spectral index, its running and the tensor-to-scalar ratio are modified by the new dynamics. We provide their new expression, correct previous results at next-to-leading order and clarify the definition of what is the tensor-to-scalar ratio when the sound horizon and Hubble radius are not the same. Finally, we discuss the constraints the parameters encoding the non-minimal kinetic terms have to satisfy, such as the sound speed and the energy scale of k-inflation, in view of the fifth year Wilkinson Microwave Anisotropy Probe (WMAP5) data.
Dynamical aspects of generalized Palatini theories of gravity
Olmo, Gonzalo J.; Sanchis-Alepuz, Helios; Tripathi, Swapnil
2009-07-15
We study the field equations of modified theories of gravity in which the Lagrangian is a general function of the Ricci scalar and Ricci-squared terms in Palatini formalism. We show that the independent connection can be expressed as the Levi-Civita connection of an auxiliary metric which, in particular cases of interest, is related with the physical metric by means of a disformal transformation. This relation between physical and auxiliary metric boils down to a conformal transformation in the case of f(R) theories. We also show with explicit models that the inclusion of Ricci-squared terms in the action can impose upper bounds on the accessible values of pressure and density, which might have important consequences for the early time cosmology and black hole formation scenarios. Our results indicate that the phenomenology of f(R,R{sub {mu}}{sub {nu}}R{sup {mu}}{sup {nu}}) theories is much richer than that of f(R) and f(R{sub {mu}}{sub {nu}}R{sup {mu}}{sup {nu}}) theories and that they also share some similarities with Bekenstein's relativistic theory of MOND.
Dynamical aspects of generalized Palatini theories of gravity
NASA Astrophysics Data System (ADS)
Olmo, Gonzalo J.; Sanchis-Alepuz, Hèlios; Tripathi, Swapnil
2009-07-01
We study the field equations of modified theories of gravity in which the Lagrangian is a general function of the Ricci scalar and Ricci-squared terms in Palatini formalism. We show that the independent connection can be expressed as the Levi-Cività connection of an auxiliary metric which, in particular cases of interest, is related with the physical metric by means of a disformal transformation. This relation between physical and auxiliary metric boils down to a conformal transformation in the case of f(R) theories. We also show with explicit models that the inclusion of Ricci-squared terms in the action can impose upper bounds on the accessible values of pressure and density, which might have important consequences for the early time cosmology and black hole formation scenarios. Our results indicate that the phenomenology of f(R,RμνRμν) theories is much richer than that of f(R) and f(RμνRμν) theories and that they also share some similarities with Bekenstein’s relativistic theory of MOND.
NASA Technical Reports Server (NTRS)
Smalley, L. L.
1983-01-01
The proper framework for testing Rastall's theory and its generalizations is in the case of non-negligible (i.e. discernible) gravitational effects such as gravity gradients. These theories have conserved integral four-momentum and angular momentum. The Nordtvedt effect then provides limits on the parameters which arise as the result of the non-zero divergence of the energy-momentum tensor.
ERIC Educational Resources Information Center
Moon, Byongook; Hwang, Hye-Won; McCluskey, John D.
2011-01-01
A growing number of studies indicate the ubiquity of school bullying: It is a global concern, regardless of cultural differences. Little previous research has examined whether leading criminological theories can explain bullying, despite the commonality between bullying and delinquency. The current investigation uses longitudinal data on 655…
Generality with Specificity: The Dynamic Field Theory Generalizes across Tasks and Time Scales
ERIC Educational Resources Information Center
Simmering, Vanessa R.; Spencer, John P.
2008-01-01
A central goal in cognitive and developmental science is to develop models of behavior that can generalize across both tasks and development while maintaining a commitment to detailed behavioral prediction. This paper presents tests of one such model, the Dynamic Field Theory (DFT). The DFT was originally proposed to capture delay-dependent biases…
Generalization of Equivalent Crystal Theory to Include Angular Dependence
NASA Technical Reports Server (NTRS)
Ferrante, John; Zypman, Fredy R.
2004-01-01
In the original Equivalent Crystal Theory, each atomic site in the real crystal is assigned an equivalent lattice constant, in general different from the ground state one. This parameter corresponds to a local compression or expansion of the lattice. The basic method considers these volumetric transformations and, in addition, introduces the possibility that the reference lattice is anisotropically distorted. These distortions however, were introduced ad-hoc. In this work, we generalize the original Equivalent Crystal Theory by systematically introducing site-dependent directional distortions of the lattice, whose corresponding distortions account for the dependence of the energy on anisotropic local density variations. This is done in the spirit of the original framework, but including a gradient term in the density. This approach is introduced to correct a deficiency in the original Equivalent Crystal Theory and other semiempirical methods in quantitatively obtaining the correct ratios of the surface energies of low index planes of cubic metals (100), (110), and (111). We develop here the basic framework, and apply it to the calculation of Fe (110) and Fe (111) surface energy formation. The results, compared with first principles calculations, show an improvement over previous semiempirical approaches.
NASA Astrophysics Data System (ADS)
Johnson, David T.
Quantum mechanics is an extremely successful and accurate physical theory, yet since its inception, it has been afflicted with numerous conceptual difficulties. The primary subject of this thesis is the theory of entropic quantum dynamics (EQD), which seeks to avoid these conceptual problems by interpreting quantum theory from an informational perspective. We begin by reviewing Cox's work in describing probability theory as a means of rationally and consistently quantifying uncertainties. We then discuss how probabilities can be updated according to either Bayes' theorem or the extended method of maximum entropy (ME). After that discussion, we review the work of Caticha and Giffin that shows that Bayes' theorem is a special case of ME. This important result demonstrates that the ME method is the general method for updating probabilities. We then review some motivating difficulties in quantum mechanics before discussing Caticha's work in deriving quantum theory from the approach of entropic dynamics, which concludes our review. After entropic dynamics is introduced, we develop the concepts of symmetries and transformations from an informational perspective. The primary result is the formulation of a symmetry condition that any transformation must satisfy in order to qualify as a symmetry in EQD. We then proceed to apply this condition to the extended Galilean transformation. This transformation is of interest as it exhibits features of both special and general relativity. The transformation yields a gravitational potential that arises from an equivalence of information. We conclude the thesis with a discussion of the measurement problem in quantum mechanics. We discuss the difficulties that arise in the standard quantum mechanical approach to measurement before developing our theory of entropic measurement. In entropic dynamics, position is the only observable. We show how a theory built on this one observable can account for the multitude of measurements present in
ERIC Educational Resources Information Center
Cook, Desmond L.
This document, one of a series of reports examining the possible contribution of other disciplines to evaluation methodology, describes the major elements of general systems theory (GST), cybernetics theory (CT) and management control theory (MCT). The author suggests that MCT encapsulates major concerns of evaluation since it reveals that…
General Strain Theory and Substance Use among American Indian Adolescents.
Eitle, Tamela McNulty; Eitle, David; Johnson-Jennings, Michelle
2013-01-01
Despite the well-established finding that American Indian adolescents are at a greater risk of illicit substance use and abuse than the general population, few generalist explanations of deviance have been extended to American Indian substance use. Using a popular generalist explanation of deviance, General Strain Theory, we explore the predictive utility of this model with a subsample of American Indian adolescents from waves one and two of the National Longitudinal Study of Adolescent Health (Add-Health). Overall, we find mixed support for the utility of General Strain Theory to account for American Indian adolescent substance use. While exposure to recent life events, a common measure of stress exposure, was found to be a robust indicator of substance use, we found mixed support for the thesis that negative affect plays a key role in mediating the link between strain and substance use. However, we did find evidence that personal and social resources serve to condition the link between stress exposure and substance use, with parental control, self-restraint, religiosity, and exposure to substance using peers each serving to moderate the association between strain and substance use, albeit in more complex ways than expected. PMID:23826511
Generalized cable theory for neurons in complex and heterogeneous media.
Bédard, Claude; Destexhe, Alain
2013-08-01
Cable theory has been developed over the last decade, usually assuming that the extracellular space around membranes is a perfect resistor. However, extracellular media may display more complex electrical properties due to various phenomena, such as polarization, ionic diffusion, or capacitive effects, but their impact on cable properties is not known. In this paper, we generalize cable theory for membranes embedded in arbitrarily complex extracellular media. We outline the generalized cable equations, then consider specific cases. The simplest case is a resistive medium, in which case the equations recover the traditional cable equations. We show that for more complex media, for example, in the presence of ionic diffusion, the impact on cable properties such as voltage attenuation can be significant. We illustrate this numerically, always by comparing the generalized cable to the traditional cable. We conclude that the nature of intracellular and extracellular media may have a strong influence on cable filtering as well as on the passive integrative properties of neurons.
General Strain Theory and Substance Use among American Indian Adolescents
Eitle, Tamela McNulty; Eitle, David; Johnson-Jennings, Michelle
2013-01-01
Despite the well-established finding that American Indian adolescents are at a greater risk of illicit substance use and abuse than the general population, few generalist explanations of deviance have been extended to American Indian substance use. Using a popular generalist explanation of deviance, General Strain Theory, we explore the predictive utility of this model with a subsample of American Indian adolescents from waves one and two of the National Longitudinal Study of Adolescent Health (Add-Health). Overall, we find mixed support for the utility of General Strain Theory to account for American Indian adolescent substance use. While exposure to recent life events, a common measure of stress exposure, was found to be a robust indicator of substance use, we found mixed support for the thesis that negative affect plays a key role in mediating the link between strain and substance use. However, we did find evidence that personal and social resources serve to condition the link between stress exposure and substance use, with parental control, self-restraint, religiosity, and exposure to substance using peers each serving to moderate the association between strain and substance use, albeit in more complex ways than expected. PMID:23826511
NASA Astrophysics Data System (ADS)
Koga, Jun-Ichirou; Maeda, Kei-Ichi
1998-09-01
We analyze black hole thermodynamics in a generalized theory of gravity whose Lagrangian is an arbitrary function of the metric, the Ricci tensor, and a scalar field. We can convert the theory into the Einstein frame via a ``Legendre'' transformation or a conformal transformation. We calculate thermodynamical variables both in the original frame and in the Einstein frame, following the Iyer-Wald definition which satisfies the first law of thermodynamics. We show that all thermodynamical variables defined in the original frame are the same as those in the Einstein frame, if the spacetimes in both frames are asymptotically flat, regular, and possess event horizons with nonzero temperatures. This result may be useful to study whether the second law is still valid in the generalized theory of gravity.
Towards a general theory of adaptive walks on rugged landscapes.
Kauffman, S; Levin, S
1987-09-01
Adaptive evolution, to a large extent, is a complex combinatorial optimization process. In this article we take beginning steps towards developing a general theory of adaptive "walks" via fitter variants in such optimization processes. We introduce the basic idea of a space of entities, each a 1-mutant neighbor of many other entities in the space, and the idea of a fitness ascribed to each entity. Adaptive walks proceed from an initial entity, via fitter neighbors, to locally or globally optimal entities that are fitter than their neighbors. We develop a general theory for the number of local optima, lengths of adaptive walks, and the number of alternative local optima accessible from any given initial entity, for the baseline case of an uncorrelated fitness landscape. Most fitness landscapes are correlated, however. Therefore we develop parts of a universal theory of adaptation on correlated landscapes by adaptive processes that have sufficient numbers of mutations per individual to "jump beyond" the correlation lengths in the underlying landscape. In addition, we explore the statistical character of adaptive walks in two independent complex combinatorial optimization problems, that of evolving a specific cell type in model genetic networks, and that of finding good solutions to the traveling salesman problem. Surprisingly, both show similar statistical features, encouraging the hope that a general theory for adaptive walks on correlated and uncorrelated landscapes can be found. In the final section we explore two limits to the efficacy of selection. The first is new, and surprising: for a wide class of systems, as the complexity of the entities under selection increases, the local optima that are attainable fall progressively closer to the mean properties of the underlying space of entities. This may imply that complex biological systems, such as genetic regulatory systems, are "close" to the mean properties of the ensemble of genomic regulatory systems explored
A general geometric theory of attitude determination from directional sensing
NASA Technical Reports Server (NTRS)
Fang, B. T.
1976-01-01
A general geometric theory of spacecraft attitude determination from external reference direction sensors was presented. Outputs of different sensors are reduced to two kinds of basic directional measurements. Errors in these measurement equations are studied in detail. The partial derivatives of measurements with respect to the spacecraft orbit, the spacecraft attitude, and the error parameters form the basis for all orbit and attitude determination schemes and error analysis programs and are presented in a series of tables. The question of attitude observability is studied with the introduction of a graphical construction which provides a great deal of physical insight. The result is applied to the attitude observability of the IMP-8 spacecraft.
Toward a general theory of conical intersections in systems of identical nuclei
NASA Astrophysics Data System (ADS)
Keating, Sean P.; Mead, C. Alden
1987-02-01
It has been shown previously that the Herzberg-Longuet-Higgins sign change produced in Born-Oppenheimer electronic wave functions when the nuclei traverse a closed path around a conical intersection has implications for the symmetry of wave functions under permutations of identical nuclei. For systems of three or four identical nuclei, there are special features present which have facilitated the detailed analysis. The present paper reports progress toward a general theory for systems of n nuclei. For n=3 or 4, the two key functions which locate conical intersections and define compensating phase factors can conveniently be defined so as to transform under permutations according to a two-dimensional irreducible representation of the permutation group. Since such representations do not exist for n>4, we have chosen to develop a formalism in terms of lab-fixed electronic basis functions, and we show how to define the two key functions in principle. The functions so defined both turn out to be totally symmetric under permutations. We show how they can be used to define compensating phase factors so that all modified electronic wave functions are either totally symmetric or totally antisymmetric under permutations. A detailed analysis is made to cyclic permutations in the neighborhood of Dnh symmetry, which can be extended by continuity arguments to more general configurations, and criteria are obtained for sign changes. There is a qualitative discussion of the treatment of more general permutations.
Early Recollections of First-Borns.
ERIC Educational Resources Information Center
Fakouri, M. Ebrahim; Hafner, James L.
1984-01-01
Compared the early recollections of 50 first-borns and 98 later-borns. The first-borns mentioned significantly more nonfamily members, illness/injury, hospital/doctor's office. Later-borns mentioned significantly more siblings than did first-borns. Findings were discussed in the context of Adler's personality theory. (JAC)
Tensor perturbations in a general class of Palatini theories
Jiménez, Jose Beltrán; Heisenberg, Lavinia; Olmo, Gonzalo J. E-mail: laviniah@kth.se
2015-06-01
We study a general class of gravitational theories formulated in the Palatini approach and derive the equations governing the evolution of tensor perturbations. In the absence of torsion, the connection can be solved as the Christoffel symbols of an auxiliary metric which is non-trivially related to the space-time metric. We then consider background solutions corresponding to a perfect fluid and show that the tensor perturbations equations (including anisotropic stresses) for the auxiliary metric around such a background take an Einstein-like form. This facilitates the study in a homogeneous and isotropic cosmological scenario where we explicitly establish the relation between the auxiliary metric and the space-time metric tensor perturbations. As a general result, we show that both tensor perturbations coincide in the absence of anisotropic stresses.
General Theory of Relativity: Will It Survive the Next Decade?
NASA Technical Reports Server (NTRS)
Bertolami, Orfeu; Paramos, Jorge; Turyshev, Slava G.
2006-01-01
The nature of gravity is fundamental to our understanding of our own solar system, the galaxy and the structure and evolution of the Universe. Einstein's general theory of relativity is the standard model that is used for almost ninety years to describe gravitational phenomena on these various scales. We review the foundations of general relativity, discuss the recent progress in the tests of relativistic gravity, and present motivations for high-accuracy gravitational experiments in space. We also summarize the science objectives and technology needs for the laboratory experiments in space with laboratory being the entire solar system. We discuss the advances in our understanding of fundamental physics anticipated in the near future and evaluate discovery potential for the recently proposed gravitational experiments.
The trouble with psychopathy as a general theory of crime.
Walters, Glenn D
2004-04-01
The concept of psychopathy, as defined by Robert Hare, is reviewed with respect to its status as a general theory of crime. A hybrid of the medical pathology model and personality trait approach, the psychopathy concept proposes that a significant portion of serious crime is committed by psychopathic individuals. Hare's version of psychopathy, besides demonstrating weak applicability and a propensity for tautology, is subject to labeling effects, oversimplicity, reductionism, the fundamental attributional error, inattention to context, and disregard for the dynamic nature of human behavior. It is concluded that the psychopathy concept is substantially limited with respect to its ability to describe and clarify general criminal behavior but that it may still have value as a partial explanation for certain types of non-criminal predatory behavior.
A general theory of mechanical instabilities in soft solids
NASA Astrophysics Data System (ADS)
Hohlfeld, Evan; Mahadevan, L.
2011-03-01
Some instabilities in soft solids, e.g. buckling and wrinkling, can be detected in linearized analysis. Surprisingly, linearly stable configurations can still have nonlinear instabilities with strictly zero energy barrier. Two examples are cavitation (formation of voids) and sulcification (formation of sharply creased free surface folds), wherein singularities nucleate and grow when a critical strain is achieved. Here we present the first general theory of stability in nonlinearly elastic materials. The theory predicts when singularities spontaneously form, irrespective of linearized analysis, and how these can be controlled with geometry. Such ``hidden'' instabilities arise from the scale-free geometric and constitutive nonlinearities common in soft materials, and can be understood as scale symmetry breaking processes in simple cases. More deeply, even buckling and wrinkling can be traced back to scale-free linear instabilities (loss of ellipticity at an interface) as was first explained by M. A. Biot. We illustrate the theory with simulations and experiments on sulcification. Time allowing we will also discuss fracture and delamination.
Agnew's general strain theory reconsidered: a phenomenological perspective.
Polizzi, David
2011-10-01
Since its inception, strain theory has attempted to explore the dynamic evoked between the process of goal identification and the process of goal acquisition as this relates to subsequent criminal behavior. Over the years of its development, strain theorists have attempted to broaden the initial scope of this perspective. Robert Agnew with his general strain theory has sought to introduce a variety of other factors relative to the experience of strain and the capacity they represent concerning subsequent criminal activity. However, these recent developments have not addressed until recently, and only in somewhat limited ways, the theoretical and methodologic implications and limits of this theoretical approach. This article proposes that the way in which Agnew's formulation of general strain, particularly in its most recent conceptualization as story lines, fundamentally transforms the theoretical and methodological grounding of this approach but fails to offer a clearly articulated alternative theoretical perspective by which to conceptualize this "turn." Phenomenology provides such an alternative perspective and helps to greatly expand our understanding of the human experience of strain. PMID:20807864
No-go theorems for generalized chameleon field theories.
Wang, Junpu; Hui, Lam; Khoury, Justin
2012-12-14
The chameleon, or generalizations thereof, is a light scalar that couples to matter with gravitational strength, but whose manifestation depends on the ambient matter density. A key feature is that the screening mechanism suppressing its effects in high-density environments is determined by the local scalar field value. Under very general conditions, we prove two theorems limiting its cosmological impact: (i) the Compton wavelength of such a scalar can be at most ~/= 1 MPc at the present cosmic density, which restricts its impact to nonlinear scales; and (ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time, which precludes the possibility of self-acceleration. These results imply that chameleonlike scalar fields have a negligible effect on the linear-scale growth history; theories that invoke a chameleonlike scalar to explain cosmic acceleration rely on a form of dark energy rather than a genuine modified gravity effect. Our analysis applies to a broad class of chameleon, symmetron, and dilaton theories. PMID:23368302
Zhang, Xiaohua; Wong, Sergio E; Lightstone, Felice C
2014-01-27
In this work we announce and evaluate a high throughput virtual screening pipeline for in-silico screening of virtual compound databases using high performance computing (HPC). Notable features of this pipeline are an automated receptor preparation scheme with unsupervised binding site identification. The pipeline includes receptor/target preparation, ligand preparation, VinaLC docking calculation, and molecular mechanics/generalized Born surface area (MM/GBSA) rescoring using the GB model by Onufriev and co-workers [J. Chem. Theory Comput. 2007, 3, 156-169]. Furthermore, we leverage HPC resources to perform an unprecedented, comprehensive evaluation of MM/GBSA rescoring when applied to the DUD-E data set (Directory of Useful Decoys: Enhanced), in which we selected 38 protein targets and a total of ∼0.7 million actives and decoys. The computer wall time for virtual screening has been reduced drastically on HPC machines, which increases the feasibility of extremely large ligand database screening with more accurate methods. HPC resources allowed us to rescore 20 poses per compound and evaluate the optimal number of poses to rescore. We find that keeping 5-10 poses is a good compromise between accuracy and computational expense. Overall the results demonstrate that MM/GBSA rescoring has higher average receiver operating characteristic (ROC) area under curve (AUC) values and consistently better early recovery of actives than Vina docking alone. Specifically, the enrichment performance is target-dependent. MM/GBSA rescoring significantly out performs Vina docking for the folate enzymes, kinases, and several other enzymes. The more accurate energy function and solvation terms of the MM/GBSA method allow MM/GBSA to achieve better enrichment, but the rescoring is still limited by the docking method to generate the poses with the correct binding modes. PMID:24358939
Zhang, Xiaohua; Wong, Sergio E; Lightstone, Felice C
2014-01-27
In this work we announce and evaluate a high throughput virtual screening pipeline for in-silico screening of virtual compound databases using high performance computing (HPC). Notable features of this pipeline are an automated receptor preparation scheme with unsupervised binding site identification. The pipeline includes receptor/target preparation, ligand preparation, VinaLC docking calculation, and molecular mechanics/generalized Born surface area (MM/GBSA) rescoring using the GB model by Onufriev and co-workers [J. Chem. Theory Comput. 2007, 3, 156-169]. Furthermore, we leverage HPC resources to perform an unprecedented, comprehensive evaluation of MM/GBSA rescoring when applied to the DUD-E data set (Directory of Useful Decoys: Enhanced), in which we selected 38 protein targets and a total of ∼0.7 million actives and decoys. The computer wall time for virtual screening has been reduced drastically on HPC machines, which increases the feasibility of extremely large ligand database screening with more accurate methods. HPC resources allowed us to rescore 20 poses per compound and evaluate the optimal number of poses to rescore. We find that keeping 5-10 poses is a good compromise between accuracy and computational expense. Overall the results demonstrate that MM/GBSA rescoring has higher average receiver operating characteristic (ROC) area under curve (AUC) values and consistently better early recovery of actives than Vina docking alone. Specifically, the enrichment performance is target-dependent. MM/GBSA rescoring significantly out performs Vina docking for the folate enzymes, kinases, and several other enzymes. The more accurate energy function and solvation terms of the MM/GBSA method allow MM/GBSA to achieve better enrichment, but the rescoring is still limited by the docking method to generate the poses with the correct binding modes.
ERIC Educational Resources Information Center
De Walt, Patrick S.
2009-01-01
This dissertation explores the applicability of a "stretched" Expanded Nigrescence theory (Cross and Vandiver 2001; NT-E) to the racial identities/attitudes of six First Generation U.S.-Born Africans (FGAs) at a predominantly White institution (PWI). This instrumental case study blended ethnographic techniques and surveys to tell the stories of…
Double metric, generalized metric, and α' -deformed double field theory
NASA Astrophysics Data System (ADS)
Hohm, Olaf; Zwiebach, Barton
2016-03-01
We relate the unconstrained "double metric" of the "α' -geometry" formulation of double field theory to the constrained generalized metric encoding the spacetime metric and b -field. This is achieved by integrating out auxiliary field components of the double metric in an iterative procedure that induces an infinite number of higher-derivative corrections. As an application, we prove that, to first order in α' and to all orders in fields, the deformed gauge transformations are Green-Schwarz-deformed diffeomorphisms. We also prove that to first order in α' the spacetime action encodes precisely the Green-Schwarz deformation with Chern-Simons forms based on the torsionless gravitational connection. This seems to be in tension with suggestions in the literature that T-duality requires a torsionful connection, but we explain that these assertions are ambiguous since actions that use different connections are related by field redefinitions.
Slab waveguide theory for general multi-slot waveguide
NASA Astrophysics Data System (ADS)
Le, ZiChun; Yin, LiXiang; Zou, Yu; Wu, Xiang
2016-07-01
Optical devices based on slot waveguide are of considerable interest in numerous applications due to the distinct feature of strong electric field confinement in a low-refractive index region. A theoretical model based on multi-slab waveguide theory is used to reveal the physical mechanism of the slot waveguide. The calculation results derived from the basic Helmholtz equation for the conventional single-slot waveguide with a ~2% validation of the effective refractive index are compared to the former experiment results by the Cornell University group. Moreover, we extend the theoretical model to a general multi-slot waveguide. Its electric field distribution and key properties such as optical power confinement factor and enhancement factor in slot are deduced theoretically and fully discussed.
NASA Astrophysics Data System (ADS)
Qin, Hong; Davidson, Ronald C.; Burby, Joshua W.; Chung, Moses
2014-04-01
The dynamics of charged particles in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy is parametrized using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for one degree of freedom to higher dimensions. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D symplectic rotation, or a U(2) element. The 1D envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation in higher dimensions. Other components of the original CS theory, such as the transfer matrix, Twiss functions, and CS invariant (also known as the Lewis invariant) all have their counterparts, with remarkably similar expressions, in the generalized theory. The gauge group structure of the generalized theory is analyzed. By fixing the gauge freedom with a desired symmetry, the generalized CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase space optics and phase space quantum mechanics has been recently realized. This gauge fixing also symmetrizes the generalized envelope equation and expresses the theory using only the generalized Twiss function β. The generalized phase advance completely determines the spectral and structural stability properties of a general focusing lattice. For structural stability, the generalized CS theory enables application of the Krein-Moser theory to greatly simplify the stability analysis. The generalized CS theory provides an effective tool to study coupled dynamics and to discover more optimized lattice designs in the larger parameter space of general focusing lattices.
Qin, Hong; Davidson, Ronald C.; Burby, Joshua W.; Chung, Moses
2014-04-08
The dynamics of charged particles in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy is parametrized using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for one degree of freedom to higher dimensions. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D symplectic rotation, or a Uð2Þ element. The 1D envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation in higher dimensions. Other components of the original CS theory, such as the transfer matrix, Twiss functions, and CS invariant (also known as the Lewis invariant) all have their counterparts, with remarkably similar expressions, in the generalized theory. The gauge group structure of the generalized theory is analyzed. By fixing the gauge freedom with a desired symmetry, the generalized CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase space optics and phase space quantum mechanics has been recently realized. This gauge fixing also symmetrizes the generalized envelope equation and expresses the theory using only the generalized Twiss function β. The generalized phase advance completely determines the spectral and structural stability properties of a general focusing lattice. For structural stability, the generalized CS theory enables application of the Krein-Moser theory to greatly simplify the stability analysis. The generalized CS theory provides an effective tool to study coupled dynamics and to discover more optimized lattice designs in the larger parameter space of general focusing lattices.
A General Theory of Unsteady Compressible Potential Aerodynamics
NASA Technical Reports Server (NTRS)
Morino, L.
1974-01-01
The general theory of potential aerodynamic flow around a lifting body having arbitrary shape and motion is presented. By using the Green function method, an integral representation for the potential is obtained for both supersonic and subsonic flow. Under small perturbation assumption, the potential at any point, P, in the field depends only upon the values of the potential and its normal derivative on the surface, sigma, of the body. Hence, if the point P approaches the surface of the body, the representation reduces to an integro-differential equation relating the potential and its normal derivative (which is known from the boundary conditions) on the surface sigma. For the important practical case of small harmonic oscillation around a rest position, the equation reduces to a two-dimensional Fredholm integral equation of second-type. It is shown that this equation reduces properly to the lifting surface theories as well as other classical mathematical formulas. The question of uniqueness is examined and it is shown that, for thin wings, the operator becomes singular as the thickness approaches zero. This fact may yield numerical problems for very thin wings.
Effective gravitational couplings for cosmological perturbations in generalized Proca theories
NASA Astrophysics Data System (ADS)
De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-08-01
We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lemaître-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to nontrivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling Geff with matter density perturbations under a quasistatic approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility for reducing Geff. In fact, within the parameter space, Geff can be even smaller than the Newton gravitational constant G at the late cosmological epoch, with a peculiar phantom dark energy equation of state (without ghosts). The modifications to the slip parameter η and the evolution of the growth rate f σ8 are discussed as well. Thus, dark energy models in the framework of generalized Proca theories can be observationally distinguished from the Λ CDM model according to both cosmic growth and expansion history. Furthermore, we study the evolution of vector perturbations and show that outside the vector sound horizon the perturbations are nearly frozen and start to decay with oscillations after the horizon entry.
Hidden spacetime symmetries and generalized holonomy in M-theory
NASA Astrophysics Data System (ADS)
Duff, M. J.; Liu, James T.
2003-12-01
In M-theory vacua with vanishing 4-form F(4), one can invoke the ordinary Riemannian holonomy H⊂SO(10,1) to account for unbroken supersymmetries n=1, 2, 3, 4, 6, 8, 16, 32. However, the generalized holonomy conjecture, valid for non-zero F(4), can account for more exotic fractions of supersymmetry, in particular 16< n<32. The conjectured holonomies are given by H⊂ G, where G are the generalized structure groups G= SO(d-1,1)×G (spacelike), G= ISO(d-1)×G (null) and G= SO(d)×G (timelike) with 1⩽ d<11. For example, G(spacelike)=SO(16), G (null)=[ SU(8)× U(1)]⋉ R56 and G (timelike)= SO∗(16) when d=3. Although extending spacetime symmetries, there is no conflict with the Coleman-Mandula theorem. The holonomy conjecture rules out certain vacua which are otherwise permitted by the supersymmetry algebra.
Simple space-time symmetries: Generalizing conformal field theory
Mack, Gerhard; Riese, Mathias de
2007-05-15
We study simple space-time symmetry groups G which act on a space-time manifold M=G/H which admits a G-invariant global causal structure. We classify pairs (G,M) which share the following additional properties of conformal field theory. (1) The stability subgroup H of o set-membership sign M is the identity component of a parabolic subgroup of G, implying factorization H=MAN{sup -}, where M generalizes Lorentz transformations, A dilatations, and N{sup -} special conformal transformations. (2) Special conformal transformations {xi} set-membership sign N{sup -} act trivially on tangent vectors v set-membership sign T{sub o}M. The allowed simple Lie groups G are the universal coverings of SU(m,m),SO(2,D),Sp(l,R),SO*(4n), and E{sub 7(-25)} and H are particular maximal parabolic subgroups. They coincide with the groups of fractional linear transformations of Euclidean Jordan algebras whose use as generalizations of Minkowski space-time was advocated by Guenaydin [Mod. Phys. Lett. A 8, 1407 (1993)]. All these groups G admit positive energy representations. It will also be shown that the classical conformal groups SO(2,D) are the only allowed groups which possess an automorphism with properties appropriate for a time reflection.
NASA Astrophysics Data System (ADS)
Qin, Hong
2014-10-01
The dynamics of charged particles in general linear focusing lattices is analyzed using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for one degree of freedom to higher dimensions. The general focusing lattices are allowed to include quadrupole, skew-quadrupole, solenoidal, and dipole components, as well as variation of beam energy and torsion of the fiducial orbit. The scalar envelope function is generalized into an envelope matrix, and the scalar envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation. The phase advance is generalized into a 4D symplectic rotation, or an U(2) element. Other components of the original CS theory, such as the CS invariant, transfer matrix, and Twiss functions all have their counterparts in the generalized theory with remarkably similar expressions. The gauge group of the generalized theory is analyzed. If the gauge freedom is fixed with a desired symmetry, the generalized CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase space quantum mechanics and optics has been recently realized. It is shown that the spectral and structural stability properties of a general focusing lattice are uniquely determined by the generalized phase advance. For structural stability, the generalized CS theory developed enables application of the Krein-Moser theory to significantly simplify the theoretical and numerical analysis. The generalized CS theory provides an effective tool to study the coupled dynamics of high-intensity charged particle beams and to discover more optimized lattice designs in the larger parameter space of general focusing lattices. Research supported by the U.S. Department of Energy.
A general theory of multimetric indices and their properties
Schoolmaster, Donald R.; Grace, James B.; Schweiger, E. William
2012-01-01
1. Stewardship of biological and ecological resources requires the ability to make integrative assessments of ecological integrity. One of the emerging methods for making such integrative assessments is multimetric indices (MMIs). These indices synthesize data, often from multiple levels of biological organization, with the goal of deriving a single index that reflects the overall effects of human disturbance. Despite the widespread use of MMIs, there is uncertainty about why this approach can be effective. An understanding of MMIs requires a quantitative theory that illustrates how the properties of candidate metrics relates to MMIs generated from those metrics. 2. We present the initial basis for such a theory by deriving the general mathematical characteristics of MMIs assembled from metrics. We then use the theory to derive quantitative answers to the following questions: Is there an optimal number of metrics to comprise an index? How does covariance among metrics affect the performance of the index derived from those metrics? And what are the criteria to decide whether a given metric will improve the performance of an index? 3. We find that the optimal number of metrics to be included in an index depends on the theoretical distribution of signal of the disturbance gradient contained in each metric. For example, if the rank-ordered parameters of a metric-disturbance regression can be described by a monotonically decreasing function, then an optimum number of metrics exists and can often be derived analytically. We derive the conditions by which adding a given metric can be expected to improve an index. 4. We find that the criterion defining such conditions depends nonlinearly of the signal of the disturbance gradient, the noise (error) of the metric and the correlation of the metric errors. Importantly, we find that correlation among metric errors increases the signal required for the metric to improve the index. 5. The theoretical framework presented in this
NASA Technical Reports Server (NTRS)
Collins, William
1989-01-01
The magnetohydrodynamic wave emission from several localized, periodic, kinematically specified fluid velocity fields are calculated using Lighthill's method for finding the far-field wave forms. The waves propagate through an isothermal and uniform plasma with a constant B field. General properties of the energy flux are illustrated with models of pulsating flux tubes and convective rolls. Interference theory from geometrical optics is used to find the direction of minimum fast-wave emission from multipole sources and slow-wave emission from discontinuous sources. The distribution of total flux in fast and slow waves varies with the ratios of the source dimensions l to the acoustic and Alfven wavelengths.
Information theory as a general language for functional systems
NASA Astrophysics Data System (ADS)
Collier, John
2000-05-01
Function refers to a broad family of concepts of varying abstractness and range of application, from a many-one mathematical relation of great generality to, for example, highly specialized roles of designed elements in complex machines such as degaussing in a television set, or contributory processes to control mechanisms in complex metabolic pathways, such as the inhibitory function of the appropriate part of the lac-operon on the production of lactase through its action on the genome in the absence of lactose. We would like a language broad enough, neutral enough, but yet powerful enough to cover all such cases, and at the same time to give a framework form explanation both of the family resemblances and differences. General logic and mathematics are too abstract, but more importantly, too broad, whereas other discourses of function, such as the biological and teleological contexts, are too narrow. Information is especially suited since it is mathematically grounded, but also has a well-known physical interpretation through the Schrodinger/Brillouin Negentropy. Principle of Information, and an engineering or design interpretation through Shannon's communication theory. My main focus will be on the functions of autonomous anticipatory systems, but I will try to demonstrate both the connections between this notion of function and the others, especially to dynamical systems with a physical interpretation on the one side and intentional systems on the other. The former are based in concepts like force, energy and work, while the latter involve notions like representation, control and purpose, traditionally, at least in Modern times, on opposite sides of the Cartesian divide. In principle, information can be reduced to energy, but it has the advantage of being more flexible, and easier to apply to higher level phenomena.
Density functional theory based generalized effective fragment potential method
Nguyen, Kiet A. E-mail: ruth.pachter@wpafb.af.mil; Pachter, Ruth E-mail: ruth.pachter@wpafb.af.mil; Day, Paul N.
2014-06-28
We present a generalized Kohn-Sham (KS) density functional theory (DFT) based effective fragment potential (EFP2-DFT) method for the treatment of solvent effects. Similar to the original Hartree-Fock (HF) based potential with fitted parameters for water (EFP1) and the generalized HF based potential (EFP2-HF), EFP2-DFT includes electrostatic, exchange-repulsion, polarization, and dispersion potentials, which are generated for a chosen DFT functional for a given isolated molecule. The method does not have fitted parameters, except for implicit parameters within a chosen functional and the dispersion correction to the potential. The electrostatic potential is modeled with a multipolar expansion at each atomic center and bond midpoint using Stone's distributed multipolar analysis. The exchange-repulsion potential between two fragments is composed of the overlap and kinetic energy integrals and the nondiagonal KS matrices in the localized molecular orbital basis. The polarization potential is derived from the static molecular polarizability. The dispersion potential includes the intermolecular D3 dispersion correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The potential generated from the CAMB3LYP functional has mean unsigned errors (MUEs) with respect to results from coupled cluster singles, doubles, and perturbative triples with a complete basis set limit (CCSD(T)/CBS) extrapolation, of 1.7, 2.2, 2.0, and 0.5 kcal/mol, for the S22, water-benzene clusters, water clusters, and n-alkane dimers benchmark sets, respectively. The corresponding EFP2-HF errors for the respective benchmarks are 2.41, 3.1, 1.8, and 2.5 kcal/mol. Thus, the new EFP2-DFT-D3 method with the CAMB3LYP functional provides comparable or improved results at lower computational cost and, therefore, extends the range of applicability of EFP2 to larger system sizes.
Density functional theory based generalized effective fragment potential method
NASA Astrophysics Data System (ADS)
Nguyen, Kiet A.; Pachter, Ruth; Day, Paul N.
2014-06-01
We present a generalized Kohn-Sham (KS) density functional theory (DFT) based effective fragment potential (EFP2-DFT) method for the treatment of solvent effects. Similar to the original Hartree-Fock (HF) based potential with fitted parameters for water (EFP1) and the generalized HF based potential (EFP2-HF), EFP2-DFT includes electrostatic, exchange-repulsion, polarization, and dispersion potentials, which are generated for a chosen DFT functional for a given isolated molecule. The method does not have fitted parameters, except for implicit parameters within a chosen functional and the dispersion correction to the potential. The electrostatic potential is modeled with a multipolar expansion at each atomic center and bond midpoint using Stone's distributed multipolar analysis. The exchange-repulsion potential between two fragments is composed of the overlap and kinetic energy integrals and the nondiagonal KS matrices in the localized molecular orbital basis. The polarization potential is derived from the static molecular polarizability. The dispersion potential includes the intermolecular D3 dispersion correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The potential generated from the CAMB3LYP functional has mean unsigned errors (MUEs) with respect to results from coupled cluster singles, doubles, and perturbative triples with a complete basis set limit (CCSD(T)/CBS) extrapolation, of 1.7, 2.2, 2.0, and 0.5 kcal/mol, for the S22, water-benzene clusters, water clusters, and n-alkane dimers benchmark sets, respectively. The corresponding EFP2-HF errors for the respective benchmarks are 2.41, 3.1, 1.8, and 2.5 kcal/mol. Thus, the new EFP2-DFT-D3 method with the CAMB3LYP functional provides comparable or improved results at lower computational cost and, therefore, extends the range of applicability of EFP2 to larger system sizes.
[The issue of feasibility of a general theory of aging I. Generalized Gompertz-Makeham Law].
Golubev, A G
2009-01-01
Aging and longevity are interrelated so intimately that they should be treated with a unified theory. The longevity of every single cohort of living beings is determined by the rate of their dying-out. In most cases, mortality rates increase in accelerated fashions to reach values making the bulk of each finite cohort completely exhausted within a relatively narrow time interval shifted to the end of its resulting lifespan. Among simple functions with biologically interpretable parameters, the best fit to this pattern is demonstrated by the Gompertz-Makeham Law (GML): mu = C + lambda x e(gamma x t). A generalized form of GML mu = C(t) + lambda x e(-E(t)) is suggested and interpreted as a law of the dependency of mortality upon vitality rather than on age. It is reduced to the conventional GML when E depends linearly on t, that the age is an observable correlate of unobservable vitality. C(t) captures the inherently irresistible causes of death. The generalized GML can accommodate any mode of age-dependent functional decline, which should be placed into the exponent index to be translated into changes in mortality rate, and is compatible with any sort of cohort heterogeneity, which may be captured by substituting of GML parameters with relevant distributions or by combining of several generalized GML models. The generalized GML is suggested to result from the origin of life from the chemical world, which was associated with the transition of the role of the main variable in the Arrhenius equation k = A x exp[-Ea/(R x T)] for the dependency of chemical disintegration on temperature from T to Ea upon the transition from molecular to multimolecular prebiotic entities. Thus, the generalized GML is not a result of biological evolution but is a sort of chemical legacy of biology, which makes an important condition for life to evolve.
Theory of mind and hypomanic traits in general population.
Terrien, Sarah; Stefaniak, Nicolas; Blondel, Marine; Mouras, Harold; Morvan, Yannick; Besche-Richard, Chrystel
2014-03-30
Theory of Mind (ToM) is the ability to assign a set of mental states to yourself and others. In bipolar disorders, alteration of social relationship can be explained by the impairment of the functioning of ToM. Deficit in ToM could be a trait marker of bipolar disorder and people in the general population with high hypomanic personality scores would be more likely to develop bipolar disorders. This study examined 298 participants. Measures of hypomanic personality were evaluated using the Hypomanic Personality Scale. ToM was explored using the Yoni task. Participants also completed the BDI-II. Forward multiple regressions were performed to examine the effect of components of the HPS on the total score in the ToM task. In the women's group, no subscales of the HPS were included in the model. Conversely, the analyses performed on men revealed that the mood vitality and excitement subscale was a significant predictor of ToM abilities. Our study is the first to show the impact of certain dimensions of hypomanic personality on performance in ToM in a male sample. This result supports the idea that deficits in ToM can be a trait marker of bipolar disorder in a healthy male population.
Theory of mind and hypomanic traits in general population.
Terrien, Sarah; Stefaniak, Nicolas; Blondel, Marine; Mouras, Harold; Morvan, Yannick; Besche-Richard, Chrystel
2014-03-30
Theory of Mind (ToM) is the ability to assign a set of mental states to yourself and others. In bipolar disorders, alteration of social relationship can be explained by the impairment of the functioning of ToM. Deficit in ToM could be a trait marker of bipolar disorder and people in the general population with high hypomanic personality scores would be more likely to develop bipolar disorders. This study examined 298 participants. Measures of hypomanic personality were evaluated using the Hypomanic Personality Scale. ToM was explored using the Yoni task. Participants also completed the BDI-II. Forward multiple regressions were performed to examine the effect of components of the HPS on the total score in the ToM task. In the women's group, no subscales of the HPS were included in the model. Conversely, the analyses performed on men revealed that the mood vitality and excitement subscale was a significant predictor of ToM abilities. Our study is the first to show the impact of certain dimensions of hypomanic personality on performance in ToM in a male sample. This result supports the idea that deficits in ToM can be a trait marker of bipolar disorder in a healthy male population. PMID:24445165
On the role of general system theory for functional neuroimaging
Stephan, Klaas Enno
2004-01-01
One of the most important goals of neuroscience is to establish precise structure–function relationships in the brain. Since the 19th century, a major scientific endeavour has been to associate structurally distinct cortical regions with specific cognitive functions. This was traditionally accomplished by correlating microstructurally defined areas with lesion sites found in patients with specific neuropsychological symptoms. Modern neuroimaging techniques with high spatial resolution have promised an alternative approach, enabling non-invasive measurements of regionally specific changes of brain activity that are correlated with certain components of a cognitive process. Reviewing classic approaches towards brain structure–function relationships that are based on correlational approaches, this article argues that these approaches are not sufficient to provide an understanding of the operational principles of a dynamic system such as the brain but must be complemented by models based on general system theory. These models reflect the connectional structure of the system under investigation and emphasize context-dependent couplings between the system elements in terms of effective connectivity. The usefulness of system models whose parameters are fitted to measured functional imaging data for testing hypotheses about structure–function relationships in the brain and their potential for clinical applications is demonstrated by several empirical examples. PMID:15610393
Generalized Pauli constraints in reduced density matrix functional theory
NASA Astrophysics Data System (ADS)
Theophilou, Iris; Lathiotakis, Nektarios N.; Marques, Miguel A. L.; Helbig, Nicole
2015-04-01
Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Coleman's ensemble N-representability conditions. Recently, the topic of pure-state N-representability conditions, also known as generalized Pauli constraints, received increased attention following the discovery of a systematic way to derive them for any number of electrons and any finite dimensionality of the Hilbert space. The target of this work is to assess the potential impact of the enforcement of the pure-state conditions on the results of reduced density-matrix functional theory calculations. In particular, we examine whether the standard minimization of typical 1-RDM functionals under the ensemble N-representability conditions violates the pure-state conditions for prototype 3-electron systems. We also enforce the pure-state conditions, in addition to the ensemble ones, for the same systems and functionals and compare the correlation energies and optimal occupation numbers with those obtained by the enforcement of the ensemble conditions alone.
General theory of regular biorthogonal pairs and its physical operators
NASA Astrophysics Data System (ADS)
Inoue, H.
2016-08-01
In this paper, we introduce a general theory of regular biorthogonal sequences and its physical operators. Biorthogonal sequences {ϕn} and {ψn} in a Hilbert space H are said to be regular if Span {ϕn} and Span {ψn} are dense in H . The first purpose is to show that there exists a non-singular positive self-adjoint operator Tf in H defined by an orthonormal basis (ONB) f ≡ {fn} in H such that ϕn = Tffn and ψ n = Tf - 1 f n , n = 0, 1, …, and such an ONB f is unique. The second purpose is to define and study the lowering operators Af and Bf † , the raising operators Bf and Af † , and the number operators Nf and Nf † determined by the non-singular positive self-adjoint operator Tf. These operators connect with quasi-Hermitian quantum mechanics and its relatives. This paper clarifies and simplifies the mathematical structure of this framework and minimizes the required assumptions.
Generalized Pauli constraints in reduced density matrix functional theory
Theophilou, Iris; Helbig, Nicole; Lathiotakis, Nektarios N.; Marques, Miguel A. L.
2015-04-21
Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Coleman’s ensemble N-representability conditions. Recently, the topic of pure-state N-representability conditions, also known as generalized Pauli constraints, received increased attention following the discovery of a systematic way to derive them for any number of electrons and any finite dimensionality of the Hilbert space. The target of this work is to assess the potential impact of the enforcement of the pure-state conditions on the results of reduced density-matrix functional theory calculations. In particular, we examine whether the standard minimization of typical 1-RDM functionals under the ensemble N-representability conditions violates the pure-state conditions for prototype 3-electron systems. We also enforce the pure-state conditions, in addition to the ensemble ones, for the same systems and functionals and compare the correlation energies and optimal occupation numbers with those obtained by the enforcement of the ensemble conditions alone.
GENERAL STRAIN THEORY, PERSISTENCE, AND DESISTANCE AMONG YOUNG ADULT MALES
Eitle, David
2010-01-01
Purpose Despite the surge in scholarly activity investigating the criminal career, relatively less attention has been devoted to the issue of criminal desistance versus persistence (until recently). The present study contributed to our understanding of this process by exploring the suitability of General Strain Theory (GST) for predicting changes in criminal activity across time. Methods Data from a longitudinal study of males in South Florida are examined using robust regression analyses. Results The core GST relationship, that changes in strain should predict changes in criminal activity, was supported, even after controlling for important adult social roles such as marriage, labor force participation, and education. While no support for the proposition that changes in self-esteem and social support moderate the strain-criminal desistance association was evinced, evidence was found that angry disposition, a measure of negative emotionality, moderated the association between change in chronic stressors and change in criminal activity. Conclusions While exploratory in nature, these findings demonstrate the utility of employing GST principles in studies of criminal desistance. PMID:21499526
Solvation of polymers as mutual association. I. General theory.
Dudowicz, Jacek; Freed, Karl F; Douglas, Jack F
2013-04-28
A Flory-Huggins (FH) type lattice theory of self-assembly is generalized to describe the equilibrium solvation of long polymer chains B by small solvent molecules A. Solvation is modeled as a thermally reversible mutual association between the polymer and a relatively low molar mass solvent. The FH Helmholtz free energy F is derived for a mixture composed of the A and B species and the various possible mutual association complexes AiB, and F is then used to generate expressions for basic thermodynamic properties of solvated polymer solutions, including the size distribution of the solvated clusters, the fraction of solvent molecules contained in solvated states (an order parameter for solvation), the specific heat (which exhibits a maximum at the solvation transition), the second and the third osmotic virial coefficients, and the boundaries for phase stability of the mixture. Special attention is devoted to the analysis of the "entropic" contribution χ(s) to the FH interaction parameter χ of polymer solutions, both with and without associative interactions. The entropic χ(s) parameter arises from correlations associated with polymer chain connectivity and disparities in molecular structure between the components of the mixture. Our analysis provides the first explanation of the longstanding enigma of why χ(s) for polymer solutions significantly exceeds χ(s) for binary polymer blends. Our calculations also reveal that χ(s) becomes temperature dependent when interactions are strong, in sharp contrast to models currently being used for fitting thermodynamic data of associating polymer-solvent mixtures, where χ(s) is simply assumed to be an adjustable constant based on experience with solutions of homopolymers in nonassociating solvents.
Toward a General Research Process for Using Dubin's Theory Building Model
ERIC Educational Resources Information Center
Holton, Elwood F.; Lowe, Janis S.
2007-01-01
Dubin developed a widely used methodology for theory building, which describes the components of the theory building process. Unfortunately, he does not define a research process for implementing his theory building model. This article proposes a seven-step general research process for implementing Dubin's theory building model. An example of a…
Chemical Principles Revisited: Updating the Atomic Theory in General Chemistry.
ERIC Educational Resources Information Center
Whitman, Mark
1984-01-01
Presents a descriptive overview of recent achievements in atomic structure to provide instructors with the background necessary to enhance their classroom presentations. Topics considered include hadrons, quarks, leptons, forces, and the unified fields theory. (JN)
A general small-deflection theory for flat sandwich plates
NASA Technical Reports Server (NTRS)
Libove, Charles; Batdorf, S B
1948-01-01
A small-deflection theory is developed for the elastic behavior of orthotropic flat plates in which deflections due to shear are taken into account. In this theory, which covers all types of flat sandwich construction, a plate is characterized by seven physical constants (five stiffnesses and two Poisson ratios) of which six are independent. Both the energy expression and the differential equations are developed. Boundary conditions corresponding to simply supported, clamped, and elastically restrained edges are considered.
NASA Technical Reports Server (NTRS)
Hoffmann, W. F.; Aannestad, P. A.
1974-01-01
Partial surveys in the far infrared in the Northern and Southern Hemispheres have covered 40% of the galactic equator and assorted regions away from the galactic plane. Approximately 120 100-micron objects are known. These are distributed extensively in galactic longitude and concentrated within + or - two degrees in galactic latitude. From this information, some general conclusions can be drawn about the sensitivity and coverage required for a general sky survey in the far infrared.
Generalized van der Waals density functional theory for nonuniform polymers
Patra, Chandra N.; Yethiraj, Arun
2000-01-15
A density functional theory is presented for the effect of attractions on the structure of polymers at surfaces. The theory treats the ideal gas functional exactly, and uses a weighted density approximation for the hard chain contribution to the excess free energy functional. The attractive interactions are treated using a van der Waals approximation. The theory is in good agreement with computer simulations for the density profiles at surfaces for a wide range of densities and temperatures, except for low polymer densities at low temperatures where it overestimates the depletion of chains from the surface. This deficiency is attributed to the neglect of liquid state correlations in the van der Waals term of the free energy functional. (c) 2000 American Institute of Physics.
Vargas, J.G.
1986-10-01
The kinematic aspects of the rocket-borne clock experiment by Vessot and Levine are analyzed with the revised Robertson's test theory of special relativity (Found. Phys. 14, 625 (1984)). Besides the expected time-dilation, it is found that the intermediate steps of this experiment yield in principle Michelson-Morley type information (a relation between longitudinal and transverse length contractions) in the third order of the velocities involved, but no relativity-of-simultaneity related effects. The flat space-time test theory induces a family of ''spherically symmetric'' line elements that become the Schwarzchild line element in the relativistic case and also in the abinito rest frame of the theory. These line elements represent the same space-time manifold, but pertain in a one-to-one correspondence to the different flat space-time coordinate transformations of the test theory. The conserved energy is related to the family of local energies in the tangent plane. No deviations from the orthodoxy appear at the pertinent levels of approximation. Hence the unexplained residuals of the Vessot-Levine experiment are not due in obvious ways to kinematic and gravitational frequency shifts caused by deviations of the ''real'' coordinate transformations from the Lorentz transformations.
Integrated control-system design via generalized LQG (GLQG) theory
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Hyland, David C.; Richter, Stephen; Haddad, Wassim M.
1989-01-01
Thirty years of control systems research has produced an enormous body of theoretical results in feedback synthesis. Yet such results see relatively little practical application, and there remains an unsettling gap between classical single-loop techniques (Nyquist, Bode, root locus, pole placement) and modern multivariable approaches (LQG and H infinity theory). Large scale, complex systems, such as high performance aircraft and flexible space structures, now demand efficient, reliable design of multivariable feedback controllers which optimally tradeoff performance against modeling accuracy, bandwidth, sensor noise, actuator power, and control law complexity. A methodology is described which encompasses numerous practical design constraints within a single unified formulation. The approach, which is based upon coupled systems or modified Riccati and Lyapunov equations, encompasses time-domain linear-quadratic-Gaussian theory and frequency-domain H theory, as well as classical objectives such as gain and phase margin via the Nyquist circle criterion. In addition, this approach encompasses the optimal projection approach to reduced-order controller design. The current status of the overall theory will be reviewed including both continuous-time and discrete-time (sampled-data) formulations.
IFLA General Conference, 1990. Section on Research and Theory.
ERIC Educational Resources Information Center
International Federation of Library Associations, The Hague (Netherlands).
The three papers in this collection were presented during the meeting of the Section on Research and Theory. In the first paper, "BIEF: A North-South Knowledge Transfer Tool," Suzanne Richer examines the vital importance of scientific and technical information (STI) for developing countries, and notes that BIEF (Banque internationale d'Information…
Marcel Grossmann and his Contribution to the General Theory of Relativity
NASA Astrophysics Data System (ADS)
Sauer, Tilman
2015-01-01
This article reviews the biography of the Swiss mathematician Marcel Grossmann (1878-1936) and his contributions to the emergence of the general theory of relativity. The first part is his biography, while the second part reviews his collaboration with Einstein in Zurich which resulted in the Einstein-Grossmann theory of 1913. This theory is a precursor version of the final theory of general relativity with all the ingredients of that theory except for the correct gravitational field equations. Their collaboration is analyzed in some detail with a focus on the question of exactly what role Grossmann played in it.
Generalized Bezout's Theorem and its applications in coding theory
NASA Technical Reports Server (NTRS)
Berg, Gene A.; Feng, Gui-Liang; Rao, T. R. N.
1996-01-01
This paper presents a generalized Bezout theorem which can be used to determine a tighter lower bound of the number of distinct points of intersection of two or more curves for a large class of plane curves. A new approach to determine a lower bound on the minimum distance (and also the generalized Hamming weights) for algebraic-geometric codes defined from a class of plane curves is introduced, based on the generalized Bezout theorem. Examples of more efficient linear codes are constructed using the generalized Bezout theorem and the new approach. For d = 4, the linear codes constructed by the new construction are better than or equal to the known linear codes. For d greater than 5, these new codes are better than the known codes. The Klein code over GF(2(sup 3)) is also constructed.
Generalized Supersymmetries and Composite Structure in M-Theory
NASA Astrophysics Data System (ADS)
Lukierski, Jerzy
We describe generalized D = 11 Poincaré and conformal supersymmetries. The corresponding generalization of twistor and supertwistor framework is outlined with OSp(1|64) superspinors describing BPS preons. The (k)/(32) BPS states as composed out of n = 32 - k preons are introduced, and basic ideas concerning BPS preon dynamics is presented. The lecture is based on results obtained by J.A. de Azcarraga, I. Bandos, J.M. Izquierdo and the author.1
Generalized Supersymmetries and Composite Structure in M-Theory
NASA Astrophysics Data System (ADS)
Iajkierski, Jerzy
2002-11-01
We describe generalized D = 11 Poincaré and conformal supersymmetries. The corresponding generalization of twistor and supertwistor framework is outlined with OSp(l|64) superspinors describing BPS preons. The (k)/(32) BPS states as composed out of n = 32 - k preons are introduced, and basic ideas concerning BPS preon dynamics is presented. The lecture is based on results obtained by J.A. de Azcarraga, I. Bandos, J.M. Izquierdo and the author.
General Theory of Aerodynamic Instability and the Mechanism of Flutter
NASA Technical Reports Server (NTRS)
Theodorsen, Theodore
1949-01-01
The aerodynamic forces on an oscillating airfoil or airfoil-aileron combination of three independent degrees of freedom have been determined. The problem resolves itself into the solution of certain definite integrals, which have been identified as Bessel functions of the first and second kind and of zero and first order. The theory, being based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing-section theory relating to the steady case. The air forces being known, the mechanism of aerodynamic instability has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been arrived at. The solution is of a simple form and is expressed by means of an auxiliary parameter K.
Nonlinear structure formation in gravity theories beyond general relativity
NASA Astrophysics Data System (ADS)
Mota, David F.
2016-07-01
We investigate the effects of modified gravity theories, in particular, the symmetron and f(R) gravity, on the nonlinear regime of structure formation. In particular, we investigate the velocity dispersion of galaxy clusters as a function of the halo masses, how the matter power spectra depend on the coupling, range and screening scale of the fifth force, and on possible ways of detecting violations of the equivalence principle using the mass inferred via lensing methods versus the mass inferred via dynamical methods.
Generalized Onsager theory for strongly anisometric patchy colloids.
Wensink, H H; Trizac, E
2014-01-14
The implications of soft "patchy" interactions on the orientational disorder-order transition of strongly elongated colloidal rods and flat disks is studied within a simple Onsager-van der Waals density functional theory. The theory provides a generic framework for studying the liquid crystal phase behaviour of highly anisometric cylindrical colloids which carry a distinct geometrical pattern of repulsive or attractive soft interactions localized on the particle surface. In this paper, we apply our theory to the case of charged rods and disks for which the local electrostatic interactions can be described by a screened-Coulomb potential. We consider infinitely thin rod like cylinders with a uniform line charge and infinitely thin discotic cylinders with several distinctly different surface charge patterns. Irrespective of the backbone shape the isotropic-nematic phase diagrams of charged colloids feature a generic destabilization of nematic order at low ionic strength, a dramatic narrowing of the biphasic density region, and a reentrant phenomenon upon reducing the electrostatic screening. The low screening regime is characterized by a complete suppression of nematic order in favor of positionally ordered liquid crystal phases. PMID:24437905
Generalized Onsager theory for strongly anisometric patchy colloids
NASA Astrophysics Data System (ADS)
Wensink, H. H.; Trizac, E.
2014-01-01
The implications of soft "patchy" interactions on the orientational disorder-order transition of strongly elongated colloidal rods and flat disks is studied within a simple Onsager-van der Waals density functional theory. The theory provides a generic framework for studying the liquid crystal phase behaviour of highly anisometric cylindrical colloids which carry a distinct geometrical pattern of repulsive or attractive soft interactions localized on the particle surface. In this paper, we apply our theory to the case of charged rods and disks for which the local electrostatic interactions can be described by a screened-Coulomb potential. We consider infinitely thin rod like cylinders with a uniform line charge and infinitely thin discotic cylinders with several distinctly different surface charge patterns. Irrespective of the backbone shape the isotropic-nematic phase diagrams of charged colloids feature a generic destabilization of nematic order at low ionic strength, a dramatic narrowing of the biphasic density region, and a reentrant phenomenon upon reducing the electrostatic screening. The low screening regime is characterized by a complete suppression of nematic order in favor of positionally ordered liquid crystal phases.
General topology meets model theory, on p and t.
Malliaris, Maryanthe; Shelah, Saharon
2013-08-13
Cantor proved in 1874 [Cantor G (1874) J Reine Angew Math 77:258-262] that the continuum is uncountable, and Hilbert's first problem asks whether it is the smallest uncountable cardinal. A program arose to study cardinal invariants of the continuum, which measure the size of the continuum in various ways. By Gödel [Gödel K (1939) Proc Natl Acad Sci USA 25(4):220-224] and Cohen [Cohen P (1963) Proc Natl Acad Sci USA 50(6):1143-1148], Hilbert's first problem is independent of ZFC (Zermelo-Fraenkel set theory with the axiom of choice). Much work both before and since has been done on inequalities between these cardinal invariants, but some basic questions have remained open despite Cohen's introduction of forcing. The oldest and perhaps most famous of these is whether " p = t," which was proved in a special case by Rothberger [Rothberger F (1948) Fund Math 35:29-46], building on Hausdorff [Hausdorff (1936) Fund Math 26:241-255]. In this paper we explain how our work on the structure of Keisler's order, a large-scale classification problem in model theory, led to the solution of this problem in ZFC as well as of an a priori unrelated open question in model theory.
Bagger-Lambert theory for general Lie algebras
NASA Astrophysics Data System (ADS)
Gomis, Jaume; Milanesi, Giuseppe; Russo, Jorge G.
2008-06-01
We construct the totally antisymmetric structure constants fABCD of a 3-algebra with a Lorentzian bi-invariant metric starting from an arbitrary semi-simple Lie algebra. The structure constants fABCD can be used to write down a maximally superconformal 3d theory that incorporates the expected degrees of freedom of multiple M2 branes, including the ``center-of-mass" mode described by free scalar and fermion fields. The gauge field sector reduces to a three dimensional BF term, which underlies the gauge symmetry of the theory. We comment on the issue of unitarity of the quantum theory, which is problematic, despite the fact that the specific form of the interactions prevent the ghost fields from running in the internal lines of any Feynman diagram. Giving an expectation value to one of the scalar fields leads to the maximally supersymmetric 3d Yang-Mills Lagrangian with the addition of two U(1) multiplets, one of them ghost-like, which is decoupled at large gYM.
Born-Infeld inspired bosonic action in a noncommutative geometry
Serie, Emmanuel; Masson, Thierry; Kerner, Richard
2004-09-15
The Born-Infeld Lagrangian for non-Abelian gauge theory is adapted to the case of the generalized gauge fields arising in noncommutative matrix geometry. Basic properties of static and time-dependent solutions of the scalar sector of this model are investigated.
Zhang, Zhen-Lu; Huang, Yong-Chang
2014-03-15
Quantization theory gives rise to transverse phonons for the traditional Coulomb gauge condition and to scalar and longitudinal photons for the Lorentz gauge condition. We describe a new approach to quantize the general singular QED system by decomposing a general gauge potential into two orthogonal components in general field theory, which preserves scalar and longitudinal photons. Using these two orthogonal components, we obtain an expansion of the gauge-invariant Lagrangian density, from which we deduce the two orthogonal canonical momenta conjugate to the two components of the gauge potential. We then obtain the canonical Hamiltonian in the phase space and deduce the inherent constraints. In terms of the naturally deduced gauge condition, the quantization results are exactly consistent with those in the traditional Coulomb gauge condition and superior to those in the Lorentz gauge condition. Moreover, we find that all the nonvanishing quantum commutators are permanently gauge-invariant. A system can only be measured in physical experiments when it is gauge-invariant. The vanishing longitudinal vector potential means that the gauge invariance of the general QED system cannot be retained. This is similar to the nucleon spin crisis dilemma, which is an example of a physical quantity that cannot be exactly measured experimentally. However, the theory here solves this dilemma by keeping the gauge invariance of the general QED system. -- Highlights: •We decompose the general gauge potential into two orthogonal parts according to general field theory. •We identify a new approach for quantizing the general singular QED system. •The results obtained are superior to those for the Lorentz gauge condition. •The theory presented solves dilemmas such as the nucleon spin crisis.
Generalization of trinification to theories with 3N SU(3) gauge groups
Carone, Christopher D.
2005-04-01
We consider a natural generalization of trinification to theories with 3N SU(3) gauge groups. These theories have a simple moose representation and a gauge boson spectrum that can be interpreted via the deconstruction of a 5D theory with unified symmetry broken on a boundary. Although the matter and Higgs sectors of the theory have no simple extra-dimensional analog, gauge unification retains features characteristic of the 5D theory. We determine possible assignments of the matter and Higgs fields to unified multiplets and present theories that are viable alternatives to minimal trinified GUTs.
Generalized Langevin theory for inhomogeneous fluids: The equations of motion
NASA Astrophysics Data System (ADS)
Grant, Martin; Desai, Rashmi C.
1982-05-01
We use the generalized Langevin approach to study the dynamical correlations in an inhomogeneous system. The equations of motion (formally exact) are obtained for the number density, momentum density, energy density, stress tensor, and heat flux. We evaluate all the relevant sum rules appearing in the frequency matrix exactly in terms of microscopic pair potentials and an external field. We show using functional derivatives how these microscopic sum rules relate to more familiar, though now nonlocal, hydrodynamiclike quantities. The set of equations is closed by a Markov approximation in the equations for stress tensor and heat flux. As a result, these equations become analogous to Grad's 13-moment equations for low-density fluids and constitute a generalization to inhomogeneous fluids of the work of Schofield and Akcasu-Daniels. We also indicate how the resulting general set of equations would simplify for systems in which the inhomogeneity is unidirectional, e.g., a liquid-vapor interface.
ECOLOGICAL THEORY. A general consumer-resource population model.
Lafferty, Kevin D; DeLeo, Giulio; Briggs, Cheryl J; Dobson, Andrew P; Gross, Thilo; Kuris, Armand M
2015-08-21
Food-web dynamics arise from predator-prey, parasite-host, and herbivore-plant interactions. Models for such interactions include up to three consumer activity states (questing, attacking, consuming) and up to four resource response states (susceptible, exposed, ingested, resistant). Articulating these states into a general model allows for dissecting, comparing, and deriving consumer-resource models. We specify this general model for 11 generic consumer strategies that group mathematically into predators, parasites, and micropredators and then derive conditions for consumer success, including a universal saturating functional response. We further show how to use this framework to create simple models with a common mathematical lineage and transparent assumptions. Underlying assumptions, missing elements, and composite parameters are revealed when classic consumer-resource models are derived from the general model.
Cosmic String Global Superconducting Dirac Born Infeld
NASA Astrophysics Data System (ADS)
Ikrima, Ika; Ramadhan, Handhika S.; Mart, Terry
2016-08-01
Superconducting cosmic string possibly plays an important role in the formation of the universe structure. The physics of this phenomenon has been explored by studying the field theory in the string interior. Numerical solutions of superconducting strings with all relevant fields are presented in this paper. The field is constructed from a generalization of the usual field theory of superconducting global string, but the kinetic term consists of the Dirac Born Infeld (DBI). Some changes in the characteristic of the superconducting string DBI from the usual superconducting string case have been observed. The observation includes physical mechanism of all related fields.
Generalizations of Karp's theorem to elastic scattering theory
NASA Astrophysics Data System (ADS)
Tuong, Ha-Duong
Karp's theorem states that if the far field pattern corresponding to the scattering of a time-harmonic acoustic plane wave by a sound-soft obstacle in R2 is invariant under the group of rotations, then the scatterer is a circle. The theorem is generalized to the elastic scattering problems and the axisymmetric scatterers in R3.
Mathematical developments regarding the general theory of the Earth magnetism
NASA Technical Reports Server (NTRS)
Schmidt, A.
1983-01-01
A literature survey on the Earth's magnetic field, citing the works of Gauss, Erman-Petersen, Quintus Icilius and Neumayer is presented. The general formulas for the representation of the potential and components of the Earth's magnetic force are presented. An analytical representation of magnetic condition of the Earth based on observations is also made.
A general quantitative theory of forest structure and dynamics.
West, Geoffrey B; Enquist, Brian J; Brown, James H
2009-04-28
We present the first part of a quantitative theory for the structure and dynamics of forests at demographic and resource steady state. The theory uses allometric scaling relations, based on metabolism and biomechanics, to quantify how trees use resources, fill space, and grow. These individual-level traits and properties scale up to predict emergent properties of forest stands, including size-frequency distributions, spacing relations, resource flux rates, and canopy configurations. Two insights emerge from this analysis: (i) The size structure and spatial arrangement of trees in the entire forest are emergent manifestations of the way that functionally invariant xylem elements are bundled together to conduct water and nutrients up from the trunks, through the branches, to the leaves of individual trees. (ii) Geometric and dynamic properties of trees in a forest and branches in trees scale identically, so that the entire forest can be described mathematically and behaves structurally and functionally like a scaled version of the branching networks in the largest tree. This quantitative framework uses a small number of parameters to predict numerous structural and dynamical properties of idealized forests.
Einstein-aether theory with a Maxwell field: General formalism
Balakin, Alexander B.; Lemos, José P.S.
2014-11-15
We extend the Einstein-aether theory to include the Maxwell field in a nontrivial manner by taking into account its interaction with the time-like unit vector field characterizing the aether. We also include a generic matter term. We present a model with a Lagrangian that includes cross-terms linear and quadratic in the Maxwell tensor, linear and quadratic in the covariant derivative of the aether velocity four-vector, linear in its second covariant derivative and in the Riemann tensor. We decompose these terms with respect to the irreducible parts of the covariant derivative of the aether velocity, namely, the acceleration four-vector, the shear and vorticity tensors, and the expansion scalar. Furthermore, we discuss the influence of an aether non-uniform motion on the polarization and magnetization of the matter in such an aether environment, as well as on its dielectric and magnetic properties. The total self-consistent system of equations for the electromagnetic and the gravitational fields, and the dynamic equations for the unit vector aether field are obtained. Possible applications of this system are discussed. Based on the principles of effective field theories, we display in an appendix all the terms up to fourth order in derivative operators that can be considered in a Lagrangian that includes the metric, the electromagnetic and the aether fields.
Generalized theory of helicon waves. I. Normal modes
Chen, F.F.; Arnush, D.
1997-09-01
The theory of helicon waves is extended to include finite electron mass. This introduces an additional branch to the dispersion relation that is essentially an electron cyclotron or Trivelpiece{endash}Gould (TG) wave with a short radial wavelength. The effect of the TG wave is expected to be important only for low dc magnetic fields and long parallel wavelengths. The normal modes at low fields are mixtures of the TG wave and the usual helicon wave and depend on the nature of the boundaries. Computations show, however, that since the TG waves are damped near the surface of the plasma, the helicon wave at high fields is almost exactly the same as is found when the electron mass is neglected. {copyright} {ital 1997 American Institute of Physics.}
NASA Astrophysics Data System (ADS)
Othman, Mohamed I. A.; Said, Samia M.
2012-06-01
The present paper is concerned with effect of mechanical force on generalized thermoelasticity in a fiber-reinforcement. The formulation is applied to generalized thermoelasticity based on the coupled theory, Lord-Shulman theory, and Green-Lindsay theory. The analytical expression of the displacement components, stresses, and temperature are obtained in the physical domain and illustrated graphically using normal mode analysis. Comparisons are made among the three theories for the field quantities in the absence and in the presence of a fiber-reinforcement as well as for different values of mechanical force.
A superconducting gyroscope to test Einstein's general theory of relativity
NASA Technical Reports Server (NTRS)
Everitt, C. W. F.
1978-01-01
Schiff (1960) proposed a new test of general relativity based on measuring the precessions of the spin axes of gyroscopes in earth orbit. Since 1963 a Stanford research team has been developing an experiment to measure the two effects calculated by Schiff. The gyroscope consists of a uniform sphere of fused quartz 38 mm in diameter, coated with superconductor, electrically suspended and spinning at about 170 Hz in vacuum. The paper describes the proposed flight apparatus and the current state of development of the gyroscope, including techniques for manufacturing and measuring the gyro rotor and housing, generating ultralow magnetic fields, and mechanizing the readout.
The general theory of secondary weak gravitational lensing
Clarkson, Chris
2015-09-01
Weak gravitational lensing is normally assumed to have only two principle effects: a magnification of a source and a distortion of the sources shape in the form of a shear. However, further distortions are actually present owing to changes in the gravitational field across the scale of the ray bundle of light propagating to us, resulting in the familiar arcs in lensed images. This is normally called the flexion, and is approximated by Taylor expanding the shear and magnification across the image plane. However, the physical origin of this effect arises from higher-order corrections in the geodesic deviation equation governing the gravitational force between neighbouring geodesics— so involves derivatives of the Riemann tensor. We show that integrating the second-order geodesic deviation equation results in a 'Hessian map' for gravitational lensing, which is a higher-order addition to the Jacobi map. We derive the general form of the Hessian map in an arbitrary spacetime paying particular attention to the separate effects of local Ricci versus non-local Weyl curvature. We then specialise to the case of a perturbed FLRW model, and give the general form of the Hessian for the first time. This has a host of new contributions which could in principle be used as tests for modified gravity.
Temperature of critical clusters in nucleation theory: generalized Gibbs' approach.
Schmelzer, Jürn W P; Boltachev, Grey Sh; Abyzov, Alexander S
2013-07-21
According to the classical Gibbs' approach to the description of thermodynamically heterogeneous systems, the temperature of the critical clusters in nucleation is the same as the temperature of the ambient phase, i.e., with respect to temperature the conventional macroscopic equilibrium conditions are assumed to be fulfilled. In contrast, the generalized Gibbs' approach [J. W. P. Schmelzer, G. Sh. Boltachev, and V. G. Baidakov, J. Chem. Phys. 119, 6166 (2003); and ibid. 124, 194503 (2006)] predicts that critical clusters (having commonly spatial dimensions in the nanometer range) have, as a rule, a different temperature as compared with the ambient phase. The existence of a curved interface may lead, consequently, to an equilibrium coexistence of different phases with different temperatures similar to differences in pressure as expressed by the well-known Laplace equation. Employing the generalized Gibbs' approach, it is demonstrated that, for the case of formation of droplets in a one-component vapor, the temperature of the critical droplets can be shown to be higher as compared to the vapor. In this way, temperature differences between critically sized droplets and ambient vapor phase, observed in recent molecular dynamics simulations of argon condensation by Wedekind et al. [J. Chem. Phys. 127, 064501 (2007)], can be given a straightforward theoretical interpretation. It is shown as well that - employing the same model assumptions concerning bulk and interfacial properties of the system under consideration - the temperature of critical bubbles in boiling is lower as compared to the bulk liquid. PMID:23883047
Quasilinear theory of general electromagnetic fluctuations in unmagnetized plasmas
Schlickeiser, R. E-mail: yoonp@umd.edu; Yoon, P. H. E-mail: yoonp@umd.edu
2014-09-15
The general quasilinear Fokker-Planck kinetic equation for the plasma particle distribution functions in unmagnetized plasmas is derived, making no restrictions on the frequency of the electromagnetic fluctuations. The derived kinetic particle equation complements our earlier study of the general fluctuation's kinetic equation. For collective plasma eigenmodes and gyrotropic particle distribution functions, the two coupled kinetic equations describe the self-consistent dynamical evolution of the plasma. The limit of weakly damped collective modes correctly reproduces the well-known textbook kinetic particle equation with longitudinal Langmuir and ion-acoustic fluctuations, demonstrating, in particular, the resonant nature of parallel momentum diffusion of particles. In the limit of aperiodic modes, the Fokker-Planck equation contains the nonresonant diffusion of particles in momentum and the parallel and perpendicular momentum drag coefficients. As an application these drag and diffusion coefficients are calculated for extragalactic cosmic ray particles propagating in the unmagnetized intergalactic medium. Whereas for all cosmic rays, the perpendicular momentum diffusion in intergalactic aperiodic fluctuations is negligibly small; cosmic ray protons with energies below 10{sup 5 }GeV are affected by the plasma drag.
General theory of intraband relaxation processes in heavily doped graphene
NASA Astrophysics Data System (ADS)
Kupčić, I.
2015-05-01
The frequency and wave-vector-dependent memory function in the longitudinal conductivity tensor of weakly interacting electronic systems is calculated by using an approach based on quantum transport equations. In this paper, we show that there is a close relation between the single-electron self-energy, the electron-hole pair self-energy, and the memory function. It is also shown in which way singular long-range Coulomb interactions, together with other q ≈0 scattering processes, drop out of both the memory function and the related transport equations. The theory is illustrated on heavily doped graphene, which is the prototype of weakly interacting single-band electron-phonon systems. A steplike increase of the width of the quasiparticle peak in angle-resolved photoemission spectra at frequencies of the order of the frequency of in-plane optical phonons is shown to be consistent with the behavior of an intraband plasmon peak in the energy loss spectroscopy spectra. Both anomalies can be understood as a direct consequence of weak electron scattering from in-plane optical phonons.
Generalized Lee-Wick formulation from higher derivative field theories
Cho, Inyong; Kwon, O-Kab
2010-07-15
We study a higher derivative (HD) field theory with an arbitrary order of derivative for a real scalar field. The degree of freedom for the HD field can be converted to multiple fields with canonical kinetic terms up to the overall sign. The Lagrangian describing the dynamics of the multiple fields is known as the Lee-Wick (LW) form. The first step to obtain the LW form for a given HD Lagrangian is to find an auxiliary field (AF) Lagrangian which is equivalent to the original HD Lagrangian up to the quantum level. Until now, the AF Lagrangian has been studied only for N=2 and 3 cases, where N is the number of poles of the two-point function of the HD scalar field. We construct the AF Lagrangian for arbitrary N. By the linear combinations of AF fields, we also obtain the corresponding LW form. We find the explicit mapping matrices among the HD fields, the AF fields, and the LW fields. As an exercise of our construction, we calculate the relations among parameters and mapping matrices for N=2, 3, and 4 cases.
General theory of frictional heating with application to rubber friction
NASA Astrophysics Data System (ADS)
Fortunato, G.; Ciaravola, V.; Furno, A.; Lorenz, B.; Persson, B. N. J.
2015-05-01
The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s-1. We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci ‘laws’ of friction.
General theory of frictional heating with application to rubber friction.
Fortunato, G; Ciaravola, V; Furno, A; Lorenz, B; Persson, B N J
2015-05-01
The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s(-1). We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci 'laws' of friction.
Asymptotic boundary conditions for dissipative waves: General theory
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas
1990-01-01
An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.
Are Singularities Integral to General Theory of Relativity?
NASA Astrophysics Data System (ADS)
Krori, K.; Dutta, S.
2011-11-01
Since the 1960s the general relativists have been deeply obsessed with the possibilities of GTR singularities - blackhole as well as cosmological singularities. Senovilla, for the first time, followed by others, showed that there are cylindrically symmetric cosmological space-times which are free of singularities. On the other hand, Krori et al. have presently shown that spherically symmetric cosmological space-times - which later reduce to FRW space-times may also be free of singularities. Besides, Mitra has in the mean-time come forward with some realistic calculations which seem to rule out the possibility of a blackhole singularity. So whether singularities are integral to GTR seems to come under a shadow.
General theory of peak compression in liquid chromatography.
Gritti, Fabrice
2016-02-12
A new and general expression of the peak compression factor in liquid chromatography is derived. It applies to any type of gradients induced by non-uniform columns (stationary) or by temporal variations (dynamic) of the elution strength related to changes in solvent composition, temperature, or in any external field. The new equation is validated in two ideal cases for which the exact solutions are already known. From a practical viewpoint, it is used to predict the achievable degree of peak compression for curved retention models, retained solvent gradients, and for temperature-programmed liquid chromatography. The results reveal that: (1) curved retention models affect little the compression factor with respect to the best linear strength retention models, (2) gradient peaks can be indefinitely compressed with respect to isocratic peaks if the propagation speed of the gradient (solvent or temperature) becomes smaller than the chromatographic velocity, (3) limitations are inherent to the maximum intensity of the experimental intrinsic gradient steepness, and (4) dynamic temperature gradients can be advantageously combined to solvent gradients in order to improve peak capacities of microfluidic separation devices.
ERIC Educational Resources Information Center
Pitchford, Nicola; Johnson, Samantha; Scerif, Gaia; Marlow, Neil
2011-01-01
Cognitive impairment often follows preterm birth but its early underlying nature is not well understood. We used a novel approach by investigating the development of colour cognition in 54 very preterm children born less than or equal to 30 weeks gestational age without severe neurosensory impairment and 37 age-matched term-born controls, aged 2-5…
A Partial Test of Agnew's General Theory of Crime and Delinquency
ERIC Educational Resources Information Center
Zhang, Yan; Day, George; Cao, Liqun
2012-01-01
In 2005, Agnew introduced a new integrated theory, which he labels a general theory of crime and delinquency. He proposes that delinquency is more likely to occur when constraints against delinquency are low and motivations for delinquency are high. In addition, he argues that constraints and motivations are influenced by variables in five life…
Generalized van der Waals theory for the thermodynamic properties of square-well fluids
NASA Astrophysics Data System (ADS)
Largo, J.; Solana, J. R.
2003-06-01
A theory previously developed for the coordination number of square-well fluids is used within the context of a generalized van der Waals theory to obtain the compressibility factor and the internal energy of these fluids. Results are compared with computer simulations for several densities, temperatures, and potential widths, which are also reported.
The Intersectional Potential of Queer Theory: An Example from a General Education Course in English
ERIC Educational Resources Information Center
Carlin, Deborah
2011-01-01
In this chapter, the author describes how a pedagogical approach utilizing insights and principles from queer theory facilitated an intersectional analysis in a large lecture, general education course on "Gender, Sexuality, Literature and Culture" at the University of Massachusetts Amherst. Her goal in using queer theory's deconstructive…
General Rotorcraft Aeromechanical Stability Program (GRASP): Theory manual
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Hopkins, A. Stewart; Kunz, Donald L.; Hinnant, Howard E.
1990-01-01
The general rotorcraft aeromechanical stability program (GRASP) was developed to calculate aeroelastic stability for rotorcraft in hovering flight, vertical flight, and ground contact conditions. GRASP is described in terms of its capabilities and its philosophy of modeling. The equations of motion that govern the physical system are described, as well as the analytical approximations used to derive them. The equations include the kinematical equation, the element equations, and the constraint equations. In addition, the solution procedures used by GRASP are described. GRASP is capable of treating the nonlinear static and linearized dynamic behavior of structures represented by arbitrary collections of rigid-body and beam elements. These elements may be connected in an arbitrary fashion, and are permitted to have large relative motions. The main limitation of this analysis is that periodic coefficient effects are not treated, restricting rotorcraft flight conditions to hover, axial flight, and ground contact. Instead of following the methods employed in other rotorcraft programs. GRASP is designed to be a hybrid of the finite-element method and the multibody methods used in spacecraft analysis. GRASP differs from traditional finite-element programs by allowing multiple levels of substructure in which the substructures can move and/or rotate relative to others with no small-angle approximations. This capability facilitates the modeling of rotorcraft structures, including the rotating/nonrotating interface and the details of the blade/root kinematics for various types. GRASP differs from traditional multibody programs by considering aeroelastic effects, including inflow dynamics (simple unsteady aerodynamics) and nonlinear aerodynamic coefficients.
Amaro, Rommie E; Cheng, Xiaolin; Ivanov, Ivaylo N; Xu, Dong; McCammon, Jonathan
2009-01-01
The comparative dynamics and inhibitor binding free energies of group-1 and group-2 pathogenic influenza A subtype neuraminidase (NA) enzymes are of fundamental biological interest and relevant to structure-based drug design studies for antiviral compounds. In this work, we present seven generalized Born molecular dynamics simulations of avian (N1)- and human (N9)-type NAs in order to probe the comparative flexibility of the two subtypes, both with and without the inhibitor oseltamivir bound. The enhanced sampling obtained through the implicit solvent treatment suggests several provocative insights into the dynamics of the two subtypes, including that the group-2 enzymes may exhibit similar motion in the 430-binding site regions but different 150-loop motion. End-point free energy calculations elucidate the contributions to inhibitor binding free energies and suggest that entropic considerations cannot be neglected when comparing across the subtypes. We anticipate the findings presented here will have broad implications for the development of novel antiviral compounds against both seasonal and pandemic influenza strains.
Relativistic many-body perturbation theory for general open-shell multiplet states of atoms
NASA Astrophysics Data System (ADS)
Ishikawa, Yasuyuki; Koc, Konrad
1996-06-01
A relativistic many-body perturbation theory, which accounts for relativistic and electron-correlation effects for general open-shell multiplet states of atoms and molecules, is developed and implemented with analytic basis sets of Gaussian spinors. The theory retains the essential aspects of Mo/ller-Plesset perturbation theory by employing the relativistic single-Fock-operator method of Koc and Ishikawa [Phys. Rev. A 49, 794 (1994)] for general open-shell systems. Open-shell Dirac-Fock and relativistic many-body perturbation calculations are reported for the ground and low-lying excited states of Li, B2+, Ne7+, and Ca11+.
Matsui, Toru; Kitagawa, Yasutaka; Shigeta, Yasuteru; Okumura, Mitsutaka
2013-07-01
We propose an accurate scheme to evaluate the redox potential of a wide variety of transition metal complexes by adding a charge-dependent correction term for a counterion around the charged complexes, which is based on Generalized Born theory, to the solvation energy. The mean absolute error (MAE) toward experimental redox potentials of charged complexes is considerably reduced from 0.81 V (maximum error 1.22 V) to 0.22 V (maximum error 0.50 V). We found a remarkable exchange-correlation functional dependence on the results rather than the basis set ones. The combination of Wachters+f (for metal) and 6-31++G(d,p) (for other atoms) with the B3LYP functional gives the least MAE 0.15 V for the test complexes. This scheme is applicable to other solvents, and heavier transition metal complexes such as M1(CO)5(pycn) (M1 = Cr, Mo, W), M2(mnt)2 (M2 = Ni, Pd, Pt), and M3(bpy)3 (M3 = Fe, Ru, Os) with the same quality.
A New Point of View on General Kaluza-Klein Theories
NASA Astrophysics Data System (ADS)
Bejancu, A.
2012-09-01
The general Kaluza-Klein theories are physical theories in which both the ``cylinder condition" and the ``compactification condition" from the classical Kaluza-Klein theory are not necessarily satisfied. Our study is developed on a general Kaluza-Klein space (overline{M} = M × K,bar{g})}, whose tangent bundle T overline{M} splits into horizontal and vertical distributions H overline{M} and V overline{M}, respectively. The main tool in our new point of view is what we call the Riemannian horizontal connection nabla on H overline{M}, which plays in a general Kaluza-Klein theory, the same role as the Levi-Civita connection on the spacetime M in the classical Kaluza-Klein theory. This connection enables us to classify the geodesics of (overline{M},bar{g}), to define the horizontal Einstein gravitational tensor field, and to write down in a covariant form, the field equations on (overline{M},bar{g}) In particular, we apply the study to both the theory of Einstein-Bergmann spaces and the theory of general Kaluza-Klein spaces with bundle-like metric.
Quantum mechanics: The Bayesian theory generalized to the space of Hermitian matrices
NASA Astrophysics Data System (ADS)
Benavoli, Alessio; Facchini, Alessandro; Zaffalon, Marco
2016-10-01
We consider the problem of gambling on a quantum experiment and enforce rational behavior by a few rules. These rules yield, in the classical case, the Bayesian theory of probability via duality theorems. In our quantum setting, they yield the Bayesian theory generalized to the space of Hermitian matrices. This very theory is quantum mechanics: in fact, we derive all its four postulates from the generalized Bayesian theory. This implies that quantum mechanics is self-consistent. It also leads us to reinterpret the main operations in quantum mechanics as probability rules: Bayes' rule (measurement), marginalization (partial tracing), independence (tensor product). To say it with a slogan, we obtain that quantum mechanics is the Bayesian theory in the complex numbers.
Tensor hierarchy and generalized Cartan calculus in SL(3) × SL(2) exceptional field theory
NASA Astrophysics Data System (ADS)
Hohm, Olaf; Wang, Yi-Nan
2015-04-01
We construct exceptional field theory for the duality group SL(3) × SL(2). The theory is defined on a space with 8 `external' coordinates and 6 `internal' coordinates in the (3, 2) fundamental representation, leading to a 14-dimensional generalized spacetime. The bosonic theory is uniquely determined by gauge invariance under generalized external and internal diffeomorphisms. The latter invariance can be made manifest by introducing higher form gauge fields and a so-called tensor hierarchy, which we systematically develop to much higher degree than in previous studies. To this end we introduce a novel Cartan-like tensor calculus based on a covariant nil-potent differential, generalizing the exterior derivative of conventional differential geometry. The theory encodes the full D = 11 or type IIB supergravity, respectively.
Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT
NASA Astrophysics Data System (ADS)
Song, Jaewon
2016-02-01
We study superconformal indices of 4d {N}=2 class S theories with certain irregular punctures called type I k,N . This class of theories include generalized Argyres-Douglas theories of type ( A k-1 , A N -1) and more. We conjecture the superconformal indices in certain simplified limits based on the TQFT structure of the class S theories by writing an expression for the wave function corresponding to the puncture I k,N . We write the Schur limit of the wave function when k and N are coprime. When k = 2, we also conjecture a closed-form expression for the Hall-Littlewood index and the Macdonald index for odd N. Fromtheindex,wearguethatcertainshort-multipletwhichcanappearintheOPEof the stress-energy tensor is absent in the ( A 1 , A 2 n ) theory. We also discuss the mixed Schur indices for the {N}=1 class {S} theories with irregular punctures.
Nonsingular promises from Born-Infeld gravity.
Fiorini, Franco
2013-07-26
Born-Infeld determinantal gravity formulated in Weitzenböck spacetime is discussed in the context of Friedmann-Robertson-Walker (FRW) cosmologies. It is shown how the standard model big bang singularity is absent in certain spatially flat FRW spacetimes, where the high energy regime is characterized by a de Sitter inflationary stage of geometrical character, i.e., without the presence of the inflaton field. This taming of the initial singularity is also achieved for some spatially curved FRW manifolds where the singularity is replaced by a de Sitter stage or a big bounce of the scale factor depending on certain combinations of free parameters appearing in the action. Unlike other Born-Infeld-like theories in vogue, the one here presented is also capable of deforming vacuum general relativistic solutions. PMID:23931349
Nonsingular Promises from Born-Infeld Gravity
NASA Astrophysics Data System (ADS)
Fiorini, Franco
2013-07-01
Born-Infeld determinantal gravity formulated in Weitzenböck spacetime is discussed in the context of Friedmann-Robertson-Walker (FRW) cosmologies. It is shown how the standard model big bang singularity is absent in certain spatially flat FRW spacetimes, where the high energy regime is characterized by a de Sitter inflationary stage of geometrical character, i.e., without the presence of the inflaton field. This taming of the initial singularity is also achieved for some spatially curved FRW manifolds where the singularity is replaced by a de Sitter stage or a big bounce of the scale factor depending on certain combinations of free parameters appearing in the action. Unlike other Born-Infeld-like theories in vogue, the one here presented is also capable of deforming vacuum general relativistic solutions.
Non-Abelian Born Infeld action, geometry and supersymmetry
NASA Astrophysics Data System (ADS)
Julio Cirilo-Lombardo, Diego
2005-12-01
In this work, we propose a new non-Abelian generalization of the Born Infeld Lagrangian. It is based on a geometrical property of the Abelian Born Infeld Lagrangian in its determinantal form. Our goal is to extend the Abelian second-type Born Infeld action to the non-Abelian form preserving this geometrical property, which permits us to compute the generalized volume element as a linear combination of the components of metric and the Yang Mills energy momentum tensors. Under the BPS-like condition, the action proposed reduces to that of the Yang Mills theory, independently of the gauge group. New instanton-wormhole solution and static and spherically symmetric solution in curved spacetime for an SU(2) isotopic ansatz are solved and the N= 1 supersymmetric extension of the model is performed.
ERIC Educational Resources Information Center
Cheung, Nicole W. T.; Cheung, Yuet W.
2008-01-01
The objectives of this study were to test the predictive power of self-control theory for delinquency in a Chinese context, and to explore if social factors as predicted in social bonding theory, differential association theory, general strain theory, and labeling theory have effects on delinquency in the presence of self-control. Self-report data…
The parasite-stress theory may be a general theory of culture and sociality.
Fincher, Corey L; Thornhill, Randy
2012-04-01
In the target article, we presented the hypothesis that parasite-stress variation was a causal factor in the variation of in-group assortative sociality, cross-nationally and across the United States, which we indexed with variables that measured different aspects of the strength of family ties and religiosity. We presented evidence supportive of our hypothesis in the form of analyses that controlled for variation in freedom, wealth resources, and wealth inequality across nations and the states of the USA. Here, we respond to criticisms from commentators and attempt to clarify and expand the parasite-stress theory of sociality used to fuel our research presented in the target article.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Born. 65.115 Section 65.115 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections..., AND GINSENG General Provisions Definitions § 65.115 Born. Born in the case of chicken means...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Born. 65.115 Section 65.115 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections..., AND GINSENG General Provisions Definitions § 65.115 Born. Born in the case of chicken means...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 3 2012-01-01 2012-01-01 false Born. 65.115 Section 65.115 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections..., AND GINSENG General Provisions Definitions § 65.115 Born. Born in the case of chicken means...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 3 2013-01-01 2013-01-01 false Born. 65.115 Section 65.115 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections..., AND GINSENG General Provisions Definitions § 65.115 Born. Born in the case of chicken means...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 3 2014-01-01 2014-01-01 false Born. 65.115 Section 65.115 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections..., AND GINSENG General Provisions Definitions § 65.115 Born. Born in the case of chicken means...
NASA Astrophysics Data System (ADS)
Arun, K. G.; Pai, Archana
2013-01-01
Gravitational wave (GW) observations of coalescing compact binaries will be unique probes of strong-field, dynamical aspects of relativistic gravity. We present a short review of various schemes proposed in the literature to test general relativity (GR) and alternative theories of gravity using inspiral waveforms. Broadly these schemes may be classified into two types: model dependent and model independent. In the model dependent category, GW observations are compared against a specific waveform model representative of a particular theory or a class of theories such as scalar-tensor theories, dynamical Chern-Simons theory and massive graviton theories. Model independent tests are attempts to write down a parametrized gravitational waveform where the free parameters take different values for different theories and (at least some of) which can be constrained by GW observations. We revisit some of the proposed bounds in the case of downscaled LISA configuration (eLISA) and compare them with the original LISA configuration. We also compare the expected bounds on alternative theories of gravity from ground-based and space-based detectors and find that space-based GW detectors can test GR and other theories of gravity with unprecedented accuracies. We then focus on a recent proposal to use singular value decomposition of the Fisher information matrix to improve the accuracies with which post-Newtonian theory can be tested. We extend those results to the case of space-based detector eLISA and discuss its implications.
General relativity as the effective theory of GL(4,R) spontaneous symmetry breaking
Tomboulis, E. T.
2011-10-15
We assume a GL(4,R) space-time symmetry which is spontaneously broken to SO(3,1). We carry out the coset construction of the effective theory for the nonlinearly realized broken symmetry in terms of the Goldstone fields and matter fields transforming linearly under the unbroken Lorentz subgroup. We then identify functions of the Goldstone and matter fields that transform linearly also under the broken symmetry. Expressed in terms of these quantities the effective theory reproduces the vierbein formalism of general relativity with general coordinate invariance being automatically realized nonlinearly over GL(4,R). The coset construction makes no assumptions about any underlying theory that might be responsible for the assumed symmetry breaking. We give a brief discussion of the possibility of field theories with GL(4,R) rather than Lorentz space-time symmetry providing the underlying dynamics.
General Relativity: The most beautiful of theories. Applications and trends after 100 years
NASA Astrophysics Data System (ADS)
Rovelli, Carlo
2015-02-01
Generalising Newton's law of gravitation, general relativity is one of the pillars of modern physics. While applications in the beginning were restricted to isolated effects such as a proper understanding of Mercury's orbit, the second half of the twentieth century saw a massive development of applications. These include cosmology, gravitational waves, and even very practical results for satellite based positioning systems as well as different approaches to unite general relativity with another very successful branch of physics - quantum theory. On the occassion of general relativity's centennial, leading scientists in the different branches of gravitational research review the history and recent advances in the main fields of applications of the theory, which was referred to by Lev Landau as "the most beautiful of the existing physical theories".
NASA Astrophysics Data System (ADS)
Kerner, Boris S.
2013-11-01
It is explained why the set of the fundamental empirical features of traffic breakdown (a transition from free flow to congested traffic) should be the empirical basis for any traffic and transportation theory that can be reliably used for control and optimization in traffic networks. It is shown that the generally accepted fundamentals and methodologies of the traffic and transportation theory are not consistent with the set of the fundamental empirical features of traffic breakdown at a highway bottleneck. To these fundamentals and methodologies of the traffic and transportation theory belong (i) Lighthill-Whitham-Richards (LWR) theory, (ii) the General Motors (GM) model class (for example, Herman, Gazis et al. GM model, Gipps’s model, Payne’s model, Newell’s optimal velocity (OV) model, Wiedemann’s model, Bando et al. OV model, Treiber’s IDM, Krauß’s model), (iii) the understanding of highway capacity as a particular (fixed or stochastic) value, and (iv) principles for traffic and transportation network optimization and control (for example, Wardrop’s user equilibrium (UE) and system optimum (SO) principles). Alternatively to these generally accepted fundamentals and methodologies of the traffic and transportation theory, we discuss the three-phase traffic theory as the basis for traffic flow modeling as well as briefly consider the network breakdown minimization (BM) principle for the optimization of traffic and transportation networks with road bottlenecks.
Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory
Kerner, Boris S.
2015-03-10
It is explained why the set of the fundamental empirical features of traffic breakdown (a transition from free flow to congested traffic) should be the empirical basis for any traffic and transportation theory that can be reliable used for control and optimization in traffic networks. It is shown that generally accepted fundamentals and methodologies of traffic and transportation theory are not consistent with the set of the fundamental empirical features of traffic breakdown at a highway bottleneck. To these fundamentals and methodologies of traffic and transportation theory belong (i) Lighthill-Whitham-Richards (LWR) theory, (ii) the General Motors (GM) model class (for example, Herman, Gazis et al. GM model, Gipps’s model, Payne’s model, Newell’s optimal velocity (OV) model, Wiedemann’s model, Bando et al. OV model, Treiber’s IDM, Krauß’s model), (iii) the understanding of highway capacity as a particular stochastic value, and (iv) principles for traffic and transportation network optimization and control (for example, Wardrop’s user equilibrium (UE) and system optimum (SO) principles). Alternatively to these generally accepted fundamentals and methodologies of traffic and transportation theory, we discuss three-phase traffic theory as the basis for traffic flow modeling as well as briefly consider the network breakdown minimization (BM) principle for the optimization of traffic and transportation networks with road bottlenecks.
NASA Astrophysics Data System (ADS)
Bruno, Ezio; Mammano, Francesco; Fiorino, Antonino; Morabito, Emanuela V.
2008-04-01
The class of the generalized coherent-potential approximations (GCPAs) to the density functional theory (DFT) is introduced within the multiple scattering theory formalism with the aim of dealing with ordered or disordered metallic alloys. All GCPA theories are based on a common ansatz for the kinetic part of the Hohenberg-Kohn functional and each theory of the class is specified by an external model concerning the potential reconstruction. Most existing DFT implementations of CPA-based theories belong to the GCPA class. The analysis of the formal properties of the density functional defined by GCPA theories shows that it consists of marginally coupled local contributions. Furthermore, it is shown that the GCPA functional does not depend on the details of the charge density and that it can be exactly rewritten as a function of the appropriate charge multipole moments to be associated with each lattice site. A general procedure based on the integration of the qV laws is described that allows for the explicit construction of the same function. The coarse-grained nature of the GCPA density functional implies a great deal of computational advantages and is connected with the O(N) scalability of GCPA algorithms. Moreover, it is shown that a convenient truncated series expansion of the GCPA functional leads to the charge-excess functional (CEF) theory [E. Bruno , Phys. Rev. Lett. 91, 166401 (2003)], which here is offered in a generalized version that includes multipolar interactions. CEF and the GCPA numerical results are compared with status of art linearized augmented plane wave (LAPW) full-potential density functional calculations for 62 bcc- and fcc-based ordered CuZn alloys, in all the range of concentrations. Two facts clearly emerge from these extensive tests. In the first place, the discrepancies between GCPA and CEF results are always within the numerical accuracy of the calculations, both for the site charges and the total energies. In the second place, the
Siegert pseudostate formulation of scattering theory: General three-dimensional case
NASA Astrophysics Data System (ADS)
Krainov, Lev O.; Batishchev, Pavel A.; Tolstikhin, Oleg I.
2016-04-01
This paper generalizes the Siegert pseudostate (SPS) formulation of scattering theory to arbitrary finite-range potentials without any symmetry in the three-dimensional (3D) case. The orthogonality and completeness properties of 3D SPSs are established. The SPS expansions for scattering states, outgoing-wave Green's function, scattering matrix, and scattering amplitude, that is, all major objects of scattering theory, are derived. The theory is illustrated by calculations for several model potentials. The results enable one to apply 3D SPSs as a purely discrete basis capable of representing both discrete and continuous spectra in solving various stationary and time-dependent quantum-mechanical problems.
Numerical validation of the generalized Harvey-Shack surface scatter theory
NASA Astrophysics Data System (ADS)
Choi, Narak; Harvey, James E.
2013-11-01
The generalized Harvey-Shack (GHS) surface scatter theory is numerically compared to the classical small perturbation method, the Kirchhoff approximation method, and the rigorous method of moments for one-dimensional ideally conducting surfaces whose surface power spectral density function is Gaussian or exhibits an inverse power law (fractal) behavior. In spite of its simple analytic form, our numerical comparison shows that the new GHS theory is valid (with reasonable accuracy) over a broader range of surface parameter space than either of the two classical surface scatter theories.
General Medical Practitioners Need to Be Aware of the Theories on Which Our Work Depend
Thomas, Paul
2006-01-01
When general practitioners and family physicians listen, reflect, and diagnose, we use 3 different theories of knowledge. This essay explores these theories to highlight an approach to clinical practice, inquiry, and learning that can do justice to the complex and uncertain world we experience. The following points are made: (1) A variety of approaches to research and audit are needed to illuminate the richness of experience witnessed by general medical practitioners. (2) Evidence about the past cannot predict the future except in simple, short-term, or slowly changing situations. (3) We consciously or unconsciously weave together evidence generated through 3 fundamental theories of knowledge, termed postpositivism, critical theory, and constructivism, to make sense of everyday experience. We call it listening, reflecting, and diagnosing. (4) These 3 fundamental theories of knowledge highlight different aspects within a world that is more complex, integrated, and changing than any single theory can reveal on its own; they frame what we see and how we act in everyday situations. (5) Moving appropriately between these different theories helps us to see a fuller picture and provides a framework for improving our skills as clinicians, researchers, and learners. (6) Narrative unity offers a way to bring together different kinds of evidence to understand the overall health of patients and of communities; evidence of all kinds provides discrete snapshots of more complex stories in evolution. (7) We need to understand these issues so we can create an agenda for clinical practice, inquiry, and learning appropriate to our discipline. PMID:17003147
NASA Astrophysics Data System (ADS)
Chung, Moses; Qin, Hong; Gilson, Erik P.; Davidson, Ronald C.
2013-08-01
By extending the recently developed generalized Courant-Snyder theory for coupled transverse beam dynamics, we have constructed the Gaussian beam distribution and its projections with arbitrary mode emittance ratios. The new formulation has been applied to a continuously rotating quadrupole focusing channel because the basic properties of this channel are known theoretically and could also be investigated experimentally in a compact setup such as the linear Paul trap configuration. The new formulation retains a remarkably similar mathematical structure to the original Courant-Snyder theory, and thus, provides a powerful theoretical tool to investigate coupled transverse beam dynamics in general and more complex linear focusing channels.
NASA Astrophysics Data System (ADS)
Rechenberg, H.
While the 20th century is approaching its conclusion, the historian may look back and assemble the essential scientific fruits of the this period. Nearly fifty years ago, Werner Heisenberg stated in a lecture that in quantum or wave mechanics ``a new, unified science of matter has arisen, where the separation between chemistry and physics essentially lost any meaning", because (Heisenberg 1953)``The chemical properties of atoms have at least in principle become accessible to calculation, and already in the first years after the rise of quantum mechanics the simplest chemical binding, namely that of the two hydrogen atoms in the hydrogen molecule was calculated with the help of the new methods and was found in closest agreement with chemical experience. Thus the chemical valency-forces were explained on a physical basis, and the application of the new knowledge in industrial practices became only a matter of time."
Kanazawa, Takuya
2009-08-15
We extend the inequality of Tomboulis and Yaffe in SU(2) lattice gauge theory (LGT) to SU(N) LGT and to general classical spin systems, by use of reflection positivity. Basically the inequalities guarantee that a system in a box that is sufficiently insensitive to boundary conditions has a non-zero mass gap. We explicitly illustrate the theorem in some solvable models. Strong-coupling expansion is then utilized to discuss some aspects of the theorem. Finally, a conjecture for exact expression to the off-axis mass gap of the triangular Ising model is presented. The validity of the conjecture is tested in multiple ways.
Robson, Barry
2005-01-01
A new approach, a Zeta Theory of observations, data, and data mining, is being forged from a theory of expected information into an even more cohesive and comprehensive form by the challenge of general genomic, pharmacogenomic, and proteomic data. In this paper, the focus is not on studies using the specific tool FANO (CliniMiner) but on extensions to a new broader theoretical approach, aspects of which can easily be implemented into, or otherwise support, excellent existing methods, such as forms of multivariate analysis and IBM's product Intelligent Miner. The theory should perhaps be distinguished from an existing purely number-theoretic area sometimes also known as Zeta Theory, which focuses on the Riemann Zeta Function and the ways in which it governs the distribution of prime numbers. However, Zeta Theory as used here overlaps heavily with it and actually makes use of these same matters. The distinction is that it enters from a Bayesian information theory and data representation perspective. It could thus be considered an application of the 'mathematician's version'. The application is by no means confined to areas of modern biomedicine, and indeed its generality, even merging into quantum mechanics, is a key feature. Other areas with some similar challenges as modern biology, and which have inspired data mining methods such as IBM's Intelligent Miner, include commerce. But for several reasons discussed, modern molecular biology and medicine seem particularly challenging, and this relates to the often irreducible high dimensionality of the data. This thus remains our main target.
Beyond heat baths: Generalized resource theories for small-scale thermodynamics
NASA Astrophysics Data System (ADS)
Yunger Halpern, Nicole; Renes, Joseph M.
2016-02-01
Thermodynamics has recently been extended to small scales with resource theories that model heat exchanges. Real physical systems exchange diverse quantities: heat, particles, angular momentum, etc. We generalize thermodynamic resource theories to exchanges of observables other than heat, to baths other than heat baths, and to free energies other than the Helmholtz free energy. These generalizations are illustrated with "grand-potential" theories that model movements of heat and particles. Free operations include unitaries that conserve energy and particle number. From this conservation law and from resource-theory principles, the grand-canonical form of the free states is derived. States are shown to form a quasiorder characterized by free operations, d majorization, the hypothesis-testing entropy, and rescaled Lorenz curves. We calculate the work distillable from—and we bound the work cost of creating—a state. These work quantities can differ but converge to the grand potential in the thermodynamic limit. Extending thermodynamic resource theories beyond heat baths, we open diverse realistic systems to modeling with one-shot statistical mechanics. Prospective applications such as electrochemical batteries are hoped to bridge one-shot theory to experiments.
Beyond heat baths: Generalized resource theories for small-scale thermodynamics.
Yunger Halpern, Nicole; Renes, Joseph M
2016-02-01
Thermodynamics has recently been extended to small scales with resource theories that model heat exchanges. Real physical systems exchange diverse quantities: heat, particles, angular momentum, etc. We generalize thermodynamic resource theories to exchanges of observables other than heat, to baths other than heat baths, and to free energies other than the Helmholtz free energy. These generalizations are illustrated with "grand-potential" theories that model movements of heat and particles. Free operations include unitaries that conserve energy and particle number. From this conservation law and from resource-theory principles, the grand-canonical form of the free states is derived. States are shown to form a quasiorder characterized by free operations, d majorization, the hypothesis-testing entropy, and rescaled Lorenz curves. We calculate the work distillable from-and we bound the work cost of creating-a state. These work quantities can differ but converge to the grand potential in the thermodynamic limit. Extending thermodynamic resource theories beyond heat baths, we open diverse realistic systems to modeling with one-shot statistical mechanics. Prospective applications such as electrochemical batteries are hoped to bridge one-shot theory to experiments.
Beyond heat baths: Generalized resource theories for small-scale thermodynamics.
Yunger Halpern, Nicole; Renes, Joseph M
2016-02-01
Thermodynamics has recently been extended to small scales with resource theories that model heat exchanges. Real physical systems exchange diverse quantities: heat, particles, angular momentum, etc. We generalize thermodynamic resource theories to exchanges of observables other than heat, to baths other than heat baths, and to free energies other than the Helmholtz free energy. These generalizations are illustrated with "grand-potential" theories that model movements of heat and particles. Free operations include unitaries that conserve energy and particle number. From this conservation law and from resource-theory principles, the grand-canonical form of the free states is derived. States are shown to form a quasiorder characterized by free operations, d majorization, the hypothesis-testing entropy, and rescaled Lorenz curves. We calculate the work distillable from-and we bound the work cost of creating-a state. These work quantities can differ but converge to the grand potential in the thermodynamic limit. Extending thermodynamic resource theories beyond heat baths, we open diverse realistic systems to modeling with one-shot statistical mechanics. Prospective applications such as electrochemical batteries are hoped to bridge one-shot theory to experiments. PMID:26986307
ERIC Educational Resources Information Center
Kingston, Neal M.; McKinley, Robert L.
Confirmatory multidimensional item response theory (CMIRT) was used to assess the structure of the Graduate Record Examination General Test, about which much information about factorial structure exists, using a sample of 1,001 psychology majors taking the test in 1984 or 1985. Results supported previous findings that, for this population, there…
Chaos and Crisis: Propositions for a General Theory of Crisis Communication.
ERIC Educational Resources Information Center
Seeger, Matthew W.
2002-01-01
Presents key concepts of chaos theory (CT) as a general framework for describing organizational crisis and crisis communication. Discusses principles of predictability, sensitive dependence on initial conditions, bifurcation as system breakdown, emergent self-organization, and fractals and strange attractors as principles of organization. Explores…
ERIC Educational Resources Information Center
Bozdogan, Hamparsum
1987-01-01
This paper studies the general theory of Akaike's Information Criterion (AIC) and provides two analytical extensions. The extensions make AIC asymptotically consistent and penalize overparameterization more stringently to pick only the simplest of the two models. The criteria are applied in two Monte Carlo experiments. (Author/GDC)
ERIC Educational Resources Information Center
Perfetti, Charles A.; Liu, Ying; Tan, Li Hai
2005-01-01
The authors examine the implications of research on Chinese for theories of reading and propose the lexical constituency model as a general framework for word reading across writing systems. Word identities are defined by 3 interlinked constituents (orthographic, phonological, and semantic). The implemented model simulates the time course of…
The Process of General Education Reform from a Faculty Perspective: A Grounded Theory Approach
ERIC Educational Resources Information Center
Hachtmann, Frauke
2012-01-01
The purpose of this study was to explain the process and implementation of an outcomes-based general education program at a public, doctoral/research-extensive institution from the perspective of faculty. The theory that emerged explains how different causal, intervening, and contextual conditions interact with and affect the phenomenon of general…
ERIC Educational Resources Information Center
Vos, Hans J.
1994-01-01
Describes the construction of a model of computer-assisted instruction using a qualitative block diagram based on general systems theory (GST) as a framework. Subject matter representation is discussed, and appendices include system variables and system equations of the GST model, as well as an example of developing flexible courseware. (Contains…
Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment
DOE R&D Accomplishments Database
Marcus, R. A.
1964-01-01
In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.
General Strain Theory and Delinquency: Extending a Popular Explanation to American Indian Youth
ERIC Educational Resources Information Center
Eitle, David; Eitle, Tamela McNulty
2016-01-01
Despite evidence that American Indian (AI) adolescents are disproportionately involved in crime and delinquent behavior, there exists scant research exploring the correlates of crime among this group. We posit that Agnew's General Strain Theory (GST) is well suited to explain AI delinquent activity. Using the National Longitudinal Study of…
THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR GRANT YEAR 2004
PROJECT STAFF
2004-12-01
The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance our scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES).
General Strain Theory as a Basis for the Design of School Interventions
ERIC Educational Resources Information Center
Moon, Byongook; Morash, Merry
2013-01-01
The research described in this article applies general strain theory to identify possible points of intervention for reducing delinquency of students in two middle schools. Data were collected from 296 youths, and separate negative binomial regression analyses were used to identify predictors of violent, property, and status delinquency. Emotional…
Born-Infeld/gravity correspondence
NASA Astrophysics Data System (ADS)
Grignani, Gianluca; Harmark, Troels; Marini, Andrea; Orselli, Marta
2016-09-01
In this paper we explore the correspondence between four-dimensional Born-Infeld theory and five-dimensional classical gravity. The Born-Infeld theory side corresponds to the low-energy effective theory for open strings ending on coincident D3-branes in a (slowly varying) background Kalb-Ramond field, including all higher-derivative corrections. On the gravity side one has the gravitational (closed-string) description of D3-branes in the same background Kalb-Ramond field and the correspondence is thus a consequence of the open/closed-string duality. According to the correspondence the gravity side provides a description of the strong coupling limit of Born-Infeld theory. This is a correspondence between effective theories in a similar sense as in the fluid/gravity correspondence. We match the Born-Infeld and gravity sides up to, and including, two-derivative corrections. To this end, we find a new gravity solution for D3-branes with flat embedding in the background of an arbitrary constant background Kalb-Ramond field and show that there are no two-derivative corrections to this for a slowly varying Kalb-Ramond field.
Communication: The simplified generalized entropy theory of glass-formation in polymer melts
Freed, Karl F.
2015-08-07
While a wide range of non-trivial predictions of the generalized entropy theory (GET) of glass-formation in polymer melts agree with a large number of observed universal and non-universal properties of these glass-formers and even for the dependence of these properties on monomer molecular structure, the huge mathematical complexity of the theory precludes its extension to describe, for instance, the perplexing, complex behavior observed for technologically important polymer films with thickness below ∼100 nm and for which a fundamental molecular theory is lacking for the structural relaxation. The present communication describes a hugely simplified version of the theory, called the simplified generalized entropy theory (SGET) that provides one component necessary for devising a theory for the structural relaxation of thin polymer films and thereby supplements the first required ingredient, the recently developed Flory-Huggins level theory for the thermodynamic properties of thin polymer films, before the concluding third step of combining all the components into the SGET for thin polymer films. Comparisons between the predictions of the SGET and the full GET for the four characteristic temperatures of glass-formation provide good agreement for a highly non-trivial model system of polymer melts with chains of the structure of poly(n-α olefins) systems where the GET has produced good agreement with experiment. The comparisons consider values of the relative backbone and side group stiffnesses such that the glass transition temperature decreases as the amount of excess free volume diminishes, contrary to general expectations but in accord with observations for poly(n-alkyl methacrylates). Moreover, the SGET is sufficiently concise to enable its discussion in a standard course on statistical mechanics or polymer physics.
Communication: The simplified generalized entropy theory of glass-formation in polymer melts
NASA Astrophysics Data System (ADS)
Freed, Karl F.
2015-08-01
While a wide range of non-trivial predictions of the generalized entropy theory (GET) of glass-formation in polymer melts agree with a large number of observed universal and non-universal properties of these glass-formers and even for the dependence of these properties on monomer molecular structure, the huge mathematical complexity of the theory precludes its extension to describe, for instance, the perplexing, complex behavior observed for technologically important polymer films with thickness below ˜100 nm and for which a fundamental molecular theory is lacking for the structural relaxation. The present communication describes a hugely simplified version of the theory, called the simplified generalized entropy theory (SGET) that provides one component necessary for devising a theory for the structural relaxation of thin polymer films and thereby supplements the first required ingredient, the recently developed Flory-Huggins level theory for the thermodynamic properties of thin polymer films, before the concluding third step of combining all the components into the SGET for thin polymer films. Comparisons between the predictions of the SGET and the full GET for the four characteristic temperatures of glass-formation provide good agreement for a highly non-trivial model system of polymer melts with chains of the structure of poly(n-α olefins) systems where the GET has produced good agreement with experiment. The comparisons consider values of the relative backbone and side group stiffnesses such that the glass transition temperature decreases as the amount of excess free volume diminishes, contrary to general expectations but in accord with observations for poly(n-alkyl methacrylates). Moreover, the SGET is sufficiently concise to enable its discussion in a standard course on statistical mechanics or polymer physics.
Hyland, Michael E
2003-12-01
Extended Network Generalized Entanglement Theory (Entanglement Theory for short) combines two earlier theories based on complexity theory and quantum mechanics. The theory's assumptions are: the body is a complex, self-organizing system (the extended network) that self-organizes so as to achieve genetically defined patterns (where patterns include morphologic as well as lifestyle patterns). These pattern-specifying genes require feedback that is provided by generalized quantum entanglement. Additionally, generalized entanglement has evolved as a form of communication between people (and animals) and can be used in healing. Entanglement Theory suggests that several processes are involved in complementary and alternative medicine (CAM). Direct subtle therapy creates network change either through lifestyle management, some manual therapies, and psychologically mediated effects of therapy. Indirect subtle therapy is a process of entanglement with other people or physical entities (e.g., remedies, healing sites). Both types of subtle therapy create two kinds of information within the network--either that the network is more disregulated than it is and the network then compensates for this error, or as a guide for network change leading to healing. Most CAM therapies involve a combination of indirect and direct therapies, making empirical evaluation complex. Empirical predictions from this theory are contrasted with those from two other possible mechanisms of healing: (1) psychologic processes and (2) mechanisms involving electromagnetic influence between people (biofield/energy medicine). Topics for empirical study include a hyperfast communication system, the phenomenology of entanglement, predictors of outcome in naturally occurring clinical settings, and the importance of therapist and patient characteristics to outcome.
Communication: The simplified generalized entropy theory of glass-formation in polymer melts.
Freed, Karl F
2015-08-01
While a wide range of non-trivial predictions of the generalized entropy theory (GET) of glass-formation in polymer melts agree with a large number of observed universal and non-universal properties of these glass-formers and even for the dependence of these properties on monomer molecular structure, the huge mathematical complexity of the theory precludes its extension to describe, for instance, the perplexing, complex behavior observed for technologically important polymer films with thickness below ∼100 nm and for which a fundamental molecular theory is lacking for the structural relaxation. The present communication describes a hugely simplified version of the theory, called the simplified generalized entropy theory (SGET) that provides one component necessary for devising a theory for the structural relaxation of thin polymer films and thereby supplements the first required ingredient, the recently developed Flory-Huggins level theory for the thermodynamic properties of thin polymer films, before the concluding third step of combining all the components into the SGET for thin polymer films. Comparisons between the predictions of the SGET and the full GET for the four characteristic temperatures of glass-formation provide good agreement for a highly non-trivial model system of polymer melts with chains of the structure of poly(n-α olefins) systems where the GET has produced good agreement with experiment. The comparisons consider values of the relative backbone and side group stiffnesses such that the glass transition temperature decreases as the amount of excess free volume diminishes, contrary to general expectations but in accord with observations for poly(n-alkyl methacrylates). Moreover, the SGET is sufficiently concise to enable its discussion in a standard course on statistical mechanics or polymer physics.
Static spacetimes with Einstein surfaces in 4d Einstein-Maxwell-Higgs theory with general couplings
NASA Astrophysics Data System (ADS)
Gunara, Bobby Eka
2015-04-01
Static spacetimes of four dimensional Einstein-Maxwell-Higgs theory with general couplings can be thought of as static black holes and static domain walls. In this paper, we study a static spacetime where the two-surface is in general to be Einstein. In particular, if the scalars are frozen everywhere in the spacetime which can be viewed as the critical points of the black hole and the scalar potentials, then the geometries are of a constant scalar curvature which in general are not Einstein describing charged black holes. Whereas, in the case of charged domain walls the scalars are frozen in the asymptotic region describing spaces of constant scalar curvature.
Tensor Models as Theory of Dynamical Fuzzy Spaces and General Relativity
Sasakura, Naoki
2010-06-17
The tensor model is discussed as theory of dynamical fuzzy spaces in order to formulate gravity on fuzzy spaces. The numerical analyses of the tensor models possessing Gaussian background solutions have shown that the low-lying long-wavelength fluctuations around the backgrounds are in remarkable agreement with the geometric fluctuations on flat spaces in the general relativity. It has also been shown that part of the orthogonal symmetry of the tensor model spontaneously broken by the backgrounds agrees with the local translation symmetry of the general relativity. Thus the tensor model provides an interesting model of simultaneous emergence of space, the general relativity, and its local translation symmetry.
Gender, general theory of crime and computer crime: an empirical test.
Moon, Byongook; McCluskey, John D; McCluskey, Cynthia P; Lee, Sangwon
2013-04-01
Regarding the gender gap in computer crime, studies consistently indicate that boys are more likely than girls to engage in various types of computer crime; however, few studies have examined the extent to which traditional criminology theories account for gender differences in computer crime and the applicability of these theories in explaining computer crime across gender. Using a panel of 2,751 Korean youths, the current study tests the applicability of the general theory of crime in explaining the gender gap in computer crime and assesses the theory's utility in explaining computer crime across gender. Analyses show that self-control theory performs well in predicting illegal use of others' resident registration number (RRN) online for both boys and girls, as predicted by the theory. However, low self-control, a dominant criminogenic factor in the theory, fails to mediate the relationship between gender and computer crime and is inadequate in explaining illegal downloading of software in both boy and girl models. Theoretical implication of the findings and the directions for future research are discussed.
Three-Dimensional Topological Field Theory Induced from Generalized Complex Structure
NASA Astrophysics Data System (ADS)
Ikeda, Noriaki
We construct a three-dimensional topological sigma model which is induced from a generalized complex structure on a target generalized complex manifold. This model is constructed from maps from a three-dimensional manifold X to an arbitrary generalized complex manifold M. The theory is invariant under the diffeomorphism on the worldvolume and the b-transformation on the generalized complex structure. Moreover the model is manifestly invariant under the mirror symmetry. We derive from this model the Zucchini's two-dimensional topological sigma model with a generalized complex structure as a boundary action on ∂X. As a special case, we obtain three-dimensional realization of a WZ-Poisson manifold.
Disformal invariance of cosmological perturbations in a generalized class of Horndeski theories
NASA Astrophysics Data System (ADS)
Tsujikawa, Shinji
2015-04-01
It is known that Horndeski theories can be transformed to a sub-class of Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories under the disformal transformation of the metric gμ ν → Ω2(phi)gμ ν+Γ (phi,X) ∇μ phi ∇ν phi, where Ω is a function of a scalar field phi and Γ is another function depending on both phi and X=gμ ν∇μ phi ∇ν phi. We show that, with the choice of unitary gauge, both curvature and tensor perturbations on the flat isotropic cosmological background are generally invariant under the disformal transformation. By means of the effective field theories encompassing Horndeski and GLPV theories, we obtain the second-order actions of scalar/tensor perturbations and present the relations for physical quantities between the two frames. The invariance of the inflationary power spectra under the disformal transformation is explicitly proved up to next-to-leading order in slow-roll. In particular, we identify the existence of the Einstein frame in which the tensor power spectrum is of the same form as that in General Relativity and derive the condition under which the spectrum of gravitational waves in GLPV theories is red-tilted.
Disformal invariance of cosmological perturbations in a generalized class of Horndeski theories
Tsujikawa, Shinji
2015-04-01
It is known that Horndeski theories can be transformed to a sub-class of Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories under the disformal transformation of the metric g{sub μ ν} → Ω{sup 2}(φ)g{sub μ ν}+Γ (φ,X) ∇{sub μ} φ ∇{sub ν} φ, where Ω is a function of a scalar field φ and Γ is another function depending on both φ and X=g{sup μ ν}∇{sub μ} φ ∇{sub ν} φ. We show that, with the choice of unitary gauge, both curvature and tensor perturbations on the flat isotropic cosmological background are generally invariant under the disformal transformation. By means of the effective field theories encompassing Horndeski and GLPV theories, we obtain the second-order actions of scalar/tensor perturbations and present the relations for physical quantities between the two frames. The invariance of the inflationary power spectra under the disformal transformation is explicitly proved up to next-to-leading order in slow-roll. In particular, we identify the existence of the Einstein frame in which the tensor power spectrum is of the same form as that in General Relativity and derive the condition under which the spectrum of gravitational waves in GLPV theories is red-tilted.
Disformal invariance of cosmological perturbations in a generalized class of Horndeski theories
Tsujikawa, Shinji
2015-04-27
It is known that Horndeski theories can be transformed to a sub-class of Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories under the disformal transformation of the metric g{sub μν}→Ω{sup 2}(ϕ)g{sub μν}+Γ(ϕ,X)∇{sub μ}ϕ∇{sub ν}ϕ, where Ω is a function of a scalar field ϕ and Γ is another function depending on both ϕ and X=g{sup μν}∇{sub μ}ϕ∇{sub ν}ϕ. We show that, with the choice of unitary gauge, both curvature and tensor perturbations on the flat isotropic cosmological background are generally invariant under the disformal transformation. By means of the effective field theories encompassing Horndeski and GLPV theories, we obtain the second-order actions of scalar/tensor perturbations and present the relations for physical quantities between the two frames. The invariance of the inflationary power spectra under the disformal transformation is explicitly proved up to next-to-leading order in slow-roll. In particular, we identify the existence of the Einstein frame in which the tensor power spectrum is of the same form as that in General Relativity and derive the condition under which the spectrum of gravitational waves in GLPV theories is red-tilted.
Generalized N = 1 and N = 2 structures in M-theory and type II orientifolds
NASA Astrophysics Data System (ADS)
Graña, Mariana; Triendl, Hagen
2013-03-01
We consider M-theory and type IIA reductions to four dimensions with N = 2 and N = 1 supersymmetry and discuss their interconnection. Our work is based on the framework of Exceptional Generalized Geometry (EGG), which extends the tangent bundle to include all symmetries in M-theory and type II string theory, covariantizing the local U-duality group E 7(7). We describe general N = 1 and N = 2 reductions in terms of SU(7) and SU(6) structures on this bundle and thereby derive the effective four-dimensional N = 1 and N = 2 couplings, in particular we compute the Kähler and hyper-Kähler potentials as well as the triplet of Killing prepotentials (or the superpotential in the N = 1 case). These structures and couplings can be described in terms of forms on an eight-dimensional tangent space where SL(8) ⊂ E 7 acts, which might indicate a description in terms of an eight-dimensional internal space, similar to F-theory. We finally discuss an orbifold action in M-theory and its reduction to O6 orientifolds, and show how the projection on the N = 2 structures selects the N = 1 ones. We briefly comment on new orientifold projections, U-dual to the standard ones.
A general zone theory of color and brightness vision. II. The space-time field.
Bird, J F; Massof, R W
1978-11-01
The elements of vision are brightness and color varying in time and space, constituting a vector space-time function: the visual sensation field. The sensory-field generated from the light-field variations on the retina is analyzed here in terms of elemental space-time responses (Green's functions). Both chromaticity and intensity variations in either time or space are included in a unified theory, to bridge the existing gap between color theory and analyses of spatial and temporal brightness. Sensory Green's functions are here related to standard color models and to familiar responses for special stimuli, and are shown to be advantageous for nonhomogeneous and/or nonstationary visual conditions. The theory is first applied for intensity space-time variations, to elucidate existing intensity-contrast analyses. Then the general theory including chromatic contrast is illustrated by deriving color vision generalizations of the Bloch and Ricco laws and a general space-time reciprocity law, by analyses of wavelength-pulse and color-flicker experiments, and by derivation of Abney's law of luminance additivity for heterochromoatic flicker and minimally distinct borders. PMID:755855
Applications of a general random-walk theory for confined diffusion
NASA Astrophysics Data System (ADS)
Calvo-Muñoz, Elisa M.; Selvan, Myvizhi Esai; Xiong, Ruichang; Ojha, Madhusudan; Keffer, David J.; Nicholson, Donald M.; Egami, Takeshi
2011-01-01
A general random walk theory for diffusion in the presence of nanoscale confinement is developed and applied. The random-walk theory contains two parameters describing confinement: a cage size and a cage-to-cage hopping probability. The theory captures the correct nonlinear dependence of the mean square displacement (MSD) on observation time for intermediate times. Because of its simplicity, the theory also requires modest computational requirements and is thus able to simulate systems with very low diffusivities for sufficiently long time to reach the infinite-time-limit regime where the Einstein relation can be used to extract the self-diffusivity. The theory is applied to three practical cases in which the degree of order in confinement varies. The three systems include diffusion of (i) polyatomic molecules in metal organic frameworks, (ii) water in proton exchange membranes, and (iii) liquid and glassy iron. For all three cases, the comparison between theory and the results of molecular dynamics (MD) simulations indicates that the theory can describe the observed diffusion behavior with a small fraction of the computational expense. The confined-random-walk theory fit to the MSDs of very short MD simulations is capable of accurately reproducing the MSDs of much longer MD simulations. Furthermore, the values of the parameter for cage size correspond to the physical dimensions of the systems and the cage-to-cage hopping probability corresponds to the activation barrier for diffusion, indicating that the two parameters in the theory are not simply fitted values but correspond to real properties of the physical system.
NASA Astrophysics Data System (ADS)
Cherkasov, M. R.
2014-07-01
The theory of relaxation parameters of the spectrum shape in the impact approximation is constructed as a limit case of the Fano general relaxation theory of pressure broadening. The Fano binary collision relaxation matrix is presented in the integral form and after the impact approximation is introduced it is expressed through the scattering matrix in the Liouville space of the absorbing molecule and the bath particle. By means of introducing the scattering matrix eigenvectors and solving the evolution equation in the matrix form, the method suitable for the calculation of the whole set of impact relaxation parameters of the spectrum shape has been developed.
[Theory of V.A. dogiel on polymerization and oligomerization as a general integration concept].
Makmaev, Iu V
2010-01-01
The theory of V.A. Dogiel on the significance of polymerization and ligomerization processes in the evolution of Protozoa and Metazoa is compared with the paper of I.I. Schmalhauisen (1972) on factors and steps of aromorph evolution. Dogiel's theory is considered as a general integration conception. Four steps are distinguished in the evolution of biological systems: (1) formation of morphofunctional system by units of the lower structural level, (2) polymerization of morphofunctional units of a system, (3) oligomerization of morphofunctional units of system by means of their reduction, uniting, or differentiation, (4) integration and stabilization of a system owing to development of morphofunctional connections between its parts.
Nonequilibrium generalization of Förster Dexter theory for excitation energy transfer
NASA Astrophysics Data System (ADS)
Jang, Seogjoo; Jung, YounJoon; Silbey, Robert J.
2002-01-01
Förster-Dexter theory for excitation energy transfer (EET) is generalized for the account of short time nonequilibrium kinetics due to the nonstationary bath relaxation. The final rate expression is presented as a spectral overlap between the time dependent stimulated emission and the stationary absorption profiles, which allows experimental determination of the time dependent rate. For a harmonic oscillator bath model, an explicit rate expression is derived and model calculations are performed in order to examine the dependence of the nonequilibrium kinetics on the excitation-bath coupling strength and the temperature. Relevance of the present theory with recent experimental findings and possible future theoretical directions are discussed.
General theory of experiment containing reproducible data: The reduction to an ideal experiment
NASA Astrophysics Data System (ADS)
Nigmatullin, Raoul R.; Zhang, Wei; Striccoli, Domenico
2015-10-01
The authors suggest a general theory for consideration of all experiments associated with measurements of reproducible data in one unified scheme. The suggested algorithm does not contain unjustified suppositions and the final function that is extracted from these measurements can be compared with hypothesis that is suggested by the theory adopted for the explanation of the object/phenomenon studied. This true function is free from the influence of the apparatus (instrumental) function and when the "best fit", or the most acceptable hypothesis, is absent, can be presented as a segment of the Fourier series. The discrete set of the decomposition coefficients describes the final function quantitatively and can serve as an intermediate model that coincides with the amplitude-frequency response (AFR) of the object studied. It can be used by theoreticians also for comparison of the suggested theory with experimental observations. Two examples (Raman spectra of the distilled water and exchange by packets between two wireless sensor nodes) confirm the basic elements of this general theory. From this general theory the following important conclusions follow: 1. The Prony's decomposition should be used in detection of the quasi-periodic processes and for quantitative description of reproducible data. 2. The segment of the Fourier series should be used as the fitting function for description of observable data corresponding to an ideal experiment. The transition from the initial Prony's decomposition to the conventional Fourier transform implies also the elimination of the apparatus function that plays an important role in the reproducible data processing. 3. The suggested theory will be helpful for creation of the unified metrological standard (UMS) that should be used in comparison of similar data obtained from the same object studied but in different laboratories with the usage of different equipment. 4. Many cases when the conventional theory confirms the experimental
Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT
Song, Jaewon
2016-02-05
We present superconformal indices of 4d N = 2 class S theories with certain irregular punctures called type Ik,N. This class of theories include generalized Argyres-Douglas theories of type (Ak-1, AN-1) and more. We conjecture the superconformal indices in certain simplifi ed limits based on the TQFT structure of the class S theories by writing an expression for the wave function corresponding to the puncture Ik,N. We write the Schur limit of the wave function when k and N are coprime. When k = 2, we also conjecture a closed-form expression for the Hall-Littlewood index and the Macdonald index formore » odd N. From the index, we argue that certain short-multiplet which can appear in the OPE of the stress-energy tensor is absent in the (A1,A2n) theory. In addition, we discuss the mixed Schur indices for the N = 1 class S theories with irregular punctures.« less
Born-Infeld corrections to Coulombian interactions.
Ferraro, Rafael; Lipchak, María Evangelina
2008-04-01
Two-dimensional Born-Infeld electrostatic fields behaving as the superposition of two pointlike charges in the linearized (Maxwellian) limit are investigated by means of a nonholomorphic mapping of the complex plane. The changes in the Coulombian interaction between two charges in Born-Infeld theory are computed. Remarkably, the force between equal charges goes to zero as they approach each other.
Mass bounds for compact spherically symmetric objects in generalized gravity theories
NASA Astrophysics Data System (ADS)
Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J.
2016-09-01
We derive upper and lower bounds on the mass-radius ratio of stable compact objects in extended gravity theories, in which modifications of the gravitational dynamics via-á-vis standard general relativity are described by an effective contribution to the matter energy-momentum tensor. Our results include the possibility of a variable coupling between the matter sector and the gravitational field and are valid for a large class of generalized gravity models. The generalized continuity and Tolman-Oppenheimer-Volkoff equations are expressed in terms of the effective mass, density, and pressure, given by the bare values plus additional contributions from the total energy-momentum tensor, and general theoretical limits for the maximum and minimum mass-radius ratios are explicitly obtained. As applications of the formalism developed herein, we consider compact bosonic objects, described by scalar-tensor gravitational theories with self-interacting scalar field potentials, and charged compact objects, respectively. For Higgs-type models, we find that these bounds can be expressed in terms of the value of the potential at the surface of the compact object. Minimizing the energy with respect to the radius, we obtain explicit upper and lower bounds on the mass, which admits a Chandrasekhar-type representation. For charged compact objects, we consider the effects of the Poincaré stresses on the equilibrium structure and obtain bounds on the radial and tangential stresses. As a possible astrophysical test of our results, we obtain the general bound on the gravitational redshift for compact objects in extended gravity theories and explicitly compute the redshift restrictions for objects with nonzero effective surface pressure. General implications of minimum mass bounds for the gravitational stability of fundamental particles and for the existence of holographic duality between bulk and boundary degrees of freedom are also considered.
NASA Astrophysics Data System (ADS)
Silbey, R.; Munn, R. W.
1980-02-01
An improved general theory of electronic transport in molecular crystals with local linear electron-phonon coupling is presented. It is valid for arbitrary electronic and phonon bandwidths and for arbitrary electron-phonon coupling strength, yielding small-polaron theory for narrow electronic bands and strong coupling, and semiconductor theory for wide electronic bands and weak coupling. Detailed results are derived for electronic excitations fully clothed with phonons and having a bandwidth no larger than the phonon frequency; the electronic and phonon densities of states are taken as Gaussian for simplicity. The dependence of the diffusion coefficient on temperature and on the other parameters is analyzed thoroughly. The calculated behavior provides a rational interpretation of observed trends in the magnitude and temperature dependence of charge-carrier drift mobilities in molecular crystals.
GUST86 - An analytical ephemeris of the Uranian satellites. [General Uranus Satellite Theory
NASA Technical Reports Server (NTRS)
Laskar, J.; Jacobson, R. A.
1987-01-01
The General Uranus Satellite Theory GUST (Laskar, 1986) is used for the construction of an analytical ephemeris for the Uranian satellites. The theory is fitted against earth-based observations from 1911 to 1986, and all radio and optical data obtained during Voyager encounter with Uranus. Earth-based observations alone allow the determination of masses which are within 15 percent of the values determined by the Uranus flyby. The analysis of all the observations confirm the values of the masses obtained during the encounter (Stone and Miner, 1986) and give a complete set of dynamical parameters for the analytical theory. An analytical ephemeris, GUST86, with an estimated precision of about 100 km with respect to Uranus is obtained.
NASA Astrophysics Data System (ADS)
Solontsov, A.
2015-06-01
The paper critically overviews the recent developments of the theory of spatially dispersive spin fluctuations (SF) in itinerant electron magnetism with particular emphasis on spin-fluctuation coupling or spin anharmonicity. It is argued that the conventional self-consistent renormalized (SCR) theory of spin fluctuations is usually used aside of the range of its applicability actually defined by the constraint of weak spin anharmonicity based on the random phase approximation (RPA) arguments. An essential step in understanding SF in itinerant magnets beyond RPA-like arguments was made recently within the soft-mode theory of SF accounting for strong spin anharmonicity caused by zero-point SF. In the present paper we generalize it to apply for a wider range of temperatures and regimes of SF and show it to lead to qualitatively new results caused by zero-point effects.
A general theory of DNA-mediated and other valence-limited colloidal interactions
NASA Astrophysics Data System (ADS)
Varilly, Patrick; Angioletti-Uberti, Stefano; Mognetti, Bortolo M.; Frenkel, Daan
2012-09-01
We present a general theory for predicting the interaction potentials between DNA-coated colloids, and more broadly, any particles that interact via valence-limited ligand-receptor binding. Our theory correctly incorporates the configurational and combinatorial entropic factors that play a key role in valence-limited interactions. By rigorously enforcing self-consistency, it achieves near-quantitative accuracy with respect to detailed Monte Carlo calculations. With suitable approximations and in particular geometries, our theory reduces to previous successful treatments, which are now united in a common and extensible framework. We expect our tools to be useful to other researchers investigating ligand-mediated interactions. A complete and well-documented Python implementation is freely available at http://github.com/patvarilly/DNACC.
Gendered Responses to Serious Strain: The Argument for a General Strain Theory of Deviance
Kaufman, Joanne M.
2010-01-01
This paper expands and builds on newer avenues in research on gender and general strain theory (GST). I accomplish this by focusing on serious strains that are relevant for males and females, including externalizing and internalizing forms of negative emotions, and including multiple gendered deviant outcomes. Using the Add Health dataset, I find strong support for the impact of serious strains on both types of negative emotions and different forms of deviance for males and females. However, the experience of serious strain, emotionally and behaviorally, is gendered. Depressive symptoms are particularly important for all types of deviance by females. Including multiple types of deviant outcomes offers a fuller understanding of both similarities and differences by gender. These results support the utility of GST as a theory of deviance in general and support greater connections between GST, feminist theorizing, and the sociology of mental health. PMID:20625472
Generalized second law of thermodynamics in f(R,T) theory of gravity
NASA Astrophysics Data System (ADS)
Momeni, D.; Moraes, P. H. R. S.; Myrzakulov, R.
2016-07-01
We present a study of the generalized second law of thermodynamics in the scope of the f(R,T) theory of gravity, with R and T representing the Ricci scalar and trace of the energy-momentum tensor, respectively. From the energy-momentum tensor equation for the f(R,T)=R+f(T) case, we calculate the form of the geometric entropy in such a theory. Then, the generalized second law of thermodynamics is quantified and some relations for its obedience in f(R,T) gravity are presented. Those relations depend on some cosmological quantities, as the Hubble and deceleration parameters, and also on the form of f(T).
NASA Technical Reports Server (NTRS)
Thomas, J. M.; Hawk, J. D.
1975-01-01
A generalized concept for cost-effective structural design is introduced. It is assumed that decisions affecting the cost effectiveness of aerospace structures fall into three basic categories: design, verification, and operation. Within these basic categories, certain decisions concerning items such as design configuration, safety factors, testing methods, and operational constraints are to be made. All or some of the variables affecting these decisions may be treated probabilistically. Bayesian statistical decision theory is used as the tool for determining the cost optimum decisions. A special case of the general problem is derived herein, and some very useful parametric curves are developed and applied to several sample structures.
Quantum Bayesianism as the basis of general theory of decision-making.
Khrennikov, Andrei
2016-05-28
We discuss the subjective probability interpretation of the quantum-like approach to decision making and more generally to cognition. Our aim is to adopt the subjective probability interpretation of quantum mechanics, quantum Bayesianism (QBism), to serve quantum-like modelling and applications of quantum probability outside of physics. We analyse the classical and quantum probabilistic schemes of probability update, learning and decision-making and emphasize the role of Jeffrey conditioning and its quantum generalizations. Classically, this type of conditioning and corresponding probability update is based on the formula of total probability-one the basic laws of classical probability theory. PMID:27091160
Matrix Structure Exploitation in Generalized Eigenproblems Arising in Density Functional Theory
Di Napoli, Edoardo; Bientinesi, Paolo
2010-09-30
In this short paper, the authors report a new computational approach in the context of Density Functional Theory (DFT). It is shown how it is possible to speed up the self-consistent cycle (iteration) characterizing one of the most well-known DFT implementations: FLAPW. Generating the Hamiltonian and overlap matrices and solving the associated generalized eigenproblems Ax = {lambda}Bx constitute the two most time-consuming fractions of each iteration. Two promising directions, implementing the new methodology, are presented that will ultimately improve the performance of the generalized eigensolver and save computational time.
Jaeger, Johannes; Irons, David; Monk, Nick
2008-10-01
Positional specification by morphogen gradients is traditionally viewed as a two-step process. A gradient is formed and then interpreted, providing a spatial metric independent of the target tissue, similar to the concept of space in classical mechanics. However, the formation and interpretation of gradients are coupled, dynamic processes. We introduce a conceptual framework for positional specification in which cellular activity feeds back on positional information encoded by gradients, analogous to the feedback between mass-energy distribution and the geometry of space-time in Einstein's general theory of relativity. We discuss how such general relativistic positional information (GRPI) can guide systems-level approaches to pattern formation.
Quantum Bayesianism as the basis of general theory of decision-making.
Khrennikov, Andrei
2016-05-28
We discuss the subjective probability interpretation of the quantum-like approach to decision making and more generally to cognition. Our aim is to adopt the subjective probability interpretation of quantum mechanics, quantum Bayesianism (QBism), to serve quantum-like modelling and applications of quantum probability outside of physics. We analyse the classical and quantum probabilistic schemes of probability update, learning and decision-making and emphasize the role of Jeffrey conditioning and its quantum generalizations. Classically, this type of conditioning and corresponding probability update is based on the formula of total probability-one the basic laws of classical probability theory.
General theory of conical flows and its application to supersonic aerodynamics
NASA Technical Reports Server (NTRS)
Germain, Paul
1955-01-01
Points treated in this report are: homogeneous flows, the general study of conical flows with infinitesimal cone angles, the numerical or analogous methods for the study of flows flattened in one direction, and a certain number of results. A thorough consideration of the applications on conical flows and demonstration of how one may solve within the scope of linear theory, by combinations of conical flows, the general problems of the supersonic wing, taking into account dihedral and sweepback, and also fuselage and control surface effects.
General schema theory for genetic programming with subtree-swapping crossover: Part II.
Poli, Riccardo; McPhee, Nicholas Freitag
2003-01-01
This paper is the second part of a two-part paper which introduces a general schema theory for genetic programming (GP) with subtree-swapping crossover (Part I (Poli and McPhee, 2003)). Like other recent GP schema theory results, the theory gives an exact formulation (rather than a lower bound) for the expected number of instances of a schema at the next generation. The theory is based on a Cartesian node reference system, introduced in Part I, and on the notion of a variable-arity hyperschema, introduced here, which generalises previous definitions of a schema. The theory includes two main theorems describing the propagation of GP schemata: a microscopic and a macroscopic schema theorem. The microscopic version is applicable to crossover operators which replace a subtree in one parent with a subtree from the other parent to produce the offspring. Therefore, this theorem is applicable to Koza's GP crossover with and without uniform selection of the crossover points, as well as one-point crossover, size-fair crossover, strongly-typed GP crossover, context-preserving crossover and many others. The macroscopic version is applicable to crossover operators in which the probability of selecting any two crossover points in the parents depends only on the parents' size and shape. In the paper we provide examples, we show how the theory can be specialised to specific crossover operators and we illustrate how it can be used to derive other general results. These include an exact definition of effective fitness and a size-evolution equation for GP with subtree-swapping crossover.
On a general theory for compressing process and aeroacoustics: linear analysis
NASA Astrophysics Data System (ADS)
Mao, F.; Shi, Y. P.; Wu, J. Z.
2010-06-01
Of the three mutually coupled fundamental processes (shearing, compressing, and thermal) in a general fluid motion, only the general formulation for the compressing process and a subprocess of it, the subject of aeroacoustics, as well as their physical coupling with shearing and thermal processes, have so far not reached a consensus. This situation has caused difficulties for various in-depth complex multiprocess flow diagnosis, optimal configuration design, and flow/noise control. As the first step toward the desired formulation in fully nonlinear regime, this paper employs the operator factorization method to revisit the analytic linear theories of the fundamental processes and their decomposition, especially the further splitting of compressing process into acoustic and entropy modes, developed in 1940s-1980s. The flow treated here is small disturbances of a compressible, viscous, and heat-conducting polytropic gas in an unbounded domain with arbitrary source of mass, external body force, and heat addition. Previous results are thereby revised and extended to a complete and unified theory. The theory provides a necessary basis and valuable guidance for developing corresponding nonlinear theory by clarifying certain basic issues, such as the proper choice of characteristic variables of compressing process and the feature of their governing equations.
The Elliott-Yafet theory of spin relaxation generalized for large spin-orbit coupling
Kiss, Annamária; Szolnoki, Lénard; Simon, Ferenc
2016-01-01
We generalize the Elliott-Yafet (EY) theory of spin relaxation in metals with inversion symmetry for the case of large spin-orbit coupling (SOC). The EY theory treats the SOC to the lowest order but this approach breaks down for metals of heavy elements (such as e.g. caesium or gold), where the SOC energy is comparable to the relevant band-band separation energies. The generalized theory is presented for a four-band model system without band dispersion, where analytic formulae are attainable for arbitrary SOC for the relation between the momentum- and spin-relaxation rates. As an extended description, we also consider an empirical pseudopotential approximation where SOC is deduced from the band potential (apart from an empirical scaling constant) and the spin-relaxation rate can be obtained numerically. Both approaches recover the usual EY theory for weak SOC and give that the spin-relaxation rate approaches the momentum-relaxation rate in the limit of strong SOC. We argue that this limit is realized in gold by analyzing spin relaxation data. A calculation of the g-factor shows that the empirical Elliott-relation, which links the g-factor and spin-relaxation rate, is retained even for strong SOC. PMID:26943483
The Elliott-Yafet theory of spin relaxation generalized for large spin-orbit coupling.
Kiss, Annamária; Szolnoki, Lénard; Simon, Ferenc
2016-01-01
We generalize the Elliott-Yafet (EY) theory of spin relaxation in metals with inversion symmetry for the case of large spin-orbit coupling (SOC). The EY theory treats the SOC to the lowest order but this approach breaks down for metals of heavy elements (such as e.g. caesium or gold), where the SOC energy is comparable to the relevant band-band separation energies. The generalized theory is presented for a four-band model system without band dispersion, where analytic formulae are attainable for arbitrary SOC for the relation between the momentum- and spin-relaxation rates. As an extended description, we also consider an empirical pseudopotential approximation where SOC is deduced from the band potential (apart from an empirical scaling constant) and the spin-relaxation rate can be obtained numerically. Both approaches recover the usual EY theory for weak SOC and give that the spin-relaxation rate approaches the momentum-relaxation rate in the limit of strong SOC. We argue that this limit is realized in gold by analyzing spin relaxation data. A calculation of the g-factor shows that the empirical Elliott-relation, which links the g-factor and spin-relaxation rate, is retained even for strong SOC. PMID:26943483
Topological String Models for the Generalized Two-Dimensional Yang-Mills Theories
NASA Astrophysics Data System (ADS)
Sugawara, Y.
1996-06-01
We discuss some aspects of the large N expansions of the generalized two-dimensional Yang-Mills theories (gYM2), and especially, clarify the geometrical meanings of the higher Casimirs. Based on these results we attempt to extend the Cordes-Moore-Ramgoolam topological string model describing the ordinary YM2 to those describing gYM2. The concept of ``deformed gravitational descendants'' will be introduced for this purpose.
NASA Astrophysics Data System (ADS)
Gungordu, Erkut
2000-11-01
Generalized Contributon Theory has been implemented for three dimensional (x-y-z) cartesian geometry. The TORT 3D neutron/photon transport code is used for the calculation of the forward and adjoint directional fluxes and these are used for the generation of the contribution theory parameters. A new 3D contribution code has been developed for the generation of the contributon theory parameters. The new 3D contributon code is also capable of doing 2D calculations by using the data generated by the TORT code with its 2D calculational option. The integral response calculations of the contributon code are verified by the integral response conservation theorem of spatial channel theory using a 3D, eight-group symmetric dipole problem. The slowing down theory calculations of the contributon code are also verified using the slowing down equation with the same 3D problem. The spatial channel theory calculations are illustrated by a 3D, eight-group unsymmetrical dipole problem. This 3D geometry contains an irregular streaming gap and a shield region which is placed in front of the detector. The visualizations of the integral contributon flux show the important spatial regions of the response flow. The streamlines drawn by a quantitative streamline distribution technique reveals the spatial concentrations of the integral response flow. Quantitative streamline visualizations with three different 3D, eight-group unsymmetrical dipole problems very clearly show that the response flows through the least resistant regions of the medium. The volumetric color-contour visualizations of the response flow from different perspectives are also used to illustrate quantitatively the spatial response flow magnitude. The energy dependent processes of the response flow are investigated by contributon slowing down theory. The same 3D, eight-group unsymmetrical dipole problem prepared for the spatial channel theory applications is used for the numerical interpretation of the slowing down theory
A general zone theory of color and brightness vision. I. Basic formulation.
Massof, R W; Bird, J F
1978-11-01
A general theory of color and brightness vision, developed from basic principles of the Helmholtz and Hering points-of-view on color vision is presented in a general mathematical form suitable for quantitative analysis. Visual sensation is described by a vector expressed in terms of Hering-like elements for color and brightness which underlie in their spatial-temporal variations the perceptions of form and change. The photic stimulus of vision is recognized to act first and only through photoabsorption producing a Helmholtz-like vector of quantum absorptions. The physiological transformation of the Helmholtz photochemical excitations into the Hering sensation responses is represented as a vector of general operators. The result is a mathematical framework encompassing traditional psychophysical and sensory scaling experiments. The theory is utilized to demonstrate that for many traditional (Class A) psychophysical observations, the physiological operator reduces to a linear (matrix) transformation. For static, uniform, focal stimulation, this reduction is seen to be the basis for earlier specific linear models of color vision. We also illustrate that static intensity-level effects (Bezold-Brücke hue shifts, unique hue invariance) can be modeled from the theory by power, but not logarithmic, intensity-level dependence for the sensation elements. PMID:755854
An advanced higher-order theory for laminated composite plates with general lamination angles
NASA Astrophysics Data System (ADS)
Wu, Zhen; Zhu, Hong; Chen, Wan-Ji
2011-10-01
This paper proposes a higher-order shear deformation theory to predict the bending response of the laminated composite and sandwich plates with general lamination configurations. The proposed theory a priori satisfies the continuity conditions of transverse shear stresses at interfaces. Moreover, the number of unknown variables is independent of the number of layers. The first derivatives of transverse displacements have been taken out from the inplane displacement fields, so that the C0 shape functions are only required during its finite element implementation. Due to C0 continuity requirements, the proposed model can be conveniently extended for implementation in commercial finite element codes. To verify the proposed theory, the fournode C0 quadrilateral element is employed for the interpolation of all the displacement parameters defined at each nodal point on the composite plate. Numerical results show that following the proposed theory, simple C0 finite elements could accurately predict the interlaminar stresses of laminated composite and sandwich plates directly from a constitutive equation, which has caused difficulty for the other global higher order theories.
Moving Beyond Quantum Mechanics in Search for a Generalized Theory of Superconductivity
NASA Astrophysics Data System (ADS)
Akpojotor, Godfrey; Animalu, Alexander
2012-02-01
Though there are infinite number of theories currently in the literature in the search for a generalized theory of superconductivity (SC), there may be three domineering mechanisms for the Cooper pair formation (CPF) and their emergent theories of SC. Two of these mechanisms, electron-phonon interactions and electron-electron correlations which are based on the quantum theory axiom of action-at-a distance, may be only an approximation of the third mechanism which is contact interaction of the wavepackets of the two electrons forming the Cooper pair as envisaged in hadronic mechanics to be responsible for natural bonding of elements. The application of this hydronic --type interaction to the superconducting cuprates, iron based compounds and heavy fermions leads to interesting results. It is therefore suggested that the future of the search for the theory of SC may be considered from this natural possible bonding that at short distances, the CPF is by a nonlinear, nonlocal and nonhamiltonian strong hadronic-type interactions due to deep wave-overlapping of spinning particles leading to Hulthen potential that is attractive between two electrons in singlet couplings while at large distances the CPF is by superexchange interaction which is purely a quantum mechanical affairs.
Generalized local-frame-transformation theory for excited species in external fields
NASA Astrophysics Data System (ADS)
Giannakeas, P.; Greene, Chris H.; Robicheaux, F.
2016-07-01
A rigorous theoretical framework is developed for a generalized local-frame-transformation theory (GLFT). The GLFT is applicable to the following systems: Rydberg atoms or molecules in an electric field and negative ions in any combination of electric and/or magnetic fields. A first test application to the photoionization spectra of Rydberg atoms in an external electric field demonstrates dramatic improvement over the first version of the local-frame-transformation theory developed initially by U. Fano [Phys. Rev. A 24, 619 (1981), 10.1103/PhysRevA.24.619] and D. A. Harmin [Phys. Rev. A 26, 2656 (1982), 10.1103/PhysRevA.26.2656]. This revised GLFT theory yields nontrivial corrections because it now includes the full on-shell Hilbert space without adopting the truncations in the original theory. Comparisons of the semianalytical GLFT Stark spectra with ab initio numerical simulations yield errors in the range of a few tens of MHz, an improvement over the original Fano-Harmin theory, whose errors are 10-100 times larger. Our analysis provides a systematic pathway to precisely describe the corresponding photoabsorption spectra that should be accurate enough to meet most modern experimental standards.
Ratio of shear viscosity to entropy density in generalized theories of gravity
Brustein, Ram; Medved, A. J. M.
2009-01-15
Near the horizon of a black brane solution in anti-de Sitter space, the long-wavelength fluctuations of the metric exhibit hydrodynamic behavior. For Einstein's theory, the ratio of the shear viscosity of near-horizon metric fluctuations {eta} to the entropy per unit of transverse volume s is {eta}/s=1/4{pi}. We propose that, in generalized theories of gravity, this ratio is given by the ratio of two effective gravitational couplings and can be different than 1/4{pi}. Our proposal confirms that {eta}/s is equal to 1/4{pi} for any theory that can be transformed into Einstein's theory, such as F(R) gravity. Our proposal also implies that matter interactions--except those including explicit or implicit factors of the Riemann tensor--will not modify {eta}/s. The proposed formula reproduces, in a very simple manner, some recently found results for Gauss-Bonnet gravity. We also make a prediction for {eta}/s in Lovelock theories of any order or dimensionality.
A general theory of interference fringes in x-ray phase grating imaging
Yan, Aimin; Wu, Xizeng E-mail: liu@ou.edu; Liu, Hong E-mail: liu@ou.edu
2015-06-15
Purpose: The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. Methods: In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. Results: The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. Conclusions: In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers.
Toward a general theory of unconscious processes in psychoanalysis and anesthesiology.
Mashour, George A
2008-03-01
Psychoanalysis and anesthesiology appear radically different in their clinical practice, yet they share a focus of inquiry: unconscious processes. Despite this common domain, there has been no exploration of the relationship between "the unconscious" as conceived by psychoanalysts and "surgical unconsciousness" as conceived by anesthesiologists. This is likely due to the fact that general anesthesia has been assumed to be a state in which the brain is simply "turned off." More recent neuroscientific data invalidate this assumption by demonstrating that the anesthetized brain is both cognitively dynamic and capable of implicit learning. Current perspectives on anesthetic mechanisms suggest that general anesthesia is characterized not simply by the absence of cognitive activity, but by the disintegration of cognitive activity. The cognitive unbinding paradigm of general anesthesia is discussed and its application to Wilfred Bion's theory of thinking, as well as his concept of attacks on linking, is elucidated. Based on the common structure and function of unconscious processes in psychoanalysis and anesthesiology, the foundation of a general theory is established.
Surface singularities in Eddington-inspired Born-Infeld gravity.
Pani, Paolo; Sotiriou, Thomas P
2012-12-21
Eddington-inspired Born-Infeld gravity was recently proposed as an alternative to general relativity that offers a resolution of spacetime singularities. The theory differs from Einstein's gravity only inside matter due to nondynamical degrees of freedom, and it is compatible with all current observations. We show that the theory is reminiscent of Palatini f(R) gravity and that it shares the same pathologies, such as curvature singularities at the surface of polytropic stars and unacceptable Newtonian limit. This casts serious doubt on its viability.
Surface singularities in Eddington-inspired Born-Infeld gravity.
Pani, Paolo; Sotiriou, Thomas P
2012-12-21
Eddington-inspired Born-Infeld gravity was recently proposed as an alternative to general relativity that offers a resolution of spacetime singularities. The theory differs from Einstein's gravity only inside matter due to nondynamical degrees of freedom, and it is compatible with all current observations. We show that the theory is reminiscent of Palatini f(R) gravity and that it shares the same pathologies, such as curvature singularities at the surface of polytropic stars and unacceptable Newtonian limit. This casts serious doubt on its viability. PMID:23368444
Towards a general theory of neural computation based on prediction by single neurons.
Fiorillo, Christopher D
2008-01-01
Although there has been tremendous progress in understanding the mechanics of the nervous system, there has not been a general theory of its computational function. Here I present a theory that relates the established biophysical properties of single generic neurons to principles of Bayesian probability theory, reinforcement learning and efficient coding. I suggest that this theory addresses the general computational problem facing the nervous system. Each neuron is proposed to mirror the function of the whole system in learning to predict aspects of the world related to future reward. According to the model, a typical neuron receives current information about the state of the world from a subset of its excitatory synaptic inputs, and prior information from its other inputs. Prior information would be contributed by synaptic inputs representing distinct regions of space, and by different types of non-synaptic, voltage-regulated channels representing distinct periods of the past. The neuron's membrane voltage is proposed to signal the difference between current and prior information ("prediction error" or "surprise"). A neuron would apply a Hebbian plasticity rule to select those excitatory inputs that are the most closely correlated with reward but are the least predictable, since unpredictable inputs provide the neuron with the most "new" information about future reward. To minimize the error in its predictions and to respond only when excitation is "new and surprising," the neuron selects amongst its prior information sources through an anti-Hebbian rule. The unique inputs of a mature neuron would therefore result from learning about spatial and temporal patterns in its local environment, and by extension, the external world. Thus the theory describes how the structure of the mature nervous system could reflect the structure of the external world, and how the complexity and intelligence of the system might develop from a population of undifferentiated neurons
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S; Murphy, Patrick C.
2014-01-01
Improving aerodynamic models for adverse loss-of-control conditions in flight is an area being researched under the NASA Aviation Safety Program. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. As more general aerodynamic models are studied that include nonlinear higher order effects, the possibility of measurements that confound aerodynamic and structural responses are probable. In this study an initial step is taken to look at including structural flexibility in analysis of rigid-body forced-oscillation testing that accounts for dynamic rig, sting and balance flexibility. Because of the significant testing required and associated costs in a general study, it makes sense to capitalize on low cost analytical methods where possible, especially where structural flexibility can be accounted for by a low cost method. This paper provides an initial look at using linear lifting surface theory applied to rigid-body aircraft roll forced-oscillation tests.
Walach, H
2003-08-01
Homeopathy is scientifically banned, both for lack of consistent empirical findings, but more so for lack of a sound theoretical model to explain its purported effects. This paper makes an attempt to introduce an explanatory idea based on a generalized version of quantum mechanics (QM), the weak quantum theory (WQT). WQT uses the algebraic formalism of QM proper, but drops some restrictions and definitions typical for QM. This results in a general axiomatic framework similar to QM, but more generalized and applicable to all possible systems. Most notably, WQT predicts entanglement, which in QM is known as Einstein-Podolsky-Rosen (EPR) correlatedness within quantum systems. According to WQT, this entanglement is not only tied to quantum systems, but is to be expected whenever a global and a local variable describing a system are complementary. This idea is used here to reconstruct homeopathy as an exemplification of generalized entanglement as predicted by WQT. It transpires that homeopathy uses two instances of generalized entanglement: one between the remedy and the original substance (potentiation principle) and one between the individual symptoms of a patient and the general symptoms of a remedy picture (similarity principle). By bringing these two elements together, double entanglement ensues, which is reminiscent of cryptographic and teleportation applications of entanglement in QM proper. Homeopathy could be a macroscopic analogue to quantum teleportation. This model is exemplified and some predictions are derived, which make it possible to test the model. PMID:12972724
Uncertainty Quantification of Composite Laminate Damage with the Generalized Information Theory
J. Lucero; F. Hemez; T. Ross; K.Kline; J.Hundhausen; T. Tippetts
2006-05-01
This work presents a survey of five theories to assess the uncertainty of projectile impact induced damage on multi-layered carbon-epoxy composite plates. Because the types of uncertainty dealt with in this application are multiple (variability, ambiguity, and conflict) and because the data sets collected are sparse, characterizing the amount of delamination damage with probability theory alone is possible but incomplete. This motivates the exploration of methods contained within a broad Generalized Information Theory (GIT) that rely on less restrictive assumptions than probability theory. Probability, fuzzy sets, possibility, and imprecise probability (probability boxes (p-boxes) and Dempster-Shafer) are used to assess the uncertainty in composite plate damage. Furthermore, this work highlights the usefulness of each theory. The purpose of the study is not to compare directly the different GIT methods but to show that they can be deployed on a practical application and to compare the assumptions upon which these theories are based. The data sets consist of experimental measurements and finite element predictions of the amount of delamination and fiber splitting damage as multilayered composite plates are impacted by a projectile at various velocities. The physical experiments consist of using a gas gun to impact suspended plates with a projectile accelerated to prescribed velocities, then, taking ultrasound images of the resulting delamination. The nonlinear, multiple length-scale numerical simulations couple local crack propagation implemented through cohesive zone modeling to global stress-displacement finite element analysis. The assessment of damage uncertainty is performed in three steps by, first, considering the test data only; then, considering the simulation data only; finally, performing an assessment of total uncertainty where test and simulation data sets are combined. This study leads to practical recommendations for reducing the uncertainty and
Transverse vibrations of shear-deformable beams using a general higher order theory
NASA Technical Reports Server (NTRS)
Kosmatka, J. B.
1993-01-01
A general higher order theory is developed to study the static and vibrational behavior of beam structures having an arbitrary cross section that utilizes both out-of-plane shear-dependent warping and in-plane (anticlastic) deformations. The equations of motion are derived via Hamilton's principle, where the full 3D constitutive relations are used. A simplified version of the general higher-order theory is also presented for beams having an arbitrary cross section that includes out-of-plane shear deformation but assumes that stresses within the cross section and in-plane deformations are negligible. This simplified model, which is accurate for long to moderately short wavelengths, offers substantial improvements over existing higher order theories that are limited to beams with thin rectangular cross sections. The current approach will be very useful in the study of thin-wall closed-cell beams such as airfoil-type sections where the magnitude of shear-related cross-sectional warping is significant.
A generalized non-local optical response theory for plasmonic nanostructures.
Mortensen, N A; Raza, S; Wubs, M; Søndergaard, T; Bozhevolnyi, S I
2014-05-02
Metallic nanostructures exhibit a multitude of optical resonances associated with localized surface plasmon excitations. Recent observations of plasmonic phenomena at the sub-nanometre to atomic scale have stimulated the development of various sophisticated theoretical approaches for their description. Here instead we present a comparatively simple semiclassical generalized non-local optical response theory that unifies quantum pressure convection effects and induced charge diffusion kinetics, with a concomitant complex-valued generalized non-local optical response parameter. Our theory explains surprisingly well both the frequency shifts and size-dependent damping in individual metallic nanoparticles as well as the observed broadening of the crossover regime from bonding-dipole plasmons to charge-transfer plasmons in metal nanoparticle dimers, thus unravelling a classical broadening mechanism that even dominates the widely anticipated short circuiting by quantum tunnelling. We anticipate that our theory can be successfully applied in plasmonics to a wide class of conducting media, including doped semiconductors and low-dimensional materials such as graphene.
Bays, Harold
2005-05-01
Excessive fat (adiposity) and dysfunctional fat (adiposopathy) constitute the most common worldwide epidemics of our time -- and perhaps of all time. Ongoing efforts to explain how the micro (adipocyte) and macro (body organ) biologic systems interact through function and dysfunction in promoting Type 2 diabetes mellitus, hypertension and dyslipidemia are not unlike the mechanistic and philosophical thinking processes involved in reconciling the micro (quantum physics) and macro (general relativity) theories in physics. Currently, the term metabolic syndrome refers to a constellation of consequences often associated with excess body fat and is an attempt to unify the associations known to exist between the four fundamental metabolic diseases of obesity, hyperglycemia (including Type 2 diabetes mellitus), hypertension and dyslipidemia. However, the association of adiposity with these metabolic disorders is not absolute and the metabolic syndrome does not describe underlying causality, nor does the metabolic syndrome necessarily reflect any reasonably related pathophysiologic process. Just as with quantum physics, general relativity and the four fundamental forces of the universe, the lack of an adequate unifying theory of micro causality and macro consequence is unsatisfying, and in medicine, impairs the development of agents that may globally improve both obesity and obesity-related metabolic disease. Emerging scientific and clinical evidence strongly supports the novel concept that it is not adiposity alone, but rather it is adiposopathy that is the underlying cause of most cases of Type 2 diabetes mellitus, hypertension and dyslipidemia. Adiposopathy is a plausible Theory of Everything for mankind's greatest metabolic epidemics.
The Mössbauer rotor experiment and the general theory of relativity
NASA Astrophysics Data System (ADS)
Corda, Christian
2016-05-01
In the recent paper Yarman et al. (2015), the authors claim that our general relativistic analysis in Corda (2015), with the additional effect due to clock synchronization, cannot explain the extra energy shift in the Mössbauer rotor experiment. In their opinion, the extra energy shift due to the clock synchronization is of order 10-13 and cannot be detected by the detectors of γ-quanta which are completely insensitive to such a very low order of energy shifts. In addition, they claim to have shown that the extra energy shift can be explained in the framework of the so-called YARK gravitational theory. They indeed claim that such a theory should replace the general theory of relativity (GTR) as the correct theory of gravity. In this paper we show that the authors Yarman et al. (2015) had a misunderstanding of our theoretical analysis in Corda (2015). In fact, in that paper we have shown that electromagnetic radiation launched by the central source of the apparatus is redshifted of a quantity 0 . 6 ¯ v2/c2 when arriving to the detector of γ-quanta. This holds independently by the issue that the original photons are detected by the resonant absorber which, in turns, triggers the γ-quanta which arrive to the final detector. In other words, the result in Corda (2015) was a purely theoretical result that is completely independent of the way the experiment is concretely realized. Now, we show that, with some clarification, the results of Corda (2015) hold also when one considers the various steps of the concrete detection. In that case, the resonant absorber detects the energy shift and the separated detector of γ-quanta merely measures the resulting intensity. In addition, we also show that the YARK gravitational theory is in macroscopic contrast with geodesic motion and, in turn, with the weak equivalence principle (WEP). This is in contrast with another claim of the authors of Yarman et al. (2015), i.e. that the YARK gravitational theory arises from the WEP
Sex-specific demography and generalization of the Trivers-Willard theory
NASA Astrophysics Data System (ADS)
Schindler, Susanne; Gaillard, Jean-Michel; Grüning, André; Neuhaus, Peter; Traill, Lochran W.; Tuljapurkar, Shripad; Coulson, Tim
2015-10-01
The Trivers-Willard theory proposes that the sex ratio of offspring should vary with maternal condition when it has sex-specific influences on offspring fitness. In particular, mothers in good condition in polygynous and dimorphic species are predicted to produce an excess of sons, whereas mothers in poor condition should do the opposite. Despite the elegance of the theory, support for it has been limited. Here we extend and generalize the Trivers-Willard theory to explain the disparity between predictions and observations of offspring sex ratio. In polygynous species, males typically have higher mortality rates, different age-specific reproductive schedules and more risk-prone life history tactics than females; however, these differences are not currently incorporated into the Trivers-Willard theory. Using two-sex models parameterized with data from free-living mammal populations with contrasting levels of sex differences in demography, we demonstrate how sex differences in life history traits over the entire lifespan can lead to a wide range of sex allocation tactics, and show that correlations between maternal condition and offspring sex ratio alone are insufficient to conclude that mothers adaptively adjust offspring sex ratio.
General results for higher spin Wilson lines and entanglement in Vasiliev theory
Hegde, Ashwin; Kraus, Per; Perlmutter, Eric
2016-01-28
Here, we develop tools for the efficient evaluation of Wilson lines in 3D higher spin gravity, and use these to compute entanglement entropy in the hs[λ ] Vasiliev theory that governs the bulk side of the duality proposal of Gaberdiel and Gopakumar. Our main technical advance is the determination of SL(N) Wilson lines for arbitrary N, which, in suitable cases, enables us to analytically continue to hs[λ ] via N→ -λ. We then apply this result to compute various quantities of interest, including entanglement entropy expanded perturbatively in the background higher spin charge, chemical potential, and interval size. This includesmore » a computation of entanglement entropy in the higher spin black hole of the Vasiliev theory. Our results are consistent with conformal field theory calculations. We also provide an alternative derivation of the Wilson line, by showing how it arises naturally from earlier work on scalar correlators in higher spin theory. The general picture that emerges is consistent with the statement that the SL(N) Wilson line computes the semiclassical WN vacuum block, and our results provide an explicit result for this object.« less
Slowly rotating anisotropic neutron stars in general relativity and scalar-tensor theory
NASA Astrophysics Data System (ADS)
Silva, Hector O.; Macedo, Caio F. B.; Berti, Emanuele; Crispino, Luís C. B.
2015-07-01
Some models (such as the Skyrme model, a low-energy effective field theory for quantum chromodynamics) suggest that the high-density matter prevailing in neutron star (NS) interiors may be significantly anisotropic. Anisotropy is known to affect the bulk properties of nonrotating NSs in general relativity (GR). In this paper we study the effects of anisotropy on slowly rotating stars in GR. We also consider one of the most popular extensions of Einstein’s theory, namely scalar-tensor theories allowing for spontaneous scalarization (a phase transition similar to spontaneous magnetization in ferromagnetic materials). Anisotropy affects the moment of inertia of NSs (a quantity that could potentially be measured in binary pulsar systems) in both theories. We find that the effects of scalarization increase (decrease) when the tangential pressure is bigger (smaller) than the radial pressure, and we present a simple criterion to determine the onset of scalarization by linearizing the scalar-field equation. Our calculations suggest that binary pulsar observations may constrain the degree of anisotropy or even, more optimistically, provide evidence for anisotropy in NS cores.
NASA Astrophysics Data System (ADS)
Wen, Xueda; Matsuura, Shunji; Ryu, Shinsei
Topological entanglement entropy of (2+1) dimensional Chern-Simons gauge theories on a general manifold is usually calculated with Witten's method of surgeries and replica trick, in which the spacetime manifold under consideration is very complicated. In this work, we develop an edge theory approach, which greatly simplifies the calculation of topological entanglement entropy of a Chern-Simons theory. Our approach applies to a general manifold with arbitrary genus. The effect of braiding and fusion of Wilson lines can be straightforwardly calculated within our framework. In addition, our method can be generalized to the study of other entanglement measures such as mutual information and entanglement negativity of a topological quantum field theory on a general manifold.
Cartographic generalization of urban street networks based on gravitational field theory
NASA Astrophysics Data System (ADS)
Liu, Gang; Li, Yongshu; Li, Zheng; Guo, Jiawei
2014-05-01
The automatic generalization of urban street networks is a constant and important aspect of geographical information science. Previous studies show that the dual graph for street-street relationships more accurately reflects the overall morphological properties and importance of streets than do other methods. In this study, we construct a dual graph to represent street-street relationship and propose an approach to generalize street networks based on gravitational field theory. We retain the global structural properties and topological connectivity of an original street network and borrow from gravitational field theory to define the gravitational force between nodes. The concept of multi-order neighbors is introduced and the gravitational force is taken as the measure of the importance contribution between nodes. The importance of a node is defined as the result of the interaction between a given node and its multi-order neighbors. Degree distribution is used to evaluate the level of maintaining the global structure and topological characteristics of a street network and to illustrate the efficiency of the suggested method. Experimental results indicate that the proposed approach can be used in generalizing street networks and retaining their density characteristics, connectivity and global structure.
New predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory
Chung-Wen Kao; Barbara Pasquini; Marc Vanderhaeghen
2004-08-01
We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering (VCS) at {Omicron}(p{sup 4}) in heavy baryon chiral perturbation theory. At this order, no unknown low energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the VCS amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double polarization experiments which allow to access these spin-flip GPs of the nucleon.
New predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory
Kao, C.-W.; Pasquini, Barbara; Vanderhaeghen, Marc
2004-12-01
We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering at O(p{sup 4}) in heavy baryon chiral perturbation theory. At this order, no unknown low-energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the virtual Compton scattering amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double-polarization experiments which allow one to access these spin-flip GPs of the nucleon.
The black hole merger event GW150914 within a modified theory of general relativity
NASA Astrophysics Data System (ADS)
Hess, P. O.
2016-11-01
In 2016 February the first observation of gravitational waves were reported. The source of this event, denoted as GW150914, was identified as the merger of two black holes with about 30 solar masses each, at a distance of approximately 400 Mpc. These data were deduced using the theory of general relativity. Since 2009 a modified theory was proposed which adds near massive objects phenomenologically the contribution of a dark energy, whose origin are vacuum fluctuations. The dark energy accumulates towards smaller distances, reducing effectively the gravitational constant. In this contribution we show that as a consequence the deduces chirping mass and the luminosity distance are larger. This result suggests that the black hole merger corresponds to two massive black holes near the centre of primordial galaxies at large luminosity distance, i.e. large redshifts.
Hydrogen Dissociation in Generalized Hartree-Fock Theory: Breaking the diatomic bond
NASA Astrophysics Data System (ADS)
Jerke, Jonathan; Masood, Samina; Tymczak, Cj
Generalized Hartree Fock theory predicts molecular Hydrogen dissociation without correlation. A variational Gaussian-Sinc linear superposition is the basis of 50 calculations with 3-4 significant digits of quality. The spin singlet covalent bond spontaneously breaks into a pair of uncorrelated doublets at atomic separation of 1.22 Angstroms. Quantum spin numbers and energetic comparison with Configuration Interaction theory--correlation--point to a first order phase transition in the molecular Hydrogen bond without correlation. Welch Foundation (Grant J-1675), the ARO (Grant W911Nf-13-1-0162), the Texas Southern University High Performance Computing Center (http:/hpcc.tsu.edu/; Grant PHY-1126251) and NSF-CREST CRCN project (Grant HRD-1137732).
Pfalzgraff, William C; Kelly, Aaron; Markland, Thomas E
2015-12-01
The development of methods that can efficiently and accurately treat nonadiabatic dynamics in quantum systems coupled to arbitrary atomistic environments remains a significant challenge in problems ranging from exciton transport in photovoltaic materials to electron and proton transfer in catalysis. Here we show that our recently introduced MF-GQME approach, which combines Ehrenfest mean field theory with the generalized quantum master equation framework, is able to yield quantitative accuracy over a wide range of charge-transfer regimes in fully atomistic environments. This is accompanied by computational speed-ups of up to 3 orders of magnitude over a direct application of Ehrenfest theory. This development offers the opportunity to efficiently investigate the atomistic details of nonadiabatic quantum relaxation processes in regimes where obtaining accurate results has previously been elusive.
Toward a generalized theory of the shift to retrieval in cognitive skill learning.
Bajic, Daniel; Rickard, Timothy C
2011-10-01
Prior research on cognitive skill learning has shown that algorithmic and direct memory retrieval strategies are not executed in parallel if the algorithm entails a series of long-term memory (LTM) retrieval steps (as in the case, for example, of mental arithmetic). This phenomenon has been hypothesized to reflect a bottleneck in LTM retrieval processes that forces a strategy choice during an early stage of processing. Here, we investigate simple perceptual-motor algorithms that involve no memory retrieval steps, a largely unexplored case in which parallel strategy execution models remain viable. Pronounced strategy interference was again observed, albeit interference that was different in important respects from that observed for LTM retrieval algorithms. It appears that neither parallel nor choice models, as developed to date, are sufficient as a generalized theory of this skill learning phenomenon. Issues central to the development of a more comprehensive theory are discussed.
Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.
Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura
2016-07-12
A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.
NASA Astrophysics Data System (ADS)
Yan, Jiawei; Ke, Youqi
2016-07-01
Electron transport properties of nanoelectronics can be significantly influenced by the inevitable and randomly distributed impurities/defects. For theoretical simulation of disordered nanoscale electronics, one is interested in both the configurationally averaged transport property and its statistical fluctuation that tells device-to-device variability induced by disorder. However, due to the lack of an effective method to do disorder averaging under the nonequilibrium condition, the important effects of disorders on electron transport remain largely unexplored or poorly understood. In this work, we report a general formalism of Green's function based nonequilibrium effective medium theory to calculate the disordered nanoelectronics. In this method, based on a generalized coherent potential approximation for the Keldysh nonequilibrium Green's function, we developed a generalized nonequilibrium vertex correction method to calculate the average of a two-Keldysh-Green's-function correlator. We obtain nine nonequilibrium vertex correction terms, as a complete family, to express the average of any two-Green's-function correlator and find they can be solved by a set of linear equations. As an important result, the averaged nonequilibrium density matrix, averaged current, disorder-induced current fluctuation, and averaged shot noise, which involve different two-Green's-function correlators, can all be derived and computed in an effective and unified way. To test the general applicability of this method, we applied it to compute the transmission coefficient and its fluctuation with a square-lattice tight-binding model and compared with the exact results and other previously proposed approximations. Our results show very good agreement with the exact results for a wide range of disorder concentrations and energies. In addition, to incorporate with density functional theory to realize first-principles quantum transport simulation, we have also derived a general form of
NASA Astrophysics Data System (ADS)
Evangelista, Francesco A.; Allen, Wesley D.; Schaefer, Henry F.
2007-07-01
Simple closed-form expressions are derived for the "same vacuum" renormalization terms that arise in state-specific multireference coupled cluster (MRCC) theories. Explicit equations are provided for these coupling terms through the triple excitation level of MRCC theory, and a general expression is included for arbitrary-order excitations. The first production-level code (PSIMRCC) for state-specific and rigorously size-extensive Mukherjee multireference coupled cluster singles and doubles (MkCCSD) computations has been written. This code is also capable of evaluating analogous Brillouin-Wigner multireference energies (BWCCSD), including a posteriori size-extensivity corrections. Using correlation-consistent basis sets (cc-pVXZ, X =D,T,Q), MkCCSD and BWCCSD were tested and compared on two classic multireference problems: (1) the dissociation potential curve of molecular fluorine (F2) and (2) the structure and vibrational frequencies of ozone. Comparison with experimental data shows that the Mukherjee method is generally superior to the Brillouin-Wigner theory in predicting energies, structures, and vibrational frequencies. Particularly accurate results for F2 are obtained by applying the MkCCSD method with localized molecular orbitals. Although the MkCCSD theory greatly improves upon single-reference CCSD for the geometric parameters and a1 vibrational frequencies of ozone, the antisymmetric stretching frequency ω3(b2) remains pathological and cannot be properly treated without the inclusion of connected triple excitations. Finally, preliminary multireference MkCCSD results are reported for the singlet-triplet splittings in ortho-, meta-, and para-benzyne, coming within 1.5kcalmol-1 of experiment in all cases.
Constructing perturbation theory kernels for large-scale structure in generalized cosmologies
NASA Astrophysics Data System (ADS)
Taruya, Atsushi
2016-07-01
We present a simple numerical scheme for perturbation theory (PT) calculations of large-scale structure. Solving the evolution equations for perturbations numerically, we construct the PT kernels as building blocks of statistical calculations, from which the power spectrum and/or correlation function can be systematically computed. The scheme is especially applicable to the generalized structure formation including modified gravity, in which the analytic construction of PT kernels is intractable. As an illustration, we show several examples for power spectrum calculations in f (R ) gravity and Λ CDM models.
Generalized Fowler-Nordheim Theory of Field Emission of Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Liang, Shi-Dong; Chen, Lu
2008-07-01
Based on the low-energy band structure of carbon nanotubes (CNs), we develop a generalized Fowler-Nordheim theory of the CN field emission, in which the behavior of the current-voltage (I-V) characteristics depends on the electric field and the diameter of the CNs. This formalism reveals the key differences of field emission between conventional bulk metallic emitters and low-dimensional emitters and gives a clear physical understanding of the non-Fowler-Nordheim feature of the I-V characteristics of the CN field emission.
Generalized Fowler-Nordheim theory of field emission of carbon nanotubes.
Liang, Shi-Dong; Chen, Lu
2008-07-11
Based on the low-energy band structure of carbon nanotubes (CNs), we develop a generalized Fowler-Nordheim theory of the CN field emission, in which the behavior of the current-voltage (I-V) characteristics depends on the electric field and the diameter of the CNs. This formalism reveals the key differences of field emission between conventional bulk metallic emitters and low-dimensional emitters and gives a clear physical understanding of the non-Fowler-Nordheim feature of the I-V characteristics of the CN field emission. PMID:18764229
General N=1 supersymmetric flux vacua of massive type IIA string theory.
Behrndt, Klaus; Cvetic, Mirjam
2005-07-01
We derive conditions for the existence of four-dimensional N=1 supersymmetric flux vacua of massive type IIA string theory with general supergravity fluxes turned on. For an SU(3) singlet Killing spinor, we show that such flux vacua exist when the internal geometry is nearly Kähler. The geometry is not warped, all the allowed fluxes are proportional to the mass parameter, and the dilaton is fixed by a ratio of (quantized) fluxes. The four-dimensional cosmological constant, while negative, becomes small in the vacuum with the weak string coupling.
Einstein's creative thinking and the general theory of relativity: a documented report.
Rothenberg, A
1979-01-01
A document written by Albert Einstein has recently come to light in which the eminent scientist described the actual sequence of his thoughts leading to the development of the general theory of relativity. The key creative thought was an instance of a type of creative cognition the author has previously designated "Janusian thinking," Janusian thinking consists of actively conceiving two or more opposite or antithetical concepts, ideas, or images simultaneously. This form of high-level secondary process cognition has been found to operate widely in art, science, and other fields.
Einstein's creative thinking and the general theory of relativity: a documented report.
Rothenberg, A
1979-01-01
A document written by Albert Einstein has recently come to light in which the eminent scientist described the actual sequence of his thoughts leading to the development of the general theory of relativity. The key creative thought was an instance of a type of creative cognition the author has previously designated "Janusian thinking," Janusian thinking consists of actively conceiving two or more opposite or antithetical concepts, ideas, or images simultaneously. This form of high-level secondary process cognition has been found to operate widely in art, science, and other fields. PMID:365000
Thermo-mechanical buckling analysis of FGM plate using generalized plate theory
NASA Astrophysics Data System (ADS)
Sharma, Kanishk; Kumar, Dinesh; Gite, Anil
2016-05-01
This paper investigates the thermo-mechanical buckling behavior of simply-supported FGM plate under the framework of generalized plate theory (GPT), which includes classical plate theory (CPT), first order shear deformation theory (FSDT) and higher order shear deformation theory (HSDT) as special cases. The governing equations for FGM plate under thermal and mechanical loading conditions are derived from the principle of virtual displacements and Navier-type solution is assumed for simply supported boundary condition. The efficiency and applicability of presented methodology is illustrated by considering various examples of thermal and mechanical buckling of FGM plates. The closed form solutions in the form of critical thermal and mechanical buckling loads, predicted by CPT, FSDT and HSDT are compared for different side-to-thickness of FGM plate. Subsequently, the effect of material gradation profile on critical buckling parameters is examined by evaluating the buckling response for a range of power law indexes. The effect of geometrical parameters on mechanical buckling of FGM plate under uni-axial and bi-axial loading conditions are also illustrated by calculating the critical load for various values of slenderness ratios. Furthermore a comparative analysis of critical thermal buckling loads of FGM plate for different temperature profiles is also presented. It is identified that all plate theories predicted approximately same critical buckling loads and critical buckling temperatures for thin FGM plate, however for thick FGM plates, CPT overestimates the critical buckling parameters. Moreover the critical buckling loads and critical buckling temperatures of FGM plate are found to be significantly lower than the corresponding homogenous isotropic ceramic plate (n=0).
Generalized quantum kinetic expansion: Higher-order corrections to multichromophoric Förster theory
Wu, Jianlan Gong, Zhihao; Tang, Zhoufei
2015-08-21
For a general two-cluster energy transfer network, a new methodology of the generalized quantum kinetic expansion (GQKE) method is developed, which predicts an exact time-convolution equation for the cluster population evolution under the initial condition of the local cluster equilibrium state. The cluster-to-cluster rate kernel is expanded over the inter-cluster couplings. The lowest second-order GQKE rate recovers the multichromophoric Förster theory (MCFT) rate. The higher-order corrections to the MCFT rate are systematically included using the continued fraction resummation form, resulting in the resummed GQKE method. The reliability of the GQKE methodology is verified in two model systems, revealing the relevance of higher-order corrections.
Symmetry relations in the generalized Lorenz-Mie theory for lossless negative refractive index media
NASA Astrophysics Data System (ADS)
André Ambrosio, Leonardo
2016-09-01
In this paper we present a theoretical analysis of the generalized Lorenz-Mie theory for negative refractive index (NRI) media and spherical scatterers, extending the well-known concepts and definitions found in the literature involving dielectric or positive refractive index (PRI) particles. The consequences of a negative phase velocity and an anti-parallelism of the wave vector with respect to the Poynting vector are investigated and interpreted in this framework and, together with the symmetries found for the beam-shape coefficients when compared to the conventional PRI case, it is shown that the description of plane waves, Gaussian beams and, more generally, on-axis azimuthally symmetric waves along a NRI medium, their fields and all physical properties can be conveniently correlated with that of dielectric media once the electromagnetic response functions are replaced by their corresponding dielectric counterparts.
Generalized quantum kinetic expansion: Higher-order corrections to multichromophoric Förster theory.
Wu, Jianlan; Gong, Zhihao; Tang, Zhoufei
2015-08-21
For a general two-cluster energy transfer network, a new methodology of the generalized quantum kinetic expansion (GQKE) method is developed, which predicts an exact time-convolution equation for the cluster population evolution under the initial condition of the local cluster equilibrium state. The cluster-to-cluster rate kernel is expanded over the inter-cluster couplings. The lowest second-order GQKE rate recovers the multichromophoric Förster theory (MCFT) rate. The higher-order corrections to the MCFT rate are systematically included using the continued fraction resummation form, resulting in the resummed GQKE method. The reliability of the GQKE methodology is verified in two model systems, revealing the relevance of higher-order corrections.
Abrahamsson, T.J.S.; Saellstroem, J.H.
1996-01-01
Linear vibrations are studied for a straight uniform finite beam element of general orientation spinning at a constant angular speed about a fixed axis in the inertial space. The gyroscopic and circulatory matrices and also the geometric stiffness matrix of the beam element are presented. The effect of the centrifugal static axial load on the bending and torsional dynamic stiffnesses is thereby accounted for. The Rayleigh/Timoshenko/Saint-Venant theory is applied, and polynomial shape functions are used in the construction of the deformation fields. Nonzero off-diagonal elements in the gyroscopic and circulatory matrices indicate coupled bending/shearing/torsional/tensional free and forced modes of a generally oriented spinning beam. Two numerical examples demonstrate the use and performance of the beam element.
A generalized theory for eccentric and misalignment effects in high-pressure annular seals
NASA Technical Reports Server (NTRS)
Chen, W. C.; Jackson, E. D.
1986-01-01
High-pressure annular seal leakage and dynamic coefficients vary with eccentricity and misalignment. Recent seal leakage data with both concentric and fully eccentric alignments support the seal leakage model with surface roughness and eccentricity effects included. In this paper, the seal dynamic coefficient calculation has been generalized and allows direct calculation of the seal dynamic coefficients at any circumferential location. The generalized solution agrees with the results obtained by using the calculated values of an earlier paper and performing a coordinate transformation. The analysis results coincide with the measured data in showing that the stiffness and damping matrices of seal coefficients are not skew symmetric, and the main diagonal seal coefficients are not equal. The measured direct stiffnesses were found higher than predicted by the concentric seal theory, but this may be explained by the presence of eccentricity in the test operating mode.
Simmering, Vanessa R; Schutte, Anne R; Spencer, John P
2008-04-01
Within cognitive neuroscience, computational models are designed to provide insights into the organization of behavior while adhering to neural principles. These models should provide sufficient specificity to generate novel predictions while maintaining the generality needed to capture behavior across tasks and/or time scales. This paper presents one such model, the dynamic field theory (DFT) of spatial cognition, showing new simulations that provide a demonstration proof that the theory generalizes across developmental changes in performance in four tasks-the Piagetian A-not-B task, a sandbox version of the A-not-B task, a canonical spatial recall task, and a position discrimination task. Model simulations demonstrate that the DFT can accomplish both specificity-generating novel, testable predictions-and generality-spanning multiple tasks across development with a relatively simple developmental hypothesis. Critically, the DFT achieves generality across tasks and time scales with no modification to its basic structure and with a strong commitment to neural principles. The only change necessary to capture development in the model was an increase in the precision of the tuning of receptive fields as well as an increase in the precision of local excitatory interactions among neurons in the model. These small quantitative changes were sufficient to move the model through a set of quantitative and qualitative behavioral changes that span the age range from 8 months to 6 years and into adulthood. We conclude by considering how the DFT is positioned in the literature, the challenges on the horizon for our framework, and how a dynamic field approach can yield new insights into development from a computational cognitive neuroscience perspective.
Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.
Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M
2015-09-01
We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.
Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.
Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M
2015-09-01
We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations. PMID:26575912
Dynamical influence processes on networks: general theory and applications to social contagion.
Harris, Kameron Decker; Danforth, Christopher M; Dodds, Peter Sheridan
2013-08-01
We study binary state dynamics on a network where each node acts in response to the average state of its neighborhood. By allowing varying amounts of stochasticity in both the network and node responses, we find different outcomes in random and deterministic versions of the model. In the limit of a large, dense network, however, we show that these dynamics coincide. We construct a general mean-field theory for random networks and show this predicts that the dynamics on the network is a smoothed version of the average response function dynamics. Thus, the behavior of the system can range from steady state to chaotic depending on the response functions, network connectivity, and update synchronicity. As a specific example, we model the competing tendencies of imitation and nonconformity by incorporating an off-threshold into standard threshold models of social contagion. In this way, we attempt to capture important aspects of fashions and societal trends. We compare our theory to extensive simulations of this "limited imitation contagion" model on Poisson random graphs, finding agreement between the mean-field theory and stochastic simulations.
Toward a general theory of adaptive radiation: insights from microbial experimental evolution.
Kassen, Rees
2009-06-01
The history of life has been punctuated by unusually spectacular periods of evolutionary diversification called adaptive radiation. Darwin's finches in the Galapagos, cichlid fishes in African Rift and Nicaraguan crater lakes, and the emergence of mammals at the end of the Cretaceous are hallmark examples. Although we have learned much from these and other case studies about the mechanisms thought to drive adaptive radiations, convincing experimental tests of theory are often lacking for the simple reason that it is usually impossible to "rewind the tape of life," as Stephen Jay Gould was fond of saying, and run it again. This situation has changed dramatically in recent years with the increasing emphasis on the use of microbial populations which, because of their small size and rapid generation times, make possible the construction of replicated, manipulative experiments to study evolution in the laboratory. Here I review the contributions that microbial experimental evolution has made to our understanding of the ecological and genetic mechanisms underlying adaptive radiation. I focus on three major gaps in the theory of adaptive radiation--the paucity of direct tests of mechanism, the genetics of diversification, and the limits and constraints on the progress of radiations--with the aim of pointing the way toward the development of a more general theory of adaptive radiation.
NASA Technical Reports Server (NTRS)
Markey, Melvin F.
1959-01-01
A theory is derived for determining the loads and motions of a deeply immersed prismatic body. The method makes use of a two-dimensional water-mass variation and an aspect-ratio correction for three-dimensional flow. The equations of motion are generalized by using a mean value of the aspect-ratio correction and by assuming a variation of the two-dimensional water mass for the deeply immersed body. These equations lead to impact coefficients that depend on an approach parameter which, in turn, depends upon the initial trim and flight-path angles. Comparison of experiment with theory is shown at maximum load and maximum penetration for the flat-bottom (0 deg dead-rise angle) model with bean-loading coefficients from 36.5 to 133.7 over a wide range of initial conditions. A dead-rise angle correction is applied and maximum-load data are compared with theory for the case of a model with 300 dead-rise angle and beam-loading coefficients from 208 to 530.
A general theory to analyse and design wireless power transfer based on impedance matching
NASA Astrophysics Data System (ADS)
Liu, Shuo; Chen, Linhui; Zhou, Yongchun; Cui, Tie Jun
2014-10-01
We propose a general theory to analyse and design the wireless power transfer (WPT) systems based on impedance matching. We take two commonly used structures as examples, the transformer-coupling-based WPT and the series/parallel capacitor-based WPT, to show how to design the impedance matching network (IMN) to obtain the maximum transfer efficiency and the maximum output power. Using the impedance matching theory (IMT), we derive a simple expression of the overall transfer efficiency by the coils' quality factors and the coupling coefficient, which has perfect accuracy compared to full-circuit simulations. Full-wave electromagnetic software, CST Microwave Studio, has been used to extract the parameters of coils, thus providing us a comprehensive way to simulate WPT systems directly from the coils' physical model. We have also discussed the relationship between the output power and the transfer efficiency, and found that the maximum output power and the maximum transfer efficiency may occur at different frequencies. Hence, both power and efficiency should be considered in real WPT applications. To validate the proposed theory, two types of WPT experiments have been conducted using 30 cm-diameter coils for lighting a 20 W light bulb with 60% efficiency over a distance of 50 cm. The experimental results have very good agreements to the theoretical predictions.
The application of foraging theory to the information searching behaviour of general practitioners
2011-01-01
Background General Practitioners (GPs) employ strategies to identify and retrieve medical evidence for clinical decision making which take workload and time constraints into account. Optimal Foraging Theory (OFT) initially developed to study animal foraging for food is used to explore the information searching behaviour of General Practitioners. This study is the first to apply foraging theory within this context. Study objectives were: 1. To identify the sequence and steps deployed in identifiying and retrieving evidence for clinical decision making. 2. To utilise Optimal Foraging Theory to assess the effectiveness and efficiency of General Practitioner information searching. Methods GPs from the Wellington region of New Zealand were asked to document in a pre-formatted logbook the steps and outcomes of an information search linked to their clinical decision making, and fill in a questionnaire about their personal, practice and information-searching backgrounds. Results A total of 115/155 eligible GPs returned a background questionnaire, and 71 completed their information search logbook. GPs spent an average of 17.7 minutes addressing their search for clinical information. Their preferred information sources were discussions with colleagues (38% of sources) and books (22%). These were the two most profitable information foraging sources (15.9 min and 9.5 min search time per answer, compared to 34.3 minutes in databases). GPs nearly always accessed another source when unsuccessful (95% after 1st source), and frequently when successful (43% after 2nd source). Use of multiple sources accounted for 41% of searches, and increased search success from 70% to 89%. Conclusions By consulting in foraging terms the most 'profitable' sources of information (colleagues, books), rapidly switching sources when unsuccessful, and frequently double checking, GPs achieve an efficient trade-off between maximizing search success and information reliability, and minimizing searching
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Smith, Steven S.
1996-01-01
This final report summarizes research performed under NASA contract NCC 2-531 toward generalization of constraint-based scheduling theories and techniques for application to space telescope observation scheduling problems. Our work into theories and techniques for solution of this class of problems has led to the development of the Heuristic Scheduling Testbed System (HSTS), a software system for integrated planning and scheduling. Within HSTS, planning and scheduling are treated as two complementary aspects of the more general process of constructing a feasible set of behaviors of a target system. We have validated the HSTS approach by applying it to the generation of observation schedules for the Hubble Space Telescope. This report summarizes the HSTS framework and its application to the Hubble Space Telescope domain. First, the HSTS software architecture is described, indicating (1) how the structure and dynamics of a system is modeled in HSTS, (2) how schedules are represented at multiple levels of abstraction, and (3) the problem solving machinery that is provided. Next, the specific scheduler developed within this software architecture for detailed management of Hubble Space Telescope operations is presented. Finally, experimental performance results are given that confirm the utility and practicality of the approach.
NASA Astrophysics Data System (ADS)
Muscettola, Nicola; Smith, Steven S.
1996-09-01
This final report summarizes research performed under NASA contract NCC 2-531 toward generalization of constraint-based scheduling theories and techniques for application to space telescope observation scheduling problems. Our work into theories and techniques for solution of this class of problems has led to the development of the Heuristic Scheduling Testbed System (HSTS), a software system for integrated planning and scheduling. Within HSTS, planning and scheduling are treated as two complementary aspects of the more general process of constructing a feasible set of behaviors of a target system. We have validated the HSTS approach by applying it to the generation of observation schedules for the Hubble Space Telescope. This report summarizes the HSTS framework and its application to the Hubble Space Telescope domain. First, the HSTS software architecture is described, indicating (1) how the structure and dynamics of a system is modeled in HSTS, (2) how schedules are represented at multiple levels of abstraction, and (3) the problem solving machinery that is provided. Next, the specific scheduler developed within this software architecture for detailed management of Hubble Space Telescope operations is presented. Finally, experimental performance results are given that confirm the utility and practicality of the approach.
Fundamental two-stage formulation for Bayesian system identification, Part I: General theory
NASA Astrophysics Data System (ADS)
Au, Siu-Kui; Zhang, Feng-Liang
2016-01-01
Structural system identification is concerned with the determination of structural model parameters (e.g., stiffness, mass) based on measured response data collected from the subject structure. For linear structures, one popular strategy is to adopt a 'two-stage' approach. That is, modal identification (e.g., frequency, mode shape) is performed in Stage I, whose information is used for inferring the structural parameters in Stage II. Different variants of Bayesian two-stage formulations have been proposed in the past. A prediction error model is commonly introduced to build a link between Stages I and II, treating the most probable values of the natural frequencies and mode shapes identified in Stage I as 'data' for Stage II. This type of formulation, which casts a prediction error model through descriptive statistics, involves heuristics that distort the fundamental nature of the Bayesian approach, although it has appeared to be inevitable. In this paper, a fundamental theory is developed for the Bayesian two-stage problem. The posterior distribution of structural parameters is derived rigorously in terms of the information available in the problem, namely the prior distribution of structural parameters, the posterior distribution of modal parameters in Stage I and the distribution of modal parameters conditional on the structural parameters that connects Stages I and II. The theory reveals a fundamental principle that ensures no double-counting of prior information in the two-stage identification process. Mathematical statements are also derived that provide insights into the role of the structural modeling error. Beyond the original structural model identification problem that motivated the work, the developed theory can be applied in more general settings. In the companion paper, examples with synthetic and real experimental data are provided to illustrate the proposed theory.
Rosenblad, Andreas; Wiklund, Tony; Bennström, Halina; Leppert, Jerzy
2014-01-01
Aim: To examine whether new immigrants had inferior quality-of-life, well-being and general functioning compared with Swedish age- and sex-matched controls. Methods: A prospective case–control study was designed including immigrants from non-European countries, 18–65 years of age, with recent Permanent Permits to Stay (PPS) in Sweden, and age- and sex-matched Swedish-born (SB) persons from the general population in Västmanland County, Sweden. The General Health Questionnaire (GHQ-12), the brief version of the World Health Organization Quality-of-Life (WHOQOL-BREF) Scale and the General Activity Functioning Assessment Scale (GAF) from DSM-IV were posted (SB), or applied in personal interviews (PPS) with interpreters. Differences between the PPS and SB groups were measured using McNemar’s test and Wilcoxon signed-rank test conducted separately for observations at baseline, 6- and 12-month follow-up. Results: There were 93 pairs (mean age 36 years). Persons from Somalia (67%) and Iraq (27%) dominated the PPS group. The differences between the groups were statistically significant for all time points for the Psychological health and Social relationship domains of WHOQOL-BREF, and for the baseline and 6-month follow-up time points of GHQ-12 where the PPS-group had a higher degree of well-being, health and quality-of-life than the SB. This tendency applied for both sexes in the immigrant group. Conclusions: These new immigrants did not have inferior physical or psychological health, quality-of-life, well-being or social functioning compared with their age- and sex-matched Swedish born pairs during a 1-year follow-up. Thus, there is reason to advocate immigrants’ fast integration into society. PMID:25249583
Generalized spin-wave theory: Application to the bilinear-biquadratic model
NASA Astrophysics Data System (ADS)
Muniz, Rodrigo A.; Kato, Yasuyuki; Batista, Cristian D.
2014-08-01
We present a mathematical framework for the multi-boson approach that has been used several times for treating spin systems. We demonstrate that the multi-boson approach corresponds to a generalization of the traditional spin-wave theory from SU(2) to SU(N), where N is the number of states of the local degree of freedom. Low-energy excitations are waves of the local order parameter that fluctuates in the SU(N) space of unitary transformations of the local spin states, instead of the SU(2) space of local spin rotations. Since the generators of the SU(N) group can be represented as bilinear forms in N-flavored bosons, the low-energy modes of the generalized spin-wave theory (GSWT) are described with N-1 different bosons, which provide a more accurate description of low-energy excitations even for the usual ferromagnetic and antiferromagnetic phases. The generalization enables the treatment of quantum spin systems whose ground states exhibit multipolar ordering as well as the detection of instabilities of magnetically ordered states (dipolar ordering) towards higher multipolar orderings. We illustrate the advantages of the GSWT by applying it to a bilinear-biquadratic model of arbitrary spin S on hypercubic lattices, and then analyzing the spectrum of dipolar phases in order to find their instabilities. In contrast to the known results for S=1 when the biquadratic term in the Hamiltonian is negative, we find that there is no nematic phase between the ferromagnetic or antiferromagnetic orderings for S>1.
Hoare, Karen J; Mills, Jane; Francis, Karen
2013-07-01
Practice nursing in New Zealand is not well described in the literature. One survey illustrated that most of the New Zealand practice nurses sampled did not know of the country's two premier evidence-based health websites. A recent review compared general practice in the UK, New Zealand and Australia and found that whereas there had been significant developments in empowering the practice nurse workforce to run nurse-led clinics in the UK, New Zealand and Australia lagged behind. The aim of this reported constructivist grounded theory study was to investigate practice nurses' use of information. Conducted in Auckland, New Zealand, data were collected through ethnographic techniques in one general practice between September 2009 and January 2010 to enhance theoretical sensitivity to the area of information use. Subsequently, six experienced practice nurses (one twice after moving jobs) and five new graduate nurses from five different general practices were interviewed, using open-ended questions, between January 2010 and August 2011. Concurrent data collection and analysis occurred throughout the study period. The use of memos, the constant comparative method, data categorisation and finally, data abstraction resulted in the final theory of reciprocal role modelling. Experienced practice nurses role modelled clinical skills to new graduate nurses. Unexpectedly, new graduate nurses were unconscious experts at sourcing information and role modelled this skill to experienced practice nurses. Once this attribute was acknowledged by the experienced practice nurse, mutual learning occurred that enabled both groups of nurses to become better practitioners. Graduate nurses of the millennial generation were identified as a resource for experienced practice nurses who belong to the baby boomer generation and generation X. PMID:23638795
ERIC Educational Resources Information Center
Cheng, Zi-Juan; Hau, Kit-Tai; Wen, Jian-Bing; Kong, Chit-Kwong
Using structural equation modeling (SEM), researchers examined whether there was a general dominating factor that governed students' implicit theories of intelligence, morality, personality, creativity, and social intelligence. The possible age-related changes of students' implicit theories were also studied. In all, 1,650 elementary and junior…
On the Theory of Geodesic Mappings of Einstein Spaces and their Generalizations
NASA Astrophysics Data System (ADS)
Mikeš, Josef; Hinterleitner, Irena; Kiosak, Vladimir A.
2006-11-01
In this paper we consider results of the theory of geodesic mappings of Einstein spaces and their generalizations. In 1925 H. Brinkmann found the metric of equidistant spaces and obtained conditions, when these spaces are Einstein spaces, resp. spaces of constant curvature. We introduce the conditions on these spaces when they are semisymmetric, pseudosymmetric, Ricci semisymmetric, Ricci pseudosymmetric and spaces Vn(B). A diffeomorphism f between Riemannian spaces Vn and V¯n is called a geodesic mapping, if any geodesic line in Vn is mapped into a geodesic line in V¯n. In 1954 N.S. Sinyukov proved that equidistant spaces admit geodesic mappings. Our constructions of a geodesic mapping of Einstein spaces with the Brinkmann metric proves that Petrov's conjecture is not true. We formulate results by E. Beltrami, R. Couty, V.I. Golikov, S. Formella, V.A. Kiosak, T. Levi-Civita, J. Mikeš, A.Z. Petrov and A.V. Pogorelov about geodesic mappings of Einstein spaces and spaces of constant curvature. Further we introduce results on geodesic mappings for Riemannian spaces, which are generalized Einstein spaces and spaces of constant curvature. For instance symmetric, recurrent, generalized recurrent, semisymmetric, pseudosymmetric, Ricci semisymmetric, Ricci pseudosymmetric spaces, spaces with harmonic curvature, etc. These results were obtained by many authors: R. Deszcz, V.A. Kiosak, J. Mikeš, N.S. Sinykov, E.N. Sinyukova, V.S. Sobchuk, etc.
Screening the fifth force in the Horndeski's most general scalar-tensor theories
Kase, Ryotaro; Tsujikawa, Shinji E-mail: shinji@rs.kagu.tus.ac.jp
2013-08-01
We study how the Vainshtein mechanism operates in the most general scalar-tensor theories with second-order equations of motion. The field equations of motion, which can be also applicable to most of other screening scenarios proposed in literature, are generally derived in a spherically symmetric space-time with a matter source. In the presence of a field coupling to the Ricci scalar, we clarify conditions under which the Vainshtein mechanism is at work in a weak gravitational background. We also obtain the solutions of the field equation inside a spherically symmetric body and show how they can be connected to exterior solutions that accommodate the Vainshtein mechanism. We apply our general results to a number of concrete models such as the covariant/extended Galileons and the DBI Galileons with Gauss-Bonnet and other terms. In these models the fifth force can be suppressed to be compatible with solar-system constraints, provided that non-linear field kinetic terms coupled to the Einstein tensor do not dominate over other non-linear field self-interactions.
Development of Generalized Perturbation Theory Capability within the SCALE Code Package
Jessee, Matthew Anderson; Williams, Mark L; DeHart, Mark D
2009-01-01
Computational capability has been developed to calculate sensitivity coefficients of generalized responses with respect to cross-section data in the SCALE code system. The focus of this paper is the implementation of generalized perturbation theory (GPT) for one-dimensional and two-dimensional deterministic neutron transport calculations. GPT is briefly summarized for computing sensitivity coefficients for reaction rate ratio responses within the existing framework of the TSUNAMI sensitivity and uncertainty (S/U) analysis code package in SCALE. GPT provides the capability to analyze generalized responses related to reactor analysis, such as homogenized cross-sections, relative powers, and conversion ratios, as well as measured experimental parameters such as 28 (epithermal/thermal 238U capture rates) in thermal benchmarks and fission ratios such as 239Pu(n,f)/235U(n,f) in fast benchmarks. The S/U analysis of these experimental integral responses can be used to augment the existing TSUNAMI S/U analysis capabilities for system similarity assessment and data adjustment. S/U analysis is provided for boiling water reactor pin cell as part of the Organization for Economic Cooperation and Development Uncertainty Analysis in Modeling benchmark.
Shaped beam scattering by an aggregate of particles using generalized Lorenz-Mie theory
NASA Astrophysics Data System (ADS)
Briard, Paul; Wang, Jia jie; Han, Yi Ping
2016-04-01
In this paper, the light scattering by an aggregate of particles illuminated by an arbitrary shaped beam is analyzed within the framework of generalized Lorenz-Mie theory (GLMT). The theoretical derivations of aggregated particles illuminated by an arbitrary shaped beam are revisited, with special attention paid to the computation of beam shape coefficients of a shaped beam for aggregated particles. The theoretical treatments as well as a home-made code are then verified by making comparisons between our numerical results and those calculated using a public available T-Matrix code MSTM. Good agreements are achieved which partially indicate the correctness of both codes. Additionally, more numerical results are presented to study the scattered fields of aggregated particles illuminated by a focused Gaussian beam. Several large enhancements in the scattered intensity distributions are found which are believed to be due to the Bragg's scattering by a linear chain of spheres.
General Strain Theory and Delinquency: Extending a Popular Explanation to American Indian Youth*
Eitle, David; Eitle, Tamela McNulty
2014-01-01
Despite evidence that American Indian adolescents are disproportionately involved in crime and delinquent behavior, there exists scant research exploring the correlates of crime among this group. We posit that Agnew’s (1992) General Strain Theory (GST) is well suited to explain American Indian delinquent activity. Using the National Longitudinal Study of Adolescent Health, we examined a subsample of American Indian students—a study that represents, to the best of our knowledge, the initial published test of GST principles used to explain AI delinquent behavior. Overall, we find mixed support for the core principles of GST applying to AI delinquent behavior. We also found evidence that some of the personal and social resources identified by Agnew condition the strain-delinquent behavior relationship, albeit, sometimes in ways that are not entirely consistent with GST. PMID:27217594
Stationary waves on nonlinear quantum graphs: General framework and canonical perturbation theory.
Gnutzmann, Sven; Waltner, Daniel
2016-03-01
In this paper we present a general framework for solving the stationary nonlinear Schrödinger equation (NLSE) on a network of one-dimensional wires modeled by a metric graph with suitable matching conditions at the vertices. A formal solution is given that expresses the wave function and its derivative at one end of an edge (wire) nonlinearly in terms of the values at the other end. For the cubic NLSE this nonlinear transfer operation can be expressed explicitly in terms of Jacobi elliptic functions. Its application reduces the problem of solving the corresponding set of coupled ordinary nonlinear differential equations to a finite set of nonlinear algebraic equations. For sufficiently small amplitudes we use canonical perturbation theory, which makes it possible to extract the leading nonlinear corrections over large distances.
Canfora, Fabrizio; Willison, Steven; Giacomini, Alex; Troncoso, Ricardo
2009-08-15
It is shown that Einstein gravity in four dimensions with small cosmological constant and small extra dimensions can be obtained by spontaneous compactification of Lovelock gravity in vacuum. Assuming that the extra dimensions are compact spaces of constant curvature, general relativity is recovered within a certain class of Lovelock theories possessing necessarily cubic or higher order terms in curvature. This bounds the higher dimension to at least 7. Remarkably, the effective gauge coupling and Newton constant in four dimensions are not proportional to the gravitational constant in higher dimensions, but are shifted with respect to their standard values. This effect opens up new scenarios where a maximally symmetric solution in higher dimensions could decay into the compactified spacetime either by tunneling or through a gravitational analog of ghost condensation. Indeed, this is what occurs requiring both the extra dimensions and the four-dimensional cosmological constant to be small.
Unifying the Geometry of General Relativity with the Virtual Particle Nature of Quantum Theory
NASA Astrophysics Data System (ADS)
Laubenstein, John
2007-03-01
General Relativity (GR) and Quantum Electro-Dynamics (QED) utilize different underlying assumptions regarding the nature of vacuum and space-time. GR requires the actual geometry of space-time to change in the presence of mass resulting in gravitation. QED operates within flat space-time and propagates forces through the exchange of virtual photons. Efforts to unify these theories are -- despite their mathematical elegance -- complex, cumbersome and incomplete. The inability to achieve unification may suggest a need to re-think basic conceptual models. The IWPD Research Center has found evidence suggesting that time -- as a unique degree of freedom -- may be illusionary. Our research suggests that time may be ``embedded'' within a spatial dimension through a geometric manipulation of the light cone in Minkowski space-time. This interpretation of space-time provides predictions that are experimentally verifiable and suggests a conceptual path for the unification of GR and QED.
Bui, Linh; Mullan, Barbara; McCaffery, Kirsten
2013-01-01
An appropriate theoretical framework may be useful for guiding the development of physical activity interventions. This review investigates the effectiveness of the protection motivation theory (PMT), a model based on the cognitive mediation processes of behavioral change, in the prediction and promotion of physical activity participation. A literature search was conducted using the databases MEDLINE, PsycINFO, PubMed, and Web of Science, and a manual search was conducted on relevant reference lists. Studies were included if they tested or applied the PMT, measured physical activity, and sampled from healthy populations. A total of 20 studies were reviewed, grouped into four design categories: prediction, stage discrimination, experimental manipulation, and intervention. The results indicated that the PMT's coping appraisal construct of self-efficacy generally appears to be the most effective in predicting and promoting physical activity participation. In conclusion, the PMT shows some promise, however, there are still substantial gaps in the evidence.
NASA Technical Reports Server (NTRS)
Hoots, F. R.; Fitzpatrick, P. M.
1979-01-01
The classical Poisson equations of rotational motion are used to study the attitude motions of an earth orbiting, rapidly spinning gyroscope perturbed by the effects of general relativity (Einstein theory). The center of mass of the gyroscope is assumed to move about a rotating oblate earth in an evolving elliptic orbit which includes all first-order oblateness effects produced by the earth. A method of averaging is used to obtain a transformation of variables, for the nonresonance case, which significantly simplifies the Poisson differential equations of motion of the gyroscope. Long-term solutions are obtained by an exact analytical integration of the simplified transformed equations. These solutions may be used to predict both the orientation of the gyroscope and the motion of its rotational angular momentum vector as viewed from its center of mass. The results are valid for all eccentricities and all inclinations not near the critical inclination.
General quantum-mechanical setting for field–antifield formalism as a hyper-gauge theory
NASA Astrophysics Data System (ADS)
Batalin, Igor A.; Lavrov, Peter M.
2016-09-01
A general quantum-mechanical setting is proposed for the field-antifield formalism as a unique hyper-gauge theory in the field-antifield space. We formulate a Schr\\"odinger-type equation to describe the quantum evolution in a "current time" purely formal in its nature. The corresponding Hamiltonian is defined in the form of a supercommutator of the delta-operator with a hyper-gauge Fermion. The initial wave function is restricted to be annihilated with the delta-operator. The Schr\\"odinger's equation is resolved in a closed form of the path integral, whose action contains the symmetric Weyl's symbol of the Hamiltonian. We take the path integral explicitly in the case of being a hyper-gauge Fermion an arbitrary function rather than an operator.
Shapes of primordial non-Gaussianities in the Horndeski's most general scalar-tensor theories
Felice, Antonio De; Tsujikawa, Shinji E-mail: shinji@rs.kagu.tus.ac.jp
2013-03-01
In the Horndeski's most general scalar-tensor theories, we derive the three-point correlation function of scalar non-Gaussianities generated during single-field inflation in the presence of slow-variation corrections to the leading-order term. Unlike previous works, the resulting bispectrum is valid for any shape of non-Gaussianities. In the squeezed limit, for example, this gives rise to the same consistency relation as that derived by Maldacena in standard single-field slow-roll inflation. We estimate the shape close to the squeezed one at which the effect of the term inversely proportional to the scalar propagation speed squared begins to contribute to the bispectrum. We also show that the leading-order bispectrum can be expressed by the linear combination of two convenient bases whose shapes are highly correlated with equilateral and orthogonal types respectively. We present concrete models in which the orthogonal and enfolded shapes can dominate over the equilateral one.
Generalized Förster-Dexter theory of photoinduced intramolecular energy transfer
NASA Astrophysics Data System (ADS)
Lin, S. H.; Xiao, W. Z.; Dietz, W.
1993-05-01
In this paper, we generalize the Förster-Dexter theory to treat photoinduced electronic energy transfer for a system in dense media and for an isolated system (i.e., a system in the collision-free condition). Instead of expressing the rate of energy transfer in terms of spectral overlap, we obtain the expression of the energy-transfer rate constant by evaluating a Fourier integral using the saddle-point method. In this way, the energy-gap dependence and the effect of temperature and the isotope effect on the energy transfer can be easily studied. The effect of bridge groups connecting between donor and acceptor on the energy transfer is also studied.
Born-Infeld gravity with a unique vacuum and a massless graviton
NASA Astrophysics Data System (ADS)
Güllü, Ibrahim; Şişman, Tahsin ćaǧrı; Tekin, Bayram
2015-11-01
We construct an n -dimensional Born-Infeld-type gravity theory that has the same properties as Einstein's gravity in terms of the vacuum and particle content: Namely, the theory has a unique viable vacuum (maximally symmetric solution) and a single massless unitary spin-2 graviton about this vacuum. The Born-Infeld gravity, in some sense, is the most natural, minimal generalization of Einstein's gravity with a better UV behavior and hence is a potentially less singular theory at small distances. The Gauss-Bonnet combination plays a nontrivial role in the construction of the theory. As an extreme example, we consider the infinite-dimensional limit where an interesting exponential gravity arises.
Relativistic Feynman-Metropolis-Teller theory for white dwarfs in general relativity
Rotondo, Michael; Rueda, Jorge A.; Ruffini, Remo; Xue Shesheng
2011-10-15
The recent formulation of the relativistic Thomas-Fermi model within the Feynman-Metropolis-Teller theory for compressed atoms is applied to the study of general relativistic white dwarf equilibrium configurations. The equation of state, which takes into account the {beta}-equilibrium, the nuclear and the Coulomb interactions between the nuclei and the surrounding electrons, is obtained as a function of the compression by considering each atom constrained in a Wigner-Seitz cell. The contribution of quantum statistics, weak, nuclear, and electromagnetic interactions is obtained by the determination of the chemical potential of the Wigner-Seitz cell. The further contribution of the general relativistic equilibrium of white dwarf matter is expressed by the simple formula {radical}(g{sub 00}){mu}{sub ws}=constant, which links the chemical potential of the Wigner-Seitz cell {mu}{sub ws} with the general relativistic gravitational potential g{sub 00} at each point of the configuration. The configuration outside each Wigner-Seitz cell is strictly neutral and therefore no global electric field is necessary to warranty the equilibrium of the white dwarf. These equations modify the ones used by Chandrasekhar by taking into due account the Coulomb interaction between the nuclei and the electrons as well as inverse {beta} decay. They also generalize the work of Salpeter by considering a unified self-consistent approach to the Coulomb interaction in each Wigner-Seitz cell. The consequences on the numerical value of the Chandrasekhar-Landau mass limit as well as on the mass-radius relation of {sup 4}He, {sup 12}C, {sup 16}O and {sup 56}Fe white dwarfs are presented. All these effects should be taken into account in processes requiring a precision knowledge of the white dwarf parameters.
Coverage theories for metagenomic DNA sequencing based on a generalization of Stevens' theorem.
Wendl, Michael C; Kota, Karthik; Weinstock, George M; Mitreva, Makedonka
2013-11-01
Metagenomic project design has relied variously upon speculation, semi-empirical and ad hoc heuristic models, and elementary extensions of single-sample Lander-Waterman expectation theory, all of which are demonstrably inadequate. Here, we propose an approach based upon a generalization of Stevens' Theorem for randomly covering a domain. We extend this result to account for the presence of multiple species, from which are derived useful probabilities for fully recovering a particular target microbe of interest and for average contig length. These show improved specificities compared to older measures and recommend deeper data generation than the levels chosen by some early studies, supporting the view that poor assemblies were due at least somewhat to insufficient data. We assess predictions empirically by generating roughly 4.5 Gb of sequence from a twelve member bacterial community, comparing coverage for two particular members, Selenomonas artemidis and Enterococcus faecium, which are the least ([Formula: see text]3 %) and most ([Formula: see text]12 %) abundant species, respectively. Agreement is reasonable, with differences likely attributable to coverage biases. We show that, in some cases, bias is simple in the sense that a small reduction in read length to simulate less efficient covering brings data and theory into essentially complete accord. Finally, we describe two applications of the theory. One plots coverage probability over the relevant parameter space, constructing essentially a "metagenomic design map" to enable straightforward analysis and design of future projects. The other gives an overview of the data requirements for various types of sequencing milestones, including a desired number of contact reads and contig length, for detection of a rare viral species.
A general theory of evolution based on energy efficiency: its implications for diseases.
Yun, Anthony J; Lee, Patrick Y; Doux, John D; Conley, Buford R
2006-01-01
We propose a general theory of evolution based on energy efficiency. Life represents an emergent property of energy. The earth receives energy from cosmic sources such as the sun. Biologic life can be characterized by the conversion of available energy into complex systems. Direct energy converters such as photosynthetic microorganisms and plants transform light energy into high-energy phosphate bonds that fuel biochemical work. Indirect converters such as herbivores and carnivores predominantly feed off the food chain supplied by these direct converters. Improving energy efficiency confers competitive advantage in the contest among organisms for energy. We introduce a term, return on energy (ROE), as a measure of energy efficiency. We define ROE as a ratio of the amount of energy acquired by a system to the amount of energy consumed to generate that gain. Life-death cycling represents a tactic to sample the environment for innovations that allow increases in ROE to develop over generations rather than an individual lifespan. However, the variation-selection strategem of Darwinian evolution may define a particular tactic rather than an overarching biological paradigm. A theory of evolution based on competition for energy and driven by improvements in ROE both encompasses prior notions of evolution and portends post-Darwinian mechanisms. Such processes may involve the exchange of non-genetic traits that improve ROE, as exemplified by cognitive adaptations or memes. Under these circumstances, indefinite persistence may become favored over life-death cycling, as increases in ROE may then occur more efficiently within a single lifespan rather than over multiple generations. The key to this transition may involve novel methods to address the promotion of health and cognitive plasticity. We describe the implications of this theory for human diseases. PMID:16122878
Connections between the Sznajd model with general confidence rules and graph theory.
Timpanaro, André M; Prado, Carmen P C
2012-10-01
The Sznajd model is a sociophysics model that is used to model opinion propagation and consensus formation in societies. Its main feature is that its rules favor bigger groups of agreeing people. In a previous work, we generalized the bounded confidence rule in order to model biases and prejudices in discrete opinion models. In that work, we applied this modification to the Sznajd model and presented some preliminary results. The present work extends what we did in that paper. We present results linking many of the properties of the mean-field fixed points, with only a few qualitative aspects of the confidence rule (the biases and prejudices modeled), finding an interesting connection with graph theory problems. More precisely, we link the existence of fixed points with the notion of strongly connected graphs and the stability of fixed points with the problem of finding the maximal independent sets of a graph. We state these results and present comparisons between the mean field and simulations in Barabási-Albert networks, followed by the main mathematical ideas and appendices with the rigorous proofs of our claims and some graph theory concepts, together with examples. We also show that there is no qualitative difference in the mean-field results if we require that a group of size q>2, instead of a pair, of agreeing agents be formed before they attempt to convince other sites (for the mean field, this would coincide with the q-voter model).
Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems
NASA Astrophysics Data System (ADS)
Lucarini, Valerio; Faranda, Davide; Wouters, Jeroen; Kuna, Tobias
2014-02-01
In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the chosen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan-Yorke dimension of the attractor. Preliminary numerical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.
Connections between the Sznajd model with general confidence rules and graph theory
NASA Astrophysics Data System (ADS)
Timpanaro, André M.; Prado, Carmen P. C.
2012-10-01
The Sznajd model is a sociophysics model that is used to model opinion propagation and consensus formation in societies. Its main feature is that its rules favor bigger groups of agreeing people. In a previous work, we generalized the bounded confidence rule in order to model biases and prejudices in discrete opinion models. In that work, we applied this modification to the Sznajd model and presented some preliminary results. The present work extends what we did in that paper. We present results linking many of the properties of the mean-field fixed points, with only a few qualitative aspects of the confidence rule (the biases and prejudices modeled), finding an interesting connection with graph theory problems. More precisely, we link the existence of fixed points with the notion of strongly connected graphs and the stability of fixed points with the problem of finding the maximal independent sets of a graph. We state these results and present comparisons between the mean field and simulations in Barabási-Albert networks, followed by the main mathematical ideas and appendices with the rigorous proofs of our claims and some graph theory concepts, together with examples. We also show that there is no qualitative difference in the mean-field results if we require that a group of size q>2, instead of a pair, of agreeing agents be formed before they attempt to convince other sites (for the mean field, this would coincide with the q-voter model).
General Formalism of Decision Making Based on Theory of Open Quantum Systems
NASA Astrophysics Data System (ADS)
Asano, M.; Ohya, M.; Basieva, I.; Khrennikov, A.
2013-01-01
We present the general formalism of decision making which is based on the theory of open quantum systems. A person (decision maker), say Alice, is considered as a quantum-like system, i.e., a system which information processing follows the laws of quantum information theory. To make decision, Alice interacts with a huge mental bath. Depending on context of decision making this bath can include her social environment, mass media (TV, newspapers, INTERNET), and memory. Dynamics of an ensemble of such Alices is described by Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation. We speculate that in the processes of evolution biosystems (especially human beings) designed such "mental Hamiltonians" and GKSL-operators that any solution of the corresponding GKSL-equation stabilizes to a diagonal density operator (In the basis of decision making.) This limiting density operator describes population in which all superpositions of possible decisions has already been resolved. In principle, this approach can be used for the prediction of the distribution of possible decisions in human populations.
Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems.
Lucarini, Valerio; Faranda, Davide; Wouters, Jeroen; Kuna, Tobias
2014-01-01
In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the chosen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan-Yorke dimension of the attractor. Preliminary numerical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.
NASA Technical Reports Server (NTRS)
Wu, Chung-Hua
1993-01-01
This report represents a general theory applicable to axial, radial, and mixed flow turbomachines operating at subsonic and supersonic speeds with a finite number of blades of finite thickness. References reflect the evolution of computational methods used, from the inception of the theory in the 50's to the high-speed computer era of the 90's. Two kinds of relative stream surfaces, S(sub 1) and S(sub 2), are introduced for the purpose of obtaining a three-dimensional flow solution through the combination of two-dimensional flow solutions. Nonorthogonal curvilinear coordinates are used for the governing equations. Methods of computing transonic flow along S(sub 1) and S(sub 2) stream surfaces are given for special cases as well as for fully three-dimensional transonic flows. Procedures pertaining to the direct solutions and inverse solutions are presented. Information on shock wave locations and shapes needed for computations are discussed. Experimental data from a Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e.V. (DFVLR) rotor and from a Chinese Academy of Sciences (CAS) transonic compressor rotor are compared with the computed flow properties.
Cascante, M; Franco, R; Canela, E I
1989-06-01
It is shown that metabolic control theory (MCT), is its present form, is a particular case of general sensitivity theory, which studies the effects of parameter variations on the behavior of dynamic systems. It has been shown that metabolic control theory is obtained from this more general theory for the particular case of steady-state and linear relationships between velocities and enzyme concentrations. In such conditions the relationships between elasticities and flux control coefficients are easily obtained. These relationships are in the form of a matrix product constructed in a priori form. Relationships between combined response coefficients and concentration control coefficients are presented. The use of implicit methodology from general sensitivity theory provides a generalization of MCT, which is applied to unbranched pathways. For this particular case, provided the matrices have been properly constructed, the matrix of global properties (flux and concentration control coefficients) can be obtained by inversion of the matrix of local properties (elasticities). The theorems of MCT (concentration summation, flux summation, flux connectivity, and concentration connectivity) applicable for unbranched pathways are directly obtained by inspection of the matrix product. With these results, the present theoretical basis of MCT is extended with a more structured framework that allows a wider range of application. The results make clearer the relatedness of MCT to the more general approach provided by biochemical systems theory (BST). PMID:2520171
ERIC Educational Resources Information Center
Ruddick, Kristie R.; Parrill, Abby L.; Petersen, Richard L.
2012-01-01
In this study, a computational molecular orbital theory experiment was implemented in a first-semester honors general chemistry course. Students used the GAMESS (General Atomic and Molecular Electronic Structure System) quantum mechanical software (as implemented in ChemBio3D) to optimize the geometry for various small molecules. Extended Huckel…
PyR@TE. Renormalization group equations for general gauge theories
NASA Astrophysics Data System (ADS)
Lyonnet, F.; Schienbein, I.; Staub, F.; Wingerter, A.
2014-03-01
Although the two-loop renormalization group equations for a general gauge field theory have been known for quite some time, deriving them for specific models has often been difficult in practice. This is mainly due to the fact that, albeit straightforward, the involved calculations are quite long, tedious and prone to error. The present work is an attempt to facilitate the practical use of the renormalization group equations in model building. To that end, we have developed two completely independent sets of programs written in Python and Mathematica, respectively. The Mathematica scripts will be part of an upcoming release of SARAH 4. The present article describes the collection of Python routines that we dubbed PyR@TE which is an acronym for “Python Renormalization group equations At Two-loop for Everyone”. In PyR@TE, once the user specifies the gauge group and the particle content of the model, the routines automatically generate the full two-loop renormalization group equations for all (dimensionless and dimensionful) parameters. The results can optionally be exported to LaTeX and Mathematica, or stored in a Python data structure for further processing by other programs. For ease of use, we have implemented an interactive mode for PyR@TE in form of an IPython Notebook. As a first application, we have generated with PyR@TE the renormalization group equations for several non-supersymmetric extensions of the Standard Model and found some discrepancies with the existing literature. Catalogue identifier: AERV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERV_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 924959 No. of bytes in distributed program, including test data, etc.: 495197 Distribution format: tar.gz Programming language: Python. Computer
Thermodynamic scaling of dynamics in polymer melts: predictions from the generalized entropy theory.
Xu, Wen-Sheng; Freed, Karl F
2013-06-21
Many glass-forming fluids exhibit a remarkable thermodynamic scaling in which dynamic properties, such as the viscosity, the relaxation time, and the diffusion constant, can be described under different thermodynamic conditions in terms of a unique scaling function of the ratio ρ(γ)∕T, where ρ is the density, T is the temperature, and γ is a material dependent constant. Interest in the scaling is also heightened because the exponent γ enters prominently into considerations of the relative contributions to the dynamics from pressure effects (e.g., activation barriers) vs. volume effects (e.g., free volume). Although this scaling is clearly of great practical use, a molecular understanding of the scaling remains elusive. Providing this molecular understanding would greatly enhance the utility of the empirically observed scaling in assisting the rational design of materials by describing how controllable molecular factors, such as monomer structures, interactions, flexibility, etc., influence the scaling exponent γ and, hence, the dynamics. Given the successes of the generalized entropy theory in elucidating the influence of molecular details on the universal properties of glass-forming polymers, this theory is extended here to investigate the thermodynamic scaling in polymer melts. The predictions of theory are in accord with the appearance of thermodynamic scaling for pressures not in excess of ~50 MPa. (The failure at higher pressures arises due to inherent limitations of a lattice model.) In line with arguments relating the magnitude of γ to the steepness of the repulsive part of the intermolecular potential, the abrupt, square-well nature of the lattice model interactions lead, as expected, to much larger values of the scaling exponent. Nevertheless, the theory is employed to study how individual molecular parameters affect the scaling exponent in order to extract a molecular understanding of the information content contained in the exponent. The chain
NASA Astrophysics Data System (ADS)
Lazar, Markus; Agiasofitou, Eleni
2014-12-01
The present work provides fundamental quantities in generalized elasticity and dislocation theory of quasicrystals. In a clear and straightforward manner, the three-dimensional Green tensor of generalized elasticity theory and the extended displacement vector for an arbitrary extended force are derived. Next, in the framework of dislocation theory of quasicrystals, the solutions of the field equations for the extended displacement vector and the extended elastic distortion tensor are given; that is, the generalized Burgers equation for arbitrary sources and the generalized Mura-Willis formula, respectively. Moreover, important quantities of the theory of dislocations as the Eshelby stress tensor, Peach-Koehler force, stress function tensor and the interaction energy are derived for general dislocations. The application to dislocation loops gives rise to the generalized Burgers equation, where the displacement vector can be written as a sum of a line integral plus a purely geometric part. Finally, using the Green tensor, all other dislocation key-formulas for loops, known from the theory of anisotropic elasticity, like the Peach-Koehler stress formula, Mura-Willis equation, Volterra equation, stress function tensor and the interaction energy are derived for quasicrystals.
A generalized theory of double-resonance laser-pumped helium-4 magnetometers
NASA Astrophysics Data System (ADS)
Plante, Michael K.
We extend prior work on laser pumped helium-4 magnetometers to include the effects of an arbitrary three-dimensional Jones vector for the laser light, general arrangement of the H1 coils, arbitrary orientation of the elements of the instrument, both ranks of the spin-1 state, the Bloch-Siegert shift, and the virtual light shift. The theoretical equations are solved for several specific cases, as well as the general steady-state case, and theoretical plots are shown in cases of practical interest and for parameters that highlight unexpected or previously-unmodeled effects. A detailed examination of the consequences to the quality of the results is made for several of the approximations used. An improved arrangement of the apparatus is suggested for the case of linearly-polarized light. Comparisons are made between experimental data and theory for several modes of operation. The new model is useful for quickly identifying the appropriate parameters to use in order to optimize the sensitivity of double-resonance helium-4 magnetometers.
Domain-general contributions to social reasoning: theory of mind and deontic reasoning re-explored.
McKinnon, Margaret C; Moscovitch, Morris
2007-02-01
Using older adults and dual-task interference, we examined performance on two social reasoning tasks: theory of mind (ToM) tasks and versions of the deontic selection task involving social contracts and hazardous conditions. In line with performance accounts of social reasoning, evidence from both aging and the dual-task method suggested that domain-general resources contribute to performance of these tasks. Specifically, older adults were impaired relative to younger adults on all types of social reasoning tasks tested; performance varied as a function of the demands these tasks placed on domain-general resources. Moreover, in younger adults, simultaneous performance of a working memory task interfered with younger adults' performance on both types of social reasoning tasks; here too, the magnitude of the interference effect varied with the processing demands of each task. Limits placed on social reasoning by executive functions contribute a great deal to performance, even in old age and in healthy younger adults under conditions of divided attention. The role of potentially non-modular and modular contributions to social reasoning is discussed.
Preferred frame parameters in the tensor-vector-scalar theory of gravity and its generalization
Sagi, Eva
2009-08-15
The tensor-vector-scalar theory of gravity, which was designed as a relativistic implementation to the modified dynamics paradigm, has fared quite well as an alternative to dark matter, on both galactic and cosmological scales. However, its performance in the Solar System, as embodied in the post-Newtonian formalism, has not yet been fully investigated. We calculate the post-Newtonian parameters for TeVeS with the cosmological value of the scalar field taken into account, and show that in this situation the cosmological value of the scalar field is tightly linked to the vector field coupling constant K, preventing the former from evolving as predicted by its equation of motion. We show that generalizing TeVeS to have an Aether-type vector action, as suggested by Skordis, removes the aforesaid link, and this generalized version of TeVes has its {beta}, {gamma}, and {xi} parameterized post-Newtonian parameters identical to those in GR, while solar system constraints on the preferred frame parameters {alpha}{sub 1} and {alpha}{sub 2} can be satisfied within a modest range of small values of the scalar and vector fields coupling parameters, and for cosmological values of the scalar field consistent with evolution within the framework of existing cosmological models.
A coarse-grained generalized second law for holographic conformal field theories
NASA Astrophysics Data System (ADS)
Bunting, William; Fu, Zicao; Marolf, Donald
2016-03-01
We consider the universal sector of a d\\gt 2 dimensional large-N strongly interacting holographic CFT on a black hole spacetime background B. When our CFT d is coupled to dynamical Einstein-Hilbert gravity with Newton constant G d , the combined system can be shown to satisfy a version of the thermodynamic generalized second law (GSL) at leading order in G d . The quantity {S}{CFT}+\\frac{A({H}B,{perturbed})}{4{G}d} is non-decreasing, where A({H}B,{perturbed}) is the (time-dependent) area of the new event horizon in the coupled theory. Our S CFT is the notion of (coarse-grained) CFT entropy outside the black hole given by causal holographic information—a quantity in turn defined in the AdS{}d+1 dual by the renormalized area {A}{ren}({H}{{bulk}}) of a corresponding bulk causal horizon. A corollary is that the fine-grained GSL must hold for finite processes taken as a whole, though local decreases of the fine-grained generalized entropy are not obviously forbidden. Another corollary, given by setting {G}d=0, states that no finite process taken as a whole can increase the renormalized free energy F={E}{out}-{{TS}}{CFT}-{{Ω }}J, with T,{{Ω }} constants set by {H}B. This latter corollary constitutes a 2nd law for appropriate non-compact AdS event horizons.
Towards violation of Born's rule: description of a simple experiment
Khrennikov, Andrei
2011-03-28
Recently a new model with hidden variables of the wave type was elaborated, so called prequantum classical statistical field theory (PCSFT). Roughly speaking PCSFT is a classical signal theory applied to a special class of signals - 'quantum systems'. PCSFT reproduces successfully all probabilistic predictions of QM, including correlations for entangled systems. This model peacefully coexists with all known no-go theorems, including Bell's theorem. In our approach QM is an approximate model. All probabilistic predictions of QM are only (quite good) approximations of 'real physical averages'. The latter are averages with respect to fluctuations of prequantum fields. In particular, Born's rule is only an approximate rule. More precise experiments should demonstrate its violation. We present a simple experiment which has to produce statistical data violating Born's rule. Since the PCSFT-presentation of this experiment may be difficult for experimenters, we reformulate consequences of PCSFT in terms of the conventional wave function. In general, deviation from Born's rule is rather small. We found an experiment amplifying this deviation. We start with a toy example. Then we present a more realistic example based on Gaussian states with very small dispersion.
Calculation of positron binding energies using the generalized any particle propagator theory
Romero, Jonathan; Charry, Jorge A.; Flores-Moreno, Roberto; Varella, Márcio T. do N.; Reyes, Andrés
2014-09-21
We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ∼0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach.
Generalization of Spatial Channel Theory to Three-Dimensional x-y-z Transport Computations
I. K. Abu-Shumays; M. A. Hunter; R. L. Martz; J. M. Risner
2002-03-12
Spatial channel theory, initially introduced in 1977 by M. L. Williams and colleagues at ORNL, is a powerful tool for shield design optimization. It focuses on so called ''contributon'' flux and current of particles (a fraction of the total of neutrons, photons, etc.) which contribute directly or through their progeny to a pre-specified response, such as a detector reading, dose rate, reaction rate, etc., at certain locations of interest. Particles that do not contribute directly or indirectly to the pre-specified response, such as particles that are absorbed or leak out, are ignored. Contributon fluxes and currents are computed based on combined forward and adjoint transport solutions. The initial concepts were considerably improved by Abu-Shumays, Selva, and Shure by introducing steam functions and response flow functions. Plots of such functions provide both qualitative and quantitative information on dominant particle flow paths and identify locations within a shield configuration that are important in contributing to the response of interest. Previous work was restricted to two dimensional (2-D) x-y rectangular and r-z cylindrical geometries. This paper generalizes previous work to three-dimensional x-y-z geometry, since it is now practical to solve realistic 3-D problems with multidimensional transport programs. As in previous work, new analytic expressions are provided for folding spherical harmonics representations of forward and adjoint transport flux solutions. As a result, the main integrals involve in spatial channel theory are computed exactly and more efficiently than by numerical quadrature. The analogy with incompressible fluid flow is also applied to obtain visual qualitative and quantitative measures of important streaming paths that could prove vital for shield design optimization. Illustrative examples are provided. The connection between the current paper and the excellent work completed by M. L. Williams in 1991 is also discussed.
Theory of NMR Signal Dephasing in a Generalized Two-Compartment Model
NASA Astrophysics Data System (ADS)
Sukstanskii, Alexander; Yablonskiy, Dmitriy
2001-03-01
A new wave of interest into the theory of NMR signal dephasing in the presence of mesoscopic static field inhomogeneities has been generated by possible applications in MRI, mostly in fMRI. An exact solution of this problem has been found in a static dephasing regime for two geometrical models: randomly distributed spheres or infinitely long cylinders of a magnetic susceptibility \\chi i embedded in a given media with a susceptibility \\chi e [1,2]. In the present communication the theory is generalized by modeling the real objects (blood vessel, red blood cells, trabecular bone, etc) by ellipsoids of revolution (prolate and oblate spheroids). We found that the signal lineshape is not Gaussian. For prolate spheroids, the time domain FID signal, S, shows three characteristic time regimes: 1) t<= 4.5t_c, Ssymbol126exp [-\\varsigma b_1(t/t_c)^2]; 2) 4.5t_c
038
1. D.A.Yablonskiy, E.M.Haacke, Magnetic Resonance in Medicine, 32, 749 (1994) 038 2. D.A.Yablonskiy, ibid., 39, 417 (1998)
Calculation of positron binding energies using the generalized any particle propagator theory.
Romero, Jonathan; Charry, Jorge A; Flores-Moreno, Roberto; Varella, Márcio T do N; Reyes, Andrés
2014-09-21
We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ~0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach.
Generalized van der Waals theory for the twist elastic modulus and helical pitch of cholesterics
NASA Astrophysics Data System (ADS)
Wensink, H. H.; Jackson, G.
2009-06-01
We present a generalized van der Waals theory for a lyotropic cholesteric system of chiral spherocylinders based on the classical Onsager theory for hard anisometric bodies. The rods consist of a hard spherocylindrical backbone surrounded with a square-well potential to account for attractive (or soft repulsive) interactions. Long-ranged chiral interactions are described by means of a simple pseudoscalar potential which is appropriate for weak chiral forces of a predominant electrostatic origin. Based on the formalism proposed by Straley [Phys. Rev. A 14, 1835 (1976)], we derive explicit algebraic expressions for the twist elastic modulus and the cholesteric pitch for rods as a function of density and temperature. The pitch varies nonmonotonically with density, with a sharp decrease at low packing fractions and a marked increase at higher packing fractions. A similar trend is found for the temperature dependence. The unwinding of the helical pitch at high densities (or low temperatures) originates from a strong enhancement of the local nematic order and the corresponding increase in the twist elastic resistance associated with near-parallel local rod configurations. This contrasts with the commonly held view that the increase in pitch with decreasing temperature as often observed in cholesterics is due to layer formation resulting from presmectic fluctuations. The increase in pitch with increasing temperature is consistent with an entropic unwinding as the chiral interaction becomes less significant than the thermal energy. The variation of the pitch with density, temperature, and contour length is in qualitative agreement with recent experimental results on colloidal fd rods.
Calculation of positron binding energies using the generalized any particle propagator theory
NASA Astrophysics Data System (ADS)
Romero, Jonathan; Charry, Jorge A.; Flores-Moreno, Roberto; Varella, Márcio T. do N.; Reyes, Andrés
2014-09-01
We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ˜0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach.
The Moon as a Test Body for General Relativity and New Gravitational Theories
NASA Astrophysics Data System (ADS)
Martini, Manuele; March, Riccardo; Bellettini, Giovanni; Dell'Agnello, S.; Delle Monache, G. O.; Currie, D. G.; Martini, M.; Lops, C.; Garattini, M.; March, R.; Bellettini, G.; Tauraso, R.; Battat, J. B.; Bianco, G.; Murphy, T. W., Jr.; Coradini, A.; Boni, A.; Cantone, C.; Maiello, M.; Porcelli, L.; Berardi, S.; Intaglietta, N.
Since 1969 Lunar Laser Ranging (LLR) to the Apollo Cube Corner Reflector (CCR) arrays has supplied several significant tests of General Relativity (GR): it has evaluated the Geodetic Precession, probed the weak and strong equivalence principle, determined the PPN parameter , addressed the time change of G and 1/r2 deviations. We show that the Moon equipped with retroreflectors can be used effectively to test new gravitational theories beyond GR, like spacetime torsion (developed by some of the authors) and the unified braneworld theory by G. Dvali et al. LLR has also provided important information on the composition and origin of the Moon through measurement of its rotations and tides. Future robotic lunar missions, like the proposed International Lunar Network (ILN) will greatly expand this broad scientific program.Initially, the Apollo arrays contributed a negligible portion of the LLR error budget. Nowadays, the ranging accuracy of ground stations has improved by more than two orders of magnitude: the new APOLLO station at Apache Point, USA, is capable of mm-level range measurements; MRLO, at the ASI Space Geodesy Center in Matera, Italy, has re-started LR operations. Now, because of lunar librations, the Apollo arrays dominate the LLR error budget, which is a few cm. The University of Maryland, Principal Investigator for the Apollo arrays, and INFN-LNF are proposing an innovative CCR array design that will reduce the error contribution of LLR payloads by more than two orders of magnitude, down to tens of microns. This is the goal of the MoonLIGHT technological experiment of INFN (Moon Laser Instrumentation for General relativity High-Accuracy Tests) and of the SCF, the CCR space test facility at LNF. We have also proposed the precursor test of the MoonLIGHT payload on the ASI lunar orbiter mission MAGIA (A. Coradini PI), which concluded its Phase A Study in 2009. In our new array design the main challenges are: 1) address the thermal and optical effects of the
BOOK REVIEW: Einstein's General Theory of Relativity—with Modern Applications in Cosmology
NASA Astrophysics Data System (ADS)
Barrabès, C.
2008-09-01
The increasing prominence of general relativity in astrophysics and cosmology is reflected in the growing number of texts, particularly at the undergraduate level. A natural attitude before opening a new one is to ask i) what makes this different from those already published? And ii) does it follow the 'physics-first approach' as for instance the book by Hartle where the basic physical concepts are introduced first with as little formalism as possible, or does it follow the more traditional 'math-first approach' for which the mathematical formalism comes first and is then applied to phyics? As announced in the title, a distinctive feature of the book by Gron and Hervik is the space (almost half the book) devoted to cosmology and in particular to some of the most recent developments in this rapidly evolving field. It is also apparent that the authors have chosen, like the majority of current books on general relativity, the 'math-first approach'. The book is divided into six parts, each of them subdivided into chapters with part VI containing a few short technical appendices. The first part of the book briefly presents in chapter I the principles of relativity, Newtonian mechanics and the Newtonian theory of gravity. In chapter II, a short introduction to special relativity is given. It seems at first surprising that the four-dimensional structure of space-time is not more fully exploited so that the reader would gain familiarity early on with notions like 4-velocity, 4-momentum and the stress energy tensor. This is in fact postponed to part II as an illustration of the mathematical formalism. The second part is devoted to those elements of differential geometry needed in this kind of course. The authors' presentation is somewhat similar to that of the books by Misner, Thorne and Wheeler and by Straumann (2nd edition). Vectors and forms are treated separately and the formalism of differential forms is introduced in detail. The various kinds of differentiation on
Nordtvedt, K L
1972-12-15
I have reviewed the historical and contemporary experiments that guide us in choosing a post-Newtonian, relativistic gravitational theory. The foundation experiments essentially constrain gravitation theory to be a metric theory in which matter couples solely to one gravitational field, the metric field, although other cosmological gravitational fields may exist. The metric field for any metric theory can be specified (for the solar system, for our present purposes) by a series of potential terms with several parameters. A variety of experiments specify (or put limits on) the numerical values of the seven parameters in the post-Newtonian metric field, and other such experiments have been planned. The empirical results, to date, yield values of the parameters that are consistent with the predictions of Einstein's general relativity.
Technology Transfer Automated Retrieval System (TEKTRAN)
Tick-borne protozoa impose a significant health burden on humans and animals throughout the world. The virulence of tick-borne protozoa, and the geographic distribution of their tick vectors and vertebrate hosts remain in flux as they adapt to changing environmental and climatic conditions. Babesios...
Technology Transfer Automated Retrieval System (TEKTRAN)
Background: The awareness of food borne illness has shifted over the years as international agribusiness and transportation have steadily increased. At least 30 food borne agents have been identified, with one-third emerging in the last 3 decades. Despite an increased emphasis on control measures, t...
Correlations in sequences of generalized eigenproblems arising in Density Functional Theory
NASA Astrophysics Data System (ADS)
Di Napoli, Edoardo; Blügel, Stefan; Bientinesi, Paolo
2012-08-01
Density Functional Theory (DFT) is one of the most used ab initio theoretical frameworks in materials science. It derives the ground state properties of a multi-atomic ensemble directly from the computation of its one-particle density n(r). In DFT-based simulations the solution is calculated through a chain of successive self-consistent cycles; in each cycle a series of coupled equations (Kohn-Sham) translates to a large number of generalized eigenvalue problems whose eigenpairs are the principal means for expressing n(r). A simulation ends when n(r) has converged to the solution within the required numerical accuracy. This usually happens after several cycles, resulting in a process calling for the solution of many sequences of eigenproblems. In this paper, the authors report evidence showing unexpected correlations between adjacent eigenproblems within each sequence. By investigating the numerical properties of the sequences of generalized eigenproblems it is shown that the eigenvectors undergo an “evolution” process. At the same time it is shown that the Hamiltonian matrices exhibit a similar evolution and manifest a specific pattern in the information they carry. Correlation between eigenproblems within a sequence is of capital importance: information extracted from the simulation at one step of the sequence could be used to compute the solution at the next step. Although they are not explored in this work, the implications could be manifold: from increasing the performance of material simulations, to the development of an improved iterative solver, to modifying the mathematical foundations of the DFT computational paradigm in use, thus opening the way to the investigation of new materials.
Nichols, G L
2000-01-01
Pathogenic protozoa are commonly transmitted to food in developing countries, but food-borne outbreaks of infection are relatively rare in developed countries. The main protozoa of concern in developed countries are Toxoplasma, Cryptosporidium and Giardia, and these can be a problem in immunocompromised people. Other protozoa such as Entamoeba histolytica, Cyclospora cayetanensis and Sarcocystis can be a food-borne problem in non-industrialised countries. C. cayetanensis has emerged as a food-borne pathogen in foods imported into North America from South America. Microsporidia may be food-borne, although evidence for this is not yet available. The measures needed to prevent food-borne protozoa causing disease require clear assessments of the risks of contamination and the effectiveness of processes to inactivate them. The globalisation of food production can allow new routes of transmission, and advances in diagnostic detection methods and surveillance systems have extended the range of protozoa that may be linked to food. PMID:10885117
Nichols, G L
2000-01-01
Pathogenic protozoa are commonly transmitted to food in developing countries, but food-borne outbreaks of infection are relatively rare in developed countries. The main protozoa of concern in developed countries are Toxoplasma, Cryptosporidium and Giardia, and these can be a problem in immunocompromised people. Other protozoa such as Entamoeba histolytica, Cyclospora cayetanensis and Sarcocystis can be a food-borne problem in non-industrialised countries. C. cayetanensis has emerged as a food-borne pathogen in foods imported into North America from South America. Microsporidia may be food-borne, although evidence for this is not yet available. The measures needed to prevent food-borne protozoa causing disease require clear assessments of the risks of contamination and the effectiveness of processes to inactivate them. The globalisation of food production can allow new routes of transmission, and advances in diagnostic detection methods and surveillance systems have extended the range of protozoa that may be linked to food.
NASA Astrophysics Data System (ADS)
Liu, Zi-Xin; Wen, Sheng-Hui; Li, Ming
2008-06-01
A combination of the iterative perturbation theory (ITP) of the dynamical mean field theory (DMFT) and coherent-potential approximation (CPA) is generalized to the double exchange model with orbital degeneracy. The Hubbard interaction and the off-diagonal components for the hopping matrix tmnij(m ≠ n) are considered in our calculation of spectrum and optical conductivity. The numerical results show that the effects of the non-diagonal hopping matrix elements are important.
Nukala, Madhuri; Mendrok, Jana
2014-12-10
Lateral light scattering simulations of printed dots are analyzed using general radiative transfer theory. We investigated the appearance of a printed paper in relation to the medium parameters like thickness of the paper sample, its optical properties, and the asymmetry factor. It was found that the appearance of a print greatly depends on these factors making it either brighter or darker. A thicker substrate with higher single scattering albedo backed with an absorbing surface makes the dots brighter due to increased number of scattering events. Additionally, it is shown that the optical effects of print also depend on illuminating and viewing angles along with the depth of ink penetration. A larger single scattering angle implies less intensity and the dots appear much blurred due to the shadowing effect prominent when viewed from sides. A fully penetrated dot of the same extinction coefficient as a partial penetrated one is darker due to increased absorption. These results can be used in applications dealing with lateral light scattering.
Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.
Hansen, J S
2013-09-01
This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point. PMID:24125208
A general parallel sparse-blocked matrix multiply for linear scaling SCF theory
NASA Astrophysics Data System (ADS)
Challacombe, Matt
2000-06-01
A general approach to the parallel sparse-blocked matrix-matrix multiply is developed in the context of linear scaling self-consistent-field (SCF) theory. The data-parallel message passing method uses non-blocking communication to overlap computation and communication. The space filling curve heuristic is used to achieve data locality for sparse matrix elements that decay with “separation”. Load balance is achieved by solving the bin packing problem for blocks with variable size.With this new method as the kernel, parallel performance of the simplified density matrix minimization (SDMM) for solution of the SCF equations is investigated for RHF/6-31G ∗∗ water clusters and RHF/3-21G estane globules. Sustained rates above 5.7 GFLOPS for the SDMM have been achieved for (H 2 O) 200 with 95 Origin 2000 processors. Scalability is found to be limited by load imbalance, which increases with decreasing granularity, due primarily to the inhomogeneous distribution of variable block sizes.
Thermally-assisted-occupation density functional theory with generalized-gradient approximations
Chai, Jeng-Da
2014-05-14
We extend the recently proposed thermally-assisted-occupation density functional theory (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)] to generalized-gradient approximation (GGA) exchange-correlation density functionals. Relative to our previous TAO-LDA (i.e., the local density approximation to TAO-DFT), the resulting TAO-GGAs are significantly superior for a wide range of applications, such as thermochemistry, kinetics, and reaction energies. For noncovalent interactions, TAO-GGAs with empirical dispersion corrections are shown to yield excellent performance. Due to their computational efficiency for systems with strong static correlation effects, TAO-LDA and TAO-GGAs are applied to study the electronic properties (e.g., the singlet-triplet energy gaps, vertical ionization potentials, vertical electron affinities, fundamental gaps, and symmetrized von Neumann entropy) of acenes with different number of linearly fused benzene rings (up to 100), which is very challenging for conventional electronic structure methods. The ground states of acenes are shown to be singlets for all the chain lengths studied here. With the increase of acene length, the singlet-triplet energy gaps, vertical ionization potentials, and fundamental gaps decrease monotonically, while the vertical electron affinities and symmetrized von Neumann entropy (i.e., a measure of polyradical character) increase monotonically.
Toward a general theory of indifference to research-based evidence.
Lewis, Steven
2007-07-01
Evidence-based medicine (EBM) and evidence-based decision-making (EBDM) were intended to revolutionize health care and health policy. Thus far they have not. A great deal of research has demonstrated the persistent ubiquity of error in health care, wide and unjustifiable variations in practice and the minimal impact of decision aids such as clinical practice guidelines. This paper attempts to explain why EBM and EBDM have remained largely unrealized ambitions. It advances 10 propositions that together constitute a general theory of indifference to research-based evidence. Some of these propositions are conceptual (e.g. the epistemic resistance to the randomized trial), some are empirical (e.g. the impact of the corruption of science by industry), some are cognitive (e.g. human problems are holistic while science is typically fragmented and narrative free) and some are normative (e.g. the primary goal is not adherence to methods, but to make better decisions with better outcomes, irrespective of their origins). EBM and EBDM over-reached, and their failure was, as a consequence, inevitable. However, with corrective action on a number of fronts, research-based evidence can and should be more influential. The first step is to reconceive EBM and EBDM as habits of mind rather than a toolbox and to recognize that the sociology of knowledge is as important as its technical content.
A Generalized Iterative Perturbation Theory for Multi-Orbital Lattice Model
NASA Astrophysics Data System (ADS)
Dasari, Nagamalleswararao; Vidhyadhiraja, N. S.; Chen, Kuang-Shing; Feng, Sheng; Moreno, Juana; Jarrell, Mark
2013-03-01
An efficient and accurate quantum impurity solver is needed for solving multi-orbital models by the dynamical mean field approximation. Impurity solvers such as quantum Monte Carlo(QMC) and exact diagonalization(ED) suffer from some limitations even though they are numerically exact, while the approximate method iterative perturbation theory(IPT) is free from these limitations. An IPT algorithm for non-degenerate multi-orbital lattice models is not available. Here we developed a generalized IPT for multi-orbital lattice model, we denote it as M-IPT. It can be applied for degenerate multi- orbital and single-orbital lattice models. As a first test we benchmarked the M-IPT results in the single-band Hubbard model case with the weak-coupling continuous-time Monte Carlo(W-CTQMC) results. We got good agreement between two methods. We are currently benchmarking the M-IPT results for the non-degenerate multi-orbital Hubbard model with the W-CTQMC results.
NASA Astrophysics Data System (ADS)
Hoormann, Janie; Beheshtipour, Banafsheh; Walsh, Nathan; Krawczynski, Henric
2014-08-01
Broadband spectropolarimetric observations of black holes in X-ray binaries with X-Calibur will allow us to test General Relativity in the yet untested strong gravity regime. We study the spectral and polarimetric signatures with two models. First we model a hot spot in the accretion disk of a black hole. This is then used to explain the position and amplitude of the high frequency quasi periodic oscillations (HFQPO) peaks. These HFQPOs have been repeatedly observed at near constant frequencies however their origin is still unknown. The second model uses a lamp-post to illuminate the accretion disk with high-energy photons. Photons acquire a polarization when scattering in the disk. We have developed a code that parallel transports the photon wave and polarization vectors through the Kerr spacetime or alternative spacetimes. Furthermore, it models the polarization changes from photon reflections off the accretion disk with the formalism of Chandrasekhar (1950). The numerical simulations allow us to evaluate how well X-Calibur can constrain the black hole spin and the accretion disk inclination. Furthermore, we are able to assess the impact of alternative spacetimes on the observable flux and polarization energy spectra.
Kaiser, Marie; Kuwert, Philipp; Braehler, Elmar; Glaesmer, Heide
2015-10-01
At the end of World War II and during the first decade after the war, roughly 200,000 children were fathered in intimate contacts between German women and foreign soldiers. The experiences of these German occupation children (GOC) have been so far described in case reports and from historical perspective only. Research on psychosocial consequences of growing up as a GOC has been missing so far. This study examined traumatic experiences, posttraumatic stress disorder, somatization, and depression in GOC (N = 146) using self-report instruments: Posttraumatic Diagnostic Scale and Patient Health Questionnaire. Findings have then been compared with a representative birth cohort-matched sample from the German general population (N = 977). German occupation children showed significantly higher prevalence rates of most traumatic experiences, higher point prevalence rates of full and partial posttraumatic stress disorder, depression, and somatization than the control group. In summary, GOC often grew up under difficult conditions (e.g., poverty, single mothers, and stigmatization). Even decades later, they showed higher rates of different mental disorders and higher comorbidity. These findings underline the complex and long-term impact of their burdened social, financial, and familial conditions. The results underpin the importance of conceptualizing occupation children as a vulnerable group in postconflict settings.
Generalized flux-tube solution in Abelian-projected SU(N) gauge theory
NASA Astrophysics Data System (ADS)
Koma, Yoshiaki
2002-12-01
The [U(1)]N-1 dual Ginzburg-Landau (DGL) theory as a low-energy effective theory of Abelian-projected SU(N) gauge theory is formulated in a Weyl symmetric way. The string tensions of the flux-tube solutions of the DGL theory associated with color-electric charges in various representations of SU(N) are calculated analytically at the border between type I and type II of the dual superconducting vacuum (Bogomol’nyi limit). The resulting string tensions satisfy the flux counting rule, which reflects the non-Abelian nature of gauge theory.
Born Pupils? Natural Pedagogy and Cultural Pedagogy.
Heyes, Cecilia
2016-03-01
The theory of natural pedagogy is an important focus of research on the evolution and development of cultural learning. It proposes that we are born pupils; that human children genetically inherit a package of psychological adaptations that make them receptive to teaching. In this article, I first examine the components of the package-eye contact, contingencies, infant-directed speech, gaze cuing, and rational imitation-asking in each case whether current evidence indicates that the component is a reliable feature of infant behavior and a genetic adaptation for teaching. I then discuss three fundamental insights embodied in the theory: Imitation is not enough for cumulative cultural inheritance, the extra comes from blind trust, and tweaking is a powerful source of cognitive change. Combining the results of the empirical review with these insights, I argue that human receptivity to teaching is founded on nonspecific genetic adaptations for social bonding and social learning and acquires its species- and functionally specific features through the operation of domain-general processes of learning in sociocultural contexts. We engage, not in natural pedagogy, but in cultural pedagogy. PMID:26993279
Born Pupils? Natural Pedagogy and Cultural Pedagogy.
Heyes, Cecilia
2016-03-01
The theory of natural pedagogy is an important focus of research on the evolution and development of cultural learning. It proposes that we are born pupils; that human children genetically inherit a package of psychological adaptations that make them receptive to teaching. In this article, I first examine the components of the package-eye contact, contingencies, infant-directed speech, gaze cuing, and rational imitation-asking in each case whether current evidence indicates that the component is a reliable feature of infant behavior and a genetic adaptation for teaching. I then discuss three fundamental insights embodied in the theory: Imitation is not enough for cumulative cultural inheritance, the extra comes from blind trust, and tweaking is a powerful source of cognitive change. Combining the results of the empirical review with these insights, I argue that human receptivity to teaching is founded on nonspecific genetic adaptations for social bonding and social learning and acquires its species- and functionally specific features through the operation of domain-general processes of learning in sociocultural contexts. We engage, not in natural pedagogy, but in cultural pedagogy.
A thermodynamic and biomechanical theory of cell adhesion. Part I: General formulism.
Zhu, C
1991-05-01
The equilibrium thermodynamics calculus of cell adhesion developed by Bell et al. (1984, Biophys. J. 45, 1051-1064) has been extended to the general non-equilibrium case. In contrast to previous models which could only compute the end results of equilibrium states, the present theory is able to calculate the kinetic process of evolution of adhesion, which may or may not approach towards equilibrium. Starting from a basic constitutive hypothesis for Helmholtz free energy, equations of balance of normal forces, energy balance at the edge of the contact area and rate of entropy production are derived using an irreversible thermodynamics approach, in which the restriction imposed by the Second Law of Thermodynamics takes the place of free energy minimization used by Bell et al. (1984). An explicit expression for adhesion energy density is derived for the general transient case as the difference of the usable work transduced from chemical energy liberation from bond formation of specific crosslinking molecules and the repulsive potential of non-specific interactions. This allows the energy balance to be used as an independent boundary equation rather than a practical way of computing the adhesion energy. Jump conditions are obtained from the conservation of crosslinking molecules across the edge of adhesion region which is treated as a singular curve. The bond formation and lateral motion of the crosslinking molecules are assumed to obey a set of reaction-diffusion equations. These equations and the force balance equation within the contact area, plus the jump conditions and the energy balance equation at the edge form a well-posed moving boundary problem which determines the propagation of the adhesion boundary, the separation distance between the two cell membranes over the contact area as well as the distributions of the crosslinking molecules on the cell surfaces. The behavior of the system depends on the relative importance of virtual convection, lateral diffusion
The complexity of managing COPD exacerbations: a grounded theory study of European general practice
Risør, Mette Bech; Spigt, Mark; Iversen, R; Godycki-Cwirko, M; Francis, N; Altiner, A; Andreeva, E; Kung, K; Melbye, H
2013-01-01
Objectives To understand the concerns and challenges faced by general practitioners (GPs) and respiratory physicians about primary care management of acute exacerbations in patients with chronic obstructive pulmonary disease (COPD). Design 21 focus group discussions (FGDs) were performed in seven countries with a Grounded Theory approach. Each country performed three rounds of FGDs. Setting Primary and secondary care in Norway, Germany, Wales, Poland, Russia, The Netherlands, China (Hong Kong). Participants 142 GPs and respiratory physicians were chosen to include urban and rural GPs as well as hospital-based and out patient-clinic respiratory physicians. Results Management of acute COPD exacerbations is dealt with within a scope of concerns. These concerns range from ‘dealing with comorbidity’ through ‘having difficult patients’ to ‘confronting a hopeless disease’. The first concern displays medical uncertainty regarding diagnosis, medication and hospitalisation. These clinical processes become blurred by comorbidity and the social context of the patient. The second concern shows how patients receive the label ‘difficult’ exactly because they need complex attention, but even more because they are time consuming, do not take responsibility and are non-compliant. The third concern relates to the emotional reactions by the physicians when confronted with ‘a hopeless disease’ due to the fact that most of the patients do not improve and the treatment slows down the process at best. GPs and respiratory physicians balance these concerns with medical knowledge and practical, situational knowledge, trying to encompass the complexity of a medical condition. Conclusions Knowing the patient is essential when dealing with comorbidities as well as with difficult relations in the consultations on exacerbations. This study suggests that it is crucial to improve the collaboration between primary and secondary care, in terms of, for example, shared consultations
Age- and Parkinson's disease-related evaluation of gait by General Tau Theory.
Zhang, Shutao; Qian, Jinwu; Zhang, Zhen; Shen, Linyong; Wu, Xi; Hu, Xiaowu
2016-10-01
The degeneration of postural control in the elderly and patients with Parkinson's disease (PD) can be debilitating and may lead to increased fall risk. This study evaluated the changes in postural control during gait affected by PD and aging using a new method based on the General Tau Theory. Fifteen patients with PD, 11 healthy old adults (HOs), and 15 healthy young adults (HYs) were recruited. Foot trajectories of each participant were monitored during walking by a three-camera Optotrak Certus(®) motion capture system. The anteroposterior direction of foot movement during stepping was analyzed by tau-G and tau-J guidance strategies. Two linear regression analyses suggested that the tau of the step-gap was strongly coupled onto the tau-J guidance during walking. The regression slope K could estimate the coupling ratio in the tau-coupling equation which reflects the performance of postural control during gait. The mean K value for the PD group, which was highest among the three groups, was approximately 0.5. Therefore, participants in the PD group walked with the poorest postural control and exhibited a relatively hard contact with the endpoint during stepping when compared with those in the HO and HY groups. The HY and HO groups obtained mean K values significantly lower than 0.5, which indicated that the gait was well controlled and ended at low speed with low deceleration. However, the HO group showed a decreased tendency for postural control, in which the mean K value was significantly higher than that of the HY group. The K value was moderately positively correlated with the double support time and negatively correlated with the stride length and walking speed. The tau-J coupling ratio can provide additional insight into gait disturbances and may serve as a reliable, objective, and quantitative tool to evaluate dynamic postural control during walking.
Making sense of medically unexplained symptoms in general practice: a grounded theory study.
Stone, Louise
2013-06-01
Background General practitioners often encounter patients with medically unexplained symptoms. These patients share many common features, but there is little agreement about the best diagnostic framework for describing them. Aims This study aimed to explore how GPs make sense of medically unexplained symptoms. Design Semi-structured interviews were conducted with 24 GPs. Each participant was asked to describe a patient with medically unexplained symptoms and discuss their assessment and management. Setting The study was conducted among GPs from teaching practices across Australia. Methods Participants were selected by purposive sampling and all interviews were transcribed. Iterative analysis was undertaken using constructivist grounded theory methodology. Results GPs used a variety of frameworks to understand and manage patients with medically unexplained symptoms. They used different frameworks to reason, to help patients make sense of their suffering, and to communicate with other health professionals. GPs tried to avoid using stigmatising labels such as 'borderline personality disorder', which were seen to apply a 'layer of dismissal' to patients. They worried about missing serious physical disease, but managed the risk by deliberately attending to physical cues during some consultations, and focusing on coping with medically unexplained symptoms in others. They also used referrals to exclude serious disease, but were wary of triggering a harmful cycle of uncoordinated care. Conclusion GPs were aware of the ethical relevance of psychiatric diagnoses, and attempted to protect their patients from stigma. They crafted helpful explanatory narratives for patients that shaped their experience of suffering. Disease surveillance remained an important role for GPs who were managing medically unexplained symptoms.
[Juvenile criminality: general strain theory and the reactive-proactive aggression trait].
Greco, Romy; Curci, Antonietta; Grattagliano, Ignazio
2009-01-01
The aims of the present study are to test General Strain Theory's (GST) assumptions, and to integrate the model including the proactive-reactive aggression trait. GST hypothesizes crime to be enacted in response to extra-personal stimuli (strain) and their subsequent negative emotions, especially anger. However, there exist also internally-driven manifestations of crime (instrumental or proactive), motivated by stimuli that are of an intrapersonal origin. Further, individuals differ to each other in the tendency to commit reactive or proactive or both manifestations of crime. With the goal to gain a more comprehensive model, GST variables and the reactive-proactive aggression trait are together tested as to their ability to predict criminal behaviour. Participants in the present research are 68 adolescent males with age ranging from 14 to 19 (M = 16.94, SD = 0.95). Half of the participants were jailed adolescents at the Fornelli Juvenile Detention Centre in Bari, while the remaining were adolescents with no criminal record, matched for age and level of education with the former group. An interview was administered to assess the experienced strain events, anger, and crime committed by the participants in the three months preceding the interview and also before. The reactive-proactive aggression trait was additionally measured. Results of the present study supported GST's assumptions, and confirmed the utility of integrating the model to include the proactive-reactive aggression trait. Strain events experienced in three-month time were found to influence property and violent offences committed by participants in the same time-interval as well as over this time. Furthermore,jailed participants were more likely to react with anger, and violence to strain events than non-jailed individuals, although the number of events experienced by both groups in the preceding months is similar. Finally, the results of the present study showed that proactive aggression is a strong
The geometrical structure of quantum theory as a natural generalization of information geometry
Reginatto, Marcel
2015-01-13
Quantum mechanics has a rich geometrical structure which allows for a geometrical formulation of the theory. This formalism was introduced by Kibble and later developed by a number of other authors. The usual approach has been to start from the standard description of quantum mechanics and identify the relevant geometrical features that can be used for the reformulation of the theory. Here this procedure is inverted: the geometrical structure of quantum theory is derived from information geometry, a geometrical structure that may be considered more fundamental, and the Hilbert space of the standard formulation of quantum mechanics is constructed using geometrical quantities. This suggests that quantum theory has its roots in information geometry.
ERIC Educational Resources Information Center
Hachtmann, Frauke
2010-01-01
The purpose of this study was to develop a theory for institutional change that explains the process and implementation of "Achievement-Centered Education" (ACE) from the faculty perspective. ACE is a new general education program at the University of Nebraska-Lincoln, a public, doctoral/research-extensive institution. A constant comparative…
ERIC Educational Resources Information Center
Soleimani, Habib; Moinnzadeh, Ahmad; Kassaian, Zohreh; Ketabi, Saeed
2012-01-01
The purpose of the present study is investigating the effect of instruction based on Multiple intelligence (MI) theory on attitude and learning of General English course among students of Islamic Azad University, Kermanshah Branch in the second semester of educational year of 2010-2011. 61 male and female students in two different classes…
ERIC Educational Resources Information Center
Nyachwaya, James M.; Gillaspie, Merry
2016-01-01
The goals of this study were (1) determine the prevalence of various features of representations in five general chemistry textbooks used in the United States, and (2) use cognitive load theory to draw implications of the various features of analyzed representations. We adapted the Graphical Analysis Protocol (GAP) (Slough et al., 2010) to look at…
ERIC Educational Resources Information Center
Moon, Byongook; Morash, Merry; McCluskey, Cynthia Perez; Hwang, Hye-Won
2009-01-01
Using longitudinal data on South Korean youth, the authors addressed limitations of previous tests of general strain theory (GST), focusing on the relationships among key strains, situational- and trait-based negative emotions, conditioning factors, and delinquency. Eight types of strain previously shown most likely to result in delinquency,…
ERIC Educational Resources Information Center
Garg, Deepti; Garg, Ajay K.
2007-01-01
This study applied the Theory of Reasoned Action and the Technology Acceptance Model to measure outcomes of general education courses (GECs) under the University of Botswana Computer and Information Skills (CIS) program. An exploratory model was validated for responses from 298 students. The results suggest that resources currently committed to…
Ardehali, M. )
1990-06-15
Some simple inequalities which demonstrate the incompatibility of local realism with quantum theory are derived. They establish, for the first time, necessary conditions for violation of the generalized spin-{ital s} Bell inequalities for a set of three distinct {ital noncoplanar} axes. For {ital s}=1/2, however, these inequalities are equivalent to Wigner's results, thus giving necessary and {ital sufficient} conditions.
Modular missile borne computers
NASA Technical Reports Server (NTRS)
Ramseyer, R.; Arnold, R.; Applewhite, H.; Berg, R.
1980-01-01
The modular missile borne computer's architecture with emphasis on how that architecture evolved is discussed. A careful analysis is given of both the physical constraints and the processing requirements.
Hubert, Mickaël; Loras, Jessica; Fleig, Timo; Olsen, Jeppe
2013-11-21
We present a new implementation of general excitation rank coupled cluster theory for electronically excited states based on the single-reference multi-reference formalism. The method may include active-space selected and/or general higher excitations by means of the general active space concept. It may employ molecular integrals over the four-component Lévy-Leblond Hamiltonian or the relativistic spin-orbit-free four-component Hamiltonian of Dyall. In an initial application to ground- and excited states of the scandium monohydride molecule we report spectroscopic constants using basis sets of up to quadruple-zeta quality and up to full iterative triple excitations in the cluster operators. Effects due to spin-orbit interaction are evaluated using two-component multi-reference configuration interaction for assessing the accuracy of the coupled cluster results.
Kunzel, Carol; Kaur, Satvir; Ahluwalia, Kavita; Darlington, Tanya; Kularatne, Piyumika; Burkett, Sandra; Hou, Derek; Sanogo, Moussa; Murrman, Marita; Edelstein, Burton
2010-01-01
Columbia University College of Dental Medicine, in partnership with the Harlem United Community AIDS Center, has developed a service-learning (SL) program for use in the training of Advanced Education in General Dentistry (AEGD) residents. This article presents basic tenets of SL, their applicability for dentistry, and our experience implementing SL in care of people living with HIV/AIDS. It proposes that social-behavioral theory, when incorporated into the basic components of SL, can play a useful role in resolving a number of challenges inherent in competency-based training programs. Although the article provides examples of how a particular theory, the Theory of Planned Behavior, might be applied in the SL context, opportunities for the application of other social-behavioral theories potentially exist.
Bounds on the power of proofs and advice in general physical theories
Lee, Ciarán M.
2016-01-01
Quantum theory presents us with the tools for computational and communication advantages over classical theory. One approach to uncovering the source of these advantages is to determine how computation and communication power vary as quantum theory is replaced by other operationally defined theories from a broad framework of such theories. Such investigations may reveal some of the key physical features required for powerful computation and communication. In this paper, we investigate how simple physical principles bound the power of two different computational paradigms which combine computation and communication in a non-trivial fashion: computation with advice and interactive proof systems. We show that the existence of non-trivial dynamics in a theory implies a bound on the power of computation with advice. Moreover, we provide an explicit example of a theory with no non-trivial dynamics in which the power of computation with advice is unbounded. Finally, we show that the power of simple interactive proof systems in theories where local measurements suffice for tomography is non-trivially bounded. This result provides a proof that QMA is contained in PP, which does not make use of any uniquely quantum structure—such as the fact that observables correspond to self-adjoint operators—and thus may be of independent interest. PMID:27436976
Bounds on the power of proofs and advice in general physical theories
NASA Astrophysics Data System (ADS)
Lee, Ciarán M.; Hoban, Matty J.
2016-06-01
Quantum theory presents us with the tools for computational and communication advantages over classical theory. One approach to uncovering the source of these advantages is to determine how computation and communication power vary as quantum theory is replaced by other operationally defined theories from a broad framework of such theories. Such investigations may reveal some of the key physical features required for powerful computation and communication. In this paper, we investigate how simple physical principles bound the power of two different computational paradigms which combine computation and communication in a non-trivial fashion: computation with advice and interactive proof systems. We show that the existence of non-trivial dynamics in a theory implies a bound on the power of computation with advice. Moreover, we provide an explicit example of a theory with no non-trivial dynamics in which the power of computation with advice is unbounded. Finally, we show that the power of simple interactive proof systems in theories where local measurements suffice for tomography is non-trivially bounded. This result provides a proof that Q M A is contained in P P , which does not make use of any uniquely quantum structure-such as the fact that observables correspond to self-adjoint operators-and thus may be of independent interest.
Emerging food-borne parasites.
Dorny, P; Praet, N; Deckers, N; Gabriel, S
2009-08-01
Parasitic food-borne diseases are generally underrecognised, however they are becoming more common. Globalization of the food supply, increased international travel, increase of the population of highly susceptible persons, change in culinary habits, but also improved diagnostic tools and communication are some factors associated with the increased diagnosis of food-borne parasitic diseases worldwide. This paper reviews the most important emerging food-borne parasites, with emphasis on transmission routes. In a first part, waterborne parasites transmitted by contaminated food such as Cyclospora cayetanensis, Cryptosporidium and Giardia are discussed. Also human fasciolosis, of which the importance has only been recognised in the last decades, with total numbers of reported cases increasing from less than 3000 to 17 million, is looked at. Furthermore, fasciolopsiosis, an intestinal trematode of humans and pigs belongs to the waterborne parasites as well. A few parasites that may be transmitted through faecal contamination of foods and that have received renewed attention, such as Toxoplasma gondii, or that are (re-)emerging, such as Trypanosoma cruzi and Echinococcus spp., are briefly reviewed. In a second part, meat-borne parasite infections are reviewed. Humans get infected by eating raw or undercooked meat infected with cyst stages of these parasites. Meat inspection is the principal method applied in the control of Taenia spp. and Trichinella spp. However, it is often not very sensitive, frequently not practised, and not done for T. gondii and Sarcocystis spp. Meat of reptiles, amphibians and fish can be infected with a variety of parasites, including trematodes (Opisthorchis spp., Clonorchis sinensis, minute intestinal flukes), cestodes (Diphyllobothrium spp., Spirometra), nematodes (Gnathostoma, spp., anisakine parasites), and pentastomids that can cause zoonotic infections in humans when consumed raw or not properly cooked. Another important zoonotic food-borne
NASA Astrophysics Data System (ADS)
Ezquiaga, Jose María; García-Bellido, Juan; Zumalacárregui, Miguel
2016-07-01
We use a description based on differential forms to systematically explore the space of scalar-tensor theories of gravity. Within this formalism, we propose a basis for the scalar sector at the lowest order in derivatives of the field and in any number of dimensions. This minimal basis is used to construct a finite and closed set of Lagrangians describing general scalar-tensor theories invariant under local Lorentz transformations in a pseudo-Riemannian manifold, which contains ten physically distinct elements in four spacetime dimensions. Subsequently, we compute their corresponding equations of motion and find which combinations are at most second order in derivatives in four as well as an arbitrary number of dimensions. By studying the possible exact forms (total derivatives) and algebraic relations between the basis components, we discover that there are only four Lagrangian combinations producing second-order equations, which can be associated with Horndeski's theory. In this process, we identify a new second-order Lagrangian, named kinetic Gauss-Bonnet, that was not previously considered in the literature. However, we show that its dynamics is already contained in Horndeski's theory. Finally, we provide a full classification of the relations between different second-order theories. This allows us to clarify, for instance, the connection between different covariantizations of Galileons theory. In conclusion, our formulation affords great computational simplicity with a systematic structure. As a first step, we focus on theories with second-order equations of motion. However, this new formalism aims to facilitate advances towards unveiling the most general scalar-tensor theories.
NASA Astrophysics Data System (ADS)
Freericks, J. K.; Han, Shuyang; Mikelsons, Karlis; Krishnamurthy, H. R.
2016-08-01
We develop a generalized gradient expansion of the inhomogeneous dynamical mean-field theory method for determining properties of ultracold atoms in a trap. This approach goes beyond the well-known local density approximation and at higher temperatures, in the normal phase, it shows why the local density approximation works so well, since the local density and generalized gradient approximations are essentially indistinguishable from each other (and from the exact solution within full inhomogeneous dynamical mean-field theory). But because the generalized gradient expansion only involves nearest-neighbor corrections, it does not work as well at low temperatures, when the systems enter into ordered phases. This is primarily due to the problem that ordered phases often satisfy some global constraints, which determine the spatial ordering pattern, and the local density and generalized gradient approximations are not able to impose those kinds of constraints; they also overestimate the tendency to order. The theory is applied to phase separation of different mass fermionic mixtures represented by the Falicov-Kimball model and to determining the entropy per particle of a fermionic system represented by the Hubbard model. The generalized gradient approximation is a useful diagnostic for the accuracy of the local density approximation—when both methods agree, they are likely accurate, when they disagree, neither is likely to be correct.
Borzou, Ahmad; Lin, Kai; Wang, Anzhong E-mail: k_lin@baylor.edu
2012-02-01
In this paper, we study electromeganetic static spacetimes in the nonrelativisitc general covariant theory of the Hořava-Lifshitz (HL) gravity, proposed recently by Hořava and Melby-Thompson, and present all the electric static solutions, which represent the generalization of the Reissner-Nordström solution found in Einstein's general relativity (GR). The global/local structures of spacetimes in the HL theory in general are different from those given in GR, because the dispersion relations of test particles now contain high-order momentum terms, so the speeds of these particles are unbounded in the ultraviolet (UV). As a result, the conception of light-cones defined in GR becomes invalid and test particles do not follow geodesics. To study black holes in the HL theory, we adopt the geometrical optical approximations, and define a horizon as a (two-closed) surface that is free of spacetime singularities and on which massless test particles are infinitely redshifted. With such a definition, we show that some of our solutions give rise to (charged) black holes, although the radii of their horizons in general depend on the energies of the test particles.
General overview of the theories used in assessment: AMEE Guide No. 57.
Schuwirth, Lambert W T; van der Vleuten, Cees P M
2011-01-01
There are no scientific theories that are uniquely related to assessment in medical education. There are many theories in adjacent fields, however, that can be informative for assessment in medical education, and in the recent decades they have proven their value. In this AMEE Guide we discuss theories on expertise development and psychometric theories, and the relatively young and emerging framework of assessment for learning. Expertise theories highlight the multistage processes involved. The transition from novice to expert is characterised by an increase in the aggregation of concepts from isolated facts, through semantic networks to illness scripts and instance scripts. The latter two stages enable the expert to recognise the problem quickly and form a quick and accurate representation of the problem in his/her working memory. Striking differences between experts and novices is not per se the possession of more explicit knowledge but the superior organisation of knowledge in his/her brain and pairing it with multiple real experiences, enabling not only better problem solving but also more efficient problem solving. Psychometric theories focus on the validity of the assessment - does it measure what it purports to measure and reliability - are the outcomes of the assessment reproducible. Validity is currently seen as building a train of arguments of how best observations of behaviour (answering a multiple-choice question is also a behaviour) can be translated into scores and how these can be used at the end to make inferences about the construct of interest. Reliability theories can be categorised into classical test theory, generalisability theory and item response theory. All three approaches have specific advantages and disadvantages and different areas of application. Finally in the Guide, we discuss the phenomenon of assessment for learning as opposed to assessment of learning and its implications for current and future development and research.
Ultrasound transducer modeling--general theory and applications to ultrasound reciprocal systems.
Willatzen, M
2001-01-01
A tutorial presentation on the theory of reciprocal ultrasound systems is given, and a complete set of modeling equations for one-dimensional multi-layer ultrasound transducers is derived from first principles. The model includes dielectric losses and mechanical losses in the transducer material layers as well as sound absorption in the transmission medium. First, the so-called constitutive relations of a piezoelectric body are derived based on general thermodynamic considerations, assuming that transducer operation takes place under almost isentropic conditions. Second, full attention is given to transducers oscillating in the thickness mode, discarding all other vibration modes. Dynamic transducer equations are determined using Newton's Second Law, Poisson's equation, and the definition of strain applied to a piezoelectric transducer with one or more non-piezoelectric layers on the front surface (multilayer transducer). Boundary conditions include continuity of normal velocity and stress across material interfaces as well as a subsidiary electrical condition over the piezoceramic electrodes. Sound transmission is assumed to take place in a water bath such that the Rayleigh equation can be used to obtain the incoming pressure at the receiver aperture from the acceleration of the opposing transmitter. This allows, e.g., a detailed treatment of receiver signal variations as the receiver moves from the near-field zone to the far-field zone of the transmitter. In the remaining part of the paper, receiver voltage and current signals are obtained by solving the full set of dynamic equations numerically. Special attention is given to transducers consisting of a) a pure piezoceramic layer only, b) a piezoceramic layer and a quarter-wavelength matching layer of polyphenylensulphide (PPS), c) a piezoceramic layer and a half-wavelength matching layer of stainless steel, and d) a piezoceramic layer and a half-wavelength matching layer of stainless steel tuned to resonance by
NASA Technical Reports Server (NTRS)
Nakai, Junko; VanDerWijngaart, Rob F.
2003-01-01
Markets are often considered superior to other global scheduling mechanisms for distributed computing systems. This claim is supported by: a casual observation from our every-day life that markets successfully equilibrate supply and demand, and the features of markets which originate in the general equilibrium theory, e.g., efficiency and the lack of necessity of 2 central controller. This paper describes why such beliefs in markets are not warranted. It does so by examining the general equilibrium theory, in terms of scope, abstraction, and interpretation. Not only does the general equilibrium theory fail to provide a satisfactory explanation of actual economies, including a computing-resource economy, it also falls short of supplying theoretical foundations for commonly held views of market desirability. This paper also points out that the argument for the desirability of markets involves circular reasoning and that the desirability can be established only vis-a-vis a scheduling goal. Finally, recasting the conclusion of Arrow's Impossibility Theorem as that for global scheduling, we conclude that there exists no market-based scheduler that is rational (in the sense defined in microeconomic theory), takes into account utility of more than one user, and yet yields a Pareto-optimal outcome for arbitrary user utility functions.
Keiser, Jennifer; Utzinger, Jürg
2009-01-01
Summary: An estimated 750 million people are at risk of infections with food-borne trematodes, which comprise liver flukes (Clonorchis sinensis, Fasciola gigantica, Fasciola hepatica, Opisthorchis felineus, and Opisthorchis viverrini), lung flukes (Paragonimus spp.), and intestinal flukes (e.g., Echinostoma spp., Fasciolopsis buski, and the heterophyids). Food-borne trematodiases pose a significant public health and economic problem, yet these diseases are often neglected. In this review, we summarize the taxonomy, morphology, and life cycle of food-borne trematodes. Estimates of the at-risk population and number of infections, geographic distribution, history, and ecological features of the major food-borne trematodes are reviewed. We summarize clinical manifestations, patterns of infection, and current means of diagnosis, treatment, and other control options. The changing epidemiological pattern and the rapid growth of aquaculture and food distribution networks are highlighted, as these developments might be associated with an elevated risk of transmission of food-borne trematodiases. Current research needs are emphasized. PMID:19597009
Constructor theory of probability
2016-01-01
Unitary quantum theory, having no Born Rule, is non-probabilistic. Hence the notorious problem of reconciling it with the unpredictability and appearance of stochasticity in quantum measurements. Generalizing and improving upon the so-called ‘decision-theoretic approach’, I shall recast that problem in the recently proposed constructor theory of information—where quantum theory is represented as one of a class of superinformation theories, which are local, non-probabilistic theories conforming to certain constructor-theoretic conditions. I prove that the unpredictability of measurement outcomes (to which constructor theory gives an exact meaning) necessarily arises in superinformation theories. Then I explain how the appearance of stochasticity in (finitely many) repeated measurements can arise under superinformation theories. And I establish sufficient conditions for a superinformation theory to inform decisions (made under it) as if it were probabilistic, via a Deutsch–Wallace-type argument—thus defining a class of decision-supporting superinformation theories. This broadens the domain of applicability of that argument to cover constructor-theory compliant theories. In addition, in this version some of the argument's assumptions, previously construed as merely decision-theoretic, follow from physical properties expressed by constructor-theoretic principles.
Constructor theory of probability
2016-01-01
Unitary quantum theory, having no Born Rule, is non-probabilistic. Hence the notorious problem of reconciling it with the unpredictability and appearance of stochasticity in quantum measurements. Generalizing and improving upon the so-called ‘decision-theoretic approach’, I shall recast that problem in the recently proposed constructor theory of information—where quantum theory is represented as one of a class of superinformation theories, which are local, non-probabilistic theories conforming to certain constructor-theoretic conditions. I prove that the unpredictability of measurement outcomes (to which constructor theory gives an exact meaning) necessarily arises in superinformation theories. Then I explain how the appearance of stochasticity in (finitely many) repeated measurements can arise under superinformation theories. And I establish sufficient conditions for a superinformation theory to inform decisions (made under it) as if it were probabilistic, via a Deutsch–Wallace-type argument—thus defining a class of decision-supporting superinformation theories. This broadens the domain of applicability of that argument to cover constructor-theory compliant theories. In addition, in this version some of the argument's assumptions, previously construed as merely decision-theoretic, follow from physical properties expressed by constructor-theoretic principles. PMID:27616914
Constructor theory of probability
NASA Astrophysics Data System (ADS)
Marletto, Chiara
2016-08-01
Unitary quantum theory, having no Born Rule, is non-probabilistic. Hence the notorious problem of reconciling it with the unpredictability and appearance of stochasticity in quantum measurements. Generalizing and improving upon the so-called `decision-theoretic approach', I shall recast that problem in the recently proposed constructor theory of information-where quantum theory is represented as one of a class of superinformation theories, which are local, non-probabilistic theories conforming to certain constructor-theoretic conditions. I prove that the unpredictability of measurement outcomes (to which constructor theory gives an exact meaning) necessarily arises in superinformation theories. Then I explain how the appearance of stochasticity in (finitely many) repeated measurements can arise under superinformation theories. And I establish sufficient conditions for a superinformation theory to inform decisions (made under it) as if it were probabilistic, via a Deutsch-Wallace-type argument-thus defining a class of decision-supporting superinformation theories. This broadens the domain of applicability of that argument to cover constructor-theory compliant theories. In addition, in this version some of the argument's assumptions, previously construed as merely decision-theoretic, follow from physical properties expressed by constructor-theoretic principles.
Development and Application of a Generalized Dynamic Wake Theory for Lifting Rotors
NASA Astrophysics Data System (ADS)
He, Chengjian
Rotorcraft aeroelasticity and aeromechanics analysis requires a consistent mathematical model that has an appropriate combination of structural dynamics and unsteady aerodynamics. Unfortunately, existing rotor unsteady induced flow theories, a key part of rotorcraft unsteady aerodynamics, are either too simple to capture necessary physical reality or too involved to carry out any system eigenvalue analysis or system design. To provide rotorcraft dynamists with an efficient unsteady wake model, this research aims at development of an intermediate level unsteady induced-flow theory suitable for rotorcraft aeroelastic stability, vibration, control, and aeroelastic tailoring studies. The unsteady wake theory is developed for lifting rotors based on an acceleration potential for an actuator disk. The induced inflow at the rotor disk is expressed in terms of a Fourier series azimuthally and a polynomial distribution radially. A system of first -order, ordinary differential equations in the time domain, formulated from first principles, describes the flow. The pressure at the rotor disk is discretized at each rotor blade to allow for the effect of finite number of blades. This formulation is well fitted to rotor aeroelastic analysis. The research has resulted in closed-form, analytical expressions for the induced-flow influence coefficients, one of the most critical parts in the development of the theory in forward flight. The theory has also been applied to the computation of the induced-flow distribution of helicopter rotors in forward flight. Encouragingly, the results have shown an overall good correlation with recent measurement data, both time-averaged and time-dependent, from the Army's Langley facility. The theory correctly predicts such essential characteristics as fore-to-aft induced-flow gradient, dissymmetric side-to-side induced -flow distribution in forward flight, and saw-tooth, triangular wave form of unsteady inflow associated with the passage of rotor
A general theory of intertemporal decision-making and the perception of time.
Namboodiri, Vijay M K; Mihalas, Stefan; Marton, Tanya M; Hussain Shuler, Marshall G
2014-01-01
Animals and humans make decisions based on their expected outcomes. Since relevant outcomes are often delayed, perceiving delays and choosing between earlier vs. later rewards (intertemporal decision-making) is an essential component of animal behavior. The myriad observations made in experiments studying intertemporal decision-making and time perception have not yet been rationalized within a single theory. Here we present a theory-Training-Integrated Maximized Estimation of Reinforcement Rate (TIMERR)-that explains a wide variety of behavioral observations made in intertemporal decision-making and the perception of time. Our theory postulates that animals make intertemporal choices to optimize expected reward rates over a limited temporal window which includes a past integration interval-over which experienced reward rate is estimated-as well as the expected delay to future reward. Using this theory, we derive mathematical expressions for both the subjective value of a delayed reward and the subjective representation of the delay. A unique contribution of our work is in finding that the past integration interval directly determines the steepness of temporal discounting and the non-linearity of time perception. In so doing, our theory provides a single framework to understand both intertemporal decision-making and time perception.
NASA Astrophysics Data System (ADS)
Baker, Lionel R.
1983-06-01
The essence of innovation, which is the successful combination of need and technical feasibility, was well illustrated by Born in his analogue computer for determining Fourier transforms of a number of different functions which occur in acoustics, optics and X-ray crystal analysis. After a brief description of the first photo-electric Fourier transformer, which involved rotating a sine grating behind a slit to select a range of spatial frequencies, subsequent developments of Born's basic idea are discussed and, in particular, its use in equipment for measurement of the optical transfer function (OTF). The widespread use of this equipment has led to several international exchanges of information on standards relating to image quality and, even after 20 years of intense technical development throughout the world, the performance of OTF systems based on Born's idea has not so far been surpassed.
NASA Astrophysics Data System (ADS)
Häring, J. M.; Walz, C.; Szamel, G.; Fuchs, M.
2015-11-01
The isothermal compressibility of a general crystal is analyzed within classical density functional theory. Our approach can be used for homogeneous and unstrained crystals containing an arbitrarily high density of local defects. We start by coarse-graining the microscopic particle density and then obtain the long-wavelength limits of the correlation functions of elasticity theory and the thermodynamic derivatives. We explicitly show that the long-wavelength limit of the microscopic density correlation function differs from the isothermal compressibility. We apply our theory to crystals consisting of soft particles which can multiply occupy lattice sites ("cluster crystals"). The multiple occupancy results in a strong local disorder over an extended range of temperatures. We determine the cluster crystals' isothermal compressibility, the fluctuations of the lattice occupation numbers and their correlation functions, and the dispersion relations. We also discuss their low-temperature phase diagram.
Implications of extreme flatness in a general f(R) theory
NASA Astrophysics Data System (ADS)
Artymowski, Michał; Lalak, Zygmunt; Lewicki, Marek
2016-09-01
We discuss a modified gravity theory defined by f (R) = ∑nl αnM 2 (1 - n)Rn. We consider both finite and infinite number of terms in the series while requiring that the Einstein frame potential of the theory has a flat area around any of its stationary points. We show that the requirement of maximally flat stationary point leads to the existence of the saddle point (local maximum) for even (odd) l. In both cases for l → ∞ one obtains the Starobinsky model with small, exponentially suppressed corrections. Besides the GR minimum the Einstein frame potential has an anti de Sitter vacuum. However we argue that the GR vacuum is absolutely stable and AdS can be reached neither via classical evolution nor via quantum tunnelling. Our results show that a Starobinsky-like model is the only possible realisation of f (R) theory with an extremely flat area in the Einstein frame potential.
Schlundt, J; Toyofuku, H; Jansen, J; Herbst, S A
2004-08-01
Diarrhoeal diseases, almost all of which are caused by food-borne or waterborne microbial pathogens, are leading causes of illness and death in less developed countries, killing an estimated 1.9 million people annually at the global level. Even in developed countries, it is estimated that up to one third of the population are affected by microbiological food-borne diseases each year. The majority of the pathogens causing this significant disease burden are now considered to be zoonotic. The occurrence of some of these zoonotic pathogens seems to have increased significantly over recent years. The factors involved in such increases have not been well studied, but they are generally agreed to include changes in animal production systems and in the food production chain. Both types of changes can cause corresponding changes in patterns of exposure to the pathogens and the susceptibility pattern of the human population. This paper will not attempt a more in-depth analysis of such factors. The authors briefly describe five of the most important emerging food-borne zoonotic pathogens: Salmonella spp., Campylobacter spp., enterohaemorrhagic Escherichia coli, Toxoplasma gondii and Cryptosporidium parvum. The paper does not include a full description of all important emerging food-borne pathogens but instead provides a description of the present situation, as regards these globally more important pathogens. In addition, the authors describe each pathogen according to the new framework of a Food and Agriculture Organization (FAO)/World Health Organization (WHO) microbiological risk assessment, which consists of hazard identification and characterisation, exposure assessment and risk characterisation. Moreover, the authors provide a brief account of attempts at risk mitigation, as well as suggestions for risk management for some of these pathogens, based on thorough international FAO/WHO risk assessments. The authors emphasise the importance of science-based programmes for
Balloon borne Infrared Surveys
NASA Astrophysics Data System (ADS)
Lubin, Philip M.
2015-08-01
We report on modeling of a balloon borne mission to survey the 1-5 micron region with sensitivity close to the zodiacal light limits in portions of this band. Such a survey is compelling for numerous science programs and is complimentary to the upcoming Euclid, WFIRST and other orbital missions. Balloons borne missions offer much lower cost access and rapid technological implementation but with much less exposure time and increased backgrounds. For some science missions the complimentary nature of these is extremely useful. .
NASA Astrophysics Data System (ADS)
Rao, V. U. M.; Sree Devi Kumari, G.
2012-01-01
Spatially homogeneous and anisotropic LRS Bianchi type-I metric is considered in the framework of Nordtvedt-Barker's general scalar-tensor theory of gravitation when the source for the energy momentum tensor is a perfect fluid. With the help of a special law of variation for Hubble's parameter proposed by Berman (Nuovo Cim. B. 74:182, 1983) a cosmological model with negative constant deceleration parameter is obtained. Some physical and kinematical properties of the model are also discussed.
Domain-General Contributions to Social Reasoning: Theory of Mind and Deontic Reasoning Re-Explored
ERIC Educational Resources Information Center
McKinnon, Margaret C.; Moscovitch, Morris
2007-01-01
Using older adults and dual-task interference, we examined performance on two social reasoning tasks: theory of mind (ToM) tasks and versions of the deontic selection task involving social contracts and hazardous conditions. In line with performance accounts of social reasoning (Leslie, Friedman, & German, 2004), evidence from both aging and the…
Lubrication of textured surfaces: a general theory for flow and shear stress factors.
Scaraggi, Michele
2012-08-01
We report on a mean field theory of textured surface lubrication. We study the fluid flow dynamics occurring at the interface as a function of the texture characteristics, e.g. texture area density, shape and distribution of microstructures, and local slip lengths. The present results may be very important for the investigation of tailored microtextured surfaces for low-friction hydrodynamic applications.
Bullying Victimization and Adolescent Self-Harm: Testing Hypotheses from General Strain Theory
ERIC Educational Resources Information Center
Hay, Carter; Meldrum, Ryan
2010-01-01
Self-harm is widely recognized as a significant adolescent social problem, and recent research has begun to explore its etiology. Drawing from Agnew's (1992) social psychological strain theory of deviance, this study considers this issue by testing three hypotheses about the effects of traditional and cyber bullying victimization on deliberate…
General Strain Theory and School Bullying: An Empirical Test in South Korea
ERIC Educational Resources Information Center
Moon, Byongook; Morash, Merry; McCluskey, John D.
2012-01-01
Despite recognition of bullying as a serious school and social problem with negative effects on students' well-being and safety, and the overlap between aggressive bullying acts and delinquent behavior, few empirical studies test the applicability of criminological theories to explaining bullying. This limitation in research is especially evident…
Play as Self-Realization: Toward a General Theory of Play
ERIC Educational Resources Information Center
Henricks, Thomas S.
2014-01-01
In a wide-ranging essay that reviews the major theories of plays and relates them to significant notions of the self, the author addresses the question of why we play. He does so to argue that play is a biologically driven project of self-understanding and self-realization, one that humans--although they also share the experience with other…
ERIC Educational Resources Information Center
International Federation of Library Associations, The Hague (Netherlands).
Papers on library theory and research presented at the 1985 International Federation of Library Associations (IFLA) conference include: (1) "Information for Self Reliance and Self Determination: The Role of Community Information Services" (Elaine Kempson, Acumen, United Kingdom); (2) "Relationships between Practice, Education and Research in the…
Hinrichs, Timo; Brach, Michael
2012-02-01
Positive influences of physical activity both on many chronic diseases and on preservation of mobility are well documented. But chronically ill or mobility restricted elderly living in their own homes are difficult to reach for interventions. The general practitioner's (GP) surgery offers one of the few opportunities to give advice for physical activity to those people. We used program theory to sound out knowledge on GP-centered physical activity counseling. The "conceptual theory" (evidence for training effects in old age) and the "implementation theory" (unique position of the GP) were reviewed narratively. The "action theory" (effects of GP counseling) was reviewed systematically. According to program theory, appropriate MeSH (Medical subject headings) concepts were Aged OR Aged, 80 and over (Target group), Physicians, Family OR Primary Health Care (Implementation/Setting), Counseling OR Patient Education as Topic OR Disease Management OR Health promotion (Intervention), Exercise OR Motor Activity OR Physical Fitness OR Sports (Determinants). The resulting six review papers (Pubmed, 2000-2009) were presented using the STARLITE mnemonic. Authors agree, that the GP plays a central role in the promotion of physical activity to elderly people, but there is conflicting evidence concerning counseling effectiveness. Utilizing behavioral change strategies and the collaboration between GPs and specialised professions are recommended and currently under research.
Gubler, D J
2009-08-01
Vector-borne diseases have been the scourge of man and animals since the beginning of time. Historically, these are the diseases that caused the great plagues such as the 'Black Death' in Europe in the 14th Century and the epidemics of yellow fever that plagued the development of the New World. Others, such as Nagana, contributed to the lack of development in Africa for many years. At the turn of the 20th Century, vector-borne diseases were among the most serious public and animal health problems in the world. For the most part, these diseases were controlled by the middle of the 20th Century through the application of knowledge about their natural history along with the judicious use of DDT (dichlorodiphenyltrichloroethane) and other residual insecticides to interrupt the transmission cycle between arthropod and vertebrate host. However, this success initiated a period of complacency in the 1960s and 1970s, which resulted in the redirection of resources away from prevention and control of vector-borne diseases. The 1970s was also a time in which there were major changes to public health policy. Global trends, combined with changes in animal husbandry, urbanisation, modern transportation and globalisation, have resulted in a global re-emergence of epidemic vector-borne diseases affecting both humans and animals over the past 30 years. PMID:20128467
NASA Astrophysics Data System (ADS)
Cohen, Martin
2009-06-01
Preface; 1. What does astronomy tell us?; 2. what is a star?; 3. Our galaxy; 4. Where are starts born?; 5. How to recognise the youngest stars; 6. Nature's womb; 7. How and why clouds collapse; 8. Towards a more sedate life; 9. High-mass stars and triggering mechanisms; 10. Planets; 11. Epilogue; Index.
Gubler, D J
2009-08-01
Vector-borne diseases have been the scourge of man and animals since the beginning of time. Historically, these are the diseases that caused the great plagues such as the 'Black Death' in Europe in the 14th Century and the epidemics of yellow fever that plagued the development of the New World. Others, such as Nagana, contributed to the lack of development in Africa for many years. At the turn of the 20th Century, vector-borne diseases were among the most serious public and animal health problems in the world. For the most part, these diseases were controlled by the middle of the 20th Century through the application of knowledge about their natural history along with the judicious use of DDT (dichlorodiphenyltrichloroethane) and other residual insecticides to interrupt the transmission cycle between arthropod and vertebrate host. However, this success initiated a period of complacency in the 1960s and 1970s, which resulted in the redirection of resources away from prevention and control of vector-borne diseases. The 1970s was also a time in which there were major changes to public health policy. Global trends, combined with changes in animal husbandry, urbanisation, modern transportation and globalisation, have resulted in a global re-emergence of epidemic vector-borne diseases affecting both humans and animals over the past 30 years.
NASA Astrophysics Data System (ADS)
Cremer, Jörg
1997-02-01
A spin model is suggested for making strategies of multinational corporations. We have generalized a a Heisenberg spin glass and random field model to describe the interrelatedness of a multinational corporation's marketing strategies. Preliminary simulations have brought about realistic results.
General Theories of Chemical Disinfection and Sterilization of Sludge--Part 3.
ERIC Educational Resources Information Center
Wang, Mu Hao; And Others
1978-01-01
A general discussion of sewage sterilization methods, including techniques using pH, Chlorine, Chlorine Dioxide, Ozone, Iodine and Bromine, metal ions, and cationic surface active agents is presented. (MDR)
Greenwald, Jared; Satheeshkumar, V.H.; Wang, Anzhong E-mail: VHSatheeshkumar@baylor.edu
2010-12-01
We study spherically symmetric static spacetimes generally filled with an anisotropic fluid in the nonrelativistic general covariant theory of gravity. In particular, we find that the vacuum solutions are not unique, and can be expressed in terms of the U(1) gauge field A. When solar system tests are considered, severe constraints on A are obtained, which seemingly pick up the Schwarzschild solution uniquely. In contrast to other versions of the Horava-Lifshitz theory, non-singular static stars made of a perfect fluid without heat flow can be constructed, due to the coupling of the fluid with the gauge field. These include the solutions with a constant pressure. We also study the general junction conditions across the surface of a star. In general, the conditions allow the existence of a thin matter shell on the surface. When applying these conditions to the perfect fluid solutions with the vacuum ones as describing their external spacetimes, we find explicitly the matching conditions in terms of the parameters appearing in the solutions. Such matching is possible even without the presence of a thin matter shell.
A generalized vortex theory of the screw propeller and its application
NASA Technical Reports Server (NTRS)
Reissner, Hans
1940-01-01
The vortex theory as presented by the author in earlier papers has been extended to permit the solution of the following problems: (1) the investigation of the relation between thrusts and torque distribution and energy loss as given by the induction of helical vortex sheets and by the parasite drag; (2) the checking of the theorem of Betz of the rigidly behaving helical vortex sheet of minimum induced energy loss; (3) the extension of the theory of the screw propeller of minimum energy loss for the inclusion of parasite-drag distribution along the blades. A simple system of diagrams has been developed to systematize the design of airplane propellers for a wide range of parasite-drag distribution along the blades.
Generalized photoclinometry for Mariner 9. [theory for planetary surface topographic determination
NASA Technical Reports Server (NTRS)
Wildey, R. L.
1975-01-01
A theory is developed for the photoclinometric determination of topography when the photometric function of a planetary surface is not restricted beyond the expectation that it is a function of phase angle, angle of incidence, and angle of emergence. Several versions of such an operational theory are presented together with several approaches to the numerical analysis. Reasons for the differences in numerical techniques are discussed. A preliminary result is considered which has been produced for an early Mariner 9 frame wherein the dust-laden atmosphere seems to exhibit standing-wave patterns. It is shown that if the assumption of homologous departures from plane-parallel atmospheric configuration is valid, the photoclinometry implies that laminar flow lines in the optically observable dust layer undergo a near-sinusoidal rise and fall of about 40 to 50 meters.
Illicit Drug Use Among South Korean Offenders: Assessing the Generality of Social Learning Theory.
Yun, Minwoo; Kim, Eunyoung
2015-10-01
Since the mid-1990s, illicit drug use has become a problem in Korean society. This trend is likely due to the rapid globalization and expansion that occurred with the Internet revolution, which led to greater numbers of people socially learning about drug culture. The current study attempts to uncover criminogenic causality of such social learning about drug use by studying adult felony drug offenders in South Korea. The data used for the study were obtained from self-reported surveys, originally collected by the Korean Institution of Criminology (KIC). The final sample comprised 1,452 felony offenders convicted of illicit drug use, and their responses were analyzed with a set of multiple logistic regression tests. The current study found supportive evidence for the generalizability of social learning theory from the sample of the South Korean adult drug offenders. We argue that the current study provides additional empirical evidence that supports the generalizability of social learning theory.
The theory, practice, and future of process improvement in general thoracic surgery.
Freeman, Richard K
2014-01-01
Process improvement, in its broadest sense, is the analysis of a given set of actions with the aim of elevating quality and reducing costs. The tenets of process improvement have been applied to medicine in increasing frequency for at least the last quarter century including thoracic surgery. This review outlines the theory underlying process improvement, the currently available data sources for process improvement and possible future directions of research.
Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment
DOE R&D Accomplishments Database
Marcus, R. A.
1964-01-01
In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.
General Theory for Integrated Analysis of Growth, Gene, and Protein Expression in Biofilms
Zhang, Tianyu; Pabst, Breana; Klapper, Isaac; Stewart, Philip S.
2013-01-01
A theory for analysis and prediction of spatial and temporal patterns of gene and protein expression within microbial biofilms is derived. The theory integrates phenomena of solute reaction and diffusion, microbial growth, mRNA or protein synthesis, biomass advection, and gene transcript or protein turnover. Case studies illustrate the capacity of the theory to simulate heterogeneous spatial patterns and predict microbial activities in biofilms that are qualitatively different from those of planktonic cells. Specific scenarios analyzed include an inducible GFP or fluorescent protein reporter, a denitrification gene repressed by oxygen, an acid stress response gene, and a quorum sensing circuit. It is shown that the patterns of activity revealed by inducible stable fluorescent proteins or reporter unstable proteins overestimate the region of activity. This is due to advective spreading and finite protein turnover rates. In the cases of a gene induced by either limitation for a metabolic substrate or accumulation of a metabolic product, maximal expression is predicted in an internal stratum of the biofilm. A quorum sensing system that includes an oxygen-responsive negative regulator exhibits behavior that is distinct from any stage of a batch planktonic culture. Though here the analyses have been limited to simultaneous interactions of up to two substrates and two genes, the framework applies to arbitrarily large networks of genes and metabolites. Extension of reaction-diffusion modeling in biofilms to the analysis of individual genes and gene networks is an important advance that dovetails with the growing toolkit of molecular and genetic experimental techniques. PMID:24376726
Time-sliced perturbation theory for large scale structure I: general formalism
NASA Astrophysics Data System (ADS)
Blas, Diego; Garny, Mathias; Ivanov, Mikhail M.; Sibiryakov, Sergey
2016-07-01
We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.
Distorting general relativity: gravity's rainbow and f(R) theories at work
Garattini, Remo
2013-06-01
We compute the Zero Point Energy in a spherically symmetric background combining the high energy distortion of Gravity's Rainbow with the modification induced by a f(R) theory. Here f(R) is a generic analytic function of the Ricci curvature scalar R in 4D and in 3D. The explicit calculation is performed for a Schwarzschild metric. Due to the spherically symmetric property of the Schwarzschild metric we can compare the effects of the modification induced by a f(R) theory in 4D and in 3D. We find that the final effect of the combined theory is to have finite quantities that shift the Zero Point Energy. In this context we setup a Sturm-Liouville problem with the cosmological constant considered as the associated eigenvalue. The eigenvalue equation is a reformulation of the Wheeler-DeWitt equation which is analyzed by means of a variational approach based on gaussian trial functionals. With the help of a canonical decomposition, we find that the relevant contribution to one loop is given by the graviton quantum fluctuations around the given background. A final discussion on the connection of our result with the observed cosmological constant is also reported.
Generalized theory of double-resonance optical pumping of {sup 4}He
Plante, Michael K.; MacFarlane, Duncan L.; McGregor, Douglas D.; Slocum, Robert E.; Sampson, William M.; Brown, Andy W.
2010-07-15
We present extensions to the theory of double-resonance laser pumping of {sup 4}He in the context of magnetometer instrumentation. This extended theory allows for arbitrary optical polarization, magnetic resonance (H{sub 1}) coil orientation, and overall instrument orientation relative to the ambient magnetic field. Steady-state solutions are presented for portions of the extended parameter space. These calculations are used to analyze the shot-noise-limited sensitivities for helium magnetometers for selected parameter values, and we find that linearly polarized light can have a relatively simple orientational dependence for a particular choice of angle between the H{sub 1} coils and the light polarization vector. Calculations are also compared to experimentally measured magnetic resonance curves, and a shot-noise limit on sensitivity of 6 fT/{radical}(Hz) is determined for a particular magnetometer apparatus using a cell 2.4 cm in diameter and 7.5 cm in length. This extended theory can be utilized to select optimal operational parameter values and obtain ideal sensitivities for helium magnetometers.
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1991-01-01
A formal theory of the scattering of time-harmonic acoustic scalar waves from impenetrable, immobile obstacles is established. The time-independent formal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete Green's function and the transition (T) operator, provides the model. The quantum-mechanical approach is modified to allow the treatment of acoustic-wave scattering with imposed boundary conditions of impedance type on the surface (delta-Omega) of an impenetrable obstacle. With k0 as the free-space wavenumber of the signal, a simplified expression is obtained for the k0-dependent T operator for a general case of homogeneous impedance boundary conditions for the acoustic wave on delta-Omega. All the nonelementary operators entering the expression for the T operator are formally simple rational algebraic functions of a certain invertible linear radiation impedance operator which maps any sufficiently well-behaved complex-valued function on delta-Omega into another such function on delta-Omega. In the subsequent study, the short-wavelength and the long-wavelength behavior of the radiation impedance operator and its inverse (the 'radiation admittance' operator) as two-point kernels on a smooth delta-Omega are studied for pairs of points that are close together.
Piccardo, Matteo; Bloino, Julien; Barone, Vincenzo
2015-01-01
Models going beyond the rigid-rotor and the harmonic oscillator levels are mandatory for providing accurate theoretical predictions for several spectroscopic properties. Different strategies have been devised for this purpose. Among them, the treatment by perturbation theory of the molecular Hamiltonian after its expansion in power series of products of vibrational and rotational operators, also referred to as vibrational perturbation theory (VPT), is particularly appealing for its computational efficiency to treat medium-to-large systems. Moreover, generalized (GVPT) strategies combining the use of perturbative and variational formalisms can be adopted to further improve the accuracy of the results, with the first approach used for weakly coupled terms, and the second one to handle tightly coupled ones. In this context, the GVPT formulation for asymmetric, symmetric, and linear tops is revisited and fully generalized to both minima and first-order saddle points of the molecular potential energy surface. The computational strategies and approximations that can be adopted in dealing with GVPT computations are pointed out, with a particular attention devoted to the treatment of symmetry and degeneracies. A number of tests and applications are discussed, to show the possibilities of the developments, as regards both the variety of treatable systems and eligible methods. © 2015 Wiley Periodicals, Inc. PMID:26345131
Decoherence effects in Bose-Einstein condensate interferometry I. General theory
Dalton, B.J.
2011-03-15
Research Highlights: > Theory of dephasing, decoherence effects for Bose-Einstein condensate interferometry. > Applies to single component, two mode condensate in double potential well. > Phase space theory using Wigner, positive P representations for condensate, non-condensate fields. > Stochastic condensate, non-condensate field equations and properties of noise fields derived. > Based on mean field theory with condensate modes given by generalised Gross-Pitaevskii equations. - Abstract: The present paper outlines a basic theoretical treatment of decoherence and dephasing effects in interferometry based on single component Bose-Einstein condensates in double potential wells, where two condensate modes may be involved. Results for both two mode condensates and the simpler single mode condensate case are presented. The approach involves a hybrid phase space distribution functional method where the condensate modes are described via a truncated Wigner representation, whilst the basically unoccupied non-condensate modes are described via a positive P representation. The Hamiltonian for the system is described in terms of quantum field operators for the condensate and non-condensate modes. The functional Fokker-Planck equation for the double phase space distribution functional is derived. Equivalent Ito stochastic equations for the condensate and non-condensate fields that replace the field operators are obtained, and stochastic averages of products of these fields give the quantum correlation functions that can be used to interpret interferometry experiments. The stochastic field equations are the sum of a deterministic term obtained from the drift vector in the functional Fokker-Planck equation, and a noise field whose stochastic properties are determined from the diffusion matrix in the functional Fokker-Planck equation. The stochastic properties of the noise field terms are similar to those for Gaussian-Markov processes in that the stochastic averages of odd
Period of orbit as a test of the general theory of relativity
Preston, H.G.
1984-01-01
The formalism of the general relativity Hamilton-Jacobi equation suggests four types of corrections due to general relativity that might be the basis of a test of the predictions of general relativity. Tests has been conducted on only three of these corrections. The fourth correction is to period of orbit of a test mass. The period of orbit is derived here for the circular case using the geodesic equation. Using the Hamilton-Jacobi formalism and phase-integral canonical transforms, the general relativity form of Kepler's third law is derived and is valid for arbitrary eccentricities. The corrections due to general relativity on the period of the planets are calculated. For Mercury, the correction is 1.4 seconds. The time-delay experiment conducted at JPL and MIT numerically integrated the motion of six planets and least-square adjusted the orbital constants over a period of 80 years. This experiment did not detect the period of orbit because of the particular formalism used in the least square adjustment procedure. A modification of the least-square data-reduction program was made and programmed by the author. The modified program, as designed, will accurately measure the period of orbit.