Class of Einstein-Maxwell-dilaton-axion space-times
Matos, Tonatiuh; Miranda, Galaxia; Sanchez-Sanchez, Ruben; Wiederhold, Petra
2009-06-15
We use the harmonic maps ansatz to find exact solutions of the Einstein-Maxwell-dilaton-axion (EMDA) equations. The solutions are harmonic maps invariant to the symplectic real group in four dimensions Sp(4,R){approx}O(5). We find solutions of the EMDA field equations for the one- and two-dimensional subspaces of the symplectic group. Specially, for illustration of the method, we find space-times that generalize the Schwarzschild solution with dilaton, axion, and electromagnetic fields.
All extremal instantons in Einstein-Maxwell-dilaton-axion theory
NASA Astrophysics Data System (ADS)
Azreg-Aïnou, Mustapha; Clément, Gérard; Gal'Tsov, Dmitri V.
2011-11-01
We construct explicitly all extremal instanton solutions to N=4, D=4 supergravity truncated to one vector field (Einstein-Maxwell-dilaton-axion theory). These correspond to null geodesics of the target space of the sigma-model G/H=Sp(4,R)/GL(2,R) obtained by compactification of four-dimensional Euclidean Einstein-Maxwell-dilaton-axion on a circle. They satisfy a no-force condition in terms of the asymptotic charges and part of them (corresponding to nilpotent orbits of the Sp(4,R) U-duality) are presumably supersymmetric. The space of finite action solutions is found to be unexpectedly large and includes, besides the Euclidean versions of known Lorentzian solutions, a number of new asymptotically locally flat instantons endowed with electric, magnetic, dilaton and axion charges. We also describe new classes of charged asymptotically locally Euclidean instantons as well as some exceptional solutions. Our classification scheme is based on the algebraic classification of matrix generators according to their rank, according to the nature of the charge vectors, and according to the number of independent harmonic functions with unequal charges. Besides the nilpotent orbits of G, we find solutions which satisfy the asymptotic no-force condition, but are not supersymmetric. The renormalized on-shell action for instantons is calculated using the method of matched background subtraction.
Power law of shear viscosity in Einstein-Maxwell-Dilaton-Axion model
NASA Astrophysics Data System (ADS)
Ling, Yi; Xian, Zhuoyu; Zhou, Zhenhua
2017-02-01
We construct charged black hole solutions with hyperscaling violation in the infrared (IR) region in Einstein-Maxwell-Dilaton-Axion theory and investigate the temperature behavior of the ratio of holographic shear viscosity to the entropy density. When translational symmetry breaking is relevant in the IR, the power law of the ratio is verified numerically at low temperature T, namely, η/s ∼ T κ , where the values of exponent κ coincide with the analytical results. We also find that the exponent κ is not affected by irrelevant current, but is reduced by the relevant current. Supported by National Natural Science Foundation of China (11275208, 11575195), Opening Project of Shanghai Key Laboratory of High Temperature Superconductors (14DZ2260700) and Jiangxi Young Scientists (JingGang Star) Program and 555 Talent Project of Jiangxi Province
Observing the shadow of Einstein-Maxwell-Dilaton-Axion black hole
Wei, Shao-Wen; Liu, Yu-Xiao E-mail: liuyx@lzu.edu.cn
2013-11-01
In this paper, the shadows cast by Einstein-Maxwell-Dilaton-Axion black hole and naked singularity are studied. The shadow of a rotating black hole is found to be a dark zone covered by a deformed circle. For a fixed value of the spin a, the size of the shadow decreases with the dilaton parameter b. The distortion of the shadow monotonically increases with b and takes its maximal when the black hole approaches to the extremal case. Due to the optical properties, the area of the black hole shadow is supposed to equal to the high-energy absorption cross section. Based on this assumption, the energy emission rate is investigated. For a naked singularity, the shadow has a dark arc and a dark spot or straight, and the corresponding observables are obtained. These results show that there is a significant effect of the spin a and dilaton parameter b on these shadows. Moreover, we examine the observables of the shadow cast by the supermassive black hole at the center of the Milky Way, which is very useful for us to probe the nature of the black hole through the astronomical observations in the near future.
NASA Astrophysics Data System (ADS)
Ortín, Tomás
2015-03-01
1. Differential geometry; 2. Symmetries and Noether's theorems; 3. A perturbative introduction to general relativity; 4. Action principles for gravity; 5. Pure N=1,2,d=4 supergravities; 6. Matter-coupled N=1,d=4 supergravity; 7. Matter-coupled N=2,d=4 supergravity; 8. A generic description of all the N>2,d=4 SUEGRAS; 9. Matter-coupled N=1,d=5 supergravity; 10. Conserved charges in general relativity; 11. The Schwarzschild black hole; 12. The Reissner-Nordström black hole; 13. The Taub-NUT solution; 14. Gravitational pp-waves; 15. The Kaluza-Klein black hole; 16. Dilaton and dilaton/axion black holes; 17. Unbroken supersymmetry I: supersymmetric vacua; 18. Unbroken supersymmetry II: partially supersymmetric solutions; 19. Supersymmetric black holes from supergravity; 20. String theory; 21. The string effective action and T duality; 22. From eleven to four dimensions; 23. The type-IIB superstring and type-II T duality; 24. Extended objects; 25. The extended objects of string theory; 26. String black holes in four and five dimensions; 27. The FGK formalism for (single, static) black holes and branes; Appendices: A.1 Lie groups, symmetric spaces, and Yang-Mills fields; A.2 The irreducible, non-symmetric Riemannian spaces of special holonomy; A.3 Miscellanea on the symplectic group; A.4 Gamma matrices and spinors; A.5 Kähler geometry; A.6 Special Kähler geometry; A.7 Quaternionic-Kähler geometry.
Aspects of general higher-order gravities
NASA Astrophysics Data System (ADS)
Bueno, Pablo; Cano, Pablo A.; Min, Vincent S.; Visser, Manus R.
2017-02-01
We study several aspects of higher-order gravities constructed from general contractions of the Riemann tensor and the metric in arbitrary dimensions. First, we use the fast-linearization procedure presented in [P. Bueno and P. A. Cano, arXiv:1607.06463] to obtain the equations satisfied by the metric perturbation modes on a maximally symmetric background in the presence of matter and to classify L (Riemann ) theories according to their spectrum. Then, we linearize all theories up to quartic order in curvature and use this result to construct quartic versions of Einsteinian cubic gravity. In addition, we show that the most general cubic gravity constructed in a dimension-independent way and which does not propagate the ghostlike spin-2 mode (but can propagate the scalar) is a linear combination of f (Lovelock ) invariants, plus the Einsteinian cubic gravity term, plus a new ghost-free gravity term. Next, we construct the generalized Newton potential and the post-Newtonian parameter γ for general L (Riemann ) gravities in arbitrary dimensions, unveiling some interesting differences with respect to the four-dimensional case. We also study the emission and propagation of gravitational radiation from sources for these theories in four dimensions, providing a generalized formula for the power emitted. Finally, we review Wald's formalism for general L (Riemann ) theories and construct new explicit expressions for the relevant quantities involved. Many examples illustrate our calculations.
Observational constraints on transverse gravity: A generalization of unimodular gravity
NASA Astrophysics Data System (ADS)
Lopez-Villarejo, J. J.
2010-04-01
We explore the hypothesis that the set of symmetries enjoyed by the theory that describes gravity is not the full group of diffeomorphisms (Diff(M)), as in General Relativity, but a maximal subgroup of it (TransverseDiff(M)), with its elements having a jacobian equal to unity; at the infinitesimal level, the parameter describing the coordinate change xμ → xμ + ξμ(x) is transverse, i.e., δμξμ = 0. Incidentally, this is the smaller symmetry one needs to propagate consistently a graviton, which is a great theoretical motivation for considering these theories. Also, the determinant of the metric, g, behaves as a "transverse scalar", so that these theories can be seen as a generalization of the better-known unimodular gravity. We present our results on the observational constraints on transverse gravity, in close relation with the claim of equivalence with general scalar-tensor theory. We also comment on the structure of the divergences of the quantum theory to the one-loop order.
Cosmology in general massive gravity theories
Comelli, D.; Nesti, F.; Pilo, L. E-mail: fabrizio.nesti@aquila.infn.it
2014-05-01
We study the cosmological FRW flat solutions generated in general massive gravity theories. Such a model are obtained adding to the Einstein General Relativity action a peculiar non derivative potentials, function of the metric components, that induce the propagation of five gravitational degrees of freedom. This large class of theories includes both the case with a residual Lorentz invariance as well as the case with rotational invariance only. It turns out that the Lorentz-breaking case is selected as the only possibility. Moreover it turns out that that perturbations around strict Minkowski or dS space are strongly coupled. The upshot is that even though dark energy can be simply accounted by massive gravity modifications, its equation of state w{sub eff} has to deviate from -1. Indeed, there is an explicit relation between the strong coupling scale of perturbations and the deviation of w{sub eff} from -1. Taking into account current limits on w{sub eff} and submillimiter tests of the Newton's law as a limit on the possible strong coupling scale, we find that it is still possible to have a weakly coupled theory in a quasi dS background. Future experimental improvements on short distance tests of the Newton's law may be used to tighten the deviation of w{sub eff} form -1 in a weakly coupled massive gravity theory.
Stable FLRW solutions in generalized massive gravity
NASA Astrophysics Data System (ADS)
de Rham, Claudia; Fasiello, Matteo; Tolley, Andrew J.
2014-12-01
We present exact Friedmann Lemaítre Robertson Walkers (FLRW) solutions in generalized massive gravity where the mass parameters are naturally promoted to Lorentz-invariant functions of the Stückelberg fields. This new dependence relaxes the constraint that would otherwise prevent massive gravity from possessing exact FLRW solutions. It does so without the need to introduce additional degrees of freedom. We find self-accelerating cosmological solutions and show that, with a mild restriction on the region of phase space, these cosmological solutions exhibit full stability, i.e. absence of ghosts and gradient instabilities for all the tensor, vector and scalar modes, for all cosmic time. We perform the full decoupling limit analysis, including vector degrees of freedom, which can be used to confirm the existence of an active Vainshtein mechanism about these solutions.
Inflation in general covariant theory of gravity
NASA Astrophysics Data System (ADS)
Huang, Yongqing; Wang, Anzhong; Wu, Qiang
2012-10-01
In this paper, we study inflation in the framework of the nonrelativistic general covariant theory of the Hořava-Lifshitz gravity with the projectability condition and an arbitrary coupling constant λ. We find that the Friedmann-Robterson-Walker (FRW) universe is necessarily flat in such a setup. We work out explicitly the linear perturbations of the flat FRW universe without specifying to a particular gauge, and find that the perturbations are different from those obtained in general relativity, because of the presence of the high-order spatial derivative terms. Applying the general formulas to a single scalar field, we show that in the sub-horizon regions, the metric and scalar field are tightly coupled and have the same oscillating frequencies. In the super-horizon regions, the perturbations become adiabatic, and the comoving curvature perturbation is constant. We also calculate the power spectra and indices of both the scalar and tensor perturbations, and express them explicitly in terms of the slow roll parameters and the coupling constants of the high-order spatial derivative terms. In particular, we find that the perturbations, of both scalar and tensor, are almost scale-invariant, and, with some reasonable assumptions on the coupling coefficients, the spectrum index of the tensor perturbation is the same as that given in the minimum scenario in general relativity (GR), whereas the index for scalar perturbation in general depends on λ and is different from the standard GR value. The ratio of the scalar and tensor power spectra depends on the high-order spatial derivative terms, and can be different from that of GR significantly.
Generalized parallel transport and coordinate transformations in f( R) gravity
NASA Astrophysics Data System (ADS)
Dil, Emre
2016-12-01
In this paper, we study the generalized parallel transport of vectors and generalized coordinate transformations between generalized reference frames described in f( R) gravity. After constructing the generalized parallel transport relations and the generalized transformation laws in f( R) gravity, we discuss the implications of these laws and present the differences between f( R) gravity and Einstein's general relativity. For a constant Ricci scalar case with de Sitter-like behavior for a de Sitter space-time, we find that the parallel transport is invariant under the conformal transformation from general relativity to f( R) gravity. However, for a non-de Sitter space-time, parallel transport differs by an extra field term.
Disformal transformations, veiled General Relativity and Mimetic Gravity
Deruelle, Nathalie; Rua, Josephine E-mail: rua@cbpf.br
2014-09-01
In this Note we show that Einstein's equations for gravity are generically invariant under ''disformations''. We also show that the particular subclass when this is not true yields the equations of motion of ''Mimetic Gravity''. Finally we give the ''mimetic'' generalization of the Schwarzschild solution.
Generalized model for a Moho inversion from gravity and vertical gravity-gradient data
NASA Astrophysics Data System (ADS)
Ye, Zhourun; Tenzer, Robert; Sneeuw, Nico; Liu, Lintao; Wild-Pfeiffer, Franziska
2016-10-01
Seismic data are primarily used in studies of the Earth's lithospheric structure including the Moho geometry. In regions, where seismic data are sparse or completely absent, gravimetric or combined gravimetric-seismic methods could be applied to determine the Moho depth. In this study, we derive and present generalized expressions for solving the Vening Meinesz-Moritz's (VMM) inverse problem of isostasy for a Moho depth determination from gravity and vertical gravity-gradient data. By solving the (non-linear) Fredholm's integral equation of the first kind, the linearized observation equations, which functionally relate the (given) gravity/gravity-gradient data to the (unknown) Moho depth, are derived in the spectral domain. The VMM gravimetric results are validated by using available seismic and gravimetric Moho models. Our results show that the VMM Moho solutions obtained by solving the VMM problem for gravity and gravity-gradient data are almost the same. This finding indicates that in global applications, using the global gravity/gravity-gradient data coverage, the spherical harmonic expressions for the gravimetric forward and inverse modelling yield (theoretically) the same results. Globally, these gravimetric solutions have also a relatively good agreement with the CRUST1.0 and GEMMA GOCE models in terms of their rms Moho differences (4.7 km and 4.1 km, respectively).
Geodesic Motion in General Relativity:. Lares in Earth's Gravity
NASA Astrophysics Data System (ADS)
Ciufolini, I.; Gurzadyan, V. G.; Penrose, R.; Paolozzi, A.
2013-11-01
According to General Relativity, as distinct from Newtonian gravity, motion under gravity is treated by a theory that deals, initially, only with test particles. At the same time, satellite measurements deal with extended bodies. We discuss the correspondence between geodesic motion in General Relativity and the motion of an extended body by means of the Ehlers-Geroch theorem, and in the context of the recently launched LAser RElativity Satellite (LARES). Being possibly the highest mean density orbiting body in the Solar system, this satellite provides the best realization of a test particle ever reached experimentally and provides a unique possibility for testing the predictions of General Relativity.
The Gravity Probe B test of general relativity
NASA Astrophysics Data System (ADS)
Everitt, C. W. F.; Muhlfelder, B.; DeBra, D. B.; Parkinson, B. W.; Turneaure, J. P.; Silbergleit, A. S.; Acworth, E. B.; Adams, M.; Adler, R.; Bencze, W. J.; Berberian, J. E.; Bernier, R. J.; Bower, K. A.; Brumley, R. W.; Buchman, S.; Burns, K.; Clarke, B.; Conklin, J. W.; Eglington, M. L.; Green, G.; Gutt, G.; Gwo, D. H.; Hanuschak, G.; He, X.; Heifetz, M. I.; Hipkins, D. N.; Holmes, T. J.; Kahn, R. A.; Keiser, G. M.; Kozaczuk, J. A.; Langenstein, T.; Li, J.; Lipa, J. A.; Lockhart, J. M.; Luo, M.; Mandel, I.; Marcelja, F.; Mester, J. C.; Ndili, A.; Ohshima, Y.; Overduin, J.; Salomon, M.; Santiago, D. I.; Shestople, P.; Solomonik, V. G.; Stahl, K.; Taber, M.; Van Patten, R. A.; Wang, S.; Wade, J. R.; Worden, P. W., Jr.; Bartel, N.; Herman, L.; Lebach, D. E.; Ratner, M.; Ransom, R. R.; Shapiro, I. I.; Small, H.; Stroozas, B.; Geveden, R.; Goebel, J. H.; Horack, J.; Kolodziejczak, J.; Lyons, A. J.; Olivier, J.; Peters, P.; Smith, M.; Till, W.; Wooten, L.; Reeve, W.; Anderson, M.; Bennett, N. R.; Burns, K.; Dougherty, H.; Dulgov, P.; Frank, D.; Huff, L. W.; Katz, R.; Kirschenbaum, J.; Mason, G.; Murray, D.; Parmley, R.; Ratner, M. I.; Reynolds, G.; Rittmuller, P.; Schweiger, P. F.; Shehata, S.; Triebes, K.; VandenBeukel, J.; Vassar, R.; Al-Saud, T.; Al-Jadaan, A.; Al-Jibreen, H.; Al-Meshari, M.; Al-Suwaidan, B.
2015-11-01
The Gravity Probe B mission provided two new quantitative tests of Einstein’s theory of gravity, general relativity (GR), by cryogenic gyroscopes in Earth’s orbit. Data from four gyroscopes gave a geodetic drift-rate of -6601.8 ± 18.3 marc-s yr-1 and a frame-dragging of -37.2 ± 7.2 marc-s yr-1, to be compared with GR predictions of -6606.1 and -39.2 marc-s yr-1 (1 marc-s = 4.848 × 10-9 radians). The present paper introduces the science, engineering, data analysis, and heritage of Gravity Probe B, detailed in the accompanying 20 CQG papers.
General covariance in quantum gravity at a Lifshitz point
NASA Astrophysics Data System (ADS)
Hořava, Petr; Melby-Thompson, Charles M.
2010-09-01
In the minimal formulation of gravity with Lifshitz-type anisotropic scaling, the gauge symmetries of the system are foliation-preserving diffeomorphisms of spacetime. Consequently, compared to general relativity, the spectrum contains an extra scalar graviton polarization. Here we investigate the possibility of extending the gauge group by a local U(1) symmetry to “nonrelativistic general covariance.” This extended gauge symmetry eliminates the scalar graviton, and forces the coupling constant λ in the kinetic term of the minimal formulation to take its relativistic value, λ=1. The resulting theory exhibits anisotropic scaling at short distances, and reproduces many features of general relativity at long distances.
Generalized quantum gravity condensates for homogeneous geometries and cosmology
NASA Astrophysics Data System (ADS)
Oriti, Daniele; Pranzetti, Daniele; Ryan, James P.; Sindoni, Lorenzo
2015-12-01
We construct a generalized class of quantum gravity condensate states that allows the description of continuum homogeneous quantum geometries within the full theory. They are based on similar ideas already applied to extract effective cosmological dynamics from the group field theory formalism, and thus also from loop quantum gravity. However, they represent an improvement over the simplest condensates used in the literature, in that they are defined by an infinite superposition of graph-based states encoding in a precise way the topology of the spatial manifold. The construction is based on the definition of refinement operators on spin network states, written in a second quantized language. The construction also lends itself easily to application to the case of spherically symmetric quantum geometries.
Seeking the loop quantum gravity Barbero-Immirzi parameter and field in 4D, N=1 supergravity
NASA Astrophysics Data System (ADS)
Gates, S. James, Jr.; Ketov, Sergei V.; Yunes, Nicolás
2009-09-01
We embed the loop quantum gravity Barbero-Immirzi parameter and field within an action describing 4D, N=1 supergravity and thus within a low-energy effective action of superstring/M theory. We use the fully gauge-covariant description of supergravity in (curved) superspace. The gravitational constant is replaced with the vacuum expectation value of a scalar field, which in local supersymmetry is promoted to a complex, covariantly chiral scalar superfield. The imaginary part of this superfield couples to a supersymmetric Holst term. The Holst term also serves as a starting point in the loop quantum gravity action. This suggest the possibility of a relation between loop quantum gravity and supersymmetric string theory, where the Barbero-Immirzi parameter and field of the former play the role of the supersymmetric axion in the latter. Adding matter fermions in loop quantum gravity may require the extension of the Holst action through the Nieh-Yan topological invariant, while in pure, matter-free supergravity their supersymmetric extensions are the same. We show that, when the Barbero-Immirzi parameter is promoted to a field in the context of 4D supergravity, it is equivalent to adding a dynamical complex chiral (dilaton-axion) superfield with a nontrivial kinetic term (or Kähler potential), coupled to supergravity.
Seeking the loop quantum gravity Barbero-Immirzi parameter and field in 4D, N=1 supergravity
Gates, S. James Jr.; Ketov, Sergei V.; Yunes, Nicolas
2009-09-15
We embed the loop quantum gravity Barbero-Immirzi parameter and field within an action describing 4D, N=1 supergravity and thus within a low-energy effective action of superstring/M theory. We use the fully gauge-covariant description of supergravity in (curved) superspace. The gravitational constant is replaced with the vacuum expectation value of a scalar field, which in local supersymmetry is promoted to a complex, covariantly chiral scalar superfield. The imaginary part of this superfield couples to a supersymmetric Holst term. The Holst term also serves as a starting point in the loop quantum gravity action. This suggest the possibility of a relation between loop quantum gravity and supersymmetric string theory, where the Barbero-Immirzi parameter and field of the former play the role of the supersymmetric axion in the latter. Adding matter fermions in loop quantum gravity may require the extension of the Holst action through the Nieh-Yan topological invariant, while in pure, matter-free supergravity their supersymmetric extensions are the same. We show that, when the Barbero-Immirzi parameter is promoted to a field in the context of 4D supergravity, it is equivalent to adding a dynamical complex chiral (dilaton-axion) superfield with a nontrivial kinetic term (or Kaehler potential), coupled to supergravity.
Generalized massive gravity in arbitrary dimensions and its Hamiltonian formulation
Huang, Qing-Guo; Zhang, Ke-Chao; Zhou, Shuang-Yong E-mail: zkc@itp.ac.cn
2013-08-01
We extend the four-dimensional de Rham-Gabadadze-Tolley (dRGT) massive gravity model to a general scalar massive-tensor theory in arbitrary dimensions, coupling a dRGT massive graviton to multiple scalars and allowing for generic kinetic and mass matrix mixing between the massive graviton and the scalars, and derive its Hamiltonian formulation and associated constraint system. When passing to the Hamiltonian formulation, two different sectors arise: a general sector and a special sector. Although obtained via different ways, there are two second class constraints in either of the two sectors, eliminating the BD ghost. However, for the special sector, there are still ghost instabilities except for the case of two dimensions. In particular, for the special sector with one scalar, there is a ''second BD ghost''.
Strong coupling in nonrelativistic general covariant theory of gravity
NASA Astrophysics Data System (ADS)
Lin, Kai; Wang, Anzhong; Wu, Qiang; Zhu, Tao
2011-08-01
We study the strong coupling problem in the Horava-Melby-Thompson setup of the Horava-Lifshitz theory of gravity with an arbitrary coupling constant λ, generalized recently by da Silva, where λ describes the deviation of the theory in the infrared from general relativity that has λGR=1. We find that a scalar field in the Minkowski background becomes strongly coupled for processes with energy higher than Λω[≡(Mpl/c1)3/2Mpl|λ-1|5/4], where generically c1≪Mpl. However, this problem can be cured by introducing a new energy scale M*, so that M*<Λω, where M* denotes the suppression energy of high-order derivative terms of the theory.
Generalized uncertainty principle and analogue of quantum gravity in optics
NASA Astrophysics Data System (ADS)
Braidotti, Maria Chiara; Musslimani, Ziad H.; Conti, Claudio
2017-01-01
The design of optical systems capable of processing and manipulating ultra-short pulses and ultra-focused beams is highly challenging with far reaching fundamental technological applications. One key obstacle routinely encountered while implementing sub-wavelength optical schemes is how to overcome the limitations set by standard Fourier optics. A strategy to overcome these difficulties is to utilize the concept of a generalized uncertainty principle (G-UP) which has been originally developed to study quantum gravity. In this paper we propose to use the concept of G-UP within the framework of optics to show that the generalized Schrödinger equation describing short pulses and ultra-focused beams predicts the existence of a minimal spatial or temporal scale which in turn implies the existence of maximally localized states. Using a Gaussian wavepacket with complex phase, we derive the corresponding generalized uncertainty relation and its maximally localized states. Furthermore, we numerically show that the presence of nonlinearity helps the system to reach its maximal localization. Our results may trigger further theoretical and experimental tests for practical applications and analogues of fundamental physical theories.
Standard general relativity from Chern-Simons gravity
NASA Astrophysics Data System (ADS)
Izaurieta, F.; Minning, P.; Perez, A.; Rodriguez, E.; Salgado, P.
2009-07-01
Chern-Simons models for gravity are interesting because they provide a truly gauge-invariant action principle in the fiber-bundle sense. So far, their main drawback has largely been its perceived remoteness from standard General Relativity, based on the presence of higher powers of the curvature in the Lagrangian (except, remarkably, for three-dimensional spacetime). Here we report on a simple model that suggests a mechanism by which standard General Relativity in five-dimensional spacetime may indeed emerge at a special critical point in the space of couplings, where additional degrees of freedom and corresponding “anomalous” Gauss-Bonnet constraints drop out from the Chern-Simons action. To achieve this goal, both the Lie algebra g and the symmetric g-invariant tensor that define the Chern-Simons Lagrangian are constructed by means of the Lie algebra S-expansion method with a suitable finite Abelian semigroup S. The results are generalized to arbitrary odd dimensions, and the possible extension to the case of eleven-dimensional supergravity is briefly discussed.
Cosmological evolution of generalized non-local gravity
NASA Astrophysics Data System (ADS)
Zhang, Xue; Wu, Ya-Bo; Li, Song; Liu, Yu-Chen; Chen, Bo-Hai; Chai, Yun-Tian; Shu, Shuang
2016-07-01
We construct a class of generalized non-local gravity (GNLG) model which is the modified theory of general relativity (GR) obtained by adding a term m2n-2 R□-nR to the Einstein-Hilbert action. Concretely, we not only study the gravitational equation for the GNLG model by introducing auxiliary scalar fields, but also analyse the classical stability and examine the cosmological consequences of the model for different exponent n. We find that the half of the scalar fields are always ghost-like and the exponent n must be taken even number for a stable GNLG model. Meanwhile, the model spontaneously generates three dominant phases of the evolution of the universe, and the equation of state parameters turn out to be phantom-like. Furthermore, we clarify in another way that exponent n should be even numbers by the spherically symmetric static solutions in Newtonian gauge. It is worth stressing that the results given by us can include ones in refs. [28, 34] as the special case of n=2.
General polytropic dynamic cylinder under self-gravity
NASA Astrophysics Data System (ADS)
Lou, Yu-Qing
2015-12-01
We explore self-similar hydrodynamics of general polytropic (GP) and isothermal cylinders of infinite length with axial uniformity and axisymmetry under self-gravity. Specific entropy conservation along streamlines serves as the dynamic equation of state. Together with possible axial flows, we construct classes of analytic and semi-analytic non-linear dynamic solutions for either cylindrical expansion or contraction radially by solving cylindrical Lane-Emden equations. By extensive numerical explorations and fitting trials in reference to asymptotes derived for large index n, we infer several convenient empirical formulae for characteristic solution properties of cylindrical Lane-Emden equations in terms of n values. A new type of asymptotic solutions for small x is also derived in the Appendix. These analyses offer hints for self-similar dynamic evolution of molecular filaments for forming protostars, brown dwarfs and gaseous planets and of large-scale gaseous arms or starburst rings in (barred) spiral galaxies for forming young massive stars. Such dynamic solutions are necessary starting background for further three-dimensional (in)stability analysis of various modes. They may be used to initialize numerical simulations and serve as important benchmarks for testing numerical codes. Such GP formalism can be further generalized to include magnetic field for a GP magnetohydrodynamic analysis.
Some Properties of Generalized Connections in Quantum Gravity
NASA Astrophysics Data System (ADS)
Velhinho, J. M.
2002-12-01
Theories of connections play an important role in fundamental interactions, including Yang-Mills theories and gravity in the Ashtekar formulation. Typically in such cases, the classical configuration space {A}/ {G} of connections modulo gauge transformations is an infinite dimensional non-linear space of great complexity. Having in mind a rigorous quantization procedure, methods of functional calculus in an extension of {A}/ {G} have been developed. For a compact gauge group G, the compact space /line { {A}{ {/}} {G}} ( ⊃ {A}/ {G}) introduced by Ashtekar and Isham using C*-algebraic methods is a natural candidate to replace {A}/ {G} in the quantum context, 1 allowing the construction of diffeomorphism invariant measures. 2,3,4 Equally important is the space of generalized connections bar {A} introduced in a similar way by Baez. 5 bar {A} is particularly useful for the definition of vector fields in /line { {A}{ {/}} {G}} , fundamental in the construction of quantum observables. 6 These works crucially depend on the use of (generalized) Wilson variables associated to certain types of curves. We will consider the case of piecewise analytic curves, 1,2,5 althought most of the arguments apply equally to the piecewise smooth case. 7,8...
Cosmology in nonrelativistic general covariant theory of gravity
NASA Astrophysics Data System (ADS)
Wang, Anzhong; Wu, Yumei
2011-02-01
Horava and Melby-Thompson recently proposed a new version of the Horava-Lifshitz theory of gravity, in which the spin-0 graviton is eliminated by introducing a Newtonian prepotential φ and a local U(1) gauge field A. In this paper, we first derive the corresponding Hamiltonian, supermomentum constraints, the dynamical equations, and the equations for φ and A, in the presence of matter fields. Then, we apply the theory to cosmology and obtain the modified Friedmann equation and the conservation law of energy, in addition to the equations for φ and A. When the spatial curvature is different from zero, terms behaving like dark radiation and stiff-fluid exist, from which, among other possibilities, a bouncing universe can be constructed. We also study linear perturbations of the Friedmann-Robertson-Walker universe with any given spatial curvature k, and we derive the most general formulas for scalar perturbations. The vector and tensor perturbations are the same as those recently given by one of the present authors [A. Wang, Phys. Rev. DPRVDAQ1550-7998 82, 124063 (2010).] in the setup of Sotiriou, Visser, and Weinfurtner. Applying these formulas to the Minkowski background, we have shown explicitly that the scalar and vector perturbations of the metric indeed vanish, and the only remaining modes are the massless spin-2 gravitons.
Generalized second law of thermodynamics in f(T) gravity
Karami, K.; Abdolmaleki, A. E-mail: AAbdolmaleki@uok.ac.ir
2012-04-01
We investigate the validity of the generalized second law (GSL) of gravitational thermodynamics in the framework of f(T) modified teleparallel gravity. We consider a spatially flat FRW universe containing only the pressureless matter. The boundary of the universe is assumed to be enclosed by the Hubble horizon. For two viable f(T) models containing f(T) = T+μ{sub 1}((−T)){sup n} and f(T) = T−μ{sub 2}T(1−e{sup βT{sub 0}/T}), we first calculate the effective equation of state and deceleration parameters. Then, (we investigate the null and strong energy conditions and conclude that a sudden future singularity appears in both models. Furthermore, using a cosmographic analysis we check the viability of two models. Finally, we examine the validity of the GSL and find that for both models it) is satisfied from the early times to the present epoch. But in the future, the GSL is violated for the special ranges of the torsion scalar T.
Front conditions for gravity currents in channels of general cross-section: some general conclusions
NASA Astrophysics Data System (ADS)
Ungarish, Marius
2015-11-01
We consider the propagation of a high-Reynolds-number gravity current in a horizontal channel with general cross-section of width f (z) , 0 <= z <= H the gravity acceleration g acts in - z direction. (The rectangular case is f (z) = const.) We assume a two-layer system of fluids of densities ρc (current, of height h) and ρa (ambient, filling the remaining part of the channel). We revisit the derivation of the nose Froude-number condition Fr = U /(g' h) 1 / 2 ; U is the speed of propagation of the current and g' = (ρc /ρa - 1) g . We present compact insightful expressions of Fr and energy dissipation as a functions of φ (= area fraction occupied by the current in the cross-section), and show that a degree of freedom is present. We demonstrate that the extension of the closure suggested by Benjamin for the rectangular cross-section, namely that the bottom is a perfect stagnation line, produces Fr solutions which are optimal with respect to several useful criteria. However, the energy conserving closure yields problematic Fr results, as manifest in particular by invalidity for deep currents (small h / H). Connection with realistic time-dependent gravity currents is discussed.
Tests of general relativity in earth orbit using a superconducting gravity gradiometer
NASA Technical Reports Server (NTRS)
Paik, H. J.
1989-01-01
Interesting new tests of general relativity could be performed in earth orbit using a sensitive superconducting gravity gradiometer under development. Two such experiments are discussed here: a null test of the tracelessness of the Riemann tensor and detection of the Lense-Thirring term in the earth's gravity field. The gravity gradient signals in various spacecraft orientations are derived, and dominant error sources in each experimental setting are discussed. The instrument, spacecraft, and orbit requirements imposed by the experiments are derived.
Perturbations of the Robertson-Walker space - Multicomponent sources and generalized gravity
Hwang, Jai-Chan )
1991-07-01
Cosmological perturbation equations in the Robertson-Walker background applicable to some classes of generalized gravity theories, including multicomponent fluids and fields, are presented. The equations are expressed in a form which does not depend on the frame, and the adaptation of the equations into a particular gauge or into some gauge-invariant formulation becomes trivial. A generalization of formalism applicable to a variety of generalized gravity theories, including most of the gravity theories with scalar field and scalar curvature combination, is developed. 35 refs.
General proof of the entropy principle for self-gravitating fluid in f ( R) gravity
NASA Astrophysics Data System (ADS)
Fang, Xiongjun; Guo, Minyong; Jing, Jiliang
2016-08-01
The discussions on the connection between gravity and thermodynamics attract much attention recently. We consider a static self-gravitating perfect fluid system in f ( R) gravity, which is an important theory could explain the accelerated expansion of the universe. We first show that the Tolman-Oppenheimer-Volkoff equation of f ( R) theories can be obtained by thermodynamical method in spherical symmetric spacetime. Then we prove that the maximum entropy principle is also valid for f ( R) gravity in general static spacetimes beyond spherical symmetry. The result shows that if the constraint equation is satisfied and the temperature of fluid obeys Tolmans law, the extrema of total entropy implies other components of gravitational equations. Conversely, if f ( R) gravitational equation hold, the total entropy of the fluid should be extremum. Our work suggests a general and solid connection between f ( R) gravity and thermodynamics.
Cosmology for quadratic gravity in generalized Weyl geometry
Jiménez, Jose Beltrán; Heisenberg, Lavinia; Koivisto, Tomi S.
2016-04-26
A class of vector-tensor theories arises naturally in the framework of quadratic gravity in spacetimes with linear vector distortion. Requiring the absence of ghosts for the vector field imposes an interesting condition on the allowed connections with vector distortion: the resulting one-parameter family of connections generalises the usual Weyl geometry with polar torsion. The cosmology of this class of theories is studied, focusing on isotropic solutions wherein the vector field is dominated by the temporal component. De Sitter attractors are found and inhomogeneous perturbations around such backgrounds are analysed. In particular, further constraints on the models are imposed by excluding pathologies in the scalar, vector and tensor fluctuations. Various exact background solutions are presented, describing a constant and an evolving dark energy, a bounce and a self-tuning de Sitter phase. However, the latter two scenarios are not viable under a closer scrutiny.
Smarr formula for BTZ black holes in general three-dimensional gravity models
NASA Astrophysics Data System (ADS)
Liang, Chao; Gong, Li; Zhang, Baocheng
2017-02-01
Recent studies have presented the interpretation of thermodynamic enthalpy for the mass of BTZ black holes and the corresponding Smarr formula. All these are made in the background of three-dimensional (3D) general relativity. In this paper, we extend such interpretation into general 3D gravity models. It is found that the direct extension is unfeasible and some extra conditions are required to preserve both the Smarr formula and the first law of black hole thermodynamics. Thus, BTZ black hole thermodynamics enforces some constraints for general 3D gravity models, and these constraints are consistent with all previous discussions.
Generalized virial theorem in Palatini f(R) gravity
Sefiedgar, A. S.; Atazadeh, K.; Sepangi, H. R.
2009-09-15
We use the collision-free Boltzmann equation in Palatini f(R) gravity to derive the virial theorem within the context of the Palatini approach. It is shown that the virial mass is proportional to certain geometrical terms appearing in the Einstein field equations which contributes to gravitational energy and that such geometric mass can be attributed to the virial mass discrepancy in a cluster of galaxies. We then derive the velocity dispersion relation for clusters, followed by the metric tensor components inside the cluster as well as the f(R) Lagrangian in terms of the observational parameters. Since these quantities may also be obtained experimentally, the f(R) virial theorem is a convenient tool to test the viability of f(R) theories in different models. Finally, we discuss the limitations of our approach in light of the cosmological averaging used and questions that have been raised in the literature against such averaging procedures in the context of the present work.
The Mø ller Energy Complexes of Various Wormholes in General Relativity and Teleparallel Gravity
NASA Astrophysics Data System (ADS)
Aygün, Melis; Yilmaz, Ihsan
2007-08-01
This study is aimed to elaborate the energy problem of general wormhole space-times in two different approaches of gravity such as general relativity and teleparallel gravity. In this connection, the energy for well-known wormhole space-times is evaluated using Møller energy-momentum prescription in these different approximations. We obtained that energy distributions of Møller definition give the same results for various wormhole space-times in general relativity (GR) and teleparallel gravity (TG). The results strengthen the importance of Møller energy-momentum definitions in given space-times and viewpoint of Lessner that Møller energy-momentum complex is a powerful concept for energy and momentum.
Post-Newtonian parameter γ for multiscalar-tensor gravity with a general potential
NASA Astrophysics Data System (ADS)
Hohmann, Manuel; Järv, Laur; Kuusk, Piret; Randla, Erik; Vilson, Ott
2016-12-01
We compute the parametrized post-Newtonian parameter γ in the case of a static point source for multiscalar-tensor gravity with completely general nonderivative couplings and potential in the Jordan frame. Similarly to the single massive field case γ depends exponentially on the distance from the source and is determined by the length of a vector of nonminimal coupling in the space of scalar fields and its orientation relative to the mass eigenvectors. Using data from the Cassini tracking experiment, we estimate bounds on a general theory with two scalar fields. Our formalism can be utilized for a wide range of models, which we illustrate by applying it to nonminimally coupled Higgs SU(2) doublet, general hybrid metric-Palatini gravity, linear (□-1 ) and quadratic (□-2) nonlocal gravity.
Capillary Gravity Waves over an Obstruction - Forced Generalized KdV equation
NASA Astrophysics Data System (ADS)
Choi, Jeongwhan; Whang, S. I.; Sun, Shu-Ming
2013-11-01
Capillary gravity surface waves of an ideal fluid flow over an obstruction is considered. When the Bond number is near the critical value 1/3, a forced generalized KdV equation of fifth order is derived. We study the equation analytically and numerically. Existence and stability of solutions are studied and new types of numerical solutions are found.
CPT symmetry and antimatter gravity in general relativity
NASA Astrophysics Data System (ADS)
Villata, M.
2011-04-01
The gravitational behavior of antimatter is still unknown. While we may be confident that antimatter is self-attractive, the interaction between matter and antimatter might be either attractive or repulsive. We investigate this issue on theoretical grounds. Starting from the CPT invariance of physical laws, we transform matter into antimatter in the equations of both electrodynamics and gravitation. In the former case, the result is the well-known change of sign of the electric charge. In the latter, we find that the gravitational interaction between matter and antimatter is a mutual repulsion, i.e. antigravity appears as a prediction of general relativity when CPT is applied. This result supports cosmological models attempting to explain the Universe accelerated expansion in terms of a matter-antimatter repulsive interaction.
Modified gravity: the CMB, weak lensing and general parameterisations
Thomas, Shaun A.; Appleby, Stephen A.; Weller, Jochen E-mail: stephen.appleby@ph.tum.de
2011-03-01
We examine general physical parameterisations for viable gravitational models in the f(R) framework. This is related to the mass of an additional scalar field, called the scalaron, that is introduced by the theories. Using a simple parameterisation for the scalaron mass M(a) we show there is an exact correspondence between the model and popular parameterisations of the modified Poisson equation μ(a,k) and the ratio of the Newtonian potentials η(a,k). We argue that although f(R) models are well described by the general [μ(a,k),η(a,k)] parameterization, specific functional forms of μ,η in the literature do not accurately represent f(R) behaviour, specifically at low redshift. We subsequently construct an improved description for the scalaron mass (and therefore μ(a,k) and η(a,k)) which captures their essential features and has benefits derived from a more physical origin. We study the scalaron's observational signatures and show the modification to the background Friedmann equation and CMB power spectrum to be small. We also investigate its effects in the linear and non linear matter power spectrum-where the signatures are evident-thus giving particular importance to weak lensing as a probe of these models. Using this new form, we demonstrate how the next generation Euclid survey will constrain these theories and its complementarity to current solar system tests. In the most optimistic case Euclid, together with a Planck prior, can constrain a fiducial scalaron mass M{sub 0} = 9.4 × 10{sup −30}eV at the ∼ 20% level. However, the decay rate of the scalaron mass, with fiducial value ν = 1.5, can be constrained to ∼ 3% uncertainty.
Vaidya solution and its generalization in de Rham-Gabadadze-Tolley massive gravity
NASA Astrophysics Data System (ADS)
Li, Ping; Li, Xin-Zhou; Zhai, Xiang-Hua
2016-12-01
We present a detailed study of the Vaidya solution and its generalization in de Rham-Gabadadze-Tolley (dRGT) theory. Since the diffeomorphism invariance can be restored with the Stückelberg fields ϕa introduced, there is a new invariant Ia b=gμ ν∂μϕa∂νϕb in the massive gravity, which adds to the ones usually encountered in general relativity. There is no conventional Vaidya solution if we choose unitary gauge. In this paper, we obtain three types of self-consistent ansatz with some nonunitary gauge, and find accordingly the Vaidya, generalized Vaidya, and furry Vaidya solution. As by-products, we obtain a series of furry black hole. The Vaidya solution and its generalization in dRGT massive gravity describe the black holes with a variable horizon.
Compact Stars in Eddington-inspired Born-Infeld Gravity and General Relativity
NASA Astrophysics Data System (ADS)
Sham, Yu Hin
In this thesis we apply the Eddington inspired Born-Infeld (EiBI) gravity to study the structure and the properties of compact stars. The hydrostatic equilibrium structure of compact stars characterized by different equations of state (EOSs) is considered and it is found that EiBI gravity can lead to different new features that are not found in standard general relativity (GR). A unified framework to study radial perturbations and the stability of compact stars in this theory is also developed. As in the GR case, the frequency- square of the fundamental oscillation mode vanishes for the maximum mass stellar configuration. Also, the oscillation modes depend on the parameter kappa introduced in EiBI gravity and the dependence is stronger for higher-order modes. We also discover that EiBI gravity imposes certain constraints on the EOSs that allow physical stable equilibrium states of compact stars to exist. However, such constraints are unphysical as the validity of an EOS should be independent of the theory of gravity, hinting that EiBI gravity needs to be modified. On the other hand, we demonstrate that two universal relations of compact stars, namely the I-Love-Q relation, which relates the moment of intertia, the tidal Love number and the quadrupole moment of compact stars, and the f-I relation, which links the f-mode oscillation frequency and the moment of inertia of compact stars together, still hold in EiBI gravity within the observational bounds of kappa. The origin of the two universal relations is then studied and it is found that a stiff EOS at the core of the compact star guarantees the universality. The two universal relations are further extended and universal relations relating the multipolar f-mode oscillation frequency and the corresponding multipolar tidal Love number, which can be derived analytically in the Newtonian limit for stars with sufficiently stiff EOSs, are found.
NASA Astrophysics Data System (ADS)
Watanabe, Shingo; Miyahara, Saburo
2009-04-01
The interaction of gravity waves (GWs) and the migrating diurnal tide are studied in a GW-resolving general circulation model (GCM) by calculating the tidal components of zonal wind accelerations and equivalent Rayleigh friction due to tidal induced GW dissipation. Two 15-day periods for perpetual equinoctial and solstice simulations are analyzed, which are performed with the Japanese Atmospheric General circulation model for Upper Atmosphere Research (JAGUAR) high-resolution GCM. The model can directly simulate GWs with horizontal wavelengths greater than about 190 km, and, thus reproduce the general features of the mean winds and temperatures from the surface to the mesosphere and lower thermosphere (MLT). The amplitudes of the migrating diurnal tide are successfully simulated during both seasons, and the tidal winds affect the altitudes of GW dissipation in the low-latitude MLT. The tidal component of GW forcing has maximal values of about 15 m s-1 d-1 near the maximal vertical shears of the tidal winds and generally works to shorten the vertical wavelength of the migrating diurnal tide. The phase relationship between the tidal winds and the tidal induced GW forcing is not exactly 90° out of phase, causing amplification/suppression of the tide. The GW forcing amplifies the migrating diurnal tide during the equinox, while during the solstice, it suppresses the tidal winds in the upper mesosphere of both hemispheres. This difference in behavior can be attributed to a seasonal variation of the mean zonal winds, because combination of the mean and tidal winds affects the altitudes of GW dissipation.
Relative equilibria for general gravity fields in the sphere-restricted full two-body problem.
Scheeres, D J
2005-12-01
Equilibrium conditions for a mutually attracting general mass distribution and point mass are stated. The equilibrium conditions can be reduced to six equations in six unknowns, plus the existence of integrals of motion consisting of the total angular momentum and energy of the system. The equilibrium conditions are further reduced to two independent equations, and their theoretical properties are studied. We state a set of necessary and sufficient conditions for an equilibrium that is well suited to the computation of certain classes of equilibria. These equations are solved for nonsymmetric gravity fields of interest, using a real asteroid shape model for the general gravity fields. The stability of the resulting equilibria are also noted.
Gao Yajun
2008-08-15
A previously established Hauser-Ernst-type extended double-complex linear system is slightly modified and used to develop an inverse scattering method for the stationary axisymmetric general symplectic gravity model. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method applied fine and effective. As an application, a concrete family of soliton double solutions for the considered theory is obtained.
On asymmetric generalized solitary gravity-capillary waves in finite depth.
Gao, T; Wang, Z; Vanden-Broeck, J-M
2016-10-01
Generalized solitary waves propagating at the surface of a fluid of finite depth are considered. The fluid is assumed to be inviscid and incompressible and the flow to be irrotational. Both the effects of gravity and surface tension are included. It is shown that in addition to the classical symmetric waves, there are new asymmetric solutions. These new branches of solutions bifurcate from the branches of symmetric waves. The detailed bifurcation diagrams as well as typical wave profiles are presented.
Mass bounds for compact spherically symmetric objects in generalized gravity theories
NASA Astrophysics Data System (ADS)
Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J.
2016-09-01
We derive upper and lower bounds on the mass-radius ratio of stable compact objects in extended gravity theories, in which modifications of the gravitational dynamics via-á-vis standard general relativity are described by an effective contribution to the matter energy-momentum tensor. Our results include the possibility of a variable coupling between the matter sector and the gravitational field and are valid for a large class of generalized gravity models. The generalized continuity and Tolman-Oppenheimer-Volkoff equations are expressed in terms of the effective mass, density, and pressure, given by the bare values plus additional contributions from the total energy-momentum tensor, and general theoretical limits for the maximum and minimum mass-radius ratios are explicitly obtained. As applications of the formalism developed herein, we consider compact bosonic objects, described by scalar-tensor gravitational theories with self-interacting scalar field potentials, and charged compact objects, respectively. For Higgs-type models, we find that these bounds can be expressed in terms of the value of the potential at the surface of the compact object. Minimizing the energy with respect to the radius, we obtain explicit upper and lower bounds on the mass, which admits a Chandrasekhar-type representation. For charged compact objects, we consider the effects of the Poincaré stresses on the equilibrium structure and obtain bounds on the radial and tangential stresses. As a possible astrophysical test of our results, we obtain the general bound on the gravitational redshift for compact objects in extended gravity theories and explicitly compute the redshift restrictions for objects with nonzero effective surface pressure. General implications of minimum mass bounds for the gravitational stability of fundamental particles and for the existence of holographic duality between bulk and boundary degrees of freedom are also considered.
Point particles in 2+1 dimensions: general relativity and loop gravity descriptions
NASA Astrophysics Data System (ADS)
Ziprick, Jonathan
2015-02-01
We develop a Hamiltonian description of point particles in (2+1)-dimensions using connection and frame-field variables for general relativity. The topology of each spatial hypersurface is that of a punctured two-sphere with particles residing at the punctures. We describe this topology with a CW complex (a collection of two cells glued together along the edges), and use this to fix a gauge and reduce the Hamiltonian. The equations of motion for the fields describe a dynamical triangulation where each vertex moves according to the equation of motion for a free relativistic particle. The evolution is continuous except for when triangles collapse (i.e. the edges become parallel) causing discrete, topological changes in the underlying CW complex. We then introduce the loop gravity phase space parameterized by holonomy-flux variables on a graph (a network of one-dimensional links). By embedding a graph within the CW complex, we find a description of this system in terms of loop variables. The resulting equations of motion describe the same dynamical triangulation as the connection and frame-field variables. In this framework, the collapse of a triangle causes a discrete change in the underlying graph, giving a concrete realization of the graph-changing moves that many expect to feature in full loop quantum gravity. The main result is a dynamical model of loop gravity that agrees with general relativity and is well-suited for quantization using existing methods.
A generalization of unimodular gravity with vacuum-matter energy exchange
NASA Astrophysics Data System (ADS)
Klinkhamer, F. R.
An effective theory of gravity in the infrared is proposed, which involves the determinant of the metric relative to the determinant of a prior metric taken to be that of Minkowski spacetime. This effective theory can be interpreted as a generalization of unimodular gravity. In a cosmological context with ultrarelativistic or cold matter, the resulting field equations have only one solution, empty Minkowski spacetime (selected by the prior metric of the theory). The introduction of energy exchange between vacuum and matter gives rise to nonstatic cosmic solutions. It is found that Minkowski spacetime (from the prior metric) appears as an attractor of the dynamic equations. A further result is that energy-momentum conservation of any localized material system is violated in a nonconstant gravitational background. The impact for experiment appears, however, negligible if the vacuum-energy mass-scale is of order meV.
Holographic thermalization and generalized Vaidya-AdS solutions in massive gravity
NASA Astrophysics Data System (ADS)
Hu, Ya-Peng; Zeng, Xiao-Xiong; Zhang, Hai-Qing
2017-02-01
We investigate the effect of massive graviton on the holographic thermalization process. Before doing this, we first find out the generalized Vaidya-AdS solutions in the de Rham-Gabadadze-Tolley (dRGT) massive gravity by directly solving the gravitational equations. Then, we study the thermodynamics of these Vaidya-AdS solutions by using the Misner-Sharp energy and unified first law, which also shows that the massive gravity is in a thermodynamic equilibrium state. Moreover, we adopt the two-point correlation function at equal time to explore the thermalization process in the dual field theory, and to see how the graviton mass parameter affects this process from the viewpoint of AdS/CFT correspondence. Our results show that the graviton mass parameter will increase the holographic thermalization process.
Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity.
Aceto, Jessica; Nourizadeh-Lillabadi, Rasoul; Marée, Raphael; Dardenne, Nadia; Jeanray, Nathalie; Wehenkel, Louis; Aleström, Peter; van Loon, Jack J W A; Muller, Marc
2015-01-01
Teleost fish such as zebrafish (Danio rerio) are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf) of, respectively parathyroid hormone (PTH) or vitamin D3 (VitD3). Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf) exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a) whose expression was consistently affected by the transition from hyper- to normal gravity.
Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity
Aceto, Jessica; Nourizadeh-Lillabadi, Rasoul; Marée, Raphael; Dardenne, Nadia; Jeanray, Nathalie; Wehenkel, Louis; Aleström, Peter
2015-01-01
Teleost fish such as zebrafish (Danio rerio) are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf) of, respectively parathyroid hormone (PTH) or vitamin D3 (VitD3). Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf) exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a) whose expression was consistently affected by the transition from hyper- to normal gravity. PMID:26061167
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei M.
2004-07-01
According to Einstein, the notions of geodesic, parallel transport (affine connection) and curvature of the spacetime manifold have a pure geometric origin and do not correlate with any electromagnetic concepts. At the same time, curvature is generated by matter which is not affiliated with the spacetime geometric concepts. For this reason, the fundamental constant c entering the geometric and matter sectors of the general theory of relativity has different conceptual meanings. Specifically, the letter c on the left-hand side of the Einstein equations (geometric sector) entering the Christoffel symbols and its time derivatives is the ultimate speed of gravity characterizing the upper limit on the speed of its propagation as well as the maximal rate of change of time derivatives of the metric tensor, that is gravitational field. The letter c on the right-hand side of the Einstein equations (matter sector) is the maximal speed of propagation of any other field rather than gravity. Einstein's general principle of relativity extends his principle of special relativity and equates the numerical value of the ultimate speed of gravity to that of the speed of light in the special theory of relativity but this general principle must be tested experimentally. To this end, we work out the speed of gravity parametrization of the Einstein equations (cg-parametrization) to keep track of the time-dependent effects associated with the geometric sector of general relativity and to separate them from the time-dependent effects of the matter sector. Parametrized post-Newtonian (PPN) approximation of the Einstein equations is derived in order to explain the gravitational physics of the Jovian deflection VLBI experiment conducted on 8 September 2002. The post-Newtonian series expansion in the cg-parametrized general relativity is with respect to a small parameter that is proportional to the ratio of the characteristic velocity of the bodies to the speed of propagation of the
NASA Astrophysics Data System (ADS)
Setare, M. R.; Adami, H.
2016-09-01
We consider the Generalized Minimal Massive Gravity (GMMG) model in the first order formalism. We show that all the solutions of the Einstein gravity with negative cosmological constants solve the equations of motion of considered model. Then we find an expression for the off-shell conserved charges of this model. By considering the near horizon geometry of a three dimensional black hole in the Gaussian null coordinates, we find near horizon conserved charges and their algebra. The obtained algebra is centrally extended. By writing the algebra of conserved charges in terms of Fourier modes and considering the BTZ black hole solution as an example, one can see that the charge associated with rotations along Y0 coincides exactly with the angular momentum, and the charge associated with time translations T0 is the product of the black hole entropy and its temperature. As we expect, in the limit when the GMMG tends to the Einstein gravity, all the results we obtain in this paper reduce to the results of the paper [1].
NASA Astrophysics Data System (ADS)
Witzel, Gunther; Lu, Jessica R.; Ghez, Andrea M.; Martinez, Gregory D.; Fitzgerald, Michael P.; Britton, Matthew; Sitarski, Breann N.; Do, Tuan; Campbell, Randall D.; Service, Maxwell; Matthews, Keith; Morris, Mark R.; Becklin, E. E.; Wizinowich, Peter L.; Ragland, Sam; Doppmann, Greg; Neyman, Chris; Lyke, James; Kassis, Marc; Rizzi, Luca; Lilley, Scott; Rampy, Rachel
2016-07-01
General relativity can be tested in the strong gravity regime by monitoring stars orbiting the supermassive black hole at the Galactic Center with adaptive optics. However, the limiting source of uncertainty is the spatial PSF variability due to atmospheric anisoplanatism and instrumental aberrations. The Galactic Center Group at UCLA has completed a project developing algorithms to predict PSF variability for Keck AO images. We have created a new software package (AIROPA), based on modified versions of StarFinder and Arroyo, that takes atmospheric turbulence profiles, instrumental aberration maps, and images as inputs and delivers improved photometry and astrometry on crowded fields. This software package will be made publicly available soon.
Generalized uncertainty principle in f(R) gravity for a charged black hole
Said, Jackson Levi; Adami, Kristian Zarb
2011-02-15
Using f(R) gravity in the Palatini formularism, the metric for a charged spherically symmetric black hole is derived, taking the Ricci scalar curvature to be constant. The generalized uncertainty principle is then used to calculate the temperature of the resulting black hole; through this the entropy is found correcting the Bekenstein-Hawking entropy in this case. Using the entropy the tunneling probability and heat capacity are calculated up to the order of the Planck length, which produces an extra factor that becomes important as black holes become small, such as in the case of mini-black holes.
Gravity at the Edge: Testing General Relativity with the Event Horizon Telescope
NASA Astrophysics Data System (ADS)
Broderick, Avery E.
2015-08-01
The Event Horizon Telescope (EHT), a global mm-VLBI experiment, has already resolved two AGN on sub-horizon scales. This permits transformative studies of both accretion and jet formation. However, it also provides an unprecedented opportunity to study gravity in the strong-field regime. I will discuss the some of the ways that the EHT has begun to do this, and how the rapid development of the EHT capabilities over the next two years will result in sub-percent precision tests of general relativity.
Testing a generalized cubic Galileon gravity model with the Coma Cluster
Terukina, Ayumu; Yamamoto, Kazuhiro; Okabe, Nobuhiro; Matsushita, Kyoko; Sasaki, Toru E-mail: kazuhiro@hiroshima-u.ac.jp E-mail: matusita@rs.kagu.tus.ac.jp
2015-10-01
We obtain a constraint on the parameters of a generalized cubic Galileon gravity model exhibiting the Vainshtein mechanism by using multi-wavelength observations of the Coma Cluster. The generalized cubic Galileon model is characterized by three parameters of the turning scale associated with the Vainshtein mechanism, and the amplitude of modifying a gravitational potential and a lensing potential. X-ray and Sunyaev-Zel'dovich (SZ) observations of the intra-cluster medium are sensitive to the gravitational potential, while the weak-lensing (WL) measurement is specified by the lensing potential. A joint fit of a complementary multi-wavelength dataset of X-ray, SZ and WL measurements enables us to simultaneously constrain these three parameters of the generalized cubic Galileon model for the first time. We also find a degeneracy between the cluster mass parameters and the gravitational modification parameters, which is influential in the limit of the weak screening of the fifth force.
Dynamical instability of cylindrical symmetric collapsing star in generalized teleparallel gravity
NASA Astrophysics Data System (ADS)
Jawad, Abdul; Momeni, Davood; Rani, Shamaila; Myrzakulov, Ratbay
2016-04-01
This paper is devoted to an analysis of the dynamical instability of a self-gravitating object that undergoes a collapse process. We take the framework of generalized teleparallel gravity with a cylindrically symmetric gravitating object. The matter distribution is represented by a locally anisotropic energy-momentum tensor. We develop basic equations such as the dynamical equations along with the matching conditions and the Harrison-Wheeler equation of state. By applying a linear perturbation strategy, we construct a collapse equation, which is used to obtain the instability ranges in the Newtonian and post-Newtonian regimes. We find these ranges for isotropic pressure and reduce to the results in general relativity. The unstable behavior depends on matter-, metric-, mass-, and torsion-based terms.
Viscous generalized Chaplygin gas interacting with f(R,T) gravity
NASA Astrophysics Data System (ADS)
Baffou, E. H.; Houndjo, M. J. S.; Salako, I. G.
In this paper, we study in Friedmann-Robertson-Walker universe the interaction between the viscous generalized Chaplygin gas with f(R,T) gravity, which is an arbitrary function of the Ricci scalar R and the trace T of the energy-momentum tensor. Assuming that the contents of universe are dominated by a generalized Chaplygin gas and dark energy, we obtained the modified Friedmann equations and also the time-dependent energy density and pressure of dark energy due to the shear and bulk viscosities for three interacting models depending on an input parameter Q. Within the simple form of scale factor (power-law), we discuss the graphical representation of dark energy density parameter and investigate the shear and bulk viscosities effects on the accelerating expansion of the universe for each interacting model.
Energy distributions of Bianchi type-VI h Universe in general relativity and teleparallel gravity
NASA Astrophysics Data System (ADS)
Özkurt, Şeref; Aygün, Sezg&idot; n.
2017-04-01
In this paper, we have investigated the energy and momentum density distributions for the inhomogeneous generalizations of homogeneous Bianchi type-VI h metric with Einstein, Bergmann-Thomson, Landau-Lifshitz, Papapetrou, Tolman and Møller prescriptions in general relativity (GR) and teleparallel gravity (TG). We have found exactly the same results for Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum distributions in Bianchi type-VI h metric for different gravitation theories. The energy-momentum distributions of the Bianchi type- VI h metric are found to be zero for h = -1 in GR and TG. However, our results agree with Tripathy et al, Tryon, Rosen and Aygün et al.
NASA Astrophysics Data System (ADS)
Istrate, Nicolae; Lindner, John
2014-03-01
We design an Earth-like artificial gravity field using the Darmois-Israel junction conditions of general relativity to connect the flat spacetime outside an infinitesimally thin cylinder to the curved spacetime inside. In the calculation of extrinsic curvature, our construction exploits Earth's weak gravity, which implies similar inside and outside curvatures, to approximate the unit normal inside by the negative unit normal outside. The stress-energy distribution on the cylinder's sides includes negative energy density.
Gravity from refraction of CMB photons using the optical-mechanical analogy in general relativity
NASA Astrophysics Data System (ADS)
Edwards, Matthew R.
2014-06-01
Relativistic light bending and gravitational lensing have traditionally been viewed purely as effects of spacetime curvature. Yet for many years they have also been treated as a quasi-refraction of light in a special optical medium, wherein the refractive index is considered proportional to the gravitational potential. We now propose that this `optical-mechanical analogy' in general relativity can also account for gravity. Using classical optics we show that a photon moving through the refractive medium about a mass transfers momentum first to the medium and then to the mass itself. Due to transfer of momentum primarily from ultra-remote CMB photons, masses are then subject to a cosmic pressure on all sides. Where two masses occur, mutual screening by their respective envelopes of refractive medium is shown to result in an attractive force of the Le Sage or `pushing gravity' type. We suggest that the gravito-optical medium is comprised of gravitons, which may be modeled as a quasi-Einstein-Bose conjugate interconnecting all the masses of the visible universe.
NASA Astrophysics Data System (ADS)
Liu, Molin; Yang, Yuling; Han, Yu; Zhao, Zonghua; Lu, Jianbo
2016-07-01
In various gravity theories, Friedmann equations can be cast to a form of the first law of thermodynamics in a Friedmann-Robertson-Walker (FRW) cosmological setup. However, this result failed in recent infrared (IR) modified Hořava-Lifshitz (HL) gravity. The difficulty stems from the fact that HL gravity is Lorentz-violating. Motivated by this problem, we use the Misner-Sharp mass to investigate the thermodynamics near the apparent horizon in HL cosmology. We find that the Friedmann equations can be derived from the first law of thermodynamics. The Misner-Sharp mass used here inherits the specific properties of HL gravity since it is directly from the gravitational action of HL theory. We also prove that the first law of thermodynamics with logarithmic entropy still holds at the apparent horizon in FRW. The results suggest that the general prescription of deriving the field equation from thermodynamics still works in the HL cosmology.
Gravity Probe B: final results of a space experiment to test general relativity.
Everitt, C W F; DeBra, D B; Parkinson, B W; Turneaure, J P; Conklin, J W; Heifetz, M I; Keiser, G M; Silbergleit, A S; Holmes, T; Kolodziejczak, J; Al-Meshari, M; Mester, J C; Muhlfelder, B; Solomonik, V G; Stahl, K; Worden, P W; Bencze, W; Buchman, S; Clarke, B; Al-Jadaan, A; Al-Jibreen, H; Li, J; Lipa, J A; Lockhart, J M; Al-Suwaidan, B; Taber, M; Wang, S
2011-06-03
Gravity Probe B, launched 20 April 2004, is a space experiment testing two fundamental predictions of Einstein's theory of general relativity (GR), the geodetic and frame-dragging effects, by means of cryogenic gyroscopes in Earth orbit. Data collection started 28 August 2004 and ended 14 August 2005. Analysis of the data from all four gyroscopes results in a geodetic drift rate of -6601.8±18.3 mas/yr and a frame-dragging drift rate of -37.2±7.2 mas/yr, to be compared with the GR predictions of -6606.1 mas/yr and -39.2 mas/yr, respectively ("mas" is milliarcsecond; 1 mas=4.848×10(-9) rad).
Preferred frame parameters in the tensor-vector-scalar theory of gravity and its generalization
Sagi, Eva
2009-08-15
The tensor-vector-scalar theory of gravity, which was designed as a relativistic implementation to the modified dynamics paradigm, has fared quite well as an alternative to dark matter, on both galactic and cosmological scales. However, its performance in the Solar System, as embodied in the post-Newtonian formalism, has not yet been fully investigated. We calculate the post-Newtonian parameters for TeVeS with the cosmological value of the scalar field taken into account, and show that in this situation the cosmological value of the scalar field is tightly linked to the vector field coupling constant K, preventing the former from evolving as predicted by its equation of motion. We show that generalizing TeVeS to have an Aether-type vector action, as suggested by Skordis, removes the aforesaid link, and this generalized version of TeVes has its {beta}, {gamma}, and {xi} parameterized post-Newtonian parameters identical to those in GR, while solar system constraints on the preferred frame parameters {alpha}{sub 1} and {alpha}{sub 2} can be satisfied within a modest range of small values of the scalar and vector fields coupling parameters, and for cosmological values of the scalar field consistent with evolution within the framework of existing cosmological models.
NASA Astrophysics Data System (ADS)
Zhu, Tao; Shu, Fu-Wen; Wu, Qiang; Wang, Anzhong
2012-02-01
We consider an extended theory of Horava-Lifshitz gravity with the detailed balance condition softly breaking, but without the projectability condition. With the former, the number of independent coupling constants is significantly reduced. With the latter and by extending the original foliation-preserving diffeomorphism symmetry Diff(M,F) to include a local U(1) symmetry, the spin-0 gravitons are eliminated. Thus, all the problems related to them disappear, including the instability, strong coupling, and different speeds in the gravitational sector. When the theory couples to a scalar field, we find that the scalar field is not only stable in both the ultraviolet and infrared, but also free of the strong coupling problem, because of the presence of high-order spatial derivative terms of the scalar field. Furthermore, applying the theory to cosmology, we find that due to the additional U(1) symmetry, the Friedmann-Robertson-Walker (FRW) universe is necessarily flat. We also investigate the scalar, vector, and tensor perturbations of the flat FRW universe, and derive the general linearized field equations for each kind of the perturbations.
Martian atmospheric gravity waves simulated by a high-resolution general circulation model
NASA Astrophysics Data System (ADS)
Kuroda, Takeshi; Yiǧit, Erdal; Medvedev, Alexander S.; Hartogh, Paul
2016-07-01
Gravity waves (GWs) significantly affect temperature and wind fields in the Martian middle and upper atmosphere. They are also one of the observational targets of the MAVEN mission. We report on the first simulations with a high-resolution general circulation model (GCM) and present a global distributions of small-scale GWs in the Martian atmosphere. The simulated GW-induced temperature variances are in a good agreement with available radio occultation data in the lower atmosphere between 10 and 30 km. For the northern winter solstice, the model reveals a latitudinal asymmetry with stronger wave generation in the winter hemisphere and two distinctive sources of GWs: mountainous regions and the meandering winter polar jet. Orographic GWs are filtered upon propagating upward, and the mesosphere is primarily dominated by harmonics with faster horizontal phase velocities. Wave fluxes are directed mainly against the local wind. GW dissipation in the upper mesosphere generates a body force per unit mass of tens of m s^{-1} per Martian solar day (sol^{-1}), which tends to close the simulated jets. The results represent a realistic surrogate for missing observations, which can be used for constraining GW parameterizations and validating GCMs.
Unnikrishnan, C.S.; Gillies, G.T.
2006-05-15
Recently Ehlers, Ozsvath, and Schucking discussed whether pressure contributes to active gravitational mass as required by general relativity. They pointed out that there is no experimental information on this available, though precision measurement of the gravitational constant should provide a test of this foundational aspect of gravity. We had used a similar argument earlier to test the contribution of leptons to the active gravitational mass. In this paper we use the result from the Zuerich gravitational constant experiment to provide the first adequate experimental input regarding the active gravitational mass of Fermi pressure. Apart from confirming the equality of the passive and active gravitational roles of the pressure term in general relativity within an accuracy of 5%, our results are consistent with the theoretical expectation of the cancellation of the gravity of pressure by the gravity of the surface tension of confined matter. This result on the active gravitational mass of the quantum zero-point Fermi pressure in the atomic nucleus is also interesting from the point of view of studying the interplay between quantum physics and classical gravity.
Generalized analytical model for benthic water flux forced by surface gravity waves
King, J.N.; Mehta, A.J.; Dean, R.G.
2009-01-01
A generalized analytical model for benthic water flux forced by linear surface gravity waves over a series of layered hydrogeologic units is developed by adapting a previous solution for a hydrogeologic unit with an infinite thickness (Case I) to a unit with a finite thickness (Case II) and to a dual-unit system (Case III). The model compares favorably with laboratory observations. The amplitude of wave-forced benthic water flux is shown to be directly proportional to the amplitude of the wave, the permeability of the hydrogeologic unit, and the wave number and inversely proportional to the kinematic viscosity of water. A dimensionless amplitude parameter is introduced and shown to reach a maximum where the product of water depth and the wave number is 1.2. Submarine groundwater discharge (SGD) is a benthic water discharge flux to a marine water body. The Case I model estimates an 11.5-cm/d SGD forced by a wave with a 1 s period and 5-cm amplitude in water that is 0.5-m deep. As this wave propagates into a region with a 0.3-m-thick hydrogeologic unit, with a no-flow bottom boundary, the Case II model estimates a 9.7-cm/d wave-forced SGD. As this wave propagates into a region with a 0.2-m-thick hydrogeologic unit over an infinitely thick, more permeable unit, the Case III quasi-confined model estimates a 15.7-cm/d wave-forced SGD. The quasi-confined model has benthic constituent flux implications in coral reef, karst, and clastic regions. Waves may undermine tracer and seepage meter estimates of SGD at some locations. Copyright 2009 by the American Geophysical Union.
Rodrigues, Davi C.; Piattella, Oliver F.; Chauvineau, Bertrand E-mail: Bertrand.Chauvineau@oca.eu
2015-09-01
We show that Renormalization Group extensions of the Einstein-Hilbert action for large scale physics are not, in general, a particular case of standard Scalar-Tensor (ST) gravity. We present a new class of ST actions, in which the potential is not necessarily fixed at the action level, and show that this extended ST theory formally contains the Renormalization Group case. We also propose here a Renormalization Group scale setting identification that is explicitly covariant and valid for arbitrary relativistic fluids.
NASA Astrophysics Data System (ADS)
Maślanka, K.
A model of reality based on quantum fields, but with a classical treatment of gravity, is inconsistent. Finding a solution has proved extremely difficult, possibly due to the beauty and conceptual simplicity of general relativity. There is a variety of approaches to a consistent theory of quntum gravity. At present, it seems that superstring theory is the most promising candidate.
Brustein, Ram; Hadad, Merav
2009-09-04
We show that the equations of motion of generalized theories of gravity are equivalent to the thermodynamic relation deltaQ=TdeltaS. Our proof relies on extending previous arguments by using a more general definition of the Noether charge entropy. We have thus completed the implementation of Jacobson's proposal to express Einstein's equations as a thermodynamic equation of state. Additionally, we find that the Noether charge entropy obeys the second law of thermodynamics if the energy-momentum tensor obeys the null energy condition. Our results support the idea that gravitation on a macroscopic scale is a manifestation of the thermodynamics of the vacuum.
Brane structure from a scalar field in general covariant Horava-Lifshitz gravity
NASA Astrophysics Data System (ADS)
Bazeia, D.; Brito, F. A.; Costa, F. G.
2015-02-01
In this paper we have considered the structure of the nonprojectable Horava-Melby-Thompson gravity to find braneworld scenarios. A relativistic scalar field is considered in the matter sector and we have shown how to reduce the equations of motion to first-order differential equations. In particular, we have studied thick brane solutions of both the dilatonic and Randall-Sundrum types.
NASA Astrophysics Data System (ADS)
Othman, Mohamed I. A.; Elmaklizi, Yassmin D.; Said, Samia M.
2013-03-01
The problem of the generalized thermoelastic medium for three different theories under the effect of a gravity field is investigated. The Lord-Shulman (L-S), Green-Lindsay (G-L), and classical-coupled (CD) theories are discussed. The modulus of the elasticity is given as a linear function of the reference temperature. The exact expressions for the displacement components, temperature, and stress components are obtained by using normal mode analysis. Numerical results for the field quantities are given in the physical domain and illustrated graphically in the absence and presence of gravity. A comparison also is made between the three theories for the results with and without a temperature dependence.
Circulation from a joint gravity field solution determination of the general ocean
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Nerem, R. S.; Shum, C. K.; Ries, J. C.; Yuan, D. N.
1988-01-01
With the development of satellite altimetry, it is possible to infer the geostrophic velocity of the surface ocean currents, if the geoid and the position of the satellite are known accurately. Errors in current geoid models and orbit computations, both due primarily to errors in the earth's gravity field model, have limited the use of altimeter data for this purpose. The objective of this investigation is to demonstrate that altimeter data can be used in a joint solution to simultaneously estimate the quasi-stationary sea surface topography, zeta, and the model for the gravity field. Satellite tracking data from twelve satellites were used along with Seasat altimeter data for the solution. The estimated model of zeta compares well at long wavelengths with the hydrographic model of zeta. Covariance analysis indicates that the geoid is separable from zeta up to degree 9, at which point geoid error is comparable to the signal of zeta.
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Panahiyan, S.
2014-12-01
Motivated by the string corrections on the gravity and electrodynamics sides, we consider a quadratic Maxwell invariant term as a correction of the Maxwell Lagrangian to obtain exact solutions of higher dimensional topological black holes in Gauss-Bonnet gravity. We first investigate the asymptotically flat solutions and obtain conserved and thermodynamic quantities which satisfy the first law of thermodynamics. We also analyze thermodynamic stability of the solutions by calculating the heat capacity and the Hessian matrix. Then, we focus on horizon-flat solutions with an anti-de Sitter (AdS) asymptote and produce a rotating spacetime with a suitable transformation. In addition, we calculate the conserved and thermodynamic quantities for asymptotically AdS black branes which satisfy the first law of thermodynamics. Finally, we perform thermodynamic instability criterion to investigate the effects of nonlinear electrodynamics in canonical and grand canonical ensembles.
Kantowski-Sachs cosmological solutions in the generalized teleparallel gravity via Noether symmetry
NASA Astrophysics Data System (ADS)
Motavalli, H.; Akbarieh, A. Rezaei; Nasiry, M.
2016-04-01
We study the f(T) theory as an extension of teleparallel gravity and consider the Noether symmetry of Kantowski-Sachs (KS) anisotropic model for this theory. We specify the explicit teleparallel form of f(T) and find the corresponding exact cosmological solutions under the assumption that the Lagrangian admits the Noether symmetry. It is found that the universe experiences a power law expansion for the scale factors in the context of f(T) theory. By deriving equation of state (EOS) parameter, we show that the universe passes through the phantom and ΛCDM theoretical scenarios. In this way, we estimate a lower limit age for the universe in excellent agreement with the value reported from recent observations. When KS model reduces to the flat Friedmann-Robertson-Walker (FRW) metric, our results are properly transformed into the corresponding values.
NASA Astrophysics Data System (ADS)
Bondarescu, Ruxandra; Schärer, Andreas; Jetzer, Philippe; Angélil, Raymond; Saha, Prasenjit; Lundgren, Andrew
2015-05-01
The successful miniaturisation of extremely accurate atomic clocks and atom interferometers invites prospects for satellite missions to perform precision experiments. We discuss the effects predicted by general relativity and alternative theories of gravity that can be detected by a clock, which orbits the Earth. Our experiment relies on the precise tracking of the spacecraft using its observed tick-rate. The spacecraft's reconstructed four-dimensional trajectory will reveal the nature of gravitational perturbations in Earth's gravitational field, potentially differentiating between different theories of gravity. This mission can measure multiple relativistic effects all during the course of a single experiment, and constrain the Parametrized Post-Newtonian Parameters around the Earth. A satellite carrying a clock of fractional timing inaccuracy of Δ f / f ˜ 10-16 in an elliptic orbit around the Earth would constrain the PPN parameters |β - 1|, |γ - 1| ≲ 10-6. We also briefly review potential constraints by atom interferometers on scalar tensor theories and in particular on Chameleon and dilaton models.
Distorting general relativity: gravity's rainbow and f(R) theories at work
Garattini, Remo
2013-06-01
We compute the Zero Point Energy in a spherically symmetric background combining the high energy distortion of Gravity's Rainbow with the modification induced by a f(R) theory. Here f(R) is a generic analytic function of the Ricci curvature scalar R in 4D and in 3D. The explicit calculation is performed for a Schwarzschild metric. Due to the spherically symmetric property of the Schwarzschild metric we can compare the effects of the modification induced by a f(R) theory in 4D and in 3D. We find that the final effect of the combined theory is to have finite quantities that shift the Zero Point Energy. In this context we setup a Sturm-Liouville problem with the cosmological constant considered as the associated eigenvalue. The eigenvalue equation is a reformulation of the Wheeler-DeWitt equation which is analyzed by means of a variational approach based on gaussian trial functionals. With the help of a canonical decomposition, we find that the relevant contribution to one loop is given by the graviton quantum fluctuations around the given background. A final discussion on the connection of our result with the observed cosmological constant is also reported.
Greenwald, Jared; Satheeshkumar, V.H.; Wang, Anzhong E-mail: VHSatheeshkumar@baylor.edu
2010-12-01
We study spherically symmetric static spacetimes generally filled with an anisotropic fluid in the nonrelativistic general covariant theory of gravity. In particular, we find that the vacuum solutions are not unique, and can be expressed in terms of the U(1) gauge field A. When solar system tests are considered, severe constraints on A are obtained, which seemingly pick up the Schwarzschild solution uniquely. In contrast to other versions of the Horava-Lifshitz theory, non-singular static stars made of a perfect fluid without heat flow can be constructed, due to the coupling of the fluid with the gauge field. These include the solutions with a constant pressure. We also study the general junction conditions across the surface of a star. In general, the conditions allow the existence of a thin matter shell on the surface. When applying these conditions to the perfect fluid solutions with the vacuum ones as describing their external spacetimes, we find explicitly the matching conditions in terms of the parameters appearing in the solutions. Such matching is possible even without the presence of a thin matter shell.
Non-Gaussianity of a single scalar field in general covariant Hořava-Lifshitz gravity
NASA Astrophysics Data System (ADS)
Huang, Yongqing; Wang, Anzhong
2012-11-01
In this paper, we study non-Gaussianity generated by a single scalar field in slow-roll inflation in the framework of the nonrelativistic general covariant Hořava-Lifshitz theory of gravity with the projectability condition and an arbitrary coupling constant λ, where λ characterizes the deviation of the theory from general relativity (GR) in the infrared. We find that the leading effect of self-interaction, contrary to the case of the minimal scenario of GR, is in general of the order α^nɛ3/2, where ɛ is a slow-roll parameter, and α^n(n=3,5) are the dimensionless coupling coefficients of the sixth-order operators of the Lifshitz scalar and have no contributions to power spectra and indices of both scalar and tensor. The bispectrum, comparing with the standard one given in GR, is enhanced and gives rise to a large value of the nonlinearity parameter fNL. We study how the modified dispersion relation with high order moment terms affects the evaluation of the mode function and in turn the bispectrum, and we show explicitly that the mode function takes various asymptotic forms during different periods of its evolution. In particular, we find that it is in general of superpositions of oscillatory functions, instead of plane waves like in the minimal scenario of GR. This results in a large enhancement of the folded shape in the bispectrum.
NASA Astrophysics Data System (ADS)
Oriti, Daniele
2009-03-01
Preface; Part I. Fundamental Ideas and General Formalisms: 1. Unfinished revolution C. Rovelli; 2. The fundamental nature of space and time G. 't Hooft; 3. Does locality fail at intermediate length scales R. Sorkin; 4. Prolegomena to any future quantum gravity J. Stachel; 5. Spacetime symmetries in histories canonical gravity N. Savvidou; 6. Categorical geometry and the mathematical foundations of quantum gravity L. Crane; 7. Emergent relativity O. Dreyer; 8. Asymptotic safety R. Percacci; 9. New directions in background independent quantum gravity F. Markopoulou; Questions and answers; Part II: 10. Gauge/gravity duality G. Horowitz and J. Polchinski; 11. String theory, holography and quantum gravity T. Banks; 12. String field theory W. Taylor; Questions and answers; Part III: 13. Loop Quantum Gravity T. Thiemann; 14. Covariant loop quantum gravity? E. LIvine; 15. The spin foam representation of loop quantum gravity A. Perez; 16. 3-dimensional spin foam quantum gravity L. Freidel; 17. The group field theory approach to quantum gravity D. Oriti; Questions and answers; Part IV. Discrete Quantum Gravity: 18. Quantum gravity: the art of building spacetime J. Ambjørn, J. Jurkiewicz and R. Loll; 19. Quantum Regge calculations R. Williams; 20. Consistent discretizations as a road to quantum gravity R. Gambini and J. Pullin; 21. The causal set approach to quantum gravity J. Henson; Questions and answers; Part V. Effective Models and Quantum Gravity Phenomenology: 22. Quantum gravity phenomenology G. Amelino-Camelia; 23. Quantum gravity and precision tests C. Burgess; 24. Algebraic approach to quantum gravity II: non-commutative spacetime F. Girelli; 25. Doubly special relativity J. Kowalski-Glikman; 26. From quantum reference frames to deformed special relativity F. Girelli; 27. Lorentz invariance violation and its role in quantum gravity phenomenology J. Collins, A. Perez and D. Sudarsky; 28. Generic predictions of quantum theories of gravity L. Smolin; Questions and
Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory.
Burgess, Cliff P
2004-01-01
This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems, ideas which provide the theoretical foundations for the modern use of general relativity as a theory from which precise predictions are possible.
Lucero, E.F.; Sharbaugh, R.C.
1990-03-01
Motion studies of the General Purpose Heat Source Module, GPHS, were conducted in the heat pulse interval associated with entries from earth gravity assist trajectories. The APL six-degree-of-freedom reentry program designated TMAGRA6C was used. The objectives of the studies were to (1) determine the effect of ablation on GPHS motion, and (2) determine whether the GPHS module entering the earth's atmosphere from an earth-gravity-assist trajectory has a preferred orientation during the heat pulse phase of reentry. The results are given in summary form for easy visualization of the initial conditions investigated and to provide a quick-look of the resulting motion. Detail of the motion is also given for the parameters of interest for each case studied. Selected values of initial pitch rate, roll rate, and combinations of these within the range 0[degree] to 1000[degrees]/sec were investigated for initial reentry angles of -7[degrees] (shallow) and -90[degrees] (steep) and initial angles of attack of 0[degree] (broadface to the wind) and 90[degrees]. Although the studies are not exhaustive, a sufficient number of reentry conditions (initial altitude, reentry angle, angle of attack, rotational motion) have been investigated to deduce certain trends. The results also provide information on additional reentry conditions that need to be investigated. The present results show four GPHS orientations that predominate - all with some pitch oscillations and rolling motion. These are: angles of attack, [alpha][sub R] of 0[degree], 30[degrees], 90[degrees] and tumbling. It should be assumed that all these orientations are equally probable because only combinations of two initial reentry angles, [gamma][sub 0], and two values of [alpha][sub R]. have been investigated. Further the probability for any given initial rate on orientation is not known.
Barceló, Carlos; Liberati, Stefano; Visser, Matt
2011-01-01
Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity).
Carloni, Sante; Chaichian, Masud; Tureanu, Anca; Nojiri, Shin'ichi; Odintsov, Sergei D.; Oksanen, Markku
2010-09-15
We propose the most general modified first-order Horava-Lifshitz gravity, whose action does not contain time derivatives higher than the second order. The Hamiltonian structure of this theory is studied in all the details in the case of the spatially-flat Friedmann-Robertson-Walker (FRW) space-time, demonstrating many of the features of the general theory. It is shown that, with some plausible assumptions, including the projectability of the lapse function, this model is consistent. As a large class of such theories, the modified Horava-Lifshitz F(R) gravity is introduced. The study of its ultraviolet properties shows that its z=3 version seems to be renormalizable in the same way as the original Horava-Lifshitz proposal. The Hamiltonian analysis of the modified Horava-Lifshitz F(R) gravity shows that it is in general a consistent theory. The F(R) gravity action is also studied in the fixed-gauge form, where the appearance of a scalar field is particularly illustrative. Then the spatially-flat FRW cosmology for this F(R) gravity is investigated. It is shown that a special choice of parameters for this theory leads to the same equations of motion as in the case of traditional F(R) gravity. Nevertheless, the cosmological structure of the modified Horava-Lifshitz F(R) gravity turns out to be much richer than for its traditional counterpart. The emergence of multiple de Sitter solutions indicates the possibility of unification of early-time inflation with late-time acceleration within the same model. Power-law F(R) theories are also investigated in detail. It is analytically shown that they have a quite rich cosmological structure: early-/late-time cosmic acceleration of quintessence, as well as of phantom types. Also it is demonstrated that all the four known types of finite-time future singularities may occur in the power-law Horava-Lifshitz F(R) gravity. Finally, a covariant proposal for (renormalizable) F(R) gravity within the Horava-Lifshitz spirit is presented.
a Unified Gravity-Electroweak Model Based on a Generalized Yang-Mills Framework
NASA Astrophysics Data System (ADS)
Hsu, Jong-Ping
Gravitational and electroweak interactions can be unified in analogy with the unification in the Weinberg-Salam theory. The Yang-Mills framework is generalized to include spacetime translational group T(4), whose generators Tμ ( = ∂/∂xμ) do not have constant matrix representations. By gauging T(4) × SU(2) × U(1) in flat spacetime, we have a new tensor field ϕμν which universally couples to all particles and anti-particles with the same constant g, which has the dimension of length. In this unified model, the T(4) gauge symmetry dictates that all wave equations of fermions, massive bosons and the photon in flat spacetime reduce to a Hamilton-Jacobi equation with the same "effective Riemann metric tensor" in the geometric-optics limit. Consequently, the results are consistent with experiments. We demonstrated that the T(4) gravitational gauge field can be quantized in inertial frames.
NASA Technical Reports Server (NTRS)
Bukley, Angie; Paloski, William; Clement, Gilles
2006-01-01
This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.
NASA Astrophysics Data System (ADS)
Graber, James
2017-01-01
Results from ongoing efforts to measure the black hole shadows expected from Sgr A* and M87, e.g. by the Event-Horizon Telescope, could soon confirm or refute the Kerr nature of the black-hole shadow, thereby helping confirm or refute General Relativity. It is fairly easy to precisely calculate the width of the shadow of a compact, cylindrically symmetric rotating object in its equatorial plane. We have calculated these shadow widths for three different metrics: 1) the standard Kerr metric, 2) a rotating perturbed Kerr object with a quadrupole moment similar to a neutron star's, as computed by Frutos-Alfaro based on the earlier Manko et al. neutron-star metric, and 3) also for a new rotating metric based on the Yilmaz exponential metric. For reasonable (plausible) parameter values, the differences in calculated shadow widths are of the order of ten percent, which may be difficult to measure. We graphically present comparisons between the expected Kerr value for the shadow width, and the widths computed for the alternative metrics as a numerically computed function of the rotation and the quadrupole moment. If time allows, we may present similar calculations and graphs for the shadow widths of rotating compact objects from other alternative theories of gravity.
NASA Astrophysics Data System (ADS)
Ezquiaga, Jose María; García-Bellido, Juan; Zumalacárregui, Miguel
2016-07-01
We use a description based on differential forms to systematically explore the space of scalar-tensor theories of gravity. Within this formalism, we propose a basis for the scalar sector at the lowest order in derivatives of the field and in any number of dimensions. This minimal basis is used to construct a finite and closed set of Lagrangians describing general scalar-tensor theories invariant under local Lorentz transformations in a pseudo-Riemannian manifold, which contains ten physically distinct elements in four spacetime dimensions. Subsequently, we compute their corresponding equations of motion and find which combinations are at most second order in derivatives in four as well as an arbitrary number of dimensions. By studying the possible exact forms (total derivatives) and algebraic relations between the basis components, we discover that there are only four Lagrangian combinations producing second-order equations, which can be associated with Horndeski's theory. In this process, we identify a new second-order Lagrangian, named kinetic Gauss-Bonnet, that was not previously considered in the literature. However, we show that its dynamics is already contained in Horndeski's theory. Finally, we provide a full classification of the relations between different second-order theories. This allows us to clarify, for instance, the connection between different covariantizations of Galileons theory. In conclusion, our formulation affords great computational simplicity with a systematic structure. As a first step, we focus on theories with second-order equations of motion. However, this new formalism aims to facilitate advances towards unveiling the most general scalar-tensor theories.
Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C; Koenig, Rolf; Ries, John; Gurzadyan, Vahe; Matzner, Richard; Penrose, Roger; Sindoni, Giampiero; Paris, Claudio; Khachatryan, Harutyun; Mirzoyan, Sergey
We present a test of general relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure [Formula: see text], where [Formula: see text] is the Earth's dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity.
Terrestrial Gravity Fluctuations.
Harms, Jan
2015-01-01
terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.
Canonical gravity with fermions
Bojowald, Martin; Das, Rupam
2008-09-15
Canonical gravity in real Ashtekar-Barbero variables is generalized to allow for fermionic matter. The resulting torsion changes several expressions in Holst's original vacuum analysis, which are summarized here. This in turn requires adaptations to the known loop quantization of gravity coupled to fermions, which is discussed on the basis of the classical analysis. As a result, parity invariance is not manifestly realized in loop quantum gravity.
NASA Astrophysics Data System (ADS)
Shestakova, Tatyana P.
2015-01-01
Among theoretical issues in General Relativity the problem of constructing its Hamiltonian formulation is still of interest. The most of attempts to quantize Gravity are based upon Dirac generalization of Hamiltonian dynamics for system with constraints. At the same time there exists another way to formulate Hamiltonian dynamics for constrained systems guided by the idea of extended phase space. We have already considered some features of this approach in the previous MG12 Meeting by the example of a simple isotropic model. Now we apply the approach to a generalized spherically symmetric model which imitates the structure of General Relativity much better. In particular, making use of a global BRST symmetry and the Noether theorem, we construct the BRST charge that generates correct gauge transformations for all gravitational degrees of freedom.
NASA Technical Reports Server (NTRS)
Nerem, R. S.; Tapley, B. D.; Shum, C. K.; Yuan, D. N.
1989-01-01
If the geoid and the satellite position are known accurately, satellite altimetry can be used to determine the geostrophic velocity of the surface ocean currents. The purpose of this investigation is to simultaneously estimate the sea surface topography, zeta, the model for the gravity field, and the satellite orbit. Satellite tracking data from fourteen satellites were used; along with Seasat and Geosat altimeter data as well as surface gravity data for the solution. The estimated model of zeta compares well at long wavelengths with the hydrographic model of zeta. Covariance studies show that the geoid is separable from zeta up to degree 9, at which point geoid error becomes comparable to the signal of zeta.
NASA Astrophysics Data System (ADS)
Nichols, David A.; Owen, Robert; Zhang, Fan; Zimmerman, Aaron; Brink, Jeandrew; Chen, Yanbei; Kaplan, Jeffrey D.; Lovelace, Geoffrey; Matthews, Keith D.; Scheel, Mark A.; Thorne, Kip S.
2011-12-01
When one splits spacetime into space plus time, the Weyl curvature tensor (vacuum Riemann tensor) gets split into two spatial, symmetric, and trace-free tensors: (i) the Weyl tensor’s so-called electric part or tidal field Ejk, which raises tides on the Earth’s oceans and drives geodesic deviation (the relative acceleration of two freely falling test particles separated by a spatial vector ξk is Δaj=-Ejkξk), and (ii) the Weyl tensor’s so-called magnetic part or (as we call it) frame-drag field Bjk, which drives differential frame dragging (the precessional angular velocity of a gyroscope at the tip of ξk, as measured using a local inertial frame at the tail of ξk, is ΔΩj=Bjkξk). Being symmetric and trace-free, Ejk and Bjk each have three orthogonal eigenvector fields which can be depicted by their integral curves. We call the integral curves of Ejk’s eigenvectors tidal tendex lines or simply tendex lines, we call each tendex line’s eigenvalue its tendicity, and we give the name tendex to a collection of tendex lines with large tendicity. The analogous quantities for Bjk are frame-drag vortex lines or simply vortex lines, their vorticities, and their vortexes. These concepts are powerful tools for visualizing spacetime curvature. We build up physical intuition into them by applying them to a variety of weak-gravity phenomena: a spinning, gravitating point particle, two such particles side-by-side, a plane gravitational wave, a point particle with a dynamical current-quadrupole moment or dynamical mass-quadrupole moment, and a slow-motion binary system made of nonspinning point particles. We show that a rotating current quadrupole has four rotating vortexes that sweep outward and backward like water streams from a rotating sprinkler. As they sweep, the vortexes acquire accompanying tendexes and thereby become outgoing current-quadrupole gravitational waves. We show similarly that a rotating mass quadrupole has four rotating, outward
NASA Astrophysics Data System (ADS)
Alexander, Simon; Tsuda, Toshitaka; Kawatani, Yoshio; Takahashi, Masaaki; Klekociuk, Andrew
Data collected with the COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) GPS-RO satellites from September 2006 onward are used to study the stratospheric wave - mean flow interactions and characterise large scale waves in the tropics, Northern Hemisphere mid-latitudes and Antarctica, which are then compared with a T106L60 AGCM. Results to date will be discussed, especially in the context of the new insights into stratospheric dynamics provided by the high resolution COSMIC data. The spatial and temporal structure of tropical waves up to s=9 are resolvable with COSMIC on a time scale of one day. The waves' coupling with deep convective activity and subsequent stratospheric eastward / westward propagation are observed. Interactions with and filtering by the background QBO winds are clearly apparent. The potential energy of the stratospheric equatorial region will also be discussed. These reveal that large energy due to high phase speed waves encountering their critical levels occur directly above deep convection, with critical filtering of other wave components at lower altitudes. Equatorially symmetric structures are often observed in the potential energy. An analysis of the Northern Hemisphere winter UTLS region shows that most of the gravity wave potential energy observable by COSMIC is related to the sub-tropical jet and not orographic waves. The AGCM confirms that the potential energy observed by COSMIC is due to waves propagating upward from the jet core, mainly with ground based phase speeds of less than 10m/s. Results from the Antarctic stratospheric polar night jet will also be presented, which show large potential energy associated with strong wind speeds, which rotate around the continent in concert with the jet's rotation. The variability of the COSMIC gravity wave activity during the spring-time vortex breakdown will be discussed in relation to the Eliassen-Palm flux obtained from AGCM results.
Haro, Jaume; Amorós, Jaume E-mail: jaume.amoros@upc.edu
2014-12-01
We consider the matter bounce scenario in F(T) gravity and Loop Quantum Cosmology (LQC) for phenomenological potentials that at early times provide a nearly matter dominated Universe in the contracting phase, having a reheating mechanism in the expanding or contracting phase, i.e., being able to release the energy of the scalar field creating particles that thermalize in order to match with the hot Friedmann Universe, and finally at late times leading to the current cosmic acceleration. For these potentials, numerically solving the dynamical perturbation equations we have seen that, for the particular F(T) model that we will name teleparallel version of LQC, and whose modified Friedmann equation coincides with the corresponding one in holonomy corrected LQC when one deals with the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry, the corresponding equations obtained from the well-know perturbed equations in F(T) gravity lead to theoretical results that fit well with current observational data. More precisely, in this teleparallel version of LQC there is a set of solutions which leads to theoretical results that match correctly with last BICEP2 data, and there is another set whose theoretical results fit well with Planck's experimental data. On the other hand, in the standard holonomy corrected LQC, using the perturbed equations obtained replacing the Ashtekar connection by a suitable sinus function and inserting some counter-terms in order to preserve the algebra of constrains, the theoretical value of the tensor/scalar ratio is smaller than in the teleparallel version, which means that there is always a set of solutions that matches with Planck's data, but for some potentials BICEP2 experimental results disfavours holonomy corrected LQC.
Krawczynski, Henric
2012-08-01
Although general relativity (GR) has been tested extensively in the weak-gravity regime, similar tests in the strong-gravity regime are still missing. In this paper, we explore the possibility to use X-ray spectropolarimetric observations of black holes in X-ray binaries to distinguish between the Kerr metric and the phenomenological metrics introduced by Johannsen and Psaltis (which are not vacuum solutions of Einstein's equation) and thus to test the no-hair theorem of GR. To this end, we have developed a numerical code that calculates the radial brightness profiles of accretion disks and parallel transports the wave vector and polarization vector of photons through the Kerr and non-GR spacetimes. We used the code to predict the observational appearance of GR and non-GR accreting black hole systems. We find that the predicted energy spectra and energy-dependent polarization degree and polarization direction do depend strongly on the underlying spacetime. However, for large regions of the parameter space, the GR and non-GR metrics lead to very similar observational signatures, making it difficult to observationally distinguish between the two types of models.
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo
2017-02-01
Recently, Ciufolini et al. reported on a test of the general relativistic gravitomagnetic Lense-Thirring effect by analyzing about 3.5 years of laser ranging data to the LAGEOS, LAGEOS II, LARES geodetic satellites orbiting the Earth. By using the GRACE-based GGM05S Earth's global gravity model and a linear combination of the nodes Ω of the three satellites designed to remove the impact of errors in the first two even zonal harmonic coefficients J_2, J_4 of the multipolar expansion of the Newtonian part of the Earth's gravitational potential, they claimed an overall accuracy of {5}% for the Lense-Thirring caused node motion. We show that the scatter in the nominal values of the uncancelled even zonals of degree ℓ = 6, 8, {10} from some of the most recent global gravity models does not yet allow to reach unambiguously and univocally the expected {≈ }1% level, being large up to ≲15% (ℓ =6), 6% (ℓ =8), 36% (ℓ =10) for some pairs of models.
Einstein gravity, massive gravity, multi-gravity and nonlinear realizations
NASA Astrophysics Data System (ADS)
Goon, Garrett; Hinterbichler, Kurt; Joyce, Austin; Trodden, Mark
2015-07-01
The existence of a ghost free theory of massive gravity begs for an interpre-tation as a Higgs phase of General Relativity. We revisit the study of massive gravity as a Higgs phase. Absent a compelling microphysical model of spontaneous symmetry breaking in gravity, we approach this problem from the viewpoint of nonlinear realizations. We employ the coset construction to search for the most restrictive symmetry breaking pattern whose low energy theory will both admit the de Rham-Gabadadze-Tolley (dRGT) potentials and nonlinearly realize every symmetry of General Relativity, thereby providing a new perspective from which to build theories of massive gravity. In addition to the known ghost-free terms, we find a novel parity violating interaction which preserves the constraint structure of the theory, but which vanishes on the normal branch of the theory. Finally, the procedure is extended to the cases of bi-gravity and multi-vielbein theories. Analogous parity violating interactions exist here, too, and may be non-trivial for certain classes of multi-metric theories.
Atmospheric Science Data Center
2013-04-19
article title: Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...
Lovelock gravities from Born-Infeld gravity theory
NASA Astrophysics Data System (ADS)
Concha, P. K.; Merino, N.; Rodríguez, E. K.
2017-02-01
We present a Born-Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.
The general Taub-NUT-De Sitter metric as a self-dual Yang-Mills solution of gravity
NASA Astrophysics Data System (ADS)
Boutaleb-Joutei, H.
1980-02-01
We show in a simple and systematical way the self-duality constraints of certain SU(2) gauge fields can be used to rediscover the Einstein metrics. Starting with a metric tensor with two unknown functions, the self-duality constraints of the SU(2) gauge field obtained from the spin connections are studied. The general Taub-NUT-De Sitter metric is found to emerge quite simply as a solution, though the riemannian tensor of the metric itself is not self-dual in the general case. Different interesting limiting cases, such as the Eguchi-Hanson metric, are also obtained directly from the constraint equations. On leave of absence from Laboratoire de Physique Théorique de la Faculté des Sciences de Rabat, Morocco.
NASA Technical Reports Server (NTRS)
Reasenberg, Robert D.
1993-01-01
The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter (PVO) by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter was evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.
NASA Astrophysics Data System (ADS)
Huang, Yongqing; Wang, Anzhong
2011-05-01
In this paper, we investigate three important issues: stability, ghost, and strong coupling, in the Horava-Melby-Thompson setup of the Horava-Lifshitz theory with λ≠1, generalized recently by da Silva. We first develop the general linear scalar perturbations of the Friedmann-Robertson-Walker (FRW) universe with arbitrary spatial curvature and find that an immediate by-product of the setup is that, in all the inflationary models described by a scalar field, the FRW universe is necessarily flat. Applying them to the case of the Minkowski background, we find that it is stable, and, similar to the case λ=1, the spin-0 graviton is eliminated. The vector perturbations vanish identically in the Minkowski background. Thus, similar to general relativity, a free gravitational field in this setup is completely described by a spin-2 massless graviton, even with λ≠1. We also study the ghost problem in the FRW background and find explicitly the ghost-free conditions. To study the strong coupling problem, we consider two different kinds of spacetimes, all with the presence of matter: one is cosmological, and the other is static. We find that the coupling becomes strong for a process with energy higher than Mpl|cψ|5/2 in the flat FRW background and Mpl|cψ|3 in a static weak gravitational field, where |cψ|≡|(1-λ)/(3λ-1)|1/2.
NASA Astrophysics Data System (ADS)
England, S. L.; Dobbin, A.; Harris, M. J.; Arnold, N. F.; Aylward, A. D.
2006-02-01
Momentum deposition by gravity wave breaking is known to affect the amplitude and phase of the diurnal tide. Modelling studies of this interaction have produced some conflicting results and as yet, the exact nature of this interaction is not fully understood. In this study, the effects of parameterised gravity wave momentum deposition on the diurnal tide and subsequently on green line airglow from atomic oxygen during equinox are investigated using the Coupled Middle Atmosphere and Thermosphere (CMAT) general circulation model. The effects of gravity wave drag calculated by two different parameterisations, Meyer [1999. Gravity wave interactions with the diurnal propagating tide. Journal of Geophysical Research 104, 4223 4239] and Medvedev and Klaassen [2000. Parameterisation of gravity wave momentum deposition based on non-linear wave interactions: basic formulation and sensitivity tests. Journal of Atmospheric and Terrestrial Physics 62, 1015 1033], are compared in the low latitude MLT region between 70 and 120 km, where the amplitude of the diurnal tide and green line volume emission rates maximise. Results indicate that momentum sources from both gravity wave parameterisations act to reduce the mid-latitude zonal jets and advance the phase of the diurnal tide, such that the peak amplitude at a given height occurs at an earlier time of day. Gravity wave momentum deposition as parameterised by Meyer [1999. Gravity wave interactions with the diurnal propagating tide. Journal of Geophysical Research 104, 4223 4239] results in a reduction of the amplitude of the diurnal tide in the MLT region, whereas the tidal amplitude is increased when the Medvedev and Klaassen [2000. Parameterisation of gravity wave momentum deposition based on non-linear wave interactions: basic formulation and sensitivity tests. Journal of Atmospheric and Terrestrial Physics 62, 1015 1033] parameterisation is used. Both parameterisations affect the local time variability of the simulated
Sujata Relativity: Complete Relativity from Gravity to Quantum-Gravity
NASA Astrophysics Data System (ADS)
Sinha, Nilotpal
2009-01-01
Here, we describe gravity as a universal deformation of Minkowski metric depending on a "double-fold" complex number for fourth coordinate within a (3 + 1)D-space. A unification of Special Relativity and General Relativity, induced by Lorentz transformation, gives a Quantum-Gravity Wave Equation, much like as Wheeler-DeWitt equation, without considering Canonical or, Covariant Quantum Relativity. A complete and well-grown ("Sujata") Quantum-Gravity picture satisfies the Quantum Gravitational Field Equation.
Geometric scalar theory of gravity
Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D.; Moschella, U. E-mail: eduhsb@cbpf.br E-mail: egoulart@cbpf.br E-mail: toniato@cbpf.br
2013-06-01
We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.
Healey, D.L.
1983-12-31
A large density contrast exists between the Paleozoic rocks (including the rocks of Climax stock) and less dense, Tertiary volcanic rocks and alluvium. This density contrast ranges widely, and herein for interpretive purposes, is assumed to average 0.85 Mg/m{sup 3} (megagrams per cubic meter). The large density contrast makes the gravity method a useful tool with which to study the interface between these rock types. However, little or no density contrast is discernible between the sedimentary Paleozoic rocks that surround the Climax stock and the intrusive rocks of the stock itself. Therefore the gravity method can not be used to define the configuration of the stock. Gravity highs coincide with outcrops of the dense Paleozoic rocks, and gravity lows overlie less-dense Tertiary volcanic rocks and Quaternary alluvium. The positions of three major faults (Boundary, Yucca, and Butte faults) are defined by steep gravity gradients. West of the Climax stock, the Tippinip fault has juxtaposed Paleozoic rocks of similar density, and consequently, has no expression in the gravity data in that area. The gravity station spacing, across Oak Spring Butte, is not sufficient to adequately define any gravity expression of the Tippinip fault. 18 refs., 5 figs.
Conformal tensors via Lovelock gravity
NASA Astrophysics Data System (ADS)
Kastor, David
2013-10-01
Constructs from conformal geometry are important in low dimensional gravity models, while in higher dimensions the higher curvature interactions of Lovelock gravity are similarly prominent. Considering conformal invariance in the context of Lovelock gravity leads to natural, higher curvature generalizations of the Weyl, Schouten, Cotton and Bach tensors, with properties that straightforwardly extend those of their familiar counterparts. As a first application, we introduce a new set of conformally invariant gravity theories in D = 4k dimensions, based on the squares of the higher curvature Weyl tensors.
Lujan, Richard E.
2001-01-01
A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.
Banerjee, Rabin; Majhi, Bibhas Ranjan
2010-06-15
Starting from the definition of entropy used in statistical mechanics we show that it is proportional to the gravity action. For a stationary black hole this entropy is expressed as S=E/2T, where T is the Hawking temperature and E is shown to be the Komar energy. This relation is also compatible with the generalized Smarr formula for mass.
NASA Technical Reports Server (NTRS)
Fritts, David
1987-01-01
Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.
NASA Astrophysics Data System (ADS)
Song, Y. Tony; Colberg, Frank
2011-02-01
Observational surveys have shown significant oceanic bottom water warming, but they are too spatially and temporally sporadic to quantify the deep ocean contribution to the present-day sea level rise (SLR). In this study, altimetry sea surface height (SSH), Gravity Recovery and Climate Experiment (GRACE) ocean mass, and in situ upper ocean (0-700 m) steric height have been assessed for their seasonal variability and trend maps. It is shown that neither the global mean nor the regional trends of altimetry SLR can be explained by the upper ocean steric height plus the GRACE ocean mass. A non-Boussinesq ocean general circulation model (OGCM), allowing the sea level to rise as a direct response to the heat added into the ocean, is then used to diagnose the deep ocean steric height. Constrained by sea surface temperature data and the top of atmosphere (TOA) radiation measurements, the model reproduces the observed upper ocean heat content well. Combining the modeled deep ocean steric height with observational upper ocean data gives the full depth steric height. Adding a GRACE-estimated mass trend, the data-model combination explains not only the altimetry global mean SLR but also its regional trends fairly well. The deep ocean warming is mostly prevalent in the Atlantic and Indian oceans, and along the Antarctic Circumpolar Current, suggesting a strong relation to the oceanic circulation and dynamics. Its comparison with available bottom water measurements shows reasonably good agreement, indicating that deep ocean warming below 700 m might have contributed 1.1 mm/yr to the global mean SLR or one-third of the altimeter-observed rate of 3.11 ± 0.6 mm/yr over 1993-2008.
NASA Astrophysics Data System (ADS)
Kuroda, Takeshi; Medvedev, Alexander; Yiğit, Erdal; Hartogh, Paul
2016-10-01
Gravity waves (GWs) are small-scale atmospheric waves generated by various geophysical processes, such as topography, convection, and dynamical instability. On Mars, several observations and simulations have revealed that GWs strongly affect temperature and wind fields in the middle and upper atmosphere. We have worked with a high-resolution Martian general circulation model (MGCM), with the spectral resolution of T106 (horizontal grid interval of ~67 km), for the investigations of generation and propagation of GWs. We analyzed for three kinds of wavelength ranges, (1) horizontal total wavenumber s=21-30 (wavelength λ~700-1000 km), (2) s=31-60 (λ~350-700 km), and (3) s=61-106 (λ~200-350 km). Our results show that shorter-scale harmonics progressively dominate with height during both equinox and solstice. We have detected two main sources of GWs: mountainous regions and the meandering winter polar jet. In both seasons GW energy in the troposphere due to the shorter-scale harmonics is concentrated in the low latitudes in a good agreement with observations. Orographically-generated GWs contribute significantly to the total energy of disturbances, and strongly decay with height. Thus, the non-orographic GWs of tropospheric origin dominate near the mesopause. The vertical fluxes of wave horizontal momentum are directed mainly against the larger-scale wind. Mean magnitudes of the drag in the middle atmosphere are tens of m s-1 sol-1, while instantaneously they can reach thousands of m s-1 sol-1, which results in an attenuation of the wind jets in the middle atmosphere and in tendency of their reversal.
NASA Astrophysics Data System (ADS)
Bittencourt, E.; Moschella, U.; Novello, M.; Toniato, J. D.
2016-06-01
We discuss a class of models for gravity based on a scalar field. The models include and generalize the old approach by Nordström which predated and, in some ways, inspired general relativity. The class include also a model that we have recently introduced and discussed in terms of its cosmological aspects (GSG). We present here a complete characterization of the Schwarschild geometry as a vacuum solution of GSG and sketch a discussion of the first post-Newtonian approximation.
Bao Ruoyu; Park, Minjoon; Carena, Marcela; Santiago, Jose; Lykken, Joseph
2006-03-15
Gravity in five-dimensional braneworld backgrounds often exhibits problematic features, including kinetic ghosts, strong coupling, and the van Dam-Veltman-Zakharov (vDVZ) discontinuity. These problems are an obstacle to producing and analyzing braneworld models with interesting and potentially observable modifications of 4d gravity. We examine these problems in a general AdS{sub 5}/AdS{sub 4} setup with two branes and localized curvature from arbitrary brane kinetic terms. We use the interval approach and an explicit straight gauge-fixing. We compute the complete quadratic gauge-fixed effective 4d action, as well as the leading cubic order corrections. We compute the exact Green's function for gravity as seen on the brane. In the full parameter space, we exhibit the regions which avoid kinetic ghosts and tachyons. We give a general formula for the strong coupling scale, i.e., the energy scale at which the linearized treatment of gravity breaks down, for relevant regions of the parameter space. We show how the vDVZ discontinuity can be naturally but nontrivially avoided by ultralight graviton modes. We present a direct comparison of warping versus localized curvature in terms of their effects on graviton mode couplings. We exhibit the first example of Dvali-Gabadadze-Porrati (DGP)-like crossover behavior in a general warped setup.
Bao, Ruoyu; Carena, Marcela; Lykken, Joseph; Park, Minjoon; Santiago, Jose; /Fermilab
2005-11-01
Gravity in five-dimensional braneworld backgrounds often exhibits problematic features, including kinetic ghosts, strong coupling, and the vDVZ discontinuity. These problems are an obstacle to producing and analyzing braneworld models with interesting and potentially observable modifications of 4d gravity. We examine these problems in a general AdS{sub 5}/AdS{sub 4} setup with two branes and localized curvature from arbitrary brane kinetic terms. We use the interval approach and an explicit ''straight'' gauge-fixing. We compute the complete quadratic gauge-fixed effective 4d action, as well as the leading cubic order corrections. We compute the exact Green's function for gravity as seen on the brane. In the full parameter space, we exhibit the regions which avoid kinetic ghosts and tachyons. We give a general formula for the strong coupling scale, i.e. the energy scale at which the linearized treatment of gravity breaks down, for relevant regions of the parameter space. We show how the vDVZ discontinuity can be naturally but nontrivially avoided by ultralight graviton modes. We present a direct comparison of warping versus localized curvature in terms of their effects on graviton mode couplings. We exhibit the first example of DGP-like crossover behavior in a general warped setup.
Jain, Bhuvnesh; Khoury, Justin
2010-07-15
Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the universe. We review recent developments in modified gravity theories, focusing on higher-dimensional approaches and chameleon/f(R) theories. We classify these models in terms of the screening mechanisms that enable such theories to approach general relativity on small scales (and thus satisfy solar system constraints). We describe general features of the modified Friedman equation in such theories. The second half of this review describes experimental tests of gravity in light of the new theoretical approaches. We summarize the high precision tests of gravity on laboratory and solar system scales. We describe in some detail tests on astrophysical scales ranging from {approx} kpc (galaxy scales) to {approx} Gpc (large-scale structure). These tests rely on the growth and inter-relationship of perturbations in the metric potentials, density and velocity fields which can be measured using gravitational lensing, galaxy cluster abundances, galaxy clustering and the integrated Sachs-Wolfe effect. A robust way to interpret observations is by constraining effective parameters, such as the ratio of the two metric potentials. Currently tests of gravity on astrophysical scales are in the early stages - we summarize these tests and discuss the interesting prospects for new tests in the coming decade.
Cosmology in Weyl transverse gravity
NASA Astrophysics Data System (ADS)
Oda, Ichiro
2016-11-01
We study the Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology in the Weyl-transverse (WTDiff) gravity in a general spacetime dimension. The WTDiff gravity is invariant under both the local Weyl (conformal) transformation and the volume preserving diffeormorphisms (transverse diffeomorphisms) and is believed to be equivalent to general relativity at least at the classical level (perhaps, even in the quantum regime). It is explicitly shown by solving the equations of motion that the FLRW metric is a classical solution in the WTDiff gravity only when the spatial metric is flat, that is, the Euclidean space, and the lapse function is a nontrivial function of the scale factor.
Cosmological tests of modified gravity
NASA Astrophysics Data System (ADS)
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein’s theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard Λ CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
Cosmological tests of modified gravity.
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
NASA Astrophysics Data System (ADS)
Hohm, Olaf; Samtleben, Henning
2013-09-01
We extend the techniques of double field theory to more general gravity theories and U-duality symmetries, having in mind applications to the complete D = 11 supergravity. In this paper we work out a (3 + 3)-dimensional `U-duality covariantization' of D = 4 Einstein gravity, in which the Ehlers group SL(2, ) is realized geometrically, acting in the 3 representation on half of the coordinates. We include the full (2 + 1)-dimensional metric, while the `internal vielbein' is a coset representative of SL(2, )/SO(2) and transforms under gauge transformations via generalized Lie derivatives. In addition, we introduce a gauge connection of the `C-bracket', and a gauge connection of SL(2, ), albeit subject to constraints. The action takes the form of (2 + 1)-dimensional gravity coupled to a Chern-Simons-matter theory but encodes the complete D = 4 Einstein gravity. We comment on generalizations, such as an ` E 8(8) covariantization' of M-theory.
14 CFR 27.27 - Center of gravity limits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must...
14 CFR 27.27 - Center of gravity limits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must...
14 CFR 27.27 - Center of gravity limits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must...
14 CFR 27.27 - Center of gravity limits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must...
14 CFR 27.27 - Center of gravity limits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must...
ERIC Educational Resources Information Center
Pipinos, Savas
2010-01-01
This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…
Davis, Hyman R.; Long, R. H.; Simone, A. A.
1979-01-01
Solids are separated from a liquid in a gravity settler provided with inclined solid intercepting surfaces to intercept the solid settling path to coalesce the solids and increase the settling rate. The intercepting surfaces are inverted V-shaped plates, each formed from first and second downwardly inclined upwardly curved intersecting conical sections having their apices at the vessel wall.
Quantum Corrections to Entropic Gravity
NASA Astrophysics Data System (ADS)
Chen, Pisin; Wang, Chiao-Hsuan
2013-01-01
The entropic gravity scenario recently proposed by Erik Verlinde reproduced Newton's law of purely classical gravity yet the key assumptions of this approach all have quantum mechanical origins. As is typical for emergent phenomena in physics, the underlying, more fundamental physics often reveals itself as corrections to the leading classical behavior. So one naturally wonders: where is ℏ hiding in entropic gravity? To address this question, we first revisit the idea of holographic screen as well as entropy and its variation law in order to obtain a self-consistent approach to the problem. Next we argue that since the concept of minimal length has been invoked in the Bekenstein entropic derivation, the generalized uncertainty principle (GUP), which is a direct consequence of the minimal length, should be taken into consideration in the entropic interpretation of gravity. Indeed based on GUP it has been demonstrated that the black hole Bekenstein entropy area law must be modified not only in the strong but also in the weak gravity regime where in the weak gravity limit the GUP modified entropy exhibits a logarithmic correction. When applying it to the entropic interpretation, we demonstrate that the resulting gravity force law does include sub-leading order correction terms that depend on ℏ. Such deviation from the classical Newton's law may serve as a probe to the validity of entropic gravity.
Quantum Corrections to Entropic Gravity
NASA Astrophysics Data System (ADS)
Chen, Pisin; Wang, Chiao-Hsuan
2013-12-01
The entropic gravity scenario recently proposed by Erik Verlinde reproduced Newton's law of purely classical gravity yet the key assumptions of this approach all have quantum mechanical origins. As is typical for emergent phenomena in physics, the underlying, more fundamental physics often reveals itself as corrections to the leading classical behavior. So one naturally wonders: where is ħ hiding in entropic gravity? To address this question, we first revisit the idea of holographic screen as well as entropy and its variation law in order to obtain a self-consistent approach to the problem. Next we argue that as the concept of minimal length has been invoked in the Bekenstein entropic derivation, the generalized uncertainty principle (GUP), which is a direct consequence of the minimal length, should be taken into consideration in the entropic interpretation of gravity. Indeed based on GUP it has been demonstrated that the black hole Bekenstein entropy area law must be modified not only in the strong but also in the weak gravity regime where in the weak gravity limit the GUP modified entropy exhibits a logarithmic correction. When applying it to the entropic interpretation, we demonstrate that the resulting gravity force law does include sub-leading order correction terms that depend on ħ. Such deviation from the classical Newton's law may serve as a probe to the validity of entropic gravity.
AdS Chern-Simons gravity induces conformal gravity
NASA Astrophysics Data System (ADS)
Aros, Rodrigo; Díaz, Danilo E.
2014-04-01
The leitmotif of this paper is the question of whether four- and higher even-dimensional conformal gravities do have a Chern-Simons pedigree. We show that Weyl gravity can be obtained as the dimensional reduction of a five-dimensional Chern-Simons action for a suitable (gauge-fixed, tractorlike) five-dimensional anti-de Sitter connection. The gauge-fixing and dimensional reduction program readily admits a generalization to higher dimensions for the case of certain conformal gravities obtained by contractions of the Weyl tensor.
Alternative theories of gravity and Lorentz violation
NASA Astrophysics Data System (ADS)
Xu, Rui; Foster, Joshua; Kostelecky, V. Alan
2017-01-01
General relativity has achieved many successes, including the prediction of experimental results. However, its incompatibility with quantum theory remains an obstacle. By extending the foundational properties of general relativity, alternative theories of gravity can be constructed. In this talk, we focus on fermion couplings in the weak-gravity limit of certain alternative theories of gravity. Under suitable experimental circumstances, some of these couplings match terms appearing in the gravitational SME, which is a general framework describing violations of local Lorentz invariance. Existing limits on Lorentz violation can therefore be used to constrain certain Lorentz-invariant alternative theories of gravity.
Schwarzschild solution from Weyl transverse gravity
NASA Astrophysics Data System (ADS)
Oda, Ichiro
2017-01-01
We study classical solutions in the Weyl-transverse (WTDiff) gravity. The WTDiff gravity is invariant under both the local Weyl (conformal) transformation and the volume preserving diffeomorphisms (Diff) (transverse diffeomorphisms (TDiff)) and is known to be equivalent to general relativity at least at the classical level. In particular, we find that in a general spacetime dimension, the Schwarzschild metric is a classical solution in the WTDiff gravity when it is expressed in the Cartesian coordinate system.
Fake conformal symmetry in unimodular gravity
NASA Astrophysics Data System (ADS)
Oda, Ichiro
2016-08-01
We study Weyl symmetry (local conformal symmetry) in unimodular gravity. It is shown that the Noether currents for both Weyl symmetry and global scale symmetry vanish exactly as in conformally invariant scalar-tensor gravity. We clearly explain why in the class of conformally invariant gravitational theories, the Noether currents vanish by starting with conformally invariant scalar-tensor gravity. Moreover, we comment on both classical and quantum-mechanical equivalences in Einstein's general relativity, conformally invariant scalar-tensor gravity, and the Weyl-transverse gravity. Finally, we discuss the Weyl current in the conformally invariant scalar action and see that it is also vanishing.
Natural inflation and quantum gravity.
de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman
2015-04-17
Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models.
Cosmological perturbations in unimodular gravity
Gao, Caixia; Brandenberger, Robert H.; Cai, Yifu; Chen, Pisin E-mail: rhb@hep.physics.mcgill.ca E-mail: chen@slac.stanford.edu
2014-09-01
We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metric perturbations. Although the main equation of motion for the gravitational potential remains the same, the shift variable, which is gauge artifact in General Relativity, cannot be set to zero in unimodular gravity. This non-vanishing shift variable affects the propagation of photons throughout the cosmological evolution and therefore modifies the Sachs-Wolfe relation between the relativistic gravitational potential and the microwave temperature anisotropies. However, for adiabatic fluctuations the difference between the result in General Relativity and unimodular gravity is suppressed on large angular scales. Thus, no strong constraints on the theory can be derived.
NASA Astrophysics Data System (ADS)
Dereli, T.; Yetişmişoğlu, C.
2016-06-01
We derive the field equations for topologically massive gravity coupled with the most general quadratic curvature terms using the language of exterior differential forms and a first-order constrained variational principle. We find variational field equations both in the presence and absence of torsion. We then show that spaces of constant negative curvature (i.e. the anti de-Sitter space AdS 3) and constant torsion provide exact solutions.
NASA Astrophysics Data System (ADS)
Ross, D. K.; Moreau, William
1995-08-01
We investigate stochastic gravity as a potentially fruitful avenue for studying quantum effects in gravity. Following the approach of stochastic electrodynamics ( sed), as a representation of the quantum gravity vacuum we construct a classical state of isotropic random gravitational radiation, expressed as a spin-2 field,h µυ (x), composed of plane waves of random phase on a flat spacetime manifold. Requiring Lorentz invariance leads to the result that the spectral composition function of the gravitational radiation,h(ω), must be proportional to 1/ω 2. The proportionality constant is determined by the Planck condition that the energy density consist ofħω/2 per normal mode, and this condition sets the amplitude scale of the random gravitational radiation at the order of the Planck length, giving a spectral composition functionh(ω) =√16πc 2Lp/ω2. As an application of stochastic gravity, we investigate the Davies-Unruh effect. We calculate the two-point correlation function (R iojo(Oτ-δτ/2)R kolo(O,τ+δτ/2)) of the measureable geodesic deviation tensor field,R iojo, for two situations: (i) at a point detector uniformly accelerating through the random gravitational radiation, and (ii) at an inertial detector in a heat bath of the random radiation at a finite temperature. We find that the two correlation functions agree to first order inaδτ/c provided that the temperature and acceleration satisfy the relationkT=ħa/2πc.
Cutoff for extensions of massive gravity and bi-gravity
NASA Astrophysics Data System (ADS)
Matas, Andrew
2016-04-01
Recently there has been interest in extending ghost-free massive gravity, bi-gravity, and multi-gravity by including non-standard kinetic terms and matter couplings. We first review recent proposals for this class of extensions, emphasizing how modifications of the kinetic and potential structure of the graviton and modifications of the coupling to matter are related. We then generalize existing no-go arguments in the metric language to the vielbein language in second-order form. We give an ADM argument to show that the most promising extensions to the kinetic term and matter coupling contain a Boulware-Deser ghost. However, as recently emphasized, we may still be able to view these extensions as effective field theories below some cutoff scale. To address this possibility, we show that there is a decoupling limit where a ghost appears for a wide class of matter couplings and kinetic terms. In particular, we show that there is a decoupling limit where the linear effective vielbein matter coupling contains a ghost. Using the insight we gain from this decoupling limit analysis, we place an upper bound on the cutoff for the linear effective vielbein coupling. This result can be generalized to new kinetic interactions in the vielbein language in second-order form. Combined with recent results, this provides a strong uniqueness argument on the form of ghost-free massive gravity, bi-gravity, and multi-gravity.
Model selection for modified gravity.
Kitching, T D; Simpson, F; Heavens, A F; Taylor, A N
2011-12-28
In this article, we review model selection predictions for modified gravity scenarios as an explanation for the observed acceleration of the expansion history of the Universe. We present analytical procedures for calculating expected Bayesian evidence values in two cases: (i) that modified gravity is a simple parametrized extension of general relativity (GR; two nested models), such that a Bayes' factor can be calculated, and (ii) that we have a class of non-nested models where a rank-ordering of evidence values is required. We show that, in the case of a minimal modified gravity parametrization, we can expect large area photometric and spectroscopic surveys, using three-dimensional cosmic shear and baryonic acoustic oscillations, to 'decisively' distinguish modified gravity models over GR (or vice versa), with odds of ≫1:100. It is apparent that the potential discovery space for modified gravity models is large, even in a simple extension to gravity models, where Newton's constant G is allowed to vary as a function of time and length scale. On the time and length scales where dark energy dominates, it is only through large-scale cosmological experiments that we can hope to understand the nature of gravity.
NASA Astrophysics Data System (ADS)
Durka, R.
2017-04-01
The S-expansion framework is analyzed in the context of a freedom in closing the multiplication tables for the abelian semigroups. Including the possibility of the zero element in the resonant decomposition, and associating the Lorentz generator with the semigroup identity element, leads to a wide class of the expanded Lie algebras introducing interesting modifications to the gauge gravity theories. Among the results, we find all the Maxwell algebras of type {{B}m} , {{C}m} , and the recently introduced {{D}m} . The additional new examples complete the resulting generalization of the bosonic enlargements for an arbitrary number of the Lorentz-like and translational-like generators. Some further prospects concerning enlarging the algebras are discussed, along with providing all the necessary constituents for constructing the gravity actions based on the obtained results.
Positive signs in massive gravity
Cheung, Clifford; Remmen, Grant N.
2016-04-01
Here, we derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. Furthermore, the high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small island in the parameter space of ghost-free massive gravity. And while the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.
Positive signs in massive gravity
Cheung, Clifford; Remmen, Grant N.
2016-04-01
Here, we derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. Furthermore, the high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small islandmore » in the parameter space of ghost-free massive gravity. And while the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.« less
Positive signs in massive gravity
NASA Astrophysics Data System (ADS)
Cheung, Clifford; Remmen, Grant N.
2016-04-01
We derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. The high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small island in the parameter space of ghost-free massive gravity. While the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.
Rovelli, Carlo
2008-01-01
The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Static solutions for fourth order gravity
Nelson, William
2010-11-15
The Lichnerowicz and Israel theorems are extended to higher order theories of gravity. In particular it is shown that Schwarzschild is the unique spherically symmetric, static, asymptotically flat, black-hole solution, provided the spatial curvature is less than the quantum gravity scale outside the horizon. It is then shown that in the presence of matter (satisfying certain positivity requirements), the only static and asymptotically flat solutions of general relativity that are also solutions of higher order gravity are the vacuum solutions.
NASA Astrophysics Data System (ADS)
Dubovsky, Sergei L.
2004-10-01
We systematically study the most general Lorentz-violating graviton mass invariant under three-dimensional Eucledian group. We find that at general values of mass parameters the massive graviton has six propagating degrees of freedom, and some of them are ghosts or lead to rapid classical instabilities. However, there is a number of different regions in the mass parameter space where massive gravity is described by a consistent low-energy effective theory with cutoff ~ (mMPl)1/2. This theory is free of rapid instabilities and vDVZ discontinuity. Each of these regions is characterized by certain fine-tuning relations between mass parameters, generalizing the Fierz Pauli condition. In some cases the required fine-tunings are consequences of the existence of the subgroups of the diffeomorphism group that are left unbroken by the graviton mass. We found two new cases, when the resulting theories have a property of UV insensitivity, i.e. remain well behaved after inclusion of arbitrary higher dimension operators without assuming any fine-tunings among the coefficients of these operators, besides those enforced by the symmetries. These theories can be thought of as generalizations of the ghost condensate model with a smaller residual symmetry group. We briefly discuss what kind of cosmology can one expect in massive gravity and argue that the allowed values of the graviton mass may be quite large, affecting growth of primordial perturbations, structure formation and, perhaps, enhancing the backreaction of inhomogeneities on the expansion rate of the Universe.
NASA Astrophysics Data System (ADS)
Lombard, John
2017-01-01
We introduce the construction of a new framework for probing discrete emergent geometry and boundary-boundary observables based on a fundamentally a-dimensional underlying network structure. Using a gravitationally motivated action with Forman weighted combinatorial curvatures and simplicial volumes relying on a decomposition of an abstract simplicial complex into realized embeddings of proper skeletons, we demonstrate properties such as a minimal volume-scale cutoff, the necessity of a term playing the role of a positive definite cosmological constant as a regulator for nondegenerate geometries, and naturally emergent simplicial structures from Metropolis network evolution simulations with no restrictions on attachment rules or regular building blocks. We see emergent properties which echo results from both the spinfoam formalism and causal dynamical triangulations in quantum gravity, and provide analytical and numerical results to support the analogy. We conclude with a summary of open questions and intent for future work in developing the program.
Variable gravity research facility
NASA Technical Reports Server (NTRS)
1987-01-01
Eight fourth-year engineering design students formed two teams to study methods of varying the perceived gravity level in a variable gravity research facility. A tether system and an arm system were the chosen topics. Both teams have produced and built scale models of their design. In addition, a three-credit Special Topics Course (Aviation 370) was formed, as the project offers an excellent opportunity to build a multi-disciplinary program around the initial conceptualization process. Fifty students were registered in the Special Topics course. Each week during a three hour class, a guest lecturer covered one or more of the many areas associated with the concept of a variable-gravity facility. The students formed small groups organized on a multi-disciplinary basis (there were twelve separate disciplines represented by one or more students) where they discussed among themselves the various issues involved. These groups also met outside class for three or more hours each week. During class each group presented oral reports on their findings during a one-hour general question and answer period.
NASA Astrophysics Data System (ADS)
Angulo, María E.; Mena Marugán, Guillermo A.; Ashtekar, A.
Linearly polarized cylindrical waves in four-dimensional vacuum gravity are mathematically equivalent to rotationally symmetric gravity coupled to a Maxwell (or Klein-Gordon) field in three dimensions. The quantization of this latter system was performed by Ashtekar and Pierri in a recent work. Employing that quantization, we obtain here a complete quantum theory which describes the four-dimensional geometry of the Einstein-Rosen waves. In particular, we construct regularized operators to represent the metric. It is shown that the results achieved by Ashtekar about the existence of important quantum gravity effects in the Einstein-Maxwell system at large distances from the symmetry axis continue to be valid from a four-dimensional point of view. The only significant difference is that, in order to admit an approximate classical description in the asymptotic region, states that are coherent in the Maxwell field need not contain a large number of photons anymore. We also analyze the metric fluctuations on the symmetry axis and argue that they are generally relevant for all of the coherent states.
Development of the Newtonian Gravity Concept Inventory
ERIC Educational Resources Information Center
Williamson, Kathryn E.; Willoughby, Shannon; Prather, Edward E.
2013-01-01
We introduce the Newtonian Gravity Concept Inventory (NGCI), a 26-item multiple-choice instrument to assess introductory general education college astronomy ("Astro 101") student understanding of Newtonian gravity. This paper describes the development of the NGCI through four phases: Planning, Construction, Quantitative Analysis, and…
Ponce, David A.
1997-01-01
Gravity data for the entire state of Nevada and adjacent parts of California, Utah, and Arizona are available on this CD-ROM. About 80,000 gravity stations were compiled primarily from the National Geophysical Data Center and the U.S. Geological Survey. Gravity data was reduced to the Geodetic Reference System of 1967 and adjusted to the Gravity Standardization Net 1971 gravity datum. Data were processed to complete Bouguer and isostatic gravity anomalies by applying standard gravity corrections including terrain and isostatic corrections. Selected principal fact references and a list of sources for data from the National Geophysical Data Center are included.
NASA Technical Reports Server (NTRS)
Vanzandt, T. E.
1985-01-01
Atmospheric parameters fluctuate on all scales. In the mesoscale these fluctuations are occasionally sinusoidal so that they can be interpreted as gravity waves. Usually, however, the fluctuations are noise like, so that their cause is not immediately evident. Results of mesoscale observations in the 20 to 120 m altitude range that are suitable for incorporation into a model atmosphere are very limited. In the stratosphere and lower mesosphere observations are sparse and very little data has been summarized into appropriate form. There is much more data in the upper mesosphere and lower thermosphere, but again very little of it has been summarized. The available mesoscale spectra of horizontal wind u versus vertical wave number m in the 20 to 120 km altitude range are shown together with a spectrum from the lower atmosphere for comparison. Further information about these spectra is given. In spite of the large range of altitudes and latitudes, the spectra from the lower atmosphere (NASA, 1971 and DEWAN, 1984) are remarkably similar in both shape and amplitude. The mean slopes of -2.38 for the NASA spectrum and -2.7 for the Dewan spectra are supported by the mean slope of -2.75 found by ROSENBERG et al. (1974). The mesospheric spectrum is too short to establish a shape. Its amplitude is about an order of magnitude larger than the NASA spectrum in the same wave number range. The NASA and Dewan spectra suggest that the mesoscale spectra in the lower atmosphere are insensitive to meteorological conditions.
14 CFR 29.27 - Center of gravity limits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of...
14 CFR 25.27 - Center of gravity limits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Center of gravity limits. 25.27 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.27 Center of gravity limits. The extreme forward and the extreme aft center of gravity limitations must be established for each...
14 CFR 25.27 - Center of gravity limits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Center of gravity limits. 25.27 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.27 Center of gravity limits. The extreme forward and the extreme aft center of gravity limitations must be established for each...
14 CFR 25.27 - Center of gravity limits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Center of gravity limits. 25.27 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.27 Center of gravity limits. The extreme forward and the extreme aft center of gravity limitations must be established for each...
14 CFR 29.27 - Center of gravity limits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of...
14 CFR 29.27 - Center of gravity limits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of...
14 CFR 25.27 - Center of gravity limits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 25.27 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.27 Center of gravity limits. The extreme forward and the extreme aft center of gravity limitations must be established for each...
14 CFR 25.27 - Center of gravity limits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Center of gravity limits. 25.27 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.27 Center of gravity limits. The extreme forward and the extreme aft center of gravity limitations must be established for each...
14 CFR 29.27 - Center of gravity limits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of...
14 CFR 29.27 - Center of gravity limits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of...
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Extension of Loop Quantum Gravity to f(R) Theories
NASA Astrophysics Data System (ADS)
Zhang, Xiangdong; Ma, Yongge
2011-04-01
The four-dimensional metric f(R) theories of gravity are cast into connection-dynamical formalism with real su(2) connections as configuration variables. Through this formalism, the classical metric f(R) theories are quantized by extending the loop quantization scheme of general relativity. Our results imply that the nonperturbative quantization procedure of loop quantum gravity is valid not only for general relativity but also for a rather general class of four-dimensional metric theories of gravity.
Extension of loop quantum gravity to f(R) theories.
Zhang, Xiangdong; Ma, Yongge
2011-04-29
The four-dimensional metric f(R) theories of gravity are cast into connection-dynamical formalism with real su(2) connections as configuration variables. Through this formalism, the classical metric f(R) theories are quantized by extending the loop quantization scheme of general relativity. Our results imply that the nonperturbative quantization procedure of loop quantum gravity is valid not only for general relativity but also for a rather general class of four-dimensional metric theories of gravity.
Transverse gravity versus observations
Álvarez, Enrique; Faedo, Antón F.; López-Villarejo, J.J. E-mail: anton.fernandez@uam.es
2009-07-01
Theories of gravity invariant under those diffeomorphisms generated by transverse vectors, ∂{sub μ}ξ{sup μ} = 0 are considered. Such theories are dubbed transverse, and differ from General Relativity in that the determinant of the metric, g, is a transverse scalar. We comment on diverse ways in which these models can be constrained using a variety of observations. Generically, an additional scalar degree of freedom mediates the interaction, so the usual constraints on scalar-tensor theories have to be imposed. If the purely gravitational part is Einstein-Hilbert but the matter action is transverse, the models predict that the three a priori different concepts of mass (gravitational active and gravitational passive as well as inertial) are not equivalent anymore. These transverse deviations from General Relativity are therefore tightly constrained, actually correlated with existing bounds on violations of the equivalence principle, local violations of Newton's third law and/or violation of Local Position Invariance.
Universality of quantum gravity corrections.
Das, Saurya; Vagenas, Elias C
2008-11-28
We show that the existence of a minimum measurable length and the related generalized uncertainty principle (GUP), predicted by theories of quantum gravity, influence all quantum Hamiltonians. Thus, they predict quantum gravity corrections to various quantum phenomena. We compute such corrections to the Lamb shift, the Landau levels, and the tunneling current in a scanning tunneling microscope. We show that these corrections can be interpreted in two ways: (a) either that they are exceedingly small, beyond the reach of current experiments, or (b) that they predict upper bounds on the quantum gravity parameter in the GUP, compatible with experiments at the electroweak scale. Thus, more accurate measurements in the future should either be able to test these predictions, or further tighten the above bounds and predict an intermediate length scale between the electroweak and the Planck scale.
Warping the Weak Gravity Conjecture
NASA Astrophysics Data System (ADS)
Kooner, Karta; Parameswaran, Susha; Zavala, Ivonne
2016-08-01
The Weak Gravity Conjecture, if valid, rules out simple models of Natural Inflation by restricting their axion decay constant to be sub-Planckian. We revisit stringy attempts to realise Natural Inflation, with a single open string axionic inflaton from a probe D-brane in a warped throat. We show that warped geometries can allow the requisite super-Planckian axion decay constant to be achieved, within the supergravity approximation and consistently with the Weak Gravity Conjecture. Preliminary estimates of the brane backreaction suggest that the probe approximation may be under control. However, there is a tension between large axion decay constant and high string scale, where the requisite high string scale is difficult to achieve in all attempts to realise large field inflation using perturbative string theory. We comment on the Generalized Weak Gravity Conjecture in the light of our results.
NASA Astrophysics Data System (ADS)
Nassur, S. B.; Ainamon, C.; Houndjo, M. J. S.; Tossa, J.
2016-12-01
We have set the goal to reconstruct the geometric actions f( T) in unimodular f ( T) gravity. The unimodular f ( T) gravity gave us stunning properties related to the way we write the modified Friedmann equations. Indeed, it has been found that depending on how the Friedmann equations are given, the Lagrange multipliers may or not depend on the time parameter τ, and at the same time the reconstruction functions f( T) can easily be made generallly (not depending on the given scale factor) or determine a particular way (depending on the given scale factor), in the vacuum. It is noted that the reconstruction of a general action joins a philosophy of unimodular gravity for the constant λ.
Fluid/gravity correspondence for massive gravity
NASA Astrophysics Data System (ADS)
Pan, Wen-Jian; Huang, Yong-Chang
2016-11-01
In this paper, we investigate the fluid/gravity correspondence in the framework of massive Einstein gravity. Treating the gravitational mass terms as an effective energy-momentum tensor and utilizing the Petrov-like boundary condition on a timelike hypersurface, we find that the perturbation effects of massive gravity in bulk can be completely governed by the incompressible Navier-Stokes equation living on the cutoff surface under the near horizon and nonrelativistic limits. Furthermore, we have concisely computed the ratio of dynamical viscosity to entropy density for two massive Einstein gravity theories, and found that they still saturate the Kovtun-Son-Starinets (KSS) bound.
Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars
NASA Technical Reports Server (NTRS)
Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.
2000-01-01
Most people take the constant presence of gravitys pull for granted. However, the Earth's gravitational strength actually varies from location to location. This variation occurs because mass, which influences an object's gravitational pull, is not evenly distributed within the planet. Changes in topography, such as glacial movement, an earthquake, or a rise in the ocean level, can subtly affect the gravity field. An accurate measurement of the Earth's gravity field helps us understand the distribution of mass beneath the surface. This insight can assist us in locating petroleum, mineral deposits, ground water, and other valuable substances. Gravity mapping can also help notice or verify changes in sea surface height and other ocean characteristics. Such changes may indicate climate change from polar ice melting and other phenomena. In addition, gravity mapping can indicate how land moves under the surface after earthquakes and other plate tectonic processes. Finally, changes in the Earth's gravity field might indicate a shift in water distribution that could affect agriculture, water supplies for population centers, and long-term weather prediction. Scientists can map out the Earth's gravity field by watching satellite orbits. When a satellite shifts in vertical position, it might be passing over an area where gravity changes in strength. Gravity is only one factor that may shape a satellite's orbital path. To derive a gravity measurement from satellite movement, scientists must remove other factors that might affect a satellite's position: 1. Drag from atmospheric friction. 2. Pressure from solar radiation as it heads toward Earth and. as it is reflected off the surface of the Earth 3. Gravitational pull from the Sun, the Moon, and other planets in the Solar System. 4. The effect of tides. 5. Relativistic effects. Scientists must also correct for the satellite tracking process. For example, the tracking signal must be corrected for refraction through the
Lucchesi, David M; Peron, Roberto
2010-12-03
The pericenter shift of a binary system represents a suitable observable to test for possible deviations from the newtonian inverse-square law in favor of new weak interactions between macroscopic objects. We analyzed 13 years of tracking data of the LAGEOS satellites with GEODYN II software but with no models for general relativity. From the fit of LAGEOS II pericenter residuals we have been able to obtain a 99.8% agreement with the predictions of Einstein's theory. This result may be considered as a 99.8% measurement in the field of the Earth of the combination of the γ and β parameters of general relativity, and it may be used to constrain possible deviations from the inverse-square law in favor of new weak interactions parametrized by a Yukawa-like potential with strength α and range λ. We obtained |α| ≲ 1 × 10(-11), a huge improvement at a range of about 1 Earth radius.
... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...
Loop Quantum Gravity and Asymptotically Flat Spaces
NASA Astrophysics Data System (ADS)
Arnsdorf, Matthias
2002-12-01
Remarkable progress has been made in the field of non-perturbative (loop) quantum gravity in the last decade or so and it is now a rigorously defined kinematical theory (c.f. [5] for a review and references). We are now at the stage where physical applications of loop quantum gravity can be studied and used to provide checks for the consistency of the quantisation programme. Equally, old fundamental problems of canonical quantum gravity such as the problem of time or the interpretation of quantum cosmology need to be reevaluated seriously. These issues can be addressed most profitably in the asymptotically flat sector of quantum gravity. Indeed, it is likely that we should obtain a quantum theory for this special case even if it is not possible to quantise full general relativity. The purpose of this summary is to advertise the extension of loop quantum gravity to this sector that was developed in [1]...
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Kaukler, William F.; Plaster, Teresa C.
1993-01-01
Hardnesses and tensile strengths greater. Welds made under right conditions in low gravity appear superior to those made under high gravity. Conclusion drawn from results of welding experiments conducted during low- and high-gravity-simulating maneuvers of KC-135 airplane. Results have implications not only for welding in outer space but also for repeated rapid welding on Earth or in airplanes under simulated low gravity to obtain unusually strong joints.
Gravity Field Characterization around Small Bodies
NASA Astrophysics Data System (ADS)
Takahashi, Yu
A small body rendezvous mission requires accurate gravity field characterization for safe, accurate navigation purposes. However, the current techniques of gravity field modeling around small bodies are not achieved to the level of satisfaction. This thesis will address how the process of current gravity field characterization can be made more robust for future small body missions. First we perform the covariance analysis around small bodies via multiple slow flybys. Flyby characterization requires less laborious scheduling than its orbit counterpart, simultaneously reducing the risk of impact into the asteroid's surface. It will be shown that the level of initial characterization that can occur with this approach is no less than the orbit approach. Next, we apply the same technique of gravity field characterization to estimate the spin state of 4179 Touatis, which is a near-Earth asteroid in close to 4:1 resonance with the Earth. The data accumulated from 1992-2008 are processed in a least-squares filter to predict Toutatis' orientation during the 2012 apparition. The center-of-mass offset and the moments of inertia estimated thereof can be used to constrain the internal density distribution within the body. Then, the spin state estimation is developed to a generalized method to estimate the internal density distribution within a small body. The density distribution is estimated from the orbit determination solution of the gravitational coefficients. It will be shown that the surface gravity field reconstructed from the estimated density distribution yields higher accuracy than the conventional gravity field models. Finally, we will investigate two types of relatively unknown gravity fields, namely the interior gravity field and interior spherical Bessel gravity field, in order to investigate how accurately the surface gravity field can be mapped out for proximity operations purposes. It will be shown that these formulations compute the surface gravity field with
ERIC Educational Resources Information Center
MacKeown, P. K.
1984-01-01
Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)
Groundwater level monitoring using hybrid gravity measurements
NASA Astrophysics Data System (ADS)
Nishijima, J.; Fujimitsu, Y.; Oka, D.; Fukuda, Y.; Taniguchi, M.
2012-12-01
It is important to monitor the aquifer mass balance between discharge and recharge for the sustainable groundwater usage. The discharge of groundwater causes mass redistributions, which can cause measurable gravity changes. We carried out the repeat hybrid gravity measurements at some fields in order to detect the gravity changes associated with groundwater level changes. We used the instruments for the relative gravity measurement (CG-3M and CG-5 gravimeter: Scintrex Ltd.) and the absolute gravity measurement (A-10 gravimeter: Micro-g LaCoste, Inc.). The A10 absolute gravimeter is a portable absolute gravimeter produced by Micro-g LaCoste Inc. It operates on a 12V DC power supply (i.e. vehicle battery). We can measure the absolute gravity using the vehicle battery at the field. We started repeat gravity measurement at Ito campus, Kyushu university Fukuoka city, Northern part of Kyushu, Japan, where the instrument is usually maintained, since 2008 in order to assess the A10 gravimeter's accuracy and repeatability. We measured 10 sets at each measurement, and 1 set consists of 100 drops. There are 3 groundwater level monitoring wells near the gravity station. It can be seen that there is a good correlation between gravity changes and groundwater level changes. We confirmed that the instrument is maintained good condition in general, although some bad data was included. It seems that the repeatability of A10 gravimeter is better than 10 microgals. The A10 absolute gravimeter (Micro-g LaCoste Inc.) was introduced in order to monitor the gravity changes at base observation points since 2008. We observed seasonal gravity change (Maximum change was 26 micro gal), and we compared with the groundwater level changes. There are good correlation between the gravity changes and the groundwater level changes. We calculated the effect of groundwater level changes using Gwater-1D (Kazama et al., 2010). As a result of the calculation, we can explain the gravity seasonal changes
NASA Astrophysics Data System (ADS)
Boyarsky, Alexey; Ruchayskiy, Oleg; Dvali, Gia
General concept of non-minimal field theory is discussed and a catalog of models describing the curvature coupling of gravity field with scalar, electromagnetic, vector and gauge fields is presented. Non-minimal extensions of the Einstein-Maxwell, Einstein-Yang-Mills and Einstein-Yang-Mills-Higgs theories are considered in detail. New exact solutions of the self-consistent non-minimally extended field equations, which describe non-minimal Wu-Yang monopole, non-minimal Wu-Yang wormhole, non-minimal Dirac monopole, non-minimal electrically charged objects, are presented. Physical phenomena induced by the curvature coupling are discussed, the main attention is focused on the problem of alternative explanation of the accelerated expansion of the universe and on an effective cosmological constant formation due to the non-minimal coupling.
(abstract) Venus Gravity Field
NASA Technical Reports Server (NTRS)
Konopliv, A. S.; Sjogren, W. L.
1995-01-01
A global gravity field model of Venus to degree and order 75 (5772 spherical harmonic coefficients) has been estimated from Doppler radio tracking of the orbiting spacecraft Pioneer Venus Orbiter (1979-1992) and Magellan (1990-1994). After the successful aerobraking of Magellan, a near circular polar orbit was attained and relatively uniform gravity field resolution (approximately 200 km) was obtained with formal uncertainties of a few milligals. Detailed gravity for several highland features are displayed as gravity contours overlaying colored topography. The positive correlation of typography with gravity is very high being unlike that of the Earth, Moon, and Mars. The amplitudes are Earth-like, but have significantly different gravity-topography ratios for different features. Global gravity, geoid, and isostatic anomaly maps as well as the admittance function are displayed.
Quantization of emergent gravity
NASA Astrophysics Data System (ADS)
Yang, Hyun Seok
2015-02-01
Emergent gravity is based on a novel form of the equivalence principle known as the Darboux theorem or the Moser lemma in symplectic geometry stating that the electromagnetic force can always be eliminated by a local coordinate transformation as far as space-time admits a symplectic structure, in other words, a microscopic space-time becomes noncommutative (NC). If gravity emerges from U(1) gauge theory on NC space-time, this picture of emergent gravity suggests a completely new quantization scheme where quantum gravity is defined by quantizing space-time itself, leading to a dynamical NC space-time. Therefore the quantization of emergent gravity is radically different from the conventional approach trying to quantize a phase space of metric fields. This approach for quantum gravity allows a background-independent formulation where space-time and matter fields are equally emergent from a universal vacuum of quantum gravity.
Loop-quantum-gravity vertex amplitude.
Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo
2007-10-19
Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.
How can rainbow gravity affect gravitational force?
NASA Astrophysics Data System (ADS)
Sefiedgar, Akram Sadat
According to Verlinde’s recent proposal, the gravity is originally an entropic force. In this paper, we obtain the corrections to the entropy-area law of black holes within rainbow gravity. The corrected entropy-area law leads to the modifications of the number of bits N. Inspired by Verlinde’s argument on the entropic force, and using the modified number of bits, we can investigate the effects of rainbow gravity on the modified Newtonian dynamics, Newton’s law of gravitation, and Einstein’s general relativity in entropic force approach.
Laminar natural convection under nonuniform gravity.
NASA Technical Reports Server (NTRS)
Lienhard, J.; Eichhorn, R.; Dhir, V.
1972-01-01
Laminar natural convection is analyzed for cases in which gravity varies with the distance from the leading edge of an isothermal plate. The study includes situations in which gravity varies by virtue of the varying slope of a surface. A general integral solution method which includes certain known integral solutions as special cases is developed to account for arbitrary position-dependence of gravity. A series method of solution is also developed for the full equations. Although it is more cumbersome it provides verification of the integral method.
NASA Astrophysics Data System (ADS)
Sebastiani, Lorenzo; Myrzakulov, Ratbay
2015-08-01
In this short review, we revisit inflation in F(R)-gravity. We find several F(R)-models for viable inflation by applying some reconstruction techniques. A special attention is payed in the reproduction of the last Planck satellite data. The possible generalizations of Starobinsky-like inflation are found and discussed. The early-time acceleration is analyzed in a higher derivative quantum gravitational model which mainly reduces to F(R)-gravity.
Palatini formulation of non-local gravity
NASA Astrophysics Data System (ADS)
Briscese, F.; Pucheu, M. L.
We derive the dynamical equations for a non-local gravity model in the Palatini formalism and we discuss some of the properties of this model. We have show that, in some specific case, the vacuum solutions of general relativity are also vacuum solutions of the non-local model, so we conclude that, at least in this case, the singularities of Einstein’s gravity are not removed.
Some aspects of holographic W-gravity
NASA Astrophysics Data System (ADS)
Li, Wei; Theisen, Stefan
2015-08-01
We use the Chern-Simons formulation of higher spin theories in three dimensions to study aspects of holographic W-gravity. Concepts which were useful in studies of pure bulk gravity theories, such as the Fefferman-Graham gauge and the residual gauge transformations, which induce Weyl transformations in the boundary theory and their higher spin generalizations, are reformulated in the Chern-Simons language. Flat connections that correspond to conformal and lightcone gauges in the boundary theory are considered.
Localizing gravity on exotic thick 3-branes
Castillo-Felisola, Oscar; Melfo, Alejandra; Pantoja, Nelson; Ramirez, Alba
2004-11-15
We consider localization of gravity on thick branes with a nontrivial structure. Double walls that generalize the thick Randall-Sundrum solution, and asymmetric walls that arise from a Z{sub 2} symmetric scalar potential, are considered. We present a new asymmetric solution: a thick brane interpolating between two AdS{sub 5} spacetimes with different cosmological constants, which can be derived from a 'fake supergravity' superpotential, and show that it is possible to confine gravity on such branes.
NASA Technical Reports Server (NTRS)
2000-01-01
The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)
Prediction of physical workload in reduced gravity.
Goldberg, J H; Alred, J W
1988-12-01
As we plan for long-term living and working in low-gravity environments, a system to predict mission support requirements, such as food and water, becomes critical. Such a system must consider the workload imposed by physical tasks for efficient estimation of these supplies. An accurate estimate of human energy expenditure on a space station or lunar base is also necessary to allocate personnel to tasks, and to assign work-rest schedules. An elemental analysis approach for predicting one's energy expenditure in industrial jobs was applied to low-gravity conditions in this paper. This was achieved by a reduction of input body and load weights in a well-accepted model, in proportion to lowered gravity, such as on the moon. Validation was achieved by applying the model to Apollo-era energy expenditure data. These data were from simulated lunar gravity walking studies, observed Apollo 14 walking, simulated lunar gravity upper body torquing, and simulated lunar gravity cart pulling. The energy expenditure model generally underpredicted high energy expenditures, and overpredicted low to medium energy expenditures. The predictions for low to medium workloads were, however, within 15-30% of actual values. Future developmental work will be necessary to include the effects of traction changes, as well as other nonlinear expenditure changes in reduced gravity environments.
Nonlocal gravity: Conformally flat spacetimes
NASA Astrophysics Data System (ADS)
Bini, Donato; Mashhoon, Bahram
2016-04-01
The field equations of the recent nonlocal generalization of Einstein’s theory of gravitation are presented in a form that is reminiscent of general relativity. The implications of the nonlocal field equations are studied in the case of conformally flat spacetimes. Even in this simple case, the field equations are intractable. Therefore, to gain insight into the nature of these equations, we investigate the structure of nonlocal gravity (NLG) in 2D spacetimes. While any smooth 2D spacetime is conformally flat and satisfies Einstein’s field equations, only a subset containing either a Killing vector or a homothetic Killing vector can satisfy the field equations of NLG.
Focus on quantum Einstein gravity Focus on quantum Einstein gravity
NASA Astrophysics Data System (ADS)
Ambjorn, Jan; Reuter, Martin; Saueressig, Frank
2012-09-01
The gravitational asymptotic safety program summarizes the attempts to construct a consistent and predictive quantum theory of gravity within Wilson's generalized framework of renormalization. Its key ingredient is a non-Gaussian fixed point of the renormalization group flow which controls the behavior of the theory at trans-Planckian energies and renders gravity safe from unphysical divergences. Provided that the fixed point comes with a finite number of ultraviolet-attractive (relevant) directions, this construction gives rise to a consistent quantum field theory which is as predictive as an ordinary, perturbatively renormalizable one. This opens up the exciting possibility of establishing quantum Einstein gravity as a fundamental theory of gravity, without introducing supersymmetry or extra dimensions, and solely based on quantization techniques that are known to work well for the other fundamental forces of nature. While the idea of gravity being asymptotically safe was proposed by Steven Weinberg more than 30 years ago [1], the technical tools for investigating this scenario only emerged during the last decade. Here a key role is played by the exact functional renormalization group equation for gravity, which allows the construction of non-perturbative approximate solutions for the RG-flow of the gravitational couplings. Most remarkably, all solutions constructed to date exhibit a suitable non-Gaussian fixed point, lending strong support to the asymptotic safety conjecture. Moreover, the functional renormalization group also provides indications that the central idea of a non-Gaussian fixed point providing a safe ultraviolet completion also carries over to more realistic scenarios where gravity is coupled to a suitable matter sector like the standard model. These theoretical successes also triggered a wealth of studies focusing on the consequences of asymptotic safety in a wide range of phenomenological applications covering the physics of black holes, early
NASA Technical Reports Server (NTRS)
Sjogren, W. L.; Wimberly, R. N.; Wollenhaupt, W. R.
1974-01-01
Gravity results are displayed as a band of contours about 60 km wide spanning 140 deg of frontside longitude. The contours traverse Grimaldi, Mare Procellarum, Copernicus, Apennines, Mare Serenitatis, Littrow, and Mare Crisium. Redundant gravity areas previously mapped by Apollos 14, 15, 16, and the Apollo subsatellites are tabulated and show excellent consistency. Modeling of Grimaldi reveals a loading greater than the known mascons and thus makes Grimaldi the smallest known mascon feature. Copernicus' gravity profile is best modeled with a mass defect for the basin and a mass excess for the rim. Mare Serenitatis has an irregular mass distribution with central gravity highs shifted approximately 3 deg in latitude.
Tuned borehole gravity gradiometer
Lautzenhiser, T.V.; Nekut, A.G. Jr.
1986-04-15
A tuned borehole gravity gradiometer is described for detecting variations in gravity gradient which consists of: a suspended dipole mass system having symmetrically distributed dipole masses and suspension means for suspending the dipole masses such that the gravity gradient to be measured produces an angular displacement about a rotation axis of the dipole mass system from a reference position; and tuning means with the dipole mass system for selectively varying the sensitivity to angular displacements with respect to the rotation axis of the dipole mass system to variations in gravity gradient, wherein the tuning means includes means for selectively varying the metacentric height of the dipole mass system.
Relativistic gravity gradiometry
NASA Astrophysics Data System (ADS)
Bini, Donato; Mashhoon, Bahram
2016-12-01
In general relativity, relativistic gravity gradiometry involves the measurement of the relativistic tidal matrix, which is theoretically obtained from the projection of the Riemann curvature tensor onto the orthonormal tetrad frame of an observer. The observer's 4-velocity vector defines its local temporal axis and its local spatial frame is defined by a set of three orthonormal nonrotating gyro directions. The general tidal matrix for the timelike geodesics of Kerr spacetime has been calculated by Marck [Proc. R. Soc. A 385, 431 (1983)]. We are interested in the measured components of the curvature tensor along the inclined "circular" geodesic orbit of a test mass about a slowly rotating astronomical object of mass M and angular momentum J . Therefore, we specialize Marck's results to such a "circular" orbit that is tilted with respect to the equatorial plane of the Kerr source. To linear order in J , we recover the gravitomagnetic beating phenomenon [B. Mashhoon and D. S. Theiss, Phys. Rev. Lett. 49, 1542 (1982)], where the beat frequency is the frequency of geodetic precession. The beat effect shows up as a special long-period gravitomagnetic part of the relativistic tidal matrix; moreover, the effect's short-term manifestations are contained in certain post-Newtonian secular terms. The physical interpretation of this effect is briefly discussed.
New 'phase' of quantum gravity.
Wang, Charles H-T
2006-12-15
The emergence of loop quantum gravity over the past two decades has stimulated a great resurgence of interest in unifying general relativity and quantum mechanics. Among a number of appealing features of this approach is the intuitive picture of quantum geometry using spin networks and powerful mathematical tools from gauge field theory. However, the present form of loop quantum gravity suffers from a quantum ambiguity, owing to the presence of a free (Barbero-Immirzi) parameter. Following the recent progress on conformal decomposition of gravitational fields, we present a new phase space for general relativity. In addition to spin-gauge symmetry, the new phase space also incorporates conformal symmetry making the description parameter free. The Barbero-Immirzi ambiguity is shown to occur only if the conformal symmetry is gauge fixed prior to quantization. By withholding its full symmetries, the new phase space offers a promising platform for the future development of loop quantum gravity. This paper aims to provide an exposition, at a reduced technical level, of the above theoretical advances and their background developments. Further details are referred to cited references.
Stellar oscillations in modified gravity
NASA Astrophysics Data System (ADS)
Sakstein, Jeremy
2013-12-01
Starting from the equations of modified gravity hydrodynamics, we derive the equations of motion governing linear, adiabatic, radial perturbations of stars in scalar-tensor theories. There are two new features: first, the eigenvalue equation for the period of stellar oscillations is modified such that the eigenfrequencies are always larger than predicted by general relativity. Second, the general relativity condition for stellar instability is altered so that the adiabatic index can fall below 4/3 before unstable modes appear. Stars are more stable in modified gravity theories. Specializing to the case of chameleonlike theories, we investigate these effects numerically using both polytropic Lane-Emden stars and models coming from modified gravity stellar structure simulations. We find that the change in the oscillation period of Cepheid star models can be as large as 30% for order-one matter couplings and the change in the inferred distance using the period-luminosity relation can be up to three times larger than if one had only considered the modified equilibrium structure. We discuss the implications of these results for recent and upcoming astrophysical tests and estimate that previous methods can produce new constraints such that the modifications are screened in regions of Newtonian potential of O(10-8).
Stellar structures in Extended Gravity
NASA Astrophysics Data System (ADS)
Capozziello, S.; De Laurentis, M.
2016-09-01
Stellar structures are investigated by considering the modified Lané-Emden equation coming out from Extended Gravity. In particular, this equation is obtained in the Newtonian limit of f ( R) -gravity by introducing a polytropic relation between the pressure and the density into the modified Poisson equation. The result is an integro-differential equation, which, in the limit f ( R) → R , becomes the standard Lané-Emden equation usually adopted in the stellar theory. We find the radial profiles of gravitational potential by solving for some values of the polytropic index. The solutions are compatible with those coming from General Relativity and could be physically relevant in order to address peculiar and extremely massive objects.
Black holes in massive gravity
NASA Astrophysics Data System (ADS)
Babichev, Eugeny; Brito, Richard
2015-08-01
We review the black hole (BH) solutions of the ghost-free massive gravity theory and its bimetric extension, and outline the main results on the stability of these solutions against small perturbations. Massive (bi)-gravity accommodates exact BH solutions, analogous to those of general relativity (GR). In addition to these solutions, hairy BHs—solutions with no correspondent in GR—have been found numerically, whose existence is a natural consequence of the absence of Birkhoff’s theorem in these theories. The existence of extra propagating degrees of freedom, makes the stability properties of these BHs richer and more complex than those of GR. In particular, the bi-Schwarzschild BH exhibits an unstable spherically symmetric mode, while the bi-Kerr geometry is also generically unstable, both against the spherical mode and against superradiant instabilities. If astrophysical BHs are described by these solutions, the superradiant instability of the Kerr solution imposes stringent bounds on the graviton mass.
Spin-3 topologically massive gravity
NASA Astrophysics Data System (ADS)
Chen, Bin; Long, Jiang; Wu, Jun-bao
2011-11-01
In this Letter, we study the spin-3 topologically massive gravity (TMG), paying special attention to its properties at the chiral point. We propose an action describing the higher spin fields coupled to TMG. We discuss the traceless spin-3 fluctuations around the AdS3 vacuum and find that there is an extra local massive mode, besides the left-moving and right-moving boundary massless modes. At the chiral point, such extra mode becomes massless and degenerates with the left-moving mode. We show that at the chiral point the only degrees of freedom in the theory are the boundary right-moving graviton and spin-3 field. We conjecture that spin-3 chiral gravity with generalized Brown-Henneaux boundary condition is holographically dual to 2D chiral CFT with classical W3 algebra and central charge cR = 3 l / G.
NASA Astrophysics Data System (ADS)
Samuel, Joseph
2011-08-01
The problem of quantum gravity has been with us for over 80 years. After quantum theory was established in the 1920s, it was successfully applied to the electromagnetic field. Over the years there have been many attempts to bring gravity into the fold. There has been work on the Hamiltonian formulation of general relativity, perturbative approaches to quantum gravity and more. Much intellectual effort went into understanding conceptual and technical problems stemming from the general covariance of the theory. However, in earlier decades, the subject of quantum gravity was relatively on the fringes of theoretical physics research, pursued by a small and diverse community of people. In the mid 1980s the situation changed dramatically. The subject of quantum gravity came to the forefront of fundamental physics research, no longer a backwater but the mainstream. Quantum gravity was widely acknowledged as the last frontier of fundamental physics and attracted the brightest young people. Unlike in previous decades, workers in this area were no longer isolated groups or individuals ploughing lonely furrows, but organised into coherent `programmes' for a concerted attack on the problem. The main programmes coincidentally were all formulated in the mid 1980s. The two `programmes' covered in this section are string theory and loop quantum gravity. String theory was born an offshoot of Hadronic models in particle physics and reflects the particle physicists view that gravity is just one more interaction to be encompassed by a unified theory. Loop quantum gravity reflects the general relativist's conviction that gravity is different and should not be treated as a perturbation about Minkowski spacetime. Each of these approaches has its proponents, adherents and critics. It is now about a quarter of a century since these programmes started. It is perhaps a good time to take stock and assess where we are now and where each of these programmes is headed. The idea in this focus
Hiding neutrino mass in modified gravity cosmologies
NASA Astrophysics Data System (ADS)
Bellomo, Nicola; Bellini, Emilio; Hu, Bin; Jimenez, Raul; Pena-Garay, Carlos; Verde, Licia
2017-02-01
Cosmological observables show a dependence with the neutrino mass, which is partially degenerate with parameters of extended models of gravity. We study and explore this degeneracy in Horndeski generalized scalar-tensor theories of gravity. Using forecasted cosmic microwave background and galaxy power spectrum datasets, we find that a single parameter in the linear regime of the effective theory dominates the correlation with the total neutrino mass. For any given mass, a particular value of this parameter approximately cancels the power suppression due to the neutrino mass at a given redshift. The extent of the cancellation of this degeneracy depends on the cosmological large-scale structure data used at different redshifts. We constrain the parameters and functions of the effective gravity theory and determine the influence of gravity on the determination of the neutrino mass from present and future surveys.
Impact of gravity on vacuum stability
NASA Astrophysics Data System (ADS)
Branchina, Vincenzo; Messina, Emanuele; Zappalà, Dario
2016-10-01
In a pioneering paper on the role of gravity on false vacuum decay, Coleman and De Luccia showed that a strong gravitational field can stabilize the false vacuum, suppressing the formation of true vacuum bubbles. This result is obtained for the case in which the energy density difference between the two vacua is small, the so-called thin-wall regime, but is considered of more general validity. Here we show that when this condition does not hold, however, the effect of gravity on the bubble nucleation rate amounts to a small correction to the flat space-time result even in a strong gravity regime. This result suggests that the impact of gravity on the stability analysis of the electroweak vacuum could be essentially negligible.
Chiral fermions in asymptotically safe quantum gravity.
Meibohm, J; Pawlowski, J M
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
6D Interpretation of 3D Gravity
NASA Astrophysics Data System (ADS)
Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos
2017-02-01
We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern–Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any \\text{SU}(2) invariant closed 3-form in the total space of the principal \\text{SU}(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.
Exact solutions with noncommutative symmetries in Einstein and gauge gravity
NASA Astrophysics Data System (ADS)
Vacaru, Sergiu I.
2005-04-01
We present new classes of exact solutions with noncommutative symmetries constructed in vacuum Einstein gravity (in general, with nonzero cosmological constant), five-dimensional (5D) gravity and (anti) de Sitter gauge gravity. Such solutions are generated by anholonomic frame transforms and parametrized by generic off-diagonal metrics. For certain particular cases, the new classes of metrics have explicit limits with Killing symmetries but, in general, they may be characterized by certain anholonomic noncommutative matrix geometries. We argue that different classes of noncommutative symmetries can be induced by exact solutions of the field equations in commutative gravity modeled by a corresponding moving real and complex frame geometry. We analyze two classes of black ellipsoid solutions (in the vacuum case and with cosmological constant) in four-dimensional gravity and construct the analytic extensions of metrics for certain classes of associated frames with complex valued coefficients. The third class of solutions describes 5D wormholes which can be extended to complex metrics in complex gravity models defined by noncommutative geometric structures. The anholonomic noncommutative symmetries of such objects are analyzed. We also present a descriptive account how the Einstein gravity can be related to gauge models of gravity and their noncommutative extensions and discuss such constructions in relation to the Seiberg-Witten map for the gauge gravity. Finally, we consider a formalism of vielbeins deformations subjected to noncommutative symmetries in order to generate solutions for noncommutative gravity models with Moyal (star) product.
Compaction of Lunar Regolith Simulants under Reduced Gravity
NASA Astrophysics Data System (ADS)
Reiss, P.; Walter, U.
2013-09-01
We present the results of experiments conducted on a series of parabolic flights to determine the compaction of lunar regolith samples under the influence of reduced gravity. The two regolith simulants, JSC-1A and NU-LHT-2M, showed decreased compaction in lower gravity. On average the sample volumes expanded up to 108 % under Martian and 114 % under lunar gravity, whereas the expansion of NU-LHT-2M was generally stronger than that of JSC-1A.
Tethered gravity laboratories study
NASA Technical Reports Server (NTRS)
Lucchetti, F.
1989-01-01
The use is studied of tether systems to improve the lowest possible steady gravity level on the Space Station. Particular emphasis is placed by the microgravity community on the achievement of high quality microgravity conditions. The tether capability is explored for active control of the center of gravity and the analysis of possible tethered configurations.
NASA Technical Reports Server (NTRS)
Qi, Jay Y.
2011-01-01
The All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) is a vehicle concept developed at Jet Propulsion Laboratory as a multipurpose robot for exploration. Currently, the ATHLETE team is working on creating a low gravity testbed to physically simulate ATHLETE landing on an asteroid. Several projects were worked on this summer to support the low gravity testbed.
NASA Technical Reports Server (NTRS)
Pearlman, Howard; Stocker, Dennis; Gotti, Daniel; Urban, David; Ross, Howard; Sours, Thomas
1996-01-01
A miniature drop tower, Reduced-Gravity Demonstrator is developed to illustrate the effects of gravity on a variety of phenomena including the way fluids flow, flames burn, and mechanical systems (such as pendulum) behave. A schematic and description of the demonstrator and payloads are given, followed by suggestions for how one can build his (her) own.
Milestones of general relativity
NASA Astrophysics Data System (ADS)
Pullin, Jorge
2017-02-01
We present a summary for non-specialists of the special issue of the journal Classical and Quantum Gravity on ‘Milestones of general relativity’, commemorating the 100th anniversary of the theory.
NASA Technical Reports Server (NTRS)
Palsingh, S. (Inventor)
1975-01-01
An educational toy useful in demonstrating fundamental concepts regarding the laws of gravity is described. The device comprises a sphere 10 of radius r resting on top of sphere 12 of radius R. The center of gravity of sphere 10 is displaced from its geometrical center by distance D. The dimensions are so related that D((R+r)/r) is greater than r. With the center of gravity of sphere 10 lying on a vertical line, the device is in equilibrium. When sphere 10 is rolled on the surface of sphere 12 it will return to its equilibrium position upon release. This creates an illusion that sphere 10 is defying the laws of gravity. In reality, due to the above noted relationship of D, R, and r, the center of gravity of sphere 10 rises from its equilibrium position as it rolls a short distance up or down the surface of sphere 12.
Differential geometry, Palatini gravity and reduction
Capriotti, S.
2014-01-15
The present article deals with a formulation of the so called (vacuum) Palatini gravity as a general variational principle. In order to accomplish this goal, some geometrical tools related to the geometry of the bundle of connections of the frame bundle LM are used. A generalization of Lagrange-Poincaré reduction scheme to these types of variational problems allows us to relate it with the Einstein-Hilbert variational problem. Relations with some other variational problems for gravity found in the literature are discussed.
Gravity, black holes, and the universe
Nicolson, I.
1981-01-01
The book treats current understandings of the nature and properties of gravity, with particular emphasis on its role in the physics of black holes and the structure and evolution of the universe as a whole. The development of modern ideas on force, motion and gravity is traced from the systems of Aristotle and Ptolemy through the work of Copernicus, Galileo and Kepler to Newton's law of universal gravitation and Einstein's general theory of relativity. Particular attention is then given to the role of gravity in stellar motions and to the phenomena determined by the immense gravitational forces associated with bodies of such great density, including relativistic effects, tidal forces, space-time effects, event horizons, rotation, mass and electrical charge, the existence of naked singularities and white holes, and black-hole thermodynamics. The existence of actual black holes in the universe is considered, and various black-hole candidates in the Galaxy, quasars and galactic nuclei are indicated. The role of gravity in cosmology is then examined, with attention given to the implications of general relativity, the Hubble law, the age of the universe, the density of the universe and its eventual fate. Possible alternative to general relativity as a theory of gravitation are considered, including theories of variable gravitational constant, grand unified theories, and quantum gravity.
NASA Astrophysics Data System (ADS)
Chagoya, Javier; Koyama, Kazuya; Niz, Gustavo; Tasinato, Gianmassimo
2014-10-01
In the context of a cubic Galileon model in which the Vainshtein mechanism suppresses the scalar field interactions with matter, we study low-density stars with slow rotation and static relativistic stars. We develop an expansion scheme to find approximated solutions inside the Vainshtein radius, and show that deviations from General Relativity (GR), while considering rotation, are also suppressed by the Vainshtein mechanism. In a quadratic coupling model, in which the scalarisation effect can significantly enhance deviations from GR in normal scalar tensor gravity, the Galileon term successfully suppresses the large deviations away from GR. Moreover, using a realistic equation of state, we construct solutions for a relativistic star, and show that deviations from GR are more suppressed for higher density objects. However, we found that the scalar field solution ceases to exist above a critical density, which roughly corresponds to the maximum mass of a neutron star. This indicates that, for a compact object described by a polytropic equation of state, the configuration that would collapse into a black hole cannot support a non-trivial scalar field.
NASA Technical Reports Server (NTRS)
2004-01-01
In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).
Open questions in classical gravity
Mannheim, P.D. )
1994-04-01
In this work, the authors discuss some outstanding open questions regarding the validity and uniqueness of the standard second-order Newton-Einstein classical gravitational theory. On the observational side the authors discuss the degree to which the realm of validity of Newton's law of gravity can actually be extended to distances much larger than the solar system distance scales on which the law was originally established. On the theoretical side the authors identify some commonly accepted (but actually still open to question) assumptions which go into the formulation of the standard second-order Einstein theory in the first place. In particular, it is shown that while the familiar second-order Poisson gravitational equation (and accordingly its second-order covariant Einstein generalization) may be sufficient to yield Newton's law of gravity they are not in fact necessary. The standard theory thus still awaits the identification of some principle which would then make it necessary too. It is shown that current observational information does not exclusively mandate the standard theory, and that the conformal invariant fourth-order theory of gravity considered recently by Mannheim and Kazanas is also able to meet the constraints of data, and in fact to do so without the need for any so far unobserved nonluminous or dark matter. 37 refs., 7 figs.
Spacetime Singularities in Quantum Gravity
NASA Astrophysics Data System (ADS)
Minassian, Eric A.
2000-04-01
Recent advances in 2+1 dimensional quantum gravity have provided tools to study the effects of quantization of spacetime on black hole and big bang/big crunch type singularities. I investigate effects of quantization of spacetime on singularities of the 2+1 dimensional BTZ black hole and the 2+1 dimensional torus universe. Hosoya has considered the BTZ black hole, and using a "quantum generalized affine parameter" (QGAP), has shown that, for some specific paths, quantum effects "smear" the singularities. Using gaussian wave functions as generic wave functions, I found that, for both BTZ black hole and the torus universe, there are families of paths that still reach the singularities with a finite QGAP, suggesting that singularities persist in quantum gravity. More realistic calculations, using modular invariant wave functions of Carlip and Nelson for the torus universe, offer further support for this conclusion. Currently work is in progress to study more realistic quantum gravity effects for BTZ black holes and other spacetime models.
Ensemble average theory of gravity
NASA Astrophysics Data System (ADS)
Khosravi, Nima
2016-12-01
We put forward the idea that all the theoretically consistent models of gravity have contributions to the observed gravity interaction. In this formulation, each model comes with its own Euclidean path-integral weight where general relativity (GR) has automatically the maximum weight in high-curvature regions. We employ this idea in the framework of Lovelock models and show that in four dimensions the result is a specific form of the f (R ,G ) model. This specific f (R ,G ) satisfies the stability conditions and possesses self-accelerating solutions. Our model is consistent with the local tests of gravity since its behavior is the same as in GR for the high-curvature regime. In the low-curvature regime the gravitational force is weaker than in GR, which can be interpreted as the existence of a repulsive fifth force for very large scales. Interestingly, there is an intermediate-curvature regime where the gravitational force is stronger in our model compared to GR. The different behavior of our model in comparison with GR in both low- and intermediate-curvature regimes makes it observationally distinguishable from Λ CDM .
Modeling void abundance in modified gravity
NASA Astrophysics Data System (ADS)
Voivodic, Rodrigo; Lima, Marcos; Llinares, Claudio; Mota, David F.
2017-01-01
We use a spherical model and an extended excursion set formalism with drifting diffusive barriers to predict the abundance of cosmic voids in the context of general relativity as well as f (R ) and symmetron models of modified gravity. We detect spherical voids from a suite of N-body simulations of these gravity theories and compare the measured void abundance to theory predictions. We find that our model correctly describes the abundance of both dark matter and galaxy voids, providing a better fit than previous proposals in the literature based on static barriers. We use the simulation abundance results to fit for the abundance model free parameters as a function of modified gravity parameters, and show that counts of dark matter voids can provide interesting constraints on modified gravity. For galaxy voids, more closely related to optical observations, we find that constraining modified gravity from void abundance alone may be significantly more challenging. In the context of current and upcoming galaxy surveys, the combination of void and halo statistics including their abundances, profiles and correlations should be effective in distinguishing modified gravity models that display different screening mechanisms.
The GRAVITY spectrometers: mechanical design
NASA Astrophysics Data System (ADS)
Fischer, Sebastian; Wiest, Michael; Straubmeier, Christian; Yazici, Senol; Araujo-Hauck, Constanza; Eisenhauer, Frank; Perrin, Guy; Brandner, Wolfgang; Perraut, Karine; Amorim, Antonio; Schöller, Markus; Eckart, Andreas
2010-07-01
Operating on 6 interferometric baselines, i.e. using all 4 UTs, the 2nd generation VLTI instrument GRAVITY will deliver narrow angle astrometry with 10μas accuracy at the infrared K-band. Within the international GRAVITY consortium, the Cologne institute is responsible for the development and construction of the two spectrometers: one for the science object, and one for the fringe tracking object. Optically two individual components, both spectrometers are two separate units with their own housing and interfaces inside the vacuum vessel of GRAVITY. The general design of the spectrometers, however, is similar. The optical layout is separated into beam collimator (with integrated optics and metrology laser injection) and camera system (with detector, dispersive element, & Wollaston filter wheel). Mechanically, this transfers to two regions which are separated by a solid baffle wall incorporating the blocking filter for the metrology Laser wavelength. The optical subunits are mounted in individual rigid tubes which pay respect to the individual shape, size and thermal expansion of the lenses. For a minimized thermal background, the spectrometers are actively cooled down to an operating temperature of 80K in the ambient temperature environment of the GRAVITY vacuum dewar. The integrated optics beam combiner and the metrology laser injection, which are operated at 200/240K, are mounted thermally isolated to the cold housing of the spectrometers. The optical design has shown that the alignment of the detector is crucial to the performance of the spectrometers. Therefore, in addition to four wheel mechanisms, six cryogenic positioning mechanisms are included in the mechanical design of the detector mount.
Generalised boundary terms for higher derivative theories of gravity
NASA Astrophysics Data System (ADS)
Teimouri, Ali; Talaganis, Spyridon; Edholm, James; Mazumdar, Anupam
2016-08-01
In this paper we wish to find the corresponding Gibbons-Hawking-York term for the most general quadratic in curvature gravity by using Coframe slicing within the Arnowitt-Deser-Misner (ADM) decomposition of spacetime in four dimensions. In order to make sure that the higher derivative gravity is ghost and tachyon free at a perturbative level, one requires infinite covariant derivatives, which yields a generalised covariant infinite derivative theory of gravity. We will be exploring the boundary term for such a covariant infinite derivative theory of gravity.
Hammer, S.
1982-01-11
After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.
Logamediate Inflation in f(T) Teleparallel Gravity
NASA Astrophysics Data System (ADS)
Rezazadeh, Kazem; Abdolmaleki, Asrin; Karami, Kayoomars
2017-02-01
We study logamediate inflation in the context of f(T) teleparallel gravity. f(T)-gravity is a generalization of the teleparallel gravity which is formulated on the Weitzenbock spacetime, characterized by the vanishing curvature tensor (absolute parallelism) and the non-vanishing torsion tensor. We consider an f(T)-gravity model which is sourced by a canonical scalar field. Assuming a power-law f(T) function in the action, we investigate an inflationary universe with a logamediate scale factor. Our results show that, although logamediate inflation is completely ruled out by observational data in the standard inflationary scenario based on Einstein gravity, it can be compatible with the 68% confidence limit joint region of Planck 2015 TT,TE,EE+lowP data in the framework of f(T)-gravity.
Basement Aquifers : How Useful Are Gravity Data ?
NASA Astrophysics Data System (ADS)
Genthon, P.; Mouhouyouddine, A. H.; Hinderer, J.; Hector, B.; Yameogo, S.
2014-12-01
Gravity data with a few microgal precision were proved to be able to constrain the specific yield of various kinds of aquifer in West Africa from annual fluctuations of both the gravimetric and piezometric signals (Pfeffer et al., Geophys. J. Int., 2011; Hector et al., Geophys. J. Int., 2013). However some recent papers reported a disappointing potential of gravity measurements during a pumping experiment in a sandy aquifer (Blainey et al., WRR, 2007; Herckenrath et al., WRR, 2012) and their poor ability in constraining the transmissity and specific yield of the aquifer, which are the parameters to which pumping tests give access. Fresh basement rocks present generally a null porosity and the structure of basement aquifers is given by the weathering profile. In tropical climate, this profile consists of a few tens meter thick saprolite layer, with noticeable porosity but low permeability overlying the weathering front. This weathering front includes in many instances a fractured medium and presents a high permeability with variable porosity. It is hardly sampled in coring experiments. We present some numerical simulation results on the ability of gravity to constrain the transmissivity of this medium. Due to poroelasticity of clay minerals in the saprolite, soil subsidence is expected to occur during pumping with a significant gravity effect. Gravity measurements have therefore to be completed with leveling data at a millimetric precision. We present first the results of numerical modeling of the gravity and subsidence for a theoretical horizontally stratified basement aquifer, and show that gravity and leveling are able to provide independently the poroelasticity coefficient and a single transmissivity coefficient for the bottom of the aquifer, if the properties of the upper saprolites are known. We will discuss then the general case, where the aquifer presents a vertical fracture where the weathering profile thickens.
NASA Astrophysics Data System (ADS)
Efstratiou, P.
2013-09-01
This presentation will be based on my, undergraduate, thesis at Aristotle University of Thessoliniki with the same subject, supervised by Professor Demetrios Papadopoulos. I will first present the general mathematical formulation of the Chern-Simons (CS) modified gravity, which is split in a dynamical and a non-dynamical context, and the different physical theories which suggest this modification. Then proceed by examing the possibility that the CS theory shares solutions with General Relativity in both contexts. In the non-dynamical context I will present a new, undocumented solution as well as all the other possible solutions found to date. I will conclude by arguing that General Relativity and CS Theory share any solutions in the dynamical context.
Cosmological implications of unimodular gravity
Jain, Pankaj; Jaiswal, Atul; Karmakar, Purnendu; Kashyap, Gopal; Singh, Naveen K. E-mail: atijazz@iitk.ac.in E-mail: gopal@iitk.ac.in
2012-11-01
We consider a model of gravity and matter fields which is invariant only under unimodular general coordinate transformations (GCT). The determinant of the metric is treated as a separate field which transforms as a scalar under unimodular GCT. Furthermore we also demand that the theory is invariant under a new global symmetry which we call generalized conformal invariance. We study the cosmological implications of the resulting theory. We show that this theory gives a fit to the high-z supernova data which is identical to the standard Big Bang model. Hence we require some other cosmological observations to test the validity of this model. We also consider some models which do not obey the generalized conformal invariance. In these models we can fit the supernova data without introducing the standard cosmological constant term. Furthermore these models introduce only one dark component and hence solve the coincidence problem of dark matter and dark energy.
Effects of background gravity stimuli on gravity-controlled behavior
NASA Technical Reports Server (NTRS)
Mccoy, D. F.
1976-01-01
Physiological and developmental effects of altered gravity were researched. The stimulus properties of gravity have been found to possess reinforcing and aversive properties. Experimental approaches taken, used animals placed into fields of artificial gravity, in the form of parabolic or spiral centrifuges. Gravity preferences were noted and it was concluded that the psychophysics of gravity and background factors which support these behaviors should be further explored.
Phenomenological Quantum Gravity
NASA Astrophysics Data System (ADS)
Kimberly, Dagny; Magueijo, Joa~O.
2005-08-01
These notes summarize a set of lectures on phenomenological quantum gravity which one of us delivered and the other attended with great diligence. They cover an assortment of topics on the border between theoretical quantum gravity and observational anomalies. Specifically, we review non-linear relativity in its relation to loop quantum gravity and high energy cosmic rays. Although we follow a pedagogic approach we include an open section on unsolved problems, presented as exercises for the student. We also review varying constant models: the Brans-Dicke theory, the Bekenstein varying α model, and several more radical ideas. We show how they make contact with strange high-redshift data, and perhaps other cosmological puzzles. We conclude with a few remaining observational puzzles which have failed to make contact with quantum gravity, but who knows... We would like to thank Mario Novello for organizing an excellent school in Mangaratiba, in direct competition with a very fine beach indeed.
Tethered gravity laboratories study
NASA Technical Reports Server (NTRS)
Lucchetti, F.
1989-01-01
The following subject areas are covered: (1) thermal control issues; (2) attitude control sybsystem; (3) configuration constraints; (4) payload; (5) acceleration requirements on Variable Gravity Laboratory (VGL); and (6) VGL configuration highlights.
Tethered gravity laboratories study
NASA Technical Reports Server (NTRS)
Lucchetti, F.
1989-01-01
Variable Gravity Laboratory studies are discussed. The following subject areas are covered: (1) conceptual design and engineering analysis; (2) control strategies (fast crawling maneuvers, main perturbations and their effect upon the acceleration level); and (3) technology requirements.
Rotating Gravity Gradiometer Study
NASA Technical Reports Server (NTRS)
Forward, R. L.
1976-01-01
The application of a Rotating Gravity Gradiometer (RGG) system on board a Lunar Polar Orbiter (LPO) for the measurement of the Lunar gravity field was investigated. A data collection simulation study shows that a gradiometer will give significantly better gravity data than a doppler tracking system for the altitudes under consideration for the LOP, that the present demonstrated sensitivity of the RGG is adequate for measurement of the Lunar gravity gradient field, and that a single RGG instrument will provide almost as much data for geophysical interpretation as an orthogonal three axis RGG system. An engineering study of the RGG sensor/LPO spacecraft interface characteristics shows that the RGG systems under consideration are compatible with the present models of the LPO spacecraft.
Superconducting tensor gravity gradiometer
NASA Technical Reports Server (NTRS)
Paik, H. J.
1981-01-01
The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.
ERIC Educational Resources Information Center
Nelson, George
2004-01-01
Gravity is the name given to the phenomenon that any two masses, like you and the Earth, attract each other. One pulls on the Earth and the Earth pulls on one the same amount. And one does not have to be touching. Gravity acts over vast distances, like the 150 million kilometers (93 million miles) between the Earth and the Sun or the billions of…
NOTE: Circular symmetry in topologically massive gravity
NASA Astrophysics Data System (ADS)
Deser, S.; Franklin, J.
2010-05-01
We re-derive, compactly, a topologically massive gravity (TMG) decoupling theorem: source-free TMG separates into its Einstein and Cotton sectors for spaces with a hypersurface-orthogonal Killing vector, here concretely for circular symmetry. We then generalize the theorem to include matter; surprisingly, the single Killing symmetry also forces conformal invariance, requiring the sources to be null.
Gravity Before Einstein and Schwinger Before Gravity
NASA Astrophysics Data System (ADS)
Trimble, Virginia L.
2012-05-01
Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.
14 CFR 23.29 - Empty weight and corresponding center of gravity.
Code of Federal Regulations, 2014 CFR
2014-01-01
... gravity. 23.29 Section 23.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight General § 23.29 Empty weight and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must be determined by weighing the airplane with— (1) Fixed ballast;...
14 CFR 23.29 - Empty weight and corresponding center of gravity.
Code of Federal Regulations, 2010 CFR
2010-01-01
... gravity. 23.29 Section 23.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight General § 23.29 Empty weight and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must be determined by weighing the airplane with— (1) Fixed ballast;...
14 CFR 23.29 - Empty weight and corresponding center of gravity.
Code of Federal Regulations, 2013 CFR
2013-01-01
... gravity. 23.29 Section 23.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight General § 23.29 Empty weight and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must be determined by weighing the airplane with— (1) Fixed ballast;...
14 CFR 23.29 - Empty weight and corresponding center of gravity.
Code of Federal Regulations, 2012 CFR
2012-01-01
... gravity. 23.29 Section 23.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight General § 23.29 Empty weight and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must be determined by weighing the airplane with— (1) Fixed ballast;...
14 CFR 23.29 - Empty weight and corresponding center of gravity.
Code of Federal Regulations, 2011 CFR
2011-01-01
... gravity. 23.29 Section 23.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight General § 23.29 Empty weight and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must be determined by weighing the airplane with— (1) Fixed ballast;...
Axion experiments to algebraic geometry: Testing quantum gravity via the Weak Gravity Conjecture
NASA Astrophysics Data System (ADS)
Heidenreich, Ben; Reece, Matthew; Rudelius, Tom
2016-06-01
Common features of known quantum gravity theories may hint at the general nature of quantum gravity. The absence of continuous global symmetries is one such feature. This inspired the Weak Gravity Conjecture, which bounds masses of charged particles. We propose the Lattice Weak Gravity Conjecture, which further requires the existence of an infinite tower of particles of all possible charges under both abelian and nonabelian gauge groups and directly implies a cutoff for quantum field theory. It holds in a wide variety of string theory examples and has testable consequences for the real world and for pure mathematics. We sketch some implications of these ideas for models of inflation, for the QCD axion (and LIGO), for conformal field theory, and for algebraic geometry.
NASA Technical Reports Server (NTRS)
2000-01-01
In this photo, the Gravity Probe B (GP-B) space vehicle is being assembled at the Sunnyvale, California location of the Lockheed Martin Corporation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).
Einstein Gravity and Beyond: Aspects of Higher-Curvature Gravity and Black Holes
NASA Astrophysics Data System (ADS)
Chatterjee, Saugata
This thesis explores the different aspects of higher curvature gravity. The "membrane paradigm" of black holes in Einstein gravity is extended to black holes in f(R) gravity and it is shown that the higher curvature effects of f( R) gravity causes the membrane fluid to become non-Newtonian. Next a modification of the null energy condition in gravity is provided. The purpose of the null energy condition is to filter out ill-behaved theories containing ghosts. Conformal transformations, which are simple redefinitions of the spacetime, introduces serious violations of the null energy condition. This violation is shown to be spurious and a prescription for obtaining a modified null energy condition, based on the universality of the second law of thermodynamics, is provided. The thermodynamic properties of the black holes are further explored using merger of extremal black holes whose horizon entropy has topological contributions coming from the higher curvature Gauss-Bonnet term. The analysis refutes the prevalent belief in the literature that the second law of black hole thermodynamics is violated in the presence of the Gauss-Bonnet term in four dimensions. Subsequently a specific class of higher derivative scalar field theories called the galileons are obtained from a Kaluza-Klein reduction of Gauss-Bonnet gravity. Galileons are null energy condition violating theories which lead to violations of the second law of thermodynamics of black holes. These higher derivative scalar field theories which are non-minimally coupled to gravity required the development of a generalized method for obtaining the equations of motion. Utilizing this generalized method, it is shown that the inclusion of the Gauss-Bonnet term made the theory of gravity to become higher derivative, which makes it difficult to make any statements about the connection between the violation of the second law of thermodynamics and the galileon fields.
Gravity: A gauge theory perspective
NASA Astrophysics Data System (ADS)
Nester, James M.; Chen, Chiang-Mei
2016-07-01
The evolution of a generally covariant theory is under-determined. One hundred years ago such dynamics had never before been considered; its ramifications were perplexing, its future important role for all the fundamental interactions under the name gauge principle could not be foreseen. We recount some history regarding Einstein, Hilbert, Klein and Noether and the novel features of gravitational energy that led to Noether’s two theorems. Under-determined evolution is best revealed in the Hamiltonian formulation. We developed a covariant Hamiltonian formulation. The Hamiltonian boundary term gives covariant expressions for the quasi-local energy, momentum and angular momentum. Gravity can be considered as a gauge theory of the local Poincaré group. The dynamical potentials of the Poincaré gauge theory of gravity are the frame and the connection. The spacetime geometry has in general both curvature and torsion. Torsion naturally couples to spin; it could have a significant magnitude and yet not be noticed, except on a cosmological scale where it could have significant effects.
Mass gap in Yang's theory of gravity
NASA Astrophysics Data System (ADS)
Mielke, Eckehard W.
2015-06-01
The quantization of a curvature-squared model of gravity, in the affine form proposed by Yang, is reconsidered in the path integral formulation. Due to its inherent Weyl invariance, sharing this with internal Yang-Mills fields, it or some of its topological generalizations are still a possible route to quantum gravity. Instanton type solutions with double duality properties exhibit a "vacuum degeneracy", i.e. a bifurcation into distinct classical Einsteinian backgrounds. For linearized fields, this conclusively induces a mass gap in the graviton spectrum, a feature which is an open problem in the quantization of internal Yang-Mills fields.
Novel Tests of Gravity Below Fifty Microns
NASA Astrophysics Data System (ADS)
Martinez, Gabriela; Johnson, Jeremy; Guerrero, Ian; Hoyle, C. D.
2016-03-01
Due to inconsistencies between General Relativity and the Standard Model, tests of gravity remain at the forefront of experimental physics. At Humboldt State University, undergraduates and faculty are designing an experiment sensitive enough to detect gravitational interactions below the 50 micron scale. The experiment measures the twist of a torsion pendulum as an attractor mass is oscillated nearby in a parallel plate configuration, providing time varying gravitational torque on the pendulum. The size and distance dependence of the torque variation will provide a means to determine any deviation from current models of gravity on untested scales. Supported by NSF Grants 1065697 and 1306783.
Gravity Wave Predictability and Dynamics in Deepwave
NASA Astrophysics Data System (ADS)
Doyle, J. D.; Fritts, D. C.; Smith, R. B.; Eckermann, S. D.; Taylor, M. J.; Dörnbrack, A.; Uddstrom, M.; Reynolds, C. A.; Reinecke, A.; Jiang, Q.
2015-12-01
The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere (MLT). This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new lidar and airglow instruments, as well as dropwindsondes and a full suite of flight level instruments including the microwave temperature profiler (MTP), providing temperatures and vertical winds spanning altitudes from immediately above the NGV flight altitude (~13 km) to ~100 km. The region near New Zealand was chosen since all the relevant GW sources (e.g., mountains, cyclones, jet streams) occur strongly here, and upper-level winds in austral winter permit gravity waves to propagate to very high altitudes. The COAMPS adjoint modeling system provided forecast sensitivity in real time during the six-week DEEPWAVE field phase. Five missions were conducted using the NGV to observe regions of high forecast sensitivity, as diagnosed using the COAMPS adjoint model. In this presentation, we provide a summary of the sensitivity characteristics and explore the implications for predictability of low-level winds crucial for gravity wave launching, as well as predictability of gravity wave characteristics in the stratosphere. In general, the sensitive regions were characterized by localized strong dynamics, often involving intense baroclinic systems with deep convection. The results of the adjoint modeling system suggest that gravity wave launching and the characteristics of the gravity waves can be linked to these sensitive regions near frontal zones within baroclinic systems. The predictability links between the tropospheric fronts, cyclones, jet regions, and gravity
Kramer, Michael
2011-09-22
The last years have seen continuing activities in the exploration of our understanding of gravity, motivated by results from precision cosmology and new precision astrophysical experiments. At the centre of attention lies the question as to whether general relativity is the correct theory of gravity. In answering this question, we work not only towards correctly interpreting the phenomenon of 'dark energy' but also towards the goal of achieving a quantum theory of gravity. In these efforts, the observations of pulsars, especially those in binary systems, play an important role. Pulsars do not only provide the only evidence for the existence of gravitational waves so far, but they also provide precision tests of general relativity and alternative theories of gravity. This talk summarizes the current state-of-art in these experiments and looks into the future.
New variables for classical and quantum gravity
NASA Technical Reports Server (NTRS)
Ashtekar, Abhay
1986-01-01
A Hamiltonian formulation of general relativity based on certain spinorial variables is introduced. These variables simplify the constraints of general relativity considerably and enable one to imbed the constraint surface in the phase space of Einstein's theory into that of Yang-Mills theory. The imbedding suggests new ways of attacking a number of problems in both classical and quantum gravity. Some illustrative applications are discussed.
Anisotropic higher derivative gravity and inflationary universe
Kao, W. F.
2006-08-15
Stability analysis of the Kantowski-Sachs type universe in pure higher derivative gravity theory is studied in detail. The nonredundant generalized Friedmann equation of the system is derived by introducing a reduced one-dimensional generalized Kantowski-Sachs type action. Existence and stability of inflationary solution in the presence of higher derivative terms are also studied in detail. Implications to the choice of physical theories are discussed in detail in this paper.
Gravity effects on endogenous movements
NASA Astrophysics Data System (ADS)
Johnsson, Anders; Antonsen, Frank
-ation stimulations (gravitropism reactions). Such a negative feedback can account for gravity initiated transport, resulting in lateral water transport and overall movements. The simulation results indicate that self-sustained oscillations can occur on such a cylinder of cells. It will also be demonstrated that the introduction of feedback in the model results in longer circum-nutation periods. It will be discussed how this generic modeling approach could be applied to discuss oscillatory plant movements in general and how other environmental factors, as for instance light gradients, could couple to the self-sustained movements. The oscillations require weightlessness for proper investigations. References: Antonsen F.: Biophysical studies of plant growth movements in microgravity and under 1 g conditions. PhD thesis, Norwegian University of Science and Technology 1998. Johnsson A., Solheim BGB, Iversen T.-H.: Gravity amplifies and microgravity decreases cir-cumnutations in Arabidopsis thaliana stems: results from a space experiment.-New Phytologist 182: 621-629. 2009. Turing AM.: The chemical basis for morphogenesis.-Phil Trans. R. Soc. London Ser B237:37 -72. 1952.
Nonlocal Gravity and Structure in the Universe
Dodelson, Scott; Park, Sohyun
2014-08-26
The observed acceleration of the Universe can be explained by modifying general relativity. One such attempt is the nonlocal model of Deser and Woodard. Here we fix the background cosmology using results from the Planck satellite and examine the predictions of nonlocal gravity for the evolution of structure in the universe, confronting the model with three tests: gravitational lensing, redshift space distortions, and the estimator of gravity $E_G$. Current data favor general relativity (GR) over nonlocal gravity: fixing primordial cosmology with the best fit parameters from Planck leads to weak lensing results favoring GR by 5.9 sigma; redshift space distortions measurements of the growth rate preferring GR by 7.8 sigma; and the single measurement of $E_G$ favoring GR, but by less than 1-sigma. The significance holds up even after the parameters are allowed to vary within Planck limits. The larger lesson is that a successful modified gravity model will likely have to suppress the growth of structure compared to general relativity.
Constraining torsion with Gravity Probe B
Mao Yi; Guth, Alan H.; Cabi, Serkan; Tegmark, Max
2007-11-15
It is well-entrenched folklore that all torsion gravity theories predict observationally negligible torsion in the solar system, since torsion (if it exists) couples only to the intrinsic spin of elementary particles, not to rotational angular momentum. We argue that this assumption has a logical loophole which can and should be tested experimentally, and consider nonstandard torsion theories in which torsion can be generated by macroscopic rotating objects. In the spirit of action=reaction, if a rotating mass like a planet can generate torsion, then a gyroscope would be expected to feel torsion. An experiment with a gyroscope (without nuclear spin) such as Gravity Probe B (GPB) can test theories where this is the case. Using symmetry arguments, we show that to lowest order, any torsion field around a uniformly rotating spherical mass is determined by seven dimensionless parameters. These parameters effectively generalize the parametrized post-Newtonian formalism and provide a concrete framework for further testing Einstein's general theory of relativity (GR). We construct a parametrized Lagrangian that includes both standard torsion-free GR and Hayashi-Shirafuji maximal torsion gravity as special cases. We demonstrate that classic solar system tests rule out the latter and constrain two observable parameters. We show that Gravity Probe B is an ideal experiment for further constraining nonstandard torsion theories, and work out the most general torsion-induced precession of its gyroscope in terms of our torsion parameters.
Feynman propagator for spin foam quantum gravity.
Oriti, Daniele
2005-03-25
We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".
Entropic force, noncommutative gravity, and ungravity
Nicolini, Piero
2010-08-15
After recalling the basic concepts of gravity as an emergent phenomenon, we analyze the recent derivation of Newton's law in terms of entropic force proposed by Verlinde. By reviewing some points of the procedure, we extend it to the case of a generic quantum gravity entropic correction to get compelling deviations to the Newton's law. More specifically, we study: (1) noncommutative geometry deviations and (2) ungraviton corrections. As a special result in the noncommutative case, we find that the noncommutative character of the manifold would be equivalent to the temperature of a thermodynamic system. Therefore, in analogy to the zero temperature configuration, the description of spacetime in terms of a differential manifold could be obtained only asymptotically. Finally, we extend the Verlinde's derivation to a general case, which includes all possible effects, noncommutativity, ungravity, asymptotically safe gravity, electrostatic energy, and extra dimensions, showing that the procedure is solid versus such modifications.
Tethered gravity laboratories study
NASA Technical Reports Server (NTRS)
Lucchetti, F.
1990-01-01
The scope of the study is to investigate ways of controlling the microgravity environment of the International Space Station by means of a tethered system. Four main study tasks were performed. First, researchers analyzed the utilization of the tether systems to improve the lowest possible steady gravity level on the Space Station and the tether capability to actively control the center of gravity position in order to compensate for activities that would upset the mass distribution of the Station. The purpose of the second task was to evaluate the whole of the experiments performable in a variable gravity environment and the related beneficial residual accelerations, both for pure and applied research in the fields of fluid, materials, and life science, so as to assess the relevance of a variable g-level laboratory. The third task involves the Tethered Variable Gravity Laboratory. The use of the facility that would crawl along a deployed tether and expose experiments to varying intensities of reduced gravity is discussed. Last, a study performed on the Attitude Tether Stabilizer concept is discussed. The stabilization effect of ballast masses tethered to the Space Station was investigated as a means of assisting the attitude control system of the Station.
NASA Technical Reports Server (NTRS)
Konopliv, Alexander S.; Sjogren, William L.
1996-01-01
This report documents the Venus gravity methods and results to date (model MGNP90LSAAP). It is called a handbook in that it contains many useful plots (such as geometry and orbit behavior) that are useful in evaluating the tracking data. We discuss the models that are used in processing the Doppler data and the estimation method for determining the gravity field. With Pioneer Venus Orbiter and Magellan tracking data, the Venus gravity field was determined complete to degree and order 90 with the use of the JPL Cray T3D Supercomputer. The gravity field shows unprecedented high correlation with topography and resolution of features to the 2OOkm resolution. In the procedure for solving the gravity field, other information is gained as well, and, for example, we discuss results for the Venus ephemeris, Love number, pole orientation of Venus, and atmospheric densities. Of significance is the Love number solution which indicates a liquid core for Venus. The ephemeris of Venus is determined to an accuracy of 0.02 mm/s (tens of meters in position), and the rotation period to 243.0194 +/- 0.0002 days.
NASA Technical Reports Server (NTRS)
Morey-Holton, Emily R.
1996-01-01
Gravity has been the most constant environmental factor throughout the evolution of biological species on Earth. Organisms are rarely exposed to other gravity levels, either increased or decreased, for prolonged periods. Thus, evolution in a constant 1G field has historically prevented us from appreciating the potential biological consequences of a multi-G universe. To answer the question 'Can terrestrial life be sustained and thrive beyond our planet?' we need to understand the importance of gravity on living systems, and we need to develop a multi-G, rather than a 1G, mentality. The science of gravitational biology took a giant step with the advent of the space program, which provided the first opportunity to examine living organisms in gravity environments lower than could be sustained on Earth. Previously, virtually nothing was known about the effects of extremely low gravity on living organisms, and most of the initial expectations were proven wrong. All species that have flown in space survive in microgravity, although no higher organism has ever completed a life cycle in space. It has been found, however, that many systems change, transiently or permanently, as a result of prolonged exposure to microgravity.
Massive gravity wrapped in the cosmic web
Shim, Junsup; Lee, Jounghun; Li, Baojiu E-mail: jounghun@astro.snu.ac.kr
2014-03-20
We study how the filamentary pattern of the cosmic web changes if the true gravity deviates from general relativity (GR) on a large scale. The f(R) gravity, whose strength is controlled to satisfy the current observational constraints on the cluster scale, is adopted as our fiducial model and a large, high-resolution N-body simulation is utilized for this study. By applying the minimal spanning tree algorithm to the halo catalogs from the simulation at various epochs, we identify the main stems of the rich superclusters located in the most prominent filamentary section of the cosmic web and determine their spatial extents per member cluster to be the degree of their straightness. It is found that the f(R) gravity has the effect of significantly bending the superclusters and that the effect becomes stronger as the universe evolves. Even in the case where the deviation from GR is too small to be detectable by any other observables, the degree of the supercluster straightness exhibits a conspicuous difference between the f(R) and the GR models. Our results also imply that the supercluster straightness could be a useful discriminator of f(R) gravity from the coupled dark energy since it is shown to evolve differently between the two models. As a final conclusion, the degree of the straightness of the rich superclusters should provide a powerful cosmological test of large scale gravity.
Gait transitions in simulated reduced gravity.
Ivanenko, Yuri P; Labini, Francesca Sylos; Cappellini, Germana; Macellari, Velio; McIntyre, Joseph; Lacquaniti, Francesco
2011-03-01
Gravity has a strong effect on gait and the speed of gait transitions. A gait has been defined as a pattern of locomotion that changes discontinuously at the transition to another gait. On Earth, during gradual speed changes, humans exhibit a sudden discontinuous switch from walking to running at a specific speed. To study the effects of altered gravity on both the stance and swing legs, we developed a novel unloading exoskeleton that allows a person to step in simulated reduced gravity by tilting the body relative to the vertical. Using different simulation techniques, we confirmed that at lower gravity levels the transition speed is slower (in accordance with the previously reported Froude number ∼0.5). Surprisingly, however, we found that at lower levels of simulated gravity the transition between walking and running was generally gradual, without any noticeable abrupt change in gait parameters. This was associated with a significant prolongation of the swing phase, whose duration became virtually equal to that of stance in the vicinity of the walk-run transition speed, and with a gradual shift from inverted-pendulum gait (walking) to bouncing gait (running).
Gravity and embryonic development
NASA Technical Reports Server (NTRS)
Young, R. S.
1976-01-01
The relationship between the developing embryo (both plant and animal) and a gravitational field has long been contemplated. The difficulty in designing critical experiments on the surface of the earth because of its background of 1 g, has been an obstacle to a resolution of the problem. Biological responses to gravity (particularly in plants) are obvious in many cases; however, the influence of gravity as an environmental input to the developing embryo is not as obvious and has proven to be extremely difficult to define. In spite of this, over the years numerous attempts have been made using a variety of embryonic materials to come to grips with the role of gravity in development. Three research tools are available: the centrifuge, the clinostat, and the orbiting spacecraft. Experimental results are now available from all three sources. Some tenuous conclusions are drawn, and an attempt at a unifying theory of gravitational influence on embryonic development is made.
Newberry Combined Gravity 2016
Kelly Rose
2016-01-22
Newberry combined gravity from Zonge Int'l, processed for the EGS stimulation project at well 55-29. Includes data from both Davenport 2006 collection and for OSU/4D EGS monitoring 2012 collection. Locations are NAD83, UTM Zone 10 North, meters. Elevation is NAVD88. Gravity in milligals. Free air and observed gravity are included, along with simple Bouguer anomaly and terrain corrected Bouguer anomaly. SBA230 means simple Bouguer anomaly computed at 2.30 g/cc. CBA230 means terrain corrected Bouguer anomaly at 2.30 g/cc. This suite of densities are included (g/cc): 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.67.
New standards for reducing gravity data: The North American gravity database
Hinze, W. J.; Aiken, C.; Brozena, J.; Coakley, B.; Dater, D.; Flanagan, G.; Forsberg, R.; Hildenbrand, T.; Keller, Gordon R.; Kellogg, J.; Kucks, R.; Li, X.; Mainville, A.; Morin, R.; Pilkington, M.; Plouff, D.; Ravat, D.; Roman, D.; Urrutia-Fucugauchi, J.; Veronneau, M.; Webring, M.; Winester, D.
2005-01-01
The North American gravity database as well as databases from Canada, Mexico, and the United States are being revised to improve their coverage, versatility, and accuracy. An important part of this effort is revising procedures for calculating gravity anomalies, taking into account our enhanced computational power, improved terrain databases and datums, and increased interest in more accurately defining long-wavelength anomaly components. Users of the databases may note minor differences between previous and revised database values as a result of these procedures. Generally, the differences do not impact the interpretation of local anomalies but do improve regional anomaly studies. The most striking revision is the use of the internationally accepted terrestrial ellipsoid for the height datum of gravity stations rather than the conventionally used geoid or sea level. Principal facts of gravity observations and anomalies based on both revised and previous procedures together with germane metadata will be available on an interactive Web-based data system as well as from national agencies and data centers. The use of the revised procedures is encouraged for gravity data reduction because of the widespread use of the global positioning system in gravity fieldwork and the need for increased accuracy and precision of anomalies and consistency with North American and national databases. Anomalies based on the revised standards should be preceded by the adjective "ellipsoidal" to differentiate anomalies calculated using heights with respect to the ellipsoid from those based on conventional elevations referenced to the geoid. ?? 2005 Society of Exploration Geophysicists. All rights reserved.
Terrestrial gravity data analysis for interim gravity model improvement
NASA Technical Reports Server (NTRS)
1987-01-01
This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.
Seeking the Light: Gravity Without the Influence of Gravity
NASA Technical Reports Server (NTRS)
Sack, Fred; Kern, Volker; Reed, Dave; Etheridge, Guy (Technical Monitor)
2002-01-01
All living things sense gravity like humans might sense light or sound. The Biological Research In Canisters (BRIC-14) experiment, explores how moss cells sense and respond to gravity and light. This experiment studies how gravity influences the internal structure of moss cells and seeks to understand the influences of the spaceflight environment on cell growth. This knowledge will help researchers understand the role of gravity in the evolution of cells and life on earth.
Polchinski, Joseph [Kavli Institute for Theoretical Physics
2016-07-12
Gauge theories, which describe the particle interactions, are well understood, while quantum gravity leads to many puzzles. Remarkably, in recent years we have learned that these are actually dual, the same system written in different variables. On the one hand, this provides our most precise description of quantum gravity, resolves some long-standing paradoxes, and points to new principles. On the other, it gives a new perspective on strong interactions, with surprising connections to other areas of physics. I describe these ideas, and discuss current and future directions.
Resummation of Massive Gravity
Rham, Claudia de; Gabadadze, Gregory; Tolley, Andrew J.
2011-06-10
We construct four-dimensional covariant nonlinear theories of massive gravity which are ghost-free in the decoupling limit to all orders. These theories resume explicitly all the nonlinear terms of an effective field theory of massive gravity. We show that away from the decoupling limit the Hamiltonian constraint is maintained at least up to and including quartic order in nonlinearities, hence excluding the possibility of the Boulware-Deser ghost up to this order. We also show that the same remains true to all orders in a similar toy model.
Light-like scattering in quantum gravity
NASA Astrophysics Data System (ADS)
Bjerrum-Bohr, N. E. J.; Donoghue, John F.; Holstein, Barry R.; Planté, Ludovic; Vanhove, Pierre
2016-11-01
We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin- 1/2 , spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.
Junction conditions in extended Teleparallel gravities
De la Cruz-Dombriz, Álvaro; Dunsby, Peter K.S.; Sáez-Gómez, Diego E-mail: peter.dunsby@uct.ac.za
2014-12-01
In the context of extended Teleparallel gravity theories, we address the issue of junction conditions required to guarantee the correct matching of different regions of spacetime. In the absence of shells/branes, these conditions turn out to be more restrictive than their counterparts in General Relativity as in other extended theories of gravity. In fact, the general junction conditions on the matching hypersurfaces depend on the underlying theory and a new condition on the induced tetrads in order to avoid delta-like distributions in the field equations. This result imposes strict consequences on the viability of standard solutions such as the Einstein-Straus-like construction. We find that the continuity of the scalar torsion is required in order to recover the usual General Relativity results.
What is gravity? Find out about the balance between gravity and inertia that keeps the International Space Station in orbit. Learn why astronauts "float" in space and how the space shuttle has to s...
The Role of GRAIL Orbit Determination in Preprocessing of Gravity Science Measurements
NASA Technical Reports Server (NTRS)
Kruizinga, Gerhard; Asmar, Sami; Fahnestock, Eugene; Harvey, Nate; Kahan, Daniel; Konopliv, Alex; Oudrhiri, Kamal; Paik, Meegyeong; Park, Ryan; Strekalov, Dmitry; Watkins, Michael; Yuan, Dah-Ning
2013-01-01
The Gravity Recovery And Interior Laboratory (GRAIL) mission has constructed a lunar gravity field with unprecedented uniform accuracy on the farside and nearside of the Moon. GRAIL lunar gravity field determination begins with preprocessing of the gravity science measurements by applying corrections for time tag error, general relativity, measurement noise and biases. Gravity field determination requires the generation of spacecraft ephemerides of an accuracy not attainable with the pre-GRAIL lunar gravity fields. Therefore, a bootstrapping strategy was developed, iterating between science data preprocessing and lunar gravity field estimation in order to construct sufficiently accurate orbit ephemerides.This paper describes the GRAIL measurements, their dependence on the spacecraft ephemerides and the role of orbit determination in the bootstrapping strategy. Simulation results will be presented that validate the bootstrapping strategy followed by bootstrapping results for flight data, which have led to the latest GRAIL lunar gravity fields.
A gauge-theoretic approach to gravity
Krasnov, Kirill
2012-01-01
Einstein's general relativity (GR) is a dynamical theory of the space–time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang–Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach. PMID:22792040
Solar System Test for Alternative Gravity Theories
NASA Astrophysics Data System (ADS)
Bustos, Richard
2015-04-01
Over the past year I've worked with Dr. Biswas and Dr.Brans from Loyola University, on different aspects of General relativity. More recently we have been focusing on particle and photon orbits in Schwarzschild-like metric which is relevant to understand observations such as photon deflection and perihelion precession of Mercury. These observations can be used to test alternative gravity theories, such as f(R) Theories. Such solar system tests have proved extremely useful to constrain alternative theories of gravity, such as f(R) theories that try to solve the dark energy problem. While so far most theorists have focused on the simplest f(R) type of modification of gravity to realize the phase of late time cosmic speed-up that we are observing, there are several other viable candidates. In particular, many ``effective'' approaches to gravity gives rise to f(R,G) type of modifications, where G is the Gauss Bonnet term. Accordingly, we are currently trying to understand how solar system tests can constrain this more general class of f(R,G) dark energy models. In my talk I will present our progress in this direction. NSF Grant
A gauge-theoretic approach to gravity.
Krasnov, Kirill
2012-08-08
Einstein's general relativity (GR) is a dynamical theory of the space-time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang-Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach.
Artificial Gravity Research Plan
NASA Technical Reports Server (NTRS)
Cromwell, Ronita
2014-01-01
This document describes the forward working plan to identify what countermeasure resources are needed for a vehicle with an artificial gravity module (intermittent centrifugation) and what Countermeasure Resources are needed for a rotating transit vehicle (continuous centrifugation) to minimize the effects of microgravity to Mars Exploration crewmembers.
ERIC Educational Resources Information Center
Newburgh, Ronald
2010-01-01
It's both surprising and rewarding when an old, standard problem reveals a subtlety that expands its pedagogic value. I realized recently that the role of gravity in the range equation for a projectile is not so simple as first appears. This realization may be completely obvious to others but was quite new to me.
Variable gravity research facility
NASA Technical Reports Server (NTRS)
Allan, Sean; Ancheta, Stan; Beine, Donna; Cink, Brian; Eagon, Mark; Eckstein, Brett; Luhman, Dan; Mccowan, Daniel; Nations, James; Nordtvedt, Todd
1988-01-01
Spin and despin requirements; sequence of activities required to assemble the Variable Gravity Research Facility (VGRF); power systems technology; life support; thermal control systems; emergencies; communication systems; space station applications; experimental activities; computer modeling and simulation of tether vibration; cost analysis; configuration of the crew compartments; and tether lengths and rotation speeds are discussed.
Nicole Lautze
2015-12-15
Gravity model for the state of Hawaii. Data is from the following source: Flinders, A.F., Ito, G., Garcia, M.O., Sinton, J.M., Kauahikaua, J.P., and Taylor, B., 2013, Intrusive dike complexes, cumulate cores, and the extrusive growth of Hawaiian volcanoes: Geophysical Research Letters, v. 40, p. 3367–3373, doi:10.1002/grl.50633.
NASA Technical Reports Server (NTRS)
Bowin, C. O.
1976-01-01
Lunar gravitational properties were analyzed along with the development of flat moon and curved moon computer models. Gravity anomalies and mascons were given particular attention. Geophysical and geological considerations were included, and comparisons were made between the gravitional fields of the Earth, Mars, and the Moon.
Spaceborne Gravity Gradiometers
NASA Technical Reports Server (NTRS)
Wells, W. C. (Editor)
1984-01-01
The current status of gravity gradiometers and technology that could be available in the 1990's for the GRAVSAT-B mission are assessed. Problems associated with sensors, testing, spacecraft, and data processing are explored as well as critical steps, schedule, and cost factors in the development plan.
NASA Astrophysics Data System (ADS)
Oda, Ichiro
We propose a topological model of induced gravity (pregeometry) where both Newton’s coupling constant and the cosmological constant appear as integration constants in solving field equations. The matter sector of a scalar field is also considered, and by solving field equations it is shown that various types of cosmological solutions in the Friedmann-Robertson-Walker (FRW) universe can be obtained. A detailed analysis is given of the meaning of the BRST transformations, which make the induced gravity be a topological field theory, by means of the canonical quantization analysis, and the physical reason why such BRST transformations are needed in the present formalism is clarified. Finally, we propose a dynamical mechanism for fixing the Lagrange multiplier fields by following the Higgs mechanism. The present study clearly indicates that the induced gravity can be constructed at the classical level without recourse to quantum fluctuations of matter and suggests an interesting relationship between the induced gravity and the topological quantum-field theory (TQFT).
Adhesion Casting In Low Gravity
NASA Technical Reports Server (NTRS)
Noever, David A.; Cronise, Raymond J.
1996-01-01
Adhesion casting in low gravity proposed as technique for making new and improved materials. Advantages of low-gravity adhesion casting, in comparison with adhesion casting in normal Earth gravity, comes from better control over, and greater uniformity of, thicknesses of liquid films that form on and adhere to solid surfaces during casting.
Non-anticommutative quantum gravity
NASA Astrophysics Data System (ADS)
Moffat, J. W.
2015-06-01
A calculation of the one loop gravitational self-energy graph in non-anticommutative quantum gravity reveals that graviton loops are damped by internal momentum dependent factors in the modified propagator and the vertex functions. The non-anticommutative quantum gravity perturbation theory is finite for matter-free gravity and for matter interactions.
Gravity Modeling for Variable Fidelity Environments
NASA Technical Reports Server (NTRS)
Madden, Michael M.
2006-01-01
Aerospace simulations can model worlds, such as the Earth, with differing levels of fidelity. The simulation may represent the world as a plane, a sphere, an ellipsoid, or a high-order closed surface. The world may or may not rotate. The user may select lower fidelity models based on computational limits, a need for simplified analysis, or comparison to other data. However, the user will also wish to retain a close semblance of behavior to the real world. The effects of gravity on objects are an important component of modeling real-world behavior. Engineers generally equate the term gravity with the observed free-fall acceleration. However, free-fall acceleration is not equal to all observers. To observers on the sur-face of a rotating world, free-fall acceleration is the sum of gravitational attraction and the centrifugal acceleration due to the world's rotation. On the other hand, free-fall acceleration equals gravitational attraction to an observer in inertial space. Surface-observed simulations (e.g. aircraft), which use non-rotating world models, may choose to model observed free fall acceleration as the gravity term; such a model actually combines gravitational at-traction with centrifugal acceleration due to the Earth s rotation. However, this modeling choice invites confusion as one evolves the simulation to higher fidelity world models or adds inertial observers. Care must be taken to model gravity in concert with the world model to avoid denigrating the fidelity of modeling observed free fall. The paper will go into greater depth on gravity modeling and the physical disparities and synergies that arise when coupling specific gravity models with world models.
Random coupling of acoustic-gravity waves in the atmosphere
NASA Astrophysics Data System (ADS)
Millet, Christophe; Lott, Francois; Haynes, Christophe
2016-11-01
In numerical modeling of long-range acoustic propagation in the atmosphere, the effect of gravity waves on low-frequency acoustic waves is often ignored. As the sound speed far exceeds the gravity wave phase speed, these two types of waves present different spatial scales and their linear coupling is weak. It is possible, however, to obtain relatively strong couplings via sound speed profile changes with altitude. In the present study, this scenario is analyzed for realistic gravity wave fields and the incident acoustic wave is modeled as a narrow-banded acoustic pulse. The gravity waves are represented as a random field using a stochastic multiwave parameterization of non-orographic gravity waves. The parameterization provides independent monochromatic gravity waves, and the gravity wave field is obtained as the linear superposition of the waves produced. When the random terms are retained, a more generalized wave equation is obtained that both qualitatively and quantitatively agrees with the observations of several highly dispersed stratospheric wavetrains. Here, we show that the cumulative effect of gravity wave breakings makes the sensitivity of ground-based acoustic signals large, in that small changes in the parameterization can create or destroy an acoustic wavetrain.
Weak gravitational lensing in fourth order gravity
NASA Astrophysics Data System (ADS)
Stabile, A.; Stabile, An.
2012-02-01
For a general class of analytic functions f(R,RαβRαβ,RαβγδRαβγδ) we discuss the gravitational lensing in the Newtonian limit of theory. From the properties of the Gauss-Bonnet invariant it is enough to consider only one curvature invariant between the Ricci tensor and the Riemann tensor. Then, we analyze the dynamics of a photon embedded in a gravitational field of a generic f(R,RαβRαβ) gravity. The metric is time independent and spherically symmetric. The metric potentials are Schwarzschild-like, but there are two additional Yukawa terms linked to derivatives of f with respect to two curvature invariants. Considering first the case of a pointlike lens, and after the one of a generic matter distribution of the lens, we study the deflection angle and the angular position of images. Though the additional Yukawa terms in the gravitational potential modifies dynamics with respect to general relativity, the geodesic trajectory of the photon is unaffected by the modification if we consider only f(R) gravity. We find different results (deflection angle smaller than the angle of general relativity) only due to the introduction of a generic function of the Ricci tensor square. Finally, we can affirm that the lensing phenomena for all f(R) gravities are equal to the ones known for general relativity. We conclude the paper by showing and comparing the deflection angle and position of images for f(R,RαβRαβ) gravity with respect to the gravitational lensing of general relativity.
Einstein, Mach, and the Fortunes of Gravity
NASA Astrophysics Data System (ADS)
Kaiser, David
2005-04-01
Early in his life, Albert Einstein considered himself a devoted student of the physicist and philosopher Ernst Mach. Mach's famous critiques of Newton's absolute space and time -- most notably Mach's explanation of Newton's bucket experiment -- held a strong sway over Einstein as he struggled to formulate general relativity. Einstein was convinced that his emerging theory of gravity should be consistent with Mach's principle, which states that local inertial effects arise due to gravitational interactions with distant matter. Once completed, Einstein's general relativity enjoyed two decades of worldwide attention, only to fall out of physicists' interest during the 1930s and 1940s, when topics like nuclear physics claimed center stage. Gravity began to return to the limelight during the 1950s and especially the 1960s, and once again Mach proved to be a major spur: Princeton physicists Carl Brans and Robert Dicke introduced a rival theory of gravity in 1961 which they argued satisfied Mach's principle better than Einstein's general relativity did. The Brans-Dicke theory, and the new generation of experiments designed to test its predictions against those of general relativity, played a major role in bringing Einstein's beloved topic back to the center of physics.
Tribology Experiment in Zero Gravity
NASA Technical Reports Server (NTRS)
Pan, C. H. T.; Gause, R. L.; Whitaker, A. F.; Finckenor, M. M.
2015-01-01
A tribology experiment in zero gravity was performed during the orbital flight of Spacelab 1 to study the motion of liquid lubricants over solid surfaces. The absence of a significant gravitational force facilitates observation of such motions as controlled by interfacial and capillary forces. Two experimental configurations were used. One deals with the liquid on one solid surface, and the other with the liquid between a pair of closed spaced surfaces. Time sequence photographs of fluid motion on a solid surface yielded spreading rate data of several fluid-surface combinations. In general, a slow spreading process as governed by the tertiary junction can be distinguished from a more rapid process which is driven by surface tension controlled internal fluid pressure. Photographs were also taken through the transparent bushings of several experimental journal bearings. Morphology of incomplete fluid films and its fluctuation with time suggest the presence or absence of unsteady phenomena of the bearing-rotor system in various arrangements.
Industrial processes influenced by gravity
NASA Technical Reports Server (NTRS)
Ostrach, Simon
1988-01-01
In considering new directions for low gravity research with particular regard to broadening the number and types of industrial involvements, it is noted that transport phenomena play a vital role in diverse processes in the chemical, pharmaceutical, food, and biotech industries. Relatively little attention has been given to the role of gravity in such processes. Accordingly, numerous industrial processes and phenomena are identified which involve gravity and/or surface tension forces. Phase separations and mixing are examples that will be significantly different in low gravity conditions. A basis is presented for expanding the scope of the low gravity research program and the potential benefits of such research is indicated.
Schwinger's Approach to Einstein's Gravity
NASA Astrophysics Data System (ADS)
Milton, Kim
2012-05-01
Albert Einstein was one of Julian Schwinger's heroes, and Schwinger was greatly honored when he received the first Einstein Prize (together with Kurt Godel) for his work on quantum electrodynamics. Schwinger contributed greatly to the development of a quantum version of gravitational theory, and his work led directly to the important work of (his students) Arnowitt, Deser, and DeWitt on the subject. Later in the 1960's and 1970's Schwinger developed a new formulation of quantum field theory, which he dubbed Source Theory, in an attempt to get closer contact to phenomena. In this formulation, he revisited gravity, and in books and papers showed how Einstein's theory of General Relativity emerged naturally from one physical assumption: that the carrier of the gravitational force is a massless, helicity-2 particle, the graviton. (There has been a minor dispute whether gravitational theory can be considered as the massless limit of a massive spin-2 theory; Schwinger believed that was the case, while Van Dam and Veltman concluded the opposite.) In the process, he showed how all of the tests of General Relativity could be explained simply, without using the full machinery of the theory and without the extraneous concept of curved space, including such effects as geodetic precession and the Lense-Thirring effect. (These effects have now been verified by the Gravity Probe B experiment.) This did not mean that he did not accept Einstein's equations, and in his book and full article on the subject, he showed how those emerge essentially uniquely from the assumption of the graviton. So to speak of Schwinger versus Einstein is misleading, although it is true that Schwinger saw no necessity to talk of curved spacetime. In this talk I will lay out Schwinger's approach, and the connection to Einstein's theory.
Precise Determination of the Zero-Gravity Surface Figure of a Mirror without Gravity-Sag Modeling
NASA Technical Reports Server (NTRS)
Bloemhof, Eric E.; Lam, Jonathan C.; Feria, V. Alfonso; Chang, Zensheu
2007-01-01
The zero-gravity surface figure of optics used in spaceborne astronomical instruments must be known to high accuracy, but earthbound metrology is typically corrupted by gravity sag. Generally, inference of the zero-gravity surface figure from a measurement made under normal gravity requires finite-element analysis (FEA), and for accurate results the mount forces must be well characterized. We describe how to infer the zero-gravity surface figure very precisely using the alternative classical technique of averaging pairs of measurements made with the direction of gravity reversed. We show that mount forces as well as gravity must be reversed between the two measurements and discuss how the St. Venant principle determines when a reversed mount force may be considered to be applied at the same place in the two orientations. Our approach requires no finite-element modeling and no detailed knowledge of mount forces other than the fact that they reverse and are applied at the same point in each orientation. If mount schemes are suitably chosen, zero-gravity optical surfaces may be inferred much more simply and more accurately than with FEA.
NASA Astrophysics Data System (ADS)
Schutz, Bernard
2003-12-01
Preface; 1. Gravity on Earth: the inescapable force; 2. And then came Newton: gravity takes center stage; 3. Satellites: what goes up doesn't always come down; 4. The Solar System: a triumph for Newtonian gravity; 5. Tides and tidal forces: the real signature of gravity; 6. Interplanetary travel: the cosmic roller-coaster; 7. Atmospheres: keeping planets covered; 8. Gravity in the Sun: keeping the heat on; 9. Reaching for the stars: the emptiness of outer space; 10. The colors of stars: why they are black (bodies); 11. Stars at work: factories for the Universe; 12. Birth to death: the life cycle of the stars; 13. Binary stars: tidal forces on a huge scale; 14. Galaxies: atoms in the Universe; 15. Physics near the speed of light: Einstein stands on Galileo's shoulders; 16. Relating to Einstein: logic and experiment in relativity; 17. Spacetime geometry: finding out what is not relative; 18. Einstein's gravity: the curvature of spacetime in the Solar System; 19. Einstein's recipe: fashioning the geometry of gravity; 20. Neutron stars: laboratories of strong gravity; 21. Black holes: gravity's one-way street; 22. Gravitational waves: gravity speaks; 23. Gravitational lenses: bringing the Universe into focus; 24. Cosmology: the study of everything; 25. Big Bang: the seed from which we grew; 26. Einstein's Universe: the geometry of cosmology; 27. Ask the Universe: cosmic questions at the frontiers of gravity; Appendix A. Useful constants: values used in this book; Appendix B. Background: what you need to know before you start.
Constraining gravity with hadron physics: neutron stars, modified gravity and gravitational waves
NASA Astrophysics Data System (ADS)
Llanes-Estrada, Felipe J.
2017-03-01
The finding of Gravitational Waves (GW) by the aLIGO scientific and VIRGO collaborations opens opportunities to better test and understand strong interactions, both nuclear-hadronic and gravitational. Assuming General Relativity holds, one can constrain hadron physics at a neutron star. But precise knowledge of the Equation of State and transport properties in hadron matter can also be used to constrain the theory of gravity itself. I review a couple of these opportunities in the context of modified f (R) gravity, the maximum mass of neutron stars, and progress in the Equation of State of neutron matter from the chiral effective field theory of QCD.
Sediment gravity flow—the conceptual problems
NASA Astrophysics Data System (ADS)
Dasgupta, Prabir
2003-09-01
The term sediment gravity flow was introduced to describe the major flow types involved in resedimentation processes and was defined as the flow of sediments or sediment-fluid mixture in which the interstitial fluid is driven by the grains moving under the action of gravity. Critical analysis of respective flow mechanism reveals that these flow types markedly depart from the definitive properties of a sediment gravity flow, and the possibility of natural existence of a sediment gravity flow sensu stricto appears doubtful. The flow types classified as sediment gravity flow are also different enough from each other to be considered under a single category based on flow mechanism, and a more general term, high-density flow, is proposed here as a rational alternative to designate them. Attempts made to classify these flows on the basis of rheologic properties also suffer from some serious limitations. Besides these basic problems, improper uses of different terminology cause problems in understanding these high-density flows. Critical review, however, leads to conclude that each of these flow types can be identified as a distinct segment of a continuous spectrum of high-density flows, and the process of transformation from one variety to the other often comes into existence. Even within a single flow, different parts may show distinct flow character developed through the process of flow transformation. An empirical relationship between these flow types thus can be established with reference to the grain/water ratio and grain composition, which broadly controls character and rheology of a specific variety or different parts of a composite flow. An attempt is made here to accommodate the high-density flows involved in resedimentation processes within a general classification of aqueous flows.
The inverse gravimetric problem in gravity modelling
NASA Technical Reports Server (NTRS)
Sanso, F.; Tscherning, C. C.
1989-01-01
One of the main purposes of geodesy is to determine the gravity field of the Earth in the space outside its physical surface. This purpose can be pursued without any particular knowledge of the internal density even if the exact shape of the physical surface of the Earth is not known, though this seems to entangle the two domains, as it was in the old Stoke's theory before the appearance of Molodensky's approach. Nevertheless, even when large, dense and homogeneous data sets are available, it was always recognized that subtracting from the gravity field the effect of the outer layer of the masses (topographic effect) yields a much smoother field. This is obviously more important when a sparse data set is bad so that any smoothing of the gravity field helps in interpolating between the data without raising the modeling error, this approach is generally followed because it has become very cheap in terms of computing time since the appearance of spectral techniques. The mathematical description of the Inverse Gravimetric Problem (IGP) is dominated mainly by two principles, which in loose terms can be formulated as follows: the knowledge of the external gravity field determines mainly the lateral variations of the density; and the deeper the density anomaly giving rise to a gravity anomaly, the more improperly posed is the problem of recovering the former from the latter. The statistical relation between rho and n (and its inverse) is also investigated in its general form, proving that degree cross-covariances have to be introduced to describe the behavior of rho. The problem of the simultaneous estimate of a spherical anomalous potential and of the external, topographic masses is addressed criticizing the choice of the mixed collection approach.
Recent Advances in Conformal Gravity
NASA Astrophysics Data System (ADS)
O'Brien, James; Chaykov, Spasen
2016-03-01
In recent years, significant advances have been made in alternative gravitational theories. Although MOND remains the leading candidate among the alternative models, Conformal Gravity has been studied by Mannheim and O'Brien to solve the rotation curve problem without the need for dark matter. Recently, Mannheim, O'Brien and Chaykov have begun solving other gravitational questions in Conformal Gravity. In this presentation, we highlight the new work of Conformal Gravity's application to random motions of clusters (the original Zwicky problem), gravitational bending of light, gravitational lensing and a very recent survey of dwarf galaxy rotation curves. We will show in each case that Conformal Gravity can provide an accurate explanation and prediction of the data without the need for dark matter. Coupled with the fact that Conformal Gravity is a fully re-normalizable metric theory of gravity, these results help to push Conformal Gravity onto a competitive stage against other alternative models.
Unified theory of nonlinear electrodynamics and gravity
Torres-Gomez, Alexander; Krasnov, Kirill; Scarinci, Carlos
2011-01-15
We describe a class of unified theories of electromagnetism and gravity. The Lagrangian is of the BF type, with a potential for the B field, the gauge group is U(2) (complexified). Given a choice of the potential function the theory is a deformation of (complex) general relativity and electromagnetism, and describes just two propagating polarizations of the graviton and two of the photon. When gravity is switched off the theory becomes the usual nonlinear electrodynamics with a general structure function. The Einstein-Maxwell theory can be recovered by sending some of the parameters of the defining potential to zero, but for any generic choice of the potential the theory is indistinguishable from Einstein-Maxwell at low energies. A real theory is obtained by imposing suitable reality conditions. We also study the spherically-symmetric solution and show how the usual Reissner-Nordstrom solution is recovered.
Algebraic quantum gravity (AQG): II. Semiclassical analysis
NASA Astrophysics Data System (ADS)
Giesel, K.; Thiemann, T.
2007-05-01
In the previous paper (Giesel and Thiemann 2006 Conceptual setup Preprint gr-qc/0607099) a new combinatorial and thus purely algebraical approach to quantum gravity, called algebraic quantum gravity (AQG), was introduced. In the framework of AQG, existing semiclassical tools can be applied to operators that encode the dynamics of AQG such as the master constraint operator. In this paper, we will analyse the semiclassical limit of the (extended) algebraic master constraint operator and show that it reproduces the correct infinitesimal generators of general relativity. Therefore, the question of whether general relativity is included in the semiclassical sector of the theory, which is still an open problem in LQG, can be significantly improved in the framework of AQG. For the calculations, we will substitute SU(2) with U(1)3. That this substitution is justified will be demonstrated in the third paper (Giesel and Thiemann 2006 Semiclassical perturbation theory Preprint gr-qc/0607101) of this series.
Emergent Gravity from Vanishing Energy-Momentum Tensor
NASA Astrophysics Data System (ADS)
Erlich, Joshua
2017-01-01
We propose a constraint of vanishing energy-momentum tensor for quantum gravity. We are led to a metric-independent effective theory similar to the Dirac-Born-Infeld theory with vanishing gauge fields, modulated by a scalar potential. In the limit of a large number of fields, we explicitly demonstrate the existence of a composite massless spin-2 graviton in the spectrum that couples to matter as in Einstein gravity. We comment on the cosmological constant problem, the generalization to theories of fermions and gauge fields, and the relation to other approaches to quantum gravity. This work was supported by the NSF under Grant PHY-1519644.
Surface singularities in Eddington-inspired Born-Infeld gravity.
Pani, Paolo; Sotiriou, Thomas P
2012-12-21
Eddington-inspired Born-Infeld gravity was recently proposed as an alternative to general relativity that offers a resolution of spacetime singularities. The theory differs from Einstein's gravity only inside matter due to nondynamical degrees of freedom, and it is compatible with all current observations. We show that the theory is reminiscent of Palatini f(R) gravity and that it shares the same pathologies, such as curvature singularities at the surface of polytropic stars and unacceptable Newtonian limit. This casts serious doubt on its viability.
Probing Extreme Gravity with GW150914 and GW151226
NASA Astrophysics Data System (ADS)
Yagi, Kent; Yunes, Nicolas; Pretorius, Frans
2017-01-01
Advanced LIGO's recent discovery of the direct detection of gravitational waves from binary black hole coalescences allow us to probe gravity, for the first time, in extreme gravity regime where the field is both strong and dynamical. In this talk, I will describe how well GW150914 and GW151226 probe fundamental pillars of General Relativity, such as the equivalence principle, Lorentz invariance and massless graviton. I will then compare such new bounds to the existing bounds from Solar System experiments and binary pulsar observations. I will finally explain current limitations of probing extreme gravity with gravitational wave observations and discuss what needs to be done in future.
Modified gravity black holes and their observable shadows
NASA Astrophysics Data System (ADS)
Moffat, J. W.
2015-03-01
The shadows cast by non-rotating and rotating modified gravity black holes are determined by the two parameters mass and angular momentum . The sizes of the shadows cast by the spherically symmetric static modified gravity-Schwarzschild and modified gravity-Kerr rotating black holes increase significantly as the free parameter is increased from zero. The Event Horizon Telescope shadow image measurements can determine whether Einstein's general relativity is correct or whether it should be modified in the presence of strong gravitational fields.
Existence of relativistic stars in f(R) gravity
Upadhye, Amol; Hu, Wayne
2009-09-15
We refute recent claims in the literature that stars with relativistically deep potentials cannot exist in f(R) gravity. Numerical examples of stable stars, including relativistic (GM{sub *}/r{sub *}{approx}0.1), constant density stars, are studied. As a star is made larger, nonlinear 'chameleon' effects screen much of the star's mass, stabilizing gravity at the stellar center. Furthermore, we show that the onset of this chameleon screening is unrelated to strong gravity. At large central pressures P>{rho}/3, f(R) gravity, like general relativity, does have a maximum gravitational potential, but at a slightly smaller value: GM{sub *}/r{sub *}|{sub max}=0.345<4/9 for constant density and one choice of parameters. This difference is associated with negative central curvature R under general relativity not being accessed in the f(R) model, but does not apply to any known astrophysical object.
Einstein's Gravity as Seen by a Cosmic Lighthouse Keeper
NASA Astrophysics Data System (ADS)
Kramer, Michael
The last years have seen continuing activities in the exploration of our understanding of gravity, motivated by results from precision cosmology and new precision astrophysical experiments. At the centre of attention lies the question as to whether general relativity is the correct theory of gravity. In answering this question, we work not only towards correctly interpreting the phenomenon of "dark energy" but also towards the goal of achieving a quantum theory of gravity. In these efforts, the observations of pulsars, especially those in binary systems, play an important role. Pulsars do not only provide the only evidence for the existence of gravitational waves so far, but they also provide precision tests of general relativity and alternative theories of gravity. This talk summarizes the current state-of-art in these experiments and looks into the future.
Gravity and Yang-Mills amplitude relations
Bjerrum-Bohr, N. E. J.; Damgaard, Poul H.; Soendergaard, Thomas; FengBo
2010-11-15
Using only general features of the S matrix and quantum field theory, we prove by induction the Kawai-Lewellen-Tye relations that link products of gauge theory amplitudes to gravity amplitudes at tree level. As a bonus of our analysis, we provide a novel and more symmetric form of these relations. We also establish an infinite tower of new identities between amplitudes in gauge theories.
Gravity wave initiated convection
NASA Technical Reports Server (NTRS)
Hung, R. J.
1990-01-01
The vertical velocity of convection initiated by gravity waves was investigated. In one particular case, the convective motion-initiated and supported by the gravity wave-induced activity (excluding contributions made by other mechanisms) reached its maximum value about one hour before the production of the funnel clouds. In another case, both rawinsonde and geosynchronous satellite imagery were used to study the life cycles of severe convective storms. Cloud modelling with input sounding data and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation in terms of growth and collapse of cloud tops, as well as, the life cycles of the penetration of overshooting turrets above the tropopause. The results based on these two approaches are presented and discussed.
NASA Astrophysics Data System (ADS)
Wieland, Wolfgang M.
2014-01-01
This paper presents a Hamiltonian formulation of spinfoam gravity, which leads to a straightforward canonical quantization. To begin with, we derive a continuum action adapted to a simplicial decomposition of space-time. The equations of motion admit a Hamiltonian formulation, allowing us to perform the constraint analysis. We do not find any secondary constraints, but only get restrictions on the Lagrange multipliers enforcing the reality conditions. This comes as a surprise—in the continuum theory, the reality conditions are preserved in time, only if the torsionless condition (a secondary constraint) holds true. Studying an additional conservation law for each spinfoam vertex, we discuss the issue of torsion and argue that spinfoam gravity may still miss an additional constraint. Finally, we canonically quantize and recover the EPRL (Engle-Pereira-Rovelli-Livine) face amplitudes. Communicated by P R L V Moniz
NASA Astrophysics Data System (ADS)
Pazmino, John
2007-02-01
Many concepts of chaotic action in astrodynamics can be appreciated through simulations with home computers and software. Many astrodynamical cases are illustrated. Although chaos theory is now applied to spaceflight trajectories, this presentation employs only inert bodies with no onboard impulse, e.g., from rockets or outgassing. Other nongravitational effects are also ignored, such as atmosphere drag, solar pressure, and radiation. The ability to simulate gravity behavior, even if not completely rigorous, on small mass-market computers allows a fuller understanding of the new approach to astrodynamics by home astronomers, scientists outside orbital mechanics, and students in middle and high school. The simulations can also help a lay audience visualize gravity behavior during press conferences, briefings, and public lectures. No review, evaluation, critique of the programs shown in this presentation is intended. The results from these simulations are not valid for - and must not be used for - making earth-colliding predictions.
NASA Technical Reports Server (NTRS)
Sack, F. D.
1991-01-01
This review of plant gravity sensing examines sensing in organ gravitropism, sensing in single-cell gravitropism, and nongravitropic sensing. Topics related to sensing in organ gravitropism are (1) identification of the gravitropic susceptors, including intracellular asymmetry in equilibrium position and after reorientation, susceptor signal-to-noise ratio, signal integration over threshold stimulation periods, intracellular asymmetry and gravitropic competence, and starch deficiency and gravitropic competence; (2) possible root statocytes and receptors, including identification of presumptive statocytes, cytology, and possible receptors and models of sensing; and (3) negatively gravitropic organs, including identification and distribution of presumptive statocytes and cytology and possible receptors. Topics related to nongravitropic sensing include gravitaxis, reaction wood, gravimorphogenesis, other gravity-influenced organ movements, and cytoplasmic streaming.
NASA Technical Reports Server (NTRS)
Cesarone, R. J.
1989-01-01
An account is given of the method by which the 'energy gain' accruing to a spacecraft as a result of its 'gravity-assist', parabolic-trajectory flyby of a massive body, such as a planet. The procedure begins with the solution of the two-body portion of the problem, and the results thus obtained are used to calculate changes with respect to the other massive body in the overall scenario, namely the sun. Attention is given to the 'vector diagram' often used to display the gravity-assist effect. The present procedure is noted to be reasonably accurate for flybys in which the plane of the spacecraft's trajectory is approximately the same as that of the planet's orbit around the sun, or the ecliptic plane; this reduces the problem to one in two dimensions.
Computing Gravity's Strongest Grip
NASA Astrophysics Data System (ADS)
Shoemaker, Deirdre
2008-04-01
Gravitational physics is entering a new era, one driven by observation, that will begin once gravitational wave interferometers such as LIGO make their first detections. The gravitational waves are produced during violent events such as the merger of two black holes. The detection of these waves or ripples in the fabric of spacetime is a formidable undertaking, requiring innovative engineering, powerful data analysis tools and careful theoretical modeling. In support of this theoretical modeling, recent breakthroughs in numerical relativity have lead to the development of computational tools that allow us to explore where and how gravitational wave observations can constrain or inform our understanding of gravity and astrophysical phenomena. I will review these latest developments, focusing on binary black hole simulations and the role these simulations play in our new understanding of physics and astronomy where gravity exhibits its strongest grip on our spacetime.
Sack, F D
1991-01-01
This review of plant gravity sensing examines sensing in organ gravitropism, sensing in single-cell gravitropism, and nongravitropic sensing. Topics related to sensing in organ gravitropism are (1) identification of the gravitropic susceptors, including intracellular asymmetry in equilibrium position and after reorientation, susceptor signal-to-noise ratio, signal integration over threshold stimulation periods, intracellular asymmetry and gravitropic competence, and starch deficiency and gravitropic competence; (2) possible root statocytes and receptors, including identification of presumptive statocytes, cytology, and possible receptors and models of sensing; and (3) negatively gravitropic organs, including identification and distribution of presumptive statocytes and cytology and possible receptors. Topics related to nongravitropic sensing include gravitaxis, reaction wood, gravimorphogenesis, other gravity-influenced organ movements, and cytoplasmic streaming.
Time and a physical Hamiltonian for quantum gravity.
Husain, Viqar; Pawłowski, Tomasz
2012-04-06
We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach.
Gravity as the square of gauge theory
Bern, Zvi; Dennen, Tristan; Huang Yutin; Kiermaier, Michael
2010-09-15
We explore consequences of the recently discovered duality between color and kinematics, which states that kinematic numerators in a diagrammatic expansion of gauge-theory amplitudes can be arranged to satisfy Jacobi-like identities in one-to-one correspondence to the associated color factors. Using on-shell recursion relations, we give a field-theory proof showing that the duality implies that diagrammatic numerators in gravity are just the product of two corresponding gauge-theory numerators, as previously conjectured. These squaring relations express gravity amplitudes in terms of gauge-theory ingredients, and are a recasting of the Kawai, Lewellen, and Tye relations. Assuming that numerators of loop amplitudes can be arranged to satisfy the duality, our tree-level proof immediately carries over to loop level via the unitarity method. We then present a Yang-Mills Lagrangian whose diagrams through five points manifestly satisfy the duality between color and kinematics. The existence of such Lagrangians suggests that the duality also extends to loop amplitudes, as confirmed at two and three loops in a concurrent paper. By ''squaring'' the novel Yang-Mills Lagrangian we immediately obtain its gravity counterpart. We outline the general structure of these Lagrangians for higher points. We also write down various new representations of gauge-theory and gravity amplitudes that follow from the duality between color and kinematics.
Multiphase Flow: The Gravity of the Situation
NASA Technical Reports Server (NTRS)
Hewitt, Geoffrey F.
1996-01-01
A brief survey is presented of flow patterns in two-phase, gas-liquid flows at normal and microgravity, the differences between them being explored. It seems that the flow patterns in zero gravity are in general much simpler than those in normal gravity with only three main regimes (namely bubbly, slug and annular flows) being observed. Each of these three regimes is then reviewed, with particular reference to identification of areas of study where investigation of flows at microgravity might not only be interesting in themselves, but also throw light on mechanisms at normal earth gravity. In bubbly flow, the main area of interest seems to be that of bubble coalescence. In slug flow, the extension of simple displacement experiments to the zero gravity case would appear to be a useful option, supplemented by computational fluid dynamics (CFD) studies. For annular flow, the most interesting area appears to be the study of the mechanisms of disturbance waves; it should be possible to extend the region of investigation of the onset and behavior of these waves to much low gas velocities where measurements are clearly much easier.
MODIFIED GRAVITY SPINS UP GALACTIC HALOS
Lee, Jounghun; Zhao, Gong-Bo; Li, Baojiu; Koyama, Kazuya
2013-01-20
We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.
Gravity, Time, and Lagrangians
ERIC Educational Resources Information Center
Huggins, Elisha
2010-01-01
Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…
Reduced Gravity Walking Simulator
NASA Technical Reports Server (NTRS)
1963-01-01
A test subject being suited up for studies on the Reduced Gravity Walking Simulator located in the hanger at Langley Research Center. The initial version of this simulator was located inside the hanger. Later a larger version would be located at the Lunar Landing Facility. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. Francis B. Smith wrote in his paper 'Simulators For Manned Space Research,' 'I would like to conclude this talk with a discussion of a device for simulating lunar gravity which is very effective and yet which is so simple that its cost is in the order of a few thousand dollars at most, rather than hundreds of thousands. With a little ingenuity, one could almost build this type simulator in his backyard for children to play on. The principle is ...if a test subject is suspended in a sling so that his body axis makes an angle of 9 1/2 degrees with the horizontal and if he then 'stands' on a platform perpendicular to his body axis, the component of the earth's gravity forcing him toward the platform is one times the sine of 9 1/2 degrees or approximately 1/6 of the earth's normal gravity field. That is, a 180 pound astronaut 'standing' on the platform would exert a force of only 30 pounds - the same as if he were standing upright on the lunar surface.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308; Francis B. Smith, 'Simulators For Manned Space Research,' Paper for 1966 IEEE International Convention, New York, NY, March 21-25, 1966.
NASA Astrophysics Data System (ADS)
Iess, Luciano; Rappaport, Nicole J.; Jacobson, Robert A.; Racioppa, Paolo; Stevenson, David J.; Tortora, Paolo; Armstrong, John W.; Asmar, Sami W.
2010-05-01
Doppler data from four Cassini flybys have provided a determination of the degree 3, order 3 gravity field of Titan. Thanks to the good quality of the data and the favourable geometry of the encounters, the unconstrained estimation of the harmonic coefficients has shown that Radau-Darwin equation can be used to infer the moment of inertia of the satellite. We present the results of the data analysis and outline their implications for the interior structure.
NASA Technical Reports Server (NTRS)
2001-01-01
This is a vertical gravity map of Mars color-coded in mgals based on radio tracking. Note correlations and lack of correlations with the Mars Orbiter Laser Altimeter (MOLA) global topography.
This map was created using MGS data under the direction of Bill Sjogren, a member of the MGS Radio Science Team. The Radio Science Team is led by G. Leonard Tyler of Stanford University in Palo Alto, CA.
NASA Technical Reports Server (NTRS)
Bell, C. C.
1971-01-01
The results of the noise and drift test, and the comparison of the experimental simulation tests with the theoretical predictions, confirm that the rotating gravity gradiometer is capable of extracting information about mascon distributions from lunar orbit, and that the sensitivity of the sensor is adequate for lunar orbital selenodesy. The experimental work also verified analytical and computer models for the directional and time response of the sensor.
General Relativity in (1 + 1) Dimensions
ERIC Educational Resources Information Center
Boozer, A. D.
2008-01-01
We describe a theory of gravity in (1 + 1) dimensions that can be thought of as a toy model of general relativity. The theory should be a useful pedagogical tool, because it is mathematically much simpler than general relativity but shares much of the same conceptual structure; in particular, it gives a simple illustration of how gravity arises…
Granular Superconductors and Gravity
NASA Technical Reports Server (NTRS)
Noever, David; Koczor, Ron
1999-01-01
As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.
NASA Astrophysics Data System (ADS)
Ashour, Amani; Faizal, Mir; Ali, Ahmed Farag; Hammad, Fayçal
2016-05-01
In this work, we investigate the thermodynamics of black p-branes (BB) in the context of Gravity's Rainbow. We investigate this using rainbow functions that have been motivated from loop quantum gravity and κ -Minkowski non-commutative spacetime. Then for the sake of comparison, we examine a couple of other rainbow functions that have also appeared in the literature. We show that, for consistency, Gravity's Rainbow imposes a constraint on the minimum mass of the BB, a constraint that we interpret here as implying the existence of a black p-brane remnant. This interpretation is supported by the computation of the black p-brane's heat capacity that shows that the latter vanishes when the Schwarzschild radius takes on a value that is bigger than its extremal limit. We found that the same conclusion is reached for the third version of rainbow functions treated here but not with the second one for which only standard black p-brane thermodynamics is recovered.
Cell proliferation and plant development under novel altered gravity environments.
Herranz, R; Medina, F J
2014-01-01
Gravity is a key factor for life on Earth. It is the only environmental factor that has remained constant throughout evolution, and plants use it to modulate important physiological activities; gravity removal or alteration produces substantial changes in essential functions. For root gravitropism, gravity is sensed in specialised cells, which are capable of detecting magnitudes of the g vector lower than 10(-3) . Then, the mechanosignal is transduced to upper zones of the root, resulting in changes in the lateral distribution of auxin and in the rate of auxin polar transport. Gravity alteration has consequences for cell growth and proliferation rates in root meristems, which are the basis of the developmental programme of a plant, in which regulation via auxin is involved. The effect is disruption of meristematic competence, i.e. the strict coordination between cell proliferation and growth, which characterises meristematic cells. This effect can be related to changes in the transport and distribution of auxin throughout the root. However, similar effects of gravity alteration have been found in plant cell cultures in vitro, in which neither specialised structures for gravity sensing and signal transduction, nor apparent gravitropism have been described. We postulate that gravity resistance, a general mechanism of cellular origin for developing rigid structures in plants capable of resisting the gravity force, could also be responsible for the changes in cell growth and proliferation parameters detected in non-specialised cells. The mechanisms of gravitropism and graviresistance are complementary, the first being mostly sensitive to the direction of the gravity vector, and the second to its magnitude. At a global molecular level, the consequence of gravity alteration is that the genome should be finely tuned to counteract a type of stress that plants have never encountered before throughout evolution. Multigene families and redundant genes present an advantage in
BOOK REVIEW: A First Course in Loop Quantum Gravity A First Course in Loop Quantum Gravity
NASA Astrophysics Data System (ADS)
Dittrich, Bianca
2012-12-01
Students who are interested in quantum gravity usually face the difficulty of working through a large amount of prerequisite material before being able to deal with actual quantum gravity. A First Course in Loop Quantum Gravity by Rodolfo Gambini and Jorge Pullin, aimed at undergraduate students, marvellously succeeds in starting from the basics of special relativity and covering basic topics in Hamiltonian dynamics, Yang Mills theory, general relativity and quantum field theory, ending with a tour on current (loop) quantum gravity research. This is all done in a short 173 pages! As such the authors cannot cover any of the subjects in depth and indeed this book should be seen more as a motivation and orientation guide so that students can go on to follow the hints for further reading. Also, as there are many subjects to cover beforehand, slightly more than half of the book is concerned with more general subjects (special and general relativity, Hamiltonian dynamics, constrained systems, quantization) before the starting point for loop quantum gravity, the Ashtekar variables, are introduced. The approach taken by the authors is heuristic and uses simplifying examples in many places. However they take care in motivating all the main steps and succeed in presenting the material pedagogically. Problem sets are provided throughout and references for further reading are given. Despite the shortness of space, alternative viewpoints are mentioned and the reader is also referred to experimental results and bounds. In the second half of the book the reader gets a ride through loop quantum gravity; the material covers geometric operators and their spectra, the Hamiltonian constraints, loop quantum cosmology and, more broadly, black hole thermodynamics. A glimpse of recent developments and open problems is given, for instance a discussion on experimental predictions, where the authors carefully point out the very preliminary nature of the results. The authors close with an
Finite field-dependent symmetries in perturbative quantum gravity
Upadhyay, Sudhaker
2014-01-15
In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation. -- Highlights: •The perturbative quantum gravity is treated as gauge theory. •BRST and anti-BRST transformations are developed in linear and non-linear gauges. •BRST transformation is generalized by making it finite and field dependent. •Connection between linear and non-linear gauges is established. •Using BV formulation the results are established at quantum level also.
NASA Astrophysics Data System (ADS)
Bills, B. G.; Mischna, M. A.
2011-12-01
How accurately do we need to measure seasonal variations in Mars gravity, in order to significantly contribute to an understanding of the seasonal climate cycle? It has long been understood that seasonal cycles of volatile mass transport on Mars, mainly involving CO2 exchange between the atmosphere and the polar caps, will change the gravitational field by measurable amounts. In recent years, the gravitational field models, which are obtained from measured Doppler shifts in the tracking data for Mars-orbiting satellites, have become accurate enough that they can resolve some seasonal variations. However, the present models only resolve seasonal cycles for two parameters, nominally J2 and J3, which are zonal components of degree 2 and 3, respectively. In fact, what is actually observed is an unresolved linear combination of even degree zonals, in the guise of J2, and a similar combination of odd degree zonals for J3. Mars climate models are currently constrained mainly by the surface atmospheric pressure measurements made at the two Viking Lander sites. Wood and Paige (1992) showed that the observed seasonal pressure cycles at these two locations can be very well simulated by a simple one-dimensional surface thermal balance model, when its 6 free parameters (separate values for albedo and emissivity for each polar cap, and a soil thermal inertia for each hemisphere ) are properly chosen. However, it also emerged that the preferred values for albedo and emissivity are quite different from those obtained via optical remote sensing. It thus appears that the 1-D climate model yields aliased estimates of these parameters. It seems clear that, if we had sufficiently accurate gravity measurements, it would be equivalent to having a global grid of effective Viking Lander pressure measurements, with the number of grid points related to the spatial resolution of the gravity measurements. For example, if the seasonal variations were seen in a full Nth degree and order gravity
Loop gravity: An application and an extension
NASA Astrophysics Data System (ADS)
Taveras, Victor Manuel
In this thesis we address two issues in the area of loop quantum gravity. The first concerns the semiclassical limit in loop quantum cosmology via the use of so-called effective equations. In loop quantum cosmology the quantum dynamics is well understood. We can approximate the full quantum dynamics in the infinite dimensional Hilbert space by projecting it on a finite dimensional submanifold thereof, spanned by suitably chosen semiclassical states. This submanifold is isomorphic with the classical phase space and the projected dynamical flow provides effective equations incorporating the leading quantum corrections to the classical equations of motion. Numerical work has been done in the full theory using quantum states which are semiclassical at late times. These states follow the classical trajectory until the density is on the order of 1% of the Planck density then deviate strongly from the classical trajectory. The effective equations we obtain reproduce this behavior to surprising accuracy. The second issue concerns generalizations of the classical action which is the starting point for loop quantum gravity. In loop quantum gravity one begins with the Einstein-Hilbert action, modified by the addition of the so-called Holst term. Classically, this term does not affect the equations of motion, but it leads to a well-known quantization ambiguity in the quantum theory parametrized by the Barbero-Immirzi parameter, which rescales the eigenvalues of the area and volume operators. We consider the theory obtained by promoting the Barbero-Immirzi parameter to a field. The resulting theory, called Modified Holst Gravity, is equivalent to General Relativity coupled to a pseudo-scalar field. However, this theory turns out to have an unconventional kinetic term for the Barbero-Immirzi field and a rather unnatural coupling with fermions. We then propose a further generalization of the Holst action, which we call Modified Nieh-Yan Gravity, which yields a theory of gravity
Clear and Measurable Signature of Modified Gravity in the Galaxy Velocity Field
NASA Astrophysics Data System (ADS)
Hellwing, Wojciech A.; Barreira, Alexandre; Frenk, Carlos S.; Li, Baojiu; Cole, Shaun
2014-06-01
The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v12 are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ12(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.
Notes on "Quantum Gravity" and Noncommutative Geometry
NASA Astrophysics Data System (ADS)
Gracia-Bondía, J. M.
I hesitated for a long time before giving shape to these notes, originally intended for preliminary reading by the attendees to the Summer School "New paths towards quantum gravity" (Holbaek Bay, Denmark, May 2008). At the end, I decide against just selling my mathematical wares, and for a survey, necessarily very selective, but taking a global phenomenological approach to its subject matter. After all, noncommutative geometry does not purport yet to solve the riddle of quantum gravity; it is more of an insurance policy against the probable failure of the other approaches. The plan is as follows: the introduction invites students to the fruitful doubts and conundrums besetting the application of even classical gravity. Next, the first experiments detecting quantum gravitational states inoculate us a healthy dose of scepticism on some of the current ideologies. In Sect. 1.3 we look at the action for general relativity as a consequence of gauge theory for quantum tensor fields. Section 1.4 briefly deals with the unimodular variants. Section 1.5 arrives at noncommutative geometry. I am convinced that, if this is to play a role in quantum gravity, commutative and noncommutative manifolds must be treated on the same footing, which justifies the place granted to the reconstruction theorem. Together with Sect. 1.3, this part constitutes the main body of the notes. Only very summarily at the end of this section do we point to some approaches to gravity within the noncommutative realm. The last section delivers a last dose of scepticism. My efforts will have been rewarded if someone from the young generation learns to mistrust current mindsets.
Improving compact gravity inversion based on new weighting functions
NASA Astrophysics Data System (ADS)
Ghalehnoee, Mohammad Hossein; Ansari, Abdolhamid; Ghorbani, Ahmad
2016-11-01
We have developed a method to estimate the geometry, location and densities of anomalies coming from two-dimensional gravity data based on compact gravity inversion technique. Compact gravity inversion is simple, fast and user friendly but severely depends on the number of model parameters, i.e. by increasing the model parameters, the anomalies tend to concentrate near the surface. To overcome this ambiguity new weighting functions based on density contrast, depth, and compactness models have been introduced. Variable compactness factors have been defined here to get either a sharp or a smooth model based on the depth of the source or existence of prior information. Depth weighting derived from one station of gravity data whereas the effect of gravity data is two- and three-dimensional. To compensate this limitation an innovating weighting function namely kernel function has been introduced which multiplies with weight and compactness matrixes to yield a general model weighting function. The method is tested using three different sets of synthetic examples: a body at various depths (20, 40, 80 and 140 m), two bodies at the same depth but various distances to estimate lateral resolution and three bodies with negative and positive density contrast in different depths. The method is also applied to three real gravity data of Woodlawn massive sulfide body, sulfides mineralization of British Colombia and iron ore body of Missouri. The method produces solutions consistent with the known geologic attributes of the gravity sources, illustrating its potential practicality.
Improving compact gravity inversion using new weighting functions
NASA Astrophysics Data System (ADS)
Ghalehnoee, Mohammad Hossein; Ansari, Abdolhamid; Ghorbani, Ahmad
2017-01-01
We have developed a method to estimate the geometry, location and densities of anomalies coming from 2-D gravity data based on compact gravity inversion technique. Compact gravity inversion is simple, fast and user friendly but severely depends on the number of model parameters, that is, by increasing the model parameters, the anomalies tend to concentrate near the surface. To overcome this ambiguity new weighting functions based on density contrast, depth, and compactness models have been introduced. Variable compactness factors have been defined here to get either a sharp or a smooth model based on the depth of the source or existence of prior information. Depth weighting derived from one station of gravity data whereas the effect of gravity data is 2-D and 3-D. To compensate this limitation an innovating weighting function namely kernel function has been introduced which multiplies with weight and compactness matrixes to yield a general model weighting function. The method is tested using three different sets of synthetic examples: a body at various depths (20, 40, 80 and 140 m), two bodies at the same depth but various distances to estimate lateral resolution and three bodies with negative and positive density contrast in different depths. The method is also applied to three real gravity data of Woodlawn massive sulphide body, sulphides mineralization of British Colombia and iron ore body of Missouri. The method produces solutions consistent with the known geologic attributes of the gravity sources, illustrating its potential practicality.
Effects of Gravity on Bubble Formation in an Annular Jet
NASA Technical Reports Server (NTRS)
Koepp, R. A.; Parthasarathy, R. N.; Gollahalli, S. R.
2004-01-01
The effects of gravity on the bubble formation in an annular jet were studied. The experiments were conducted in the 2.2-second drop tower at the NASA Glenn Research Center. Terrestrial gravity experiments were conducted at the Fluid Dynamics Research Laboratory at the University of Oklahoma. Stainless steel tubing with inner diameters of 1/8" (gas inner annulus) and 5/16" (liquid outer annulus) served as the injector. A rectangular test section, 6" x 6" x 14" tall, made out of half-inch thick Lexan was used. Images of the annular jet were acquired using a high-speed camera. The effects of gravity and varying liquid and gas flow rates on bubble size, wavelength, and breakup length were documented. In general, the bubble diameter was found to be larger in terrestrial gravity than in microgravity for varying Weber numbers (0.05 - 0.16 and 5 - 11) and liquid flow rates (1.5 ft/s - 3.0 ft/s). The wavelength was found to be larger in terrestrial gravity than in microgravity, but remained constant for varying Weber numbers. For low Weber numbers (0.05 - 0.16), the breakup length in microgravity was significantly higher than in terrestrial gravity. Comparison with linear stability analysis showed estimated bubble sizes within 9% of experimental bubble sizes. Bubble size compared to other terrestrial gravity experiments with same flow conditions showed distinct differences in bubble size, which displayed the importance of injector geometry on bubble formation.
The Equivalence of Precession Phenomena in Metric Theories of Gravity
NASA Technical Reports Server (NTRS)
Krisher, Timothy P.
1996-01-01
The requirement of general covariance imparts to metric theories of gravity, such as general relativity, important structural features. A precise mathematical form results, ensuring that computation of observable physical effects in the theory gives the same answers independently of the chosen system of coordinates. This coordinate independence property, in turn, can lead to an equivalence of apparently different physical effects.
Cascading gravity is ghost free
Rham, Claudia de; Khoury, Justin; Tolley, Andrew J.
2010-06-15
We perform a full perturbative stability analysis of the 6D cascading gravity model in the presence of 3-brane tension. We demonstrate that for sufficiently large tension on the (flat) 3-brane, there are no ghosts at the perturbative level, consistent with results that had previously only been obtained in a specific 5D decoupling limit. These results establish the cascading gravity framework as a consistent infrared modification of gravity.
Modification of gravity due to torsion
Nair, V. P.; Nikiforova, V.; Randjbar-Daemi, S.; Rubakov, V.
2010-01-01
Modifications of general relativity have been considered as one of the possible ways of addressing some of the outstanding problems related to the large scale gravitational physics. In this contribution we review some of the recent results which are due to the inclusion of dynamical torsion. More specifically we shall discuss the propagation of massive spin-2 particles in flat and curved space times. We shall show that, contrary to what is generally believed, spinning matter is not the sole source of torsion field. A symmetric energy momentum tensor can also couple to torsion degrees of freedom. The massive and massless spin-2 particles mix giving rise to an infrared modification of gravity.
Dark matter in modified gravity?
NASA Astrophysics Data System (ADS)
Katsuragawa, Taishi; Matsuzaki, Shinya
2017-02-01
We explore a new horizon of modified gravity from the viewpoint of particle physics. As a concrete example, we take the F (R ) gravity to raise a question: can a scalar particle ("scalaron") derived from the F (R ) gravity be a dark matter candidate? We place the limit on the parameter in a class of F (R ) gravity model from the constraint on the scalaron as a dark matter. The role of the screening mechanism and compatibility with the dark energy problem are addressed.
Active Response Gravity Offload System
NASA Technical Reports Server (NTRS)
Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina
2011-01-01
The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.
[Biology of size and gravity].
Yamashita, Masamichi; Baba, Shoji A
2004-03-01
Gravity is a force that acts on mass. Biological effects of gravity and their magnitude depend on scale of mass and difference in density. One significant contribution of space biology is confirmation of direct action of gravity even at the cellular level. Since cell is the elementary unit of life, existence of primary effects of gravity on cells leads to establish the firm basis of gravitational biology. However, gravity is not limited to produce its biological effects on molecules and their reaction networks that compose living cells. Biological system has hierarchical structure with layers of organism, group, and ecological system, which emerge from the system one layer down. Influence of gravity is higher at larger mass. In addition to this, actions of gravity in each layer are caused by process and mechanism that is subjected and different in each layer of the hierarchy. Because of this feature, summing up gravitational action on cells does not explain gravity for biological system at upper layers. Gravity at ecological system or organismal level can not reduced to cellular mechanism. Size of cells and organisms is one of fundamental characters of them and a determinant in their design of form and function. Size closely relates to other physical quantities, such as mass, volume, and surface area. Gravity produces weight of mass. Organisms are required to equip components to support weight and to resist against force that arise at movement of body or a part of it. Volume and surface area associate with mass and heat transport process at body. Gravity dominates those processes by inducing natural convection around organisms. This review covers various elements and process, with which gravity make influence on living systems, chosen on the basis of biology of size. Cells and biochemical networks are under the control of organism to integrate a consolidated form. How cells adjust metabolic rate to meet to the size of the composed organism, whether is gravity
NASA Astrophysics Data System (ADS)
Setare, M. R.; Sahraee, M.
2013-12-01
In this paper, we investigate the behavior of linearized gravitational excitation in the Born-Infeld gravity in AdS3 space. We obtain the linearized equation of motion and show that this higher-order gravity propagate two gravitons, massless and massive, on the AdS3 background. In contrast to the R2 models, such as TMG or NMG, Born-Infeld gravity does not have a critical point for any regular choice of parameters. So the logarithmic solution is not a solution of this model, due to this one cannot find a logarithmic conformal field theory as a dual model for Born-Infeld gravity.
NASA Technical Reports Server (NTRS)
Norsk, P.; Shelhamer, M.
2016-01-01
This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.
Asymptotic Analysis of Spin Networks with Applications to Quantum Gravity
NASA Astrophysics Data System (ADS)
Haggard, Hal Mayi
This work initiates a study of the semiclassical limit of quantum gravity using a geometrical formulation of WKB theory and the Hamilton-Jacobi equation. Few conceptual principles are available to guide physicists in the construction of a quantum theory of gravity. Experimentally accessible signals are notoriously difficult to extract from existing proposals and one of the few reasonable constraints that we can impose is that the proposals agree with general relativity in the classical limit. Because general relativity is such a rich classical theory this is a non-trivial condition, one that has yet to be quantitatively achieved by any theory of quantum gravity. The main focus of the dissertation is on the semiclassics of SU(2) spin networks. Spin networks play an important role in the loop gravity approach to quantum gravity, where they furnish a convenient and geometrically meaningful basis for the Hilbert space. Previous work on the semiclassics and asymptotics of spin networks have focused on a coherent state approach. Here we provide alternative methods based on geometrical Lagrangian manifolds. This new perspective is complementary; for example, calculation of amplitudes is very straightforward, and should open new research avenues. The thesis consists of two parts. In the first part, Foundations, we review the geometrical formulation of WKB theory and introduce the theory of spin networks from the beginning. These chapters make the tools and applications covered in this thesis readily accessible to new researchers and open the door to further cross-fertilization between researchers in semiclassics and loop gravity. In the second part, Applications, we focus on two applications of semiclassical theory to objects arising in loop gravity. In the loop approach to quantum gravity the geometry of space becomes discretized. Our first application is a derivation of the semiclassical spectrum and wavefunctions of the volume operator of a tetrahedral grain of space. A
Geometry and symmetries in lattice spinor gravity
Wetterich, C.
2012-09-15
Lattice spinor gravity is a proposal for regularized quantum gravity based on fermionic degrees of freedom. In our lattice model the local Lorentz symmetry is generalized to complex transformation parameters. The difference between space and time is not put in a priori, and the euclidean and the Minkowski quantum field theory are unified in one functional integral. The metric and its signature arise as a result of the dynamics, corresponding to a given ground state or cosmological solution. Geometrical objects as the vierbein, spin connection or the metric are expectation values of collective fields built from an even number of fermions. The quantum effective action for the metric is invariant under general coordinate transformations in the continuum limit. The action of our model is found to be also invariant under gauge transformations. We observe a 'geometrical entanglement' of gauge- and Lorentz-transformations due to geometrical objects transforming non-trivially under both types of symmetry transformations. - Highlights: Black-Right-Pointing-Pointer We formulate the geometrical aspects of a proposal for a lattice regularized model of quantum gravity. Black-Right-Pointing-Pointer The vierbein shows an entanglement between Lorentz symmetry and gauge symmetry. Black-Right-Pointing-Pointer Euclidean and Minkowski signatures of the collective metric and the vierbein are described within the same functional integral.
Finding Horndeski theories with Einstein gravity limits
NASA Astrophysics Data System (ADS)
McManus, Ryan; Lombriser, Lucas; Peñarrubia, Jorge
2016-11-01
The Horndeski action is the most general scalar-tensor theory with at most second-order derivatives in the equations of motion, thus evading Ostrogradsky instabilities and making it of interest when modifying gravity at large scales. To pass local tests of gravity, these modifications predominantly rely on nonlinear screening mechanisms that recover Einstein's Theory of General Relativity in regions of high density. We derive a set of conditions on the four free functions of the Horndeski action that examine whether a specific model embedded in the action possesses an Einstein gravity limit or not. For this purpose, we develop a new and surprisingly simple scaling method that identifies dominant terms in the equations of motion by considering formal limits of the couplings that enter through the new terms in the modified action. This enables us to find regimes where nonlinear terms dominate and Einstein's field equations are recovered to leading order. Together with an efficient approximation of the scalar field profile, one can then further evaluate whether these limits can be attributed to a genuine screening effect. For illustration, we apply the analysis to both a cubic galileon and a chameleon model as well as to Brans-Dicke theory. Finally, we emphasise that the scaling method also provides a natural approach for performing post-Newtonian expansions in screened regimes.
Simplicial Euclidean and Lorentzian Quantum Gravity
NASA Astrophysics Data System (ADS)
Ambjørn, J.
2002-09-01
One can try to define the theory of quantum gravity as the sum over geometries. In two dimensions the sum over Euclidean geometries can be performed constructively by the method of dynamical triangulations. One can define a proper-time propagator. This propagator can be used to calculate generalized Hartle-Hawking amplitudes and it can be used to understand the the fractal structure of quantum geometry. In higher dimensions the philosophy of defining the quantum theory, starting from a sum over Euclidean geometries, regularized by a reparametrization invariant cut off which is taken to zero, seems not to lead to an interesting continuum theory. The reason for this is the dominance of singular Euclidean geometries. Lorentzian geometries with a global causal structure are less singular. Using the framework of dynamical triangulations it is possible to give a constructive definition of the sum over such geometries, In two dimensions the theory can be solved analytically. It differs from two-dimensional Euclidean quantum gravity, and the relation between the two theories can be understood. In three dimensions the theory avoids the pathologies of three-dimensional Euclidean quantum gravity. General properties of the four-dimensional discretized theory have been established, but a detailed study of the continuum limit in the spirit of the renormalization group and asymptotic safety is till awaiting.
Neutron stars as laboratories for gravity physics
Deliduman, Cemsinan
2014-01-01
We study the structure of neutron stars in R+αR² gravity model with perturbative method. We obtain mass-radius relations for four representative equations of state (EoS). We find that, for |α|~10⁹ cm², the results differ substantially from the results of general relativity. The effects of modified gravity are seen as mimicking a stiff or soft EoS for neutron stars depending upon whether α is negative or positive, respectively. Some of the soft EoS that are excluded within the framework of general relativity can be reconciled for certain values of α of this order with the 2 solar mass neutron star recently observed. Indeed, if the EoS is ever established to be soft, modified gravity of the sort studied here may be required to explain neutron star masses as large as 2 M{sub ⊙}. The associated length scale √(α)~10⁵ cm is of the order of the the typical radius of neutron stars implying that this is the smallest value we could find by using neutron stars as a probe. We thus conclude that the true value of α is most likely much smaller than 10⁹ cm².
NASA Astrophysics Data System (ADS)
Álvarez, Enrique; González-Martín, Sergio
2017-02-01
The on shell equivalence of first order and second order formalisms for the Einstein-Hilbert action does not hold for those actions quadratic in curvature. It would seem that by considering the connection and the metric as independent dynamical variables, there are no quartic propagators for any dynamical variable. This suggests that it is possible to get both renormalizability and unitarity along these lines. We have studied a particular instance of those theories, namely Weyl gravity. In this first paper we show that it is not possible to implement this program with the Weyl connection alone.
Gravity and Granular Materials
NASA Technical Reports Server (NTRS)
Behringer, R. P.; Hovell, Daniel; Kondic, Lou; Tennakoon, Sarath; Veje, Christian
1999-01-01
We describe experiments that probe a number of different types of granular flow where either gravity is effectively eliminated or it is modulated in time. These experiments include the shaking of granular materials both vertically and horizontally, and the shearing of a 2D granular material. For the shaken system, we identify interesting dynamical phenomena and relate them to standard simple friction models. An interesting application of this set of experiments is to the mixing of dissimilar materials. For the sheared system we identify a new kind of dynamical phase transition.
NASA Astrophysics Data System (ADS)
Espinosa Aldama, Mariana
2015-04-01
The gravity apple tree is a genealogical tree of the gravitation theories developed during the past century. The graphic representation is full of information such as guides in heuristic principles, names of main proponents, dates and references for original articles (See under Supplementary Data for the graphic representation). This visual presentation and its particular classification allows a quick synthetic view for a plurality of theories, many of them well validated in the Solar System domain. Its diachronic structure organizes information in a shape of a tree following similarities through a formal concept analysis. It can be used for educational purposes or as a tool for philosophical discussion.
Gravity field of the Western Weddell Sea: Comparison of airborne gravity and Geosat derived gravity
NASA Technical Reports Server (NTRS)
Bell, R. E.; Brozena, J. M.; Haxby, W. F.; Labrecque, J. L.
1989-01-01
Marine gravity surveying in polar regions was typically difficult and costly, requiring expensive long range research vessels and ice-breakers. Satellite altimetry can recover the gravity field in these regions where it is feasible to survey with a surface vessel. Unfortunately, the data collected by the first global altimetry mission, Seasat, was collected only during the austral winter, producing a very poor quality gravitational filed for the southern oceans, particularly in the circum-Antarctic regions. The advent of high quality airborne gravity (Brozena, 1984; Brozena and Peters, 1988; Bell, 1988) and the availability of satellite altimetry data during the austral summer (Sandwell and McAdoo, 1988) has allowed the recovery of a free air gravity field for most of the Weddell Sea. The derivation of the gravity field from both aircraft and satellite measurements are briefly reviewed, before presenting along track comparisons and shaded relief maps of the Weddell Sea gravity field based on these two data sets.
Testing Horava-Lifshitz gravity using thin accretion disk properties
Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S. N.
2009-08-15
Recently, a renormalizable gravity theory with higher spatial derivatives in four dimensions was proposed by Horava. The theory reduces to Einstein gravity with a nonvanishing cosmological constant in IR, but it has improved UV behaviors. The spherically symmetric black hole solutions for an arbitrary cosmological constant, which represent the generalization of the standard Schwarzschild-(anti) de Sitter solution, have also been obtained for the Horava-Lifshitz theory. The exact asymptotically flat Schwarzschild-type solution of the gravitational field equations in Horava gravity contains a quadratic increasing term, as well as the square root of a fourth order polynomial in the radial coordinate, and it depends on one arbitrary integration constant. The IR-modified Horava gravity seems to be consistent with the current observational data, but in order to test its viability more observational constraints are necessary. In the present paper we consider the possibility of observationally testing Horava gravity by using the accretion disk properties around black holes. The energy flux, the temperature distribution, the emission spectrum, as well as the energy conversion efficiency are obtained, and compared to the standard general relativistic case. Particular signatures can appear in the electromagnetic spectrum, thus leading to the possibility of directly testing Horava gravity models by using astrophysical observations of the emission spectra from accretion disks.
Perturbative Quantum Gravity and its Relation to Gauge Theory.
Bern, Zvi
2002-01-01
In this review we describe a non-trivial relationship between perturbative gauge theory and gravity scattering amplitudes. At the semi-classical or tree-level, the scattering amplitudes of gravity theories in flat space can be expressed as a sum of products of well defined pieces of gauge theory amplitudes. These relationships were first discovered by Kawai, Lewellen, and Tye in the context of string theory, but hold more generally. In particular, they hold for standard Einstein gravity. A method based on D-dimensional unitarity can then be used to systematically construct all quantum loop corrections order-by-order in perturbation theory using as input the gravity tree amplitudes expressed in terms of gauge theory ones. More generally, the unitarity method provides a means for perturbatively quantizing massless gravity theories without the usual formal apparatus associated with the quantization of constrained systems. As one application, this method was used to demonstrate that maximally supersymmetric gravity is less divergent in the ultraviolet than previously thought.
Chaotic inflation in higher derivative gravity theories
NASA Astrophysics Data System (ADS)
Myrzakul, Shynaray; Myrzakulov, Ratbay; Sebastiani, Lorenzo
2015-03-01
In this paper, we investigate chaotic inflation from a scalar field subjected to a potential in the framework of -gravity, where we add a correction to Einstein's gravity based on a function of the square of the Ricci scalar , the contraction of the Ricci tensor , and the contraction of the Riemann tensor . The Gauss-Bonnet case is also discussed. We give the general formalism of inflation, deriving the slow-roll parameters, the -fold number, and the spectral indices. Several explicit examples are furnished; namely, we will consider the cases of a massive scalar field and a scalar field with quartic potential and some power-law function of the curvature invariants under investigation in the gravitational action of the theory. A viable approach to inflation according with observations is analyzed.
Elliptic Genera and 3d Gravity
Benjamin, Nathan; Cheng, Miranda C. N.; Kachru, Shamit; Moore, Gregory W.; Paquette, Natalie M.
2016-03-30
We describe general constraints on the elliptic genus of a 2d supersymmetric conformal field theory which has a gravity dual with large radius in Planck units. We give examples of theories which do and do not satisfy the bounds we derive, by describing the elliptic genera of symmetric product orbifolds of K3, product manifolds, certain simple families of Calabi–Yau hypersurfaces, and symmetric products of the “Monster CFT”. We discuss the distinction between theories with supergravity duals and those whose duals have strings at the scale set by the AdS curvature. Under natural assumptions, we attempt to quantify the fraction of (2,2) supersymmetric conformal theories which admit a weakly curved gravity description, at large central charge.
Elliptic genera and 3d gravity
Benjamin, Nathan; Cheng, Miranda C. N.; Kachru, Shamit; Moore, Gregory W.; Paquette, Natalie M.
2016-03-30
Here, we describe general constraints on the elliptic genus of a 2d supersymmetric conformal field theory which has a gravity dual with large radius in Planck units. We give examples of theories which do and do not satisfy the bounds we derive, by describing the elliptic genera of symmetric product orbifolds of K_{3}, product manifolds, certain simple families of Calabi–Yau hypersurfaces, and symmetric products of the “Monster CFT”. We discuss the distinction between theories with supergravity duals and those whose duals have strings at the scale set by the AdS curvature. Under natural assumptions, we attempt to quantify the fraction of (2,2) supersymmetric conformal theories which admit a weakly curved gravity description, at large central charge.
Constraining inverse-curvature gravity with supernovae.
Mena, Olga; Santiago, José; Weller, Jochen
2006-02-03
We show that models of generalized modified gravity, with inverse powers of the curvature, can explain the current accelerated expansion of the Universe without resorting to dark energy and without conflicting with solar system experiments. We have solved the Friedmann equations for the full dynamical range of the evolution of the Universe and performed a detailed analysis of supernovae data in the context of such models that results in an excellent fit. If we further include constraints on the current expansion of the Universe and on its age, we obtain that the matter content of the Universe is 0.07
Gravity and the orientation of cell division
NASA Technical Reports Server (NTRS)
Helmstetter, C. E.
1997-01-01
A novel culture system for mammalian cells was used to investigate division orientations in populations of Chinese hamster ovary cells and the influence of gravity on the positioning of division axes. The cells were tethered to adhesive sites, smaller in diameter than a newborn cell, distributed over a nonadhesive substrate positioned vertically. The cells grew and divided while attached to the sites, and the angles and directions of elongation during anaphase, projected in the vertical plane, were found to be random with respect to gravity. However, consecutive divisions of individual cells were generally along the same axis or at 90 degrees to the previous division, with equal probability. Thus, successive divisions were restricted to orthogonal planes, but the choice of plane appeared to be random, unlike the ordered sequence of cleavage orientations seen during early embryo development.
Plant secondary metabolism in altered gravity.
Tuominen, Lindsey K; Levine, Lanfang H; Musgrave, Mary E
2009-01-01
Plans by the space program to use plants for food supply and environmental regeneration have led to an examination of how plants grow in microgravity. Because secondary metabolic compounds are so important in determining the nutritional and flavor characteristics of plants-as well as making plants more resistant to biotic and abiotic stresses-their responses to altered gravity are now being studied. These experiments are technically challenging because temperature, humidity, atmospheric composition, light, and water status must be maintained around the plant while simultaneously altering the g-load, either in the free-fall of orbital spacecraft or on a centrifuge rotor. In general, plants have shown increased accumulation of small secondary metabolites in microgravity (<10(-3) g), while these have decreased in hypergravity (>1-g). Gravity-related changes in the plant environment as well as mechanical loading effects account for these responses.
An alternative path integral for quantum gravity
NASA Astrophysics Data System (ADS)
Krishnan, Chethan; Kumar, K. V. Pavan; Raju, Avinash
2016-10-01
We define a (semi-classical) path integral for gravity with Neumann boundary conditions in D dimensions, and show how to relate this new partition function to the usual picture of Euclidean quantum gravity. We also write down the action in ADM Hamiltonian formulation and use it to reproduce the entropy of black holes and cosmological horizons. A comparison between the (background-subtracted) covariant and Hamiltonian ways of semi-classically evaluating this path integral in flat space reproduces the generalized Smarr formula and the first law. This "Neumann ensemble" perspective on gravitational thermodynamics is parallel to the canonical (Dirichlet) ensemble of Gibbons-Hawking and the microcanonical approach of Brown-York.
Subduction dynamics: Constraints from gravity field observations
NASA Technical Reports Server (NTRS)
Mcadoo, D. C.
1985-01-01
Satellite systems do the best job of resolving the long wavelength components of the Earth's gravity field. Over the oceans, satellite-borne radar altimeters such as SEASAT provide the best resolution observations of the intermediate wavelength components. Satellite observations of gravity contributed to the understanding of the dynamics of subduction. Large, long wavelength geoidal highs generally occur over subduction zones. These highs are attributed to the superposition of two effects of subduction: (1) the positive mass anomalies of subducting slabs themselves; and (2) the surface deformations such as the trenches convectively inducted by these slabs as they sink into the mantle. Models of this subduction process suggest that the mantle behaves as a nonNewtonian fluid, its effective viscosity increases significantly with depth, and that large positive mass anomalies may occur beneath the seismically defined Benioff zones.
Elliptic genera and 3d gravity
Benjamin, Nathan; Cheng, Miranda C. N.; Kachru, Shamit; ...
2016-03-30
Here, we describe general constraints on the elliptic genus of a 2d supersymmetric conformal field theory which has a gravity dual with large radius in Planck units. We give examples of theories which do and do not satisfy the bounds we derive, by describing the elliptic genera of symmetric product orbifolds of K3, product manifolds, certain simple families of Calabi–Yau hypersurfaces, and symmetric products of the “Monster CFT”. We discuss the distinction between theories with supergravity duals and those whose duals have strings at the scale set by the AdS curvature. Under natural assumptions, we attempt to quantify the fractionmore » of (2,2) supersymmetric conformal theories which admit a weakly curved gravity description, at large central charge.« less
Palatini actions and quantum gravity phenomenology
Olmo, Gonzalo J.
2011-10-01
We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropic cosmologies of this model also avoid the big bang singularity by means of a big bounce.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and the Pacific.
Presentations and other materials are provided from the Asia and the Pacific Programme of Educational Innovation for Development (APEID) Planning and Review Meeting on Work as an Integral Part of General Education. The focus is on how education, through an orientation to work, could help to decrease the gravity of the problems of population…
New insights into quantum gravity from gauge/gravity duality
NASA Astrophysics Data System (ADS)
Engelhardt, Netta; Horowitz, Gary T.
2016-06-01
Using gauge/gravity duality, we deduce several nontrivial consequences of quantum gravity from simple properties of the dual field theory. These include: (1) a version of cosmic censorship, (2) restrictions on evolution through black hole singularities, and (3) the exclusion of certain cosmological bounces. In the classical limit, the latter implies a new singularity theorem.
Twistor-strings and gravity tree amplitudes
NASA Astrophysics Data System (ADS)
Adamo, Tim; Mason, Lionel
2013-04-01
Recently we discussed how Einstein supergravity tree amplitudes might be obtained from the original Witten and Berkovits twistor-string theory when external conformal gravitons are restricted to be Einstein gravitons. Here we obtain a more systematic understanding of the relationship between conformal and Einstein gravity amplitudes in that twistor-string theory. We show that although it does not in general yield Einstein amplitudes, we can nevertheless obtain some partial twistor-string interpretation of the remarkable formulae recently been found by Hodges and generalized to all tree amplitudes by Cachazo and Skinner. The Hodges matrix and its higher degree generalizations encode the world sheet correlators of the twistor string. These matrices control both Einstein amplitudes and those of the conformal gravity arising from the Witten and Berkovits twistor-string. Amplitudes in the latter case arise from products of the diagonal elements of the generalized Hodges matrices and reduced determinants give the former. The reduced determinants arise if the contractions in the worldsheet correlator are restricted to form connected trees at MHV. The (generalized) Hodges matrices arise as weighted Laplacian matrices for the graph of possible contractions in the correlators and the reduced determinants of these weighted Laplacian matrices give the sum of the connected tree contributions by an extension of the matrix-tree theorem.
Looking for sedimentary basins using global gravity and crustal models
NASA Astrophysics Data System (ADS)
Colpani, Stefano; Strykowski, Gabriel
2014-05-01
Publically available and newly released global crustal model, CRUST 1.0 (Laske et al., 2013) in combination with satellite based global gravity models GOCO3s (Mayer-Gürr T. et al., 2012) yield a possibility of combining global source models with global gravity models. The depths to the top and to the base of the geological units obtained from the global crust model are used to fix the source geometry. This information is subsequently used to forward compute the global gravity signature of these units in different heights above the sources and for unit mass density. The average global mass density for the geological unit acts like a scaling factor and the relation to the gravity signal becomes linear. The computations are done both for Tz (gravity disturbances) and for some chosen gravity gradient components Tzz, Tzx and Tzy, where x,y and z refer to a local east-north-up Cartesian reference frame. The above setup allows constructing a model of the regional (gravity) field both for Tz and for the above gradient components Tzz, Tzx and Tzy and to improve it on regional scale. In principle, the method allows to keep track of the relation between the regional (gravity) signal and the source model. Subsequently, a generalized Nettleton's method can be used to fine-tune density values for the sediments from any above type of gravity data and a combination of it. Finally, for the well-surveyed areas, the results can be compared with the independent information about the basin geometry. This experience can be used for quantifying the information about the sedimentary basin in areas where the information is limited.
Entropic Law of Force, Emergent Gravity and the Uncertainty Principle
NASA Astrophysics Data System (ADS)
Santos, M. A.; Vancea, I. V.
The entropic formulation of the inertia and the gravity relies on quantum, geometrical and informational arguments. The fact that the results are completely classical is misleading. In this paper, we argue that the entropic formulation provides new insights into the quantum nature of the inertia and the gravity. We use the entropic postulate to determine the quantum uncertainty in the law of inertia and in the law of gravity in the Newtonian Mechanics, the Special Relativity and in the General Relativity. These results are obtained by considering the most general quantum property of the matter represented by the Uncertainty Principle and by postulating an expression for the uncertainty of the entropy such that: (i) it is the simplest quantum generalization of the postulate of the variation of the entropy and (ii) it reduces to the variation of the entropy in the absence of the uncertainty.
Testing modified gravity with cosmic shear
NASA Astrophysics Data System (ADS)
Harnois-Déraps, J.; Munshi, D.; Valageas, P.; van Waerbeke, L.; Brax, P.; Coles, P.; Rizzo, L.
2015-12-01
We use the cosmic shear data from the Canada-France-Hawaii Telescope Lensing Survey to place constraints on f(R) and Generalized Dilaton models of modified gravity. This is highly complementary to other probes since the constraints mainly come from the non-linear scales: maximal deviations with respects to the General Relativity (GR) + Λ cold dark matter (ΛCDM) scenario occurs at k ˜ 1 h Mpc-1. At these scales, it becomes necessary to account for known degeneracies with baryon feedback and massive neutrinos, hence we place constraints jointly on these three physical effects. To achieve this, we formulate these modified gravity theories within a common tomographic parametrization, we compute their impact on the clustering properties relative to a GR universe, and propagate the observed modifications into the weak lensing ξ± quantity. Confronted against the cosmic shear data, we reject the f(R) \\lbrace |f_{R_0}| = 10^{-4}, n = 1\\rbrace model with more than 99.9 per cent confidence interval (CI) when assuming a ΛCDM dark matter only model. In the presence of baryonic feedback processes and massive neutrinos with total mass up to 0.2 eV, the model is disfavoured with at least 94 per cent CI in all different combinations studied. Constraints on the \\lbrace |f_{R_0}| = 10^{-4}, n = 2\\rbrace model are weaker, but nevertheless disfavoured with at least 89 per cent CI. We identify several specific combinations of neutrino mass, baryon feedback and f(R) or Dilaton gravity models that are excluded by the current cosmic shear data. Notably, universes with three massless neutrinos and no baryon feedback are strongly disfavoured in all modified gravity scenarios studied. These results indicate that competitive constraints may be achieved with future cosmic shear data.
NASA Astrophysics Data System (ADS)
Johnson, Chris; Hogg, Andrew
2012-11-01
Large-scale gravity currents, such as those formed when industrial effluent is discharged at sea, are greatly affected by the entrainment and mixing of ambient fluid into the current, which both dilutes the flow and causes an effective drag between the current and ambient. We study these currents theoretically by combining a shallow-water model for gravity currents flowing under a deep ambient with an empirical model for entrainment, and seek long-time similarity solutions of this model. We find that the dependence of entrainment on the bulk Richardson number plays a crucial role in the current dynamics, and results in entrainment occurring mainly in a region close to the flow front, reminiscent of the entraining current `head' observed in natural flows. The long-time solution of an entraining lock-release current is a similarity solution of the second kind, in which the current grows as a power of time that is dependent on the form of the entrainment model, approximately as t 0 . 44. The structure of a current driven by a constant buoyancy flux is quite different, with the current length growing as t 4 / 5. Scaling arguments suggest that these solutions are reached only at very long times, and so may be attained in large natural flows, but not in small-scale experiments.
Gravity Cancellation in Plants
NASA Astrophysics Data System (ADS)
Wagner, Orvin
2005-04-01
I have measured a 22% reduction in gravity, at maximum sap flow, with an accelerometer placed in a small hole in a tree. Accelerometer manipulation indicates a possible reduction of 100% changing the geometry. This agrees with the author's related work indicating that plants are regulated by gravity related standing waves. There apparently are a limited set of plant internodal spacings (representing half wavelengths) and corresponding harmonically related frequencies. These repeat from plant to plant and from species to species. Measuring the angle of growth of a straight portion of a branch with respect to the horizontal or vertical most often yields an integral multiple of 5^o with respect to the horizontal or vertical. Plants are well known to grow correction tissue to correct artificially produced angle errors. The velocities of the waves in plants are integral multiples of a basic velocity like 48cm/s, much greater than ionic velocities. Disturbing the standing waves in one tree seems to disturb the standing waves in nearby trees. The waves causing the disturbance are found to travel at about 5m/s horizontally in air (and probably vacuum) thus they are not sound waves. See chatlink.com/˜oedphd.
Differentiating dark energy and modified gravity with galaxy redshift surveys
NASA Astrophysics Data System (ADS)
Wang, Yun
2008-05-01
The observed cosmic acceleration today could be due to an unknown energy component (dark energy), or a modification to general relativity (modified gravity). If dark energy models and modified gravity models are required to predict the same cosmic expansion history H(z), they will predict different growth rates for cosmic large scale structure, fg(z). If gravity is not modified, the measured H(z) leads to a unique prediction for fg(z), fgH(z), if dark energy and dark matter are separate. Comparing fgH(z) with the measured fg(z) provides a transparent and straightforward test of gravity. We show that a simple χ2 test provides a general figure of merit for our ability to distinguish between dark energy and modified gravity given the measured H(z) and fg(z). We find that a magnitude-limited NIR galaxy redshift survey covering >10 000 (deg)2 and a redshift range of 0.5
Hypersonic Interplanetary Flight: Aero Gravity Assist
NASA Technical Reports Server (NTRS)
Bowers, Al; Banks, Dan; Randolph, Jim
2006-01-01
The use of aero-gravity assist during hypersonic interplanetary flights is highlighted. Specifically, the use of large versus small planet for gravity asssist maneuvers, aero-gravity assist trajectories, launch opportunities and planetary waverider performance are addressed.
Guellue, Ibrahim; Sisman, Tahsin Cagri; Tekin, Bayram
2010-05-15
We define various Born-Infeld gravity theories in 3+1 dimensions which reduce to Horava's model at the quadratic level in small curvature expansion. In their exact forms, our actions provide z{yields}{infinity} extensions of Horava's gravity, but when small curvature expansion is used, they reproduce finite z models, including some half-integer ones.
ERIC Educational Resources Information Center
Lewis, Carol
1992-01-01
Describes six simple experiments that can enable students to better understand gravity and the role it plays in the universe. Includes discussions of Newton's experiments, weight and mass, center of gravity, center of mass, and the velocity of falling objects. (JJK)
Reduced Gravity Zblan Optical Fiber
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.
2000-01-01
Two optical fiber pullers have been designed for pulling ZBLAN optical fiber in reduced gravity. One fiber puller was designed, built and flown on board NASA's KC135 reduced gravity aircraft. A second fiber puller has been designed for use on board the International Space Station.
Sevrin, A.
1993-06-01
After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.
Fixed points of quantum gravity.
Litim, Daniel F
2004-05-21
Euclidean quantum gravity is studied with renormalization group methods. Analytical results for a nontrivial ultraviolet fixed point are found for arbitrary dimensions and gauge fixing parameters in the Einstein-Hilbert truncation. Implications for quantum gravity in four dimensions are discussed.
ERIC Educational Resources Information Center
Bar, Varda; And Others
1997-01-01
Investigates students' ideas about gravity beyond the earth's surface. Presents a lesson plan designed to help students understand that gravity can act beyond Earth's atmosphere. Also helps students gain a more adequate intuitive understanding of how natural and artificial satellites stay in orbit. Reports that this strategy changed some students'…
NASA Astrophysics Data System (ADS)
Mashhoon, Bahram
2014-12-01
A brief account of the present status of the recent nonlocal generalization of Einstein's theory of gravitation is presented. The main physical assumptions that underlie this theory are described. We clarify the physical meaning and significance of Weitzenbock's torsion and emphasize its intimate relationship with the gravitational field, characterized by the Riemannian curvature of spacetime. In this theory, nonlocality can simulate dark matter; in fact, in the Newtonian regime, we recover the phenomenological Tohline-Kuhn approach to modified gravity. To account for the observational data regarding dark matter, nonlocality is associated with a characteristic length scale of order 1 kpc. The confrontation of nonlocal gravity with observation is briefly discussed.
Generalized scale invariant theories
NASA Astrophysics Data System (ADS)
Padilla, Antonio; Stefanyszyn, David; Tsoukalas, Minas
2014-03-01
We present the most general actions of a single scalar field and two scalar fields coupled to gravity, consistent with second-order field equations in four dimensions, possessing local scale invariance. We apply two different methods to arrive at our results. One method, Ricci gauging, was known to the literature and we find this to produce the same result for the case of one scalar field as a more efficient method presented here. However, we also find our more efficient method to be much more general when we consider two scalar fields. Locally scale invariant actions are also presented for theories with more than two scalar fields coupled to gravity and we explain how one could construct the most general actions for any number of scalar fields. Our generalized scale invariant actions have obvious applications to early Universe cosmology and include, for example, the Bezrukov-Shaposhnikov action as a subset.
Black Hole Formation in Lovelock Gravity
NASA Astrophysics Data System (ADS)
Taves, Timothy Mark
Some branches of quantum gravity demand the existence of higher dimensions and the addition of higher curvature terms to the gravitational Lagrangian in the form of the Lovelock polynomials. In this thesis we investigate some of the classical properties of Lovelock gravity. We first derive the Hamiltonian for Lovelock gravity and find that it takes the same form as in general relativity when written in terms of the Misner-Sharp mass function. We then minimally couple the action to matter fields to find Hamilton's equations of motion. These are gauge fixed to be in the Painleve-Gullstrand co--ordinates and are well suited to numerical studies of black hole formation. We then use these equations of motion for the massless scalar field to study the formation of general relativistic black holes in four to eight dimensions and Einstein-Gauss-Bonnet black holes in five and six dimensions. We study Choptuik scaling, a phenomenon which relates the initial conditions of a matter distribution to the final observables of small black holes. In both higher dimensional general relativity and Einstein-Gauss-Bonnet gravity we confirm the existence of cusps in the mass scaling relation which had previously only been observed in four dimensional general relativity. In the general relativistic case we then calculate the critical exponents for four to eight dimensions and find agreement with previous calculations by Bland et al but not Sorkin et al who both worked in null co-ordinates. For the Einstein-Gauss-Bonnet case we find that the self-similar behaviour seen in the general relativistic case is destroyed. We find that it is replaced by some other form of scaling structure. In five dimensions we find that the period of the critical solution at the origin is proportional to roughly the cube root of the Gauss-Bonnet parameter and that there is evidence for a minimum black hole radius. In six dimensions we see evidence for a new type of scaling. We also show, from the equations of
Perturbations of cosmological and black hole solutions in massive gravity and bi-gravity
NASA Astrophysics Data System (ADS)
Kobayashi, Tsutomu; Siino, Masaru; Yamaguchi, Masahide; Yoshida, Daisuke
2016-10-01
We investigate perturbations of a class of spherically symmetric solutions in massive gravity and bi-gravity. The background equations of motion for the particular class of solutions we are interested in reduce to a set of the Einstein equations with a cosmological constant. Thus, the solutions in this class include all the spherically symmetric solutions in general relativity, such as the Friedmann-Lemaître-Robertson-Walker solution and the Schwarzschild (-de Sitter) solution, though the one-parameter family of two parameters of the theory admits such a class of solutions. We find that the equations of motion for the perturbations of this class of solutions also reduce to the perturbed Einstein equations at first and second order. Therefore, the perturbative stability of the solutions coincides with that of the corresponding solutions in general relativity at least up to the second-order perturbations.
NASA Technical Reports Server (NTRS)
Wessling, Francis C.; Mcmanus, Samuel P.; Matthews, John; Patel, Darayas
1990-01-01
An apparatus that produced the first polyurethane foam in low gravity has been described. The chemicals were mixed together in an apparatus designed for operation in low gravity. Mixing was by means of stirring the chemicals with an electric motor and propeller in a mixing chamber. The apparatus was flown on Consort 1, the first low-gravity materials payload launched by a commercial rocket launch team. The sounding rocket flight produced over 7 min of low gravity during which a polyurethane spheroidal foam of approximately 2300 cu cm was formed. Photographs of the formation of the foam during the flight show the development of the spheroidal form. This begins as a small sphere and grows to approximately a 17-cm-diam spheroid. The apparatus will be flown again on subsequent low-gravity flights.
Climatology of gravity waves over Poker Flat, Alaska for 1983
NASA Technical Reports Server (NTRS)
Balsley, B. B.; Garello, R.
1986-01-01
An analysis of short-period wind fluctuations over Poker Flat, Alaska, obtained using the Poker Flat mesosphere-stratosphere-troposphere radar is presented. Results are shown for the troposphere and lower stratosphere as well as for the upper mesosphere and lower thermosphere. Contours depict various levels of wind variance (m2s-2). These results pertain only to wind fluctuation periods lying between one and six hours. These particular fluctuations are generally considered to arise primarily from atmospheric gravity waves. Insofar as this is true, the figure thus describes a general climatology of gravity waves at high latitudes.
Analysis of rotation curves in the framework of Rn gravity
NASA Astrophysics Data System (ADS)
Frigerio Martins, C.; Salucci, P.
2007-11-01
We present an analysis of a devised sample of rotation curves (RCs), with the aim of checking the consequences of a modified f(R) gravity on galactic scales. Originally motivated by the mystery of dark energy, this theory may explain the observed non-Keplerian profiles of galactic RCs in terms of a breakdown of Einstein general relativity. We show that, in general, the power-law f(R) version could fit the observations well, with reasonable values for the mass model parameters. This could encourage further investigation into Rn gravity from both observational and theoretical points of view.
Testing gravity with EG: mapping theory onto observations
NASA Astrophysics Data System (ADS)
Leonard, C. Danielle; Ferreira, Pedro G.; Heymans, Catherine
2015-12-01
We present a complete derivation of the observationally motivated definition of the modified gravity statistic EG. Using this expression, we investigate how variations to theory and survey parameters may introduce uncertainty in the general relativistic prediction of EG. We forecast errors on EG for measurements using two combinations of upcoming surveys, and find that theoretical uncertainties may dominate for a futuristic measurement. Finally, we compute predictions of EG under modifications to general relativity in the quasistatic regime, and comment on the pros and cons of using EG to test gravity with future surveys.
Stratospheric gravity wave observations of AIRS and HIRDLS
NASA Astrophysics Data System (ADS)
Meyer, Catrin I.; Hoffmann, Lars; Ern, Manfred; Trinh, Thai
2016-04-01
The Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite provides stratospheric temperature observations for a variety of scientific analyses. However, the horizontal resolution of the operational temperature retrievals is generally not sufficient for studies of gravity waves. The AIRS high-resolution retrieval discussed here provides stratospheric temperature profiles for each individual satellite footprint and therefore has nine times better horizontal sampling than the operational data. The retrieval configuration is optimized so that the results provide a trade-off between spatial resolution and retrieval noise that is considered optimal for gravity wave analysis. To validate the AIRS data we performed an intercomparison with stratospheric temperature measurements of the High Resolution Dynamics Limb Sounder (HIRDLS). Selected case studies of gravity wave events are analyzed. AIRS and HIRDLS utilize rather different measurement geometries (nadir and limb) and have different sensitivities to gravity wave horizontal and vertical wavelengths, as indicated by their observational filters. Nevertheless, the wave structures found in the stratosphere in AIRS and HIRDLS data are often in remarkably good agreement. The three-dimensional temperature fields from AIRS allow us to derive the horizontal orientation of the phase fronts, which is a limiting factor for gravity wave analyses based on limb measurements today. In addition, a statistical comparison focuses on temperature variances due to stratospheric gravity wave activity at 20-60 km altitude. The analysis covers monthly zonal averages and time series for the HIRDLS measurement time period (January 2005-March 2008). We found good agreement in the seasonal and latitudinal patterns of gravity wave activity. Time series of gravity wave variances show a strong annual cycle at high latitudes with maxima during wintertime and minima during summertime. Largest variability is found at 60°S during austral
Spherically symmetric conformal gravity and ''gravitational bubbles''
Berezin, V.A.; Dokuchaev, V.I.; Eroshenko, Yu.N. E-mail: dokuchaev@inr.ac.ru
2016-01-01
The general structure of the spherically symmetric solutions in the Weyl conformal gravity is described. The corresponding Bach equations are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions is found. It consists of two classes. The first one contains the solutions with constant two-dimensional curvature scalar of our specific metrics, and the representatives are the famous Robertson-Walker metrics. One of them we called the ''gravitational bubbles'', which is compact and with zero Weyl tensor. Thus, we obtained the pure vacuum curved space-times (without any material sources, including the cosmological constant) what is absolutely impossible in General Relativity. Such a phenomenon makes it easier to create the universe from ''nothing''. The second class consists of the solutions with varying curvature scalar. We found its representative as the one-parameter family. It appears that it can be conformally covered by the thee-parameter Mannheim-Kazanas solution. We also investigated the general structure of the energy-momentum tensor in the spherical conformal gravity and constructed the vectorial equation that reveals clearly some features of non-vacuum solutions. Two of them are explicitly written, namely, the metrics à la Vaidya, and the electrovacuum space-time metrics.
Spherically symmetric conformal gravity and ``gravitational bubbles''
NASA Astrophysics Data System (ADS)
Berezin, V. A.; Dokuchaev, V. I.; Eroshenko, Yu. N.
2016-01-01
The general structure of the spherically symmetric solutions in the Weyl conformal gravity is described. The corresponding Bach equations are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions is found. It consists of two classes. The first one contains the solutions with constant two-dimensional curvature scalar of our specific metrics, and the representatives are the famous Robertson-Walker metrics. One of them we called the ``gravitational bubbles'', which is compact and with zero Weyl tensor. Thus, we obtained the pure vacuum curved space-times (without any material sources, including the cosmological constant) what is absolutely impossible in General Relativity. Such a phenomenon makes it easier to create the universe from ``nothing''. The second class consists of the solutions with varying curvature scalar. We found its representative as the one-parameter family. It appears that it can be conformally covered by the thee-parameter Mannheim-Kazanas solution. We also investigated the general structure of the energy-momentum tensor in the spherical conformal gravity and constructed the vectorial equation that reveals clearly some features of non-vacuum solutions. Two of them are explicitly written, namely, the metrics à la Vaidya, and the electrovacuum space-time metrics.
Conformal gravity and “gravitational bubbles”
NASA Astrophysics Data System (ADS)
Berezin, V. A.; Dokuchaev, V. I.; Eroshenko, Yu. N.
2016-01-01
We describe the general structure of the spherically symmetric solutions in the Weyl conformal gravity. The corresponding Bach equations are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions, consisting of two classes, is found. The first one contains the solutions with constant two-dimensional curvature scalar, and the representatives are the famous Robertson-Walker metrics. We called one of them the “gravitational bubbles”, which is compact and with zero Weyl tensor. These “gravitational bubbles” are the pure vacuum curved space-times (without any material sources, including the cosmological constant), which are absolutely impossible in General Relativity. This phenomenon makes it easier to create the universe from “nothing”. The second class consists of the solutions with varying curvature scalar. We found its representative as the one-parameter family, which can be conformally covered by the thee-parameter Mannheim-Kazanas solution. We describe the general structure of the energy-momentum tensor in the spherical conformal gravity and construct the vectorial equation that reveals clearly some features of non-vacuum solutions.
Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory
Chan, H.A.; Paik, H.J.
1987-06-15
Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for the device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges.
General Relativity and Gravitation
NASA Astrophysics Data System (ADS)
Ashtekar, Abhay; Berger, Beverly; Isenberg, James; MacCallum, Malcolm
2015-07-01
Part I. Einstein's Triumph: 1. 100 years of general relativity George F. R. Ellis; 2. Was Einstein right? Clifford M. Will; 3. Cosmology David Wands, Misao Sasaki, Eiichiro Komatsu, Roy Maartens and Malcolm A. H. MacCallum; 4. Relativistic astrophysics Peter Schneider, Ramesh Narayan, Jeffrey E. McClintock, Peter Mészáros and Martin J. Rees; Part II. New Window on the Universe: 5. Receiving gravitational waves Beverly K. Berger, Karsten Danzmann, Gabriela Gonzalez, Andrea Lommen, Guido Mueller, Albrecht Rüdiger and William Joseph Weber; 6. Sources of gravitational waves. Theory and observations Alessandra Buonanno and B. S. Sathyaprakash; Part III. Gravity is Geometry, After All: 7. Probing strong field gravity through numerical simulations Frans Pretorius, Matthew W. Choptuik and Luis Lehner; 8. The initial value problem of general relativity and its implications Gregory J. Galloway, Pengzi Miao and Richard Schoen; 9. Global behavior of solutions to Einstein's equations Stefanos Aretakis, James Isenberg, Vincent Moncrief and Igor Rodnianski; Part IV. Beyond Einstein: 10. Quantum fields in curved space-times Stefan Hollands and Robert M. Wald; 11. From general relativity to quantum gravity Abhay Ashtekar, Martin Reuter and Carlo Rovelli; 12. Quantum gravity via unification Henriette Elvang and Gary T. Horowitz.
Regularization ambiguities in loop quantum gravity
Perez, Alejandro
2006-02-15
One of the main achievements of loop quantum gravity is the consistent quantization of the analog of the Wheeler-DeWitt equation which is free of ultraviolet divergences. However, ambiguities associated to the intermediate regularization procedure lead to an apparently infinite set of possible theories. The absence of an UV problem--the existence of well-behaved regularization of the constraints--is intimately linked with the ambiguities arising in the quantum theory. Among these ambiguities is the one associated to the SU(2) unitary representation used in the diffeomorphism covariant 'point-splitting' regularization of the nonlinear functionals of the connection. This ambiguity is labeled by a half-integer m and, here, it is referred to as the m ambiguity. The aim of this paper is to investigate the important implications of this ambiguity. We first study 2+1 gravity (and more generally BF theory) quantized in the canonical formulation of loop quantum gravity. Only when the regularization of the quantum constraints is performed in terms of the fundamental representation of the gauge group does one obtain the usual topological quantum field theory as a result. In all other cases unphysical local degrees of freedom arise at the level of the regulated theory that conspire against the existence of the continuum limit. This shows that there is a clear-cut choice in the quantization of the constraints in 2+1 loop quantum gravity. We then analyze the effects of the ambiguity in 3+1 gravity exhibiting the existence of spurious solutions for higher representation quantizations of the Hamiltonian constraint. Although the analysis is not complete in 3+1 dimensions - due to the difficulties associated to the definition of the physical inner product - it provides evidence supporting the definitions quantum dynamics of loop quantum gravity in terms of the fundamental representation of the gauge group as the only consistent possibilities. If the gauge group is SO(3) we find
Regularization ambiguities in loop quantum gravity
NASA Astrophysics Data System (ADS)
Perez, Alejandro
2006-02-01
One of the main achievements of loop quantum gravity is the consistent quantization of the analog of the Wheeler-DeWitt equation which is free of ultraviolet divergences. However, ambiguities associated to the intermediate regularization procedure lead to an apparently infinite set of possible theories. The absence of an UV problem—the existence of well-behaved regularization of the constraints—is intimately linked with the ambiguities arising in the quantum theory. Among these ambiguities is the one associated to the SU(2) unitary representation used in the diffeomorphism covariant “point-splitting” regularization of the nonlinear functionals of the connection. This ambiguity is labeled by a half-integer m and, here, it is referred to as the m ambiguity. The aim of this paper is to investigate the important implications of this ambiguity. We first study 2+1 gravity (and more generally BF theory) quantized in the canonical formulation of loop quantum gravity. Only when the regularization of the quantum constraints is performed in terms of the fundamental representation of the gauge group does one obtain the usual topological quantum field theory as a result. In all other cases unphysical local degrees of freedom arise at the level of the regulated theory that conspire against the existence of the continuum limit. This shows that there is a clear-cut choice in the quantization of the constraints in 2+1 loop quantum gravity. We then analyze the effects of the ambiguity in 3+1 gravity exhibiting the existence of spurious solutions for higher representation quantizations of the Hamiltonian constraint. Although the analysis is not complete in 3+1 dimensions—due to the difficulties associated to the definition of the physical inner product—it provides evidence supporting the definitions quantum dynamics of loop quantum gravity in terms of the fundamental representation of the gauge group as the only consistent possibilities. If the gauge group is SO(3) we
Rotating gravity gradiometer study
NASA Technical Reports Server (NTRS)
Forward, R. L.
1982-01-01
Two rotating gravity gradiometer (RGG) sensors, along with all the external electronics needed to operate them, and the fixtures and special test equipment needed to fill and align the bearings, were assembled in a laboratory, and inspected. The thermal noise threshold of the RGG can be lowered by replacing a damping resistor in the first stage electronics by an active artificial resistor that generates less random voltage noise per unit bandwidth than the Johnson noise from the resistor it replaces. The artificial resistor circuit consists of an operational amplifier, three resistors, and a small DC to DC floating power supply. These are small enough to be retrofitted to the present circuit boards inside the RGG rotor in place of the 3 Megohm resistor. Using the artificial resistor, the thermal noise of the RGG-2 sensor can be lowered from 0.3 Eotvos to 0.15 Eotvos for a 10 sec integration time.
NASA Astrophysics Data System (ADS)
Grishchuk, Leonid Petrovich
The article concerns astronomical phenomena , related with discovery of gravitational waves of various nature: 1) primordial (relic) gravitational waves, analogous to MWBR 2) gravitational waves due to giant collisions in the Universe between 2a) Macroscopic black Holes in the centers of Galaxies 2b) Tidal disruption of neutron stars by Black holes 2c) deformations of the space-time by stellar mass Black Holes moving near giant Black Holes in the centers of Galaxies 2d) Supernovae phenomena 2e) accretion phenomena on Black Holes and Neutron stars. The Earth based interferometric technics (LIGO Project) to detect gravitational waves is described as well as the perspectiva for a space Laser Interferometric Antena (LISA)is discussed. The article represents a modified text of the Plenary talk "Gravity-Wave astronomy" given at the XI International gravitational Conference (July 1986, Stockholm, Sweden).
NASA Astrophysics Data System (ADS)
Maxfield, Travis; Sethi, Savdeep
2017-02-01
We study the dynamics of gravitational lumps. By a lump, we mean a metric configuration that asymptotes to a flat space-time. Such lumps emerge in string theory as strong coupling descriptions of D-branes. We provide a physical argument that the broken global symmetries of such a background, generated by certain large diffeomorphisms, constrain the dynamics of localized modes. These modes include the translation zero modes and any localized tensor modes. The constraints we find are gravitational analogues of those found in brane physics. For the example of a Taub-NUT metric in eleven-dimensional supergravity, we argue that a critical value for the electric field arises from standard gravity without higher derivative interactions.
NASA Astrophysics Data System (ADS)
Holota, Petr; Nesvadba, Otakar
2016-04-01
The role of boundary value problems in physical geodesy and in Earth's gravity field studies in particular is well-known. The paper focuses on Neumann's problem formulated for the exterior of an oblate ellipsoid of revolution as this is considered a basis for an iteration solution of the linear gravimetric boundary value problem in the determination of the disturbing potential. The approach follows the concept of variational methods and the notion of the weak solution. Hence Galerkin's approximations are applied, which means that the solution of the problem is approximated by linear combinations of basis functions with scalar coefficients. Our aim is to discuss the construction of Galerkin's matrix for basis functions generated by elementary potentials. Possibly, the computation of the entries of Galerkin's matrix is expected to be very simple for the elementary functions like these. Nevertheless, the opposite is true. Ellipsoidal harmonics are applied as a natural tool and elementary potentials are expressed by means of series of ellipsoidal harmonics. The problem, however, is the summation of the series that represent the entries of Galerkin's matrix. It is difficult to reduce the number of summation indices since in the ellipsoidal case there is no analogue to the addition theorem known for spherical harmonics. This makes the computation of Galerkin's matrix rather demanding. Therefore, the straightforward application of series of ellipsoidal harmonics is complemented by deeper relations contained in the theory of ordinary differential equations of second order and Legendre's functions. Subsequently, hypergeometric functions and series are used. Moreover, within some approximations the entries are split into parts. Some of the resulting series may be summed relatively easily, apart from technical tricks. For the remaining series the summation needs more complex tools. It was converted to elliptic integrals. The approach made it possible to deduce a closed
The Gravity Probe B Experiment
NASA Technical Reports Server (NTRS)
Kolodziejczak, Jeffrey
2008-01-01
This presentation briefly describes the Gravity Probe B (GP-B) Experiment which is designed to measure parts of Einstein's general theory of relativity by monitoring gyroscope orientation relative to a distant guide star. To measure the miniscule angles predicted by Einstein's theory, it was necessary to build near-perfect gyroscopes that were approximately 50 million times more precise than the best navigational gyroscopes. A telescope mounted along the central axis of the dewar and spacecraft provided the experiment's pointing reference to a guide star. The telescope's image divide precisely split the star's beam into x-axis and y-axis components whose brightness could be compared. GP-B's 650-gallon dewar, kept the science instrument inside the probe at a cryogenic temperature for 17.3 months and also provided the thruster propellant for precision attitude and translation control. Built around the dewar, the GP-B spacecraft was a total-integrated system, comprising both the space vehicle and payload, dedicated as a single entity to experimentally testing predictions of Einstein's theory.
Gravity Probe B Gyroscope Rotor
NASA Technical Reports Server (NTRS)
2003-01-01
The Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. This photograph is a close up of a niobium-coated gyroscope motor and its housing halves. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Don Harley.)
NASA Technical Reports Server (NTRS)
2003-01-01
The space vehicle for Gravity Probe B (GP-B) arrives at the launch site at Vandenburg Air Force Base. GP-B is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.
Weyl gravity and Cartan geometry
NASA Astrophysics Data System (ADS)
Attard, J.; François, J.; Lazzarini, S.
2016-04-01
We point out that the Cartan geometry known as the second-order conformal structure provides a natural differential geometric framework underlying gauge theories of conformal gravity. We are concerned with two theories: the first one is the associated Yang-Mills-like Lagrangian, while the second, inspired by [1], is a slightly more general one that relaxes the conformal Cartan geometry. The corresponding gauge symmetry is treated within the Becchi-Rouet-Stora-Tyutin language. We show that the Weyl gauge potential is a spurious degree of freedom, analogous to a Stueckelberg field, that can be eliminated through the dressing field method. We derive sets of field equations for both the studied Lagrangians. For the second one, they constrain the gauge field to be the "normal conformal Cartan connection.''Finally, we provide in a Lagrangian framework a justification of the identification, in dimension 4, of the Bach tensor with the Yang-Mills current of the normal conformal Cartan connection, as proved in [2].
Gravity quantized: Loop quantum gravity with a scalar field
Domagala, Marcin; Kaminski, Wojciech; Giesel, Kristina; Lewandowski, Jerzy
2010-11-15
...''but we do not have quantum gravity.'' This phrase is often used when analysis of a physical problem enters the regime in which quantum gravity effects should be taken into account. In fact, there are several models of the gravitational field coupled to (scalar) fields for which the quantization procedure can be completed using loop quantum gravity techniques. The model we present in this paper consists of the gravitational field coupled to a scalar field. The result has similar structure to the loop quantum cosmology models, except that it involves all the local degrees of freedom of the gravitational field because no symmetry reduction has been performed at the classical level.
New Bi-Gravity from New Massive Gravity
NASA Astrophysics Data System (ADS)
Akhavan, A.; Alishahiha, M.; Naseh, A.; Nemati, A.; Shirzad, A.
2016-05-01
Using the action of three dimensional New Massive Gravity (NMG) we construct a new bi-gravity in three dimensions. This can be done by promoting the rank two auxiliary field appearing in the expression of NMG's action into a dynamical field. We show that small fluctuations around the AdS vacuum of the model are non-tachyonic and ghost free within certain range of the parameters of the model. We study central charges of the dual field theory and observe that in this range they are positive too. This suggests that the proposed model might be a consistent three dimensional bi-gravity.
Artificial gravity - The evolution of variable gravity research
NASA Technical Reports Server (NTRS)
Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard
1987-01-01
The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.
Novel Probes of Gravity and Dark Energy
Jain, Bhuvnesh; et al.
2013-09-20
The discovery of cosmic acceleration has stimulated theorists to consider dark energy or modifications to Einstein's General Relativity as possible explanations. The last decade has seen advances in theories that go beyond smooth dark energy -- modified gravity and interactions of dark energy. While the theoretical terrain is being actively explored, the generic presence of fifth forces and dark sector couplings suggests a set of distinct observational signatures. This report focuses on observations that differ from the conventional probes that map the expansion history or large-scale structure. Examples of such novel probes are: detection of scalar fields via lab experiments, tests of modified gravity using stars and galaxies in the nearby universe, comparison of lensing and dynamical masses of galaxies and clusters, and the measurements of fundamental constants at high redshift. The observational expertise involved is very broad as it spans laboratory experiments, high resolution astronomical imaging and spectroscopy and radio observations. In the coming decade, searches for these effects have the potential for discovering fundamental new physics. We discuss how the searches can be carried out using experiments that are already under way or with modest adaptations of existing telescopes or planned experiments. The accompanying paper on the Growth of Cosmic Structure describes complementary tests of gravity with observations of large-scale structure.
Perturbative gravity in the causal approach
NASA Astrophysics Data System (ADS)
Grigore, D. R.
2010-01-01
Quantum theory of the gravitation in the causal approach is studied up to the second order of perturbation theory in the causal approach. We emphasize the use of cohomology methods in this framework. After describing in detail the mathematical structure of the cohomology method we apply it in three different situations: (a) the determination of the most general expression of the interaction Lagrangian; (b) the proof of gauge invariance in the second order of perturbation theory for the pure gravity system—massless and massive; (c) the investigation of the arbitrariness of the second-order chronological products compatible with renormalization principles and gauge invariance (i.e. the renormalization problem in the second order of perturbation theory). In case (a) we investigate pure gravity systems and the interaction of massless gravity with matter (described by scalars and spinors) and massless Yang-Mills fields. We obtain a difference with respect to the classical field theory due to the fact that in quantum field theory one cannot enforce the divergenceless property on the vector potential and this spoils the divergenceless property of the usual energy-momentum tensor. To correct this one needs a supplementary ghost term in the interaction Lagrangian. In all three case, the computations are more simple than by the usual methods.
Anisotropic singularities in chiral modified gravity
NASA Astrophysics Data System (ADS)
Herfray, Yannick; Krasnov, Kirill; Shtanov, Yuri
2016-12-01
In four spacetime dimensions, there exists a special infinite-parameter family of chiral modified gravity theories. All these theories describe just two propagating polarisations of the graviton. General relativity (GR) with an arbitrary cosmological constant is the only parity-invariant member of this family. We review how these modified gravity theories arise within the framework of pure-connection formulation. We introduce a new convenient parametrisation of this family of theories by using a certain set of auxiliary fields. Modifications of GR can be arranged so as to become important in regions with large Weyl curvature, while the behaviour is indistinguishable from GR where Weyl curvature is small. We show how the Kasner singularity of GR is resolved in a particular class of modified gravity theories of this type, leading to solutions in which the fundamental connection field is regular all through the spacetime. There arises a new asymptotically De Sitter region ‘behind’ the would-be singularity, the complete solution thus being of a bounce type.
Fixing Gauge Redundancies in Quantum Gravity
NASA Astrophysics Data System (ADS)
Weinberg, Sean Jason
Evidence has accumulated that descriptions of systems in quantum gravity depend strongly on various choices of gauge-fixing including a choice of "reference frame." We discuss several explicit examples of this reference frame dependence and, in doing so, clarify a number of general features of quantum gravity including the thermodynamics of spacetime, the holographic principle, and black hole complementarity. Our discussion focuses on two superficially independent subjects. The first of these is that of holographic screens. These are codimension-one surfaces that are preferred from the perspective of the holographic principle. They are generated by a choice of null foliation and, in particular, can be fixed by the light cones of a worldline. We will study a class of holographic screens called past and future holographic screens and strengthen a recently proven area law for these surfaces. We then introduce a definition of holographic entanglement entropy associated with past and future holographic screens and, in doing so, provide new evidence for the importance of screens in quantum gravity. Our second major emphasis is on the black hole information paradox and the firewall paradox. We give a set of hypotheses for the microscopic structure of black holes that appears to be self-consistent and admit a smooth horizon despite the AMPS arguments. Our model relies on the principle that the quantum information associated with spacetime is both delocalized and reference frame dependent.
Cosmological stability bound in massive gravity and bigravity
Fasiello, Matteo; Tolley, Andrew J. E-mail: andrew.j.tolley@case.edu
2013-12-01
We give a simple derivation of a cosmological bound on the graviton mass for spatially flat FRW solutions in massive gravity with an FRW reference metric and for bigravity theories. This bound comes from the requirement that the kinetic term of the helicity zero mode of the graviton is positive definite. The bound is dependent only on the parameters in the massive gravity potential and the Hubble expansion rate for the two metrics. We derive the decoupling limit of bigravity and FRW massive gravity, and use this to give an independent derivation of the cosmological bound. We recover our previous results that the tension between satisfying the Friedmann equation and the cosmological bound is sufficient to rule out all observationally relevant FRW solutions for massive gravity with an FRW reference metric. In contrast, in bigravity this tension is resolved due to different nature of the Vainshtein mechanism. We find that in bigravity theories there exists an FRW solution with late-time self-acceleration for which the kinetic terms for the helicity-2, helicity-1 and helicity-0 are generically nonzero and positive making this a compelling candidate for a model of cosmic acceleration. We confirm that the generalized bound is saturated for the candidate partially massless (bi)gravity theories but the existence of helicity-1/helicity-0 interactions implies the absence of the conjectured partially massless symmetry for both massive gravity and bigravity.
Holographic charged fluid dual to third order Lovelock gravity
NASA Astrophysics Data System (ADS)
Zou, De-Cheng; Zhang, Shao-Jun; Wang, Bin
2013-04-01
We study the dual fluid on a finite cutoff surface outside the black brane horizon in the third order Lovelock gravity. Using nonrelativistic long-wavelength expansion, we obtain the incompressible Navier-Stokes equations of dual fluid with external force density on the finite cutoff surface. The viscosity to entropy density ratio η/s is independent of the cutoff surface and does not get modification from the third order Lovelock gravity influence. The obtained ratio agrees with the results obtained by using other methods, such as the Kubo formula at the AdS boundary and the membrane paradigm at the horizon in the third order Lovelock gravity. These results can be related by Wilson renormalization group flow. However the kinematic viscosity receives correction from the third order Lovelock term. We show that the equivalence between the isentropic flow of the fluid and the radial component of the gravitational equation observed in the Einstein and Gauss-Bonnet gravities also holds in the third order Lovelock gravity. This generalization brings more understanding of relating the gravity theory to the dual fluid.
Gravity Forcing Of Surface Waves
NASA Astrophysics Data System (ADS)
Kenyon, K. E.
2005-12-01
Surface waves in deep water are forced entirely by gravity at the air-sea interface when no other forces act tangent to the surface. Then according to Newton's second law, the fluid acceleration parallel to the surface must equal the component of gravity parallel to the surface. Between crest and trough the fluid accelerates; between trough and crest the fluid decelerates. By replacing Bernoulli's law, gravity forcing becomes the dynamic boundary condition needed to solve the mathematical problem of these waves. Irrotational waves with a sinusoidal profile satisfy the gravity forcing condition, with the usual dispersion relation, provided the slope is small compared to one, as is true also of the Stokes development. However, the exact wave shape can be calculated using the gravity forcing method in a way that is less complex and less time consuming than that of the Stokes perturbation expansion. To the second order the surface elevation is the same as the Stokes result; the third order calculation has not been made yet. Extensions of the gravity forcing method can easily be carried out for multiple wave trains, solitary waves and bores, waves in finite constant mean depths, and internal waves in a two-layer system. For shoaling surface waves gravity forcing provides a physical understanding of the progressive steepening often observed near shore.
Progress in the Determination of the Earth's Gravity Field
NASA Technical Reports Server (NTRS)
Rapp, Richard H. (Editor)
1989-01-01
Topics addressed include: global gravity model development; methods for approximation of the gravity field; gravity field measuring techniques; global gravity field applications and requirements in geophysics and oceanography; and future gravity missions.
An Exact Solution of Einstein-Maxwell Gravity Coupled to a Scalar Field
NASA Technical Reports Server (NTRS)
Turyshev, S. G.
1995-01-01
The general solution to low-energy string theory representing static spherically symmetric solution of the Einstein-Maxwell gravity with a massless scalar field has been found. Some of the partial cases appear to coincide with known solutions to black holes, naked singularities, and gravity and electromagnetic fields.
Power-law cosmic expansion in f(R) gravity models
Goheer, Naureen; Larena, Julien; Dunsby, Peter K. S.
2009-09-15
We show that within the class of f(R) gravity theories, Friedmann-Lemaitre-Robertson-Walker power-law perfect fluid solutions only exist for R{sup n} gravity. This significantly restricts the set of exact cosmological solutions which have similar properties to what is found in standard general relativity.
Charge neutrality of fine particle (dusty) plasmas and fine particle cloud under gravity
NASA Astrophysics Data System (ADS)
Totsuji, Hiroo
2017-03-01
The enhancement of the charge neutrality due to the existence of fine particles is shown to occur generally under microgravity and in one-dimensional structures under gravity. As an application of the latter, the size and position of fine particle clouds relative to surrounding plasmas are determined under gravity.
Quantum Gravity in 2 + 1 Dimensions: The Case of a Closed Universe.
Carlip, Steven
2005-01-01
In three spacetime dimensions, general relativity drastically simplifies, becoming a "topological" theory with no propagating local degrees of freedom. Nevertheless, many of the difficult conceptual problems of quantizing gravity are still present. In this review, I summarize the rather large body of work that has gone towards quantizing (2 + 1)-dimensional vacuum gravity in the setting of a spatially closed universe.
Big bang nucleosynthesis constraints on the self-gravity of pressure
Rappaport, Saul; Schwab, Josiah; Burles, Scott; Steigman, Gary
2008-01-15
Using big bang nucleosynthesis and present, high-precision measurements of light element abundances, we constrain the self-gravity of radiation pressure in the early universe. The self-gravity of pressure is strictly non-Newtonian, and thus the constraints we set provide a direct test of this prediction of general relativity and of the standard, Friedmann-Robertson-Walker cosmology.
Role of gravity waves in vertical coupling during sudden stratospheric warmings
NASA Astrophysics Data System (ADS)
Yiğit, Erdal; Medvedev, Alexander S.
2016-12-01
Gravity waves are primarily generated in the lower atmosphere, and can reach thermospheric heights in the course of their propagation. This paper reviews the recent progress in understanding the role of gravity waves in vertical coupling during sudden stratospheric warmings. Modeling of gravity wave effects is briefly reviewed, and the recent developments in the field are presented. Then, the impact of these waves on the general circulation of the upper atmosphere is outlined. Finally, the role of gravity waves in vertical coupling between the lower and the upper atmosphere is discussed in the context of sudden stratospheric warmings.
Wormhole geometries in fourth-order conformal Weyl gravity
NASA Astrophysics Data System (ADS)
Varieschi, Gabriele U.; Ault, Kellie L.
2016-04-01
We present an analysis of the classic wormhole geometries based on conformal Weyl gravity, rather than standard general relativity. The main characteristics of the resulting traversable wormholes remains the same as in the seminal study by Morris and Thorne, namely, that effective super-luminal motion is a viable consequence of the metric. Improving on previous work on the subject, we show that for particular choices of the shape and redshift functions the wormhole metric in the context of conformal gravity does not violate the main energy conditions at or near the wormhole throat. Some exotic matter might still be needed at the junction between our solutions and flat spacetime, but we demonstrate that the averaged null energy condition (as evaluated along radial null geodesics) is satisfied for a particular set of wormhole geometries. Therefore, if fourth-order conformal Weyl gravity is a correct extension of general relativity, traversable wormholes might become a realistic solution for interstellar travel.
Wormhole geometries in fourth-order conformal Weyl gravity
NASA Astrophysics Data System (ADS)
Varieschi, Gabriele; Ault, Kellie
2016-03-01
We present an analysis of the classic wormhole geometries based on conformal Weyl gravity, rather than standard general relativity. The main characteristics of the resulting traversable wormholes remain the same as in the seminal study by Morris and Thorne, namely, that effective super-luminal motion is a viable consequence of the metric. Improving on previous work on the subject, we show that for particular choices of the shape and redshift functions, the wormhole metric in the context of conformal gravity does not violate the main energy conditions, as was the case of the original solutions. In particular, the resulting geometry does not require the use of exotic matter at or near the wormhole throat. Therefore, if fourth-order conformal Weyl gravity is a correct extension of general relativity, traversable wormholes might become a realistic solution for interstellar travel. This work was supported by a Grant from the Frank R. Seaver College of Science and Engineering, Loyola Marymount University.
A new spin foam model for 4D gravity
NASA Astrophysics Data System (ADS)
Freidel, Laurent; Krasnov, Kirill
2008-06-01
Starting from Plebanski formulation of gravity as a constrained BF theory we propose a new spin foam model for 4D Riemannian quantum gravity that generalizes the well-known Barrett Crane model and resolves the inherent to it ultra-locality problem. The BF formulation of 4D gravity possesses two sectors: gravitational and topological ones. The model presented here is shown to give a quantization of the gravitational sector, and is dual to the recently proposed spin foam model of Engle et al which, we show, corresponds to the topological sector. Our methods allow us to introduce the Immirzi parameter into the framework of spin foam quantization. We generalize some of our considerations to the Lorentzian setting and obtain a new spin foam model in that context as well.
Higher derivative gravity: Field equation as the equation of state
NASA Astrophysics Data System (ADS)
Dey, Ramit; Liberati, Stefano; Mohd, Arif
2016-08-01
One of the striking features of general relativity is that the Einstein equation is implied by the Clausius relation imposed on a small patch of locally constructed causal horizon. The extension of this thermodynamic derivation of the field equation to more general theories of gravity has been attempted many times in the last two decades. In particular, equations of motion for minimally coupled higher-curvature theories of gravity, but without the derivatives of curvature, have previously been derived using a thermodynamic reasoning. In that derivation the horizon slices were endowed with an entropy density whose form resembles that of the Noether charge for diffeomorphisms, and was dubbed the Noetheresque entropy. In this paper, we propose a new entropy density, closely related to the Noetheresque form, such that the field equation of any diffeomorphism-invariant metric theory of gravity can be derived by imposing the Clausius relation on a small patch of local causal horizon.
Evolution of density perturbations in f(R) gravity
Carloni, S.; Dunsby, P. K. S.; Troisi, A.
2008-01-15
We give a rigorous and mathematically well defined presentation of the covariant and gauge invariant theory of scalar perturbations of a Friedmann-Lemaitre-Robertson-Walker universe for fourth order gravity, where the matter is described by a perfect fluid with a barotropic equation of state. The general perturbations equations are applied to a simple background solution of R{sup n} gravity. We obtain exact solutions of the perturbations equations for scales much bigger than the Hubble radius. These solutions have a number of interesting features. In particular, we find that for all values of n there is always a growing mode for the density contrast, even if the universe undergoes an accelerated expansion. Such behavior does not occur in standard general relativity, where as soon as dark energy dominates, the density contrast experiences an unrelenting decay. This peculiarity is sufficiently novel to warrant further investigation of fourth order gravity models.
Conformal Gravity and the Alcubierre Warp Drive Metric
NASA Astrophysics Data System (ADS)
Varieschi, Gabriele; Burstein, Zily
2013-04-01
We present an analysis of the classic Alcubierre metric based on conformal gravity, rather than standard general relativity. The main characteristics of the resulting warp drive remain the same as in the original study by Alcubierre, namely that effective super-luminal motion is a viable outcome of the metric. We show that for particular choices of the shaping function, the Alcubierre metric in the context of conformal gravity does not violate the weak energy condition, as was the case of the original solution. In particular, the resulting warp drive does not require the use of exotic matter. Therefore, if conformal gravity is a correct extension of general relativity, super-luminal motion via an Alcubierre metric might be a realistic solution, thus allowing faster-than-light interstellar travel.
Large-scale structure in f(T) gravity
Li Baojiu; Sotiriou, Thomas P.; Barrow, John D.
2011-05-15
In this work we study the cosmology of the general f(T) gravity theory. We express the modified Einstein equations using covariant quantities, and derive the gauge-invariant perturbation equations in covariant form. We consider a specific choice of f(T), designed to explain the observed late-time accelerating cosmic expansion without including an exotic dark energy component. Our numerical solution shows that the extra degree of freedom of such f(T) gravity models generally decays as one goes to smaller scales, and consequently its effects on scales such as galaxies and galaxies clusters are small. But on large scales, this degree of freedom can produce large deviations from the standard {Lambda}CDM scenario, leading to severe constraints on the f(T) gravity models as an explanation to the cosmic acceleration.
Simulation of Gravity Feed Oil for Areoplane Fuel Transfer System
NASA Astrophysics Data System (ADS)
Lv, Y. G.; Liu, Z. X.; Huang, S. Q.; Xu, T.
Generally, it has two different ways for fuel transfer for areoplane, the simplest one is by gravity, and another is by pumps. But the simplest one mighte change to the vital method in some situation, such as electrical and mechanical accident. So the study of gravity feed oil is aslo important. Past calculations assumed that, under gravity feed, only one fuel tank in aircraft supplies the fuel needed for preventing extremely serious accident to happen. Actually, gravity feed oil is a transient process, all fuel tanks compete for supplying oil and there must have several fuel tanks offering oil simultaneously. The key problems to calculate gravity feed oil are the sumulation of the multiple-branch and transient process. Firstly, we presented mathematical models for oil flow through pipes, non-working pupms and check valves, ect. Secondly, On the basis of flow network theory and time difference method, we established a new calculation method for gravity feed oil of aeroplane fuel system. This model can solve the multiple-branch and transient process simulation of gravity feed oil. Our method takes into consideration all fuel tanks and therefore, we believe, our method is intrinsically superior to traditional methods and is closer to understanding the real seriousness of the oil supply situation. Finally, we give a numerical example using the new method for a certain type of aircraft under gravity feed. achieved the variations of oil level and flow mass per second of each oil tanks which showed in Figures below. These variations show preliminarily that our proposed method of calculations is satisfactory.
Exploring Gravity Wave Predictability and Dynamics in Deepwave
NASA Astrophysics Data System (ADS)
Doyle, J. D.; Fritts, D. C.; Smith, R. B.; Eckermann, S. D.; Taylor, M. J.; Dörnbrack, A.; Uddstrom, M.; Reynolds, C. A.; Reinecke, A.; Jiang, Q.
2014-12-01
The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere (MLT). This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new lidar and airglow instruments, as well as dropwindsondes and a full suite of flight level instruments including the microwave temperature profiler (MTP), providing temperatures and vertical winds spanning altitudes from immediately above the NGV flight altitude (~13 km) to ~100 km. The region near New Zealand was chosen since all the relevant GW sources (e.g., mountains, cyclones, jet streams) occur strongly here, and upper-level winds in austral winter permit gravity waves to propagate to very high altitudes. The COAMPS adjoint modeling system provided forecast sensitivity in real time during the six-week DEEPWAVE field phase. Five missions were conducted using the NGV to observe regions of high forecast sensitivity, as diagnosed using the COAMPS adjoint model. In this presentation, we provide a summary of the sensitivity characteristics and explore the implications for predictability of low-level winds crucial for gravity wave launching, as well as predictability of gravity wave characteristics in the stratosphere. In general, the sensitive regions were characterized by localized strong dynamics, often involving intense baroclinic systems with deep convection. The results of the adjoint modeling system suggest that gravity wave launching and the characteristics of the gravity waves can be linked to these sensitive regions near frontal zones within baroclinic systems. The predictability links between the tropospheric fronts, cyclones, jet regions, and gravity
Probing modified gravity via the mass-temperature relation of galaxy clusters
NASA Astrophysics Data System (ADS)
Hammami, A.; Mota, D. F.
2017-02-01
We propose that the mass-temperature relation of galaxy clusters is a prime candidate for testing gravity theories beyond Einstein's general relativity, for modified gravity models with universal coupling between matter and the scalar field. For non-universally coupled models, we discover that the impact of modified gravity can remain hidden from the mass-temperature relation. Using non-radiative hydrodynamic cosmological simulations, we find that in modified gravity the hydrostatic mass-temperature relation varies significantly from the standard gravity relation of M ∝ T1.73. To be specific, for symmetron models with a coupling factor of β = 1 we find a lower limit to the power law as M ∝ T1.6; and for f(R) gravity we compute predictions based on the model parameters. We show that the mass-temperature relation, for screened modified gravities, is significantly different from that of standard gravity for the less massive and colder galaxy clusters, while being indistinguishable from Einstein's gravity for massive, hot galaxy clusters. We further investigate the mass-temperature relation for other mass estimates than the hydrostatic mass estimate and discover that the gas mass-temperature results show even more significant deviations from Einstein's gravity than the hydrostatic mass-temperature.
Ocean gravity and geoid determination
NASA Technical Reports Server (NTRS)
Kahn, W. D.; Siry, J. W.; Brown, R. D.; Wells, W. T.
1977-01-01
Gravity anomalies have been recovered in the North Atlantic and the Indian Ocean regions. Comparisons of 63 2 deg x 2 deg mean free air gravity anomalies recovered in the North Atlantic area and 24 5 deg x 5 deg mean free air gravity anomalies in the Indian Ocean area with surface gravimetric measurements have shown agreement to + or - 8 mgals for both solutions. Geoids derived from the altimeter solutions are consistent with altimetric sea surface height data to within the precision of the data, about + or - 2 meters.
Gauge fixing in higher-derivative gravity
NASA Astrophysics Data System (ADS)
Bartoli, A.; Julve, J.; Sánchez, E. J.
1999-07-01
Linearized 4-derivative gravity with a general gauge-fixing term is considered. By a Legendre transform and a suitable diagonalization procedure it is cast into a second-order equivalent form where the nature of the physical degrees of freedom, the gauge ghosts, the Weyl ghosts and the intriguing `third ghosts', characteristic to higher-derivative theories, is made explicit. The symmetries of the theory and the structure of the compensating Faddeev-Popov ghost sector exhibit non-trivial peculiarities. The unitarity breaking negative-norm Weyl ghosts, already present in the diff-invariant theory, are out of the reach of the ghost cancellation BRST mechanism.
Gravity Modeling for Precise Terrestrial Inertial Navigation
1977-06-01
frame. 40 " ~’ , .z ,. " , These fundamental gr;:- itational quantities are related by G(r) = dV(.)/ dr (28) We may derive (26) by formally applying (28...puting T(yr) from measured data. Since we ultimately want the gravity disturbance vector function, SR(y_, we can use 6R(r) = dT/ dr (40) For spherical...34 The XII General Assembly of the International Union in Geodesy and Geophysics, Helsinki, July-August 1960. 21. Levine, S. A. and A. Geib . "Geodetic
Gravity Probe B gyroscope readout system
NASA Astrophysics Data System (ADS)
Muhlfelder, B.; Lockhart, J.; Aljabreen, H.; Clarke, B.; Gutt, G.; Luo, M.
2015-11-01
We describe the Gravity Probe B London-moment readout system successfully used on-orbit to measure two gyroscope spin axis drift rates predicted by general relativity. The system couples the magnetic signal of a spinning niobium-coated rotor into a low noise superconducting quantum interference device. We describe the multi-layered magnetic shield needed to attenuate external fields that would otherwise degrade readout performance. We discuss the ∼35 nrad/yr drift rate sensitivity that was achieved on-orbit.
Artificial Gravity Research Project
NASA Technical Reports Server (NTRS)
Kamman, Michelle R.; Paloski, William H.
2005-01-01
Protecting the health, safety, and performance of exploration-class mission crews against the physiological deconditioning resulting from long-term weightlessness during transit and long-term hypogravity during surface operations will require effective, multi-system countermeasures. Artificial gravity (AG), which would replace terrestrial gravity with inertial forces generated by rotating the transit vehicle or by a human centrifuge device within the transit vehicle or surface habitat, has long been considered a potential solution. However, despite its attractiveness as an efficient, multi-system countermeasure and its potential for improving the environment and simplifying operational activities (e.g., WCS, galley, etc.), much still needs to be learned regarding the human response to rotating environments before AG can be successfully implemented. This paper will describe our approach for developing and implementing a rigorous AG Research Project to address the key biomedical research questions that must be answered before developing effective AG countermeasure implementation strategies for exploration-class missions. The AG Research Project will be performed at JSC, ARC, extramural academic and government research venues, and international partner facilities maintained by DLR and IMBP. The Project includes three major ground-based human research subprojects that will lead to flight testing of intermittent short-radius AG in ISS crewmembers after 201 0, continuous long-radius AG in CEV crews transiting to and from the Moon, and intermittent short-radius AG plus exercise in lunar habitats. These human ground-based subprojects include: 1) a directed, managed international short-radius project to investigate the multi-system effectiveness of intermittent AG in human subjects deconditioned by bed rest, 2) a directed, managed long-radius project to investigate the capacity of humans to live and work for extended periods in rotating environments, and 3) a focused
The Earth's Gravity and Its Geological Significance.
ERIC Educational Resources Information Center
Cook, A. H.
1980-01-01
Discussed is the earth's gravity and its geological significance. Variations of gravity around the earth can be produced by a great variety of possible distributions of density within the earth. Topics discussed include isostasy, local structures, geological exploration, change of gravity in time, and gravity on the moon and planets. (DS)
Gravitation. [consideration of black holes in gravity theories
NASA Technical Reports Server (NTRS)
Fennelly, A. J.
1978-01-01
Investigations of several problems of gravitation are discussed. The question of the existence of black holes is considered. While black holes like those in Einstein's theory may not exist in other gravity theories, trapped surfaces implying such black holes certainly do. The theories include those of Brans-Dicke, Lightman-Lee, Rosen, and Yang. A similar two-tensor theory of Yilmaz is investigated and found inconsistent and nonviable. The Newman-Penrose formalism for Riemannian geometries is adapted to general gravity theories and used to implement a search for twisting solutions of the gravity theories for empty and nonempty spaces. The method can be used to find the gravitational fields for all viable gravity theories. The rotating solutions are of particular importance for strong field interpretation of the Stanford/Marshall gyroscope experiment. Inhomogeneous cosmologies are examined in Einstein's theory as generalizations of homogeneous ones by raising the dimension of the invariance groups by one more parameter. The nine Bianchi classifications are extended to Rosen's theory of gravity for homogeneous cosmological models.
Mars mission gravity profile simulation
NASA Technical Reports Server (NTRS)
Kuznetz, Lawrence H.
1990-01-01
A flight experiment designed to determine the need for artificial gravity for Mars mission architectures at earlier stages of the design process is proposed. The Soviet Mir space station, the NASA Space Shuttle, and the resources of NASA Ames Research Center would be used to duplicate in the terrestrial environment the complete Mars-mission gravity profile in order to assess the need for artificial gravity. All mission phases of 1 G would be on earth; all mission phases of zero or micro G would be in space aboard Mir; and all launch, ascent, orbit, deorbit, approach, departure, and descent G loads would be provided by actual spacecraft in operations that could be designed to simulate the actual G loads, while the Mars stay time would be simulated on earth or in a variable-gravity research facility in space. Methods of simulating activities on the Martian surface are outlined along with data monitoring, countermeasures, and launch site and vehicle selection criteria.
Modified gravity inside astrophysical bodies
Saito, Ryo; Langlois, David; Yamauchi, Daisuke; Mizuno, Shuntaro; Gleyzes, Jérôme E-mail: yamauchi@resceu.s.u-tokyo.ac.jp E-mail: jerome.gleyzes@cea.fr
2015-06-01
Many theories of modified gravity, including the well studied Horndeski models, are characterized by a screening mechanism that ensures that standard gravity is recovered near astrophysical bodies. In a recently introduced class of gravitational theories that goes beyond Horndeski, it has been found that new derivative interactions lead to a partial breaking of the Vainshtein screening mechanism inside any gravitational source, although not outside. We study the impact of this new type of deviation from standard gravity on the density profile of a spherically symmetric matter distribution, in the nonrelativistic limit. For simplicity, we consider a polytropic equation of state and derive the modifications to the standard Lane-Emden equations. We also show the existence of a universal upper bound on the amplitude of this type of modified gravity, independently of the details of the equation of state.
NASA Technical Reports Server (NTRS)
Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.
1985-01-01
The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.
ERIC Educational Resources Information Center
Hall, Peter M.; Hall, David J.
1995-01-01
Discusses the effects of gravity, local density compared to the density of the earth, the mine shaft, centrifugal force, and air buoyancy on the weight of an object at the top and at the bottom of a mine shaft. (JRH)
Critical gravity in four dimensions.
Lü, H; Pope, C N
2011-05-06
We study four-dimensional gravity theories that are rendered renormalizable by the inclusion of curvature-squared terms to the usual Einstein action with a cosmological constant. By choosing the parameters appropriately, the massive scalar mode can be eliminated and the massive spin-2 mode can become massless. This "critical" theory may be viewed as a four-dimensional analogue of chiral topologically massive gravity, or of critical "new massive gravity" with a cosmological constant, in three dimensions. We find that the on-shell energy for the remaining massless gravitons vanishes. There are also logarithmic spin-2 modes, which have positive energy. The mass and entropy of standard Schwarzschild-type black holes vanish. The critical theory might provide a consistent toy model for quantum gravity in four dimensions.
Reduced Gravity Education Flight Program
NASA's Reduced Gravity Education Flight Program gives students and educators the opportunity to design, build and fly an experiment in microgravity and get a look at what it takes to be a NASA en...
ISS Update: Reduced Gravity Education
NASA Public Affairs Officer Dan Huot interviews Veronica Seyl, Acting Manager for Reduced Gravity Education. NASA works with students and educators to design experiments for flight testing aboard t...
Critical Gravity in Four Dimensions
Lue, H.; Pope, C. N.
2011-05-06
We study four-dimensional gravity theories that are rendered renormalizable by the inclusion of curvature-squared terms to the usual Einstein action with a cosmological constant. By choosing the parameters appropriately, the massive scalar mode can be eliminated and the massive spin-2 mode can become massless. This ''critical'' theory may be viewed as a four-dimensional analogue of chiral topologically massive gravity, or of critical 'new massive gravity' with a cosmological constant, in three dimensions. We find that the on-shell energy for the remaining massless gravitons vanishes. There are also logarithmic spin-2 modes, which have positive energy. The mass and entropy of standard Schwarzschild-type black holes vanish. The critical theory might provide a consistent toy model for quantum gravity in four dimensions.
Materials processing in low gravity
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1989-01-01
Work is reported on the Materials Processing Low Gravity Program in which the University of Alabama worked with scientists and engineers at Marshall Space Flight Center to design, implement and perform low gravity experiments with various scientific investigators in materials processing science through March 15, 1989. The facilities used in these short duration low gravity experiments include the Drop Tube and Drop Tower at MSFC, and the KC-135 aircraft at Ellington Field. The utilization of these ground-based low gravity facilities for materials processing was instrumental in determining the feasibility of either performing a particular experiment in the microgravity of Space or continuing on-going activities which may have been delayed due to the absence of shuttle flights during this contractual effort.
Combined magnetic and gravity analysis
NASA Technical Reports Server (NTRS)
Hinze, W. J.; Braile, L. W.; Chandler, V. W.; Mazella, F. E.
1975-01-01
Efforts are made to identify methods of decreasing magnetic interpretation ambiguity by combined gravity and magnetic analysis, to evaluate these techniques in a preliminary manner, to consider the geologic and geophysical implications of correlation, and to recommend a course of action to evaluate methods of correlating gravity and magnetic anomalies. The major thrust of the study was a search and review of the literature. The literature of geophysics, geology, geography, and statistics was searched for articles dealing with spatial correlation of independent variables. An annotated bibliography referencing the Germane articles and books is presented. The methods of combined gravity and magnetic analysis techniques are identified and reviewed. A more comprehensive evaluation of two types of techniques is presented. Internal correspondence of anomaly amplitudes is examined and a combined analysis is done utilizing Poisson's theorem. The geologic and geophysical implications of gravity and magnetic correlation based on both theoretical and empirical relationships are discussed.
NASA Technical Reports Server (NTRS)
Kahn, W. D.
1984-01-01
The spaceborne gravity gradiometer is a potential sensor for mapping the fine structure of the Earth's gravity field. Error analyses were performed to investigate the accuracy of the determination of the Earth's gravity field from a gravity field satellite mission. The orbital height of the spacecraft is the dominating parameter as far as gravity field resolution and accuracies are concerned.
Distinguishing modified gravity models
Brax, Philippe
2015-10-01
Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed in both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations.
Quantum gravity and charge renormalization
Toms, David J.
2007-08-15
We study the question of the gauge dependence of the quantum gravity contribution to the running gauge coupling constant for electromagnetism. The calculations are performed using dimensional regularization in a manifestly gauge-invariant and gauge-condition-independent formulation of the effective action. It is shown that there is no quantum gravity contribution to the running charge, and hence there is no alteration to asymptotic freedom at high energies as predicted by Robinson and Wilczek.
NASA Astrophysics Data System (ADS)
Padmanabhan, T.
2015-09-01
The kinematical description of gravity, based on the principle of equivalence, is extraordinarily beautiful. In striking contrast, the field equation Gab = (1/2)Tab is conceptually ugly, lacking in simple physical interpretation or even in common ground to describe the left- and right-hand sides. This paper shows how one can develop all of gravity in an elegant manner by recognizing that the gravitational dynamics describes the heating and cooling of spacetime.
An artificial gravity demonstration experiment
NASA Technical Reports Server (NTRS)
Rupp, C.; Lemke, L.; Penzo, P.
1989-01-01
An artificial gravity experiment which is tethered to a Delta second stage and which uses the Small Expendable Deployer System is proposed. Following tether deployment, the Delta vehicle performs the required spin-up maneuver and can then be passivated. A surplus reentry vehicle houses the artificial gravity life science experiments. When the experiments are completed, the reentry phase of the experiment is initiated by synchronizing the spin of the configuration with the required deorbit impulse.
Research Informed Science Enrichment Programs at the Gravity Discovery Centre
ERIC Educational Resources Information Center
Venville, Grady; Blair, David; Coward, David; Deshon, Fred; Gargano, Mark; Gondwe, Mzamose; Heary, Auriol; Longnecker, Nancy; Pitts, Marina; Zadnik, Marjan
2012-01-01
Excursions to museums and science centres generally are great fun for students and teachers. The potential educational benefits beyond enjoyment, however, are rarely realised or analysed for their efficacy. The purpose of this paper is to describe four educational enrichment programs delivered at the Gravity Discovery Centre (GDC), near Gingin,…
Positivity of Curvature-Squared Corrections in Gravity.
Cheung, Clifford; Remmen, Grant N
2017-02-03
We study the Gauss-Bonnet (GB) term as the leading higher-curvature correction to pure Einstein gravity. Assuming a tree-level ultraviolet completion free of ghosts or tachyons, we prove that the GB term has a nonnegative coefficient in dimensions greater than 4. Our result follows from unitarity of the spectral representation for a general ultraviolet completion of the GB term.
Notion of time and the semiclassical regime of quantum gravity
Castagnino, M.A.; Mazzitelli, F.D. Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab 1, 1428 Buenos Aires )
1990-07-15
Using the notion of {ital probabilistic} {ital time} introduced in a previous work, we analyze the perturbed minisuperspace models of quantum gravity. For Robertson-Walker minisuperspace we show that it is possible to derive the so-called self-consistent cosmology in the semiclassical regime. The generalization to models with several semiclassical variables is also discussed.
Revisiting the Brans solutions of scalar-tensor gravity
NASA Astrophysics Data System (ADS)
Faraoni, Valerio; Hammad, Fayçal; Belknap-Keet, Shawn D.
2016-11-01
Motivated by statements in the literature which contradict two general theorems, the static and spherically symmetric Brans solutions of scalar-tensor gravity are analyzed explicitly in both the Jordan and the Einstein conformal frames. Depending on the parameter range, these solutions describe wormholes or naked singularities but not black holes.
On singularities of capillary surfaces in the absence of gravity
Roytburd, V.
1983-01-01
We smore » tudy numerical solutions to the equation of capillary surfaces in trapezoidal domains in the absence of gravity when the boundary contact angle declines from 90 ° to some critical value. We also discuss a result on the behavior of solutions in more general domains that confirms numerical calculations.« less
Positivity of Curvature-Squared Corrections in Gravity
NASA Astrophysics Data System (ADS)
Cheung, Clifford; Remmen, Grant N.
2017-02-01
We study the Gauss-Bonnet (GB) term as the leading higher-curvature correction to pure Einstein gravity. Assuming a tree-level ultraviolet completion free of ghosts or tachyons, we prove that the GB term has a nonnegative coefficient in dimensions greater than 4. Our result follows from unitarity of the spectral representation for a general ultraviolet completion of the GB term.
Very massive neutron stars in Ni's theory of gravity
NASA Technical Reports Server (NTRS)
Mikkelsen, D. R.
1977-01-01
It is shown that in Ni's theory of gravity, which is identical to general relativity in the post-Newtonian limit, neutron stars of arbitrarily large mass are possible. This result is independent, within reasonable bounds, of the equation of state of matter at supernuclear densities.
Satellite Gravity Drilling the Earth
NASA Technical Reports Server (NTRS)
vonFrese, R. R. B.; Potts, L. V.; Leftwich, T. E.; Kim, H. R.; Han, S.-H.; Taylor, P. T.; Ashgharzadeh, M. F.
2005-01-01
Analysis of satellite-measured gravity and topography can provide crust-to-core mass variation models for new insi@t on the geologic evolution of the Earth. The internal structure of the Earth is mostly constrained by seismic observations and geochemical considerations. We suggest that these constraints may be augmented by gravity drilling that interprets satellite altitude free-air gravity observations for boundary undulations of the internal density layers related to mass flow. The approach involves separating the free-air anomalies into terrain-correlated and -decorrelated components based on the correlation spectrum between the anomalies and the gravity effects of the terrain. The terrain-decorrelated gravity anomalies are largely devoid of the long wavelength interfering effects of the terrain gravity and thus provide enhanced constraints for modeling mass variations of the mantle and core. For the Earth, subcrustal interpretations of the terrain-decorrelated anomalies are constrained by radially stratified densities inferred from seismic observations. These anomalies, with frequencies that clearly decrease as the density contrasts deepen, facilitate mapping mass flow patterns related to the thermodynamic state and evolution of the Earth's interior.
Satellite borne gravity gradiometer study
NASA Technical Reports Server (NTRS)
Metzger, E.; Jircitano, A.; Affleck, C.
1976-01-01
Gravity gradiometry is recognized to be a very difficult instrumentation problem because extremely small differential acceleration levels have to be measured, 0.1 EU corresponds to an acceleration of 10 to the minus 11th power g at two points 1 meter apart. A feasibility model of a gravity gradiometer is being developed for airborne applications using four modified versions of the proven Model VII accelerometers mounted on a slowly rotating fixture. Gravity gradients are being measured to 1.07 EU in a vertical rotation axis orientation. Equally significant are the outstanding operational characteristics such as fast reaction time, low temperature coefficients and high degree of bias stability over long periods of time. The rotating accelerometer gravity gradiometer approach and its present status is discussed and it is the foundation for the orbital gravity gradiometer analyzed. The performance levels achieved in a 1 g environment of the earth and under relatively high seismic disturbances, lend the orbital gravity gradiometer a high confidence level of success.
Some classes of gravitational shock waves from higher order theories of gravity
NASA Astrophysics Data System (ADS)
Oikonomou, V. K.
2017-02-01
We study the gravitational shock wave generated by a massless high energy particle in the context of higher order gravities of the form F(R,R_{μν}R^{μν},R_{μναβ}R^{μν αβ}). In the case of F(R) gravity, we investigate the gravitational shock wave solutions corresponding to various cosmologically viable gravities, and as we demonstrate the solutions are rescaled versions of the Einstein-Hilbert gravity solution. Interestingly enough, other higher order gravities result to the general relativistic solution, except for some specific gravities of the form F(R_{μν}R^{μν}) and F(R,R_{μν}R^{μν}), which we study in detail. In addition, when realistic Gauss-Bonnet gravities of the form R+F(G) are considered, the gravitational shock wave solutions are identical to the general relativistic solution. Finally, the singularity structure of the gravitational shock waves solutions is studied, and it is shown that the effect of higher order gravities makes the singularities milder in comparison to the general relativistic solutions, and in some particular cases the singularities seem to be absent.
NASA Astrophysics Data System (ADS)
Zhao, Qile; Guo, Jing; Hu, Zhigang; Shi, Chuang; Liu, Jingnan; Cai, Hua; Liu, Xianglin
2011-05-01
The GRACE (Gravity Recovery And Climate Experiment) monthly gravity models have been independently produced and published by several research institutions, such as Center for Space Research (CSR), GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL), Centre National d’Etudes Spatiales (CNES) and Delft Institute of Earth Observation and Space Systems (DEOS). According to their processing standards, above institutions use the traditional variational approach except that the DEOS exploits the acceleration approach. The background force models employed are rather similar. The produced gravity field models generally agree with one another in the spatial pattern. However, there are some discrepancies in the gravity signal amplitude between solutions produced by different institutions. In particular, 10%-30% signal amplitude differences in some river basins can be observed. In this paper, we implemented a variant of the traditional variational approach and computed two sets of monthly gravity field solutions using the data from January 2005 to December 2006. The input data are K-band range-rates (KBRR) and kinematic orbits of GRACE satellites. The main difference in the production of our two types of models is how to deal with nuisance parameters. This type of parameters is necessary to absorb low-frequency errors in the data, which are mainly the aliasing and instrument errors. One way is to remove the nuisance parameters before estimating the geopotential coefficients, called NPARB approach in the paper. The other way is to estimate the nuisance parameters and geopotential coefficients simultaneously, called NPESS approach. These two types of solutions mainly differ in geopotential coefficients from degree 2 to 5. This can be explained by the fact that the nuisance parameters and the gravity field coefficients are highly correlated, particularly at low degrees. We compare these solutions with the official and published ones by means of spectral analysis. It is
Gravity Field Mapping of Mars with MGS
NASA Technical Reports Server (NTRS)
Smith, David E.; Zuber, Maria T.; Lemoine, Frank G.
1998-01-01
Tracking of the MGS spacecraft in orbit at Mars by the Deep Space Network since last September has provided doppler and range measurements that are being used to improve the model of the Mars gravity field. During most of October 1997, April 1998, and June thru August 1998 high quality tracking data were obtained while the periapse was in the northern hemisphere at altitudes in the 170 to 190 km range. The eccentric orbit had a period of about 11.5 hrs and an inclination of about 96.2 degrees so that low altitude tracking was obtained over most of the northern hemisphere, including the north polar icecap. Data from the earlier Mariner 9 and Viking missions have been added to the MGS data and a series of experimental gravity models developed from the combined datasets. These models have generally been of degree and order 70 and are a significant improvement over earlier models that did not include the MGS data. Gravity anomalies over the north polar cap region of Mars are generally less than 50 to 100 mgals and show no obvious correlation with the topography. Successive MGS orbits derived using these new models are showing agreement at the 100 meter level, and this has been confirmed with the laser altimeter (MOLA) on MGS These comparisons are expected to improve significantly as more tracking data get included in the solution and the MGS orbit becomes more circular giving a more balanced geographical distribution of data at low altitude. This will happen early in 1999 as the orbit approaches the mapping configuration of a circular orbit at about 400 Km.
Phenomenology in minimal theory of massive gravity
NASA Astrophysics Data System (ADS)
De Felice, Antonio; Mukohyama, Shinji
2016-04-01
We investigate the minimal theory of massive gravity (MTMG) recently introduced. After reviewing the original construction based on its Hamiltonian in the vielbein formalism, we reformulate it in terms of its Lagrangian in both the vielbein and the metric formalisms. It then becomes obvious that, unlike previous attempts in the literature of Lorentz-violating massive gravity, not only the potential but also the kinetic structure of the action is modified from the de Rham-Gabadadze-Tolley (dRGT) massive gravity theory. We confirm that the number of physical degrees of freedom in MTMG is two at fully nonlinear level. This proves the absence of various possible pathologies such as superluminality, acausality and strong coupling. Afterwards, we discuss the phenomenology of MTMG in the presence of a dust fluid. We find that on a flat homogeneous and isotropic background we have two branches. One of them (self-accelerating branch) naturally leads to acceleration without the genuine cosmological constant or dark energy. For this branch both the scalar and the vector modes behave exactly as in general relativity (GR). The phenomenology of this branch differs from GR in the tensor modes sector, as the tensor modes acquire a non-zero mass. Hence, MTMG serves as a stable nonlinear completion of the self-accelerating cosmological solution found originally in dRGT theory. The other branch (normal branch) has a dynamics which depends on the time-dependent fiducial metric. For the normal branch, the scalar mode sector, even though as in GR only one scalar mode is present (due to the dust fluid), differs from the one in GR, and, in general, structure formation will follow a different phenomenology. The tensor modes will be massive, whereas the vector modes, for both branches, will have the same phenomenology as in GR.
Phenomenology in minimal theory of massive gravity
Felice, Antonio De; Mukohyama, Shinji
2016-04-15
We investigate the minimal theory of massive gravity (MTMG) recently introduced. After reviewing the original construction based on its Hamiltonian in the vielbein formalism, we reformulate it in terms of its Lagrangian in both the vielbein and the metric formalisms. It then becomes obvious that, unlike previous attempts in the literature of Lorentz-violating massive gravity, not only the potential but also the kinetic structure of the action is modified from the de Rham-Gabadadze-Tolley (dRGT) massive gravity theory. We confirm that the number of physical degrees of freedom in MTMG is two at fully nonlinear level. This proves the absence of various possible pathologies such as superluminality, acausality and strong coupling. Afterwards, we discuss the phenomenology of MTMG in the presence of a dust fluid. We find that on a flat homogeneous and isotropic background we have two branches. One of them (self-accelerating branch) naturally leads to acceleration without the genuine cosmological constant or dark energy. For this branch both the scalar and the vector modes behave exactly as in general relativity (GR). The phenomenology of this branch differs from GR in the tensor modes sector, as the tensor modes acquire a non-zero mass. Hence, MTMG serves as a stable nonlinear completion of the self-accelerating cosmological solution found originally in dRGT theory. The other branch (normal branch) has a dynamics which depends on the time-dependent fiducial metric. For the normal branch, the scalar mode sector, even though as in GR only one scalar mode is present (due to the dust fluid), differs from the one in GR, and, in general, structure formation will follow a different phenomenology. The tensor modes will be massive, whereas the vector modes, for both branches, will have the same phenomenology as in GR.
Threshold Gravity Determination and Artificial Gravity Studies Using Magnetic Levitation
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Leslie, F.
2005-01-01
What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required (magnitude and duration)? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for a variable gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successfully simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars.
Cosmological models of modified gravity
NASA Astrophysics Data System (ADS)
Bloomfield, Jolyon Keith
The recent discovery of dark energy has prompted an investigation of ways in which the accelerated expansion of the universe can be realized. In this dissertation, we present two separate projects related to dark energy. The first project analyzes a class of braneworld models in which multiple branes float in a five-dimensional anti-de Sitter bulk, while the second investigates a class of dark energy models from an effective field theory perspective. Investigations of models including extra dimensions have led to modifications of gravity involving a number of interesting features. In particular, the Randall-Sundrum model is well-known for achieving an amelioration of the hierarchy problem. However, the basic model relies on Minkowski branes and is subject to solar system constraints in the absence of a radion stabilization mechanism. We present a method by which a four-dimensional low-energy description can be obtained for braneworld scenarios, allowing for a number of generalizations to the original models. This method is applied to orbifolded and uncompactified N-brane models, deriving an effective four-dimensional action. The parameter space of this theory is constrained using observational evidence, and it is found that the generalizations do not weaken solar system constraints on the original model. Furthermore, we find that general N-brane systems are qualitatively similar to the two-brane case, and do not naturally lead to a viable dark energy model. We next investigate dark energy models using effective field theory techniques. We describe dark energy through a quintessence field, employing a derivative expansion. To the accuracy of the model, we find transformations to write the description in a form involving no higher-order derivatives in the equations of motion. We use a pseudo-Nambu-Goldstone boson construction to motivate the theory, and find the regime of validity and scaling of the operators using this. The regime of validity is restricted to a
Black string and Goedel-type solutions of Chern-Simons modified gravity
Ahmedov, Haji; Aliev, Alikram N.
2010-07-15
We show that Chern-Simons (CS) modified gravity with a prescribed CS scalar field admits rotating black hole/string/> solutions with cylindrical topology of the horizon, and we present two intriguing physical examples of such configurations. First, we show that the Banados-Teitelboim-Zanelli stationary black string, which is obtained by adding a spacelike flat dimension to the Banados-Teitelboim-Zanelli black hole metric of three-dimensional gravity, solves the field equations of CS modified gravity with a specific source term irrespective of the choice of CS scalar field. Next, we consider the Lemos solution for a rotating, straight black string in general relativity and show that, for the CS scalar field being a function of the radial coordinate alone, this solution persists in CS modified gravity. We also present a new nontrivial (non-general relativity) Goedel-type solution to the vacuum field equations of CS modified gravity.
NASA Technical Reports Server (NTRS)
Wiley, Lynn M.
1989-01-01
Out of more than 4,500 rat hours in space there was only one experimental attempt (Cosmos 1129) at mating with an apparent absence of fertilization, implantation and subsequent development to term and partuition. Portions of this process were successfully flown, however, including the major portion of organogenesis in the rat (Cosmos 1524). These observations show that the cellular and molecular events underlying morphogenesis and differentiation in a small mammal can proceed normally in-utero under microgravity and other conditions encountered during short-duration flight. However, it is not known whether this situation will hold for larger mammals over several generations during extended missions that venture outside of near Earth. Furthermore, it is not understood why the previous attempt at obtaining copulation, fertilization and implantation in orbit failed but may be related to limitations of the rat habitat for meeting the preconditions for reproductive behavior. With respect to mammalian development it is important to appreciate that fertilization and development occur internally within the female and take a long time to complete and their success will, therefore, be contingent upon the maternal response to the space environment. One process central to development (the establishment of cell lines) is initiated prior to implantation by environmental asymmetries preceived by progenitor cells. These asymmetries appear to result from the formation of asymmetric cell-cell contacts and the concommitant development of an electrical axis across the progenitor cells. Other asymmetries were also documented. It is not known whether any of the known asymmetries perceived by progenitor cells are influenced by gravity vectors and/or by the maternal response to microgravity and other conditions encountered in space.
Gravity receptors and responses
NASA Technical Reports Server (NTRS)
Brown, Allan H.
1989-01-01
The overall process of gravity sensing and response processes in plants may be divided conveniently into at least four components or stages: Stimulus susception (a physical event, characteristically the input to the G receptor system of environmental information about the G force magnitude, its vector direction, or both); information perception (an influence of susception on some biological structure or process that can be described as the transformation of environmental information into a biologicallly meaningful change); information transport (the export, if required, of an influence (often chemical) to cells and organs other than those at the sensor location); and biological response (almost always (in plants) a growth change of some kind). Some analysts of the process identify, between information perception and information transport, an additional stage, transduction, which would emphasize the importance of a transformation from one form of information to another, for example from mechanical statolith displacement to an electric, chemical, or other alteration that was its indirect result. These four (or five) stages are temporally sequential. Even if all that occurs at each stage can not be confidently identified, it seems evident that during transduction and transport, matters dealt with are found relatively late in the information flow rather than at the perception stage. As more and more is learned about the roles played by plant hormones which condition the G responses, the mechanism(s) of perception which should be are not necessarily better understood. However, if by asking the right questions and being lucky with experiments perhaps the discovery of how some process (such as sedimentation of protoplasmic organelles) dictates what happens down stream in the information flow sequence may be made.
Local subsystems in gauge theory and gravity
NASA Astrophysics Data System (ADS)
Donnelly, William; Freidel, Laurent
2016-09-01
We consider the problem of defining localized subsystems in gauge theory and gravity. Such systems are associated to spacelike hypersurfaces with boundaries and provide the natural setting for studying entanglement entropy of localized subsystems. We present a general formalism to associate a gauge-invariant classical phase space to a spatial slice with boundary by introducing new degrees of freedom on the boundary. In Yang-Mills theory the new degrees of freedom are a choice of gauge on the boundary, transformations of which are generated by the normal component of the nonabelian electric field. In general relativity the new degrees of freedom are the location of a codimension-2 surface and a choice of conformal normal frame. These degrees of freedom transform under a group of surface symmetries, consisting of diffeomorphisms of the codimension-2 boundary, and position-dependent linear deformations of its normal plane. We find the observables which generate these symmetries, consisting of the conformal normal metric and curvature of the normal connection. We discuss the implications for the problem of defining entanglement entropy in quantum gravity. Our work suggests that the Bekenstein-Hawking entropy may arise from the different ways of gluing together two partial Cauchy surfaces at a cross-section of the horizon.
N=2 supersymmetry in two-dimensional dilaton gravity
NASA Astrophysics Data System (ADS)
Nelson, William M.; Park, Youngchul
1993-11-01
Actions for D=2, N=2 supergravity coupled to a scalar field are calculated, and it is shown that the most general power-counting renormalizable dilaton gravity action has an N=2 locally supersymmetric extension. The presence of chiral terms in the action leads one to hope that nonrenormalization theorems similar to those in global SUSY will apply; this would eliminate some of the renormalization ambiguities which plague ordinary bosonic (and N=1) dilaton gravity. To investigate this, the model is studied in the superconformal gauge, where it is found that one chiral term becomes nonchiral, so that only one term is safe from renormalization.
Quantum gravity, dynamical phase-space and string theory
NASA Astrophysics Data System (ADS)
Freidel, Laurent; Leigh, Robert G.; Minic, Djordje
2014-08-01
In a natural extension of the relativity principle, we speculate that a quantum theory of gravity involves two fundamental scales associated with both dynamical spacetime as well as dynamical momentum space. This view of quantum gravity is explicitly realized in a new formulation of string theory which involves dynamical phase-space and in which spacetime is a derived concept. This formulation naturally unifies symplectic geometry of Hamiltonian dynamics, complex geometry of quantum theory and real geometry of general relativity. The spacetime and momentum space dynamics, and thus dynamical phase-space, is governed by a new version of the renormalization group (RG).
Gravity and antigravity in a brane world with metastable gravitons
NASA Astrophysics Data System (ADS)
Gregory, R.; Rubakov, V. A.; Sibiryakov, S. M.
2000-09-01
In the framework of a five-dimensional three-brane model with quasi-localized gravitons we evaluate metric perturbations induced on the positive tension brane by matter residing thereon. We find that at intermediate distances, the effective four-dimensional theory coincides, up to small corrections, with General Relativity. This is in accord with Csaki, Erlich and Hollowood and in contrast to Dvali, Gabadadze and Porrati. We show, however, that at ultra-large distances this effective four-dimensional theory becomes dramatically different: conventional tensor gravity changes into scalar anti-gravity.
[ital N]=2 supersymmetry in two-dimensional dilaton gravity
Nelson, W.M.; Park, Y. )
1993-11-15
Actions for [ital D]=2, [ital N]=2 supergravity coupled to a scalar field are calculated, and it is shown that the most general power-counting renormalizable dilaton gravity action has an [ital N]=2 locally supersymmetric extension. The presence of chiral terms in the action leads one to hope that nonrenormalization theorems similar to those in global SUSY will apply; this would eliminate some of the renormalization ambiguities which plague ordinary bosonic (and [ital N]=1) dilaton gravity. To investigate this, the model is studied in the superconformal gauge, where it is found that one chiral term becomes nonchiral, so that only one term is safe from renormalization.
Quantum gravity with torsion and non-metricity
NASA Astrophysics Data System (ADS)
Pagani, C.; Percacci, R.
2015-10-01
We study the renormalization of theories of gravity with an arbitrary (torsional and non-metric) connection. The class of actions we consider is of the Palatini type, including the most general terms with up to two derivatives of the metric, but no derivatives of the connection. It contains 19 independent parameters. We calculate the one-loop beta functions of these parameters and find their fixed points. The Holst subspace is discussed in some detail and found not to be stable under renormalization. Some possible implications for ultraviolet and infrared gravity are discussed.
Reissner-Nordström solution from Weyl transverse gravity
NASA Astrophysics Data System (ADS)
Oda, Ichiro
2016-10-01
We study classical solutions in the Weyl-transverse (WTDiff) gravity coupled to an electromagnetic field in four spacetime dimensions. The WTDiff gravity is invariant under both the local Weyl (conformal) transformation and the volume preserving diffeomorphisms (transverse diffeomorphisms) and is known to be equivalent to general relativity at least at the classical level (perhaps even in the quantum regime). In particular, we find that only in four spacetime dimensions, the charged Reissner-Nordström black hole metric is a classical solution when it is expressed in the Cartesian coordinate system.
3D Born-Infeld gravity and supersymmetry
NASA Astrophysics Data System (ADS)
Bergshoeff, Eric; Ozkan, Mehmet
2014-08-01
We construct the most general parity-even higher-derivative = 1 off-shell supergravity model in three dimensions with a maximum of six derivatives. Excluding terms quadratic in the curvature tensor with two explicit derivatives and requiring the absence of ghosts in a linearized approximation around an AdS3 background, we find that there is a unique supersymmetric invariant which we call supersymmetric `cubic extended' New Massive Gravity. The purely gravitational part of this invariant is in agreement with an earlier analysis based upon the holographic c-theorem and coincides with an expansion of Born-Infeld gravity to the required order.
On axionic field ranges, loopholes and the weak gravity conjecture
Brown, Jon; Cottrell, William; Shiu, Gary; ...
2016-04-05
Here, we clarify some aspects of the impact that the Weak Gravity Conjecture has on models of (generalized) natural inflation. In particular we address certain technical and conceptual concerns recently raised regarding the stringent constraints and conclusions found in our previous work. We also point out the difficulties faced by attempts to evade these constraints. Furthermore, these new considerations improve the understanding of the quantum gravity constraints we found and further support the conclusion that it remains challenging for axions to drive natural inflation.
Superconducting gravity gradiometer for sensitive gravity measurements. II. Experiment
Chan, H.A.; Moody, M.V.; Paik, H.J.
1987-06-15
A sensitive superconducting gravity gradiometer has been constructed and tested. Coupling to gravity signals is obtained by having two superconducting proof masses modulate magnetic fields produced by persistent currents. The induced electrical currents are differenced by a passive superconducting circuit coupled to a superconducting quantum interference device. The experimental behavior of this device has been shown to follow the theoretical model closely in both signal transfer and noise characteristics. While its intrinsic noise level is shown to be 0.07 E Hz/sup -1/2/ (1 Eequivalent10/sup -9/ sec/sup -2/), the actual performance of the gravity gradiometer on a passive platform has been limited to 0.3--0.7 E Hz/sup -1/2/ due to its coupling to the environmental noise. The detailed structure of this excess noise is understood in terms of an analytical error model of the instrument. The calibration of the gradiometer has been obtained by two independent methods: by applying a linear acceleration and a gravity signal in two different operational modes of the instrument. This device has been successfully operated as a detector in a new null experiment for the gravitational inverse-square law. In this paper we report the design, fabrication, and detailed test results of the superconducting gravity gradiometer. We also present additional theoretical analyses which predict the specific dynamic behavior of the gradiometer and of the test.
Jain, Pankaj; Karmakar, Purnendu; Mitra, Subhadip; Panda, Sukanta; Singh, Naveen K. E-mail: purnendu@iitk.ac.in E-mail: sukanta@iiserbhopal.ac.in
2012-05-01
We consider models of gravitation that are based on unimodular general coordinate transformations (GCT). These transformations include only those which do not change the determinant of the metric. We treat the determinant as a separate field which transforms as a scalar under unimodular GCT. We consider a class of such theories. In general, these theories do not transform covariantly under the full GCT. We characterize the violation of general coordinate invariance by introducing a new parameter. We show that the theory is consistent with observations for a wide range of this parameter. This parameter may serve as a test for possible violations of general coordinate invariance. We also consider the cosmic evolution within the framework of these models. We show that in general we do not obtain consistent cosmological solutions if we assume the standard cosmological constant or the standard form of non-relativistic matter. We propose a suitable generalization which is consistent with cosmology. We fit the resulting model to the high redshift supernova data. We find that we can obtain a good fit to this data even if include only a single component, either cosmological constant or non-relativistic matter.
Environmental applications of gravity surveying
Barrows, L.J. ); Nesbit, L.C. ); Khan, W.A. )
1994-04-01
The Allis Park Sanitary Landfill Company developed a new landfill near Onway, Michigan in an area which has glacial alluvium and glacial till overlying limestone. There are several solution karst features in the region and some critics had maintained that a new karst collapse could rupture the liner system and allow escape of leachate into the groundwater. The gravity survey was conducted to determine the extent of any karst development at the site. The first portion of the survey was two profiles over some karst features located about five miles southeast of the proposed landfill. These showed negative gravity anomalies. The survey of the proposed landfill site resulted in a 50 microGal contour map of the area and also showed a negative anomaly. This could be due to either elevation variations on the till to limestone bedrock surface or to karst development within the limestone. Because there was no evidence of historic development of new karst features in the region, the gravity anomaly was not further investigated. In another gravity survey, a large retail department store had been remodeled and extended over an area previously occupied by an auto service center. The removal of a waste oil storage tank (UST) had not been documented and the environmental consultant (KEMRON, Inc.) proposed that a gravity survey be used to find the tank location. This proposal was based on calculations of the gravity effects of a UST. The survey resulted in a four-microGal contour map which showed a couple of anomalies which could be due to a tank or a backfilled tank excavation. During the survey, a store employee identified the previous location of the tank and explained that she had personally witnessed its removal. Based on the employee's eye-witness account of the tank removal and the coincidence of her indicated tank location with one of the gravity anomalies the authors recommended the site be granted clean closure.
Quantum gravity kinematics from extended TQFTs
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Geiller, Marc
2017-01-01
In this paper, we show how extended topological quantum field theories (TQFTs) can be used to obtain a kinematical setup for quantum gravity, i.e. a kinematical Hilbert space together with a representation of the observable algebra including operators of quantum geometry. In particular, we consider the holonomy-flux algebra of (2 + 1)-dimensional Euclidean loop quantum gravity, and construct a new representation of this algebra that incorporates a positive cosmological constant. The vacuum state underlying our representation is defined by the Turaev-Viro TQFT. This vacuum state can be thought of as being peaked on connections with homogeneous curvature. We therefore construct here a generalization, or more precisely a quantum deformation at root of unity, of the previously introduced SU(2) BF representation. The extended Turaev-Viro TQFT provides a description of the excitations on top of the vacuum. These curvature and torsion excitations are classified by the Drinfeld center category of the quantum deformation of SU(2), and are essential in order to allow for a representation of the holonomies and fluxes. The holonomies and fluxes are generalized to ribbon operators which create and interact with the excitations. These excitations agree with the ones induced by massive and spinning particles, and therefore the framework presented here allows automatically for a description of the coupling of such matter to (2+1)-dimensional gravity with a cosmological constant. The new representation constructed here presents a number of advantages over the representations which exist so far. In particular, it possesses a very useful finiteness property which guarantees the discreteness of spectra for a wide class of quantum (intrinsic and extrinsic) geometrical operators. Also, the notion of basic excitations leads to a so-called fusion basis which offers exciting possibilities for the construction of states with interesting global properties, as well as states with certain
Revisiting perturbations in extended quasidilaton massive gravity
Heisenberg, Lavinia
2015-04-01
In this work we study the theory of extended quasidilaton massive gravity together with the presence of matter fields. After discussing the homogeneous and isotropic fully dynamical background equations, which governs the exact expansion history of the universe, we consider small cosmological perturbations around these general FLRW solutions. The stability of tensor, vector and scalar perturbations on top of these general background solutions give rise to slightly different constraints on the parameters of the theory than those obtained in the approximative assumption of the late-time asymptotic form of the expansion history, which does not correspond to our current epoch. This opens up the possibility of stable FLRW solutions to be compared with current data on cosmic expansion with the restricted parameter space based on theoretical ground.
Hardware development for Gravity Probe-B
NASA Technical Reports Server (NTRS)
Bardas, D.; Cheung, W. S.; Gill, D.; Hacker, R.; Keiser, G. M.
1986-01-01
Gravity Probe-B (GP-B), also known as the Stanford Relativity Gyroscope Experiment, will test two fundamental predictions of Einstein's General Theory of Relativity by precise measurement of the precessions of nearly perfect gyroscopes in earth orbit. This endeavor embodies state-of-the-art technologies in many fields, including gyroscope fabrication and readout, cryogenics, superconductivity, magnetic shielding, precision optics and alignment methods, and satellite control systems. These technologies are necessary to enable measurement of the predicted precession rates to the milliarcsecond/year level, and to reduce to 'near zero' all non-General Relativistic torques on the gyroscopes. This paper provides a brief overview of the experiment followed by descriptions of several specific hardware items with highlights on progress to date and plans for future development and tests.
Testing Gravity Against Early Time Integrated Sachs-Wolfe Effect
Zhang, Pengjie; /Shanghai, Astron. Observ. /Fermilab
2005-11-01
A generic prediction of general relativity is that the cosmological linear density growth factor D is scale independent. But in general, modified gravities do not preserve this signature. A scale dependent D can cause time variation in gravitational potential at high redshifts and provides a new cosmological test of gravity, through early time integrated Sachs-Wolfe (ISW) effect-large scale structure (LSS) cross correlation. We demonstrate the power of this test for a class of f(R) gravity, with the form f(R) = {lambda}{sub 1}H{sub 0}{sup 2} exp(-R/{lambda}{sub 2}H{sub 0}{sup 2}). Such f(R) gravity, even with degenerate expansion history to {Lambda}CDM, can produce detectable ISW effect at z {approx}> 3 and l {approx}> 20. Null-detection of such effect would constrain {lambda}{sub 2} to be {lambda}{sub 2} > 1000 at > 95% confidence level. On the other hand, robust detection of ISW-LSS cross correlation at high z will severely challenge general relativity.
Dipole magnetic field of neutron stars in f(R) gravity
NASA Astrophysics Data System (ADS)
Bakirova, Elizat; Folomeev, Vladimir
2016-10-01
The structure of an interior dipole magnetic field of neutron stars in f( R) gravity is considered. For this purpose, the perturbative approaches are used when both the deviations from general relativity and the deformations of spherically symmetric configurations associated with the presence of the magnetic field are assumed to be small. Solutions are constructed which describe relativistic, spherically symmetric configurations consisting of a gravitating magnetized perfect fluid modeled by a realistic equation of state. Comparing configurations from general relativity and modified gravity, we reveal possible differences in the structure of the magnetic field which occur in considering neutron stars in modified gravity.
Gravity's rainbow: A bridge between LQC and DSR
NASA Astrophysics Data System (ADS)
Gorji, M. A.; Nozari, K.; Vakili, B.
2017-02-01
The doubly special relativity (DSR) theories are constructed in order to take into account an observer-independent length scale in special relativity framework. Gravity's rainbow is a simple generalization of DSR theories to incorporate gravity. In this paper, we show that the effective Friedmann equations that are suggested by loop quantum cosmology (LQC) can be exactly reobtained in rainbow cosmology setup. The deformed geometry of LQC then fixes the modified dispersion relation and results in a unique DSR model. In comparison with standard LQC scenario where only the geometry is modified, both geometry and matter parts get modified in our setup. In this respect, we show that the total number of microstates for the universe is finite which suggests the statistical origin of the energy and entropy density bounds. These results explicitly show that the DSR theories are appropriate candidates for the flat limit of loop quantum gravity.
The virial theorem in Eddington-Born-Infeld gravity
Santos, Noelia S.; Santos, Janilo E-mail: janilo@dfte.ufrn.br
2015-12-01
We consider the possibility that the Eddington-Born-Infeld (EBI) modified gravity provides an alternative explanation for the mass discrepancy in clusters of galaxies. For this purpose we derive the modified Einstein field equations, finding an additional 'geometrical mass' term which provides an effective contribution to the gravitational binding energy. Using some approximations and assumptions for weak gravitational fields, and taking into account the collisionless relativistic Boltzmann equation, we derive a generalized version of the virial theorem in the framework of EBI gravity. We show that the 'geometrical mass' term may account for the well known virial mass discrepancy in clusters of galaxies. We also derive the velocity dispersion relation for galaxies in the clusters, which could provide an efficient method for testing EBI gravity from astrophysical observations.
Anisotropic stress and stability in modified gravity models
Saltas, Ippocratis D.; Kunz, Martin
2011-03-15
The existence of anisotropic stress of a purely geometrical origin seems to be a characteristic of higher order gravity models, and has been suggested as a probe to test these models observationally, for example, in weak lensing experiments. In this paper, we seek to find a class of higher order gravity models of f(R,G) type that would give us a zero anisotropic stress and study the consequences for the viability of the actual model. For the special case of a de Sitter background, we identify a subclass of models with the desired property. We also find a direct link between anisotropic stress and the stability of the model as well as the presence of extra degrees of freedom, which seems to be a general feature of higher order gravity models. Particularly, setting the anisotropic stress equal to zero for a de Sitter background leads to a singularity that makes it impossible to reach the de Sitter evolution.
Dark-energy cosmological models in f( G) gravity
NASA Astrophysics Data System (ADS)
Shamir, M. F.
2016-10-01
We discuss dark-energy cosmological models in f( G) gravity. For this purpose, a locally rotationally symmetric Bianchi type I cosmological model is considered. First, exact solutions with a well-known form of the f( G) model are explored. One general solution is discussed using a power-law f( G) gravity model and physical quantities are calculated. In particular, Kasner's universe is recovered and the corresponding f( G) gravity models are reported. Second, the energy conditions for the model under consideration are discussed using graphical analysis. It is concluded that solutions with f( G) = G 5/6 support expansion of universe while those with f( G) = G 1/2 do not favor the current expansion.
On the null trajectories in conformal Weyl gravity
NASA Astrophysics Data System (ADS)
Villanueva, J. R.; Olivares, Marco
2013-06-01
In this work we find analytical solutions to the null geodesics around a black hole in the conformal Weyl gravity. Exact expressions for the horizons are found, and they depend on the cosmological constant and the coupling constants of the conformal Weyl gravity. Then, we study the radial motion from the point of view of the proper and coordinate frames, and compare it with that found in spacetimes of general relativity. The angular motion is also examined qualitatively by means of an effective potential; quantitatively, the equation of motion is solved in terms of wp-Weierstrass elliptic function. Thus, we find the deflection angle for photons without using any approximation, which is a novel result for this kind of gravity.