Sample records for generalized finite difference

  1. Full Wave Analysis of Passive Microwave Monolithic Integrated Circuit Devices Using a Generalized Finite Difference Time Domain (GFDTD) Algorithm

    NASA Technical Reports Server (NTRS)

    Lansing, Faiza S.; Rascoe, Daniel L.

    1993-01-01

    This paper presents a modified Finite-Difference Time-Domain (FDTD) technique using a generalized conformed orthogonal grid. The use of the Conformed Orthogonal Grid, Finite Difference Time Domain (GFDTD) enables the designer to match all the circuit dimensions, hence eliminating a major source o error in the analysis.

  2. The Relation of Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1976-01-01

    Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.

  3. Computer-Aided Engineering of Semiconductor Integrated Circuits

    DTIC Science & Technology

    1979-07-01

    equation using a five point finite difference approximation. Section 4.3.6 describes the numerical techniques and iterative algorithms which are used...neighbor points. This is generally referred to as a five point finite difference scheme on a rectangular grid, as described below. The finite difference ...problems in steady state have been analyzed by the finite difference method [4. 16 ] [4.17 3 or finite element method [4. 18 3, [4. 19 3 as reported last

  4. Finite Volume Algorithms for Heat Conduction

    DTIC Science & Technology

    2010-05-01

    scalar quantity). Although (3) is relatively easy to discretize by using finite differences , its form in generalized coordinates is not. Later, we...familiar with the finite difference method for discretizing differential equations. In fact, the Newton divided difference is the numerical analog for a...expression (8) for the average derivative matches the Newton divided difference formula, so for uniform one-dimensional meshes, the finite volume and

  5. A weak Galerkin generalized multiscale finite element method

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2016-03-31

    In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.

  6. A weak Galerkin generalized multiscale finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.

  7. Efficiency trade-offs of steady-state methods using FEM and FDM. [iterative solutions for nonlinear flow equations

    NASA Technical Reports Server (NTRS)

    Gartling, D. K.; Roache, P. J.

    1978-01-01

    The efficiency characteristics of finite element and finite difference approximations for the steady-state solution of the Navier-Stokes equations are examined. The finite element method discussed is a standard Galerkin formulation of the incompressible, steady-state Navier-Stokes equations. The finite difference formulation uses simple centered differences that are O(delta x-squared). Operation counts indicate that a rapidly converging Newton-Raphson-Kantorovitch iteration scheme is generally preferable over a Picard method. A split NOS Picard iterative algorithm for the finite difference method was most efficient.

  8. Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations.

    PubMed

    Xiao, Lin; Liao, Bolin; Li, Shuai; Chen, Ke

    2018-02-01

    In order to solve general time-varying linear matrix equations (LMEs) more efficiently, this paper proposes two nonlinear recurrent neural networks based on two nonlinear activation functions. According to Lyapunov theory, such two nonlinear recurrent neural networks are proved to be convergent within finite-time. Besides, by solving differential equation, the upper bounds of the finite convergence time are determined analytically. Compared with existing recurrent neural networks, the proposed two nonlinear recurrent neural networks have a better convergence property (i.e., the upper bound is lower), and thus the accurate solutions of general time-varying LMEs can be obtained with less time. At last, various different situations have been considered by setting different coefficient matrices of general time-varying LMEs and a great variety of computer simulations (including the application to robot manipulators) have been conducted to validate the better finite-time convergence of the proposed two nonlinear recurrent neural networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, J.C.

    The author describes a general `hp` finite element method with adaptive grids. The code was based on the work of Oden, et al. The term `hp` refers to the method of spatial refinement (h), in conjunction with the order of polynomials used as a part of the finite element discretization (p). This finite element code seems to handle well the different mesh grid sizes occuring between abuted grids with different resolutions.

  10. Transient analysis of 1D inhomogeneous media by dynamic inhomogeneous finite element method

    NASA Astrophysics Data System (ADS)

    Yang, Zailin; Wang, Yao; Hei, Baoping

    2013-12-01

    The dynamic inhomogeneous finite element method is studied for use in the transient analysis of onedimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.

  11. Construction of stable explicit finite-difference schemes for Schroedinger type differential equations

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.

    1989-01-01

    A family of conditionally stable, forward Euler finite difference equations can be constructed for the simplest equation of Schroedinger type, namely u sub t - iu sub xx. Generalization of this result to physically realistic Schroedinger type equations is presented.

  12. Computation of three-dimensional nozzle-exhaust flow fields with the GIM code

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.; Anderson, P. G.

    1978-01-01

    A methodology is introduced for constructing numerical analogs of the partial differential equations of continuum mechanics. A general formulation is provided which permits classical finite element and many of the finite difference methods to be derived directly. The approach, termed the General Interpolants Method (GIM), can combined the best features of finite element and finite difference methods. A quasi-variational procedure is used to formulate the element equations, to introduce boundary conditions into the method and to provide a natural assembly sequence. A derivation is given in terms of general interpolation functions from this procedure. Example computations for transonic and supersonic flows in two and three dimensions are given to illustrate the utility of GIM. A three-dimensional nozzle-exhaust flow field is solved including interaction with the freestream and a coupled treatment of the shear layer. Potential applications of the GIM code to a variety of computational fluid dynamics problems is then discussed in terms of existing capability or by extension of the methodology.

  13. A comparison of the finite difference and finite element methods for heat transfer calculations

    NASA Technical Reports Server (NTRS)

    Emery, A. F.; Mortazavi, H. R.

    1982-01-01

    The finite difference method and finite element method for heat transfer calculations are compared by describing their bases and their application to some common heat transfer problems. In general it is noted that neither method is clearly superior, and in many instances, the choice is quite arbitrary and depends more upon the codes available and upon the personal preference of the analyst than upon any well defined advantages of one method. Classes of problems for which one method or the other is better suited are defined.

  14. Combination of the discontinuous Galerkin method with finite differences for simulation of seismic wave propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisitsa, Vadim, E-mail: lisitsavv@ipgg.sbras.ru; Novosibirsk State University, Novosibirsk; Tcheverda, Vladimir

    We present an algorithm for the numerical simulation of seismic wave propagation in models with a complex near surface part and free surface topography. The approach is based on the combination of finite differences with the discontinuous Galerkin method. The discontinuous Galerkin method can be used on polyhedral meshes; thus, it is easy to handle the complex surfaces in the models. However, this approach is computationally intense in comparison with finite differences. Finite differences are computationally efficient, but in general, they require rectangular grids, leading to the stair-step approximation of the interfaces, which causes strong diffraction of the wavefield. Inmore » this research we present a hybrid algorithm where the discontinuous Galerkin method is used in a relatively small upper part of the model and finite differences are applied to the main part of the model.« less

  15. A General Formulation for Robust and Efficient Integration of Finite Differences and Phase Unwrapping on Sparse Multidimensional Domains

    NASA Astrophysics Data System (ADS)

    Costantini, Mario; Malvarosa, Fabio; Minati, Federico

    2010-03-01

    Phase unwrapping and integration of finite differences are key problems in several technical fields. In SAR interferometry and differential and persistent scatterers interferometry digital elevation models and displacement measurements can be obtained after unambiguously determining the phase values and reconstructing the mean velocities and elevations of the observed targets, which can be performed by integrating differential estimates of these quantities (finite differences between neighboring points).In this paper we propose a general formulation for robust and efficient integration of finite differences and phase unwrapping, which includes standard techniques methods as sub-cases. The proposed approach allows obtaining more reliable and accurate solutions by exploiting redundant differential estimates (not only between nearest neighboring points) and multi-dimensional information (e.g. multi-temporal, multi-frequency, multi-baseline observations), or external data (e.g. GPS measurements). The proposed approach requires the solution of linear or quadratic programming problems, for which computationally efficient algorithms exist.The validation tests obtained on real SAR data confirm the validity of the method, which was integrated in our production chain and successfully used also in massive productions.

  16. On One-Dimensional Stretching Functions for Finite-Difference Calculations

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1980-01-01

    The class of one dimensional stretching function used in finite difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One is an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two sided stretching function, for which the arbitrary slopes at the two ends of the one dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent. The general two sided function has many applications in the construction of finite difference grids.

  17. Stable Artificial Dissipation Operators for Finite Volume Schemes on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Svard, Magnus; Gong, Jing; Nordstrom, Jan

    2006-01-01

    Our objective is to derive stable first-, second- and fourth-order artificial dissipation operators for node based finite volume schemes. Of particular interest are general unstructured grids where the strength of the finite volume method is fully utilized. A commonly used finite volume approximation of the Laplacian will be the basis in the construction of the artificial dissipation. Both a homogeneous dissipation acting in all directions with equal strength and a modification that allows different amount of dissipation in different directions are derived. Stability and accuracy of the new operators are proved and the theoretical results are supported by numerical computations.

  18. Single-cone finite-difference schemes for the (2+1)-dimensional Dirac equation in general electromagnetic textures

    NASA Astrophysics Data System (ADS)

    Pötz, Walter

    2017-11-01

    A single-cone finite-difference lattice scheme is developed for the (2+1)-dimensional Dirac equation in presence of general electromagnetic textures. The latter is represented on a (2+1)-dimensional staggered grid using a second-order-accurate finite difference scheme. A Peierls-Schwinger substitution to the wave function is used to introduce the electromagnetic (vector) potential into the Dirac equation. Thereby, the single-cone energy dispersion and gauge invariance are carried over from the continuum to the lattice formulation. Conservation laws and stability properties of the formal scheme are identified by comparison with the scheme for zero vector potential. The placement of magnetization terms is inferred from consistency with the one for the vector potential. Based on this formal scheme, several numerical schemes are proposed and tested. Elementary examples for single-fermion transport in the presence of in-plane magnetization are given, using material parameters typical for topological insulator surfaces.

  19. A discourse on sensitivity analysis for discretely-modeled structures

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Haftka, Raphael T.

    1991-01-01

    A descriptive review is presented of the most recent methods for performing sensitivity analysis of the structural behavior of discretely-modeled systems. The methods are generally but not exclusively aimed at finite element modeled structures. Topics included are: selections of finite difference step sizes; special consideration for finite difference sensitivity of iteratively-solved response problems; first and second derivatives of static structural response; sensitivity of stresses; nonlinear static response sensitivity; eigenvalue and eigenvector sensitivities for both distinct and repeated eigenvalues; and sensitivity of transient response for both linear and nonlinear structural response.

  20. Implementation of structural response sensitivity calculations in a large-scale finite-element analysis system

    NASA Technical Reports Server (NTRS)

    Giles, G. L.; Rogers, J. L., Jr.

    1982-01-01

    The methodology used to implement structural sensitivity calculations into a major, general-purpose finite-element analysis system (SPAR) is described. This implementation includes a generalized method for specifying element cross-sectional dimensions as design variables that can be used in analytically calculating derivatives of output quantities from static stress, vibration, and buckling analyses for both membrane and bending elements. Limited sample results for static displacements and stresses are presented to indicate the advantages of analytically calculating response derivatives compared to finite difference methods. Continuing developments to implement these procedures into an enhanced version of SPAR are also discussed.

  1. A comparative study of computational solutions to flow over a backward-facing step

    NASA Technical Reports Server (NTRS)

    Mizukami, M.; Georgiadis, N. J.; Cannon, M. R.

    1993-01-01

    A comparative study was conducted for computational fluid dynamic solutions to flow over a backward-facing step. This flow is a benchmark problem, with a simple geometry, but involves complicated flow physics such as free shear layers, reattaching flow, recirculation, and high turbulence intensities. Three Reynolds-averaged Navier-Stokes flow solvers with k-epsilon turbulence models were used, each using a different solution algorithm: finite difference, finite element, and hybrid finite element - finite difference. Comparisons were made with existing experimental data. Results showed that velocity profiles and reattachment lengths were predicted reasonably well by all three methods, while the skin friction coefficients were more difficult to predict accurately. It was noted that, in general, selecting an appropriate solver for each problem to be considered is important.

  2. Generalized fourier analyses of the advection-diffusion equation - Part II: two-dimensional domains

    NASA Astrophysics Data System (ADS)

    Voth, Thomas E.; Martinez, Mario J.; Christon, Mark A.

    2004-07-01

    Part I of this work presents a detailed multi-methods comparison of the spatial errors associated with the one-dimensional finite difference, finite element and finite volume semi-discretizations of the scalar advection-diffusion equation. In Part II we extend the analysis to two-dimensional domains and also consider the effects of wave propagation direction and grid aspect ratio on the phase speed, and the discrete and artificial diffusivities. The observed dependence of dispersive and diffusive behaviour on propagation direction makes comparison of methods more difficult relative to the one-dimensional results. For this reason, integrated (over propagation direction and wave number) error and anisotropy metrics are introduced to facilitate comparison among the various methods. With respect to these metrics, the consistent mass Galerkin and consistent mass control-volume finite element methods, and their streamline upwind derivatives, exhibit comparable accuracy, and generally out-perform their lumped mass counterparts and finite-difference based schemes. While this work can only be considered a first step in a comprehensive multi-methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common mathematical framework. Published in 2004 by John Wiley & Sons, Ltd.

  3. Effects of finite volume on the K L – K S mass difference

    DOE PAGES

    Christ, N.  H.; Feng, X.; Martinelli, G.; ...

    2015-06-24

    Phenomena that involve two or more on-shell particles are particularly sensitive to the effects of finite volume and require special treatment when computed using lattice QCD. In this paper we generalize the results of Lüscher and Lellouch and Lüscher, which determine the leading-order effects of finite volume on the two-particle spectrum and two-particle decay amplitudes to determine the finite-volume effects in the second-order mixing of the K⁰ and K⁰⁻ states. We extend the methods of Kim, Sachrajda, and Sharpe to provide a direct, uniform treatment of these three, related, finite-volume corrections. In particular, the leading, finite-volume corrections to the Kmore » L – K S mass difference ΔM K and the CP-violating parameter εK are determined, including the potentially large effects which can arise from the near degeneracy of the kaon mass and the energy of a finite-volume, two-pion state.« less

  4. Finite-difference models of ordinary differential equations - Influence of denominator functions

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.; Smith, Arthur

    1990-01-01

    This paper discusses the influence on the solutions of finite-difference schemes of using a variety of denominator functions in the discrete modeling of the derivative for any ordinary differential equation. The results obtained are a consequence of using a generalized definition of the first derivative. A particular example of the linear decay equation is used to illustrate in detail the various solution possibilities that can occur.

  5. Nonlinear truncation error analysis of finite difference schemes for the Euler equations

    NASA Technical Reports Server (NTRS)

    Klopfer, G. H.; Mcrae, D. S.

    1983-01-01

    It is pointed out that, in general, dissipative finite difference integration schemes have been found to be quite robust when applied to the Euler equations of gas dynamics. The present investigation considers a modified equation analysis of both implicit and explicit finite difference techniques as applied to the Euler equations. The analysis is used to identify those error terms which contribute most to the observed solution errors. A technique for analytically removing the dominant error terms is demonstrated, resulting in a greatly improved solution for the explicit Lax-Wendroff schemes. It is shown that the nonlinear truncation errors are quite large and distributed quite differently for each of the three conservation equations as applied to a one-dimensional shock tube problem.

  6. Numerical simulation using vorticity-vector potential formulation

    NASA Technical Reports Server (NTRS)

    Tokunaga, Hiroshi

    1993-01-01

    An accurate and efficient computational method is needed for three-dimensional incompressible viscous flows in engineering applications. On solving the turbulent shear flows directly or using the subgrid scale model, it is indispensable to resolve the small scale fluid motions as well as the large scale motions. From this point of view, the pseudo-spectral method is used so far as the computational method. However, the finite difference or the finite element methods are widely applied for computing the flow with practical importance since these methods are easily applied to the flows with complex geometric configurations. However, there exist several problems in applying the finite difference method to direct and large eddy simulations. Accuracy is one of most important problems. This point was already addressed by the present author on the direct simulations on the instability of the plane Poiseuille flow and also on the transition to turbulence. In order to obtain high efficiency, the multi-grid Poisson solver is combined with the higher-order, accurate finite difference method. The formulation method is also one of the most important problems in applying the finite difference method to the incompressible turbulent flows. The three-dimensional Navier-Stokes equations have been solved so far in the primitive variables formulation. One of the major difficulties of this method is the rigorous satisfaction of the equation of continuity. In general, the staggered grid is used for the satisfaction of the solenoidal condition for the velocity field at the wall boundary. However, the velocity field satisfies the equation of continuity automatically in the vorticity-vector potential formulation. From this point of view, the vorticity-vector potential method was extended to the generalized coordinate system. In the present article, we adopt the vorticity-vector potential formulation, the generalized coordinate system, and the 4th-order accurate difference method as the computational method. We present the computational method and apply the present method to computations of flows in a square cavity at large Reynolds number in order to investigate its effectiveness.

  7. A conservative finite difference algorithm for the unsteady transonic potential equation in generalized coordinates

    NASA Technical Reports Server (NTRS)

    Bridgeman, J. O.; Steger, J. L.; Caradonna, F. X.

    1982-01-01

    An implicit, approximate-factorization, finite-difference algorithm has been developed for the computation of unsteady, inviscid transonic flows in two and three dimensions. The computer program solves the full-potential equation in generalized coordinates in conservation-law form in order to properly capture shock-wave position and speed. A body-fitted coordinate system is employed for the simple and accurate treatment of boundary conditions on the body surface. The time-accurate algorithm is modified to a conventional ADI relaxation scheme for steady-state computations. Results from two- and three-dimensional steady and two-dimensional unsteady calculations are compared with existing methods.

  8. Divergence preserving discrete surface integral methods for Maxwell's curl equations using non-orthogonal unstructured grids

    NASA Technical Reports Server (NTRS)

    Madsen, Niel K.

    1992-01-01

    Several new discrete surface integral (DSI) methods for solving Maxwell's equations in the time-domain are presented. These methods, which allow the use of general nonorthogonal mixed-polyhedral unstructured grids, are direct generalizations of the canonical staggered-grid finite difference method. These methods are conservative in that they locally preserve divergence or charge. Employing mixed polyhedral cells, (hexahedral, tetrahedral, etc.) these methods allow more accurate modeling of non-rectangular structures and objects because the traditional stair-stepped boundary approximations associated with the orthogonal grid based finite difference methods can be avoided. Numerical results demonstrating the accuracy of these new methods are presented.

  9. Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method

    DOE PAGES

    Petersson, N. Anders; Sjogreen, Bjorn

    2015-07-20

    We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-fieldmore » technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.« less

  10. A fast Cauchy-Riemann solver. [differential equation solution for boundary conditions by finite difference approximation

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Balgovind, R.

    1979-01-01

    The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.

  11. Dynamical phase transitions at finite temperature from fidelity and interferometric Loschmidt echo induced metrics

    NASA Astrophysics Data System (ADS)

    Mera, Bruno; Vlachou, Chrysoula; Paunković, Nikola; Vieira, Vítor R.; Viyuela, Oscar

    2018-03-01

    We study finite-temperature dynamical quantum phase transitions (DQPTs) by means of the fidelity and the interferometric Loschmidt echo (LE) induced metrics. We analyze the associated dynamical susceptibilities (Riemannian metrics), and derive analytic expressions for the case of two-band Hamiltonians. At zero temperature, the two quantities are identical, nevertheless, at finite temperatures they behave very differently. Using the fidelity LE, the zero-temperature DQPTs are gradually washed away with temperature, while the interferometric counterpart exhibits finite-temperature phase transitions. We analyze the physical differences between the two finite-temperature LE generalizations, and argue that, while the interferometric one is more sensitive and can therefore provide more information when applied to genuine quantum (microscopic) systems, when analyzing many-body macroscopic systems, the fidelity-based counterpart is a more suitable quantity to study. Finally, we apply the previous results to two representative models of topological insulators in one and two dimensions.

  12. A study of the response of nonlinear springs

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Knott, T. W.; Johnson, E. R.

    1991-01-01

    The various phases to developing a methodology for studying the response of a spring-reinforced arch subjected to a point load are discussed. The arch is simply supported at its ends with both the spring and the point load assumed to be at midspan. The spring is present to off-set the typical snap through behavior normally associated with arches, and to provide a structure that responds with constant resistance over a finite displacement. The various phases discussed consist of the following: (1) development of the closed-form solution for the shallow arch case; (2) development of a finite difference analysis to study (shallow) arches; and (3) development of a finite element analysis for studying more general shallow and nonshallow arches. The two numerical analyses rely on a continuation scheme to move the solution past limit points, and to move onto bifurcated paths, both characteristics being common to the arch problem. An eigenvalue method is used for a continuation scheme. The finite difference analysis is based on a mixed formulation (force and displacement variables) of the governing equations. The governing equations for the mixed formulation are in first order form, making the finite difference implementation convenient. However, the mixed formulation is not well-suited for the eigenvalue continuation scheme. This provided the motivation for the displacement based finite element analysis. Both the finite difference and the finite element analyses are compared with the closed form shallow arch solution. Agreement is excellent, except for the potential problems with the finite difference analysis and the continuation scheme. Agreement between the finite element analysis and another investigator's numerical analysis for deep arches is also good.

  13. Generalized energy and potential enstrophy conserving finite difference schemes for the shallow water equations

    NASA Technical Reports Server (NTRS)

    Abramopoulos, Frank

    1988-01-01

    The conditions under which finite difference schemes for the shallow water equations can conserve both total energy and potential enstrophy are considered. A method of deriving such schemes using operator formalism is developed. Several such schemes are derived for the A-, B- and C-grids. The derived schemes include second-order schemes and pseudo-fourth-order schemes. The simplest B-grid pseudo-fourth-order schemes are presented.

  14. FIDDLE: A Computer Code for Finite Difference Development of Linear Elasticity in Generalized Curvilinear Coordinates

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2005-01-01

    A three-dimensional numerical solver based on finite-difference solution of three-dimensional elastodynamic equations in generalized curvilinear coordinates has been developed and used to generate data such as radial and tangential stresses over various gear component geometries under rotation. The geometries considered are an annulus, a thin annular disk, and a thin solid disk. The solution is based on first principles and does not involve lumped parameter or distributed parameter systems approach. The elastodynamic equations in the velocity-stress formulation that are considered here have been used in the solution of problems of geophysics where non-rotating Cartesian grids are considered. For arbitrary geometries, these equations along with the appropriate boundary conditions have been cast in generalized curvilinear coordinates in the present study.

  15. A finite element algorithm for high-lying eigenvalues with Neumann and Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Báez, G.; Méndez-Sánchez, R. A.; Leyvraz, F.; Seligman, T. H.

    2014-01-01

    We present a finite element algorithm that computes eigenvalues and eigenfunctions of the Laplace operator for two-dimensional problems with homogeneous Neumann or Dirichlet boundary conditions, or combinations of either for different parts of the boundary. We use an inverse power plus Gauss-Seidel algorithm to solve the generalized eigenvalue problem. For Neumann boundary conditions the method is much more efficient than the equivalent finite difference algorithm. We checked the algorithm by comparing the cumulative level density of the spectrum obtained numerically with the theoretical prediction given by the Weyl formula. We found a systematic deviation due to the discretization, not to the algorithm itself.

  16. Incremental analysis of large elastic deformation of a rotating cylinder

    NASA Technical Reports Server (NTRS)

    Buchanan, G. R.

    1976-01-01

    The effect of finite deformation upon a rotating, orthotropic cylinder was investigated using a general incremental theory. The incremental equations of motion are developed using the variational principle. The governing equations are derived using the principle of virtual work for a body with initial stress. The governing equations are reduced to those for the title problem and a numerical solution is obtained using finite difference approximations. Since the problem is defined in terms of one independent space coordinate, the finite difference grid can be modified as the incremental deformation occurs without serious numerical difficulties. The nonlinear problem is solved incrementally by totaling a series of linear solutions.

  17. Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms.

    PubMed

    Pei, Soo-Chang; Ding, Jian-Jiun

    2005-03-01

    Prolate spheroidal wave functions (PSWFs) are known to be useful for analyzing the properties of the finite-extension Fourier transform (fi-FT). We extend the theory of PSWFs for the finite-extension fractional Fourier transform, the finite-extension linear canonical transform, and the finite-extension offset linear canonical transform. These finite transforms are more flexible than the fi-FT and can model much more generalized optical systems. We also illustrate how to use the generalized prolate spheroidal functions we derive to analyze the energy-preservation ratio, the self-imaging phenomenon, and the resonance phenomenon of the finite-sized one-stage or multiple-stage optical systems.

  18. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations.

  19. Newton's method applied to finite-difference approximations for the steady-state compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Bailey, Harry E.; Beam, Richard M.

    1991-01-01

    Finite-difference approximations for steady-state compressible Navier-Stokes equations, whose two spatial dimensions are written in generalized curvilinear coordinates and strong conservation-law form, are presently solved by means of Newton's method in order to obtain a lifting-airfoil flow field under subsonic and transonnic conditions. In addition to ascertaining the computational requirements of an initial guess ensuring convergence and the degree of computational efficiency obtainable via the approximate Newton method's freezing of the Jacobian matrices, attention is given to the need for auxiliary methods assessing the temporal stability of steady-state solutions. It is demonstrated that nonunique solutions of the finite-difference equations are obtainable by Newton's method in conjunction with a continuation method.

  20. Generalization of von Neumann analysis for a model of two discrete half-spaces: The acoustic case

    USGS Publications Warehouse

    Haney, M.M.

    2007-01-01

    Evaluating the performance of finite-difference algorithms typically uses a technique known as von Neumann analysis. For a given algorithm, application of the technique yields both a dispersion relation valid for the discrete time-space grid and a mathematical condition for stability. In practice, a major shortcoming of conventional von Neumann analysis is that it can be applied only to an idealized numerical model - that of an infinite, homogeneous whole space. Experience has shown that numerical instabilities often arise in finite-difference simulations of wave propagation at interfaces with strong material contrasts. These interface instabilities occur even though the conventional von Neumann stability criterion may be satisfied at each point of the numerical model. To address this issue, I generalize von Neumann analysis for a model of two half-spaces. I perform the analysis for the case of acoustic wave propagation using a standard staggered-grid finite-difference numerical scheme. By deriving expressions for the discrete reflection and transmission coefficients, I study under what conditions the discrete reflection and transmission coefficients become unbounded. I find that instabilities encountered in numerical modeling near interfaces with strong material contrasts are linked to these cases and develop a modified stability criterion that takes into account the resulting instabilities. I test and verify the stability criterion by executing a finite-difference algorithm under conditions predicted to be stable and unstable. ?? 2007 Society of Exploration Geophysicists.

  1. A mixed pseudospectral/finite difference method for the axisymmetric flow in a heated, rotating spherical shell. [for experimental atmospheric simulation

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1986-01-01

    For a Spacelab flight, a model experiment of the earth's atmospheric circulation has been proposed. This experiment is known as the Atmospheric General Circulation Experiment (AGCE). In the experiment concentric spheres will rotate as a solid body, while a dielectric fluid is confined in a portion of the gap between the spheres. A zero gravity environment will be required in the context of the simulation of the gravitational body force on the atmosphere. The present study is concerned with the development of pseudospectral/finite difference (PS/FD) model and its subsequent application to physical cases relevant to the AGCE. The model is based on a hybrid scheme involving a pseudospectral latitudinal formulation, and finite difference radial and time discretization. The advantages of the use of the hybrid PS/FD method compared to a pure second-order accurate finite difference (FD) method are discussed, taking into account the higher accuracy and efficiency of the PS/FD method.

  2. Shear-flexible finite-element models of laminated composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Mathers, M. D.

    1975-01-01

    Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.

  3. A finite-difference time-domain electromagnetic solver in a generalized coordinate system

    NASA Astrophysics Data System (ADS)

    Hochberg, Timothy Allen

    A new, finite-difference, time-domain method for the simulation of full-wave electromagnetic wave propogation in complex structures is developed. This method is simple and flexible; it allows for the simulation of transient wave propogation in a large class of practical structures. Boundary conditions are implemented for perfect and imperfect electrically conducting boundaries, perfect magnetically conducting boundaries, and absorbing boundaries. The method is validated with the aid of several different types of test cases. Two types of coaxial cables with helical breaks are simulated and the results are discussed.

  4. Properties of finite difference models of non-linear conservative oscillators

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1988-01-01

    Finite-difference (FD) approaches to the numerical solution of the differential equations describing the motion of a nonlinear conservative oscillator are investigated analytically. A generalized formulation of the Duffing and modified Duffing equations is derived and analyzed using several FD techniques, and it is concluded that, although it is always possible to contstruct FD models of conservative oscillators which are themselves conservative, caution is required to avoid numerical solutions which do not accurately reflect the properties of the original equation.

  5. Energy stable and high-order-accurate finite difference methods on staggered grids

    NASA Astrophysics Data System (ADS)

    O'Reilly, Ossian; Lundquist, Tomas; Dunham, Eric M.; Nordström, Jan

    2017-10-01

    For wave propagation over distances of many wavelengths, high-order finite difference methods on staggered grids are widely used due to their excellent dispersion properties. However, the enforcement of boundary conditions in a stable manner and treatment of interface problems with discontinuous coefficients usually pose many challenges. In this work, we construct a provably stable and high-order-accurate finite difference method on staggered grids that can be applied to a broad class of boundary and interface problems. The staggered grid difference operators are in summation-by-parts form and when combined with a weak enforcement of the boundary conditions, lead to an energy stable method on multiblock grids. The general applicability of the method is demonstrated by simulating an explosive acoustic source, generating waves reflecting against a free surface and material discontinuity.

  6. Grid sensitivity capability for large scale structures

    NASA Technical Reports Server (NTRS)

    Nagendra, Gopal K.; Wallerstein, David V.

    1989-01-01

    The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.

  7. Accurate finite difference methods for time-harmonic wave propagation

    NASA Technical Reports Server (NTRS)

    Harari, Isaac; Turkel, Eli

    1994-01-01

    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.

  8. Control of Finite-State, Finite Memory Stochastic Systems

    NASA Technical Reports Server (NTRS)

    Sandell, Nils R.

    1974-01-01

    A generalized problem of stochastic control is discussed in which multiple controllers with different data bases are present. The vehicle for the investigation is the finite state, finite memory (FSFM) stochastic control problem. Optimality conditions are obtained by deriving an equivalent deterministic optimal control problem. A FSFM minimum principle is obtained via the equivalent deterministic problem. The minimum principle suggests the development of a numerical optimization algorithm, the min-H algorithm. The relationship between the sufficiency of the minimum principle and the informational properties of the problem are investigated. A problem of hypothesis testing with 1-bit memory is investigated to illustrate the application of control theoretic techniques to information processing problems.

  9. A mimetic finite difference method for the Stokes problem with elected edge bubbles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipnikov, K; Berirao, L

    2009-01-01

    A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The unstable P{sub 1}-P{sub 0} discretization is stabilized by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. The discretizations schemes for Stokes and Navier-Stokes equations must satisfy the celebrated inf-sup (or the LBB) stability condition. The stability condition implies a balance between discrete spaces for velocity and pressure. In finite elements, this balance is frequently achieved by adding bubble functions to the velocity space. The goal of this articlemore » is to show that the stabilizing edge bubble functions can be added only to a small set of mesh edges. This results in a smaller algebraic system and potentially in a faster calculations. We employ the mimetic finite difference (MFD) discretization technique that works for general polyhedral meshes and can accomodate non-uniform distribution of stabilizing bubbles.« less

  10. Purely numerical approach for analyzing flow to a well intercepting a vertical fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narasimhan, T.N.; Palen, W.A.

    1979-03-01

    A numerical method, based on an Integral Finite Difference approach, is presented to investigate wells intercepting fractures in general and vertical fractures in particular. Such features as finite conductivity, wellbore storage, damage, and fracture deformability and its influence as permeability are easily handled. The advantage of the numerical approach is that it is based on fewer assumptions than analytic solutions and hence has greater generality. Illustrative examples are given to validate the method against known solutions. New results are presenteed to demonstrate the applicability of the method to problems not apparently considered in the literature so far.

  11. A systematic study of finite BRST-BFV transformations in generalized Hamiltonian formalism

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.; Tyutin, Igor V.

    2014-09-01

    We study systematically finite BRST-BFV transformations in the generalized Hamiltonian formalism. We present explicitly their Jacobians and the form of a solution to the compensation equation determining the functional field dependence of finite Fermionic parameters, necessary to generate an arbitrary finite change of gauge-fixing functions in the path integral.

  12. A time-spectral approach to numerical weather prediction

    NASA Astrophysics Data System (ADS)

    Scheffel, Jan; Lindvall, Kristoffer; Yik, Hiu Fai

    2018-05-01

    Finite difference methods are traditionally used for modelling the time domain in numerical weather prediction (NWP). Time-spectral solution is an attractive alternative for reasons of accuracy and efficiency and because time step limitations associated with causal CFL-like criteria, typical for explicit finite difference methods, are avoided. In this work, the Lorenz 1984 chaotic equations are solved using the time-spectral algorithm GWRM (Generalized Weighted Residual Method). Comparisons of accuracy and efficiency are carried out for both explicit and implicit time-stepping algorithms. It is found that the efficiency of the GWRM compares well with these methods, in particular at high accuracy. For perturbative scenarios, the GWRM was found to be as much as four times faster than the finite difference methods. A primary reason is that the GWRM time intervals typically are two orders of magnitude larger than those of the finite difference methods. The GWRM has the additional advantage to produce analytical solutions in the form of Chebyshev series expansions. The results are encouraging for pursuing further studies, including spatial dependence, of the relevance of time-spectral methods for NWP modelling.

  13. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1986-01-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations--potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomeclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  14. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1989-01-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations: potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  15. The quantum Ising chain with a generalized defect

    NASA Astrophysics Data System (ADS)

    Grimm, Uwe

    1990-08-01

    The finite-size scaling properties of the quantum Ising chain with different types of generalized defects are studied. This not only means an alteration of the coupling constant as previously examined, but also an additional arbitrary transformation in the algebra of observables at one site of the chain. One can distinguish between two classes of generalized defects: on the one hand those which do not affect the finite-size integrability of the Ising chain, and on the other hand those that destroy this property. In this context, finite-size integrability is always understood as a synonym for the possibility to write the hamiltonian of the finite chain as a bilinear expression in fermionic operators by means of a Jordan-Wigner transformation. Concerning the first type of defect, an exact solution for the scaling spectrum is obtained for the most universal defect that preserves the global Z2 symmetry of the chain. It is shown that in the continuum limit this yields the same result as for one properly chosen ordinary defect, that is changing the coupling constant only, and thus the finite-size scaling spectra can be described by irreps of a shifted u(1) Kac-Moody algebra. The other type of defect is examined by means of numerical finite-size calculations. In contrast to the first case, these calculations suggest a non-continuous dependence of the scaling dimensions on the defect parameters. A conjecture for the operator content involving only one primary field of a Virasoro algebra with central charge c= {1}/{2} is given.

  16. Neutron star mergers as a probe of modifications of general relativity with finite-range scalar forces

    NASA Astrophysics Data System (ADS)

    Sagunski, Laura; Zhang, Jun; Johnson, Matthew C.; Lehner, Luis; Sakellariadou, Mairi; Liebling, Steven L.; Palenzuela, Carlos; Neilsen, David

    2018-03-01

    Observations of gravitational radiation from compact binary systems provide an unprecedented opportunity to test general relativity in the strong field dynamical regime. In this paper, we investigate how future observations of gravitational radiation from binary neutron star mergers might provide constraints on finite-range forces from a universally coupled massive scalar field. Such scalar degrees of freedom (d.o.f.) are a characteristic feature of many extensions of general relativity. For concreteness, we work in the context of metric f (R ) gravity, which is equivalent to general relativity and a universally coupled scalar field with a nonlinear potential whose form is fixed by the choice of f (R ). In theories where neutron stars (or other compact objects) obtain a significant scalar charge, the resulting attractive finite-range scalar force has implications for both the inspiral and merger phases of binary systems. We first present an analysis of the inspiral dynamics in Newtonian limit, and forecast the constraints on the mass of the scalar and charge of the compact objects for the Advanced LIGO gravitational wave observatory. We then perform a comparative study of binary neutron star mergers in general relativity with those of a one-parameter model of f (R ) gravity using fully relativistic hydrodynamical simulations. These simulations elucidate the effects of the scalar on the merger and postmerger dynamics. We comment on the utility of the full waveform (inspiral, merger, postmerger) to probe different regions of parameter space for both the particular model of f (R ) gravity studied here and for finite-range scalar forces more generally.

  17. Measures with locally finite support and spectrum.

    PubMed

    Meyer, Yves F

    2016-03-22

    The goal of this paper is the construction of measures μ on R(n)enjoying three conflicting but fortunately compatible properties: (i) μ is a sum of weighted Dirac masses on a locally finite set, (ii) the Fourier transform μ f μ is also a sum of weighted Dirac masses on a locally finite set, and (iii) μ is not a generalized Dirac comb. We give surprisingly simple examples of such measures. These unexpected patterns strongly differ from quasicrystals, they provide us with unusual Poisson's formulas, and they might give us an unconventional insight into aperiodic order.

  18. Measures with locally finite support and spectrum

    PubMed Central

    Meyer, Yves F.

    2016-01-01

    The goal of this paper is the construction of measures μ on Rn enjoying three conflicting but fortunately compatible properties: (i) μ is a sum of weighted Dirac masses on a locally finite set, (ii) the Fourier transform μ^ of μ is also a sum of weighted Dirac masses on a locally finite set, and (iii) μ is not a generalized Dirac comb. We give surprisingly simple examples of such measures. These unexpected patterns strongly differ from quasicrystals, they provide us with unusual Poisson's formulas, and they might give us an unconventional insight into aperiodic order. PMID:26929358

  19. A systematic study of finite BRST-BFV transformations in Sp(2)-extended generalized Hamiltonian formalism

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.; Tyutin, Igor V.

    2014-09-01

    We study systematically finite BRST-BFV transformations in Sp(2)-extended generalized Hamiltonian formalism. We present explicitly their Jacobians and the form of a solution to the compensation equation determining the functional field dependence of finite Fermionic parameters, necessary to generate arbitrary finite change of gauge-fixing functions in the path integral.

  20. PDE-based geophysical modelling using finite elements: examples from 3D resistivity and 2D magnetotellurics

    NASA Astrophysics Data System (ADS)

    Schaa, R.; Gross, L.; du Plessis, J.

    2016-04-01

    We present a general finite-element solver, escript, tailored to solve geophysical forward and inverse modeling problems in terms of partial differential equations (PDEs) with suitable boundary conditions. Escript’s abstract interface allows geoscientists to focus on solving the actual problem without being experts in numerical modeling. General-purpose finite element solvers have found wide use especially in engineering fields and find increasing application in the geophysical disciplines as these offer a single interface to tackle different geophysical problems. These solvers are useful for data interpretation and for research, but can also be a useful tool in educational settings. This paper serves as an introduction into PDE-based modeling with escript where we demonstrate in detail how escript is used to solve two different forward modeling problems from applied geophysics (3D DC resistivity and 2D magnetotellurics). Based on these two different cases, other geophysical modeling work can easily be realized. The escript package is implemented as a Python library and allows the solution of coupled, linear or non-linear, time-dependent PDEs. Parallel execution for both shared and distributed memory architectures is supported and can be used without modifications to the scripts.

  1. A computer graphics program for general finite element analyses

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Sawyer, L. M.

    1978-01-01

    Documentation for a computer graphics program for displays from general finite element analyses is presented. A general description of display options and detailed user instructions are given. Several plots made in structural, thermal and fluid finite element analyses are included to illustrate program options. Sample data files are given to illustrate use of the program.

  2. Revisiting of Multiscale Static Analysis of Notched Laminates Using the Generalized Method of Cells

    NASA Technical Reports Server (NTRS)

    Naghipour Ghezeljeh, Paria; Arnold, Steven M.; Pineda, Evan J.

    2016-01-01

    Composite material systems generally exhibit a range of behavior on different length scales (from constituent level to macro); therefore, a multiscale framework is beneficial for the design and engineering of these material systems. The complex nature of the observed composite failure during experiments suggests the need for a three-dimensional (3D) multiscale model to attain a reliable prediction. However, the size of a multiscale three-dimensional finite element model can become prohibitively large and computationally costly. Two-dimensional (2D) models are preferred due to computational efficiency, especially if many different configurations have to be analyzed for an in-depth damage tolerance and durability design study. In this study, various 2D and 3D multiscale analyses will be employed to conduct a detailed investigation into the tensile failure of a given multidirectional, notched carbon fiber reinforced polymer laminate. Threedimensional finite element analysis is typically considered more accurate than a 2D finite element model, as compared with experiments. Nevertheless, in the absence of adequate mesh refinement, large differences may be observed between a 2D and 3D analysis, especially for a shear-dominated layup. This observed difference has not been widely addressed in previous literature and is the main focus of this paper.

  3. Domain decomposition methods for systems of conservation laws: Spectral collocation approximations

    NASA Technical Reports Server (NTRS)

    Quarteroni, Alfio

    1989-01-01

    Hyperbolic systems of conversation laws are considered which are discretized in space by spectral collocation methods and advanced in time by finite difference schemes. At any time-level a domain deposition method based on an iteration by subdomain procedure was introduced yielding at each step a sequence of independent subproblems (one for each subdomain) that can be solved simultaneously. The method is set for a general nonlinear problem in several space variables. The convergence analysis, however, is carried out only for a linear one-dimensional system with continuous solutions. A precise form of the error reduction factor at each iteration is derived. Although the method is applied here to the case of spectral collocation approximation only, the idea is fairly general and can be used in a different context as well. For instance, its application to space discretization by finite differences is straight forward.

  4. Simulating incompressible flow on moving meshfree grids using General Finite Differences (GFD)

    NASA Astrophysics Data System (ADS)

    Vasyliv, Yaroslav; Alexeev, Alexander

    2016-11-01

    We simulate incompressible flow around an oscillating cylinder at different Reynolds numbers using General Finite Differences (GFD) on a meshfree grid. We evolve the meshfree grid by treating each grid node as a particle. To compute velocities and accelerations, we consider the particles at a particular instance as Eulerian observation points. The incompressible Navier-Stokes equations are directly discretized using GFD with boundary conditions enforced using a sharp interface treatment. Cloud sizes are set such that the local approximations use only 16 neighbors. To enforce incompressibility, we apply a semi-implicit approximate projection method. To prevent overlapping particles and formation of voids in the grid, we propose a particle regularization scheme based on a local minimization principle. We validate the GFD results for an oscillating cylinder against the lattice Boltzmann method and find good agreement. Financial support provided by National Science Foundation (NSF) Graduate Research Fellowship, Grant No. DGE-1148903.

  5. An Improved Correlation between Impression and Uniaxial Creep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsueh, Chun-Hway; Miranda, Pedro; Becher, Paul F

    2006-01-01

    A semiempirical correlation between impression and uniaxial creep has been established by Hyde et al. [Int. J. Mech. Sci. 35, 451 (1993) ] using finite element results for materials exhibiting general power-law creep with the stress exponent n in the range 2 {<=} n {<=} 15. Here, we derive the closed-form solution for a special case of viscoelastic materials, i.e., n = 1, subjected to impression creep and obtain the exact correlation between impression and uniaxial creep. This analytical solution serves as a checkpoint for the finite element results. We then perform finite element analyses for the general case tomore » derive a semiempirical correlation, which agrees well with both analytical viscoelastic results and the existing experimental data. Our improved correlation agrees with the correlation of Hyde et al. for n {>=} 4, and the difference increases with decreasing n for n<4.« less

  6. Finite-time mixed outer synchronization of complex networks with coupling time-varying delay.

    PubMed

    He, Ping; Ma, Shu-Hua; Fan, Tao

    2012-12-01

    This article is concerned with the problem of finite-time mixed outer synchronization (FMOS) of complex networks with coupling time-varying delay. FMOS is a recently developed generalized synchronization concept, i.e., in which different state variables of the corresponding nodes can evolve into finite-time complete synchronization, finite-time anti-synchronization, and even amplitude finite-time death simultaneously for an appropriate choice of the controller gain matrix. Some novel stability criteria for the synchronization between drive and response complex networks with coupling time-varying delay are derived using the Lyapunov stability theory and linear matrix inequalities. And a simple linear state feedback synchronization controller is designed as a result. Numerical simulations for two coupled networks of modified Chua's circuits are then provided to demonstrate the effectiveness and feasibility of the proposed complex networks control and synchronization schemes and then compared with the proposed results and the previous schemes for accuracy.

  7. Finite Group Invariance and Solution of Jaynes-Cummings Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haydargil, Derya; Koc, Ramazan

    2004-10-04

    The finite group invariance of the E x {beta} and Jaynes-Cummings models are studied. A method is presented to obtain finite group invariance of the E x {beta} system.A suitable transformation of a Jaynes-Cummings Hamiltonian leads to equivalence of E x {beta} system. Then a general method is applied to obtain the solution of Jaynes-Cummings Hamiltonian with Kerr nonlinearity. Number operator for this structure and the generators of su(2) algebra are used to find the eigenvalues of the Jaynes-Cummings Hamiltonian for different states. By using the invariance of number operator the solution of modified Jaynes-Cummings Hamiltonian is also discussed.

  8. Two-point correlation function for Dirichlet L-functions

    NASA Astrophysics Data System (ADS)

    Bogomolny, E.; Keating, J. P.

    2013-03-01

    The two-point correlation function for the zeros of Dirichlet L-functions at a height E on the critical line is calculated heuristically using a generalization of the Hardy-Littlewood conjecture for pairs of primes in arithmetic progression. The result matches the conjectured random-matrix form in the limit as E → ∞ and, importantly, includes finite-E corrections. These finite-E corrections differ from those in the case of the Riemann zeta-function, obtained in Bogomolny and Keating (1996 Phys. Rev. Lett. 77 1472), by certain finite products of primes which divide the modulus of the primitive character used to construct the L-function in question.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Shweta; Sharma, Prerana; Kaothekar, Sachin

    The thermal instability of an infinite homogeneous, thermally conducting, and rotating plasma, incorporating finite electrical resistivity, finite electron inertia, and an arbitrary radiative heat-loss function in the presence of finite Larmor radius corrections and Hall current, has been studied. Analysis has been made with the help of linearized magnetohydrodynamics (MHD) equations. A general dispersion relation is obtained using the normal mode analysis method, and the dispersion relation is discussed for longitudinal propagation and transverse propagation separately. The dispersion relation has been solved numerically to obtain the dependence of the growth rate on the various parameters involved. The conditions of modifiedmore » thermal instability and stability are discussed in the different cases of interest.« less

  10. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Gibson, Richard L.

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  11. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai, E-mail: kaigao87@gmail.com; Fu, Shubin, E-mail: shubinfu89@gmail.com; Gibson, Richard L., E-mail: gibson@tamu.edu

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  12. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE PAGES

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; ...

    2015-04-14

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  13. Nonlinear Conservation Laws and Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  14. On the validity of the modified equation approach to the stability analysis of finite-difference methods

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    1987-01-01

    The validity of the modified equation stability analysis introduced by Warming and Hyett was investigated. It is shown that the procedure used in the derivation of the modified equation is flawed and generally leads to invalid results. Moreover, the interpretation of the modified equation as the exact partial differential equation solved by a finite-difference method generally cannot be justified even if spatial periodicity is assumed. For a two-level scheme, due to a series of mathematical quirks, the connection between the modified equation approach and the von Neuman method established by Warming and Hyett turns out to be correct despite its questionable original derivation. However, this connection is only partially valid for a scheme involving more than two time levels. In the von Neumann analysis, the complex error multiplication factor associated with a wave number generally has (L-1) roots for an L-level scheme. It is shown that the modified equation provides information about only one of these roots.

  15. Broadband ground motion simulation using a paralleled hybrid approach of Frequency Wavenumber and Finite Difference method

    NASA Astrophysics Data System (ADS)

    Chen, M.; Wei, S.

    2016-12-01

    The serious damage of Mexico City caused by the 1985 Michoacan earthquake 400 km away indicates that urban areas may be affected by remote earthquakes. To asses earthquake risk of urban areas imposed by distant earthquakes, we developed a hybrid Frequency Wavenumber (FK) and Finite Difference (FD) code implemented with MPI, since the computation of seismic wave propagation from a distant earthquake using a single numerical method (e.g. Finite Difference, Finite Element or Spectral Element) is very expensive. In our approach, we compute the incident wave field (ud) at the boundaries of the excitation box, which surrounding the local structure, using a paralleled FK method (Zhu and Rivera, 2002), and compute the total wave field (u) within the excitation box using a parallelled 2D FD method. We apply perfectly matched layer (PML) absorbing condition to the diffracted wave field (u-ud). Compared to previous Generalized Ray Theory and Finite Difference (Wen and Helmberger, 1998), Frequency Wavenumber and Spectral Element (Tong et al., 2014), and Direct Solution Method and Spectral Element hybrid method (Monteiller et al., 2013), our absorbing boundary condition dramatically suppress the numerical noise. The MPI implementation of our method can greatly speed up the calculation. Besides, our hybrid method also has a potential use in high resolution array imaging similar to Tong et al. (2014).

  16. Vertical discretization with finite elements for a global hydrostatic model on the cubed sphere

    NASA Astrophysics Data System (ADS)

    Yi, Tae-Hyeong; Park, Ja-Rin

    2017-06-01

    A formulation of Galerkin finite element with basis-spline functions on a hybrid sigma-pressure coordinate is presented to discretize the vertical terms of global Eulerian hydrostatic equations employed in a numerical weather prediction system, which is horizontally discretized with high-order spectral elements on a cubed sphere grid. This replaces the vertical discretization of conventional central finite difference that is first-order accurate in non-uniform grids and causes numerical instability in advection-dominant flows. Therefore, a model remains in the framework of Galerkin finite elements for both the horizontal and vertical spatial terms. The basis-spline functions, obtained from the de-Boor algorithm, are employed to derive both the vertical derivative and integral operators, since Eulerian advection terms are involved. These operators are used to discretize the vertical terms of the prognostic and diagnostic equations. To verify the vertical discretization schemes and compare their performance, various two- and three-dimensional idealized cases and a hindcast case with full physics are performed in terms of accuracy and stability. It was shown that the vertical finite element with the cubic basis-spline function is more accurate and stable than that of the vertical finite difference, as indicated by faster residual convergence, fewer statistical errors, and reduction in computational mode. This leads to the general conclusion that the overall performance of a global hydrostatic model might be significantly improved with the vertical finite element.

  17. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size.

    PubMed

    Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram

    2017-04-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.

  18. The Complex-Step-Finite-Difference method

    NASA Astrophysics Data System (ADS)

    Abreu, Rafael; Stich, Daniel; Morales, Jose

    2015-07-01

    We introduce the Complex-Step-Finite-Difference method (CSFDM) as a generalization of the well-known Finite-Difference method (FDM) for solving the acoustic and elastic wave equations. We have found a direct relationship between modelling the second-order wave equation by the FDM and the first-order wave equation by the CSFDM in 1-D, 2-D and 3-D acoustic media. We present the numerical methodology in order to apply the introduced CSFDM and show an example for wave propagation in simple homogeneous and heterogeneous models. The CSFDM may be implemented as an extension into pre-existing numerical techniques in order to obtain fourth- or sixth-order accurate results with compact three time-level stencils. We compare advantages of imposing various types of initial motion conditions of the CSFDM and demonstrate its higher-order accuracy under the same computational cost and dispersion-dissipation properties. The introduced method can be naturally extended to solve different partial differential equations arising in other fields of science and engineering.

  19. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.

    PubMed

    Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan

    2013-09-01

    Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.

  20. A computational study of coherent structures in the wakes of two-dimensional bluff bodies

    NASA Astrophysics Data System (ADS)

    Pearce, Jeffrey Alan

    1988-08-01

    The periodic shedding of vortices from bluff bodies was first recognized in the late 1800's. Currently, there is great interest concerning the effect of vortex shedding on structures and on vehicle stability. In the design of bluff structures which will be exposed to a flow, knowledge of the shedding frequency and the amplitude of the aerodynamic forces is critical. The ability to computationally predict parameters associated with periodic vortex shedding is thus a valuable tool. In this study, the periodic shedding of vortices from several bluff body geometries is predicted. The study is conducted with a two-dimensional finite-difference code employed on various grid sizes. The effects of the grid size and time step on the accuracy of the solution are addressed. Strouhal numbers and aerodynamic force coefficients are computed for all of the bodies considered and compared with previous experimental results. Results indicate that the finite-difference code is capable of predicting periodic vortex shedding for all of the geometries tested. Refinement of the finite-difference grid was found to give little improvement in the prediction; however, the choice of time step size was shown to be critical. Predictions of Strouhal numbers were generally accurate, and the calculated aerodynamic forces generally exhibited behavior consistent with previous studies.

  1. Higher-order finite-difference formulation of periodic Orbital-free Density Functional Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Swarnava; Suryanarayana, Phanish, E-mail: phanish.suryanarayana@ce.gatech.edu

    2016-02-15

    We present a real-space formulation and higher-order finite-difference implementation of periodic Orbital-free Density Functional Theory (OF-DFT). Specifically, utilizing a local reformulation of the electrostatic and kernel terms, we develop a generalized framework for performing OF-DFT simulations with different variants of the electronic kinetic energy. In particular, we propose a self-consistent field (SCF) type fixed-point method for calculations involving linear-response kinetic energy functionals. In this framework, evaluation of both the electronic ground-state and forces on the nuclei are amenable to computations that scale linearly with the number of atoms. We develop a parallel implementation of this formulation using the finite-difference discretization.more » We demonstrate that higher-order finite-differences can achieve relatively large convergence rates with respect to mesh-size in both the energies and forces. Additionally, we establish that the fixed-point iteration converges rapidly, and that it can be further accelerated using extrapolation techniques like Anderson's mixing. We validate the accuracy of the results by comparing the energies and forces with plane-wave methods for selected examples, including the vacancy formation energy in Aluminum. Overall, the suitability of the proposed formulation for scalable high performance computing makes it an attractive choice for large-scale OF-DFT calculations consisting of thousands of atoms.« less

  2. On the Definition of Surface Potentials for Finite-Difference Operators

    NASA Technical Reports Server (NTRS)

    Tsynkov, S. V.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    For a class of linear constant-coefficient finite-difference operators of the second order, we introduce the concepts similar to those of conventional single- and double-layer potentials for differential operators. The discrete potentials are defined completely independently of any notion related to the approximation of the continuous potentials on the grid. We rather use all approach based on differentiating, and then inverting the differentiation of a function with surface discontinuity of a particular kind, which is the most general way of introducing surface potentials in the theory of distributions. The resulting finite-difference "surface" potentials appear to be solutions of the corresponding continuous potentials. Primarily, this pertains to the possibility of representing a given solution to the homogeneous equation on the domain as a variety of surface potentials, with the density defined on the domain's boundary. At the same time the discrete surface potentials can be interpreted as one specific realization of the generalized potentials of Calderon's type, and consequently, their approximation properties can be studied independently in the framework of the difference potentials method by Ryaben'kii. The motivation for introducing and analyzing the discrete surface potentials was provided by the problems of active shielding and control of sound, in which the aforementioned source terms that drive the potentials are interpreted as the acoustic control sources that cancel out the unwanted noise on a predetermined region of interest.

  3. Efficient assembly of finite-element subsystems with large relative rotations. [for rotorcraft dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Fuh, Jon-Shen; Panda, Brahmananda; Peters, David A.

    1988-01-01

    A finite element approach is presented for the modeling of rotorcraft undergoing elastic deformation in addition to large rigid body motion with respect to inertial space, with particular attention given to the coupling of the rotor and fuselage subsystems subject to large relative rotations. The component synthesis technique used here allows the coupling of rotors to the fuselage for different rotorcraft configurations. The formulation is general and applicable to any rotorcraft vibration, aeroelasticity, and dynamics problem.

  4. Implementation of structural response sensitivity calculations in a large-scale finite-element analysis system

    NASA Technical Reports Server (NTRS)

    Giles, G. L.; Rogers, J. L., Jr.

    1982-01-01

    The implementation includes a generalized method for specifying element cross-sectional dimensions as design variables that can be used in analytically calculating derivatives of output quantities from static stress, vibration, and buckling analyses for both membrane and bending elements. Limited sample results for static displacements and stresses are presented to indicate the advantages of analytically calclating response derivatives compared to finite difference methods. Continuing developments to implement these procedures into an enhanced version of the system are also discussed.

  5. Spectral Ambiguity of Allan Variance

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1996-01-01

    We study the extent to which knowledge of Allan variance and other finite-difference variances determines the spectrum of a random process. The variance of first differences is known to determine the spectrum. We show that, in general, the Allan variance does not. A complete description of the ambiguity is given.

  6. Bell - Kochen - Specker theorem for any finite dimension ?

    NASA Astrophysics Data System (ADS)

    Cabello, Adán; García-Alcaine, Guillermo

    1996-03-01

    The Bell - Kochen - Specker theorem against non-contextual hidden variables can be proved by constructing a finite set of `totally non-colourable' directions, as Kochen and Specker did in a Hilbert space of dimension n = 3. We generalize Kochen and Specker's set to Hilbert spaces of any finite dimension 0305-4470/29/5/016/img2, in a three-step process that shows the relationship between different kinds of proofs (`continuum', `probabilistic', `state-specific' and `state-independent') of the Bell - Kochen - Specker theorem. At the same time, this construction of a totally non-colourable set of directions in any dimension explicitly solves the question raised by Zimba and Penrose about the existence of such a set for n = 5.

  7. Static and dynamic structural-sensitivity derivative calculations in the finite-element-based Engineering Analysis Language (EAL) system

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.; Adelman, H. M.

    1984-01-01

    The implementation of static and dynamic structural-sensitivity derivative calculations in a general purpose, finite-element computer program denoted the Engineering Analysis Language (EAL) System is described. Derivatives are calculated with respect to structural parameters, specifically, member sectional properties including thicknesses, cross-sectional areas, and moments of inertia. Derivatives are obtained for displacements, stresses, vibration frequencies and mode shapes, and buckling loads and mode shapes. Three methods for calculating derivatives are implemented (analytical, semianalytical, and finite differences), and comparisons of computer time and accuracy are made. Results are presented for four examples: a swept wing, a box beam, a stiffened cylinder with a cutout, and a space radiometer-antenna truss.

  8. Adaptive finite element modelling of three-dimensional magnetotelluric fields in general anisotropic media

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Xu, Zhenhuan; Li, Yuguo

    2018-04-01

    We present a goal-oriented adaptive finite element (FE) modelling algorithm for 3-D magnetotelluric fields in generally anisotropic conductivity media. The model consists of a background layered structure, containing anisotropic blocks. Each block and layer might be anisotropic by assigning to them 3 × 3 conductivity tensors. The second-order partial differential equations are solved using the adaptive finite element method (FEM). The computational domain is subdivided into unstructured tetrahedral elements, which allow for complex geometries including bathymetry and dipping interfaces. The grid refinement process is guided by a global posteriori error estimator and is performed iteratively. The system of linear FE equations for electric field E is solved with a direct solver MUMPS. Then the magnetic field H can be found, in which the required derivatives are computed numerically using cubic spline interpolation. The 3-D FE algorithm has been validated by comparisons with both the 3-D finite-difference solution and 2-D FE results. Two model types are used to demonstrate the effects of anisotropy upon 3-D magnetotelluric responses: horizontal and dipping anisotropy. Finally, a 3D sea hill model is modelled to study the effect of oblique interfaces and the dipping anisotropy.

  9. The mimetic finite difference method for the Landau–Lifshitz equation

    DOE PAGES

    Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich

    2017-01-01

    The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less

  10. The mimetic finite difference method for the Landau–Lifshitz equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich

    The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less

  11. Finite-difference simulation and visualization of elastodynamics in time-evolving generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K. (Inventor)

    2009-01-01

    Modeling and simulation of free and forced structural vibrations is essential to an overall structural health monitoring capability. In the various embodiments, a first principles finite-difference approach is adopted in modeling a structural subsystem such as a mechanical gear by solving elastodynamic equations in generalized curvilinear coordinates. Such a capability to generate a dynamic structural response is widely applicable in a variety of structural health monitoring systems. This capability (1) will lead to an understanding of the dynamic behavior of a structural system and hence its improved design, (2) will generate a sufficiently large space of normal and damage solutions that can be used by machine learning algorithms to detect anomalous system behavior and achieve a system design optimization and (3) will lead to an optimal sensor placement strategy, based on the identification of local stress maxima all over the domain.

  12. A guide to differences between stochastic point-source and stochastic finite-fault simulations

    USGS Publications Warehouse

    Atkinson, G.M.; Assatourians, K.; Boore, D.M.; Campbell, K.; Motazedian, D.

    2009-01-01

    Why do stochastic point-source and finite-fault simulation models not agree on the predicted ground motions for moderate earthquakes at large distances? This question was posed by Ken Campbell, who attempted to reproduce the Atkinson and Boore (2006) ground-motion prediction equations for eastern North America using the stochastic point-source program SMSIM (Boore, 2005) in place of the finite-source stochastic program EXSIM (Motazedian and Atkinson, 2005) that was used by Atkinson and Boore (2006) in their model. His comparisons suggested that a higher stress drop is needed in the context of SMSIM to produce an average match, at larger distances, with the model predictions of Atkinson and Boore (2006) based on EXSIM; this is so even for moderate magnitudes, which should be well-represented by a point-source model. Why? The answer to this question is rooted in significant differences between point-source and finite-source stochastic simulation methodologies, specifically as implemented in SMSIM (Boore, 2005) and EXSIM (Motazedian and Atkinson, 2005) to date. Point-source and finite-fault methodologies differ in general in several important ways: (1) the geometry of the source; (2) the definition and application of duration; and (3) the normalization of finite-source subsource summations. Furthermore, the specific implementation of the methods may differ in their details. The purpose of this article is to provide a brief overview of these differences, their origins, and implications. This sets the stage for a more detailed companion article, "Comparing Stochastic Point-Source and Finite-Source Ground-Motion Simulations: SMSIM and EXSIM," in which Boore (2009) provides modifications and improvements in the implementations of both programs that narrow the gap and result in closer agreement. These issues are important because both SMSIM and EXSIM have been widely used in the development of ground-motion prediction equations and in modeling the parameters that control observed ground motions.

  13. Arbitrary Order Mixed Mimetic Finite Differences Method with Nodal Degrees of Freedom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iaroshenko, Oleksandr; Gyrya, Vitaliy; Manzini, Gianmarco

    2016-09-01

    In this work we consider a modification to an arbitrary order mixed mimetic finite difference method (MFD) for a diffusion equation on general polygonal meshes [1]. The modification is based on moving some degrees of freedom (DoF) for a flux variable from edges to vertices. We showed that for a non-degenerate element this transformation is locally equivalent, i.e. there is a one-to-one map between the new and the old DoF. Globally, on the other hand, this transformation leads to a reduction of the total number of degrees of freedom (by up to 40%) and additional continuity of the discrete flux.

  14. Finite element simulation of cracks formation in parabolic flume above fixed service live

    NASA Astrophysics Data System (ADS)

    Bandurin, M. A.; Volosukhin, V. A.; Mikheev, A. V.; Volosukhin, Y. V.; Bandurina, I. P.

    2018-03-01

    In the article, digital simulation data on influence of defect different characteristics on cracks formation in a parabolic flume are presented. The finite element method is based on general hypotheses of the theory of elasticity. The studies showed that the values of absolute movements satisfy the standards of design. The results of the digital simulation of stresses and strains for cracks formation in concrete parabolic flumes after long-term service above the fixed service life are described. Stressed and strained state of reinforced concrete bearing elements under different load combinations is considered. Intensive threshold of danger to form longitudinal cracks in reinforced concrete elements is determined.

  15. FFT-based computation of the bioheat transfer equation for the HCC ultrasound surgery therapy modeling.

    PubMed

    Dillenseger, Jean-Louis; Esneault, Simon; Garnier, Carole

    2008-01-01

    This paper describes a modeling method of the tissue temperature evolution over time in hyperthermia. More precisely, this approach is used to simulate the hepatocellular carcinoma curative treatment by a percutaneous high intensity ultrasound surgery. The tissue temperature evolution over time is classically described by Pennes' bioheat transfer equation which is generally solved by a finite difference method. In this paper we will present a method where the bioheat transfer equation can be algebraically solved after a Fourier transformation over the space coordinates. The implementation and boundary conditions of this method will be shown and compared with the finite difference method.

  16. On beam shaping of the field radiated by a line source coupled to finite or infinite photonic crystals.

    PubMed

    Ceccuzzi, Silvio; Jandieri, Vakhtang; Baccarelli, Paolo; Ponti, Cristina; Schettini, Giuseppe

    2016-04-01

    Comparison of the beam-shaping effect of a field radiated by a line source, when an ideal infinite structure constituted by two photonic crystals and an actual finite one are considered, has been carried out by means of two different methods. The lattice sums technique combined with the generalized reflection matrix method is used to rigorously investigate the radiation from the infinite photonic crystals, whereas radiation from crystals composed of a finite number of rods along the layers is analyzed using the cylindrical-wave approach. A directive radiation is observed with the line source embedded in the structure. With an increased separation distance between the crystals, a significant edge diffraction appears that provides the main radiation mechanism in the finite layout. Suitable absorbers are implemented to reduce the above-mentioned diffraction and the reflections at the boundaries, thus obtaining good agreement between radiation patterns of a localized line source coupled to finite and infinite photonic crystals, when the number of periods of the finite structure is properly chosen.

  17. On the dynamics of approximating schemes for dissipative nonlinear equations

    NASA Technical Reports Server (NTRS)

    Jones, Donald A.

    1993-01-01

    Since one can rarely write down the analytical solutions to nonlinear dissipative partial differential equations (PDE's), it is important to understand whether, and in what sense, the behavior of approximating schemes to these equations reflects the true dynamics of the original equations. Further, because standard error estimates between approximations of the true solutions coming from spectral methods - finite difference or finite element schemes, for example - and the exact solutions grow exponentially in time, this analysis provides little value in understanding the infinite time behavior of a given approximating scheme. The notion of the global attractor has been useful in quantifying the infinite time behavior of dissipative PDEs, such as the Navier-Stokes equations. Loosely speaking, the global attractor is all that remains of a sufficiently large bounded set in phase space mapped infinitely forward in time under the evolution of the PDE. Though the attractor has been shown to have some nice properties - it is compact, connected, and finite dimensional, for example - it is in general quite complicated. Nevertheless, the global attractor gives a way to understand how the infinite time behavior of approximating schemes such as the ones coming from a finite difference, finite element, or spectral method relates to that of the original PDE. Indeed, one can often show that such approximations also have a global attractor. We therefore only need to understand how the structure of the attractor for the PDE behaves under approximation. This is by no means a trivial task. Several interesting results have been obtained in this direction. However, we will not go into the details. We mention here that approximations generally lose information about the system no matter how accurate they are. There are examples that show certain parts of the attractor may be lost by arbitrary small perturbations of the original equations.

  18. Models and finite element approximations for interacting nanosized piezoelectric bodies and acoustic medium

    NASA Astrophysics Data System (ADS)

    Nasedkin, A. V.

    2017-01-01

    This research presents the new size-dependent models of piezoelectric materials oriented to finite element applications. The proposed models include the facilities of taking into account different mechanisms of damping for mechanical and electric fields. The coupled models also incorporate the equations of the theory of acoustics for viscous fluids. In particular cases, these models permit to use the mode superposition method with full separation of the finite element systems into independent equations for the independent modes for transient and harmonic problems. The main boundary conditions were supplemented with the facilities of taking into account the coupled surface effects, allowing to explore the nanoscale piezoelectric materials in the framework of theories of continuous media with surface stresses and their generalizations. For the considered problems we have implemented the finite element technologies and various numerical algorithms to maintain a symmetrical structure of the finite element quasi-definite matrices (matrix structure for the problems with a saddle point).

  19. Optimization Issues with Complex Rotorcraft Comprehensive Analysis

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.; Young, Katherine C.; Tarzanin, Frank J.; Hirsh, Joel E.; Young, Darrell K.

    1998-01-01

    This paper investigates the use of the general purpose automatic differentiation (AD) tool called Automatic Differentiation of FORTRAN (ADIFOR) as a means of generating sensitivity derivatives for use in Boeing Helicopter's proprietary comprehensive rotor analysis code (VII). ADIFOR transforms an existing computer program into a new program that performs a sensitivity analysis in addition to the original analysis. In this study both the pros (exact derivatives, no step-size problems) and cons (more CPU, more memory) of ADIFOR are discussed. The size (based on the number of lines) of the VII code after ADIFOR processing increased by 70 percent and resulted in substantial computer memory requirements at execution. The ADIFOR derivatives took about 75 percent longer to compute than the finite-difference derivatives. However, the ADIFOR derivatives are exact and are not functions of step-size. The VII sensitivity derivatives generated by ADIFOR are compared with finite-difference derivatives. The ADIFOR and finite-difference derivatives are used in three optimization schemes to solve a low vibration rotor design problem.

  20. [Analysis of the movement of long axis and the distribution of principal stress in abutment tooth retained by conical telescope].

    PubMed

    Lin, Ying-he; Man, Yi; Qu, Yi-li; Guan, Dong-hua; Lu, Xuan; Wei, Na

    2006-01-01

    To study the movement of long axis and the distribution of principal stress in the abutment teeth in removable partial denture which is retained by use of conical telescope. An ideal three dimensional finite element model was constructed by using SCT image reconstruction technique, self-programming and ANSYS software. The static loads were applied. The displacement of the long axis and the distribution of the principal stress in the abutment teeth was analyzed. There is no statistic difference of displacenat and stress distribution among different three-dimensional finite element models. Generally, the abutment teeth move along the long axis itself. Similar stress distribution was observed in each three-dimensional finite element model. The maximal principal compressive stress was observed at the distal cervix of the second premolar. The abutment teeth can be well protected by use of conical telescope.

  1. Comparison of finite source and plane wave scattering from corrugated surfaces

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1977-01-01

    The choice of a plane wave to represent incident radiation in the analysis of scatter from corrugated surfaces was examined. The physical optics solution obtained for the scattered fields due to an incident plane wave was compared with the solution obtained when the incident radiation is produced by a source of finite size and finite distance from the surface. The two solutions are equivalent if the observer is in the far field of the scatterer and the distance from observer to scatterer is large compared to the radius of curvature at the scatter points, condition not easily satisfied with extended scatterers such as rough surfaces. In general, the two solutions have essential differences such as in the location of the scatter points and the dependence of the scattered fields on the surface properties. The implication of these differences to the definition of a meaningful radar cross section was examined.

  2. Comparison of 2D Finite Element Modeling Assumptions with Results From 3D Analysis for Composite Skin-Stiffener Debonding

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Paris, Isbelle L.; OBrien, T. Kevin; Minguet, Pierre J.

    2004-01-01

    The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane-strain elements as well as three different generalized plane strain type approaches were performed. The computed skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with delamination length. For more accurate predictions, however, a three-dimensional analysis is required.

  3. Influence of 2D Finite Element Modeling Assumptions on Debonding Prediction for Composite Skin-stiffener Specimens Subjected to Tension and Bending

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane strain elements as well as three different generalized plane strain type approaches were performed. The computed deflections, skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with lamination length. For more accurate predictions, however, a three-dimensional analysis is required.

  4. The morphological state space revisited: what do phylogenetic patterns in homoplasy tell us about the number of possible character states?

    PubMed Central

    Hoyal Cuthill, Jennifer F.

    2015-01-01

    Biological variety and major evolutionary transitions suggest that the space of possible morphologies may have varied among lineages and through time. However, most models of phylogenetic character evolution assume that the potential state space is finite. Here, I explore what the morphological state space might be like, by analysing trends in homoplasy (repeated derivation of the same character state). Analyses of ten published character matrices are compared against computer simulations with different state space models: infinite states, finite states, ordered states and an ‘inertial' model, simulating phylogenetic constraints. Of these, only the infinite states model results in evolution without homoplasy, a prediction which is not generally met by real phylogenies. Many authors have interpreted the ubiquity of homoplasy as evidence that the number of evolutionary alternatives is finite. However, homoplasy is also predicted by phylogenetic constraints on the morphological distance that can be traversed between ancestor and descendent. Phylogenetic rarefaction (sub-sampling) shows that finite and inertial state spaces do produce contrasting trends in the distribution of homoplasy. Two clades show trends characteristic of phylogenetic inertia, with decreasing homoplasy (increasing consistency index) as we sub-sample more distantly related taxa. One clade shows increasing homoplasy, suggesting exhaustion of finite states. Different clades may, therefore, show different patterns of character evolution. However, when parsimony uninformative characters are excluded (which may occur without documentation in cladistic studies), it may no longer be possible to distinguish inertial and finite state spaces. Interestingly, inertial models predict that homoplasy should be clustered among comparatively close relatives (parallel evolution), whereas finite state models do not. If morphological evolution is often inertial in nature, then homoplasy (false homology) may primarily occur between close relatives, perhaps being replaced by functional analogy at higher taxonomic scales. PMID:26640650

  5. Relaxation and Preconditioning for High Order Discontinuous Galerkin Methods with Applications to Aeroacoustics and High Speed Flows

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    2004-01-01

    This project is about the investigation of the development of the discontinuous Galerkin finite element methods, for general geometry and triangulations, for solving convection dominated problems, with applications to aeroacoustics. Other related issues in high order WENO finite difference and finite volume methods have also been investigated. methods are two classes of high order, high resolution methods suitable for convection dominated simulations with possible discontinuous or sharp gradient solutions. In [18], we first review these two classes of methods, pointing out their similarities and differences in algorithm formulation, theoretical properties, implementation issues, applicability, and relative advantages. We then present some quantitative comparisons of the third order finite volume WENO methods and discontinuous Galerkin methods for a series of test problems to assess their relative merits in accuracy and CPU timing. In [3], we review the development of the Runge-Kutta discontinuous Galerkin (RKDG) methods for non-linear convection-dominated problems. These robust and accurate methods have made their way into the main stream of computational fluid dynamics and are quickly finding use in a wide variety of applications. They combine a special class of Runge-Kutta time discretizations, that allows the method to be non-linearly stable regardless of its accuracy, with a finite element space discretization by discontinuous approximations, that incorporates the ideas of numerical fluxes and slope limiters coined during the remarkable development of the high-resolution finite difference and finite volume schemes. The resulting RKDG methods are stable, high-order accurate, and highly parallelizable schemes that can easily handle complicated geometries and boundary conditions. We review the theoretical and algorithmic aspects of these methods and show several applications including nonlinear conservation laws, the compressible and incompressible Navier-Stokes equations, and Hamilton-Jacobi-like equations.

  6. Internal and external 2-d boundary layer flows

    NASA Technical Reports Server (NTRS)

    Crawford, M. E.; Kays, W. M.

    1978-01-01

    Computer program computes general two dimensional turbulent boundary-layer flow using finite-difference techniques. Structure allows for user modification to accommodate unique problems. Program should prove useful in many applications where accurate boundary-layer flow calculations are required.

  7. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size

    PubMed Central

    Gerstner, Wulfram

    2017-01-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations. PMID:28422957

  8. A Novel WA-BPM Based on the Generalized Multistep Scheme in the Propagation Direction in the Waveguide

    NASA Astrophysics Data System (ADS)

    Ji, Yang; Chen, Hong; Tang, Hongwu

    2017-06-01

    A highly accurate wide-angle scheme, based on the generalized mutistep scheme in the propagation direction, is developed for the finite difference beam propagation method (FD-BPM). Comparing with the previously presented method, the simulation shows that our method results in a more accurate solution, and the step size can be much larger

  9. Development of an energy storage tank model

    NASA Astrophysics Data System (ADS)

    Buckley, Robert Christopher

    A linearized, one-dimensional finite difference model employing an implicit finite difference method for energy storage tanks is developed, programmed with MATLAB, and demonstrated for different applications. A set of nodal energy equations is developed by considering the energy interactions on a small control volume. The general method of solving these equations is described as are other features of the simulation program. Two modeling applications are presented: the first using a hot water storage tank with a solar collector and an absorption chiller to cool a building in the summer, the second using a molten salt storage system with a solar collector and steam power plant to generate electricity. Recommendations for further study as well as all of the source code generated in the project are also provided.

  10. Finite element models of the thigh-buttock complex for assessing static sitting discomfort and pressure sore risk: a literature review.

    PubMed

    Savonnet, Léo; Wang, Xuguang; Duprey, Sonia

    2018-03-01

    Being seated for long periods, while part of many leisure or occupational activities, can lead to discomfort, pain and sometimes health issues. The impact of prolonged sitting on the body has been widely studied in the literature, with a large number of human-body finite element models developed to simulate sitting and assess seat-induced discomfort or to investigate the biomechanical factors involved. Here, we review the finite element models developed to investigate sitting discomfort or risk of pressure sores. Our study examines finite element models from twenty-seven papers, seventeen dedicated to assessing seating discomfort and ten dedicated to investigating pressure ulcers caused by prolonged sitting. The models' mesh composition and material properties are found to differ widely. These models share a lack of validation and generally make little allowance for anthropometric diversity.

  11. High-order asynchrony-tolerant finite difference schemes for partial differential equations

    NASA Astrophysics Data System (ADS)

    Aditya, Konduri; Donzis, Diego A.

    2017-12-01

    Synchronizations of processing elements (PEs) in massively parallel simulations, which arise due to communication or load imbalances between PEs, significantly affect the scalability of scientific applications. We have recently proposed a method based on finite-difference schemes to solve partial differential equations in an asynchronous fashion - synchronization between PEs is relaxed at a mathematical level. While standard schemes can maintain their stability in the presence of asynchrony, their accuracy is drastically affected. In this work, we present a general methodology to derive asynchrony-tolerant (AT) finite difference schemes of arbitrary order of accuracy, which can maintain their accuracy when synchronizations are relaxed. We show that there are several choices available in selecting a stencil to derive these schemes and discuss their effect on numerical and computational performance. We provide a simple classification of schemes based on the stencil and derive schemes that are representative of different classes. Their numerical error is rigorously analyzed within a statistical framework to obtain the overall accuracy of the solution. Results from numerical experiments are used to validate the performance of the schemes.

  12. Engine dynamic analysis with general nonlinear finite element codes. Part 2: Bearing element implementation overall numerical characteristics and benchmaking

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Adams, M.; Fertis, J.; Zeid, I.; Lam, P.

    1982-01-01

    Finite element codes are used in modelling rotor-bearing-stator structure common to the turbine industry. Engine dynamic simulation is used by developing strategies which enable the use of available finite element codes. benchmarking the elements developed are benchmarked by incorporation into a general purpose code (ADINA); the numerical characteristics of finite element type rotor-bearing-stator simulations are evaluated through the use of various types of explicit/implicit numerical integration operators. Improving the overall numerical efficiency of the procedure is improved.

  13. Cranking of Nuclei at Finite Temperature:

    NASA Astrophysics Data System (ADS)

    Bartel, J.; Bencheikh, K.; Quentin, P.

    We present a generalization of the Extended Thomas Fermi (ETF) theory to fermionic systems at finite temperature and finite angular momentum. In fact the present approach is more general in the sense that it is able to treat an excited system of fermions subject to an external vector field which in the case of nuclear rotations, developed more extensively here, is simply ěc{r}×ěc{ω }.

  14. A NON-OSCILLATORY SCHEME FOR OPEN CHANNEL FLOWS. (R825200)

    EPA Science Inventory

    In modeling shocks in open channel flows, the traditional finite difference schemes become inefficient and warrant special numerical treatment for smooth computations. This paper provides a general introduction to the non-oscillatory high-resolution methodology, coupled with the ...

  15. A finite-step method for estimating the spanwise lift distribution of wings in symmetric, yawed, and rotary flight at low speeds

    NASA Technical Reports Server (NTRS)

    Krenkel, A. R.

    1978-01-01

    The finite-step method was programmed for computing the span loading and stability derivatives of trapezoidal shaped wings in symmetric, yawed, and rotary flight. Calculations were made for a series of different wing planforms and the results compared with several available methods for estimating these derivatives in the linear angle of attack range. The agreement shown was generally good except in a few cases. An attempt was made to estimate the nonlinear variation of lift with angle of attack in the high alpha range by introducing the measured airfoil section data into the finite-step method. The numerical procedure was found to be stable only at low angles of attack.

  16. Finite-element modeling and micromagnetic modeling of perpendicular writers

    NASA Astrophysics Data System (ADS)

    Heinonen, Olle; Bozeman, Steven P.

    2006-04-01

    We compare finite-element modeling (FEM) and fully micromagnetic modeling results of four prototypical writers for perpendicular recording. In general, the agreement between the two models is quite good in the vicinity of saturated or near-saturated magnetic material, such as the pole tip, for quantities such as the magnetic field, the gradient of the magnetic field and the write width. However, in the vicinity of magnetic material far from saturation, e.g., return pole or trailing edge write shield, there can be large qualitative and quantitative differences.

  17. Transactions of the Army Conference on Applied Mathematics and Computing (10th) Held at West Point, New York on 16-19 Jun 92

    DTIC Science & Technology

    1993-03-01

    1600 Break 1600 - 1700 General Session IV - Thayer Hall, Room 342 Chairperson: David W. Hislop , U.S. Army Research Office, Research Triangle Park...dynamics studies conducted in the 1950’s and 1960’% using finite difference and finite element methods, and in the 1970’s and 1980 ’s using Green’s...1966. [13] L. C. Young. Lectures on the Calculus of Variations and Optimal Control. Chelsa, 1980 . 68 Kinetically Driven Elastic Phase Boundary Motion

  18. Optimal performance of generalized heat engines with finite-size baths of arbitrary multiple conserved quantities beyond independent-and-identical-distribution scaling

    NASA Astrophysics Data System (ADS)

    Ito, Kosuke; Hayashi, Masahito

    2018-01-01

    In quantum thermodynamics, effects of finiteness of the baths have been less considered. In particular, there is no general theory which focuses on finiteness of the baths of multiple conserved quantities. Then, we investigate how the optimal performance of generalized heat engines with multiple conserved quantities alters in response to the size of the baths. In the context of general theories of quantum thermodynamics, the size of the baths has been given in terms of the number of identical copies of a system, which does not cover even such a natural scaling as the volume. In consideration of the asymptotic extensivity, we deal with a generic scaling of the baths to naturally include the volume scaling. Based on it, we derive a bound for the performance of generalized heat engines reflecting finite-size effects of the baths, which we call fine-grained generalized Carnot bound. We also construct a protocol to achieve the optimal performance of the engine given by this bound. Finally, applying the obtained general theory, we deal with simple examples of generalized heat engines. As for an example of non-independent-and-identical-distribution scaling and multiple conserved quantities, we investigate a heat engine with two baths composed of an ideal gas exchanging particles, where the volume scaling is applied. The result implies that the mass of the particle explicitly affects the performance of this engine with finite-size baths.

  19. Rogue waves in multiphase solutions of the focusing nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Bertola, Marco; El, Gennady A.; Tovbis, Alexander

    2016-10-01

    Rogue waves appearing on deep water or in optical fibres are often modelled by certain breather solutions of the focusing nonlinear Schrödinger (fNLS) equation which are referred to as solitons on finite background (SFBs). A more general modelling of rogue waves can be achieved via the consideration of multiphase, or finite-band, fNLS solutions of whom the standard SFBs and the structures forming due to their collisions represent particular, degenerate, cases. A generalized rogue wave notion then naturally enters as a large-amplitude localized coherent structure occurring within a finite-band fNLS solution. In this paper, we use the winding of real tori to show the mechanism of the appearance of such generalized rogue waves and derive an analytical criterion distinguishing finite-band potentials of the fNLS equation that exhibit generalized rogue waves.

  20. [Three-dimensional finite element stress distribution and displacement analysis of alveolar ridge retained by conical telescope].

    PubMed

    Lin, Ying-he; Man, Yi; Liang, Xing; Qu, Yi-li; Lu, Xuan

    2004-11-01

    To study the stress distribution and displacement of edentulous alveolar ridge of removable partial denture which is retained by using conical telescope. An ideal three dimensional finite element model was constructed by using SCT image reconstruction technique, self-programming and ANSYS software. The static load was applied. The stress and displacement characteristics of these different types of materials which form the metal part of the conical telescope were compared and analyzed. Generally, the four materials produced almost the same stress and displacement at the site of the edentulous alveolar ridge. From the viewpoint of dynamics, the application of different materials in making the metal part of conical telescope is feasible.

  1. High-order finite difference formulations for the incompressible Navier-Stokes equations on the CM-5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tafti, D.

    1995-12-01

    The paper describes the features and implementation of a general purpose high-order accurate finite difference computer program for direct and large-eddy simulations of turbulence on the CM-5 in the data parallel mode. Benchmarking studies for a direct simulation of turbulent channel flow are discussed. Performance of up to 8.8 GFLOPS is obtained for the high-order formulations on 512 processing nodes of the CM-5. The execution time for a simulation with 24 million nodes in a domain with two periodic directions is in the range of 0.2 {mu}secs/time-step/degree of freedom on 512 processing nodes of the CM-5.

  2. Parallel solution of high-order numerical schemes for solving incompressible flows

    NASA Technical Reports Server (NTRS)

    Milner, Edward J.; Lin, Avi; Liou, May-Fun; Blech, Richard A.

    1993-01-01

    A new parallel numerical scheme for solving incompressible steady-state flows is presented. The algorithm uses a finite-difference approach to solving the Navier-Stokes equations. The algorithms are scalable and expandable. They may be used with only two processors or with as many processors as are available. The code is general and expandable. Any size grid may be used. Four processors of the NASA LeRC Hypercluster were used to solve for steady-state flow in a driven square cavity. The Hypercluster was configured in a distributed-memory, hypercube-like architecture. By using a 50-by-50 finite-difference solution grid, an efficiency of 74 percent (a speedup of 2.96) was obtained.

  3. Reliability of Next Generation Power Electronics Packaging Under Concurrent Vibration, Thermal and High Power Loads

    DTIC Science & Technology

    2008-02-01

    combined thermal g effect and initial current field. The model is implemented using Abaqus user element subroutine and verified against the experimental...Finite Element Formulation The proposed model is implemented with ABAQUS general purpose finite element program using thermal -displacement analysis...option. ABAQUS and other commercially available finite element codes do not have the capability to solve general electromigration problem directly. Thermal

  4. A general CFD framework for fault-resilient simulations based on multi-resolution information fusion

    NASA Astrophysics Data System (ADS)

    Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em

    2017-10-01

    We develop a general CFD framework for multi-resolution simulations to target multiscale problems but also resilience in exascale simulations, where faulty processors may lead to gappy, in space-time, simulated fields. We combine approximation theory and domain decomposition together with statistical learning techniques, e.g. coKriging, to estimate boundary conditions and minimize communications by performing independent parallel runs. To demonstrate this new simulation approach, we consider two benchmark problems. First, we solve the heat equation (a) on a small number of spatial "patches" distributed across the domain, simulated by finite differences at fine resolution and (b) on the entire domain simulated at very low resolution, thus fusing multi-resolution models to obtain the final answer. Second, we simulate the flow in a lid-driven cavity in an analogous fashion, by fusing finite difference solutions obtained with fine and low resolution assuming gappy data sets. We investigate the influence of various parameters for this framework, including the correlation kernel, the size of a buffer employed in estimating boundary conditions, the coarseness of the resolution of auxiliary data, and the communication frequency across different patches in fusing the information at different resolution levels. In addition to its robustness and resilience, the new framework can be employed to generalize previous multiscale approaches involving heterogeneous discretizations or even fundamentally different flow descriptions, e.g. in continuum-atomistic simulations.

  5. seismo-live: Training in Computational Seismology using Jupyter Notebooks

    NASA Astrophysics Data System (ADS)

    Igel, H.; Krischer, L.; van Driel, M.; Tape, C.

    2016-12-01

    Practical training in computational methodologies is still underrepresented in Earth science curriculae despite the increasing use of sometimes highly sophisticated simulation technologies in research projects. At the same time well-engineered community codes make it easy to return simulation-based results yet with the danger that the inherent traps of numerical solutions are not well understood. It is our belief that training with highly simplified numerical solutions (here to the equations describing elastic wave propagation) with carefully chosen elementary ingredients of simulation technologies (e.g., finite-differencing, function interpolation, spectral derivatives, numerical integration) could substantially improve this situation. For this purpose we have initiated a community platform (www.seismo-live.org) where Python-based Jupyter notebooks can be accessed and run without and necessary downloads or local software installations. The increasingly popular Jupyter notebooks allow combining markup language, graphics, equations with interactive, executable python codes. We demonstrate the potential with training notebooks for the finite-difference method, pseudospectral methods, finite/spectral element methods, the finite-volume and the discontinuous Galerkin method. The platform already includes general Python training, introduction to the ObsPy library for seismology as well as seismic data processing and noise analysis. Submission of Jupyter notebooks for general seismology are encouraged. The platform can be used for complementary teaching in Earth Science courses on compute-intensive research areas.

  6. A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.

  7. Extinction and survival in two-species annihilation

    NASA Astrophysics Data System (ADS)

    Amar, J. G.; Ben-Naim, E.; Davis, S. M.; Krapivsky, P. L.

    2018-02-01

    We study diffusion-controlled two-species annihilation with a finite number of particles. In this stochastic process, particles move diffusively, and when two particles of opposite type come into contact, the two annihilate. We focus on the behavior in three spatial dimensions and for initial conditions where particles are confined to a compact domain. Generally, one species outnumbers the other, and we find that the difference between the number of majority and minority species, which is a conserved quantity, controls the behavior. When the number difference exceeds a critical value, the minority becomes extinct and a finite number of majority particles survive, while below this critical difference, a finite number of particles of both species survive. The critical difference Δc grows algebraically with the total initial number of particles N , and when N ≫1 , the critical difference scales as Δc˜N1 /3 . Furthermore, when the initial concentrations of the two species are equal, the average number of surviving majority and minority particles, M+ and M-, exhibit two distinct scaling behaviors, M+˜N1 /2 and M-˜N1 /6 . In contrast, when the initial populations are equal, these two quantities are comparable M+˜M-˜N1 /3 .

  8. The Applicability of the Generalized Method of Cells for Analyzing Discontinuously Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Pahr, D. H.; Arnold, S. M.

    2001-01-01

    The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident, that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with (1) simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as (2) finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.

  9. The Applicability of the Generalized Method of Cells for Analyzing Discontinuously Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Pahr, D. H.; Arnold, S. M.

    2001-01-01

    The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.

  10. Phase Transitions in Finite Systems

    NASA Astrophysics Data System (ADS)

    Chomaz, Philippe; Gulminelli, Francesca

    In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermostatistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent.

  11. Differential Calculus on h-Deformed Spaces

    NASA Astrophysics Data System (ADS)

    Herlemont, Basile; Ogievetsky, Oleg

    2017-10-01

    We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators {Diff}_{h},σ(n) is labeled by a rational function σ in n variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system and describe some properties of the rings {Diff}_{h},σ(n).

  12. Infinite Possibilities for the Finite Element.

    ERIC Educational Resources Information Center

    Finlayson, Bruce A.

    1981-01-01

    Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)

  13. Bose–Einstein condensation temperature of finite systems

    NASA Astrophysics Data System (ADS)

    Xie, Mi

    2018-05-01

    In studies of the Bose–Einstein condensation of ideal gases in finite systems, the divergence problem usually arises in the equation of state. In this paper, we present a technique based on the heat kernel expansion and zeta function regularization to solve the divergence problem, and obtain the analytical expression of the Bose–Einstein condensation temperature for general finite systems. The result is represented by the heat kernel coefficients, where the asymptotic energy spectrum of the system is used. Besides the general case, for systems with exact spectra, e.g. ideal gases in an infinite slab or in a three-sphere, the sums of the spectra can be obtained exactly and the calculation of corrections to the critical temperatures is more direct. For a system confined in a bounded potential, the form of the heat kernel is different from the usual heat kernel expansion. We show that as long as the asymptotic form of the global heat kernel can be found, our method works. For Bose gases confined in three- and two-dimensional isotropic harmonic potentials, we obtain the higher-order corrections to the usual results of the critical temperatures. Our method can also be applied to the problem of generalized condensation, and we give the correction of the boundary on the second critical temperature in a highly anisotropic slab.

  14. Evaluation of algorithms for geological thermal-inertia mapping

    NASA Technical Reports Server (NTRS)

    Miller, S. H.; Watson, K.

    1977-01-01

    The errors incurred in producing a thermal inertia map are of three general types: measurement, analysis, and model simplification. To emphasize the geophysical relevance of these errors, they were expressed in terms of uncertainty in thermal inertia and compared with the thermal inertia values of geologic materials. Thus the applications and practical limitations of the technique were illustrated. All errors were calculated using the parameter values appropriate to a site at the Raft River, Id. Although these error values serve to illustrate the magnitudes that can be expected from the three general types of errors, extrapolation to other sites should be done using parameter values particular to the area. Three surface temperature algorithms were evaluated: linear Fourier series, finite difference, and Laplace transform. In terms of resulting errors in thermal inertia, the Laplace transform method is the most accurate (260 TIU), the forward finite difference method is intermediate (300 TIU), and the linear Fourier series method the least accurate (460 TIU).

  15. Radon transport model into a porous ground layer of finite capacity

    NASA Astrophysics Data System (ADS)

    Parovik, Roman

    2017-10-01

    The model of radon transfer is considered in a porous ground layer of finite power. With the help of the Laplace integral transformation, a numerical solution of this model is obtained which is based on the construction of a generalized quadrature formula of the highest degree of accuracy for the transition to the original - the function of solving this problem. The calculated curves are constructed and investigated depending on the diffusion and advection coefficients.The work was a mathematical model that describes the effect of the sliding attachment (stick-slip), taking into account hereditarity. This model can be regarded as a mechanical model of earthquake preparation. For such a model was proposed explicit finite- difference scheme, on which were built the waveform and phase trajectories hereditarity effect of stick-slip.

  16. Effect of Multiple Scattering on the Compton Recoil Current Generated in an EMP, Revisited

    DOE PAGES

    Farmer, William A.; Friedman, Alex

    2015-06-18

    Multiple scattering has historically been treated in EMP modeling through the obliquity factor. The validity of this approach is examined here. A simplified model problem, which correctly captures cyclotron motion, Doppler shifting due to the electron motion, and multiple scattering is first considered. The simplified problem is solved three ways: the obliquity factor, Monte-Carlo, and Fokker-Planck finite-difference. Because of the Doppler effect, skewness occurs in the distribution. It is demonstrated that the obliquity factor does not correctly capture this skewness, but the Monte-Carlo and Fokker-Planck finite-difference approaches do. Here, the obliquity factor and Fokker-Planck finite-difference approaches are then compared inmore » a fuller treatment, which includes the initial Klein-Nishina distribution of the electrons, and the momentum dependence of both drag and scattering. It is found that, in general, the obliquity factor is adequate for most situations. However, as the gamma energy increases and the Klein-Nishina becomes more peaked in the forward direction, skewness in the distribution causes greater disagreement between the obliquity factor and a more accurate model of multiple scattering.« less

  17. Numerical computation of transonic flows by finite-element and finite-difference methods

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.

    1978-01-01

    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.

  18. Finite-difference fluid dynamics computer mathematical models for the design and interpretation of experiments for space flight. [atmospheric general circulation experiment, convection in a float zone, and the Bridgman-Stockbarger crystal growing system

    NASA Technical Reports Server (NTRS)

    Roberts, G. O.; Fowlis, W. W.; Miller, T. L.

    1984-01-01

    Numerical methods are used to design a spherical baroclinic flow model experiment of the large scale atmosphere flow for Spacelab. The dielectric simulation of radial gravity is only dominant in a low gravity environment. Computer codes are developed to study the processes at work in crystal growing systems which are also candidates for space flight. Crystalline materials rarely achieve their potential properties because of imperfections and component concentration variations. Thermosolutal convection in the liquid melt can be the cause of these imperfections. Such convection is suppressed in a low gravity environment. Two and three dimensional finite difference codes are being used for this work. Nonuniform meshes and implicit iterative methods are used. The iterative method for steady solutions is based on time stepping but has the options of different time steps for velocity and temperature and of a time step varying smoothly with position according to specified powers of the mesh spacings. This allows for more rapid convergence. The code being developed for the crystal growth studies allows for growth of the crystal as the solid-liquid interface. The moving interface is followed using finite differences; shape variations are permitted. For convenience in applying finite differences in the solid and liquid, a time dependent coordinate transformation is used to make this interface a coordinate surface.

  19. IFEMS, an Interactive Finite Element Modeling System Using a CAD/CAM System

    NASA Technical Reports Server (NTRS)

    Mckellip, S.; Schuman, T.; Lauer, S.

    1980-01-01

    A method of coupling a CAD/CAM system with a general purpose finite element mesh generator is described. The three computer programs which make up the interactive finite element graphics system are discussed.

  20. Competition between Chaotic and Nonchaotic Phases in a Quadratically Coupled Sachdev-Ye-Kitaev Model.

    PubMed

    Chen, Xin; Fan, Ruihua; Chen, Yiming; Zhai, Hui; Zhang, Pengfei

    2017-11-17

    The Sachdev-Ye-Kitaev (SYK) model is a concrete solvable model to study non-Fermi liquid properties, holographic duality, and maximally chaotic behavior. In this work, we consider a generalization of the SYK model that contains two SYK models with a different number of Majorana modes coupled by quadratic terms. This model is also solvable, and the solution shows a zero-temperature quantum phase transition between two non-Fermi liquid chaotic phases. This phase transition is driven by tuning the ratio of two mode numbers, and a nonchaotic Fermi liquid sits at the critical point with an equal number of modes. At a finite temperature, the Fermi liquid phase expands to a finite regime. More intriguingly, a different non-Fermi liquid phase emerges at a finite temperature. We characterize the phase diagram in terms of the spectral function, the Lyapunov exponent, and the entropy. Our results illustrate a concrete example of the quantum phase transition and critical behavior between two non-Fermi liquid phases.

  1. Solution of an eigenvalue problem for the Laplace operator on a spherical surface. M.S. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Walden, H.

    1974-01-01

    Methods for obtaining approximate solutions for the fundamental eigenvalue of the Laplace-Beltrami operator (also referred to as the membrane eigenvalue problem for the vibration equation) on the unit spherical surface are developed. Two specific types of spherical surface domains are considered: (1) the interior of a spherical triangle, i.e., the region bounded by arcs of three great circles, and (2) the exterior of a great circle arc extending for less than pi radians on the sphere (a spherical surface with a slit). In both cases, zero boundary conditions are imposed. In order to solve the resulting second-order elliptic partial differential equations in two independent variables, a finite difference approximation is derived. The symmetric (generally five-point) finite difference equations that develop are written in matrix form and then solved by the iterative method of point successive overrelaxation. Upon convergence of this iterative method, the fundamental eigenvalue is approximated by iteration utilizing the power method as applied to the finite Rayleigh quotient.

  2. MSC products for the simulation of tire behavior

    NASA Technical Reports Server (NTRS)

    Muskivitch, John C.

    1995-01-01

    The modeling of tires and the simulation of tire behavior are complex problems. The MacNeal-Schwendler Corporation (MSC) has a number of finite element analysis products that can be used to address the complexities of tire modeling and simulation. While there are many similarities between the products, each product has a number of capabilities that uniquely enable it to be used for a specific aspect of tire behavior. This paper discusses the following programs: (1) MSC/NASTRAN - general purpose finite element program for linear and nonlinear static and dynamic analysis; (2) MSC/ADAQUS - nonlinear statics and dynamics finite element program; (3) MSC/PATRAN AFEA (Advanced Finite Element Analysis) - general purpose finite element program with a subset of linear and nonlinear static and dynamic analysis capabilities with an integrated version of MSC/PATRAN for pre- and post-processing; and (4) MSC/DYTRAN - nonlinear explicit transient dynamics finite element program.

  3. Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.

    2015-10-01

    We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.

  4. Numerical models of diapiric structures: comparison of the 2D finite deformation field between Rayleigh-Taylor like and down-built like diapirs

    NASA Astrophysics Data System (ADS)

    Fuchs, Lukas; Schmeling, Harro; Koyi, Hemin

    2013-04-01

    Magmatic and salt diapirs are common structures in different tectonic regimes. Salt diapirs can act as possible hydrocarbon traps and, moreover, they could be used as repositories for nuclear waste disposal. Understanding the evolution and the dynamics of diapirs as well as their driving mechanisms has fundamental and applied significance. In general, salt diapirs seem to be driven by differential loading of sediments creating an uneven load that drives the salt from high to low pressure areas, e.g. a down-built diapir. Magmatic diapirs, instead, seem to be driven by buoyancy where lighter material rises vertically through a heavier overburden, i.e. a classical Rayleigh-Taylor instability [RTI]. These different driving mechanisms and dynamics strongly govern the internal deformation of the diapirs. In this study, we use a two-dimensional finite difference code (FDCON) in combination with a marker and cell method to calculate the finite deformation within diapiric structures. Thereby, we distinguish between the two different driving mechanisms, i.e. the differential loading and the buoyancy. We calculate the different finite deformation patterns during the evolution of RTI's and down-built diapirs for different viscosity ratios m = -?buoyant- ?overburden. The deformation pattern in the buoyant layer shows similarities for both diapiric structures, like high shear deformation at the bottom, a high finite deformation within the middle of the stem, and an increasing maximum finite deformation for a decreasing m. However, the strain partitioning between the overburden and the source layer is different within down-built diapirs compared to the RTI's, even for down-built diapirs with m = 1. Thus a higher amount of the total strain induced by down-building is concentrated within the buoyant layer. Moreover, in the case of viscosity ratios of m = 0.1 or 1 the sinking overburden units create an internal rotation within the diapiric bulb. This rotation depends indirectly on the sedimentation rate as it determines the width of the sediment basin; the higher the sedimentation rate, the wider the basins and the weaker the internal rotation. In addition, the viscous drag between the sinking overburden and the rising diapir creates a stronger and wider band of finite deformation along the edges of the down-built diapir in comparison to the RTI.

  5. On the Finite Element Implementation of the Generalized Method of Cells Micromechanics Constitutive Model

    NASA Technical Reports Server (NTRS)

    Wilt, T. E.

    1995-01-01

    The Generalized Method of Cells (GMC), a micromechanics based constitutive model, is implemented into the finite element code MARC using the user subroutine HYPELA. Comparisons in terms of transverse deformation response, micro stress and strain distributions, and required CPU time are presented for GMC and finite element models of fiber/matrix unit cell. GMC is shown to provide comparable predictions of the composite behavior and requires significantly less CPU time as compared to a finite element analysis of the unit cell. Details as to the organization of the HYPELA code are provided with the actual HYPELA code included in the appendix.

  6. Revisiting and Extending Interface Penalties for Multi-Domain Summation-by-Parts Operators

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Nordstrom, Jan; Gottlieb, David

    2007-01-01

    General interface coupling conditions are presented for multi-domain collocation methods, which satisfy the summation-by-parts (SBP) spatial discretization convention. The combined interior/interface operators are proven to be L2 stable, pointwise stable, and conservative, while maintaining the underlying accuracy of the interior SBP operator. The new interface conditions resemble (and were motivated by) those used in the discontinuous Galerkin finite element community, and maintain many of the same properties. Extensive validation studies are presented using two classes of high-order SBP operators: 1) central finite difference, and 2) Legendre spectral collocation.

  7. Exploration of Toeplitz-like matrices with unbounded symbols is not a purely academic journey

    NASA Astrophysics Data System (ADS)

    Böttcher, A.; Garoni, C.; Serra-Capizzano, S.

    2017-11-01

    It is often asked why Toeplitz-like matrices with unbounded symbols are worth studying. This paper gives an answer by presenting several concrete problems that motivate such studies. It surveys the central results of the theory of Generalized Locally Toeplitz (GLT) sequences in a self-contained tool-kit fashion, and gives a new extension from bounded Riemann integrable functions to unbounded almost everywhere continuous functions. The emergence of unbounded symbols is illustrated by local grid refinements in finite difference and finite element discretizations and also by preconditioning strategies. Bibliography: 40 titles.

  8. Doi-Peliti path integral methods for stochastic systems with partial exclusion

    NASA Astrophysics Data System (ADS)

    Greenman, Chris D.

    2018-09-01

    Doi-Peliti methods are developed for stochastic models with finite maximum occupation numbers per site. We provide a generalized framework for the different Fock spaces reported in the literature. Paragrassmannian techniques are then utilized to construct path integral formulations of factorial moments. We show that for many models of interest, a Magnus expansion is required to construct a suitable action, meaning actions containing a finite number of terms are not always feasible. However, for such systems, perturbative techniques are still viable, and for some examples, including carrying capacity population dynamics, and diffusion with partial exclusion, the expansions are exactly summable.

  9. A Novel Multiscale Physics Based Progressive Failure Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.; Bednarcyk, Brett A.; Collier, Craig S.; Yarrington, Phillip W.

    2008-01-01

    A variable fidelity, multiscale, physics based finite element procedure for predicting progressive damage and failure of laminated continuous fiber reinforced composites is introduced. At every integration point in a finite element model, progressive damage is accounted for at the lamina-level using thermodynamically based Schapery Theory. Separate failure criteria are applied at either the global-scale or the microscale in two different FEM models. A micromechanics model, the Generalized Method of Cells, is used to evaluate failure criteria at the micro-level. The stress-strain behavior and observed failure mechanisms are compared with experimental results for both models.

  10. Edge effects in angle-ply composite laminates

    NASA Technical Reports Server (NTRS)

    Hsu, P. W.; Herakovich, C. T.

    1977-01-01

    This paper presents the results of a zeroth-order solution for edge effects in angle-ply composite laminates obtained using perturbation techniques and a limiting free body approach. The general solution for edge effects in laminates of arbitrary angle ply is applied to the special case of a (+ or - 45)s graphite/epoxy laminate. Interlaminar stress distributions are obtained as a function of the laminate thickness-to-width ratio and compared to finite difference results. The solution predicts stable, continuous stress distributions, determines finite maximum tensile interlaminar normal stress and provides mathematical evidence for singular interlaminar shear stresses in (+ or - 45) graphite/epoxy laminates.

  11. Finite-size scaling for discontinuous nonequilibrium phase transitions

    NASA Astrophysics Data System (ADS)

    de Oliveira, Marcelo M.; da Luz, M. G. E.; Fiore, Carlos E.

    2018-06-01

    A finite-size scaling theory, originally developed only for transitions to absorbing states [Phys. Rev. E 92, 062126 (2015), 10.1103/PhysRevE.92.062126], is extended to distinct sorts of discontinuous nonequilibrium phase transitions. Expressions for quantities such as response functions, reduced cumulants, and equal area probability distributions are derived from phenomenological arguments. Irrespective of system details, all these quantities scale with the volume, establishing the dependence on size. The approach generality is illustrated through the analysis of different models. The present results are a relevant step in trying to unify the scaling behavior description of nonequilibrium transition processes.

  12. A multidimensional generalization of Heilbronn's theorem on the average length of a finite continued fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Illarionov, A A

    2014-03-31

    Heilbronn's theorem on the average length of a finite continued fraction is generalized to the multidimensional case in terms of relative minima of the lattices which were introduced by Voronoy and Minkowski. Bibliography: 21 titles.

  13. Documentation of the Fourth Order Band Model

    NASA Technical Reports Server (NTRS)

    Kalnay-Rivas, E.; Hoitsma, D.

    1979-01-01

    A general circulation model is presented which uses quadratically conservative, fourth order horizontal space differences on an unstaggered grid and second order vertical space differences with a forward-backward or a smooth leap frog time scheme to solve the primitive equations of motion. The dynamic equations for motion, finite difference equations, a discussion of the structure and flow chart of the program code, a program listing, and three relevent papers are given.

  14. A locally conservative non-negative finite element formulation for anisotropic advective-diffusive-reactive systems

    NASA Astrophysics Data System (ADS)

    Mudunuru, M. K.; Shabouei, M.; Nakshatrala, K.

    2015-12-01

    Advection-diffusion-reaction (ADR) equations appear in various areas of life sciences, hydrogeological systems, and contaminant transport. Obtaining stable and accurate numerical solutions can be challenging as the underlying equations are coupled, nonlinear, and non-self-adjoint. Currently, there is neither a robust computational framework available nor a reliable commercial package known that can handle various complex situations. Herein, the objective of this poster presentation is to present a novel locally conservative non-negative finite element formulation that preserves the underlying physical and mathematical properties of a general linear transient anisotropic ADR equation. In continuous setting, governing equations for ADR systems possess various important properties. In general, all these properties are not inherited during finite difference, finite volume, and finite element discretizations. The objective of this poster presentation is two fold: First, we analyze whether the existing numerical formulations (such as SUPG and GLS) and commercial packages provide physically meaningful values for the concentration of the chemical species for various realistic benchmark problems. Furthermore, we also quantify the errors incurred in satisfying the local and global species balance for two popular chemical kinetics schemes: CDIMA (chlorine dioxide-iodine-malonic acid) and BZ (Belousov--Zhabotinsky). Based on these numerical simulations, we show that SUPG and GLS produce unphysical values for concentration of chemical species due to the violation of the non-negative constraint, contain spurious node-to-node oscillations, and have large errors in local and global species balance. Second, we proposed a novel finite element formulation to overcome the above difficulties. The proposed locally conservative non-negative computational framework based on low-order least-squares finite elements is able to preserve these underlying physical and mathematical properties. Several representative numerical examples are discussed to illustrate the importance of the proposed numerical formulations to accurately describe various aspects of mixing process in chaotic flows and to simulate transport in highly heterogeneous anisotropic media.

  15. Finite difference time domain calculation of transients in antennas with nonlinear loads

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.; Kunz, Karl S.; Chamberlin, Kent

    1991-01-01

    In this paper transient fields for antennas with more general geometries are calculated directly using Finite Difference Time Domain methods. In each FDTD cell which contains a nonlinear load, a nonlinear equation is solved at each time step. As a test case the transient current in a long dipole antenna with a nonlinear load excited by a pulsed plane wave is computed using this approach. The results agree well with both calculated and measured results previously published. The approach given here extends the applicability of the FDTD method to problems involving scattering from targets including nonlinear loads and materials, and to coupling between antennas containing nonlinear loads. It may also be extended to propagation through nonlinear materials.

  16. Monte-Carlo simulation of a stochastic differential equation

    NASA Astrophysics Data System (ADS)

    Arif, ULLAH; Majid, KHAN; M, KAMRAN; R, KHAN; Zhengmao, SHENG

    2017-12-01

    For solving higher dimensional diffusion equations with an inhomogeneous diffusion coefficient, Monte Carlo (MC) techniques are considered to be more effective than other algorithms, such as finite element method or finite difference method. The inhomogeneity of diffusion coefficient strongly limits the use of different numerical techniques. For better convergence, methods with higher orders have been kept forward to allow MC codes with large step size. The main focus of this work is to look for operators that can produce converging results for large step sizes. As a first step, our comparative analysis has been applied to a general stochastic problem. Subsequently, our formulization is applied to the problem of pitch angle scattering resulting from Coulomb collisions of charge particles in the toroidal devices.

  17. Multi-Dimensional High Order Essentially Non-Oscillatory Finite Difference Methods in Generalized Coordinates

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1998-01-01

    This project is about the development of high order, non-oscillatory type schemes for computational fluid dynamics. Algorithm analysis, implementation, and applications are performed. Collaborations with NASA scientists have been carried out to ensure that the research is relevant to NASA objectives. The combination of ENO finite difference method with spectral method in two space dimension is considered, jointly with Cai [3]. The resulting scheme behaves nicely for the two dimensional test problems with or without shocks. Jointly with Cai and Gottlieb, we have also considered one-sided filters for spectral approximations to discontinuous functions [2]. We proved theoretically the existence of filters to recover spectral accuracy up to the discontinuity. We also constructed such filters for practical calculations.

  18. Analysis of the sound field in finite length infinite baffled cylindrical ducts with vibrating walls of finite impedance.

    PubMed

    Shao, Wei; Mechefske, Chris K

    2005-04-01

    This paper describes an analytical model of finite cylindrical ducts with infinite flanges. This model is used to investigate the sound radiation characteristics of the gradient coil system of a magnetic resonance imaging (MRI) scanner. The sound field in the duct satisfies both the boundary conditions at the wall and at the open ends. The vibrating cylindrical wall of the duct is assumed to be the only sound source. Different acoustic conditions for the wall (rigid and absorptive) are used in the simulations. The wave reflection phenomenon at the open ends of the finite duct is described by general radiation impedance. The analytical model is validated by the comparison with its counterpart in a commercial code based on the boundary element method (BEM). The analytical model shows significant advantages over the BEM model with better numerical efficiency and a direct relation between the design parameters and the sound field inside the duct.

  19. Generalization of analytical tools for helicopter-rotor airfoils

    NASA Technical Reports Server (NTRS)

    Gibbs, E. H.

    1979-01-01

    A state-of-the-art finite difference boundary-layer program incorporated into the NYU Transonic Analysis Program is described. Some possible treatments for the trailing edge region were investigated. Findings indicate the trailing edge region, still within the scope of an iterative potential flow, boundary layer program, appears feasible.

  20. Does reproduction compromise defense in woody plants?

    Treesearch

    Daniel A. Herms; William J. Mattson

    1991-01-01

    A general principle of adaptive allocation was proposed by Cody (1966) who hypothesized that 1) all living organisms have finite resources to partition among growth and competing physiological processes such as reproduction and defense; and 2) natural selection results in the evolution of unique resource allocation patterns that maximize fitness in different...

  1. Quality-assurance study of the special - purpose finite-element program - SPECTROM: I. Thermal, thermoelastic, and viscoelastic problems. [Comparison with MARC-CDC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, R.A.

    1980-12-01

    This comparison study involves a preliminary verification of finite element calculations. The methodology of the comparison study consists of solving four example problems with both the SPECTROM finite element program and the MARC-CDC general purpose finite element program. The results show close agreement for all example problems.

  2. An Integrated Approach to Characterizing Bypassed Oil in Heterogeneous and Fractured Reservoirs Using Partitioning Tracers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhil Datta-Gupta

    2006-12-31

    We explore the use of efficient streamline-based simulation approaches for modeling partitioning interwell tracer tests in hydrocarbon reservoirs. Specifically, we utilize the unique features of streamline models to develop an efficient approach for interpretation and history matching of field tracer response. A critical aspect here is the underdetermined and highly ill-posed nature of the associated inverse problems. We have investigated the relative merits of the traditional history matching ('amplitude inversion') and a novel travel time inversion in terms of robustness of the method and convergence behavior of the solution. We show that the traditional amplitude inversion is orders of magnitudemore » more non-linear and the solution here is likely to get trapped in local minimum, leading to inadequate history match. The proposed travel time inversion is shown to be extremely efficient and robust for practical field applications. The streamline approach is generalized to model water injection in naturally fractured reservoirs through the use of a dual media approach. The fractures and matrix are treated as separate continua that are connected through a transfer function, as in conventional finite difference simulators for modeling fractured systems. A detailed comparison with a commercial finite difference simulator shows very good agreement. Furthermore, an examination of the scaling behavior of the computation time indicates that the streamline approach is likely to result in significant savings for large-scale field applications. We also propose a novel approach to history matching finite-difference models that combines the advantage of the streamline models with the versatility of finite-difference simulation. In our approach, we utilize the streamline-derived sensitivities to facilitate history matching during finite-difference simulation. The use of finite-difference model allows us to account for detailed process physics and compressibility effects. The approach is very fast and avoids much of the subjective judgments and time-consuming trial-and-errors associated with manual history matching. We demonstrate the power and utility of our approach using a synthetic example and two field examples. We have also explored the use of a finite difference reservoir simulator, UTCHEM, for field-scale design and optimization of partitioning interwell tracer tests. The finite-difference model allows us to include detailed physics associated with reactive tracer transport, particularly those related with transverse and cross-streamline mechanisms. We have investigated the potential use of downhole tracer samplers and also the use of natural tracers for the design of partitioning tracer tests. Finally, we discuss several alternative ways of using partitioning interwell tracer tests (PITTs) in oil fields for the calculation of oil saturation, swept pore volume and sweep efficiency, and assess the accuracy of such tests under a variety of reservoir conditions.« less

  3. Finite element analysis of the biaxial cyclic tensile loading of the elastoplastic plate with the central hole: asymptotic regimes

    NASA Astrophysics Data System (ADS)

    Turkova, Vera; Stepanova, Larisa

    2018-03-01

    For elastistoplastic structure elements under cyclic loading three types of asymptotic behavior are well known: shakedown, cyclic plasticity or ratcheting. In structure elements operating in real conditions ratcheting must always be excluded since it caused the incremental fracture of structure by means of the accumulation of plastic strains. In the present study results of finite-element (FEM) calculations of the asymptotical behavior of an elastoplastic plate with the central circular and elliptic holes under the biaxial cyclic loading for three different materials are presented. Incremental cyclic loading of the sample with stress concentrator (the central hole) is performed in the multifunctional finite-element package SIMULIA Abaqus. The ranges of loads found for shakedown, cyclic plasticity and ratcheting are presented. The results obtained are generalized and analyzed. Convenient normalization is suggested. The chosen normalization allows us to present all computed results, corresponding to separate materials, within one common curve with minimum scattering of the points. Convenience of the generalized diagram consists in a possibility to find an asymptotical behavior of an inelastic structure for materials for which computer calculations were not made.

  4. Finite burn maneuver modeling for a generalized spacecraft trajectory design and optimization system.

    PubMed

    Ocampo, Cesar

    2004-05-01

    The modeling, design, and optimization of finite burn maneuvers for a generalized trajectory design and optimization system is presented. A generalized trajectory design and optimization system is a system that uses a single unified framework that facilitates the modeling and optimization of complex spacecraft trajectories that may operate in complex gravitational force fields, use multiple propulsion systems, and involve multiple spacecraft. The modeling and optimization issues associated with the use of controlled engine burn maneuvers of finite thrust magnitude and duration are presented in the context of designing and optimizing a wide class of finite thrust trajectories. Optimal control theory is used examine the optimization of these maneuvers in arbitrary force fields that are generally position, velocity, mass, and are time dependent. The associated numerical methods used to obtain these solutions involve either, the solution to a system of nonlinear equations, an explicit parameter optimization method, or a hybrid parameter optimization that combines certain aspects of both. The theoretical and numerical methods presented here have been implemented in copernicus, a prototype trajectory design and optimization system under development at the University of Texas at Austin.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wight, L.; Zaslawsky, M.

    Two approaches for calculating soil structure interaction (SSI) are compared: finite element and lumped mass. Results indicate that the calculations with the lumped mass method are generally conservative compared to those obtained by the finite element method. They also suggest that a closer agreement between the two sets of calculations is possible, depending on the use of frequency-dependent soil springs and dashpots in the lumped mass calculations. There is a total lack of suitable guidelines for implementing the lumped mass method of calculating SSI, which leads to the conclusion that the finite element method is generally superior for calculative purposes.

  6. Finite-dimensional linear approximations of solutions to general irregular nonlinear operator equations and equations with quadratic operators

    NASA Astrophysics Data System (ADS)

    Kokurin, M. Yu.

    2010-11-01

    A general scheme for improving approximate solutions to irregular nonlinear operator equations in Hilbert spaces is proposed and analyzed in the presence of errors. A modification of this scheme designed for equations with quadratic operators is also examined. The technique of universal linear approximations of irregular equations is combined with the projection onto finite-dimensional subspaces of a special form. It is shown that, for finite-dimensional quadratic problems, the proposed scheme provides information about the global geometric properties of the intersections of quadrics.

  7. Simple way to calculate a UV-finite one-loop quantum energy in the Randall-Sundrum model

    NASA Astrophysics Data System (ADS)

    Altshuler, Boris L.

    2017-04-01

    The surprising simplicity of Barvinsky-Nesterov or equivalently Gelfand-Yaglom methods of calculation of quantum determinants permits us to obtain compact expressions for a UV-finite difference of one-loop quantum energies for two arbitrary values of the parameter of the double-trace asymptotic boundary conditions. This result generalizes the Gubser and Mitra calculation for the particular case of difference of "regular" and "irregular" one-loop energies in the one-brane Randall-Sundrum model. The approach developed in the paper also allows us to get "in one line" the one-loop quantum energies in the two-brane Randall-Sundrum model. The relationship between "one-loop" expressions corresponding to the mixed Robin and to double-trace asymptotic boundary conditions is traced.

  8. On one-dimensional stretching functions for finite-difference calculations. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1979-01-01

    The class of one-dimensional stretching functions used in finite-difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One is an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two-sided stretching function, for which the arbitrary slopes at the two ends of the one-dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent.

  9. A computer code for three-dimensional incompressible flows using nonorthogonal body-fitted coordinate systems

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.

    1986-01-01

    In this report, a numerical method for solving the equations of motion of three-dimensional incompressible flows in nonorthogonal body-fitted coordinate (BFC) systems has been developed. The equations of motion are transformed to a generalized curvilinear coordinate system from which the transformed equations are discretized using finite difference approximations in the transformed domain. The hybrid scheme is used to approximate the convection terms in the governing equations. Solutions of the finite difference equations are obtained iteratively by using a pressure-velocity correction algorithm (SIMPLE-C). Numerical examples of two- and three-dimensional, laminar and turbulent flow problems are employed to evaluate the accuracy and efficiency of the present computer code. The user's guide and computer program listing of the present code are also included.

  10. Computational design of the basic dynamical processes of the UCLA general circulation model

    NASA Technical Reports Server (NTRS)

    Arakawa, A.; Lamb, V. R.

    1977-01-01

    The 12-layer UCLA general circulation model encompassing troposphere and stratosphere (and superjacent 'sponge layer') is described. Prognostic variables are: surface pressure, horizontal velocity, temperature, water vapor and ozone in each layer, planetary boundary layer (PBL) depth, temperature, moisture and momentum discontinuities at PBL top, ground temperature and water storage, and mass of snow on ground. Selection of space finite-difference schemes for homogeneous incompressible flow, with/without a free surface, nonlinear two-dimensional nondivergent flow, enstrophy conserving schemes, momentum advection schemes, vertical and horizontal difference schemes, and time differencing schemes are discussed.

  11. Application of artificial neural network for heat transfer in porous cone

    NASA Astrophysics Data System (ADS)

    Athani, Abdulgaphur; Ahamad, N. Ameer; Badruddin, Irfan Anjum

    2018-05-01

    Heat transfer in porous medium is one of the classical areas of research that has been active for many decades. The heat transfer in porous medium is generally studied by using numerical methods such as finite element method; finite difference method etc. that solves coupled partial differential equations by converting them into simpler forms. The current work utilizes an alternate method known as artificial neural network that mimics the learning characteristics of neurons. The heat transfer in porous medium fixed in a cone is predicted using backpropagation neural network. The artificial neural network is able to predict this behavior quite accurately.

  12. Numerical analysis of some problems related to the mechanics of pneumatic tires: Finite deformation/rolling contact of a viscoelastic cylinder and finite deformation of cord-reinforced rubber composites

    NASA Technical Reports Server (NTRS)

    Oden, J. T.; Becker, E. B.; Lin, T. L.; Hsieh, K. T.

    1984-01-01

    The formulation and numerical analysis of several problems related to the behavior of pneumatic tires are considered. These problems include the general rolling contact problem of a rubber-like viscoelastic cylinder undergoing finite deformations and the finite deformation of cord-reinforced rubber composites. New finite element models are developed for these problems. Numerical results obtained for several representative cases are presented.

  13. Finite element implementation of Robinson's unified viscoplastic model and its application to some uniaxial and multiaxial problems

    NASA Technical Reports Server (NTRS)

    Arya, V. K.; Kaufman, A.

    1989-01-01

    A description of the finite element implementation of Robinson's unified viscoplastic model into the General Purpose Finite Element Program (MARC) is presented. To demonstrate its application, the implementation is applied to some uniaxial and multiaxial problems. A comparison of the results for the multiaxial problem of a thick internally pressurized cylinder, obtained using the finite element implementation and an analytical solution, is also presented. The excellent agreement obtained confirms the correct finite element implementation of Robinson's model.

  14. Finite element implementation of Robinson's unified viscoplastic model and its application to some uniaxial and multiaxial problems

    NASA Technical Reports Server (NTRS)

    Arya, V. K.; Kaufman, A.

    1987-01-01

    A description of the finite element implementation of Robinson's unified viscoplastic model into the General Purpose Finite Element Program (MARC) is presented. To demonstrate its application, the implementation is applied to some uniaxial and multiaxial problems. A comparison of the results for the multiaxial problem of a thick internally pressurized cylinder, obtained using the finite element implementation and an analytical solution, is also presented. The excellent agreement obtained confirms the correct finite element implementation of Robinson's model.

  15. Reductions in finite-dimensional integrable systems and special points of classical r-matrices

    NASA Astrophysics Data System (ADS)

    Skrypnyk, T.

    2016-12-01

    For a given 𝔤 ⊗ 𝔤-valued non-skew-symmetric non-dynamical classical r-matrices r(u, v) with spectral parameters, we construct the general form of 𝔤-valued Lax matrices of finite-dimensional integrable systems satisfying linear r-matrix algebra. We show that the reduction in the corresponding finite-dimensional integrable systems is connected with "the special points" of the classical r-matrices in which they become degenerated. We also propose a systematic way of the construction of additional integrals of the Lax-integrable systems associated with the symmetries of the corresponding r-matrices. We consider examples of the Lax matrices and integrable systems that are obtained in the framework of the general scheme. Among them there are such physically important systems as generalized Gaudin systems in an external magnetic field, ultimate integrable generalization of Toda-type chains (including "modified" or "deformed" Toda chains), generalized integrable Jaynes-Cummings-Dicke models, integrable boson models generalizing Bose-Hubbard dimer models, etc.

  16. Numerical analysis of a main crack interactions with micro-defects/inhomogeneities using two-scale generalized/extended finite element method

    NASA Astrophysics Data System (ADS)

    Malekan, Mohammad; Barros, Felício B.

    2017-12-01

    Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that represent well the physical behavior of the problem. However, this enrichment functions are not available for all problem types. Thus, one can use numerically-built (global-local) enrichment functions to have a better approximate procedure. This paper investigates the effects of micro-defects/inhomogeneities on a main crack behavior by modeling the micro-defects/inhomogeneities in the local problem using a two-scale G/XFEM. The global-local enrichment functions are influenced by the micro-defects/inhomogeneities from the local problem and thus change the approximate solution of the global problem with the main crack. This approach is presented in detail by solving three different linear elastic fracture mechanics problems for different cases: two plane stress and a Reissner-Mindlin plate problems. The numerical results obtained with the two-scale G/XFEM are compared with the reference solutions from the analytical, numerical solution using standard G/XFEM method and ABAQUS as well, and from the literature.

  17. Two-particle problem in comblike structures

    NASA Astrophysics Data System (ADS)

    Agliari, Elena; Cassi, Davide; Cattivelli, Luca; Sartori, Fabio

    2016-05-01

    Encounters between walkers performing a random motion on an appropriate structure can describe a wide variety of natural phenomena ranging from pharmacokinetics to foraging. On homogeneous structures the asymptotic encounter probability between two walkers is (qualitatively) independent of whether both walkers are moving or one is kept fixed. On infinite comblike structures this is no longer the case and here we deepen the mechanisms underlying the emergence of a finite probability that two random walkers will never meet, while one single random walker is certain to visit any site. In particular, we introduce an analytical approach to address this problem and even more general problems such as the case of two walkers with different diffusivity, particles walking on a finite comb and on arbitrary bundled structures, possibly in the presence of loops. Our investigations are both analytical and numerical and highlight that, in general, the outcome of a reaction involving two reactants on a comblike architecture can strongly differ according to whether both reactants are moving (no matter their relative diffusivities) or only one is moving and according to the density of shortcuts among the branches.

  18. Improving a complex finite-difference ground water flow model through the use of an analytic element screening model

    USGS Publications Warehouse

    Hunt, R.J.; Anderson, M.P.; Kelson, V.A.

    1998-01-01

    This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.

  19. Viscoelastic Finite Difference Modeling Using Graphics Processing Units

    NASA Astrophysics Data System (ADS)

    Fabien-Ouellet, G.; Gloaguen, E.; Giroux, B.

    2014-12-01

    Full waveform seismic modeling requires a huge amount of computing power that still challenges today's technology. This limits the applicability of powerful processing approaches in seismic exploration like full-waveform inversion. This paper explores the use of Graphics Processing Units (GPU) to compute a time based finite-difference solution to the viscoelastic wave equation. The aim is to investigate whether the adoption of the GPU technology is susceptible to reduce significantly the computing time of simulations. The code presented herein is based on the freely accessible software of Bohlen (2002) in 2D provided under a General Public License (GNU) licence. This implementation is based on a second order centred differences scheme to approximate time differences and staggered grid schemes with centred difference of order 2, 4, 6, 8, and 12 for spatial derivatives. The code is fully parallel and is written using the Message Passing Interface (MPI), and it thus supports simulations of vast seismic models on a cluster of CPUs. To port the code from Bohlen (2002) on GPUs, the OpenCl framework was chosen for its ability to work on both CPUs and GPUs and its adoption by most of GPU manufacturers. In our implementation, OpenCL works in conjunction with MPI, which allows computations on a cluster of GPU for large-scale model simulations. We tested our code for model sizes between 1002 and 60002 elements. Comparison shows a decrease in computation time of more than two orders of magnitude between the GPU implementation run on a AMD Radeon HD 7950 and the CPU implementation run on a 2.26 GHz Intel Xeon Quad-Core. The speed-up varies depending on the order of the finite difference approximation and generally increases for higher orders. Increasing speed-ups are also obtained for increasing model size, which can be explained by kernel overheads and delays introduced by memory transfers to and from the GPU through the PCI-E bus. Those tests indicate that the GPU memory size and the slow memory transfers are the limiting factors of our GPU implementation. Those results show the benefits of using GPUs instead of CPUs for time based finite-difference seismic simulations. The reductions in computation time and in hardware costs are significant and open the door for new approaches in seismic inversion.

  20. The weight hierarchies and chain condition of a class of codes from varieties over finite fields

    NASA Technical Reports Server (NTRS)

    Wu, Xinen; Feng, Gui-Liang; Rao, T. R. N.

    1996-01-01

    The generalized Hamming weights of linear codes were first introduced by Wei. These are fundamental parameters related to the minimal overlap structures of the subcodes and very useful in several fields. It was found that the chain condition of a linear code is convenient in studying the generalized Hamming weights of the product codes. In this paper we consider a class of codes defined over some varieties in projective spaces over finite fields, whose generalized Hamming weights can be determined by studying the orbits of subspaces of the projective spaces under the actions of classical groups over finite fields, i.e., the symplectic groups, the unitary groups and orthogonal groups. We give the weight hierarchies and generalized weight spectra of the codes from Hermitian varieties and prove that the codes satisfy the chain condition.

  1. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    NASA Technical Reports Server (NTRS)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  2. Finite element meshing of ANSYS (trademark) solid models

    NASA Technical Reports Server (NTRS)

    Kelley, F. S.

    1987-01-01

    A large scale, general purpose finite element computer program, ANSYS, developed and marketed by Swanson Analysis Systems, Inc. is discussed. ANSYS was perhaps the first commercially available program to offer truly interactive finite element model generation. ANSYS's purpose is for solid modeling. This application is briefly discussed and illustrated.

  3. Comprehensive Numerical Analysis of Finite Difference Time Domain Methods for Improving Optical Waveguide Sensor Accuracy

    PubMed Central

    Samak, M. Mosleh E. Abu; Bakar, A. Ashrif A.; Kashif, Muhammad; Zan, Mohd Saiful Dzulkifly

    2016-01-01

    This paper discusses numerical analysis methods for different geometrical features that have limited interval values for typically used sensor wavelengths. Compared with existing Finite Difference Time Domain (FDTD) methods, the alternating direction implicit (ADI)-FDTD method reduces the number of sub-steps by a factor of two to three, which represents a 33% time savings in each single run. The local one-dimensional (LOD)-FDTD method has similar numerical equation properties, which should be calculated as in the previous method. Generally, a small number of arithmetic processes, which result in a shorter simulation time, are desired. The alternating direction implicit technique can be considered a significant step forward for improving the efficiency of unconditionally stable FDTD schemes. This comparative study shows that the local one-dimensional method had minimum relative error ranges of less than 40% for analytical frequencies above 42.85 GHz, and the same accuracy was generated by both methods.

  4. Improved finite-difference computation of the van der Waals force: One-dimensional case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinto, Fabrizio

    2009-10-15

    We present an improved demonstration of the calculation of Casimir forces in one-dimensional systems based on the recently proposed numerical imaginary frequency Green's function computation approach. The dispersion force on two thick lossy dielectric slabs separated by an empty gap and placed within a perfectly conducting cavity is obtained from the Green's function of the modified Helmholtz equation by means of an ordinary finite-difference method. In order to demonstrate the possibility to develop algorithms to explore complex geometries in two and three dimensions to higher order in the mesh spacing, we generalize existing classical electromagnetism algebraic methods to generate themore » difference equations for dielectric boundaries not coinciding with any grid points. Diagnostic tests are presented to monitor the accuracy of our implementation of the method and follow-up applications in higher dimensions are introduced.« less

  5. Conservation laws shape dissipation

    NASA Astrophysics Data System (ADS)

    Rao, Riccardo; Esposito, Massimiliano

    2018-02-01

    Starting from the most general formulation of stochastic thermodynamics—i.e. a thermodynamically consistent nonautonomous stochastic dynamics describing systems in contact with several reservoirs—we define a procedure to identify the conservative and the minimal set of nonconservative contributions in the entropy production. The former is expressed as the difference between changes caused by time-dependent drivings and a generalized potential difference. The latter is a sum over the minimal set of flux-force contributions controlling the dissipative flows across the system. When the system is initially prepared at equilibrium (e.g. by turning off drivings and forces), a finite-time detailed fluctuation theorem holds for the different contributions. Our approach relies on identifying the complete set of conserved quantities and can be viewed as the extension of the theory of generalized Gibbs ensembles to nonequilibrium situations.

  6. Extinction and survival in two-species annihilation

    DOE PAGES

    Amar, J. G.; Ben-Naim, E.; Davis, S. M.; ...

    2018-02-09

    In this paper, we study diffusion-controlled two-species annihilation with a finite number of particles. In this stochastic process, particles move diffusively, and when two particles of opposite type come into contact, the two annihilate. We focus on the behavior in three spatial dimensions and for initial conditions where particles are confined to a compact domain. Generally, one species outnumbers the other, and we find that the difference between the number of majority and minority species, which is a conserved quantity, controls the behavior. When the number difference exceeds a critical value, the minority becomes extinct and a finite number of majority particles survive, while below this critical difference, a finite number of particles of both species survive. The critical differencemore » $${\\mathrm{{\\Delta}}}_{c}$$ grows algebraically with the total initial number of particles N, and when $$N{\\gg}1$$, the critical difference scales as $${\\mathrm{{\\Delta}}}_{c}{\\sim}{N}^{1/3}$$. Furthermore, when the initial concentrations of the two species are equal, the average number of surviving majority and minority particles $${M}_{+}$$ and $${M}_{{-}}$$, exhibit two distinct scaling behaviors, $${M}_{+}{\\sim}{N}^{1/2}$$ and $${M}_{{-}}{\\sim}{N}^{1/6}$$. Finally, in contrast, when the initial populations are equal, these two quantities are comparable $${M}_{+}{\\sim}{M}_{{-}}{\\sim}{N}^{1/3}$$.« less

  7. Extinction and survival in two-species annihilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amar, J. G.; Ben-Naim, E.; Davis, S. M.

    In this paper, we study diffusion-controlled two-species annihilation with a finite number of particles. In this stochastic process, particles move diffusively, and when two particles of opposite type come into contact, the two annihilate. We focus on the behavior in three spatial dimensions and for initial conditions where particles are confined to a compact domain. Generally, one species outnumbers the other, and we find that the difference between the number of majority and minority species, which is a conserved quantity, controls the behavior. When the number difference exceeds a critical value, the minority becomes extinct and a finite number of majority particles survive, while below this critical difference, a finite number of particles of both species survive. The critical differencemore » $${\\mathrm{{\\Delta}}}_{c}$$ grows algebraically with the total initial number of particles N, and when $$N{\\gg}1$$, the critical difference scales as $${\\mathrm{{\\Delta}}}_{c}{\\sim}{N}^{1/3}$$. Furthermore, when the initial concentrations of the two species are equal, the average number of surviving majority and minority particles $${M}_{+}$$ and $${M}_{{-}}$$, exhibit two distinct scaling behaviors, $${M}_{+}{\\sim}{N}^{1/2}$$ and $${M}_{{-}}{\\sim}{N}^{1/6}$$. Finally, in contrast, when the initial populations are equal, these two quantities are comparable $${M}_{+}{\\sim}{M}_{{-}}{\\sim}{N}^{1/3}$$.« less

  8. A general algorithm using finite element method for aerodynamic configurations at low speeds

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.

    1975-01-01

    A finite element algorithm for numerical simulation of two-dimensional, incompressible, viscous flows was developed. The Navier-Stokes equations are suitably modelled to facilitate direct solution for the essential flow parameters. A leap-frog time differencing and Galerkin minimization of these model equations yields the finite element algorithm. The finite elements are triangular with bicubic shape functions approximating the solution space. The finite element matrices are unsymmetrically banded to facilitate savings in storage. An unsymmetric L-U decomposition is performed on the finite element matrices to obtain the solution for the boundary value problem.

  9. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions

    USGS Publications Warehouse

    Cooley, Richard L.

    1992-01-01

    MODFE, a modular finite-element model for simulating steady- or unsteady-state, area1 or axisymmetric flow of ground water in a heterogeneous anisotropic aquifer is documented in a three-part series of reports. In this report, part 2, the finite-element equations are derived by minimizing a functional of the difference between the true and approximate hydraulic head, which produces equations that are equivalent to those obtained by either classical variational or Galerkin techniques. Spatial finite elements are triangular with linear basis functions, and temporal finite elements are one dimensional with linear basis functions. Physical processes that can be represented by the model include (1) confined flow, unconfined flow (using the Dupuit approximation), or a combination of both; (2) leakage through either rigid or elastic confining units; (3) specified recharge or discharge at points, along lines, or areally; (4) flow across specified-flow, specified-head, or head-dependent boundaries; (5) decrease of aquifer thickness to zero under extreme water-table decline and increase of aquifer thickness from zero as the water table rises; and (6) head-dependent fluxes from springs, drainage wells, leakage across riverbeds or confining units combined with aquifer dewatering, and evapotranspiration. The matrix equations produced by the finite-element method are solved by the direct symmetric-Doolittle method or the iterative modified incomplete-Cholesky conjugate-gradient method. The direct method can be efficient for small- to medium-sized problems (less than about 500 nodes), and the iterative method is generally more efficient for larger-sized problems. Comparison of finite-element solutions with analytical solutions for five example problems demonstrates that the finite-element model can yield accurate solutions to ground-water flow problems.

  10. Study of hypervelocity meteoroid impact on orbital space stations

    NASA Technical Reports Server (NTRS)

    Leimbach, K. R.; Prozan, R. J.

    1973-01-01

    Structural damage resulting in hypervelocity impact of a meteorite on a spacecraft is discussed. Of particular interest is the backside spallation caused by such a collision. To treat this phenomenon two numerical schemes were developed in the course of this study to compute the elastic-plastic flow fracture of a solid. The numerical schemes are a five-point finite difference scheme and a four-node finite element scheme. The four-node finite element scheme proved to be less sensitive to the type of boundary conditions and loadings. Although further development work is needed to improve the program versatility (generalization of the network topology, secondary storage for large systems, improving of the coding to reduce the run time, etc.), the basic framework is provided for a utilitarian computer program which may be used in a wide variety of situations. Analytic results showing the program output are given for several test cases.

  11. Finite-volume method with lattice Boltzmann flux scheme for incompressible porous media flow at the representative-elementary-volume scale.

    PubMed

    Hu, Yang; Li, Decai; Shu, Shi; Niu, Xiaodong

    2016-02-01

    Based on the Darcy-Brinkman-Forchheimer equation, a finite-volume computational model with lattice Boltzmann flux scheme is proposed for incompressible porous media flow in this paper. The fluxes across the cell interface are calculated by reconstructing the local solution of the generalized lattice Boltzmann equation for porous media flow. The time-scaled midpoint integration rule is adopted to discretize the governing equation, which makes the time step become limited by the Courant-Friedricks-Lewy condition. The force term which evaluates the effect of the porous medium is added to the discretized governing equation directly. The numerical simulations of the steady Poiseuille flow, the unsteady Womersley flow, the circular Couette flow, and the lid-driven flow are carried out to verify the present computational model. The obtained results show good agreement with the analytical, finite-difference, and/or previously published solutions.

  12. Proper time regularization and the QCD chiral phase transition

    PubMed Central

    Cui, Zhu-Fang; Zhang, Jin-Li; Zong, Hong-Shi

    2017-01-01

    We study the QCD chiral phase transition at finite temperature and finite quark chemical potential within the two flavor Nambu–Jona-Lasinio (NJL) model, where a generalization of the proper-time regularization scheme is motivated and implemented. We find that in the chiral limit the whole transition line in the phase diagram is of second order, whereas for finite quark masses a crossover is observed. Moreover, if we take into account the influence of quark condensate to the coupling strength (which also provides a possible way of how the effective coupling varies with temperature and quark chemical potential), it is found that a CEP may appear. These findings differ substantially from other NJL results which use alternative regularization schemes, some explanation and discussion are given at the end. This indicates that the regularization scheme can have a dramatic impact on the study of the QCD phase transition within the NJL model. PMID:28401889

  13. Robust non-fragile finite-frequency H∞ static output-feedback control for active suspension systems

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Chen, Changzheng; Yu, Shenbo

    2017-07-01

    This paper deals with the problem of non-fragile H∞ static output-feedback control of vehicle active suspension systems with finite-frequency constraint. The control objective is to improve ride comfort within the given frequency range and ensure the hard constraints in the time-domain. Moreover, in order to enhance the robustness of the controller, the control gain perturbation is also considered in controller synthesis. Firstly, a new non-fragile H∞ finite-frequency control condition is established by using generalized Kalman-Yakubovich-Popov (GKYP) lemma. Secondly, the static output-feedback control gain is directly derived by using a non-iteration algorithm. Different from the existing iteration LMI results, the static output-feedback design is simple and less conservative. Finally, the proposed control algorithm is applied to a quarter-car active suspension model with actuator dynamics, numerical results are made to show the effectiveness and merits of the proposed method.

  14. A discrete model to study reaction-diffusion-mechanics systems.

    PubMed

    Weise, Louis D; Nash, Martyn P; Panfilov, Alexander V

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.

  15. A Discrete Model to Study Reaction-Diffusion-Mechanics Systems

    PubMed Central

    Weise, Louis D.; Nash, Martyn P.; Panfilov, Alexander V.

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects. PMID:21804911

  16. Refinement of Out of Circularity and Thickness Measurements of a Cylinder for Finite Element Analysis

    DTIC Science & Technology

    2016-09-01

    UNCLASSIFIED UNCLASSIFIED Refinement of Out of Circularity and Thickness Measurements of a Cylinder for Finite Element Analysis...significant effect on the collapse strength and must be accurately represented in finite element analysis to obtain accurate results. Often it is necessary...to interpolate measurements from a relatively coarse grid to a refined finite element model and methods that have wide general acceptance are

  17. Eleventh NASTRAN User's Colloquium

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASTRAN (NASA STRUCTURAL ANALYSIS) is a large, comprehensive, nonproprietary, general purpose finite element computer code for structural analysis which was developed under NASA sponsorship. The Eleventh Colloquium provides some comprehensive general papers on the application of finite element methods in engineering, comparisons with other approaches, unique applications, pre- and post-processing or auxiliary programs, and new methods of analysis with NASTRAN.

  18. ICASE Semiannual Report, October 1, 1992 through March 31, 1993

    DTIC Science & Technology

    1993-06-01

    NUMERICAL MATHEMATICS Saul Abarbanel Further results have been obtained regarding long time integration of high order compact finite difference schemes...overall accuracy. These problems are common to all numerical methods: finite differences , finite elements and spectral methods. It should be noted that...fourth order finite difference scheme. * In the same case, the D6 wavelets provide a sixth order finite difference , noncompact formula. * The wavelets

  19. Seismic imaging using finite-differences and parallel computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ober, C.C.

    1997-12-31

    A key to reducing the risks and costs of associated with oil and gas exploration is the fast, accurate imaging of complex geologies, such as salt domes in the Gulf of Mexico and overthrust regions in US onshore regions. Prestack depth migration generally yields the most accurate images, and one approach to this is to solve the scalar wave equation using finite differences. As part of an ongoing ACTI project funded by the US Department of Energy, a finite difference, 3-D prestack, depth migration code has been developed. The goal of this work is to demonstrate that massively parallel computersmore » can be used efficiently for seismic imaging, and that sufficient computing power exists (or soon will exist) to make finite difference, prestack, depth migration practical for oil and gas exploration. Several problems had to be addressed to get an efficient code for the Intel Paragon. These include efficient I/O, efficient parallel tridiagonal solves, and high single-node performance. Furthermore, to provide portable code the author has been restricted to the use of high-level programming languages (C and Fortran) and interprocessor communications using MPI. He has been using the SUNMOS operating system, which has affected many of his programming decisions. He will present images created from two verification datasets (the Marmousi Model and the SEG/EAEG 3D Salt Model). Also, he will show recent images from real datasets, and point out locations of improved imaging. Finally, he will discuss areas of current research which will hopefully improve the image quality and reduce computational costs.« less

  20. Interactive Finite Elements for General Engine Dynamics Analysis

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Padovan, J.; Fertis, D. G.

    1984-01-01

    General nonlinear finite element codes were adapted for the purpose of analyzing the dynamics of gas turbine engines. In particular, this adaptation required the development of a squeeze-film damper element software package and its implantation into a representative current generation code. The ADINA code was selected because of prior use of it and familiarity with its internal structure and logic. This objective was met and the results indicate that such use of general purpose codes is viable alternative to specialized codes for general dynamics analysis of engines.

  1. Theory and Applications of Elliptically Contoured and Related Distributions

    DTIC Science & Technology

    1990-09-01

    is invariant under n x n orthogonal transfor- mations. When the parent distribution is more generally ECp(pA, X, 4), the c.f. of X is n E(eitrTIX...those properties to some wider class than that of SD? 18 A largest characterization of SD is a demonstration that there is no generating vector Y...Takemura’s Generalizations of Cochran’s Theorem," George P.H. Styan, September 1982. 3. " Some Further Applications of Finite Difference Operators," Kai

  2. Single Polygon Counting on Cayley Tree of Order 3

    NASA Astrophysics Data System (ADS)

    Pah, Chin Hee

    2010-07-01

    We showed that one form of generalized Catalan numbers is the solution to the problem of finding different connected component with finite vertices containing a fixed root for the semi-infinite Cayley tree of order 3. We give the formula for the full graph, Cayley tree of order 3 which is derived from the generalized Catalan numbers. Using ratios of Gamma functions, two upper bounds are given for problem defined on semi-infinite Cayley tree of order 3 as well as the full graph.

  3. Generalized uncertainty principle and the maximum mass of ideal white dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashidi, Reza, E-mail: reza.rashidi@srttu.edu

    The effects of a generalized uncertainty principle on the structure of an ideal white dwarf star is investigated. The equation describing the equilibrium configuration of the star is a generalized form of the Lane–Emden equation. It is proved that the star always has a finite size. It is then argued that the maximum mass of such an ideal white dwarf tends to infinity, as opposed to the conventional case where it has a finite value.

  4. Finite BRST-BFV transformations for dynamical systems with second-class constraints

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.; Tyutin, Igor V.

    2015-06-01

    We study finite field-dependent BRST-BFV transformations for dynamical systems with first- and second-class constraints within the generalized Hamiltonian formalism. We find explicitly their Jacobians and the form of a solution to the compensation equation necessary for generating an arbitrary finite change of gauge-fixing functionals in the path integral.

  5. N%-Superconvergence of Finite Element Approximations in the Interior of General Meshes of Triangles

    DTIC Science & Technology

    1993-12-01

    RODiGuEz, On the asymptotic exactness of error estimators for linear triangular finite elements, Numer. Math., 59 (1991), pp. 107-127. 27. R. DURAN ...WAHLDIN, Interior maxmum norma estimates for finite element methods, Part H, unpublished manuscript. 38. I. BABUfKA, T. STROUBOULIS, A. MATHU. AND C.S

  6. Noisy bases in Hilbert space: A new class of thermal coherent states and their properties

    NASA Technical Reports Server (NTRS)

    Vourdas, A.; Bishop, R. F.

    1995-01-01

    Coherent mixed states (or thermal coherent states) associated with the displaced harmonic oscillator at finite temperature, are introduced as a 'random' (or 'thermal' or 'noisy') basis in Hilbert space. A resolution of the identity for these states is proved and used to generalize the usual coherent state formalism for the finite temperature case. The Bargmann representation of an operator is introduced and its relation to the P and Q representations is studied. Generalized P and Q representations for the finite temperature case are also considered and several interesting relations among them are derived.

  7. Finite-time hybrid projective synchronization of the drive-response complex networks with distributed-delay via adaptive intermittent control

    NASA Astrophysics Data System (ADS)

    Cheng, Lin; Yang, Yongqing; Li, Li; Sui, Xin

    2018-06-01

    This paper studies the finite-time hybrid projective synchronization of the drive-response complex networks. In the model, general transmission delays and distributed delays are also considered. By designing the adaptive intermittent controllers, the response network can achieve hybrid projective synchronization with the drive system in finite time. Based on finite-time stability theory and several differential inequalities, some simple finite-time hybrid projective synchronization criteria are derived. Two numerical examples are given to illustrate the effectiveness of the proposed method.

  8. A generalized algorithm to design finite field normal basis multipliers

    NASA Technical Reports Server (NTRS)

    Wang, C. C.

    1986-01-01

    Finite field arithmetic logic is central in the implementation of some error-correcting coders and some cryptographic devices. There is a need for good multiplication algorithms which can be easily realized. Massey and Omura recently developed a new multiplication algorithm for finite fields based on a normal basis representation. Using the normal basis representation, the design of the finite field multiplier is simple and regular. The fundamental design of the Massey-Omura multiplier is based on a design of a product function. In this article, a generalized algorithm to locate a normal basis in a field is first presented. Using this normal basis, an algorithm to construct the product function is then developed. This design does not depend on particular characteristics of the generator polynomial of the field.

  9. CONSTRUCTION OF SCALAR AND VECTOR FINITE ELEMENT FAMILIES ON POLYGONAL AND POLYHEDRAL MESHES

    PubMed Central

    GILLETTE, ANDREW; RAND, ALEXANDER; BAJAJ, CHANDRAJIT

    2016-01-01

    We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nédélec, Raviart-Thomas, and Brezzi-Douglas-Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties. PMID:28077939

  10. CONSTRUCTION OF SCALAR AND VECTOR FINITE ELEMENT FAMILIES ON POLYGONAL AND POLYHEDRAL MESHES.

    PubMed

    Gillette, Andrew; Rand, Alexander; Bajaj, Chandrajit

    2016-10-01

    We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nédélec, Raviart-Thomas, and Brezzi-Douglas-Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties.

  11. Magnetotail reconnection, MHD theory and simulations

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, M.; Schindler, K.

    1989-01-01

    Magnetotail reconnection leading to plasmoid formation and ejection is discussed, emphasizing three-dimensional structures and deviations from earlier imposed symmetries, based on MHD simulations and topological considerations. In general, the separation of the plasmoid takes a finite amount of time. During this stage the plasmoid is characterized by filamentary structures of interwoven flux tubes with different topological connections.

  12. Generalizing the TRAPRG and TRAPAX finite elements

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.

    1983-01-01

    The NASTRAN TRAPRG and TRAPAX finite elements are very restrictive as to shape and grid point numbering. The elements must be trapezoidal with two sides parallel to the radial axis. In addition, the ordering of the grid points on the element connection card must follow strict rules. The paper describes the generalization of these elements so that these restrictions no longer apply.

  13. Flutter: A finite element program for aerodynamic instability analysis of general shells of revolution with thermal prestress

    NASA Technical Reports Server (NTRS)

    Fallon, D. J.; Thornton, E. A.

    1983-01-01

    Documentation for the computer program FLUTTER is presented. The theory of aerodynamic instability with thermal prestress is discussed. Theoretical aspects of the finite element matrices required in the aerodynamic instability analysis are also discussed. General organization of the computer program is explained, and instructions are then presented for the execution of the program.

  14. On one-dimensional stretching functions for finite-difference calculations. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1983-01-01

    The class of one-dimensional stretching functions used in finite-difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two-sided stretching function, for which the arbitrary slopes at the two ends of the one-dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent. Previously announced in STAR as N80-25055

  15. Pathloss Calculation Using the Transmission Line Matrix and Finite Difference Time Domain Methods With Coarse Grids

    DOE PAGES

    Nutaro, James; Kuruganti, Teja

    2017-02-24

    Numerical simulations of the wave equation that are intended to provide accurate time domain solutions require a computational mesh with grid points separated by a distance less than the wavelength of the source term and initial data. However, calculations of radio signal pathloss generally do not require accurate time domain solutions. This paper describes an approach for calculating pathloss by using the finite difference time domain and transmission line matrix models of wave propagation on a grid with points separated by distances much greater than the signal wavelength. The calculated pathloss can be kept close to the true value formore » freespace propagation with an appropriate selection of initial conditions. This method can also simulate diffraction with an error governed by the ratio of the signal wavelength to the grid spacing.« less

  16. Involution and Difference Schemes for the Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Gerdt, Vladimir P.; Blinkov, Yuri A.

    In the present paper we consider the Navier-Stokes equations for the two-dimensional viscous incompressible fluid flows and apply to these equations our earlier designed general algorithmic approach to generation of finite-difference schemes. In doing so, we complete first the Navier-Stokes equations to involution by computing their Janet basis and discretize this basis by its conversion into the integral conservation law form. Then we again complete the obtained difference system to involution with eliminating the partial derivatives and extracting the minimal Gröbner basis from the Janet basis. The elements in the obtained difference Gröbner basis that do not contain partial derivatives of the dependent variables compose a conservative difference scheme. By exploiting arbitrariness in the numerical integration approximation we derive two finite-difference schemes that are similar to the classical scheme by Harlow and Welch. Each of the two schemes is characterized by a 5×5 stencil on an orthogonal and uniform grid. We also demonstrate how an inconsistent difference scheme with a 3×3 stencil is generated by an inappropriate numerical approximation of the underlying integrals.

  17. Method and system employing finite state machine modeling to identify one of a plurality of different electric load types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Liang; Yang, Yi; Harley, Ronald Gordon

    A system is for a plurality of different electric load types. The system includes a plurality of sensors structured to sense a voltage signal and a current signal for each of the different electric loads; and a processor. The processor acquires a voltage and current waveform from the sensors for a corresponding one of the different electric load types; calculates a power or current RMS profile of the waveform; quantizes the power or current RMS profile into a set of quantized state-values; evaluates a state-duration for each of the quantized state-values; evaluates a plurality of state-types based on the powermore » or current RMS profile and the quantized state-values; generates a state-sequence that describes a corresponding finite state machine model of a generalized load start-up or transient profile for the corresponding electric load type; and identifies the corresponding electric load type.« less

  18. A stable partitioned FSI algorithm for incompressible flow and deforming beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L., E-mail: lil19@rpi.edu; Henshaw, W.D., E-mail: henshw@rpi.edu; Banks, J.W., E-mail: banksj3@rpi.edu

    2016-05-01

    An added-mass partitioned (AMP) algorithm is described for solving fluid–structure interaction (FSI) problems coupling incompressible flows with thin elastic structures undergoing finite deformations. The new AMP scheme is fully second-order accurate and stable, without sub-time-step iterations, even for very light structures when added-mass effects are strong. The fluid, governed by the incompressible Navier–Stokes equations, is solved in velocity-pressure form using a fractional-step method; large deformations are treated with a mixed Eulerian-Lagrangian approach on deforming composite grids. The motion of the thin structure is governed by a generalized Euler–Bernoulli beam model, and these equations are solved in a Lagrangian frame usingmore » two approaches, one based on finite differences and the other on finite elements. The key AMP interface condition is a generalized Robin (mixed) condition on the fluid pressure. This condition, which is derived at a continuous level, has no adjustable parameters and is applied at the discrete level to couple the partitioned domain solvers. Special treatment of the AMP condition is required to couple the finite-element beam solver with the finite-difference-based fluid solver, and two coupling approaches are described. A normal-mode stability analysis is performed for a linearized model problem involving a beam separating two fluid domains, and it is shown that the AMP scheme is stable independent of the ratio of the mass of the fluid to that of the structure. A traditional partitioned (TP) scheme using a Dirichlet–Neumann coupling for the same model problem is shown to be unconditionally unstable if the added mass of the fluid is too large. A series of benchmark problems of increasing complexity are considered to illustrate the behavior of the AMP algorithm, and to compare the behavior with that of the TP scheme. The results of all these benchmark problems verify the stability and accuracy of the AMP scheme. Results for one benchmark problem modeling blood flow in a deforming artery are also compared with corresponding results available in the literature.« less

  19. The Generalized Hellmann-Feynman Theorem Approach to Quantum Effects of Mesoscopic Complicated Coupling Circuit at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Xia

    2016-02-01

    By employing the generalized Hellmann-Feynman theorem, the quantization of mesoscopic complicated coupling circuit is proposed. The ensemble average energy, the energy fluctuation and the energy distribution are investigated at finite temperature. It is shown that the generalized Hellmann-Feynman theorem plays the key role in quantizing a mesoscopic complicated coupling circuit at finite temperature, and when the temperature is lower than the specific temperature, the value of (\\vartriangle {hat {H}})2 is almost zero and the values of e and (\\vartriangle hat {{H}})2are basically constant, but while the temperature rises to the specific temperature, both of them move upward rapidly. The energy fluctuation of the system becomes larger when the coupling inductance is larger or the coupling capacitance is smaller.

  20. Landau parameters for energy density functionals generated by local finite-range pseudopotentials

    NASA Astrophysics Data System (ADS)

    Idini, A.; Bennaceur, K.; Dobaczewski, J.

    2017-06-01

    In Landau theory of Fermi liquids, the particle-hole interaction near the Fermi energy in different spin-isospin channels is probed in terms of an expansion over the Legendre polynomials. This provides a useful and efficient way to constrain properties of nuclear energy density functionals in symmetric nuclear matter and finite nuclei. In this study, we present general expressions for Landau parameters corresponding to a two-body central local regularized pseudopotential. We also show results obtained for two recently adjusted NLO and N2LO parametrizations. Such pseudopotentials will be used to determine mean-field and beyond-mean-field properties of paired nuclei across the entire nuclear chart.

  1. Electromagnetic wave scattering from some vegetation samples

    NASA Technical Reports Server (NTRS)

    Karam, Mostafa A.; Fung, Adrian K.; Antar, Yahia M.

    1988-01-01

    For an incident plane wave, the field inside a thin scatterer (disk and needle) is estimated by the generalized Rayleigh-Gans (GRG) approximation. This leads to a scattering amplitude tensor equal to that obtained via the Rayleigh approximation (dipole term) with a modifying function. For a finite-length cylinder the inner field is estimated by the corresponding field for the same cylinder of infinite lenght. The effects of different approaches in estimating the field inside the scatterer on the backscattering cross section are illustrated numerically for a circular disk, a needle, and a finite-length cylinder as a function of the wave number and the incidence angle. Finally, the modeling predictions are compared with measurements.

  2. An efficient finite element technique for sound propagation in axisymmetric hard wall ducts carrying high subsonic Mach number flows

    NASA Technical Reports Server (NTRS)

    Tag, I. A.; Lumsdaine, E.

    1978-01-01

    The general non-linear three-dimensional equation for acoustic potential is derived by using a perturbation technique. The linearized axisymmetric equation is then solved by using a finite element algorithm based on the Galerkin formulation for a harmonic time dependence. The solution is carried out in complex number notation for the acoustic velocity potential. Linear, isoparametric, quadrilateral elements with non-uniform distribution across the duct section are implemented. The resultant global matrix is stored in banded form and solved by using a modified Gauss elimination technique. Sound pressure levels and acoustic velocities are calculated from post element solutions. Different duct geometries are analyzed and compared with experimental results.

  3. Parallelized modelling and solution scheme for hierarchically scaled simulations

    NASA Technical Reports Server (NTRS)

    Padovan, Joe

    1995-01-01

    This two-part paper presents the results of a benchmarked analytical-numerical investigation into the operational characteristics of a unified parallel processing strategy for implicit fluid mechanics formulations. This hierarchical poly tree (HPT) strategy is based on multilevel substructural decomposition. The Tree morphology is chosen to minimize memory, communications and computational effort. The methodology is general enough to apply to existing finite difference (FD), finite element (FEM), finite volume (FV) or spectral element (SE) based computer programs without an extensive rewrite of code. In addition to finding large reductions in memory, communications, and computational effort associated with a parallel computing environment, substantial reductions are generated in the sequential mode of application. Such improvements grow with increasing problem size. Along with a theoretical development of general 2-D and 3-D HPT, several techniques for expanding the problem size that the current generation of computers are capable of solving, are presented and discussed. Among these techniques are several interpolative reduction methods. It was found that by combining several of these techniques that a relatively small interpolative reduction resulted in substantial performance gains. Several other unique features/benefits are discussed in this paper. Along with Part 1's theoretical development, Part 2 presents a numerical approach to the HPT along with four prototype CFD applications. These demonstrate the potential of the HPT strategy.

  4. Moisture Transport in Composites during Repair Work,

    DTIC Science & Technology

    1983-09-01

    4 * FINITE DIFFERENCE EQUATIONS. .. . . .. . .. .. .. .. .. 6 INI I A ANBOUNAAYYCONDITIONS................ 7 REASONABLE FIRST...DURING DRYING AND CURING . . . ........ 9 5 CONVERGENCE OF FINITE DIFFERENCE METHOD USING DIFFERENT At . . .. 12 6 CONVERGENCE OF FDA METHOD FOR SAME At...transport we will use a finite difference approach, changing the Fickian equation to a finite number of linear algebraic equations that can be solved by

  5. Computing Quantitative Characteristics of Finite-State Real-Time Systems

    DTIC Science & Technology

    1994-05-04

    Current methods for verifying real - time systems are essentially decision procedures that establish whether the system model satisfies a given...specification. We present a general method for computing quantitative information about finite-state real - time systems . We have developed algorithms that...our technique can be extended to a more general representation of real - time systems , namely, timed transition graphs. The algorithms presented in this

  6. Performance analysis for minimally nonlinear irreversible refrigerators at finite cooling power

    NASA Astrophysics Data System (ADS)

    Long, Rui; Liu, Zhichun; Liu, Wei

    2018-04-01

    The coefficient of performance (COP) for general refrigerators at finite cooling power have been systematically researched through the minimally nonlinear irreversible model, and its lower and upper bounds in different operating regions have been proposed. Under the tight coupling conditions, we have calculated the universal COP bounds under the χ figure of merit in different operating regions. When the refrigerator operates in the region with lower external flux, we obtained the general bounds (0 < ε <(√{ 9 + 8εC } - 3) / 2) under the χ figure of merit. We have also calculated the universal bounds for maximum gain in COP under different operating regions to give a further insight into the COP gain with the cooling power away from the maximum one. When the refrigerator operates in the region located between maximum cooling power and maximum COP with lower external flux, the upper bound for COP and the lower bound for relative gain in COP present large values, compared to a relative small loss from the maximum cooling power. If the cooling power is the main objective, it is desirable to operate the refrigerator at a slightly lower cooling power than at the maximum one, where a small loss in the cooling power induces a much larger COP enhancement.

  7. Finite-time H∞ filtering for non-linear stochastic systems

    NASA Astrophysics Data System (ADS)

    Hou, Mingzhe; Deng, Zongquan; Duan, Guangren

    2016-09-01

    This paper describes the robust H∞ filtering analysis and the synthesis of general non-linear stochastic systems with finite settling time. We assume that the system dynamic is modelled by Itô-type stochastic differential equations of which the state and the measurement are corrupted by state-dependent noises and exogenous disturbances. A sufficient condition for non-linear stochastic systems to have the finite-time H∞ performance with gain less than or equal to a prescribed positive number is established in terms of a certain Hamilton-Jacobi inequality. Based on this result, the existence of a finite-time H∞ filter is given for the general non-linear stochastic system by a second-order non-linear partial differential inequality, and the filter can be obtained by solving this inequality. The effectiveness of the obtained result is illustrated by a numerical example.

  8. On the performance of piezoelectric harvesters loaded by finite width impulses

    NASA Astrophysics Data System (ADS)

    Doria, A.; Medè, C.; Desideri, D.; Maschio, A.; Codecasa, L.; Moro, F.

    2018-02-01

    The response of cantilevered piezoelectric harvesters loaded by finite width impulses of base acceleration is studied analytically in the frequency domain in order to identify the parameters that influence the generated voltage. Experimental tests are then performed on harvesters loaded by hammer impacts. The latter are used to confirm analytical results and to validate a linear finite element (FE) model of a unimorph harvester. The FE model is, in turn, used to extend analytical results to more general harvesters (tapered, inverse tapered, triangular) and to more general impulses (heel strike in human gait). From analytical and numerical results design criteria for improving harvester performance are obtained.

  9. A new family of stable elements for the Stokes problem based on a mixed Galerkin/least-squares finite element formulation

    NASA Technical Reports Server (NTRS)

    Franca, Leopoldo P.; Loula, Abimael F. D.; Hughes, Thomas J. R.; Miranda, Isidoro

    1989-01-01

    Adding to the classical Hellinger-Reissner formulation, a residual form of the equilibrium equation, a new Galerkin/least-squares finite element method is derived. It fits within the framework of a mixed finite element method and is stable for rather general combinations of stress and velocity interpolations, including equal-order discontinuous stress and continuous velocity interpolations which are unstable within the Galerkin approach. Error estimates are presented based on a generalization of the Babuska-Brezzi theory. Numerical results (not presented herein) have confirmed these estimates as well as the good accuracy and stability of the method.

  10. Application of variational and Galerkin equations to linear and nonlinear finite element analysis

    NASA Technical Reports Server (NTRS)

    Yu, Y.-Y.

    1974-01-01

    The paper discusses the application of the variational equation to nonlinear finite element analysis. The problem of beam vibration with large deflection is considered. The variational equation is shown to be flexible in both the solution of a general problem and in the finite element formulation. Difficulties are shown to arise when Galerkin's equations are used in the consideration of the finite element formulation of two-dimensional linear elasticity and of the linear classical beam.

  11. Finite difference modelling of dipole acoustic logs in a poroelastic formation with anisotropic permeability

    NASA Astrophysics Data System (ADS)

    He, Xiao; Hu, Hengshan; Wang, Xiuming

    2013-01-01

    Sedimentary rocks can exhibit strong permeability anisotropy due to layering, pre-stresses and the presence of aligned microcracks or fractures. In this paper, we develop a modified cylindrical finite-difference algorithm to simulate the borehole acoustic wavefield in a saturated poroelastic medium with transverse isotropy of permeability and tortuosity. A linear interpolation process is proposed to guarantee the leapfrog finite difference scheme for the generalized dynamic equations and Darcy's law for anisotropic porous media. First, the modified algorithm is validated by comparison against the analytical solution when the borehole axis is parallel to the symmetry axis of the formation. The same algorithm is then used to numerically model the dipole acoustic log in a borehole with its axis being arbitrarily deviated from the symmetry axis of transverse isotropy. The simulation results show that the amplitudes of flexural modes vary with the dipole orientation because the permeability tensor of the formation is dependent on the wellbore azimuth. It is revealed that the attenuation of the flexural wave increases approximately linearly with the radial permeability component in the direction of the transmitting dipole. Particularly, when the borehole axis is perpendicular to the symmetry axis of the formation, it is possible to estimate the anisotropy of permeability by evaluating attenuation of the flexural wave using a cross-dipole sonic logging tool according to the results of sensitivity analyses. Finally, the dipole sonic logs in a deviated borehole surrounded by a stratified porous formation are modelled using the proposed finite difference code. Numerical results show that the arrivals and amplitudes of transmitted flexural modes near the layer interface are sensitive to the wellbore inclination.

  12. Fokker-Planck Equations of Stochastic Acceleration: A Study of Numerical Methods

    NASA Astrophysics Data System (ADS)

    Park, Brian T.; Petrosian, Vahe

    1996-03-01

    Stochastic wave-particle acceleration may be responsible for producing suprathermal particles in many astrophysical situations. The process can be described as a diffusion process through the Fokker-Planck equation. If the acceleration region is homogeneous and the scattering mean free path is much smaller than both the energy change mean free path and the size of the acceleration region, then the Fokker-Planck equation reduces to a simple form involving only the time and energy variables. in an earlier paper (Park & Petrosian 1995, hereafter Paper 1), we studied the analytic properties of the Fokker-Planck equation and found analytic solutions for some simple cases. In this paper, we study the numerical methods which must be used to solve more general forms of the equation. Two classes of numerical methods are finite difference methods and Monte Carlo simulations. We examine six finite difference methods, three fully implicit and three semi-implicit, and a stochastic simulation method which uses the exact correspondence between the Fokker-Planck equation and the it5 stochastic differential equation. As discussed in Paper I, Fokker-Planck equations derived under the above approximations are singular, causing problems with boundary conditions and numerical overflow and underflow. We evaluate each method using three sample equations to test its stability, accuracy, efficiency, and robustness for both time-dependent and steady state solutions. We conclude that the most robust finite difference method is the fully implicit Chang-Cooper method, with minor extensions to account for the escape and injection terms. Other methods suffer from stability and accuracy problems when dealing with some Fokker-Planck equations. The stochastic simulation method, although simple to implement, is susceptible to Poisson noise when insufficient test particles are used and is computationally very expensive compared to the finite difference method.

  13. Subresolution Displacements in Finite Difference Simulations of Ultrasound Propagation and Imaging.

    PubMed

    Pinton, Gianmarco F

    2017-03-01

    Time domain finite difference simulations are used extensively to simulate wave propagation. They approximate the wave field on a discrete domain with a grid spacing that is typically on the order of a tenth of a wavelength. The smallest displacements that can be modeled by this type of simulation are thus limited to discrete values that are integer multiples of the grid spacing. This paper presents a method to represent continuous and subresolution displacements by varying the impedance of individual elements in a multielement scatterer. It is demonstrated that this method removes the limitations imposed by the discrete grid spacing by generating a continuum of displacements as measured by the backscattered signal. The method is first validated on an ideal perfect correlation case with a single scatterer. It is subsequently applied to a more complex case with a field of scatterers that model an acoustic radiation force-induced displacement used in ultrasound elasticity imaging. A custom finite difference simulation tool is used to simulate propagation from ultrasound imaging pulses in the scatterer field. These simulated transmit-receive events are then beamformed into images, which are tracked with a correlation-based algorithm to determine the displacement. A linear predictive model is developed to analytically describe the relationship between element impedance and backscattered phase shift. The error between model and simulation is λ/ 1364 , where λ is the acoustical wavelength. An iterative method is also presented that reduces the simulation error to λ/ 5556 over one iteration. The proposed technique therefore offers a computationally efficient method to model continuous subresolution displacements of a scattering medium in ultrasound imaging. This method has applications that include ultrasound elastography, blood flow, and motion tracking. This method also extends generally to finite difference simulations of wave propagation, such as electromagnetic or seismic waves.

  14. Comparison of finite-difference schemes for analysis of shells of revolution. [stress and free vibration analysis

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Stephens, W. B.

    1973-01-01

    Several finite difference schemes are applied to the stress and free vibration analysis of homogeneous isotropic and layered orthotropic shells of revolution. The study is based on a form of the Sanders-Budiansky first-approximation linear shell theory modified such that the effects of shear deformation and rotary inertia are included. A Fourier approach is used in which all the shell stress resultants and displacements are expanded in a Fourier series in the circumferential direction, and the governing equations reduce to ordinary differential equations in the meridional direction. While primary attention is given to finite difference schemes used in conjunction with first order differential equation formulation, comparison is made with finite difference schemes used with other formulations. These finite difference discretization models are compared with respect to simplicity of application, convergence characteristics, and computational efficiency. Numerical studies are presented for the effects of variations in shell geometry and lamination parameters on the accuracy and convergence of the solutions obtained by the different finite difference schemes. On the basis of the present study it is shown that the mixed finite difference scheme based on the first order differential equation formulation and two interlacing grids for the different fundamental unknowns combines a number of advantages over other finite difference schemes previously reported in the literature.

  15. Convenient stability criteria for difference approximations of hyperbolic initial-boundary value problems

    NASA Technical Reports Server (NTRS)

    Goldberg, M.; Tadmor, E.

    1985-01-01

    New convenient stability criteria are provided in this paper for a large class of finite difference approximations to initial-boundary value problems associated with the hyperbolic system u sub t = au sub x + Bu + f in the quarter plane x or = 0, t or = 0. Using the new criteria, stability is easily established for numerous combinations of well known basic schemes and boundary conditins, thus generalizing many special cases studied in recent literature.

  16. Convenient stability criteria for difference approximations of hyperbolic initial-boundary value problems

    NASA Technical Reports Server (NTRS)

    Goldberg, M.; Tadmor, E.

    1983-01-01

    New convenient stability criteria are provided in this paper for a large class of finite difference approximations to initial-boundary value problems associated with the hyperbolic system u sub t = au sub x + Bu + f in the quarter plane x or = 0, t or = 0. Using the new criteria, stability is easily established for numerous combinations of well known basic schemes and boundary conditions, thus generalizing many special cases studied in recent literature.

  17. Generalization of mixed multiscale finite element methods with applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C S

    Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixedmore » multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii« less

  18. Probabilistic treatment of the uncertainty from the finite size of weighted Monte Carlo data

    NASA Astrophysics Data System (ADS)

    Glüsenkamp, Thorsten

    2018-06-01

    Parameter estimation in HEP experiments often involves Monte Carlo simulation to model the experimental response function. A typical application are forward-folding likelihood analyses with re-weighting, or time-consuming minimization schemes with a new simulation set for each parameter value. Problematically, the finite size of such Monte Carlo samples carries intrinsic uncertainty that can lead to a substantial bias in parameter estimation if it is neglected and the sample size is small. We introduce a probabilistic treatment of this problem by replacing the usual likelihood functions with novel generalized probability distributions that incorporate the finite statistics via suitable marginalization. These new PDFs are analytic, and can be used to replace the Poisson, multinomial, and sample-based unbinned likelihoods, which covers many use cases in high-energy physics. In the limit of infinite statistics, they reduce to the respective standard probability distributions. In the general case of arbitrary Monte Carlo weights, the expressions involve the fourth Lauricella function FD, for which we find a new finite-sum representation in a certain parameter setting. The result also represents an exact form for Carlson's Dirichlet average Rn with n > 0, and thereby an efficient way to calculate the probability generating function of the Dirichlet-multinomial distribution, the extended divided difference of a monomial, or arbitrary moments of univariate B-splines. We demonstrate the bias reduction of our approach with a typical toy Monte Carlo problem, estimating the normalization of a peak in a falling energy spectrum, and compare the results with previously published methods from the literature.

  19. Reprint of Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    NASA Astrophysics Data System (ADS)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-04-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  20. Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    NASA Astrophysics Data System (ADS)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-03-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  1. A total variation diminishing finite difference algorithm for sonic boom propagation models

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.

    1993-01-01

    It is difficult to accurately model the rise phases of sonic boom waveforms with traditional finite difference algorithms because of finite difference phase dispersion. This paper introduces the concept of a total variation diminishing (TVD) finite difference method as a tool for accurately modeling the rise phases of sonic booms. A standard second order finite difference algorithm and its TVD modified counterpart are both applied to the one-way propagation of a square pulse. The TVD method clearly outperforms the non-TVD method, showing great potential as a new computational tool in the analysis of sonic boom propagation.

  2. Conversion and comparison of the mathematical, three-dimensional, finite-difference, ground-water flow model to the modular, three-dimensional, finite-difference, ground-water flow model for the Tesuque aquifer system in northern New Mexico

    USGS Publications Warehouse

    Umari, A.M.; Szeliga, T.L.

    1989-01-01

    The three-dimensional finite-difference groundwater model (using a mathematical groundwater flow code) of the Tesuque aquifer system in northern New Mexico was converted to run using the U.S. Geological Survey 's modular groundwater flow code. Results from the final versions of the predevelopment and 1947 to 2080 transient simulations of the two models are compared. A correlation coefficient of 0.9905 was obtained for the match in block-by-block head-dependent fluxes for predevelopment conditions. There are, however, significant differences in at least two specific cases. In the first case, a difference is associated with the net loss from the Pojoaque River and its tributaries to the aquifer. The net loss by the river is given as 1.134 cu ft/sec using the original groundwater model, which is 38.1% less than the net loss by the river of 1.8319 cu ft/sec computed in this study. In the second case, the large difference is computed for the transient decline in the hydraulic head of a model block near Tesuque Pueblo. The hydraulic-head decline by 2080 is, using the original model, 249 ft, which is 14.7% less than the hydraulic head of 292 ft computed by this study. In general, the differences between the two sets of results are not large enough to lead to different conclusions regarding the behavior of the system at steady state or when pumped. (USGS)

  3. Conformal anomaly of generalized form factors and finite loop integrals

    NASA Astrophysics Data System (ADS)

    Chicherin, Dmitry; Sokatchev, Emery

    2018-04-01

    We reveal a new mechanism of conformal symmetry breaking at Born level. It occurs in generalized form factors with several local operators and an on-shell state of massless particles. The effect is due to hidden singularities on collinear configurations of the momenta. This conformal anomaly is different from the holomorphic anomaly of amplitudes. We present a number of examples in four and six dimensions. We find an application of the new conformal anomaly to finite loop momentum integrals with one or more massless legs. The collinear region around a massless leg creates a contact anomaly, made visible by the loop integration. The anomalous conformal Ward identity for an ℓ-loop integral is a 2nd-order differential equation whose right-hand side is an (ℓ - 1)-loop integral. It could serve as a new useful tool to find/test analytic expressions for conformal integrals. We illustrate this point with several examples of known integrals. We propose a new differential equation for the four-dimensional scalar double box.

  4. Exact Solution to Stationary Onset of Convection Due to Surface Tension Variation in a Multicomponent Fluid Layer With Interfacial Deformation

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee; McCaughan, Frances E.

    1998-01-01

    Stationary onset of convection due to surface tension variation in an unbounded multicomponent fluid layer is considered. Surface deformation is included and general flux boundary conditions are imposed on the stratifying agencies (temperature/composition) disturbance equations. Exact solutions are obtained to the general N-component problem for both finite and infinitesimal wavenumbers. Long wavelength instability may coexist with a finite wavelength instability for certain sets of parameter values, often referred to as frontier points. For an impermeable/insulated upper boundary and a permeable/conductive lower boundary, frontier boundaries are computed in the space of Bond number, Bo, versus Crispation number, Cr, over the range 5 x 10(exp -7) less than or equal to Bo less than or equal to 1. The loci of frontier points in (Bo, Cr) space for different values of N, diffusivity ratios, and, Marangoni numbers, collapsed to a single curve in (Bo, D(dimensional variable)Cr) space, where D(dimensional variable) is a Marangoni number weighted diffusivity ratio.

  5. A Kirchhoff Approach to Seismic Modeling and Prestack Depth Migration

    DTIC Science & Technology

    1993-05-01

    continuation of sources and geophones by finite difference (S-G finite - difference migration ), are relatively slow and dip-limited. Compared to S-G... finite - difference migration , the Kirchhoff integral implements prestack migration relatively efficiently and has no dip limitation. Liu .Mlodeling and...for modeling and migration . In this paper, a finite - difference algorithm is used to calculate traveltimes and amplitudes. With the help of

  6. Generalized Knudsen Number for Unsteady Fluid Flow.

    PubMed

    Kara, V; Yakhot, V; Ekinci, K L

    2017-02-17

    We explore the scaling behavior of an unsteady flow that is generated by an oscillating body of finite size in a gas. If the gas is gradually rarefied, the Navier-Stokes equations begin to fail and a kinetic description of the flow becomes more appropriate. The failure of the Navier-Stokes equations can be thought to take place via two different physical mechanisms: either the continuum hypothesis breaks down as a result of a finite size effect or local equilibrium is violated due to the high rate of strain. By independently tuning the relevant linear dimension and the frequency of the oscillating body, we can experimentally observe these two different physical mechanisms. All the experimental data, however, can be collapsed using a single dimensionless scaling parameter that combines the relevant linear dimension and the frequency of the body. This proposed Knudsen number for an unsteady flow is rooted in a fundamental symmetry principle, namely, Galilean invariance.

  7. Generalized Knudsen Number for Unsteady Fluid Flow

    NASA Astrophysics Data System (ADS)

    Kara, V.; Yakhot, V.; Ekinci, K. L.

    2017-02-01

    We explore the scaling behavior of an unsteady flow that is generated by an oscillating body of finite size in a gas. If the gas is gradually rarefied, the Navier-Stokes equations begin to fail and a kinetic description of the flow becomes more appropriate. The failure of the Navier-Stokes equations can be thought to take place via two different physical mechanisms: either the continuum hypothesis breaks down as a result of a finite size effect or local equilibrium is violated due to the high rate of strain. By independently tuning the relevant linear dimension and the frequency of the oscillating body, we can experimentally observe these two different physical mechanisms. All the experimental data, however, can be collapsed using a single dimensionless scaling parameter that combines the relevant linear dimension and the frequency of the body. This proposed Knudsen number for an unsteady flow is rooted in a fundamental symmetry principle, namely, Galilean invariance.

  8. The arbitrary order mimetic finite difference method for a diffusion equation with a non-symmetric diffusion tensor

    NASA Astrophysics Data System (ADS)

    Gyrya, V.; Lipnikov, K.

    2017-11-01

    We present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, we observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.

  9. The arbitrary order mimetic finite difference method for a diffusion equation with a non-symmetric diffusion tensor

    DOE PAGES

    Gyrya, V.; Lipnikov, K.

    2017-07-18

    Here, we present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We also present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, wemore » observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.« less

  10. On the stability analysis of hyperelastic boundary value problems using three- and two-field mixed finite element formulations

    NASA Astrophysics Data System (ADS)

    Schröder, Jörg; Viebahn, Nils; Wriggers, Peter; Auricchio, Ferdinando; Steeger, Karl

    2017-09-01

    In this work we investigate different mixed finite element formulations for the detection of critical loads for the possible occurrence of bifurcation and limit points. In detail, three- and two-field formulations for incompressible and quasi-incompressible materials are analyzed. In order to apply various penalty functions for the volume dilatation in displacement/pressure mixed elements we propose a new consistent scheme capturing the non linearities of the penalty constraints. It is shown that for all mixed formulations, which can be reduced to a generalized displacement scheme, a straight forward stability analysis is possible. However, problems based on the classical saddle-point structure require a different analyses based on the change of the signature of the underlying matrix system. The basis of these investigations is the work from Auricchio et al. (Comput Methods Appl Mech Eng 194:1075-1092, 2005, Comput Mech 52:1153-1167, 2013).

  11. The arbitrary order mimetic finite difference method for a diffusion equation with a non-symmetric diffusion tensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyrya, V.; Lipnikov, K.

    Here, we present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We also present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, wemore » observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.« less

  12. Modeling Sound Propagation Through Non-Axisymmetric Jets

    NASA Technical Reports Server (NTRS)

    Leib, Stewart J.

    2014-01-01

    A method for computing the far-field adjoint Green's function of the generalized acoustic analogy equations under a locally parallel mean flow approximation is presented. The method is based on expanding the mean-flow-dependent coefficients in the governing equation and the scalar Green's function in truncated Fourier series in the azimuthal direction and a finite difference approximation in the radial direction in circular cylindrical coordinates. The combined spectral/finite difference method yields a highly banded system of algebraic equations that can be efficiently solved using a standard sparse system solver. The method is applied to test cases, with mean flow specified by analytical functions, corresponding to two noise reduction concepts of current interest: the offset jet and the fluid shield. Sample results for the Green's function are given for these two test cases and recommendations made as to the use of the method as part of a RANS-based jet noise prediction code.

  13. Extrapolation techniques applied to matrix methods in neutron diffusion problems

    NASA Technical Reports Server (NTRS)

    Mccready, Robert R

    1956-01-01

    A general matrix method is developed for the solution of characteristic-value problems of the type arising in many physical applications. The scheme employed is essentially that of Gauss and Seidel with appropriate modifications needed to make it applicable to characteristic-value problems. An iterative procedure produces a sequence of estimates to the answer; and extrapolation techniques, based upon previous behavior of iterants, are utilized in speeding convergence. Theoretically sound limits are placed on the magnitude of the extrapolation that may be tolerated. This matrix method is applied to the problem of finding criticality and neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron-diffusion equations is treated. Results for this example are indicated.

  14. A one-dimensional nonlinear problem of thermoelasticity in extended thermodynamics

    NASA Astrophysics Data System (ADS)

    Rawy, E. K.

    2018-06-01

    We solve a nonlinear, one-dimensional initial boundary-value problem of thermoelasticity in generalized thermodynamics. A Cattaneo-type evolution equation for the heat flux is used, which differs from the one used extensively in the literature. The hyperbolic nature of the associated linear system is clarified through a study of the characteristic curves. Progressive wave solutions with two finite speeds are noted. A numerical treatment is presented for the nonlinear system using a three-step, quasi-linearization, iterative finite-difference scheme for which the linear system of equations is the initial step in the iteration. The obtained results are discussed in detail. They clearly show the hyperbolic nature of the system, and may be of interest in investigating thermoelastic materials, not only at low temperatures, but also during high temperature processes involving rapid changes in temperature as in laser treatment of surfaces.

  15. Boundary Closures for Fourth-order Energy Stable Weighted Essentially Non-Oscillatory Finite Difference Schemes

    NASA Technical Reports Server (NTRS)

    Fisher, Travis C.; Carpenter, Mark H.; Yamaleev, Nail K.; Frankel, Steven H.

    2009-01-01

    A general strategy exists for constructing Energy Stable Weighted Essentially Non Oscillatory (ESWENO) finite difference schemes up to eighth-order on periodic domains. These ESWENO schemes satisfy an energy norm stability proof for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, boundary closures are developed for the fourth-order ESWENO scheme that maintain wherever possible the WENO stencil biasing properties, while satisfying the summation-by-parts (SBP) operator convention, thereby ensuring stability in an L2 norm. Second-order, and third-order boundary closures are developed that achieve stability in diagonal and block norms, respectively. The global accuracy for the second-order closures is three, and for the third-order closures is four. A novel set of non-uniform flux interpolation points is necessary near the boundaries to simultaneously achieve 1) accuracy, 2) the SBP convention, and 3) WENO stencil biasing mechanics.

  16. Williams Element with Generalized Degrees of Freedom for Fracture Analysis of Multiple-Cracked Beam

    NASA Astrophysics Data System (ADS)

    Xu, Hua; Wei, Quyang; Yang, Lufeng

    2017-10-01

    In this paper, the method of finite element with generalized degrees of freedom (FEDOFs) is used to calculate the stress intensity factor (SIF) of multiple cracked beam and analysed the effect of minor cracks on the main crack SIF in different cases. Williams element is insensitive to the size of singular region. So that calculation efficiency is highly improved. Examples analysis validates that the SIF near the crack tip can be obtained directly though FEDOFs. And the result is well consistent with ANSYS solution and has a satisfied accuracy.

  17. General Nonlinear Ferroelectric Model v. Beta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Wen; Robbins, Josh

    2017-03-14

    The purpose of this software is to function as a generalized ferroelectric material model. The material model is designed to work with existing finite element packages by providing updated information on material properties that are nonlinear and dependent on loading history. The two major nonlinear phenomena this model captures are domain-switching and phase transformation. The software itself does not contain potentially sensitive material information and instead provides a framework for different physical phenomena observed within ferroelectric materials. The model is calibrated to a specific ferroelectric material through input parameters provided by the user.

  18. Development of the general interpolants method for the CYBER 200 series of supercomputers

    NASA Technical Reports Server (NTRS)

    Stalnaker, J. F.; Robinson, M. A.; Spradley, L. W.; Kurzius, S. C.; Thoenes, J.

    1988-01-01

    The General Interpolants Method (GIM) is a 3-D, time-dependent, hybrid procedure for generating numerical analogs of the conservation laws. This study is directed toward the development and application of the GIM computer code for fluid dynamic research applications as implemented for the Cyber 200 series of supercomputers. An elliptic and quasi-parabolic version of the GIM code are discussed. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and an implicit finite difference scheme are also included.

  19. A General Symbolic Method with Physical Applications

    NASA Astrophysics Data System (ADS)

    Smith, Gregory M.

    2000-06-01

    A solution to the problem of unifying the General Relativistic and Quantum Theoretical formalisms is given which introduces a new non-axiomatic symbolic method and an algebraic generalization of the Calculus to non-finite symbolisms without reference to the concept of a limit. An essential feature of the non-axiomatic method is the inadequacy of any (finite) statements: Identifying this aspect of the theory with the "existence of an external physical reality" both allows for the consistency of the method with the results of experiments and avoids the so-called "measurement problem" of quantum theory.

  20. Evaluation of finite difference and FFT-based solutions of the transport of intensity equation.

    PubMed

    Zhang, Hongbo; Zhou, Wen-Jing; Liu, Ying; Leber, Donald; Banerjee, Partha; Basunia, Mahmudunnabi; Poon, Ting-Chung

    2018-01-01

    A finite difference method is proposed for solving the transport of intensity equation. Simulation results show that although slower than fast Fourier transform (FFT)-based methods, finite difference methods are able to reconstruct the phase with better accuracy due to relaxed assumptions for solving the transport of intensity equation relative to FFT methods. Finite difference methods are also more flexible than FFT methods in dealing with different boundary conditions.

  1. Finite elements and finite differences for transonic flow calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.

    1978-01-01

    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  2. Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations

    NASA Astrophysics Data System (ADS)

    Baker, Alexander; Beg, Marijan; Ashton, Gregory; Albert, Maximilian; Chernyshenko, Dmitri; Wang, Weiwei; Zhang, Shilei; Bisotti, Marc-Antonio; Franchin, Matteo; Hu, Chun Lian; Stamps, Robert; Hesjedal, Thorsten; Fangohr, Hans

    2017-01-01

    Nowadays, micromagnetic simulations are a common tool for studying a wide range of different magnetic phenomena, including the ferromagnetic resonance. A technique for evaluating reliability and validity of different micromagnetic simulation tools is the simulation of proposed standard problems. We propose a new standard problem by providing a detailed specification and analysis of a sufficiently simple problem. By analyzing the magnetization dynamics in a thin permalloy square sample, triggered by a well defined excitation, we obtain the ferromagnetic resonance spectrum and identify the resonance modes via Fourier transform. Simulations are performed using both finite difference and finite element numerical methods, with OOMMF and Nmag simulators, respectively. We report the effects of initial conditions and simulation parameters on the character of the observed resonance modes for this standard problem. We provide detailed instructions and code to assist in using the results for evaluation of new simulator tools, and to help with numerical calculation of ferromagnetic resonance spectra and modes in general.

  3. A comparative study of finite element and finite difference methods for Cauchy-Riemann type equations

    NASA Technical Reports Server (NTRS)

    Fix, G. J.; Rose, M. E.

    1983-01-01

    A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.

  4. Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation

    DOE PAGES

    Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; ...

    1995-01-01

    In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less

  5. Position-dependent mass, finite-gap systems, and supersymmetry

    NASA Astrophysics Data System (ADS)

    Bravo, Rafael; Plyushchay, Mikhail S.

    2016-05-01

    The ordering problem in quantum systems with position-dependent mass (PDM) is treated by inclusion of the classically fictitious similarity transformation into the kinetic term. This provides a generation of supersymmetry with the first-order supercharges from the kinetic term alone, while inclusion of the potential term allows us also to generate nonlinear supersymmetry with higher-order supercharges. A broad class of finite-gap systems with PDM is obtained by different reduction procedures, and general results on supersymmetry generation are applied to them. We show that elliptic finite-gap systems of Lamé and Darboux-Treibich-Verdier types can be obtained by reduction to Seiffert's spherical spiral and Bernoulli lemniscate in the presence of Calogero-like or harmonic oscillator potentials, or by angular momentum reduction of a free motion on some AdS2 -related surfaces in the presence of Aharonov-Bohm flux. The limiting cases include the Higgs and Mathews-Lakshmanan oscillator models as well as a reflectionless model with PDM exploited recently in the discussion of cosmological inflationary scenarios.

  6. Vibration study of a vehicle suspension assembly with the finite element method

    NASA Astrophysics Data System (ADS)

    Cătălin Marinescu, Gabriel; Castravete, Ştefan-Cristian; Dumitru, Nicolae

    2017-10-01

    The main steps of the present work represent a methodology of analysing various vibration effects over suspension mechanical parts of a vehicle. A McPherson type suspension from an existing vehicle was created using CAD software. Using the CAD model as input, a finite element model of the suspension assembly was developed. Abaqus finite element analysis software was used to pre-process, solve, and post-process the results. Geometric nonlinearities are included in the model. Severe sources of nonlinearities such us friction and contact are also included in the model. The McPherson spring is modelled as linear spring. The analysis include several steps: preload, modal analysis, the reduction of the model to 200 generalized coordinates, a deterministic external excitation, a random excitation that comes from different types of roads. The vibration data used as an input for the simulation were previously obtained by experimental means. Mathematical expressions used for the simulation were also presented in the paper.

  7. High order finite volume WENO schemes for the Euler equations under gravitational fields

    NASA Astrophysics Data System (ADS)

    Li, Gang; Xing, Yulong

    2016-07-01

    Euler equations with gravitational source terms are used to model many astrophysical and atmospheric phenomena. This system admits hydrostatic balance where the flux produced by the pressure is exactly canceled by the gravitational source term, and two commonly seen equilibria are the isothermal and polytropic hydrostatic solutions. Exact preservation of these equilibria is desirable as many practical problems are small perturbations of such balance. High order finite difference weighted essentially non-oscillatory (WENO) schemes have been proposed in [22], but only for the isothermal equilibrium state. In this paper, we design high order well-balanced finite volume WENO schemes, which can preserve not only the isothermal equilibrium but also the polytropic hydrostatic balance state exactly, and maintain genuine high order accuracy for general solutions. The well-balanced property is obtained by novel source term reformulation and discretization, combined with well-balanced numerical fluxes. Extensive one- and two-dimensional simulations are performed to verify well-balanced property, high order accuracy, as well as good resolution for smooth and discontinuous solutions.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaothekar, Sachin, E-mail: sackaothekar@gmail.com

    I have studied the effects of finite electron inertia, finite ion Larmor radius (FLR) corrections, and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effect of thermal conductivity for star formation in interstellar medium (ISM). A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instabilitymore » criterion is get modified into radiative instability criterion by inclusion of radiative heat-loss functions with thermal conductivity. The viscosity of medium removes the effect of FLR corrections from the condition of radiative instability. Numerical calculation shows stabilizing effect of heat-loss function, viscosity and FLR corrections, and destabilizing effect of finite electron inertia on the thermal instability. Results carried out in this paper shows that stars are formed in interstellar medium mainly due to thermal instability.« less

  9. Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel

    2004-01-01

    A new, high-order, conservative, and efficient discontinuous spectral finite difference (SD) method for conservation laws on unstructured grids is developed. The concept of discontinuous and high-order local representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) and the Spectral Volume (SV) methods, but while these methods are based on the integrated forms of the equations, the new method is based on the differential form to attain a simpler formulation and higher efficiency. Conventional unstructured finite-difference and finite-volume methods require data reconstruction based on the least-squares formulation using neighboring point or cell data. Since each unknown employs a different stencil, one must repeat the least-squares inversion for every point or cell at each time step, or to store the inversion coefficients. In a high-order, three-dimensional computation, the former would involve impractically large CPU time, while for the latter the memory requirement becomes prohibitive. In addition, the finite-difference method does not satisfy the integral conservation in general. By contrast, the DG and SV methods employ a local, universal reconstruction of a given order of accuracy in each cell in terms of internally defined conservative unknowns. Since the solution is discontinuous across cell boundaries, a Riemann solver is necessary to evaluate boundary flux terms and maintain conservation. In the DG method, a Galerkin finite-element method is employed to update the nodal unknowns within each cell. This requires the inversion of a mass matrix, and the use of quadratures of twice the order of accuracy of the reconstruction to evaluate the surface integrals and additional volume integrals for nonlinear flux functions. In the SV method, the integral conservation law is used to update volume averages over subcells defined by a geometrically similar partition of each grid cell. As the order of accuracy increases, the partitioning for 3D requires the introduction of a large number of parameters, whose optimization to achieve convergence becomes increasingly more difficult. Also, the number of interior facets required to subdivide non-planar faces, and the additional increase in the number of quadrature points for each facet, increases the computational cost greatly.

  10. An Optimal Order Nonnested Mixed Multigrid Method for Generalized Stokes Problems

    NASA Technical Reports Server (NTRS)

    Deng, Qingping

    1996-01-01

    A multigrid algorithm is developed and analyzed for generalized Stokes problems discretized by various nonnested mixed finite elements within a unified framework. It is abstractly proved by an element-independent analysis that the multigrid algorithm converges with an optimal order if there exists a 'good' prolongation operator. A technique to construct a 'good' prolongation operator for nonnested multilevel finite element spaces is proposed. Its basic idea is to introduce a sequence of auxiliary nested multilevel finite element spaces and define a prolongation operator as a composite operator of two single grid level operators. This makes not only the construction of a prolongation operator much easier (the final explicit forms of such prolongation operators are fairly simple), but the verification of the approximate properties for prolongation operators is also simplified. Finally, as an application, the framework and technique is applied to seven typical nonnested mixed finite elements.

  11. Traction free finite elements with the assumed stress hybrid model. M.S. Thesis, 1981

    NASA Technical Reports Server (NTRS)

    Kafie, Kurosh

    1991-01-01

    An effective approach in the finite element analysis of the stress field at the traction free boundary of a solid continuum was studied. Conventional displacement and assumed stress finite elements were used in the determination of stress concentrations around circular and elliptical holes. Specialized hybrid elements were then developed to improve the satisfaction of prescribed traction boundary conditions. Results of the stress analysis indicated that finite elements which exactly satisfy the free stress boundary conditions are the most accurate and efficient in such problems. A general approach for hybrid finite elements which incorporate traction free boundaries of arbitrary geometry was formulated.

  12. A staggered-grid finite-difference scheme optimized in the time–space domain for modeling scalar-wave propagation in geophysical problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Sirui, E-mail: siruitan@hotmail.com; Huang, Lianjie, E-mail: ljh@lanl.gov

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within amore » given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.« less

  13. Progress on a generalized coordinates tensor product finite element 3DPNS algorithm for subsonic

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Orzechowski, J. A.

    1983-01-01

    A generalized coordinates form of the penalty finite element algorithm for the 3-dimensional parabolic Navier-Stokes equations for turbulent subsonic flows was derived. This algorithm formulation requires only three distinct hypermatrices and is applicable using any boundary fitted coordinate transformation procedure. The tensor matrix product approximation to the Jacobian of the Newton linear algebra matrix statement was also derived. Tne Newton algorithm was restructured to replace large sparse matrix solution procedures with grid sweeping using alpha-block tridiagonal matrices, where alpha equals the number of dependent variables. Numerical experiments were conducted and the resultant data gives guidance on potentially preferred tensor product constructions for the penalty finite element 3DPNS algorithm.

  14. Plasticity - Theory and finite element applications.

    NASA Technical Reports Server (NTRS)

    Armen, H., Jr.; Levine, H. S.

    1972-01-01

    A unified presentation is given of the development and distinctions associated with various incremental solution procedures used to solve the equations governing the nonlinear behavior of structures, and this is discussed within the framework of the finite-element method. Although the primary emphasis here is on material nonlinearities, consideration is also given to geometric nonlinearities acting separately or in combination with nonlinear material behavior. The methods discussed here are applicable to a broad spectrum of structures, ranging from simple beams to general three-dimensional bodies. The finite-element analysis methods for material nonlinearity are general in the sense that any of the available plasticity theories can be incorporated to treat strain hardening or ideally plastic behavior.

  15. Fast Fourier transform-based solution of 2D and 3D magnetization problems in type-II superconductivity

    NASA Astrophysics Data System (ADS)

    Prigozhin, Leonid; Sokolovsky, Vladimir

    2018-05-01

    We consider the fast Fourier transform (FFT) based numerical method for thin film magnetization problems (Vestgården and Johansen 2012 Supercond. Sci. Technol. 25 104001), compare it with the finite element methods, and evaluate its accuracy. Proposed modifications of this method implementation ensure stable convergence of iterations and enhance its efficiency. A new method, also based on the FFT, is developed for 3D bulk magnetization problems. This method is based on a magnetic field formulation, different from the popular h-formulation of eddy current problems typically employed with the edge finite elements. The method is simple, easy to implement, and can be used with a general current–voltage relation; its efficiency is illustrated by numerical simulations.

  16. Magnetic Chern bands and triplon Hall effect in an extended Shastry-Sutherland model

    NASA Astrophysics Data System (ADS)

    Malki, M.; Schmidt, K. P.

    2017-05-01

    We study topological properties of one-triplon bands in an extended Shastry-Sutherland model relevant for the frustrated quantum magnet SrCu2(BO3)2 . To this end perturbative continuous unitary transformations are applied about the isolated dimer limit allowing us to calculate the one-triplon dispersion up to high order in various couplings including intra- and interdimer Dzyaloshinskii-Moriya interactions and a general uniform magnetic field. We determine the Berry curvature and the Chern number of the different one-triplon bands. We demonstrate the occurrence of Chern numbers ±1 and ±2 for the case that two components of the magnetic field are finite. Finally, we also calculate the triplon Hall effect arising at finite temperatures.

  17. Analysis of aircraft tires via semianalytic finite elements

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Kim, Kyun O.; Tanner, John A.

    1990-01-01

    A computational procedure is presented for the geometrically nonlinear analysis of aircraft tires. The tire was modeled by using a two-dimensional laminated anisotropic shell theory with the effects of variation in material and geometric parameters included. The four key elements of the procedure are: (1) semianalytic finite elements in which the shell variables are represented by Fourier series in the circumferential direction and piecewise polynomials in the meridional direction; (2) a mixed formulation with the fundamental unknowns consisting of strain parameters, stress-resultant parameters, and generalized displacements; (3) multilevel operator splitting to effect successive simplifications, and to uncouple the equations associated with different Fourier harmonics; and (4) multilevel iterative procedures and reduction techniques to generate the response of the shell.

  18. Electrodynamic multiple-scattering method for the simulation of optical trapping atop periodic metamaterials

    NASA Astrophysics Data System (ADS)

    Yannopapas, Vassilios; Paspalakis, Emmanuel

    2018-07-01

    We present a new theoretical tool for simulating optical trapping of nanoparticles in the presence of an arbitrary metamaterial design. The method is based on rigorously solving Maxwell's equations for the metamaterial via a hybrid discrete-dipole approximation/multiple-scattering technique and direct calculation of the optical force exerted on the nanoparticle by means of the Maxwell stress tensor. We apply the method to the case of a spherical polystyrene probe trapped within the optical landscape created by illuminating of a plasmonic metamaterial consisting of periodically arranged tapered metallic nanopyramids. The developed technique is ideally suited for general optomechanical calculations involving metamaterial designs and can compete with purely numerical methods such as finite-difference or finite-element schemes.

  19. Analysis of rotary engine combustion processes based on unsteady, three-dimensional computations

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Willis, E. A.

    1990-01-01

    A new computer code was developed for predicting the turbulent and chemically reacting flows with sprays occurring inside of a stratified charge rotary engine. The solution procedure is based on an Eulerian Lagrangian approach where the unsteady, three-dimensional Navier-Stokes equations for a perfect gas mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite volume, Steger-Warming flux vector splitting scheme, and the liquid phase equations are solved in Lagrangian coordinates. Both the details of the numerical algorithm and the finite difference predictions of the combustor flow field during the opening of exhaust and/or intake, and also during fuel vaporization and combustion, are presented.

  20. Analysis of rotary engine combustion processes based on unsteady, three-dimensional computations

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Willis, E. A.

    1989-01-01

    A new computer code was developed for predicting the turbulent, and chemically reacting flows with sprays occurring inside of a stratified charge rotary engine. The solution procedure is based on an Eulerian Lagrangian approach where the unsteady, 3-D Navier-Stokes equations for a perfect gas mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite volume, Steger-Warming flux vector splitting scheme, and the liquid phase equations are solved in Lagrangian coordinates. Both the details of the numerical algorithm and the finite difference predictions of the combustor flow field during the opening of exhaust and/or intake, and also during fuel vaporization and combustion, are presented.

  1. Suggested notation conventions for rotational seismology

    USGS Publications Warehouse

    Evans, J.R.

    2009-01-01

    We note substantial inconsistency among authors discussing rotational motions observed with inertial seismic sensors (and much more so in the broader topic of rotational phenomena). Working from physics and other precedents, we propose standard terminology and a preferred reference frame for inertial sensors (Fig. 1) that may be consistently used in discussions of both finite and infinitesimal observed rotational and translational motions in seismology and earthquake engineering. The scope of this article is limited to observations because there are significant differences in the analysis of finite and infinitesimal rotations, though such discussions should remain compatible with those presented here where possible. We recommend the general use of the notation conventions presented in this tutorial, and we recommend that any deviations or alternatives be explicitly defined.

  2. The P1-RKDG method for two-dimensional Euler equations of gas dynamics

    NASA Technical Reports Server (NTRS)

    Cockburn, Bernardo; Shu, Chi-Wang

    1991-01-01

    A class of nonlinearly stable Runge-Kutta local projection discontinuous Galerkin (RKDG) finite element methods for conservation laws is investigated. Two dimensional Euler equations for gas dynamics are solved using P1 elements. The generalization of the local projections, which for scalar nonlinear conservation laws was designed to satisfy a local maximum principle, to systems of conservation laws such as the Euler equations of gas dynamics using local characteristic decompositions is discussed. Numerical examples include the standard regular shock reflection problem, the forward facing step problem, and the double Mach reflection problem. These preliminary numerical examples are chosen to show the capacity of the approach to obtain nonlinearly stable results comparable with the modern nonoscillatory finite difference methods.

  3. A finite element-based algorithm for rubbing induced vibration prediction in rotors

    NASA Astrophysics Data System (ADS)

    Behzad, Mehdi; Alvandi, Mehdi; Mba, David; Jamali, Jalil

    2013-10-01

    In this paper, an algorithm is developed for more realistic investigation of rotor-to-stator rubbing vibration, based on finite element theory with unilateral contact and friction conditions. To model the rotor, cross sections are assumed to be radially rigid. A finite element discretization based on traditional beam theories which sufficiently accounts for axial and transversal flexibility of the rotor is used. A general finite element discretization model considering inertial and viscoelastic characteristics of the stator is used for modeling the stator. Therefore, for contact analysis, only the boundary of the stator is discretized. The contact problem is defined as the contact between the circular rigid cross section of the rotor and “nodes” of the stator only. Next, Gap function and contact conditions are described for the contact problem. Two finite element models of the rotor and the stator are coupled via the Lagrange multipliers method in order to obtain the constrained equation of motion. A case study of the partial rubbing is simulated using the algorithm. The synchronous and subsynchronous responses of the partial rubbing are obtained for different rotational speeds. In addition, a sensitivity analysis is carried out with respect to the initial clearance, the stator stiffness, the damping parameter, and the coefficient of friction. There is a good agreement between the result of this research and the experimental result in the literature.

  4. Validation of drift and diffusion coefficients from experimental data

    NASA Astrophysics Data System (ADS)

    Riera, R.; Anteneodo, C.

    2010-04-01

    Many fluctuation phenomena, in physics and other fields, can be modeled by Fokker-Planck or stochastic differential equations whose coefficients, associated with drift and diffusion components, may be estimated directly from the observed time series. Its correct characterization is crucial to determine the system quantifiers. However, due to the finite sampling rates of real data, the empirical estimates may significantly differ from their true functional forms. In the literature, low-order corrections, or even no corrections, have been applied to the finite-time estimates. A frequent outcome consists of linear drift and quadratic diffusion coefficients. For this case, exact corrections have been recently found, from Itô-Taylor expansions. Nevertheless, model validation constitutes a necessary step before determining and applying the appropriate corrections. Here, we exploit the consequences of the exact theoretical results obtained for the linear-quadratic model. In particular, we discuss whether the observed finite-time estimates are actually a manifestation of that model. The relevance of this analysis is put into evidence by its application to two contrasting real data examples in which finite-time linear drift and quadratic diffusion coefficients are observed. In one case the linear-quadratic model is readily rejected while in the other, although the model constitutes a very good approximation, low-order corrections are inappropriate. These examples give warning signs about the proper interpretation of finite-time analysis even in more general diffusion processes.

  5. 1 / f α noise and generalized diffusion in random Heisenberg spin systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Kartiek; Demler, Eugene; Martin, Ivar

    2015-11-01

    We study the “flux-noise” spectrum of random-bond quantum Heisenberg spin systems using a real-space renormalization group (RSRG) procedure that accounts for both the renormalization of the system Hamiltonian and of a generic probe that measures the noise. For spin chains, we find that the dynamical structure factor Sq (f ), at finite wave vector q, exhibits a power-law behavior both at high and low frequencies f , with exponents that are connected to one another and to an anomalous dynamical exponent through relations that differ at T = 0 and T =∞. The low-frequency power-law behavior of the structure factormore » is inherited by any generic probe with a finite bandwidth and is of the form 1/f α with 0.5 < α < 1. An analytical calculation of the structure factor, assuming a limiting distribution of the RG flow parameters (spin size, length, bond strength) confirms numerical findings.More generally, we demonstrate that this form of the structure factor, at high temperatures, is a manifestation of anomalous diffusionwhich directly follows from a generalized spin-diffusion propagator.We also argue that 1/f -noise is intimately connected to many-body-localization at finite temperatures. In two dimensions, the RG procedure is less reliable; however, it becomes convergent for quasi-one-dimensional geometries where we find that one-dimensional 1/f α behavior is recovered at low frequencies; the latter configurations are likely representative of paramagnetic spin networks that produce 1/f α noise in SQUIDs.« less

  6. Application of a trigonometric finite difference procedure to numerical analysis of compressive and shear buckling of orthotropic panels

    NASA Technical Reports Server (NTRS)

    Stein, M.; Housner, J. D.

    1978-01-01

    A numerical analysis developed for the buckling of rectangular orthotropic layered panels under combined shear and compression is described. This analysis uses a central finite difference procedure based on trigonometric functions instead of using the conventional finite differences which are based on polynomial functions. Inasmuch as the buckle mode shape is usually trigonometric in nature, the analysis using trigonometric finite differences can be made to exhibit a much faster convergence rate than that using conventional differences. Also, the trigonometric finite difference procedure leads to difference equations having the same form as conventional finite differences; thereby allowing available conventional finite difference formulations to be converted readily to trigonometric form. For two-dimensional problems, the procedure introduces two numerical parameters into the analysis. Engineering approaches for the selection of these parameters are presented and the analysis procedure is demonstrated by application to several isotropic and orthotropic panel buckling problems. Among these problems is the shear buckling of stiffened isotropic and filamentary composite panels in which the stiffener is broken. Results indicate that a break may degrade the effect of the stiffener to the extent that the panel will not carry much more load than if the stiffener were absent.

  7. Algebraic Bethe ansatz for the two species ASEP with different hopping rates

    NASA Astrophysics Data System (ADS)

    Cantini, Luigi

    2008-03-01

    An ASEP with two species of particles and different hopping rates is considered on a ring. Its integrability is proved, and the nested algebraic Bethe ansatz is used to derive the Bethe equations for states with arbitrary numbers of particles of each type, generalizing the results of Derrida and Evans [10]. We also present formulae for the total velocity of particles of a given type and their limit given the large size of the system and the finite densities of the particles.

  8. Convenient stability criteria for difference approximations of hyperbolic initial-boundary value problems

    NASA Technical Reports Server (NTRS)

    Goldberg, M.; Tadmor, E.

    1986-01-01

    The purpose of this paper is to achieve more versatile, convenient stability criteria for a wide class of finite-difference approximations to initial boundary value problems associated with the hyperbolic system u sub t = au sub x + Bu + f in the quarter-plane x greater than or equal to 0, t greater than or equal to 0. With these criteria, stability is easily established for a large number of examples, thus incorporating and generalizing many of the cases studied in recent literature.

  9. Stress Intensity Solutions of Thermally Induced Cracks in Combustor Liner Hot Spots Using Finite Element Analysis (FEA)

    DTIC Science & Technology

    2005-12-01

    EPFM elastic-plastic fracture mechanics FCG fatigue crack growth FEA finite element analysis FKN ANSYS FEA command for contact pair stiffness FTOLN...current TMF research is too general for thermal gradient applications . Moreover, the nature of a cyclically heated, localized region of higher...when separating this problem into the general engineering issues that are germane to the application , one can find much published research that is

  10. Finite-volume scheme for anisotropic diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Es, Bram van, E-mail: bramiozo@gmail.com; FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands"1; Koren, Barry

    In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.

  11. The Application of COMSOL Multiphysics Package on the Modelling of Complex 3-D Lithospheric Electrical Resistivity Structures - A Case Study from the Proterozoic Orogenic belt within the North China Craton

    NASA Astrophysics Data System (ADS)

    Guo, L.; Yin, Y.; Deng, M.; Guo, L.; Yan, J.

    2017-12-01

    At present, most magnetotelluric (MT) forward modelling and inversion codes are based on finite difference method. But its structured mesh gridding cannot be well adapted for the conditions with arbitrary topography or complex tectonic structures. By contrast, the finite element method is more accurate in calculating complex and irregular 3-D region and has lower requirement of function smoothness. However, the complexity of mesh gridding and limitation of computer capacity has been affecting its application. COMSOL Multiphysics is a cross-platform finite element analysis, solver and multiphysics full-coupling simulation software. It achieves highly accurate numerical simulations with high computational performance and outstanding multi-field bi-directional coupling analysis capability. In addition, its AC/DC and RF module can be used to easily calculate the electromagnetic responses of complex geological structures. Using the adaptive unstructured grid, the calculation is much faster. In order to improve the discretization technique of computing area, we use the combination of Matlab and COMSOL Multiphysics to establish a general procedure for calculating the MT responses for arbitrary resistivity models. The calculated responses include the surface electric and magnetic field components, impedance components, magnetic transfer functions and phase tensors. Then, the reliability of this procedure is certificated by 1-D, 2-D and 3-D and anisotropic forward modeling tests. Finally, we establish the 3-D lithospheric resistivity model for the Proterozoic Wutai-Hengshan Mts. within the North China Craton by fitting the real MT data collected there. The reliability of the model is also verified by induced vectors and phase tensors. Our model shows more details and better resolution, compared with the previously published 3-D model based on the finite difference method. In conclusion, COMSOL Multiphysics package is suitable for modeling the 3-D lithospheric resistivity structures under complex tectonic deformation backgrounds, which could be a good complement to the existing finite-difference inversion algorithms.

  12. The Benard problem: A comparison of finite difference and spectral collocation eigen value solutions

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee; Mccaughan, Frances E.; Fitzmaurice, Nessan

    1995-01-01

    The application of spectral methods, using a Chebyshev collocation scheme, to solve hydrodynamic stability problems is demonstrated on the Benard problem. Implementation of the Chebyshev collocation formulation is described. The performance of the spectral scheme is compared with that of a 2nd order finite difference scheme. An exact solution to the Marangoni-Benard problem is used to evaluate the performance of both schemes. The error of the spectral scheme is at least seven orders of magnitude smaller than finite difference error for a grid resolution of N = 15 (number of points used). The performance of the spectral formulation far exceeded the performance of the finite difference formulation for this problem. The spectral scheme required only slightly more effort to set up than the 2nd order finite difference scheme. This suggests that the spectral scheme may actually be faster to implement than higher order finite difference schemes.

  13. Mixture models in diagnostic meta-analyses--clustering summary receiver operating characteristic curves accounted for heterogeneity and correlation.

    PubMed

    Schlattmann, Peter; Verba, Maryna; Dewey, Marc; Walther, Mario

    2015-01-01

    Bivariate linear and generalized linear random effects are frequently used to perform a diagnostic meta-analysis. The objective of this article was to apply a finite mixture model of bivariate normal distributions that can be used for the construction of componentwise summary receiver operating characteristic (sROC) curves. Bivariate linear random effects and a bivariate finite mixture model are used. The latter model is developed as an extension of a univariate finite mixture model. Two examples, computed tomography (CT) angiography for ruling out coronary artery disease and procalcitonin as a diagnostic marker for sepsis, are used to estimate mean sensitivity and mean specificity and to construct sROC curves. The suggested approach of a bivariate finite mixture model identifies two latent classes of diagnostic accuracy for the CT angiography example. Both classes show high sensitivity but mainly two different levels of specificity. For the procalcitonin example, this approach identifies three latent classes of diagnostic accuracy. Here, sensitivities and specificities are quite different as such that sensitivity increases with decreasing specificity. Additionally, the model is used to construct componentwise sROC curves and to classify individual studies. The proposed method offers an alternative approach to model between-study heterogeneity in a diagnostic meta-analysis. Furthermore, it is possible to construct sROC curves even if a positive correlation between sensitivity and specificity is present. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Nonlinear Problems in Fluid Dynamics and Inverse Scattering

    DTIC Science & Technology

    1993-05-31

    nonlinear Kadomtsev - Petviashvili (KP) equations , have solutions which will become infinite in finite time. This phenomenon is sometimes referred to as...40 (November 1992). 4 7. Wave Collapse and Instability of Solitary Waves of a Generalized Nonlinear Kaoiomtsev- Petviashvili Equation , X.P. Wang, M.J...words) The inverse scattering of a class of differential-difference equations and multidimensional operators has been constructed. Solutions of nonlinear

  15. Numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses.

    PubMed

    Sarifuddin; Chakravarty, S; Mandal, P K; Layek, G C

    2008-01-01

    An updated numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses is developed. A shear-thinning fluid modelling the deformation dependent viscosity of blood is considered for the characterization of generalized Newtonian behaviour of blood. The arterial model is treated as two-dimensional and axisymmetric with an outline of the stenosis obtained from a three-dimensional casting of a mildly stenosed artery. The full Navier-Stokes equations governing blood flow are written in the dimensionless form and the solution is accomplished by finite time-step advancement through their finite difference staggered grid representations. The marker and cell (MAC) method comprising the use of a set of marker particles moving with the fluid is used for the purpose. Results are obtained for three differently shaped stenoses - irregular, smooth and cosine curve representations. The present results do agree well with those of existing investigations in the steady state, but contrary to their conclusions the present findings demonstrate that the excess pressure drop across the cosine and the smooth stenoses is caused by neither their smoothness nor their higher degree of symmetry relative to the irregular stenosis, but is rather an effect of area cover with respect to the irregular stenosis. This effect clearly prevails throughout the entire physiological range of Reynolds numbers. Further the in-depth study in flow patterns reveals the development of flow separation zones in the diverging part of the stenosis towards the arterial wall, and they are influenced by non-Newtonian blood rheology, distensibility of the wall and flow unsteadiness in order to validate the applicability of the present model.

  16. Irreducible representations of finitely generated nilpotent groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beloshapka, I V; Gorchinskiy, S O

    2016-01-31

    We prove that irreducible complex representations of finitely generated nilpotent groups are monomial if and only if they have finite weight, which was conjectured by Parshin. Note that we consider (possibly infinite-dimensional) representations without any topological structure. In addition, we prove that for certain induced representations, irreducibility is implied by Schur irreducibility. Both results are obtained in a more general form for representations over an arbitrary field. Bibliography: 21 titles.

  17. The principle of finiteness - a guideline for physical laws

    NASA Astrophysics Data System (ADS)

    Sternlieb, Abraham

    2013-04-01

    I propose a new principle in physics-the principle of finiteness (FP). It stems from the definition of physics as a science that deals with measurable dimensional physical quantities. Since measurement results including their errors, are always finite, FP postulates that the mathematical formulation of legitimate laws in physics should prevent exactly zero or infinite solutions. I propose finiteness as a postulate, as opposed to a statement whose validity has to be corroborated by, or derived theoretically or experimentally from other facts, theories or principles. Some consequences of FP are discussed, first in general, and then more specifically in the fields of special relativity, quantum mechanics, and quantum gravity. The corrected Lorentz transformations include an additional translation term depending on the minimum length epsilon. The relativistic gamma is replaced by a corrected gamma, that is finite for v=c. To comply with FP, physical laws should include the relevant extremum finite values in their mathematical formulation. An important prediction of FP is that there is a maximum attainable relativistic mass/energy which is the same for all subatomic particles, meaning that there is a maximum theoretical value for cosmic rays energy. The Generalized Uncertainty Principle required by Quantum Gravity is actually a necessary consequence of FP at Planck's scale. Therefore, FP may possibly contribute to the axiomatic foundation of Quantum Gravity.

  18. Generalized heat-transport equations: parabolic and hyperbolic models

    NASA Astrophysics Data System (ADS)

    Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio

    2018-03-01

    We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.

  19. Possible microplate generation at RRR triple junctions due to the non-circular finite motion of plates relative to each other

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.

    2012-12-01

    First generation ideas of the kinematic stability of triple junctions lead to the common belief that the geometry of ridge-ridge-ridge (RRR) triple junctions remains constant over time under conditions of symmetric spreading. Given constant relative motion between each plate pair -- that is, the pole of plate relative motion is fixed to both plates in each pair during finite motion, as assumed in many accounts of plate kinematics -- there would be no boundary mismatch at the triple junction and no apparent kinematic reason why a microplate might develop there. But if, in a given RRR triple junction, the finite motion of one plate as observed from the other plate is not circular (as is generally the case, given the three-plate problem of plate kinematics), the geometry of the ridges and the triple junction will vary with time (Cronin, 1992, Tectonophys 207, 287-301). To explore the possible consequences of non-circular finite motion between plates at an RRR triple junction, a simple model was coded based on the cycloid finite-motion model (e.g., Cronin, 1987, Geology 15, 1006-1009) using NNR-MORVEL56 velocities for individual plates (Argus et al., 2011, G3 12, doi: 10.1029/2011GC003751). Initial assumptions include a spherical Earth, symmetric spreading, and constant angular velocities during the modeled finite time interval. The assumed-constant angular velocity vectors constitute a reference frame for observing finite plate motion. Typical results are [1] that the triple junction migrates relative to a coordinate system fixed to the angular-velocity vectors, [2] ridge axes rotates relative to each other, and [3] a boundary mismatch develops at the synthetic triple junction that might result in microplate nucleation. In a model simulating the Galapagos triple junction between the Cocos, Nazca and Pacific plates whose initial state did not include the Galapagos microplate, the mismatch gap was as much as ~3.4 km during 3 Myr of model displacement (see figure). The centroid of the synthetic triple junction translates ~81 km toward azimuth ~352° in 3 Myr. Of course, the details will vary as different angular velocity vectors are used; however, modeling indicates that non-circular finite relative motion between adjacent plates generally results in boundary mismatches and rotation of ridge segments relative to each other at RRR triple junctions. Left: synthetic Galapagos triple junction at initial model time, without a microplate. Right: synthetic triple junction after 3 Myr displacement, illustrating the resulting boundary mismatch (gap) and rotated ridge axes.

  20. Conservative properties of finite difference schemes for incompressible flow

    NASA Technical Reports Server (NTRS)

    Morinishi, Youhei

    1995-01-01

    The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). In this report, conservation properties of the continuity, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discretized equations. Existing finite difference schemes in staggered grid systems are checked for satisfaction of the requirements. Proper higher order accurate finite difference schemes in a staggered grid system are then proposed. Plane channel flow is simulated using the proposed fourth order accurate finite difference scheme and the results compared with those of the second order accurate Harlow and Welch algorithm.

  1. A finite element procedure for radio-frequency sheath–plasma interactions based on a sheath impedance model

    DOE PAGES

    Kohno, H.; Myra, J. R.

    2017-07-24

    A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less

  2. A finite element procedure for radio-frequency sheath–plasma interactions based on a sheath impedance model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohno, H.; Myra, J. R.

    A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less

  3. Finite elements of nonlinear continua.

    NASA Technical Reports Server (NTRS)

    Oden, J. T.

    1972-01-01

    The finite element method is extended to a broad class of practical nonlinear problems, treating both theory and applications from a general and unifying point of view. The thermomechanical principles of continuous media and the properties of the finite element method are outlined, and are brought together to produce discrete physical models of nonlinear continua. The mathematical properties of the models are analyzed, and the numerical solution of the equations governing the discrete models is examined. The application of the models to nonlinear problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity is discussed. Other specific topics include the topological properties of finite element models, applications to linear and nonlinear boundary value problems, convergence, continuum thermodynamics, finite elasticity, solutions to nonlinear partial differential equations, and discrete models of the nonlinear thermomechanical behavior of dissipative media.

  4. Meshfree simulation of avalanches with the Finite Pointset Method (FPM)

    NASA Astrophysics Data System (ADS)

    Michel, Isabel; Kuhnert, Jörg; Kolymbas, Dimitrios

    2017-04-01

    Meshfree methods are the numerical method of choice in case of applications which are characterized by strong deformations in conjunction with free surfaces or phase boundaries. In the past the meshfree Finite Pointset Method (FPM) developed by Fraunhofer ITWM (Kaiserslautern, Germany) has been successfully applied to problems in computational fluid dynamics such as water crossing of cars, water turbines, and hydraulic valves. Most recently the simulation of granular flows, e.g. soil interaction with cars (rollover), has also been tackled. This advancement is the basis for the simulation of avalanches. Due to the generalized finite difference formulation in FPM, the implementation of different material models is quite simple. We will demonstrate 3D simulations of avalanches based on the Drucker-Prager yield criterion as well as the nonlinear barodesy model. The barodesy model (Division of Geotechnical and Tunnel Engineering, University of Innsbruck, Austria) describes the mechanical behavior of soil by an evolution equation for the stress tensor. The key feature of successful and realistic simulations of avalanches - apart from the numerical approximation of the occurring differential operators - is the choice of the boundary conditions (slip, no-slip, friction) between the different phases of the flow as well as the geometry. We will discuss their influences for simplified one- and two-phase flow examples. This research is funded by the German Research Foundation (DFG) and the FWF Austrian Science Fund.

  5. Finite element structural redesign by large admissible perturbations

    NASA Technical Reports Server (NTRS)

    Bernitsas, Michael M.; Beyko, E.; Rim, C. W.; Alzahabi, B.

    1991-01-01

    In structural redesign, two structural states are involved; the baseline (known) State S1 with unacceptable performance, and the objective (unknown) State S2 with given performance specifications. The difference between the two states in performance and design variables may be as high as 100 percent or more depending on the scale of the structure. A Perturbation Approach to Redesign (PAR) is presented to relate any two structural states S1 and S2 that are modeled by the same finite element model and represented by different values of the design variables. General perturbation equations are derived expressing implicitly the natural frequencies, dynamic modes, static deflections, static stresses, Euler buckling loads, and buckling modes of the objective S2 in terms of its performance specifications, and S1 data and Finite Element Analysis (FEA) results. Large Admissible Perturbation (LEAP) algorithms are implemented in code RESTRUCT to define the objective S2 incrementally without trial and error by postprocessing FEA results of S1 with no additional FEAs. Systematic numerical applications in redesign of a 10 element 48 degree of freedom (dof) beam, a 104 element 192 dof offshore tower, a 64 element 216 dof plate, and a 144 element 896 dof cylindrical shell show the accuracy, efficiency, and potential of PAR to find an objective state that may differ 100 percent from the baseline design.

  6. Robust integration schemes for generalized viscoplasticity with internal-state variables. Part 2: Algorithmic developments and implementation

    NASA Technical Reports Server (NTRS)

    Li, Wei; Saleeb, Atef F.

    1995-01-01

    This two-part report is concerned with the development of a general framework for the implicit time-stepping integrators for the flow and evolution equations in generalized viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its finite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, the general framework is developed on the basis of the unconditionally-stable, backward-Euler difference scheme as a starting point. Its mathematical structure is of sufficient generality to allow a unified treatment of different classes of viscoplastic models with internal variables. In particular, two specific models of this type, which are representative of the present start-of-art in metal viscoplasticity, are considered in applications reported here; i.e., fully associative (GVIPS) and non-associative (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in general (three-dimensional) situations as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to efficiency and robustness are emphasized in developing the (local) interative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiffness arrays are given explicitly for both GVIPS and NAV models, with their maximum sizes 'optimized' to depend only on the number of independent stress components (but independent of the number of viscoplastic internal state parameters). Significant robustness of the local iterative solution is provided by complementing the basic Newton-Raphson scheme with a line-search strategy for convergence. In the present second part of the report, we focus on the specific details of the numerical schemes, and associated computer algorithms, for the finite-element implementation of GVIPS and NAV models.

  7. A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Tayebi, A.; Shekari, Y.; Heydari, M. H.

    2017-07-01

    Several physical phenomena such as transformation of pollutants, energy, particles and many others can be described by the well-known convection-diffusion equation which is a combination of the diffusion and advection equations. In this paper, this equation is generalized with the concept of variable-order fractional derivatives. The generalized equation is called variable-order time fractional advection-diffusion equation (V-OTFA-DE). An accurate and robust meshless method based on the moving least squares (MLS) approximation and the finite difference scheme is proposed for its numerical solution on two-dimensional (2-D) arbitrary domains. In the time domain, the finite difference technique with a θ-weighted scheme and in the space domain, the MLS approximation are employed to obtain appropriate semi-discrete solutions. Since the newly developed method is a meshless approach, it does not require any background mesh structure to obtain semi-discrete solutions of the problem under consideration, and the numerical solutions are constructed entirely based on a set of scattered nodes. The proposed method is validated in solving three different examples including two benchmark problems and an applied problem of pollutant distribution in the atmosphere. In all such cases, the obtained results show that the proposed method is very accurate and robust. Moreover, a remarkable property so-called positive scheme for the proposed method is observed in solving concentration transport phenomena.

  8. General rules for incorporating noble metal nanoparticles in organic solar cells

    NASA Astrophysics Data System (ADS)

    Ciesielski, A.; Switlik, D.; Szoplik, T.

    2017-05-01

    Over the recent years, the influence of the addition of noble metal nanoparticles (Au, Ag, Al, Cu) into the bulk heterojunction (BHJ) solar cells on their efficiency of visible sunlight absorption has been excessively studied. However, several detailed studies were focused on compounds with similar chemical structure, and thus similar optical and electric properties. Such approach provides little help when it comes to admixing metallic nanoparticles into new compound families with different properties. Moreover, theoretical approaches frequently tend to neglect the fact, that nanoparticles have different dispersion relation than bulk material, which may lead to false conclusions. In this work, we consider additional dispersion modes in the metal permittivity due to finite size of the nanoparticles. We use Maxwell-Garnet effective medium approach (EMA), combined with the transfer matrix method, as well as finite-difference time-domain (FDTD) simulations, to create a set of general rules for incorporating noble metal nanoparticles into the active layer. These principles, based on assumed basic properties of the active layer (e.g. real and imaginary part of refractive index, thickness) provide optimal material, size spectrum and fill factor of nanoparticle inclusions in order to ensure the best absorption enhancement. Our results show, that the optimal concentrations for silver nanoparticles are about 50% greater than those determined without taking into account additional components in the permittivity of the metal.

  9. Development and verification of global/local analysis techniques for laminated composites

    NASA Technical Reports Server (NTRS)

    Thompson, Danniella Muheim; Griffin, O. Hayden, Jr.

    1991-01-01

    A two-dimensional to three-dimensional global/local finite element approach was developed, verified, and applied to a laminated composite plate of finite width and length containing a central circular hole. The resulting stress fields for axial compression loads were examined for several symmetric stacking sequences and hole sizes. Verification was based on comparison of the displacements and the stress fields with those accepted trends from previous free edge investigations and a complete three-dimensional finite element solution of the plate. The laminates in the compression study included symmetric cross-ply, angle-ply and quasi-isotropic stacking sequences. The entire plate was selected as the global model and analyzed with two-dimensional finite elements. Displacements along a region identified as the global/local interface were applied in a kinematically consistent fashion to independent three-dimensional local models. Local areas of interest in the plate included a portion of the straight free edge near the hole, and the immediate area around the hole. Interlaminar stress results obtained from the global/local analyses compares well with previously reported trends, and some new conclusions about interlaminar stress fields in plates with different laminate orientations and hole sizes are presented for compressive loading. The effectiveness of the global/local procedure in reducing the computational effort required to solve these problems is clearly demonstrated through examination of the computer time required to formulate and solve the linear, static system of equations which result for the global and local analyses to those required for a complete three-dimensional formulation for a cross-ply laminate. Specific processors used during the analyses are described in general terms. The application of this global/local technique is not limited software system, and was developed and described in as general a manner as possible.

  10. Practical aspects of prestack depth migration with finite differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ober, C.C.; Oldfield, R.A.; Womble, D.E.

    1997-07-01

    Finite-difference, prestack, depth migrations offers significant improvements over Kirchhoff methods in imaging near or under salt structures. The authors have implemented a finite-difference prestack depth migration algorithm for use on massively parallel computers which is discussed. The image quality of the finite-difference scheme has been investigated and suggested improvements are discussed. In this presentation, the authors discuss an implicit finite difference migration code, called Salvo, that has been developed through an ACTI (Advanced Computational Technology Initiative) joint project. This code is designed to be efficient on a variety of massively parallel computers. It takes advantage of both frequency and spatialmore » parallelism as well as the use of nodes dedicated to data input/output (I/O). Besides giving an overview of the finite-difference algorithm and some of the parallelism techniques used, migration results using both Kirchhoff and finite-difference migration will be presented and compared. The authors start out with a very simple Cartoon model where one can intuitively see the multiple travel paths and some of the potential problems that will be encountered with Kirchhoff migration. More complex synthetic models as well as results from actual seismic data from the Gulf of Mexico will be shown.« less

  11. A three-dimensional multiphase flow model for assessing NAPL contamination in porous and fractured media, 2. Porous medium simulation examples

    NASA Astrophysics Data System (ADS)

    Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Springer, E. P.

    1994-06-01

    This paper discusses the verification and application of the three-dimensional (3-D) multiphase flow model presented by Huyakorn et al. (Part 1 in this issue) for assessing contamination due to subsurface releases of non-aqueous-phase liquids (NAPL's). Attention is focussed on situations involving one-, two- and three-dimensional flow through porous media. The model formulations and numerical schemes are tested for highly nonlinear field conditions. The utility and accuracy of various simplifications to certain simulation scenarios are assessed. Five simulation examples are included for demonstrative purposes. The first example verifies the model for vertical flow and compares the performance of the fully three-phase and the passive-air-phase formulations. Air-phase boundary conditions are noted to have considerable effects on simulation results. The second example verifies the model for cross-sectional analyses involving LNAPL and DNAPL migration. Finite-difference (5-point) and finite-element (9-point) spatial approximations are compared for different grid aspect ratios. Unless corrected, negative-transmissivity conditions were found to have undesirable impact on the finite-element solutions. The third example provides a model validation against laboratory experimental data on 5-spot water-flood treatment of oil reservoirs. The sensitivity to grid orientation is noted for the finite-difference schemes. The fourth example demonstrates model utility in characterizing the 3-D migration of LNAPL and DNAPL from surface sources. The final example present a modeling study of air sparging. Critical parameters affecting the performance of air-sparging system are examined. In general, the modeling results indicate sparging is more effective in water-retentive soils, and larger values of sparge influence radius may be achieved for certain anisotropic conditions.

  12. Metriplectic integrators for the Landau collision operator

    DOE PAGES

    Kraus, Michael; Hirvijoki, Eero

    2017-10-02

    Here, we present a novel framework for addressing the nonlinear Landau collision integral in terms of finite element and other subspace projection methods. We employ the underlying metriplectic structure of the Landau collision integral and, using a Galerkin discretization for the velocity space, we transform the infinite-dimensional system into a finite-dimensional, time-continuous metriplectic system. Temporal discretization is accomplished using the concept of discrete gradients. The conservation of energy, momentum, and particle densities, as well as the production of entropy is demonstrated algebraically for the fully discrete system. Due to the generality of our approach, the conservation properties and the monotonicmore » behavior of entropy are guaranteed for finite element discretizations, in general, independently of the mesh configuration.« less

  13. Implementation of Finite Rate Chemistry Capability in OVERFLOW

    NASA Technical Reports Server (NTRS)

    Olsen, M. E.; Venkateswaran, S.; Prabhu, D. K.

    2004-01-01

    An implementation of both finite rate and equilibrium chemistry have been completed for the OVERFLOW code, a chimera capable, complex geometry flow code widely used to predict transonic flow fields. The implementation builds on the computational efficiency and geometric generality of the solver.

  14. Finite-Difference Solutions for Compressible Laminar Boundary-Layer Flows of a Dusty Gas over a Semi-Infinite Flat Plate.

    DTIC Science & Technology

    1986-08-01

    AD-A174 952 FINITE - DIFFERENCE SOLUTIONS FOR CONPRESSIBLE LANINAR 1/2 BOUNDARY-LAYER FLOUS (U) TORONTO UNIV DOWNSVIEW (ONTARIO) INST FOR AEROSPACE...dilute dusty gas over a semi-infinite flat plate. Details are given of the impliit finite , difference schemes as well as the boundary conditions... FINITE - DIFFERENCE SOLUTIONS FOR COMPRESSIBLE LAMINAR BOUNDARY-LAYER FLOWS OF A DUSTY GAS OVER A SEMI-INFINITE FLAT PLATE by B. Y. Wang and I. I

  15. Generalized analytical solutions to sequentially coupled multi-species advective-dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition

    NASA Astrophysics Data System (ADS)

    Chen, Jui-Sheng; Liu, Chen-Wuing; Liang, Ching-Ping; Lai, Keng-Hsin

    2012-08-01

    SummaryMulti-species advective-dispersive transport equations sequentially coupled with first-order decay reactions are widely used to describe the transport and fate of the decay chain contaminants such as radionuclide, chlorinated solvents, and nitrogen. Although researchers attempted to present various types of methods for analytically solving this transport equation system, the currently available solutions are mostly limited to an infinite or a semi-infinite domain. A generalized analytical solution for the coupled multi-species transport problem in a finite domain associated with an arbitrary time-dependent source boundary is not available in the published literature. In this study, we first derive generalized analytical solutions for this transport problem in a finite domain involving arbitrary number of species subject to an arbitrary time-dependent source boundary. Subsequently, we adopt these derived generalized analytical solutions to obtain explicit analytical solutions for a special-case transport scenario involving an exponentially decaying Bateman type time-dependent source boundary. We test the derived special-case solutions against the previously published coupled 4-species transport solution and the corresponding numerical solution with coupled 10-species transport to conduct the solution verification. Finally, we compare the new analytical solutions derived for a finite domain against the published analytical solutions derived for a semi-infinite domain to illustrate the effect of the exit boundary condition on coupled multi-species transport with an exponential decaying source boundary. The results show noticeable discrepancies between the breakthrough curves of all the species in the immediate vicinity of the exit boundary obtained from the analytical solutions for a finite domain and a semi-infinite domain for the dispersion-dominated condition.

  16. Finite Mathematics and Discrete Mathematics: Is There a Difference?

    ERIC Educational Resources Information Center

    Johnson, Marvin L.

    Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…

  17. Structural optimization by generalized, multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; James, B. B.; Riley, M. F.

    1985-01-01

    The developments toward a general multilevel optimization capability and results for a three-level structural optimization are described. The method partitions a structure into a number of substructuring levels where each substructure corresponds to a subsystem in the general case of an engineering system. The method is illustrated by a portal framework that decomposes into individual beams. Each beam is a box that can be further decomposed into stiffened plates. Substructuring for this example spans three different levels: (1) the bottom level of finite elements representing the plates; (2) an intermediate level of beams treated as substructures; and (3) the top level for the assembled structure. The three-level case is now considered to be qualitatively complete.

  18. Improved methods of vibration analysis of pretwisted, airfoil blades

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1984-01-01

    Vibration analysis of pretwisted blades of asymmetric airfoil cross section is performed by using two mixed variational approaches. Numerical results obtained from these two methods are compared to those obtained from an improved finite difference method and also to those given by the ordinary finite difference method. The relative merits, convergence properties and accuracies of all four methods are studied and discussed. The effects of asymmetry and pretwist on natural frequencies and mode shapes are investigated. The improved finite difference method is shown to be far superior to the conventional finite difference method in several respects. Close lower bound solutions are provided by the improved finite difference method for untwisted blades with a relatively coarse mesh while the mixed methods have not indicated any specific bound.

  19. A weak Galerkin least-squares finite element method for div-curl systems

    NASA Astrophysics Data System (ADS)

    Li, Jichun; Ye, Xiu; Zhang, Shangyou

    2018-06-01

    In this paper, we introduce a weak Galerkin least-squares method for solving div-curl problem. This finite element method leads to a symmetric positive definite system and has the flexibility to work with general meshes such as hybrid mesh, polytopal mesh and mesh with hanging nodes. Error estimates of the finite element solution are derived. The numerical examples demonstrate the robustness and flexibility of the proposed method.

  20. Improving sub-grid scale accuracy of boundary features in regional finite-difference models

    USGS Publications Warehouse

    Panday, Sorab; Langevin, Christian D.

    2012-01-01

    As an alternative to grid refinement, the concept of a ghost node, which was developed for nested grid applications, has been extended towards improving sub-grid scale accuracy of flow to conduits, wells, rivers or other boundary features that interact with a finite-difference groundwater flow model. The formulation is presented for correcting the regular finite-difference groundwater flow equations for confined and unconfined cases, with or without Newton Raphson linearization of the nonlinearities, to include the Ghost Node Correction (GNC) for location displacement. The correction may be applied on the right-hand side vector for a symmetric finite-difference Picard implementation, or on the left-hand side matrix for an implicit but asymmetric implementation. The finite-difference matrix connectivity structure may be maintained for an implicit implementation by only selecting contributing nodes that are a part of the finite-difference connectivity. Proof of concept example problems are provided to demonstrate the improved accuracy that may be achieved through sub-grid scale corrections using the GNC schemes.

  1. Spray Combustion Modeling with VOF and Finite-Rate Chemistry

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Liaw, Paul; Wang, Ten-See

    1996-01-01

    A spray atomization and combustion model is developed based on the volume-of-fluid (VOF) transport equation with finite-rate chemistry model. The gas-liquid interface mass, momentum and energy conservation laws are modeled by continuum surface force mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed range flows. The objectives of the present study are: (1) to develop and verify the fractional volume-of-fluid (VOF) cell partitioning approach into a predictor-corrector algorithm to deal with multiphase (gas-liquid) free surface flow problems; (2) to implement the developed unified algorithm in a general purpose computational fluid dynamics (CFD) code, Finite Difference Navier-Stokes (FDNS), with droplet dynamics and finite-rate chemistry models; and (3) to demonstrate the effectiveness of the present approach by simulating benchmark problems of jet breakup/spray atomization and combustion. Modeling multiphase fluid flows poses a significant challenge because a required boundary must be applied to a transient, irregular surface that is discontinuous, and the flow regimes considered can range from incompressible to highspeed compressible flows. The flow-process modeling is further complicated by surface tension, interfacial heat and mass transfer, spray formation and turbulence, and their interactions. The major contribution of the present method is to combine the novel feature of the Volume of Fluid (VOF) method and the Eulerian/Lagrangian method into a unified algorithm for efficient noniterative, time-accurate calculations of multiphase free surface flows valid at all speeds. The proposed method reformulated the VOF equation to strongly couple two distinct phases (liquid and gas), and tracks droplets on a Lagrangian frame when spray model is required, using a unified predictor-corrector technique to account for the non-linear linkages through the convective contributions of VOF. The discontinuities within the sharp interface will be modeled as a volume force to avoid stiffness. Formations of droplets, tracking of droplet dynamics and modeling of the droplet breakup/evaporation, are handled through the same unified predictor-corrector procedure. Thus the new algorithm is non-iterative and is flexible for general geometries with arbitrarily complex topology in free surfaces. The FDNS finite-difference Navier-Stokes code is employed as the baseline of the current development. Benchmark test cases of shear coaxial LOX/H2 liquid jet with atomization/combustion and impinging jet test cases are investigated in the present work. Preliminary data comparisons show good qualitative agreement between data and the present analysis. It is indicative from these results that the present method has great potential to become a general engineering design analysis and diagnostics tool for problems involving spray combustion.

  2. General framework for dynamic large deformation contact problems based on phantom-node X-FEM

    NASA Astrophysics Data System (ADS)

    Broumand, P.; Khoei, A. R.

    2018-04-01

    This paper presents a general framework for modeling dynamic large deformation contact-impact problems based on the phantom-node extended finite element method. The large sliding penalty contact formulation is presented based on a master-slave approach which is implemented within the phantom-node X-FEM and an explicit central difference scheme is used to model the inertial effects. The method is compared with conventional contact X-FEM; advantages, limitations and implementational aspects are also addressed. Several numerical examples are presented to show the robustness and accuracy of the proposed method.

  3. Summation by parts, projections, and stability

    NASA Technical Reports Server (NTRS)

    Olsson, Pelle

    1993-01-01

    We have derived stability results for high-order finite difference approximations of mixed hyperbolic-parabolic initial-boundary value problems (IBVP). The results are obtained using summation by parts and a new way of representing general linear boundary conditions as an orthogonal projection. By slightly rearranging the analytic equations, we can prove strict stability for hyperbolic-parabolic IBVP. Furthermore, we generalize our technique so as to yield strict stability on curvilinear non-smooth domains in two space dimensions. Finally, we show how to incorporate inhomogeneous boundary data while retaining strict stability. Using the same procedure one can prove strict stability in higher dimensions as well.

  4. Rheological Models in the Time-Domain Modeling of Seismic Motion

    NASA Astrophysics Data System (ADS)

    Moczo, P.; Kristek, J.

    2004-12-01

    The time-domain stress-strain relation in a viscoelastic medium has a form of the convolutory integral which is numerically intractable. This was the reason for the oversimplified models of attenuation in the time-domain seismic wave propagation and earthquake motion modeling. In their pioneering work, Day and Minster (1984) showed the way how to convert the integral into numerically tractable differential form in the case of a general viscoelastic modulus. In response to the work by Day and Minster, Emmerich and Korn (1987) suggested using the rheology of their generalized Maxwell body (GMB) while Carcione et al. (1988) suggested using the generalized Zener body (GZB). The viscoelastic moduli of both rheological models have a form of the rational function and thus the differential form of the stress-strain relation is rather easy to obtain. After the papers by Emmerich and Korn and Carcione et al. numerical modelers decided either for the GMB or GZB rheology and developed 'non-communicating' algorithms. In the many following papers the authors using the GMB never commented the GZB rheology and the corresponding algorithms, and the authors using the GZB never related their methods to the GMB rheology and algorithms. We analyze and compare both rheologies and the corresponding incorporations of the realistic attenuation into the time-domain computations. We then focus on the most recent staggered-grid finite-difference modeling, mainly on accounting for the material heterogeneity in the viscoelastic media, and the computational efficiency of the finite-difference algorithms.

  5. Plasma Theory and Simulation

    DTIC Science & Technology

    1988-06-30

    equation using finite difference methods. The distribution function is represented by a large number of particles. The particle’s velocities change as a...Small angle Coulomb collisions The FP equation for describing small angle Coulomb collisions can be solved numerically using finite difference techniques...A finite Fourrier transform (FT) is made in z, then we can solve for each k using the following finite difference scheme [5]: 2{r 1 +l1 2 (,,+ 1 - fj

  6. On Maximal Subalgebras and the Hypercentre of Lie Algebras.

    ERIC Educational Resources Information Center

    Honda, Masanobu

    1997-01-01

    Derives two sufficient conditions for a finitely generated Lie algebra to have the nilpotent hypercenter. Presents a relatively large class of generalized soluble Lie algebras. Proves that if a finitely generated Lie algebra has a nilpotent maximal subalgebra, the Fitting radical is nilpotent. (DDR)

  7. Robot Path Planning in Uncertain Environments: A Language-Measure-Theoretic Approach

    DTIC Science & Technology

    2015-03-01

    in the framework of probabilistic finite state automata (PFSA) and language measure from a control-theoretic perspective. The proposed concept has been...DOI: 10.1115/1.4027876] Keywords: path planning, language measure, probabilistic finite state automata 1 Motivation and Introduction In general

  8. Spurious Solutions Of Nonlinear Differential Equations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1992-01-01

    Report utilizes nonlinear-dynamics approach to investigate possible sources of errors and slow convergence and non-convergence of steady-state numerical solutions when using time-dependent approach for problems containing nonlinear source terms. Emphasizes implications for development of algorithms in CFD and computational sciences in general. Main fundamental conclusion of study is that qualitative features of nonlinear differential equations cannot be adequately represented by finite-difference method and vice versa.

  9. Advection and Taylor-Aris dispersion in rivulet flow

    NASA Astrophysics Data System (ADS)

    Al Mukahal, F. H. H.; Duffy, B. R.; Wilson, S. K.

    2017-11-01

    Motivated by the need for a better understanding of the transport of solutes in microfluidic flows with free surfaces, the advection and dispersion of a passive solute in steady unidirectional flow of a thin uniform rivulet on an inclined planar substrate driven by gravity and/or a uniform longitudinal surface shear stress are analysed. Firstly, we describe the short-time advection of both an initially semi-infinite and an initially finite slug of solute of uniform concentration. Secondly, we describe the long-time Taylor-Aris dispersion of an initially finite slug of solute. In particular, we obtain the general expression for the effective diffusivity for Taylor-Aris dispersion in such a rivulet, and discuss in detail its different interpretations in the special case of a rivulet on a vertical substrate.

  10. Nonlocal gradient corrections to the exchange free energy of an inhomogeneous many-fermion system at finite temperature

    NASA Astrophysics Data System (ADS)

    Geldart, D. J. W.; Dunlap, E.; Glasser, M. L.; Shegelski, Mark R. A.

    1993-10-01

    A general exact result is derived for the coefficient B x( n; T) which determines the first gradient correction to the leading exchange contribution to the free energy at finite temperature of a weakly inhomogeneous extended many fermion system having arbitrary two-body interactions. Explicit analytical results are given in the case of bare Coulomb interactions, and the case of statically screened Coulomb interactions is studied numerically. It is shown that nonanalytical structure leads to different limiting values of B x( n; T) when the inverse screening length and the temperature are both small. Some implications for physical many-electron systems are discussed, including the reasons for discrepancies between the first principles and semiempirical gradient coefficients for atomic exchange energies.

  11. Further analytical study of hybrid rocket combustion

    NASA Technical Reports Server (NTRS)

    Hung, W. S. Y.; Chen, C. S.; Haviland, J. K.

    1972-01-01

    Analytical studies of the transient and steady-state combustion processes in a hybrid rocket system are discussed. The particular system chosen consists of a gaseous oxidizer flowing within a tube of solid fuel, resulting in a heterogeneous combustion. Finite rate chemical kinetics with appropriate reaction mechanisms were incorporated in the model. A temperature dependent Arrhenius type fuel surface regression rate equation was chosen for the current study. The governing mathematical equations employed for the reacting gas phase and for the solid phase are the general, two-dimensional, time-dependent conservation equations in a cylindrical coordinate system. Keeping the simplifying assumptions to a minimum, these basic equations were programmed for numerical computation, using two implicit finite-difference schemes, the Lax-Wendroff scheme for the gas phase, and, the Crank-Nicolson scheme for the solid phase.

  12. A description of discrete internal representation schemes for visual pattern discrimination.

    PubMed

    Foster, D H

    1980-01-01

    A general description of a class of schemes for pattern vision is outlined in which the visual system is assumed to form a discrete internal representation of the stimulus. These representations are discrete in that they are considered to comprise finite combinations of "components" which are selected from a fixed and finite repertoire, and which designate certain simple pattern properties or features. In the proposed description it is supposed that the construction of an internal representation is a probabilistic process. A relationship is then formulated associating the probability density functions governing this construction and performance in visually discriminating patterns when differences in pattern shape are small. Some questions related to the application of this relationship to the experimental investigation of discrete internal representations are briefly discussed.

  13. A study of the dynamic tire properties over a range of tire constructions

    NASA Technical Reports Server (NTRS)

    Nybakken, G. H.; Dodge, R. N.; Clark, S. K.

    1973-01-01

    The dynamic properties of four model aircraft tires of various construction were evaluated experimentally and compared with available theory. The experimental investigation consisted of measuring the cornering force and the self-aligning torque developed by the tires undergoing sinusoidal steering inputs while operating on a small scale, road-wheel tire testing apparatus. The force and moment data from the different tires are compared with both finite- and point-contact patch string theory predictions. In general, agreement between finite contact patch theory and experimental observation is good. A modified string theory is also presented in which coefficients for cornering force and self-aligning torque are determined separately. This theory improves the correspondence between the experimental and analytical data, particularly on tires with relatively high self-aligning torques.

  14. Scalable algorithms for three-field mixed finite element coupled poromechanics

    NASA Astrophysics Data System (ADS)

    Castelletto, Nicola; White, Joshua A.; Ferronato, Massimiliano

    2016-12-01

    We introduce a class of block preconditioners for accelerating the iterative solution of coupled poromechanics equations based on a three-field formulation. The use of a displacement/velocity/pressure mixed finite-element method combined with a first order backward difference formula for the approximation of time derivatives produces a sequence of linear systems with a 3 × 3 unsymmetric and indefinite block matrix. The preconditioners are obtained by approximating the two-level Schur complement with the aid of physically-based arguments that can be also generalized in a purely algebraic approach. A theoretical and experimental analysis is presented that provides evidence of the robustness, efficiency and scalability of the proposed algorithm. The performance is also assessed for a real-world challenging consolidation experiment of a shallow formation.

  15. Global Existence Results for Viscoplasticity at Finite Strain

    NASA Astrophysics Data System (ADS)

    Mielke, Alexander; Rossi, Riccarda; Savaré, Giuseppe

    2018-01-01

    We study a model for rate-dependent gradient plasticity at finite strain based on the multiplicative decomposition of the strain tensor, and investigate the existence of global-in-time solutions to the related PDE system. We reveal its underlying structure as a generalized gradient system, where the driving energy functional is highly nonconvex and features the geometric nonlinearities related to finite-strain elasticity as well as the multiplicative decomposition of finite-strain plasticity. Moreover, the dissipation potential depends on the left-invariant plastic rate, and thus depends on the plastic state variable. The existence theory is developed for a class of abstract, nonsmooth, and nonconvex gradient systems, for which we introduce suitable notions of solutions, namely energy-dissipation-balance and energy-dissipation-inequality solutions. Hence, we resort to the toolbox of the direct method of the calculus of variations to check that the specific energy and dissipation functionals for our viscoplastic models comply with the conditions of the general theory.

  16. Applications of a General Finite-Difference Method for Calculating Bending Deformations of Solid Plates

    NASA Technical Reports Server (NTRS)

    Walton, William C., Jr.

    1960-01-01

    This paper reports the findings of an investigation of a finite - difference method directly applicable to calculating static or simple harmonic flexures of solid plates and potentially useful in other problems of structural analysis. The method, which was proposed in doctoral thesis by John C. Houbolt, is based on linear theory and incorporates the principle of minimum potential energy. Full realization of its advantages requires use of high-speed computing equipment. After a review of Houbolt's method, results of some applications are presented and discussed. The applications consisted of calculations of the natural modes and frequencies of several uniform-thickness cantilever plates and, as a special case of interest, calculations of the modes and frequencies of the uniform free-free beam. Computed frequencies and nodal patterns for the first five or six modes of each plate are compared with existing experiments, and those for one plate are compared with another approximate theory. Beam computations are compared with exact theory. On the basis of the comparisons it is concluded that the method is accurate and general in predicting plate flexures, and additional applications are suggested. An appendix is devoted t o computing procedures which evolved in the progress of the applications and which facilitate use of the method in conjunction with high-speed computing equipment.

  17. Stochastic Model for the Vocabulary Growth in Natural Languages

    NASA Astrophysics Data System (ADS)

    Gerlach, Martin; Altmann, Eduardo G.

    2013-04-01

    We propose a stochastic model for the number of different words in a given database which incorporates the dependence on the database size and historical changes. The main feature of our model is the existence of two different classes of words: (i) a finite number of core words, which have higher frequency and do not affect the probability of a new word to be used, and (ii) the remaining virtually infinite number of noncore words, which have lower frequency and, once used, reduce the probability of a new word to be used in the future. Our model relies on a careful analysis of the Google Ngram database of books published in the last centuries, and its main consequence is the generalization of Zipf’s and Heaps’ law to two-scaling regimes. We confirm that these generalizations yield the best simple description of the data among generic descriptive models and that the two free parameters depend only on the language but not on the database. From the point of view of our model, the main change on historical time scales is the composition of the specific words included in the finite list of core words, which we observe to decay exponentially in time with a rate of approximately 30 words per year for English.

  18. A Family of Finite-Dimensional Representations of Generalized Double Affine Hecke Algebras of Higher Rank

    NASA Astrophysics Data System (ADS)

    Fu, Yuchen; Shelley-Abrahamson, Seth

    2016-06-01

    We give explicit constructions of some finite-dimensional representations of generalized double affine Hecke algebras (GDAHA) of higher rank using R-matrices for U_q(sl_N). Our construction is motivated by an analogous construction of Silvia Montarani in the rational case. Using the Drinfeld-Kohno theorem for Knizhnik-Zamolodchikov differential equations, we prove that the explicit representations we produce correspond to Montarani's representations under a monodromy functor introduced by Etingof, Gan, and Oblomkov.

  19. Finite element area and line integral transforms for generalization of aperture function and geometry in Kirchhoff scalar diffraction theory

    NASA Astrophysics Data System (ADS)

    Kraus, Hal G.

    1993-02-01

    Two finite element-based methods for calculating Fresnel region and near-field region intensities resulting from diffraction of light by two-dimensional apertures are presented. The first is derived using the Kirchhoff area diffraction integral and the second is derived using a displaced vector potential to achieve a line integral transformation. The specific form of each of these formulations is presented for incident spherical waves and for Gaussian laser beams. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define apertures of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s), which may be of continuous or discontinuous form. The finite element transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is illustrated in several examples which include secondary obstructions, secondary spider supports, multiple mirror arrays, synthetic aperture arrays, apertures covered by screens, apodization, phase plates, and off-axis apertures. Typically, the finite element line integral transform results in significant gains in computational efficiency over the finite element Kirchhoff transform method, but is also subject to some loss in generality.

  20. A new weak Galerkin finite element method for elliptic interface problems

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu; ...

    2016-08-26

    We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less

  1. A new weak Galerkin finite element method for elliptic interface problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less

  2. Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Kyoo Sil; Li, Dongsheng; Sun, Xin

    2013-06-01

    In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) Magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses tomore » induce the fracture by element removal, leading to the prediction of ductility. The results in this study show that the ductility monotonically decreases as the pore volume fraction increases and that the effect of ‘skin region’ on the ductility is noticeable under the condition of same local pore volume fraction in the center region of the sample and its existence can be beneficial for the improvement of ductility. The further synthetic microstructure-based 3D finite element analyses are planned to investigate the effects of pore size and pore size distribution.« less

  3. Investigation of supersonic chemically reacting and radiating channel flow

    NASA Technical Reports Server (NTRS)

    Mani, Mortaza; Tiwari, Surendra N.

    1988-01-01

    The 2-D time-dependent Navier-Stokes equations are used to investigate supersonic flows undergoing finite rate chemical reaction and radiation interaction for a hydrogen-air system. The explicit multistage finite volume technique of Jameson is used to advance the governing equations in time until convergence is achieved. The chemistry source term in the species equation is treated implicitly to alleviate the stiffness associated with fast reactions. The multidimensional radiative transfer equations for a nongray model are provided for a general configuration and then reduced for a planar geometry. Both pseudo-gray and nongray models are used to represent the absorption-emission characteristics of the participating species. The supersonic inviscid and viscous, nonreacting flows are solved by employing the finite volume technique of Jameson and the unsplit finite difference scheme of MacCormack. The specified problem considered is of the flow in a channel with a 10 deg compression-expansion ramp. The calculated results are compared with those of an upwind scheme. The problem of chemically reacting and radiating flows are solved for the flow of premixed hydrogen-air through a channel with parallel boundaries, and a channel with a compression corner. Results obtained for specific conditions indicate that the radiative interaction can have a significant influence on the entire flow field.

  4. Finite-size analysis of the detectability limit of the stochastic block model

    NASA Astrophysics Data System (ADS)

    Young, Jean-Gabriel; Desrosiers, Patrick; Hébert-Dufresne, Laurent; Laurence, Edward; Dubé, Louis J.

    2017-06-01

    It has been shown in recent years that the stochastic block model is sometimes undetectable in the sparse limit, i.e., that no algorithm can identify a partition correlated with the partition used to generate an instance, if the instance is sparse enough and infinitely large. In this contribution, we treat the finite case explicitly, using arguments drawn from information theory and statistics. We give a necessary condition for finite-size detectability in the general SBM. We then distinguish the concept of average detectability from the concept of instance-by-instance detectability and give explicit formulas for both definitions. Using these formulas, we prove that there exist large equivalence classes of parameters, where widely different network ensembles are equally detectable with respect to our definitions of detectability. In an extensive case study, we investigate the finite-size detectability of a simplified variant of the SBM, which encompasses a number of important models as special cases. These models include the symmetric SBM, the planted coloring model, and more exotic SBMs not previously studied. We conclude with three appendices, where we study the interplay of noise and detectability, establish a connection between our information-theoretic approach and random matrix theory, and provide proofs of some of the more technical results.

  5. Application of 'steady' state finite element and transient finite difference theory to sound propagation in a variable duct - A comparison with experiment

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Eversman, W.; Astley, R. J.; White, J. W.

    1981-01-01

    Experimental data are presented for sound propagation in a simulated infinite hard wall duct with a large change in duct cross sectional area. The data are conveniently tabulated for further use. The 'steady' state finite element theory of Astley and Eversman (1981) and the transient finite difference theory of White (1981) are in good agreement with the data for both the axial and transverse pressure profiles and the axial phase angle. Therefore, numerical finite difference and finite element theories appear to be ideally suited for handling duct propagation problems which encounter large axial gradients in acoustic parameters. The measured energy reflection coefficient agrees with the values from the Astley-Eversman modal coupling model.

  6. Finite entanglement entropy and spectral dimension in quantum gravity

    NASA Astrophysics Data System (ADS)

    Arzano, Michele; Calcagni, Gianluca

    2017-12-01

    What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations.

  7. Recent Developments in Computational Techniques for Applied Hydrodynamics.

    DTIC Science & Technology

    1979-12-07

    by block number) Numerical Method Fluids Incompressible Flow Finite Difference Methods Poisson Equation Convective Equations -MABSTRACT (Continue on...weaknesses of the different approaches are analyzed. Finite - difference techniques have particularly attractive properties in this framework. Hence it will...be worthwhile to correct, at least partially, the difficulties from which Eulerian and Lagrangian finite - difference techniques suffer, discussed in

  8. Error analysis and correction of discrete solutions from finite element codes

    NASA Technical Reports Server (NTRS)

    Thurston, G. A.; Stein, P. A.; Knight, N. F., Jr.; Reissner, J. E.

    1984-01-01

    Many structures are an assembly of individual shell components. Therefore, results for stresses and deflections from finite element solutions for each shell component should agree with the equations of shell theory. This paper examines the problem of applying shell theory to the error analysis and the correction of finite element results. The general approach to error analysis and correction is discussed first. Relaxation methods are suggested as one approach to correcting finite element results for all or parts of shell structures. Next, the problem of error analysis of plate structures is examined in more detail. The method of successive approximations is adapted to take discrete finite element solutions and to generate continuous approximate solutions for postbuckled plates. Preliminary numerical results are included.

  9. Simulations of Hurricane Katrina (2005) with the 0.125 degree finite-volume General Circulation Model on the NASA Columbia Supercomputer

    NASA Technical Reports Server (NTRS)

    Shen, B.-W.; Atlas, R.; Reale, O.; Lin, S.-J.; Chern, J.-D.; Chang, J.; Henze, C.

    2006-01-01

    Hurricane Katrina was the sixth most intense hurricane in the Atlantic. Katrina's forecast poses major challenges, the most important of which is its rapid intensification. Hurricane intensity forecast with General Circulation Models (GCMs) is difficult because of their coarse resolution. In this article, six 5-day simulations with the ultra-high resolution finite-volume GCM are conducted on the NASA Columbia supercomputer to show the effects of increased resolution on the intensity predictions of Katrina. It is found that the 0.125 degree runs give comparable tracks to the 0.25 degree, but provide better intensity forecasts, bringing the center pressure much closer to observations with differences of only plus or minus 12 hPa. In the runs initialized at 1200 UTC 25 AUG, the 0.125 degree simulates a more realistic intensification rate and better near-eye wind distributions. Moreover, the first global 0.125 degree simulation without convection parameterization (CP) produces even better intensity evolution and near-eye winds than the control run with CP.

  10. Mixed finite-difference scheme for free vibration analysis of noncircular cylinders

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Stephens, W. B.

    1973-01-01

    A mixed finite-difference scheme is presented for the free-vibration analysis of simply supported closed noncircular cylindrical shells. The problem is formulated in terms of eight first-order differential equations in the circumferential coordinate which possess a symmetric coefficient matrix and are free of the derivatives of the elastic and geometric characteristics of the shell. In the finite-difference discretization, two interlacing grids are used for the different fundamental unknowns in such a way as to avoid averaging in the difference-quotient expressions used for the first derivative. The resulting finite-difference equations are symmetric. The inverse-power method is used for obtaining the eigenvalues and eigenvectors.

  11. Finite-surface method for the Maxwell equations with corner singularities

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel; Yarrow, Maurice

    1994-01-01

    The finite-surface method for the two-dimensional Maxwell equations in generalized coordinates is extended to treat perfect conductor boundaries with sharp corners. Known singular forms of the grid and the electromagnetic fields in the neighborhood of each corner are used to obtain accurate approximations to the surface and line integrals appearing in the method. Numerical results are presented for a harmonic plane wave incident on a finite flat plate. Comparisons with exact solutions show good agreement.

  12. Predicting Rediated Noise With Power Flow Finite Element Analysis

    DTIC Science & Technology

    2007-02-01

    Defence R&D Canada – Atlantic DEFENCE DÉFENSE & Predicting Rediated Noise With Power Flow Finite Element Analysis D. Brennan T.S. Koko L. Jiang J...PREDICTING RADIATED NOISE WITH POWER FLOW FINITE ELEMENT ANALYSIS D.P. Brennan T.S. Koko L. Jiang J.C. Wallace Martec Limited Martec Limited...model- or full-scale data before it is available for general use. Brennan, D.P., Koko , T.S., Jiang, L., Wallace, J.C. 2007. Predicting Radiated

  13. Quantum Kronecker sum-product low-density parity-check codes with finite rate

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Pryadko, Leonid P.

    2013-07-01

    We introduce an ansatz for quantum codes which gives the hypergraph-product (generalized toric) codes by Tillich and Zémor and generalized bicycle codes by MacKay as limiting cases. The construction allows for both the lower and the upper bounds on the minimum distance; they scale as a square root of the block length. Many thus defined codes have a finite rate and limited-weight stabilizer generators, an analog of classical low-density parity-check (LDPC) codes. Compared to the hypergraph-product codes, hyperbicycle codes generally have a wider range of parameters; in particular, they can have a higher rate while preserving the estimated error threshold.

  14. Subleading soft graviton theorem for loop amplitudes

    NASA Astrophysics Data System (ADS)

    Sen, Ashoke

    2017-11-01

    Superstring field theory gives expressions for heterotic and type II string loop amplitudes that are free from ultraviolet and infrared divergences when the number of non-compact space-time dimensions is five or more. We prove the subleading soft graviton theorem in these theories to all orders in perturbation theory for S-matrix elements of arbitrary number of finite energy external states but only one external soft graviton. We also prove the leading soft graviton theorem for arbitrary number of finite energy external states and arbitrary number of soft gravitons. Since our analysis is based on general properties of one particle irreducible effective action, the results are valid in any theory of quantum gravity that gives finite result for the S-matrix order by order in perturbation theory without violating general coordinate invariance.

  15. THE TOPOLOGY OF CANONICAL FLUX TUBES IN FLARED JET GEOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavine, Eric Sander; You, Setthivoine, E-mail: Slavine2@uw.edu, E-mail: syou@aa.washington.edu

    2017-01-20

    Magnetized plasma jets are generally modeled as magnetic flux tubes filled with flowing plasma governed by magnetohydrodynamics (MHD). We outline here a more fundamental approach based on flux tubes of canonical vorticity, where canonical vorticity is defined as the circulation of the species’ canonical momentum. This approach extends the concept of magnetic flux tube evolution to include the effects of finite particle momentum and enables visualization of the topology of plasma jets in regimes beyond MHD. A flared, current-carrying magnetic flux tube in an ion-electron plasma with finite ion momentum is thus equivalent to either a pair of electron andmore » ion flow flux tubes, a pair of electron and ion canonical momentum flux tubes, or a pair of electron and ion canonical vorticity flux tubes. We examine the morphology of all these flux tubes for increasing electrical currents, different radial current profiles, different electron Mach numbers, and a fixed, flared, axisymmetric magnetic geometry. Calculations of gauge-invariant relative canonical helicities track the evolution of magnetic, cross, and kinetic helicities in the system, and show that ion flow fields can unwind to compensate for an increasing magnetic twist. The results demonstrate that including a species’ finite momentum can result in a very long collimated canonical vorticity flux tube even if the magnetic flux tube is flared. With finite momentum, particle density gradients must be normal to canonical vorticities, not to magnetic fields, so observations of collimated astrophysical jets could be images of canonical vorticity flux tubes instead of magnetic flux tubes.« less

  16. A Fatigue Crack Size Evaluation Method Based on Lamb Wave Simulation and Limited Experimental Data

    PubMed Central

    He, Jingjing; Ran, Yunmeng; Liu, Bin; Yang, Jinsong; Guan, Xuefei

    2017-01-01

    This paper presents a systematic and general method for Lamb wave-based crack size quantification using finite element simulations and Bayesian updating. The method consists of construction of a baseline quantification model using finite element simulation data and Bayesian updating with limited Lamb wave data from target structure. The baseline model correlates two proposed damage sensitive features, namely the normalized amplitude and phase change, with the crack length through a response surface model. The two damage sensitive features are extracted from the first received S0 mode wave package. The model parameters of the baseline model are estimated using finite element simulation data. To account for uncertainties from numerical modeling, geometry, material and manufacturing between the baseline model and the target model, Bayesian method is employed to update the baseline model with a few measurements acquired from the actual target structure. A rigorous validation is made using in-situ fatigue testing and Lamb wave data from coupon specimens and realistic lap-joint components. The effectiveness and accuracy of the proposed method is demonstrated under different loading and damage conditions. PMID:28902148

  17. Peakompactons: Peaked compact nonlinear waves

    DOE PAGES

    Christov, Ivan C.; Kress, Tyler; Saxena, Avadh

    2017-04-20

    This paper is meant as an accessible introduction to/tutorial on the analytical construction and numerical simulation of a class of nonstandard solitary waves termed peakompactons. We present that these peaked compactly supported waves arise as solutions to nonlinear evolution equations from a hierarchy of nonlinearly dispersive Korteweg–de Vries-type models. Peakompactons, like the now-well-known compactons and unlike the soliton solutions of the Korteweg–de Vries equation, have finite support, i.e., they are of finite wavelength. However, unlike compactons, peakompactons are also peaked, i.e., a higher spatial derivative suffers a jump discontinuity at the wave’s crest. Here, we construct such solutions exactly bymore » reducing the governing partial differential equation to a nonlinear ordinary differential equation and employing a phase-plane analysis. Lastly, a simple, but reliable, finite-difference scheme is also designed and tested for the simulation of collisions of peakompactons. In addition to the peakompacton class of solutions, the general physical features of the so-called K #(n,m) hierarchy of nonlinearly dispersive Korteweg–de Vries-type models are discussed as well.« less

  18. Shape sensitivity analysis of flutter response of a laminated wing

    NASA Technical Reports Server (NTRS)

    Bergen, Fred D.; Kapania, Rakesh K.

    1988-01-01

    A method is presented for calculating the shape sensitivity of a wing aeroelastic response with respect to changes in geometric shape. Yates' modified strip method is used in conjunction with Giles' equivalent plate analysis to predict the flutter speed, frequency, and reduced frequency of the wing. Three methods are used to calculate the sensitivity of the eigenvalue. The first method is purely a finite difference calculation of the eigenvalue derivative directly from the solution of the flutter problem corresponding to the two different values of the shape parameters. The second method uses an analytic expression for the eigenvalue sensitivities of a general complex matrix, where the derivatives of the aerodynamic, mass, and stiffness matrices are computed using a finite difference approximation. The third method also uses an analytic expression for the eigenvalue sensitivities, but the aerodynamic matrix is computed analytically. All three methods are found to be in good agreement with each other. The sensitivities of the eigenvalues were used to predict the flutter speed, frequency, and reduced frequency. These approximations were found to be in good agreement with those obtained using a complete reanalysis.

  19. Method of mechanical quadratures for solving singular integral equations of various types

    NASA Astrophysics Data System (ADS)

    Sahakyan, A. V.; Amirjanyan, H. A.

    2018-04-01

    The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.

  20. Relations between work and entropy production for general information-driven, finite-state engines

    NASA Astrophysics Data System (ADS)

    Merhav, Neri

    2017-02-01

    We consider a system model of a general finite-state machine (ratchet) that simultaneously interacts with three kinds of reservoirs: a heat reservoir, a work reservoir, and an information reservoir, the latter being taken to be a running digital tape whose symbols interact sequentially with the machine. As has been shown in earlier work, this finite-state machine can act as a demon (with memory), which creates a net flow of energy from the heat reservoir into the work reservoir (thus extracting useful work) at the price of increasing the entropy of the information reservoir. Under very few assumptions, we propose a simple derivation of a family of inequalities that relate the work extraction with the entropy production. These inequalities can be seen as either upper bounds on the extractable work or as lower bounds on the entropy production, depending on the point of view. Many of these bounds are relatively easy to calculate and they are tight in the sense that equality can be approached arbitrarily closely. In their basic forms, these inequalities are applicable to any finite number of cycles (and not only asymptotically), and for a general input information sequence (possibly correlated), which is not necessarily assumed even stationary. Several known results are obtained as special cases.

  1. An exploratory study of a finite difference method for calculating unsteady transonic potential flow

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.; Bland, S. R.

    1979-01-01

    A method for calculating transonic flow over steady and oscillating airfoils was developed by Isogai. The full potential equation is solved with a semi-implicit, time-marching, finite difference technique. Steady flow solutions are obtained from time asymptotic solutions for a steady airfoil. Corresponding oscillatory solutions are obtained by initiating an oscillation and marching in time for several cycles until a converged periodic solution is achieved. The method is described in general terms and results for the case of an airfoil with an oscillating flap are presented for Mach numbers 0.500 and 0.875. Although satisfactory results are obtained for some reduced frequencies, it is found that the numerical technique generates spurious oscillations in the indicial response functions and in the variation of the aerodynamic coefficients with reduced frequency. These oscillations are examined with a dynamic data reduction method to evaluate their effects and trends with reduced frequency and Mach number. Further development of the numerical method is needed to eliminate these oscillations.

  2. QED multi-dimensional vacuum polarization finite-difference solver

    NASA Astrophysics Data System (ADS)

    Carneiro, Pedro; Grismayer, Thomas; Silva, Luís; Fonseca, Ricardo

    2015-11-01

    The Extreme Light Infrastructure (ELI) is expected to deliver peak intensities of 1023 - 1024 W/cm2 allowing to probe nonlinear Quantum Electrodynamics (QED) phenomena in an unprecedented regime. Within the framework of QED, the second order process of photon-photon scattering leads to a set of extended Maxwell's equations [W. Heisenberg and H. Euler, Z. Physik 98, 714] effectively creating nonlinear polarization and magnetization terms that account for the nonlinear response of the vacuum. To model this in a self-consistent way, we present a multi dimensional generalized Maxwell equation finite difference solver with significantly enhanced dispersive properties, which was implemented in the OSIRIS particle-in-cell code [R.A. Fonseca et al. LNCS 2331, pp. 342-351, 2002]. We present a detailed numerical analysis of this electromagnetic solver. As an illustration of the properties of the solver, we explore several examples in extreme conditions. We confirm the theoretical prediction of vacuum birefringence of a pulse propagating in the presence of an intense static background field [arXiv:1301.4918 [quant-ph

  3. Unsteady solute-transport simulation in streamflow using a finite-difference model

    USGS Publications Warehouse

    Land, Larry F.

    1978-01-01

    This report documents a rather simple, general purpose, one-dimensional, one-parameter, mass-transport model for field use. The model assumes a well-mixed conservative solute that may be coming from an unsteady source and is moving in unsteady streamflow. The quantity of solute being transported is in the units of concentration. Results are reported as such. An implicit finite-difference technique is used to solve the mass transport equation. It consists of creating a tridiagonal matrix and using the Thomas algorithm to solve the matrix for the unknown concentrations at the new time step. The computer program pesented is designed to compute the concentration of a water-quality constituent at any point and at any preselected time in a one-dimensional stream. The model is driven by the inflowing concentration of solute at the upstream boundary and is influenced by the solute entering the stream from tributaries and lateral ground-water inflow and from a source or sink. (Woodard-USGS)

  4. Hypercube matrix computation task

    NASA Technical Reports Server (NTRS)

    Calalo, Ruel H.; Imbriale, William A.; Jacobi, Nathan; Liewer, Paulett C.; Lockhart, Thomas G.; Lyzenga, Gregory A.; Lyons, James R.; Manshadi, Farzin; Patterson, Jean E.

    1988-01-01

    A major objective of the Hypercube Matrix Computation effort at the Jet Propulsion Laboratory (JPL) is to investigate the applicability of a parallel computing architecture to the solution of large-scale electromagnetic scattering problems. Three scattering analysis codes are being implemented and assessed on a JPL/California Institute of Technology (Caltech) Mark 3 Hypercube. The codes, which utilize different underlying algorithms, give a means of evaluating the general applicability of this parallel architecture. The three analysis codes being implemented are a frequency domain method of moments code, a time domain finite difference code, and a frequency domain finite elements code. These analysis capabilities are being integrated into an electromagnetics interactive analysis workstation which can serve as a design tool for the construction of antennas and other radiating or scattering structures. The first two years of work on the Hypercube Matrix Computation effort is summarized. It includes both new developments and results as well as work previously reported in the Hypercube Matrix Computation Task: Final Report for 1986 to 1987 (JPL Publication 87-18).

  5. Language Model Combination and Adaptation Using Weighted Finite State Transducers

    NASA Technical Reports Server (NTRS)

    Liu, X.; Gales, M. J. F.; Hieronymus, J. L.; Woodland, P. C.

    2010-01-01

    In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaption may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences

  6. Finite element analysis to compare complete denture and implant-retained overdentures with different attachment systems.

    PubMed

    Barão, Valentim Adelino Ricardo; Assunção, Wirley Gonçalves; Tabata, Lucas Fernando; Delben, Juliana Aparecida; Gomes, Erica Alves; de Sousa, Edson Antonio Capello; Rocha, Eduardo Passos

    2009-07-01

    This finite element analysis compared stress distribution on complete dentures and implant-retained overdentures with different attachment systems. Four models of edentulous mandible were constructed: group A (control), complete denture; group B, overdenture retained by 2 splinted implants with bar-clip system; group C, overdenture retained by 2 unsplinted implants with o'ring system; and group D, overdenture retained by 2 splinted implants with bar-clip and 2 distally placed o'ring system. Evaluation was performed on Ansys software, with 100-N vertical load applied on central incisive teeth. The lowest maximum general stress value (in megapascal) was observed in group A (64.305) followed by groups C (119.006), D (258.650), and B (349.873). The same trend occurred in supporting tissues with the highest stress value for cortical bone. Unsplinted implants associated with the o'ring attachment system showed the lowest maximum stress values among all overdenture groups. Furthermore, o'ring system also improved stress distribution when associated with bar-clip system.

  7. Mimetic finite difference method

    NASA Astrophysics Data System (ADS)

    Lipnikov, Konstantin; Manzini, Gianmarco; Shashkov, Mikhail

    2014-01-01

    The mimetic finite difference (MFD) method mimics fundamental properties of mathematical and physical systems including conservation laws, symmetry and positivity of solutions, duality and self-adjointness of differential operators, and exact mathematical identities of the vector and tensor calculus. This article is the first comprehensive review of the 50-year long history of the mimetic methodology and describes in a systematic way the major mimetic ideas and their relevance to academic and real-life problems. The supporting applications include diffusion, electromagnetics, fluid flow, and Lagrangian hydrodynamics problems. The article provides enough details to build various discrete operators on unstructured polygonal and polyhedral meshes and summarizes the major convergence results for the mimetic approximations. Most of these theoretical results, which are presented here as lemmas, propositions and theorems, are either original or an extension of existing results to a more general formulation using polyhedral meshes. Finally, flexibility and extensibility of the mimetic methodology are shown by deriving higher-order approximations, enforcing discrete maximum principles for diffusion problems, and ensuring the numerical stability for saddle-point systems.

  8. Elastic-viscoplastic modeling of soft biological tissues using a mixed finite element formulation based on the relative deformation gradient.

    PubMed

    Weickenmeier, J; Jabareen, M

    2014-11-01

    The characteristic highly nonlinear, time-dependent, and often inelastic material response of soft biological tissues can be expressed in a set of elastic-viscoplastic constitutive equations. The specific elastic-viscoplastic model for soft tissues proposed by Rubin and Bodner (2002) is generalized with respect to the constitutive equations for the scalar quantity of the rate of inelasticity and the hardening parameter in order to represent a general framework for elastic-viscoplastic models. A strongly objective integration scheme and a new mixed finite element formulation were developed based on the introduction of the relative deformation gradient-the deformation mapping between the last converged and current configurations. The numerical implementation of both the generalized framework and the specific Rubin and Bodner model is presented. As an example of a challenging application of the new model equations, the mechanical response of facial skin tissue is characterized through an experimental campaign based on the suction method. The measurement data are used for the identification of a suitable set of model parameters that well represents the experimentally observed tissue behavior. Two different measurement protocols were defined to address specific tissue properties with respect to the instantaneous tissue response, inelasticity, and tissue recovery. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Modeling the dynamic equilibrium between oligomers of (AlOCH3)n in methylaluminoxane (MAO). A theoretical study based on a combined quantum mechanical and statistical mechanical approach.

    PubMed

    Zurek, E; Woo, T K; Firman, T K; Ziegler, T

    2001-01-15

    Density functional theory (DFT) has been used to calculate the energies of 36 different methylaluminoxane (MAO) cage structures with the general formula (MeAlO)n, where n ranges from 4 to 16. A least-squares fit has been used to devise a formula which predicts the total energies of the MAO with different n's giving an rms deviation of 4.70 kcal/mol. These energies in conjunction with frequency calculations based on molecular mechanics have been used to estimate the finite temperature enthalpies, entropies, and free energies for these MAO structures. Furthermore, formulas have been devised which predict finite temperature enthalpies and entropies for MAO structures of any n for a temperature range of 198.15-598.15 K. Using these formulas, the free energies at different temperatures have been predicted for MAO structures where n ranges from 17 to 30. The free energy values were then used to predict the percentage of each n found at a given temperature. Our calculations give an average n value of 18.41, 17.23, 16.89, and 15.72 at 198.15, 298.15, 398.15, and 598.15 K, respectively. Topological arguments have also been used to show that the MAO cage structure contains a limited amount of square faces as compared to octagonal and hexagonal ones. It is also suggested that the limited number of square faces with their strained Al-O bonds explain the high molar Al:catalyst ratio required for activation. Moreover, in this study we outline a general methodology which may be used to calculate the percent abundance of an equilibrium mixture of oligomers with the general formula (X)n.

  10. Beta Regression Finite Mixture Models of Polarization and Priming

    ERIC Educational Resources Information Center

    Smithson, Michael; Merkle, Edgar C.; Verkuilen, Jay

    2011-01-01

    This paper describes the application of finite-mixture general linear models based on the beta distribution to modeling response styles, polarization, anchoring, and priming effects in probability judgments. These models, in turn, enhance our capacity for explicitly testing models and theories regarding the aforementioned phenomena. The mixture…

  11. Convergence of an hp-Adaptive Finite Element Strategy in Two and Three Space-Dimensions

    NASA Astrophysics Data System (ADS)

    Bürg, Markus; Dörfler, Willy

    2010-09-01

    We show convergence of an automatic hp-adaptive refinement strategy for the finite element method on the elliptic boundary value problem. The strategy is a generalization of a refinement strategy proposed for one-dimensional situations to problems in two and three space-dimensions.

  12. AN ACCURATE AND EFFICIENT ALGORITHM FOR NUMERICAL SIMULATION OF CONDUCTION-TYPE PROBLEMS. (R824801)

    EPA Science Inventory

    Abstract

    A modification of the finite analytic numerical method for conduction-type (diffusion) problems is presented. The finite analytic discretization scheme is derived by means of the Fourier series expansion for the most general case of nonuniform grid and variabl...

  13. Twelfth NASTRAN (R) Users' Colloquium

    NASA Technical Reports Server (NTRS)

    1984-01-01

    NASTRAN is a large, comprehensive, nonproprietary, general purpose finite element computer code for structural analysis. The Twelfth Users' Colloquim provides some comprehensive papers on the application of finite element methods in engineering, comparisons with other approaches, unique applications, pre and post processing or auxiliary programs, and new methods of analysis with NASTRAN.

  14. Automated finite element meshing of the lumbar spine: Verification and validation with 18 specimen-specific models.

    PubMed

    Campbell, J Q; Coombs, D J; Rao, M; Rullkoetter, P J; Petrella, A J

    2016-09-06

    The purpose of this study was to seek broad verification and validation of human lumbar spine finite element models created using a previously published automated algorithm. The automated algorithm takes segmented CT scans of lumbar vertebrae, automatically identifies important landmarks and contact surfaces, and creates a finite element model. Mesh convergence was evaluated by examining changes in key output variables in response to mesh density. Semi-direct validation was performed by comparing experimental results for a single specimen to the automated finite element model results for that specimen with calibrated material properties from a prior study. Indirect validation was based on a comparison of results from automated finite element models of 18 individual specimens, all using one set of generalized material properties, to a range of data from the literature. A total of 216 simulations were run and compared to 186 experimental data ranges in all six primary bending modes up to 7.8Nm with follower loads up to 1000N. Mesh convergence results showed less than a 5% difference in key variables when the original mesh density was doubled. The semi-direct validation results showed that the automated method produced results comparable to manual finite element modeling methods. The indirect validation results showed a wide range of outcomes due to variations in the geometry alone. The studies showed that the automated models can be used to reliably evaluate lumbar spine biomechanics, specifically within our intended context of use: in pure bending modes, under relatively low non-injurious simulated in vivo loads, to predict torque rotation response, disc pressures, and facet forces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Finite difference and Runge-Kutta methods for solving vibration problems

    NASA Astrophysics Data System (ADS)

    Lintang Renganis Radityani, Scolastika; Mungkasi, Sudi

    2017-11-01

    The vibration of a storey building can be modelled into a system of second order ordinary differential equations. If the number of floors of a building is large, then the result is a large scale system of second order ordinary differential equations. The large scale system is difficult to solve, and if it can be solved, the solution may not be accurate. Therefore, in this paper, we seek for accurate methods for solving vibration problems. We compare the performance of numerical finite difference and Runge-Kutta methods for solving large scale systems of second order ordinary differential equations. The finite difference methods include the forward and central differences. The Runge-Kutta methods include the Euler and Heun methods. Our research results show that the central finite difference and the Heun methods produce more accurate solutions than the forward finite difference and the Euler methods do.

  16. Deformation of two-phase aggregates using standard numerical methods

    NASA Astrophysics Data System (ADS)

    Duretz, Thibault; Yamato, Philippe; Schmalholz, Stefan M.

    2013-04-01

    Geodynamic problems often involve the large deformation of material encompassing material boundaries. In geophysical fluids, such boundaries often coincide with a discontinuity in the viscosity (or effective viscosity) field and subsequently in the pressure field. Here, we employ popular implementations of the finite difference and finite element methods for solving viscous flow problems. On one hand, we implemented finite difference method coupled with a Lagrangian marker-in-cell technique to represent the deforming fluid. Thanks to it Eulerian nature, this method has a limited geometric flexibility but is characterized by a light and stable discretization. On the other hand, we employ the Lagrangian finite element method which offers full geometric flexibility at the cost of relatively heavier discretization. In order to test the accuracy of the finite difference scheme, we ran large strain simple shear deformation of aggregates containing either weak of strong circular inclusion (1e6 viscosity ratio). The results, obtained for different grid resolutions, are compared to Lagrangian finite element results which are considered as reference solution. The comparison is then used to establish up to which strain can finite difference simulations be run given the nature of the inclusions (dimensions, viscosity) and the resolution of the Eulerian mesh.

  17. Numerical solution of the Saint-Venant equations by an efficient hybrid finite-volume/finite-difference method

    NASA Astrophysics Data System (ADS)

    Lai, Wencong; Khan, Abdul A.

    2018-04-01

    A computationally efficient hybrid finite-volume/finite-difference method is proposed for the numerical solution of Saint-Venant equations in one-dimensional open channel flows. The method adopts a mass-conservative finite volume discretization for the continuity equation and a semi-implicit finite difference discretization for the dynamic-wave momentum equation. The spatial discretization of the convective flux term in the momentum equation employs an upwind scheme and the water-surface gradient term is discretized using three different schemes. The performance of the numerical method is investigated in terms of efficiency and accuracy using various examples, including steady flow over a bump, dam-break flow over wet and dry downstream channels, wetting and drying in a parabolic bowl, and dam-break floods in laboratory physical models. Numerical solutions from the hybrid method are compared with solutions from a finite volume method along with analytic solutions or experimental measurements. Comparisons demonstrates that the hybrid method is efficient, accurate, and robust in modeling various flow scenarios, including subcritical, supercritical, and transcritical flows. In this method, the QUICK scheme for the surface slope discretization is more accurate and less diffusive than the center difference and the weighted average schemes.

  18. Finite elements: Theory and application

    NASA Technical Reports Server (NTRS)

    Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)

    1988-01-01

    Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.

  19. The constraint method: A new finite element technique. [applied to static and dynamic loads on plates

    NASA Technical Reports Server (NTRS)

    Tsai, C.; Szabo, B. A.

    1973-01-01

    An approch to the finite element method which utilizes families of conforming finite elements based on complete polynomials is presented. Finite element approximations based on this method converge with respect to progressively reduced element sizes as well as with respect to progressively increasing orders of approximation. Numerical results of static and dynamic applications of plates are presented to demonstrate the efficiency of the method. Comparisons are made with plate elements in NASTRAN and the high-precision plate element developed by Cowper and his co-workers. Some considerations are given to implementation of the constraint method into general purpose computer programs such as NASTRAN.

  20. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.

    PubMed

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-10-16

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation.

  1. A New Principle in Physiscs: the Principle "Finiteness", and Some Consequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham Sternlieb

    2010-06-25

    In this paper I propose a new principle in physics: the principle of "finiteness". It stems from the definition of physics as a science that deals (among other things) with measurable dimensional physical quantities. Since measurement results, including their errors, are always finite, the principle of finiteness postulates that the mathematical formulation of "legitimate" laws of physics should prevent exactly zero or infinite solutions. Some consequences of the principle of finiteness are discussed, in general, and then more specifically in the fields of special relativity, quantum mechanics, and quantum gravity. The consequences are derived independently of any other theory ormore » principle in physics. I propose "finiteness" as a postulate (like the constancy of the speed of light in vacuum, "c"), as opposed to a notion whose validity has to be corroborated by, or derived theoretically or experimentally from other facts, theories, or principles.« less

  2. Algorithms for computing solvents of unilateral second-order matrix polynomials over prime finite fields using lambda-matrices

    NASA Astrophysics Data System (ADS)

    Burtyka, Filipp

    2018-01-01

    The paper considers algorithms for finding diagonalizable and non-diagonalizable roots (so called solvents) of monic arbitrary unilateral second-order matrix polynomial over prime finite field. These algorithms are based on polynomial matrices (lambda-matrices). This is an extension of existing general methods for computing solvents of matrix polynomials over field of complex numbers. We analyze how techniques for complex numbers can be adapted for finite field and estimate asymptotic complexity of the obtained algorithms.

  3. Computation of canonical correlation and best predictable aspect of future for time series

    NASA Technical Reports Server (NTRS)

    Pourahmadi, Mohsen; Miamee, A. G.

    1989-01-01

    The canonical correlation between the (infinite) past and future of a stationary time series is shown to be the limit of the canonical correlation between the (infinite) past and (finite) future, and computation of the latter is reduced to a (generalized) eigenvalue problem involving (finite) matrices. This provides a convenient and essentially, finite-dimensional algorithm for computing canonical correlations and components of a time series. An upper bound is conjectured for the largest canonical correlation.

  4. The growth rate of vertex-transitive planar graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babai, L.

    1997-06-01

    A graph is vertex-transitive if all of its vertices axe equivalent under automorphisms. Confirming a conjecture of Jon Kleinberg and Eva Tardos, we prove the following trichotomy theorem concerning locally finite vertex-transitive planar graphs: the rate of growth of a graph with these properties is either linear or quadratic or exponential. The same result holds more generally for locally finite, almost vertex-transitive planar graphs (the automorphism group has a finite number of orbits). The proof uses the elements of hyperbolic plane geometry.

  5. Elastic-plastic mixed-iterative finite element analysis: Implementation and performance assessment

    NASA Technical Reports Server (NTRS)

    Sutjahjo, Edhi; Chamis, Christos C.

    1993-01-01

    An elastic-plastic algorithm based on Von Mises and associative flow criteria is implemented in MHOST-a mixed iterative finite element analysis computer program developed by NASA Lewis Research Center. The performance of the resulting elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors of 4-node quadrilateral shell finite elements are tested for elastic-plastic performance. Generally, the membrane results are excellent, indicating the implementation of elastic-plastic mixed-iterative analysis is appropriate.

  6. Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.; Bednarcyk, Brett A.

    2010-01-01

    Enhanced finite elements are elements with an embedded analytical solution which can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element is applied to generate a general framework capable of modeling an array of joint types. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided while still obtaining a detailed solution for the joint. Additionally, the capability to model non-linear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and re-sizing the joint as the adhesive fails. Results of the model compare favorably with experimental and finite element results.

  7. Study of field shifts of Ramsey resonances on ultracold atoms and ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabatchikova, K. S., E-mail: k.tabatchikova@gmail.com; Taichenachev, A. V.; Dmitriev, A. K.

    2015-02-15

    The effect of the finite laser radiation line width and spontaneous relaxation of levels on the efficiency of the suppression of the field shift of the central resonance for the generalized Ramsey scheme with pulses of different lengths and with a phase jump in the second pulse has been considered. The optimal parameters of the scheme corresponding to the minimum frequency shift and maximum amplitude of the resonance have been determined.

  8. Some remarks on the numerical solution of parabolic partial differential equations

    NASA Astrophysics Data System (ADS)

    Campagna, R.; Cuomo, S.; Leveque, S.; Toraldo, G.; Giannino, F.; Severino, G.

    2017-11-01

    Numerous environmental/engineering applications relying upon the theory of diffusion phenomena into chaotic environments have recently stimulated the interest toward the numerical solution of parabolic partial differential equations (PDEs). In the present paper, we outline a formulation of the mathematical problem underlying a quite general diffusion mechanism in the natural environments, and we shortly emphasize some remarks concerning the applicability of the (straightforward) finite difference method. An illustration example is also presented.

  9. Technical Feasibility of Centrifugal Techniques for Evaluating Hazardous Waste Migration

    DTIC Science & Technology

    1987-12-01

    direct evaluation of the -influence of acceleration on soil moisture movement. A fully implicit finite difference solution scheme was used. The...using the finite difference scheme mentioned earlier. 2. The soil test apparatus for the centrifuge tests was designed and constructed. 110 3...npcr3 f~nJPX 115 S.. 0i U 4 I3 u cc/ U) C~j tC LL~~*- Lý u ’ uiu ’ 4-’ Uju x~j~r3np~~r~tj~jpU W3= 116 Finite Difference Model The finite difference

  10. A study on thermal damage during hyperthermia treatment based on DPL model for multilayer tissues using finite element Legendre wavelet Galerkin approach.

    PubMed

    Kumar, Dinesh; Rai, K N

    2016-12-01

    Hyperthermia is a process that uses heat from the spatial heat source to kill cancerous cells without damaging the surrounding healthy tissues. Efficacy of hyperthermia technique is related to achieve temperature at the infected cells during the treatment process. A mathematical model on heat transfer in multilayer tissues in finite domain is proposed to predict the control temperature profile at hyperthermia position. The treatment technique uses dual-phase-lag model of heat transfer in multilayer tissues with modified Gaussian distribution heat source subjected to the most generalized boundary condition and interface at the adjacent layers. The complete dual-phase-lag model of bioheat transfer is solved using finite element Legendre wavelet Galerkin approach. The present solution has been verified with exact solution in a specific case and provides a good accuracy. The effect of the variability of different parameters such as lagging times, external heat source, metabolic heat source and the most generalized boundary condition on temperature profile in multilayer tissues is analyzed and also discussed the effective approach of hyperthermia treatment. Furthermore, we studied the modified thermal damage model with regeneration of healthy tissues as well. For viewpoint of thermal damage, the least thermal damage has been observed in boundary condition of second kind. The article concludes with a discussion of better opportunities for future clinical application of hyperthermia treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. 3D Tensorial Elastodynamics for Isotropic Media on Vertically Deformed Meshes

    NASA Astrophysics Data System (ADS)

    Shragge, J. C.

    2017-12-01

    Solutions of the 3D elastodynamic wave equation are sometimes required in industrial and academic applications of elastic reverse-time migration (E-RTM) and full waveform inversion (E-FWI) that involve vertically deformed meshes. Examples include incorporating irregular free-surface topography and handling internal boundaries (e.g., water bottom) directly into the computational meshes. In 3D E-RTM and E-FWI applications, the number of forward modeling simulations can number in the tens of thousands (per iteration), which necessitates the development of stable, accurate and efficient 3D elastodynamics solvers. For topographic scenarios, most finite-difference solution approaches use a change-of-variable strategy that has a number of associated computational challenges, including difficulties in handling of the free-surface boundary condition. In this study, I follow a tensorial approach and use a generalized family of analytic transforms to develop a set of analytic equations for 3D elastodynamics that directly incorporates vertical grid deformations. Importantly, this analytic approach allows for the specification of an analytic free-surface boundary condition appropriate for vertically deformed meshes. These equations are both straightforward and efficient to solve using a velocity-stress formulation with finite-difference (MFD) operators implemented on a fully staggered grid. Moreover, I demonstrate that the use of mimetic finite difference (MFD) methods allows stable, accurate, and efficient numerical solutions to be simulated for typical topographic scenarios. Examples demonstrate that high-quality elastic wavefields can be generated for topographic surfaces exhibiting significant topographic relief.

  12. Optimization of finite difference forward modeling for elastic waves based on optimum combined window functions

    NASA Astrophysics Data System (ADS)

    Jian, Wang; Xiaohong, Meng; Hong, Liu; Wanqiu, Zheng; Yaning, Liu; Sheng, Gui; Zhiyang, Wang

    2017-03-01

    Full waveform inversion and reverse time migration are active research areas for seismic exploration. Forward modeling in the time domain determines the precision of the results, and numerical solutions of finite difference have been widely adopted as an important mathematical tool for forward modeling. In this article, the optimum combined of window functions was designed based on the finite difference operator using a truncated approximation of the spatial convolution series in pseudo-spectrum space, to normalize the outcomes of existing window functions for different orders. The proposed combined window functions not only inherit the characteristics of the various window functions, to provide better truncation results, but also control the truncation error of the finite difference operator manually and visually by adjusting the combinations and analyzing the characteristics of the main and side lobes of the amplitude response. Error level and elastic forward modeling under the proposed combined system were compared with outcomes from conventional window functions and modified binomial windows. Numerical dispersion is significantly suppressed, which is compared with modified binomial window function finite-difference and conventional finite-difference. Numerical simulation verifies the reliability of the proposed method.

  13. Some problems of the calculation of three-dimensional boundary layer flows on general configurations

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Kaups, K.; Mosinskis, G. J.; Rehn, J. A.

    1973-01-01

    An accurate solution of the three-dimensional boundary layer equations over general configurations such as those encountered in aircraft and space shuttle design requires a very efficient, fast, and accurate numerical method with suitable turbulence models for the Reynolds stresses. The efficiency, speed, and accuracy of a three-dimensional numerical method together with the turbulence models for the Reynolds stresses are examined. The numerical method is the implicit two-point finite difference approach (Box Method) developed by Keller and applied to the boundary layer equations by Keller and Cebeci. In addition, a study of some of the problems that may arise in the solution of these equations for three-dimensional boundary layer flows over general configurations.

  14. Elastic wave field computation in multilayered nonplanar solid structures: a mesh-free semianalytical approach.

    PubMed

    Banerjee, Sourav; Kundu, Tribikram

    2008-03-01

    Multilayered solid structures made of isotropic, transversely isotropic, or general anisotropic materials are frequently used in aerospace, mechanical, and civil structures. Ultrasonic fields developed in such structures by finite size transducers simulating actual experiments in laboratories or in the field have not been rigorously studied. Several attempts to compute the ultrasonic field inside solid media have been made based on approximate paraxial methods like the classical ray tracing and multi-Gaussian beam models. These approximate methods have several limitations. A new semianalytical method is adopted in this article to model elastic wave field in multilayered solid structures with planar or nonplanar interfaces generated by finite size transducers. A general formulation good for both isotropic and anisotropic solids is presented in this article. A variety of conditions have been incorporated in the formulation including irregularities at the interfaces. The method presented here requires frequency domain displacement and stress Green's functions. Due to the presence of different materials in the problem geometry various elastodynamic Green's functions for different materials are used in the formulation. Expressions of displacement and stress Green's functions for isotropic and anisotropic solids as well as for the fluid media are presented. Computed results are verified by checking the stress and displacement continuity conditions across the interface of two different solids of a bimetal plate and investigating if the results for a corrugated plate with very small corrugation match with the flat plate results.

  15. A contact algorithm for shell problems via Delaunay-based meshing of the contact domain

    NASA Astrophysics Data System (ADS)

    Kamran, K.; Rossi, R.; Oñate, E.

    2013-07-01

    The simulation of the contact within shells, with all of its different facets, represents still an open challenge in Computational Mechanics. Despite the effort spent in the development of techniques for the simulation of general contact problems, an all-seasons algorithm applicable to complex shell contact problems is yet to be developed. This work focuses on the solution of the contact between thin shells by using a technique derived from the particle finite element method together with a rotation-free shell triangle. The key concept is to define a discretization of the contact domain (CD) by constructing a finite element mesh of four-noded tetrahedra that describes the potential contact volume. The problem is completed by using an assumed-strain approach to define an elastic contact strain over the CD.

  16. Aeroelasticity of wing and wing-body configurations on parallel computers

    NASA Technical Reports Server (NTRS)

    Byun, Chansup

    1995-01-01

    The objective of this research is to develop computationally efficient methods for solving aeroelasticity problems on parallel computers. Both uncoupled and coupled methods are studied in this research. For the uncoupled approach, the conventional U-g method is used to determine the flutter boundary. The generalized aerodynamic forces required are obtained by the pulse transfer-function analysis method. For the coupled approach, the fluid-structure interaction is obtained by directly coupling finite difference Euler/Navier-Stokes equations for fluids and finite element dynamics equations for structures. This capability will significantly impact many aerospace projects of national importance such as Advanced Subsonic Civil Transport (ASCT), where the structural stability margin becomes very critical at the transonic region. This research effort will have direct impact on the High Performance Computing and Communication (HPCC) Program of NASA in the area of parallel computing.

  17. Finite size effects in ferroelectric-semiconductor thin films under open-circuit electric boundary conditions

    DOE PAGES

    Eliseev, Eugene A.; Kalinin, Sergei V.; Morozovska, Anna N.

    2015-01-21

    General features of finite size effects in the ferroelectric-semiconductor film under open-circuit electric boundary conditions are analyzed using Landau-Ginzburg-Devonshire theory and continuum media electrostatics. The temperature dependence of the film critical thickness, spontaneous polarization and depolarization field profiles of the open-circuited films are found to be significantly different from the characteristics of short-circuited ones. In particular, we predict the re-entrant type transition boundary between the mono-domain and poly-domain ferroelectric states due to reduced internal screening efficiency and analyzed possible experimental scenarios created by this mechanism. Performed analysis is relevant for the quantitative description of free-standing ferroelectric films phase diagrams andmore » polar properties. Also our results can be useful for the explanation of the scanning-probe microscopy experiments on free ferroelectric surfaces.« less

  18. Micromechanics based simulation of ductile fracture in structural steels

    NASA Astrophysics Data System (ADS)

    Yellavajjala, Ravi Kiran

    The broader aim of this research is to develop fundamental understanding of ductile fracture process in structural steels, propose robust computational models to quantify the associated damage, and provide numerical tools to simplify the implementation of these computational models into general finite element framework. Mechanical testing on different geometries of test specimens made of ASTM A992 steels is conducted to experimentally characterize the ductile fracture at different stress states under monotonic and ultra-low cycle fatigue (ULCF) loading. Scanning electron microscopy studies of the fractured surfaces is conducted to decipher the underlying microscopic damage mechanisms that cause fracture in ASTM A992 steels. Detailed micromechanical analyses for monotonic and cyclic loading are conducted to understand the influence of stress triaxiality and Lode parameter on the void growth phase of ductile fracture. Based on monotonic analyses, an uncoupled micromechanical void growth model is proposed to predict ductile fracture. This model is then incorporated in to finite element program as a weakly coupled model to simulate the loss of load carrying capacity in the post microvoid coalescence regime for high triaxialities. Based on the cyclic analyses, an uncoupled micromechanics based cyclic void growth model is developed to predict the ULCF life of ASTM A992 steels subjected to high stress triaxialities. Furthermore, a computational fracture locus for ASTM A992 steels is developed and incorporated in to finite element program as an uncoupled ductile fracture model. This model can be used to predict the ductile fracture initiation under monotonic loading in a wide range of triaxiality and Lode parameters. Finally, a coupled microvoid elongation and dilation based continuum damage model is proposed, implemented, calibrated and validated. This model is capable of simulating the local softening caused by the various phases of ductile fracture process under monotonic loading for a wide range of stress states. Novel differentiation procedures based on complex analyses along with existing finite difference methods and automatic differentiation are extended using perturbation techniques to evaluate tensor derivatives. These tensor differentiation techniques are then used to automate nonlinear constitutive models into implicit finite element framework. Finally, the efficiency of these automation procedures is demonstrated using benchmark problems.

  19. Evaluating sources of uncertainties in finite-fault source models: lessons from the 2009 Mw6.1 L'Aquila earthquake, Italy

    NASA Astrophysics Data System (ADS)

    Ragon, T.; Sladen, A.; Bletery, Q.; Simons, M.; Magnoni, F.; Avallone, A.; Cavalié, O.; Vergnolle, M.

    2016-12-01

    Despite the diversity of available data for the Mw 6.1 2009 earthquake in L'Aquila, Italy, published finite fault slip models are surprisingly different. For instance, the amplitude of the maximum coseismic slip patch varies from 80cm to 225cm, and its depth oscillates between 5 and 15km. Discrepancies between proposed source parameters are believed to result from three sources: observational uncertainties, epistemic uncertainties, and the inherent non-uniqueness of inverse problems. We explore the whole solution space of fault-slip models compatible with the data within the range of both observational and epistemic uncertainties by performing a fully Bayesian analysis. In this initial stage, we restrict our analysis to the static problem.In terms of observation uncertainty, we must take into account the difference in time span associated with the different data types: InSAR images provide excellent spatial coverage but usually correspond to a period of a few days to weeks after the mainshock and can thus be potentially biased by significant afterslip. Continuous GPS stations do not have the same shortcoming, but in contrast do not have the desired spatial coverage near the fault. In the case of the L'Aquila earthquake, InSAR images include a minimum of 6 days of afterslip. Here, we explicitly account for these different time windows in the inversion by jointly inverting for coseismic and post-seismic fault slip. Regarding epistemic or modeling uncertainties, we focus on the impact of uncertain fault geometry and elastic structure. Modeling errors, which result from inaccurate model predictions and are generally neglected, are estimated for both earth model and fault geometry as non-diagonal covariance matrices. The L'Aquila earthquake is particularly suited to investigation of these effects given the availability of a detailed aftershock catalog and 3D velocity models. This work aims at improving our knowledge of the L'Aquila earthquake as well as at providing a more general perspective on which uncertainties are the most critical in finite-fault source studies.

  20. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources

    PubMed Central

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-01-01

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947

  1. Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Freels, J. D.

    1989-01-01

    A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.

  2. Influence of land-surface evapotranspiration on the earth's climate

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Mintz, Y.

    1982-01-01

    Land-surface evapotranspiration is shown to strongly influence global fields of rainfall, temperature and motion by calculations using a numerical model of the atmosphere, confirming the general belief in the importance of evapotranspiration-producing surface vegetation for the earth's climate. The current version of the Goddard Laboratory atmospheric general circulation model is used in the present experiment, in which conservation equations for mass, momentum, moisture and energy are expressed in finite-difference form for a spherical grid to calculate (1) surface pressure field evolution, and (2) the wind, temperature, and water vapor fields at nine levels between the surface and a 20 km height.

  3. Transparent lattices and their solitary waves.

    PubMed

    Sadurní, E

    2014-09-01

    We provide a family of transparent tight-binding models with nontrivial potentials and site-dependent hopping parameters. Their feasibility is discussed in electromagnetic resonators, dielectric slabs, and quantum-mechanical traps. In the second part of the paper, the arrays are obtained through a generalization of supersymmetric quantum mechanics in discrete variables. The formalism includes a finite-difference Darboux transformation applied to the scattering matrix of a periodic array. A procedure for constructing a hierarchy of discrete Hamiltonians is indicated and a particular biparametric family is given. The corresponding potentials and hopping functions are identified as solitary waves, pointing to a discrete spinorial generalization of the Korteweg-deVries family.

  4. Universal entanglement spectra of gapped one-dimensional field theories

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; Ludwig, Andreas W. W.; Ryu, Shinsei

    2017-03-01

    We discuss the entanglement spectrum of the ground state of a (1+1)-dimensional system in a gapped phase near a quantum phase transition. In particular, in proximity to a quantum phase transition described by a conformal field theory (CFT), the system is represented by a gapped Lorentz invariant field theory in the "scaling limit" (correlation length ξ much larger than microscopic "lattice" scale "a "), and can be thought of as a CFT perturbed by a relevant perturbation. We show that for such (1+1) gapped Lorentz invariant field theories in infinite space, the low-lying entanglement spectrum obtained by tracing out, say, left half-infinite space, is precisely equal to the physical spectrum of the unperturbed gapless, i.e., conformal field theory defined on a finite interval of length Lξ=ln(ξ /a ) with certain boundary conditions. In particular, the low-lying entanglement spectrum of the gapped theory is the finite-size spectrum of a boundary conformal field theory, and is always discrete and universal. Each relevant perturbation, and thus each gapped phase in proximity to the quantum phase transition, maps into a particular boundary condition. A similar property has been known to hold for Baxter's corner transfer matrices in a very special class of fine-tuned, namely, integrable off-critical lattice models, for the entire entanglement spectrum and independent of the scaling limit. In contrast, our result applies to completely general gapped Lorentz invariant theories in the scaling limit, without the requirement of integrability, for the low-lying entanglement spectrum. While the entanglement spectrum of the ground state of a gapped theory on a finite interval of length 2 R with suitable boundary conditions, bipartitioned into two equal pieces, turns out to exhibit a crossover between the finite-size spectra of the same CFT with in general different boundary conditions as the system size R crosses the correlation length from the "critical regime'' R ≪ξ to the "gapped regime'' R ≫ξ , the physical spectrum on a finite interval of length R with the same boundary conditions, on the other hand, is known to undergo a dramatic reorganization during the same crossover from being discrete to being continuous.

  5. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    This paper demonstrates the current and future potential of finite-difference methods for solving real rotor problems which now rely largely on empiricism. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advance-ratio flight. Comparisons are made with experimental pressure data.

  6. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    The current and future potential of finite difference methods for solving real rotor problems which now rely largely on empiricism are demonstrated. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advanced-ratio flight. Comparisons are made with experimental pressure data.

  7. Preconditioning for the Navier-Stokes equations with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.

    1993-01-01

    The extension of Van Leer's preconditioning procedure to generalized finite-rate chemistry is discussed. Application to viscous flow is begun with the proper preconditioning matrix for the one-dimensional Navier-Stokes equations. Eigenvalue stiffness is resolved and convergence-rate acceleration is demonstrated over the entire Mach-number range from nearly stagnant flow to hypersonic. Specific benefits are realized at the low and transonic flow speeds typical of complete propulsion-system simulations. The extended preconditioning matrix necessarily accounts for both thermal and chemical nonequilibrium. Numerical analysis reveals the possible theoretical improvements from using a preconditioner for all Mach number regimes. Numerical results confirm the expectations from the numerical analysis. Representative test cases include flows with previously troublesome embedded high-condition-number areas. Van Leer, Lee, and Roe recently developed an optimal, analytic preconditioning technique to reduce eigenvalue stiffness over the full Mach-number range. By multiplying the flux-balance residual with the preconditioning matrix, the acoustic wave speeds are scaled so that all waves propagate at the same rate, an essential property to eliminate inherent eigenvalue stiffness. This session discusses a synthesis of the thermochemical nonequilibrium flux-splitting developed by Grossman and Cinnella and the characteristic wave preconditioning of Van Leer into a powerful tool for implicitly solving two and three-dimensional flows with generalized finite-rate chemistry. For finite-rate chemistry, the state vector of unknowns is variable in length. Therefore, the preconditioning matrix extended to generalized finite-rate chemistry must accommodate a flexible system of moving waves. Fortunately, no new kind of wave appears in the system. The only existing waves are entropy and vorticity waves, which move with the fluid, and acoustic waves, which propagate in Mach number dependent directions. The nonequilibrium vibrational energies and species densities in the unknown state vector act strictly as convective waves. The essential concept for extending the preconditioning to generalized chemistry models is determining the differential variables which symmetrize the flux Jacobians. The extension is then straight-forward. This algorithm research effort will be released in a future version of the production level computational code coined the General Aerodynamic Simulation Program (GASP), developed by Walters, Slack, and McGrory.

  8. Distributed robust finite-time nonlinear consensus protocols for multi-agent systems

    NASA Astrophysics Data System (ADS)

    Zuo, Zongyu; Tie, Lin

    2016-04-01

    This paper investigates the robust finite-time consensus problem of multi-agent systems in networks with undirected topology. Global nonlinear consensus protocols augmented with a variable structure are constructed with the aid of Lyapunov functions for each single-integrator agent dynamics in the presence of external disturbances. In particular, it is shown that the finite settling time of the proposed general framework for robust consensus design is upper bounded for any initial condition. This makes it possible for network consensus problems to design and estimate the convergence time offline for a multi-agent team with a given undirected information flow. Finally, simulation results are presented to demonstrate the performance and effectiveness of our finite-time protocols.

  9. COMPLEXITY&APPROXIMABILITY OF QUANTIFIED&STOCHASTIC CONSTRAINT SATISFACTION PROBLEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, H. B.; Marathe, M. V.; Stearns, R. E.

    2001-01-01

    Let D be an arbitrary (not necessarily finite) nonempty set, let C be a finite set of constant symbols denoting arbitrary elements of D, and let S and T be an arbitrary finite set of finite-arity relations on D. We denote the problem of determining the satisfiability of finite conjunctions of relations in S applied to variables (to variables and symbols in C) by SAT(S) (by SATc(S).) Here, we study simultaneously the complexity of decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. We present simple yet general techniques to characterize simultaneously, the complexity ormore » efficient approximability of a number of versions/variants of the problems SAT(S), Q-SAT(S), S-SAT(S),MAX-Q-SAT(S) etc., for many different such D,C ,S, T. These versions/variants include decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. Our unified approach is based on the following two basic concepts: (i) strongly-local replacements/reductions and (ii) relational/algebraic represent ability. Some of the results extend the earlier results in [Pa85,LMP99,CF+93,CF+94O]u r techniques and results reported here also provide significant steps towards obtaining dichotomy theorems, for a number of the problems above, including the problems MAX-&-SAT( S), and MAX-S-SAT(S). The discovery of such dichotomy theorems, for unquantified formulas, has received significant recent attention in the literature [CF+93,CF+94,Cr95,KSW97]« less

  10. Basic research on design analysis methods for rotorcraft vibrations

    NASA Technical Reports Server (NTRS)

    Hanagud, S.

    1991-01-01

    The objective of the present work was to develop a method for identifying physically plausible finite element system models of airframe structures from test data. The assumed models were based on linear elastic behavior with general (nonproportional) damping. Physical plausibility of the identified system matrices was insured by restricting the identification process to designated physical parameters only and not simply to the elements of the system matrices themselves. For example, in a large finite element model the identified parameters might be restricted to the moduli for each of the different materials used in the structure. In the case of damping, a restricted set of damping values might be assigned to finite elements based on the material type and on the fabrication processes used. In this case, different damping values might be associated with riveted, bolted and bonded elements. The method itself is developed first, and several approaches are outlined for computing the identified parameter values. The method is applied first to a simple structure for which the 'measured' response is actually synthesized from an assumed model. Both stiffness and damping parameter values are accurately identified. The true test, however, is the application to a full-scale airframe structure. In this case, a NASTRAN model and actual measured modal parameters formed the basis for the identification of a restricted set of physically plausible stiffness and damping parameters.

  11. A finite element model for tides and resonance along the north coast of British Columbia

    NASA Astrophysics Data System (ADS)

    Foreman, M. G. G.; Henry, R. F.; Walters, R. A.; Ballantyne, V. A.

    1993-02-01

    A finite element, barotropic, tidal model is developed for the north coast of British Columbia. The model is run with eight tidal constituents and the results are compared with the Flather (1987) finite difference model, and with extensive tide gauge and current meter observations. Although the tidal potential, Earth tide, and loading tide are included in the forcing, their inclusion is shown to change the largest M2 amplitudes by only 2.5% and the largest K1 amplitudes by less than 1%. Root mean square differences between observed and calculated sea level amplitudes and phases are within 1.9 cm and 2.9° for all but one constituent, but the model currents do not in general, compare as favourably. The barotropic currents observed in Hecate Strait are reproduced well, but elsewhere evidence is shown that model inaccuracies are due to baroclinic effects. Tidal residual currents calculated by the model suggest the existence of eddies off the tip of Cape St. James, Cape Chacon, and around Goose Island and Learmonth Banks. The shallow water constituents in Hecate Strait are shown to have significant contributions from the constructive interference of signals propagating into Dixon Entrance and Queen Charlotte Sound. Using the model, the longest resonant period of the system is estimated to be 7.6 hours with an energy dissipation parameter, Q, of 9.5.

  12. Improved numerical methods for turbulent viscous recirculating flows

    NASA Technical Reports Server (NTRS)

    Turan, A.

    1985-01-01

    The hybrid-upwind finite difference schemes employed in generally available combustor codes possess excessive numerical diffusion errors which preclude accurate quantative calculations. The present study has as its primary objective the identification and assessment of an improved solution algorithm as well as discretization schemes applicable to analysis of turbulent viscous recirculating flows. The assessment is carried out primarily in two dimensional/axisymetric geometries with a view to identifying an appropriate technique to be incorporated in a three-dimensional code.

  13. A mixed formulation for interlaminar stresses in dropped-ply laminates

    NASA Technical Reports Server (NTRS)

    Harrison, Peter N.; Johnson, Eric R.

    1993-01-01

    A structural model is developed for the linear elastic response of structures consisting of multiple layers of varying thickness such as laminated composites containing internal ply drop-offs. The assumption of generalized plane deformation is used to reduce the solution domain to two dimensions while still allowing some out-of-plane deformation. The Hellinger-Reissner variational principle is applied to a layerwise assumed stress distribution with the resulting governing equations solved using finite differences.

  14. Computer-Oriented Calculus Courses Using Finite Differences.

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    The so-called discrete approach in calculus instruction involves introducing topics from the calculus of finite differences and finite sums, both for motivation and as useful tools for applications of the calculus. In particular, it provides an ideal setting in which to incorporate computers into calculus courses. This approach has been…

  15. Linearized finite-element method solution of the ion-exchange nonlinear diffusion model

    NASA Astrophysics Data System (ADS)

    Badr, Mohamed M.; Swillam, Mohamed A.

    2017-04-01

    Ion-exchange process is one of the most common techniques used in glass waveguide fabrication. This has many advantages, such as low cost, ease of implementation, and simple equipment requirements. The technology is based on the substitution of some of the host ions in the glass (typically Na+) with other ions that possess different characteristics in terms of size and polarizability. The newly diffused ions produce a region with a relatively higher refractive index in which the light could be guided. A critical issue arises when it comes to designing such waveguides, which is carefully and precisely determining the resultant index profile. This task has been proven to be hideous as the process is generally governed by a nonlinear diffusion model with no direct general analytical solution. Furthermore, numerical solutions become unreliable-in terms of stability and mean squared error-in some cases, especially the K+-Na+ ion-exchanged waveguide, which is the best candidate to produce waveguides with refractive index differences compatible with those of the commercially available optical fibers. Linearized finite-element method formulations were used to provide a reliable tool that could solve the nonlinear diffusion model of the ion-exchange in both one- and two-dimensional spaces. Additionally, the annealed channel waveguide case has been studied. In all cases, unprecedented stability and minimum mean squared error could be achieved.

  16. A note on powers in finite fields

    NASA Astrophysics Data System (ADS)

    Aabrandt, Andreas; Lundsgaard Hansen, Vagn

    2016-08-01

    The study of solutions to polynomial equations over finite fields has a long history in mathematics and is an interesting area of contemporary research. In recent years, the subject has found important applications in the modelling of problems from applied mathematical fields such as signal analysis, system theory, coding theory and cryptology. In this connection, it is of interest to know criteria for the existence of squares and other powers in arbitrary finite fields. Making good use of polynomial division in polynomial rings over finite fields, we have examined a classical criterion of Euler for squares in odd prime fields, giving it a formulation that is apt for generalization to arbitrary finite fields and powers. Our proof uses algebra rather than classical number theory, which makes it convenient when presenting basic methods of applied algebra in the classroom.

  17. Distributed finite-time containment control for double-integrator multiagent systems.

    PubMed

    Wang, Xiangyu; Li, Shihua; Shi, Peng

    2014-09-01

    In this paper, the distributed finite-time containment control problem for double-integrator multiagent systems with multiple leaders and external disturbances is discussed. In the presence of multiple dynamic leaders, by utilizing the homogeneous control technique, a distributed finite-time observer is developed for the followers to estimate the weighted average of the leaders' velocities at first. Then, based on the estimates and the generalized adding a power integrator approach, distributed finite-time containment control algorithms are designed to guarantee that the states of the followers converge to the dynamic convex hull spanned by those of the leaders in finite time. Moreover, as a special case of multiple dynamic leaders with zero velocities, the proposed containment control algorithms also work for the case of multiple stationary leaders without using the distributed observer. Simulations demonstrate the effectiveness of the proposed control algorithms.

  18. Multiscale Failure Analysis of Laminated Composite Panels Subjected to Blast Loading Using FEAMAC/Explicit

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.; Berdnarcyk, Brett A.; Arnold, Steven M.; Collier, Craig S.

    2009-01-01

    This preliminary report demonstrates the capabilities of the recently developed software implementation that links the Generalized Method of Cells to explicit finite element analysis by extending a previous development which tied the generalized method of cells to implicit finite elements. The multiscale framework, which uses explicit finite elements at the global-scale and the generalized method of cells at the microscale is detailed. This implementation is suitable for both dynamic mechanics problems and static problems exhibiting drastic and sudden changes in material properties, which often encounter convergence issues with commercial implicit solvers. Progressive failure analysis of stiffened and un-stiffened fiber-reinforced laminates subjected to normal blast pressure loads was performed and is used to demonstrate the capabilities of this framework. The focus of this report is to document the development of the software implementation; thus, no comparison between the results of the models and experimental data is drawn. However, the validity of the results are assessed qualitatively through the observation of failure paths, stress contours, and the distribution of system energies.

  19. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes.

    PubMed

    Botti, Lorenzo; Paliwal, Nikhil; Conti, Pierangelo; Antiga, Luca; Meng, Hui

    2018-06-01

    Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical management of intracranial aneurysms (IAs) but its adoption in the clinical practice has been missing, partially due to lack of accuracy assessment and sensitivity analysis. To numerically solve the flow-governing equations CFD solvers generally rely on two spatial discretization schemes: Finite Volume (FV) and Finite Element (FE). Since increasingly accurate numerical solutions are obtained by different means, accuracies and computational costs of FV and FE formulations cannot be compared directly. To this end, in this study we benchmark two representative CFD solvers in simulating flow in a patient-specific IA model: (1) ANSYS Fluent, a commercial FV-based solver and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The FV solver's accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m and 68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the degree of polynomials (first, second, third and fourth degree) on the base 134k tetrahedral element mesh. Solutions from best FV and dGFE approximations are used as baseline for error quantification. On average, velocity errors for second-best approximations are approximately 1cm/s for a [0,125]cm/s velocity magnitude field. Results show that high-order dGFE provide better accuracy per degree of freedom but worse accuracy per Jacobian non-zero entry as compared to FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of both solvers to the same numerical solution. Nevertheless, the discrepancy between under-resolved velocity fields suggests that mesh independence is reached following different paths. This article is protected by copyright. All rights reserved.

  20. Motion analysis study on sensitivity of finite element model of the cervical spine to geometry.

    PubMed

    Zafarparandeh, Iman; Erbulut, Deniz U; Ozer, Ali F

    2016-07-01

    Numerous finite element models of the cervical spine have been proposed, with exact geometry or with symmetric approximation in the geometry. However, few researches have investigated the sensitivity of predicted motion responses to the geometry of the cervical spine. The goal of this study was to evaluate the effect of symmetric assumption on the predicted motion by finite element model of the cervical spine. We developed two finite element models of the cervical spine C2-C7. One model was based on the exact geometry of the cervical spine (asymmetric model), whereas the other was symmetric (symmetric model) about the mid-sagittal plane. The predicted range of motion of both models-main and coupled motions-was compared with published experimental data for all motion planes under a full range of loads. The maximum differences between the asymmetric model and symmetric model predictions for the principal motion were 31%, 78%, and 126% for flexion-extension, right-left lateral bending, and right-left axial rotation, respectively. For flexion-extension and lateral bending, the minimum difference was 0%, whereas it was 2% for axial rotation. The maximum coupled motions predicted by the symmetric model were 1.5° axial rotation and 3.6° lateral bending, under applied lateral bending and axial rotation, respectively. Those coupled motions predicted by the asymmetric model were 1.6° axial rotation and 4° lateral bending, under applied lateral bending and axial rotation, respectively. In general, the predicted motion response of the cervical spine by the symmetric model was in the acceptable range and nonlinearity of the moment-rotation curve for the cervical spine was properly predicted. © IMechE 2016.

  1. A simple finite element method for non-divergence form elliptic equation

    DOE PAGES

    Mu, Lin; Ye, Xiu

    2017-03-01

    Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.

  2. A mixed shear flexible finite element for the analysis of laminated plates

    NASA Technical Reports Server (NTRS)

    Putcha, N. S.; Reddy, J. N.

    1984-01-01

    A mixed shear flexible finite element based on the Hencky-Mindlin type shear deformation theory of laminated plates is presented and their behavior in bending is investigated. The element consists of three displacements, two rotations, and three moments as the generalized degrees of freedom per node. The numerical convergence and accuracy characteristics of the element are investigated by comparing the finite element solutions with the exact solutions. The present study shows that reduced-order integration of the stiffness coefficients due to shear is necessary to obtain accurate results for thin plates.

  3. NASTRAN thermal analyzer: A general purpose finite element heat transfer computer program

    NASA Technical Reports Server (NTRS)

    Lee, H.; Mason, J. B.

    1972-01-01

    The program not only can render temperature distributions in solids subjected to various thermal boundary conditions, including effects of diffuse-gray thermal radiation, but is fully compatible in capacity and in the finite-element model representation with that of its structural counterpart in the NASTRAN system. The development history of the finite-element approach for determining temperatures is summarized. The scope of analysis capability, program structure, features, and limitations are given with the objective of providing NASTRAN users with an overall veiw of the NASTRAN thermal analyzer.

  4. A simple finite element method for non-divergence form elliptic equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Ye, Xiu

    Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.

  5. Adaptive finite element method for turbulent flow near a propeller

    NASA Astrophysics Data System (ADS)

    Pelletier, Dominique; Ilinca, Florin; Hetu, Jean-Francois

    1994-11-01

    This paper presents an adaptive finite element method based on remeshing to solve incompressible turbulent free shear flow near a propeller. Solutions are obtained in primitive variables using a highly accurate finite element approximation on unstructured grids. Turbulence is modeled by a mixing length formulation. Two general purpose error estimators, which take into account swirl and the variation of the eddy viscosity, are presented and applied to the turbulent wake of a propeller. Predictions compare well with experimental measurements. The proposed adaptive scheme is robust, reliable and cost effective.

  6. Finite element analysis of steady and transiently moving/rolling nonlinear viscoelastic structure. III - Impact/contact simulations

    NASA Technical Reports Server (NTRS)

    Nakajima, Yukio; Padovan, Joe

    1987-01-01

    In a three-part series of papers, a generalized finite element methodology is formulated to handle traveling load problems involving large deformation fields in structure composed of viscoelastic media. The main thrust of this paper is to develop an overall finite element methodology and associated solution algorithms to handle the transient aspects of moving problems involving contact impact type loading fields. Based on the methodology and algorithms formulated, several numerical experiments are considered. These include the rolling/sliding impact of tires with road obstructions.

  7. Forming limit diagrams of tubes with initial wall-thickness difference based on different instability criteria

    NASA Astrophysics Data System (ADS)

    Zhao, Qiwen; Yang, Lianfa; He, Yulin

    2018-05-01

    The Forming limit diagram (FLD), also known as a forming limit curves (FLC), is generally used in metal forming for predicting forming behavior of metals. The purpose of the study is to clarify the difference among the FLC of tubes with initial wall-thickness difference under tension-compression strain states using finite element (FE) simulation of tube hydroforming (THF) and different instability criteria. Firstly, geometrical models for SUS304 stainless steel tubes with initial wall-thickness differences were built by introducing an index `wall-thickness deviation rate'. Secondly, forced-end hydro-bugling of the tubes was modeled and the forming process was simulated by using the commercial finite element (FE) code ABAQUS/Explicit 6.10. Afterwards, the limiting strains of the material in the hydro-bugling process were calculated based on the simulated resultant data and three instability criteria-strain change criterion, strain rate change criterion and strain path change criterion, respectively. Finally, the FLD for the tubes was established and the effect of wall-thickness deviation rate on the FLD was analyzed and the differences among the FLC based on the three instability criteria were compared. The results showed that the FLC are observed to shift in the major-minor strain coordinate system due to the initial non-uniform wall-thickness; however, no distinct differences among the FLC based on the three instability criteria were observed.

  8. Regularity estimates up to the boundary for elliptic systems of difference equations

    NASA Technical Reports Server (NTRS)

    Strikwerda, J. C.; Wade, B. A.; Bube, K. P.

    1986-01-01

    Regularity estimates up to the boundary for solutions of elliptic systems of finite difference equations were proved. The regularity estimates, obtained for boundary fitted coordinate systems on domains with smooth boundary, involve discrete Sobolev norms and are proved using pseudo-difference operators to treat systems with variable coefficients. The elliptic systems of difference equations and the boundary conditions which are considered are very general in form. The regularity of a regular elliptic system of difference equations was proved equivalent to the nonexistence of eigensolutions. The regularity estimates obtained are analogous to those in the theory of elliptic systems of partial differential equations, and to the results of Gustafsson, Kreiss, and Sundstrom (1972) and others for hyperbolic difference equations.

  9. Finite-part integration of the generalized Stieltjes transform and its dominant asymptotic behavior for small values of the parameter. I. Integer orders

    NASA Astrophysics Data System (ADS)

    Tica, Christian D.; Galapon, Eric A.

    2018-02-01

    The paper addresses the exact evaluation of the generalized Stieltjes transform Sn[f ] =∫0∞f (x ) (ω+x ) -nd x of integral order n = 1, 2, 3, … about ω = 0 from which the asymptotic behavior of Sn[f] for small parameters ω is directly extracted. An attempt to evaluate the integral by expanding the integrand (ω + x)-n about ω = 0 and then naively integrating the resulting infinite series term by term leads to an infinite series whose terms are divergent integrals. Assigning values to the divergent integrals, say, by analytic continuation or by Hadamard's finite part is known to reproduce only some of the correct terms of the expansion but completely misses out a group of terms. Here we evaluate explicitly the generalized Stieltjes transform by means of finite-part integration recently introduced in Galapon [Proc. R. Soc. A 473, 20160567 (2017)]. It is shown that, when f(x) does not vanish or has zero of order m at the origin such that (n - m) ≥ 1, the dominant terms of Sn[f] as ω → 0 come from contributions arising from the poles and branch points of the complex valued function f(z)(ω + z)-n. These dominant terms are precisely the terms missed out by naive term by term integration. Furthermore, it is demonstrated how finite-part integration leads to new series representations of special functions by exploiting their known Stieltjes integral representations. Finally, the application of finite part integration in obtaining asymptotic expansions of the effective diffusivity in the limit of high Peclet number, the Green-Kubo formula for the self-diffusion coefficient, and the antisymmetric part of the diffusion tensor in the weak noise limit is discussed.

  10. Dental application of novel finite element analysis software for three-dimensional finite element modeling of a dentulous mandible from its computed tomography images.

    PubMed

    Nakamura, Keiko; Tajima, Kiyoshi; Chen, Ker-Kong; Nagamatsu, Yuki; Kakigawa, Hiroshi; Masumi, Shin-ich

    2013-12-01

    This study focused on the application of novel finite-element analysis software for constructing a finite-element model from the computed tomography data of a human dentulous mandible. The finite-element model is necessary for evaluating the mechanical response of the alveolar part of the mandible, resulting from occlusal force applied to the teeth during biting. Commercially available patient-specific general computed tomography-based finite-element analysis software was solely applied to the finite-element analysis for the extraction of computed tomography data. The mandibular bone with teeth was extracted from the original images. Both the enamel and the dentin were extracted after image processing, and the periodontal ligament was created from the segmented dentin. The constructed finite-element model was reasonably accurate using a total of 234,644 nodes and 1,268,784 tetrahedral and 40,665 shell elements. The elastic moduli of the heterogeneous mandibular bone were determined from the bone density data of the computed tomography images. The results suggested that the software applied in this study is both useful and powerful for creating a more accurate three-dimensional finite-element model of a dentulous mandible from the computed tomography data without the need for any other software.

  11. A hybrid symbolic/finite-element algorithm for solving nonlinear optimal control problems

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Hodges, Dewey H.

    1991-01-01

    The general code described is capable of solving difficult nonlinear optimal control problems by using finite elements and a symbolic manipulator. Quick and accurate solutions are obtained with a minimum for user interaction. Since no user programming is required for most problems, there are tremendous savings to be gained in terms of time and money.

  12. BOPACE 3-D (the Boeing Plastic Analysis Capability for 3-dimensional Solids Using Isoparametric Finite Elements)

    NASA Technical Reports Server (NTRS)

    Vos, R. G.; Straayer, J. W.

    1975-01-01

    The BOPACE 3-D is a finite element computer program, which provides a general family of three-dimensional isoparametric solid elements, and includes a new algorithm for improving the efficiency of the elastic-plastic-creep solution procedure. Theoretical, user, and programmer oriented sections are presented to describe the program.

  13. Electromagnetic synchronisation of clocks with finite separation in a rotating system

    NASA Astrophysics Data System (ADS)

    Cohen, J. M.; Moses, H. E.; Rosenblum, A.

    1984-11-01

    For clocks on the vertices of a triangle, it is shown that clock synchronisation using electromagnetic signals between finitely spaced clocks in a rotating frame leads to the same synchronization error as a closely spaced band of clocks along the same light path. In addition, the above result is generalized to n equally spaced clocks.

  14. Non-adiabatic pumping in an oscillating-piston model

    NASA Astrophysics Data System (ADS)

    Chuchem, Maya; Dittrich, Thomas; Cohen, Doron

    2012-05-01

    We consider the prototypical "piston pump" operating on a ring, where a circulating current is induced by means of an AC driving. This can be regarded as a generalized Fermi-Ulam model, incorporating a finite-height moving wall (piston) and non-trivial topology (ring). The amount of particles transported per cycle is determined by a layered structure of phase space. Each layer is characterized by a different drift velocity. We discuss the differences compared with the adiabatic and Boltzmann pictures, and highlight the significance of the "diabatic" contribution that might lead to a counter-stirring effect.

  15. Generalized classical and quantum signal theories

    NASA Astrophysics Data System (ADS)

    Rundblad, E.; Labunets, V.; Novak, P.

    2005-05-01

    In this paper we develop two topics and show their inter- and cross-relation. The first centers on general notions of the generalized classical signal theory on finite Abelian hypergroups. The second concerns the generalized quantum hyperharmonic analysis of quantum signals (Hermitean operators associated with classical signals). We study classical and quantum generalized convolution hypergroup algebras of classical and quantum signals.

  16. Low Density Parity Check Codes Based on Finite Geometries: A Rediscovery and More

    NASA Technical Reports Server (NTRS)

    Kou, Yu; Lin, Shu; Fossorier, Marc

    1999-01-01

    Low density parity check (LDPC) codes with iterative decoding based on belief propagation achieve astonishing error performance close to Shannon limit. No algebraic or geometric method for constructing these codes has been reported and they are largely generated by computer search. As a result, encoding of long LDPC codes is in general very complex. This paper presents two classes of high rate LDPC codes whose constructions are based on finite Euclidean and projective geometries, respectively. These classes of codes a.re cyclic and have good constraint parameters and minimum distances. Cyclic structure adows the use of linear feedback shift registers for encoding. These finite geometry LDPC codes achieve very good error performance with either soft-decision iterative decoding based on belief propagation or Gallager's hard-decision bit flipping algorithm. These codes can be punctured or extended to obtain other good LDPC codes. A generalization of these codes is also presented.

  17. Design, Fabrication and Test of Composite Curved Frames for Helicopter Fuselage Structure

    NASA Technical Reports Server (NTRS)

    Lowry, D. W.; Krebs, N. E.; Dobyns, A. L.

    1984-01-01

    Aspects of curved beam effects and their importance in designing composite frame structures are discussed. The curved beam effect induces radial flange loadings which in turn causes flange curling. This curling increases the axial flange stresses and induces transverse bending. These effects are more important in composite structures due to their general inability to redistribute stresses by general yielding, such as in metal structures. A detailed finite element analysis was conducted and used in the design of composite curved frame specimens. Five specimens were statically tested and compared with predicted and test strains. The curved frame effects must be accurately accounted for to avoid premature fracture; finite element methods can accurately predict most of the stresses and no elastic relief from curved beam effects occurred in the composite frames tested. Finite element studies are presented for comparative curved beam effects on composite and metal frames.

  18. Carnot cycle at finite power: attainability of maximal efficiency.

    PubMed

    Allahverdyan, Armen E; Hovhannisyan, Karen V; Melkikh, Alexey V; Gevorkian, Sasun G

    2013-08-02

    We want to understand whether and to what extent the maximal (Carnot) efficiency for heat engines can be reached at a finite power. To this end we generalize the Carnot cycle so that it is not restricted to slow processes. We show that for realistic (i.e., not purposefully designed) engine-bath interactions, the work-optimal engine performing the generalized cycle close to the maximal efficiency has a long cycle time and hence vanishing power. This aspect is shown to relate to the theory of computational complexity. A physical manifestation of the same effect is Levinthal's paradox in the protein folding problem. The resolution of this paradox for realistic proteins allows to construct engines that can extract at a finite power 40% of the maximally possible work reaching 90% of the maximal efficiency. For purposefully designed engine-bath interactions, the Carnot efficiency is achievable at a large power.

  19. Chiral Luttinger liquids and a generalized Luttinger's theorem in fractional quantum Hall edges via finite-entanglement scaling

    NASA Astrophysics Data System (ADS)

    Varjas, Daniel; Zaletel, Michael; Moore, Joel

    2014-03-01

    We use bosonic field theories and the infinite system density matrix renormalization group (iDMRG) method to study infinite strips of fractional quantum Hall (FQH) states starting from microscopic Hamiltonians. Finite-entanglement scaling allows us to accurately measure chiral central charge, edge mode exponents and momenta without finite-size errors. We analyze states in the first and second level of the standard hierarchy and compare our results to predictions of the chiral Luttinger liquid (χLL) theory. The results confirm the universality of scaling exponents in chiral edges and demonstrate that renormalization is subject to universal relations in the non-chiral case. We prove a generalized Luttinger's theorem involving all singularities in the momentum-resolved density, which naturally arises when mapping Landau levels on a cylinder to a fermion chain and deepens our understanding of non-Fermi liquids in 1D.

  20. Chiral Luttinger liquids and a generalized Luttinger theorem in fractional quantum Hall edges via finite-entanglement scaling

    NASA Astrophysics Data System (ADS)

    Varjas, Dániel; Zaletel, Michael P.; Moore, Joel E.

    2013-10-01

    We use bosonic field theories and the infinite system density matrix renormalization group method to study infinite strips of fractional quantum Hall states starting from microscopic Hamiltonians. Finite-entanglement scaling allows us to accurately measure chiral central charge, edge-mode exponents, and momenta without finite-size errors. We analyze states in the first and second levels of the standard hierarchy and compare our results to predictions of the chiral Luttinger liquid theory. The results confirm the universality of scaling exponents in chiral edges and demonstrate that renormalization is subject to universal relations in the nonchiral case. We prove a generalized Luttinger theorem involving all singularities in the momentum-resolved density, which naturally arises when mapping Landau levels on a cylinder to a fermion chain and deepens our understanding of non-Fermi liquids in one dimension.

  1. STARS: An integrated general-purpose finite element structural, aeroelastic, and aeroservoelastic analysis computer program

    NASA Technical Reports Server (NTRS)

    Gupta, Kajal K.

    1991-01-01

    The details of an integrated general-purpose finite element structural analysis computer program which is also capable of solving complex multidisciplinary problems is presented. Thus, the SOLIDS module of the program possesses an extensive finite element library suitable for modeling most practical problems and is capable of solving statics, vibration, buckling, and dynamic response problems of complex structures, including spinning ones. The aerodynamic module, AERO, enables computation of unsteady aerodynamic forces for both subsonic and supersonic flow for subsequent flutter and divergence analysis of the structure. The associated aeroservoelastic analysis module, ASE, effects aero-structural-control stability analysis yielding frequency responses as well as damping characteristics of the structure. The program is written in standard FORTRAN to run on a wide variety of computers. Extensive graphics, preprocessing, and postprocessing routines are also available pertaining to a number of terminals.

  2. Constructions for finite-state codes

    NASA Technical Reports Server (NTRS)

    Pollara, F.; Mceliece, R. J.; Abdel-Ghaffar, K.

    1987-01-01

    A class of codes called finite-state (FS) codes is defined and investigated. These codes, which generalize both block and convolutional codes, are defined by their encoders, which are finite-state machines with parallel inputs and outputs. A family of upper bounds on the free distance of a given FS code is derived from known upper bounds on the minimum distance of block codes. A general construction for FS codes is then given, based on the idea of partitioning a given linear block into cosets of one of its subcodes, and it is shown that in many cases the FS codes constructed in this way have a d sub free which is as large as possible. These codes are found without the need for lengthy computer searches, and have potential applications for future deep-space coding systems. The issue of catastropic error propagation (CEP) for FS codes is also investigated.

  3. Navier-Stokes Solutions for Spin-Up from Rest in a Cylindrical Container

    DTIC Science & Technology

    1979-09-01

    CONDITIONS The calculations employ a finite - difference analog of the unsteady axisyimetric Navier-Stokes equations formulated in cylindrical coordinates...derivatives are approximated by second- order accurate one-sided difference formulae involving three time levels. * The following finite - difference ...equation are identical in form to Equations (13). The finite - difference representations for the ?-equation are: "(i)[aJ~lk " /i’,J-l2k] T (14a) •g I

  4. Tooth Eruption Results from Bone Remodelling Driven by Bite Forces Sensed by Soft Tissue Dental Follicles: A Finite Element Analysis

    PubMed Central

    Sarrafpour, Babak; Swain, Michael; Li, Qing; Zoellner, Hans

    2013-01-01

    Intermittent tongue, lip and cheek forces influence precise tooth position, so we here examine the possibility that tissue remodelling driven by functional bite-force-induced jaw-strain accounts for tooth eruption. Notably, although a separate true ‘eruptive force’ is widely assumed, there is little direct evidence for such a force. We constructed a three dimensional finite element model from axial computerized tomography of an 8 year old child mandible containing 12 erupted and 8 unerupted teeth. Tissues modelled included: cortical bone, cancellous bone, soft tissue dental follicle, periodontal ligament, enamel, dentine, pulp and articular cartilage. Strain and hydrostatic stress during incisive and unilateral molar bite force were modelled, with force applied via medial and lateral pterygoid, temporalis, masseter and digastric muscles. Strain was maximal in the soft tissue follicle as opposed to surrounding bone, consistent with follicle as an effective mechanosensor. Initial numerical analysis of dental follicle soft tissue overlying crowns and beneath the roots of unerupted teeth was of volume and hydrostatic stress. To numerically evaluate biological significance of differing hydrostatic stress levels normalized for variable finite element volume, ‘biological response units’ in Nmm were defined and calculated by multiplication of hydrostatic stress and volume for each finite element. Graphical representations revealed similar overall responses for individual teeth regardless if incisive or right molar bite force was studied. There was general compression in the soft tissues over crowns of most unerupted teeth, and general tension in the soft tissues beneath roots. Not conforming to this pattern were the unerupted second molars, which do not erupt at this developmental stage. Data support a new hypothesis for tooth eruption, in which the follicular soft tissues detect bite-force-induced bone-strain, and direct bone remodelling at the inner surface of the surrounding bony crypt, with the effect of enabling tooth eruption into the mouth. PMID:23554928

  5. Tooth eruption results from bone remodelling driven by bite forces sensed by soft tissue dental follicles: a finite element analysis.

    PubMed

    Sarrafpour, Babak; Swain, Michael; Li, Qing; Zoellner, Hans

    2013-01-01

    Intermittent tongue, lip and cheek forces influence precise tooth position, so we here examine the possibility that tissue remodelling driven by functional bite-force-induced jaw-strain accounts for tooth eruption. Notably, although a separate true 'eruptive force' is widely assumed, there is little direct evidence for such a force. We constructed a three dimensional finite element model from axial computerized tomography of an 8 year old child mandible containing 12 erupted and 8 unerupted teeth. Tissues modelled included: cortical bone, cancellous bone, soft tissue dental follicle, periodontal ligament, enamel, dentine, pulp and articular cartilage. Strain and hydrostatic stress during incisive and unilateral molar bite force were modelled, with force applied via medial and lateral pterygoid, temporalis, masseter and digastric muscles. Strain was maximal in the soft tissue follicle as opposed to surrounding bone, consistent with follicle as an effective mechanosensor. Initial numerical analysis of dental follicle soft tissue overlying crowns and beneath the roots of unerupted teeth was of volume and hydrostatic stress. To numerically evaluate biological significance of differing hydrostatic stress levels normalized for variable finite element volume, 'biological response units' in Nmm were defined and calculated by multiplication of hydrostatic stress and volume for each finite element. Graphical representations revealed similar overall responses for individual teeth regardless if incisive or right molar bite force was studied. There was general compression in the soft tissues over crowns of most unerupted teeth, and general tension in the soft tissues beneath roots. Not conforming to this pattern were the unerupted second molars, which do not erupt at this developmental stage. Data support a new hypothesis for tooth eruption, in which the follicular soft tissues detect bite-force-induced bone-strain, and direct bone remodelling at the inner surface of the surrounding bony crypt, with the effect of enabling tooth eruption into the mouth.

  6. Experimental investigation of moving surfaces for boundary layer and circulation control of airfoils and wings

    NASA Astrophysics Data System (ADS)

    Vets, Robert

    An experimental study was conducted to assess the application of a moving surface to affect boundary layers and circulation around airfoils for the purpose of altering and enhancing aerodynamic performance of finite wings at moderate Reynolds numbers. The moving surface was established by a wide, lightweight, nylon belt that enveloped a wing's symmetric airfoil profile articulated via a friction drive cylinder such that the direction of the upper surface was in the direction of the free stream. A water tunnel visualization study accompanied wind tunnel testing at the University of Washington, Kirsten Wind Tunnel of finite wings. An experimental study was conducted to assess the application of a moving surface to affect boundary layers and circulation around airfoils for the purpose of altering and enhancing aerodynamic performance of finite wings at moderate Reynolds numbers. The moving surface was established by a wide, lightweight, nylon belt that enveloped a wing's symmetric airfoil profile articulated via a friction drive cylinder such that the direction of the upper surface was in the direction of the free stream. A water tunnel visualization study accompanied wind tunnel testing at the University of Washington, Kirsten Wind Tunnel of finite wings. The defining non-dimensional parameter for the system is the ratio of the surface velocity to the free stream velocity, us/Uo. Results show a general increase in lift with increasing us/Uo. The endurance parameter served as an additional metric for the system's performance. Examining the results of the endurance parameter shows general increase in endurance and lift with the moving surface activated. Peak performance in terms of increased endurance along with increased lift occurs at or slightly above us/Uo = 1. Water tunnel visualization showed a marked difference in the downwash for velocity ratios greater than 1, supporting the measured data. Reynolds numbers for this investigation were 1.9E5 and 4.3E5, relevant to the class of fixed wing, Tier-1, Unmanned Aerial Vehicles (UAV).

  7. On the explicit construction of Parisi landscapes in finite dimensional Euclidean spaces

    NASA Astrophysics Data System (ADS)

    Fyodorov, Y. V.; Bouchaud, J.-P.

    2007-12-01

    An N-dimensional Gaussian landscape with multiscale translation-invariant logarithmic correlations has been constructed, and the statistical mechanics of a single particle in this environment has been investigated. In the limit of a high dimensional N → ∞, the free energy of the system in the thermodynamic limit coincides with the most general version of Derrida’s generalized random energy model. The low-temperature behavior depends essentially on the spectrum of length scales involved in the construction of the landscape. The construction is argued to be valid in any finite spatial dimensions N ≥1.

  8. Height probabilities in the Abelian sandpile model on the generalized finite Bethe lattice

    NASA Astrophysics Data System (ADS)

    Chen, Haiyan; Zhang, Fuji

    2013-08-01

    In this paper, we study the sandpile model on the generalized finite Bethe lattice with a particular boundary condition. Using a combinatorial method, we give the exact expressions for all single-site probabilities and some two-site joint probabilities. As a by-product, we prove that the height probabilities of bulk vertices are all the same for the Bethe lattice with certain given boundary condition, which was found from numerical evidence by Grassberger and Manna ["Some more sandpiles," J. Phys. (France) 51, 1077-1098 (1990)], 10.1051/jphys:0199000510110107700 but without a proof.

  9. Generalized epidemic process on modular networks.

    PubMed

    Chung, Kihong; Baek, Yongjoo; Kim, Daniel; Ha, Meesoon; Jeong, Hawoong

    2014-05-01

    Social reinforcement and modular structure are two salient features observed in the spreading of behavior through social contacts. In order to investigate the interplay between these two features, we study the generalized epidemic process on modular networks with equal-sized finite communities and adjustable modularity. Using the analytical approach originally applied to clique-based random networks, we show that the system exhibits a bond-percolation type continuous phase transition for weak social reinforcement, whereas a discontinuous phase transition occurs for sufficiently strong social reinforcement. Our findings are numerically verified using the finite-size scaling analysis and the crossings of the bimodality coefficient.

  10. First Instances of Generalized Expo-Rational Finite Elements on Triangulations

    NASA Astrophysics Data System (ADS)

    Dechevsky, Lubomir T.; Zanaty, Peter; Laksa˚, Arne; Bang, Børre

    2011-12-01

    In this communication we consider a construction of simplicial finite elements on triangulated two-dimensional polygonal domains. This construction is, in some sense, dual to the construction of generalized expo-rational B-splines (GERBS). The main result is in the obtaining of new polynomial simplicial patches of the first several lowest possible total polynomial degrees which exhibit Hermite interpolatory properties. The derivation of these results is based on the theory of piecewise polynomial GERBS called Euler Beta-function B-splines. We also provide 3-dimensional visualization of the graphs of the new polynomial simplicial patches and their control polygons.

  11. An Exponential Finite Difference Technique for Solving Partial Differential Equations. M.S. Thesis - Toledo Univ., Ohio

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that were more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.

  12. exponential finite difference technique for solving partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handschuh, R.F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that weremore » more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.« less

  13. Failure Analysis of Discrete Damaged Tailored Extension-Shear-Coupled Stiffened Composite Panels

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    2005-01-01

    The results of an analytical and experimental investigation of the failure of composite is tiffener panels with extension-shear coupling are presented. This tailored concept, when used in the cover skins of a tiltrotor aircraft wing has the potential for increasing the aeroelastic stability margins and improving the aircraft productivity. The extension-shear coupling is achieved by using unbalanced 45 plies in the skin. The failure analysis of two tailored panel configurations that have the center stringer and adjacent skin severed is presented. Finite element analysis of the damaged panels was conducted using STAGS (STructural Analysis of General Shells) general purpose finite element program that includes a progressive failure capability for laminated composite structures that is based on point-stress analysis, traditional failure criteria, and ply discounting for material degradation. The progressive failure predicted the path of the failure and maximum load capability. There is less than 12 percent difference between the predicted failure load and experimental failure load. There is a good match of the panel stiffness and strength between the progressive failure analysis and the experimental results. The results indicate that the tailored concept would be feasible to use in the wing skin of a tiltrotor aircraft.

  14. Dynamics of heterogeneous oscillator ensembles in terms of collective variables

    NASA Astrophysics Data System (ADS)

    Pikovsky, Arkady; Rosenblum, Michael

    2011-04-01

    We consider general heterogeneous ensembles of phase oscillators, sine coupled to arbitrary external fields. Starting with the infinitely large ensembles, we extend the Watanabe-Strogatz theory, valid for identical oscillators, to cover the case of an arbitrary parameter distribution. The obtained equations yield the description of the ensemble dynamics in terms of collective variables and constants of motion. As a particular case of the general setup we consider hierarchically organized ensembles, consisting of a finite number of subpopulations, whereas the number of elements in a subpopulation can be both finite or infinite. Next, we link the Watanabe-Strogatz and Ott-Antonsen theories and demonstrate that the latter one corresponds to a particular choice of constants of motion. The approach is applied to the standard Kuramoto-Sakaguchi model, to its extension for the case of nonlinear coupling, and to the description of two interacting subpopulations, exhibiting a chimera state. With these examples we illustrate that, although the asymptotic dynamics can be found within the framework of the Ott-Antonsen theory, the transients depend on the constants of motion. The most dramatic effect is the dependence of the basins of attraction of different synchronous regimes on the initial configuration of phases.

  15. Flow/Damage Surfaces for Fiber-Reinforced Metals Having Different Periodic Microstructures

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.

    1998-01-01

    Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics, using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue; for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.

  16. Flow/Damage Surfaces for Fiber-Reinforced Metals having Different Periodic Microstructures

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.

    1998-01-01

    Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing, arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics. using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue, for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.

  17. Finite element analysis and genetic algorithm optimization design for the actuator placement on a large adaptive structure

    NASA Astrophysics Data System (ADS)

    Sheng, Lizeng

    The dissertation focuses on one of the major research needs in the area of adaptive/intelligent/smart structures, the development and application of finite element analysis and genetic algorithms for optimal design of large-scale adaptive structures. We first review some basic concepts in finite element method and genetic algorithms, along with the research on smart structures. Then we propose a solution methodology for solving a critical problem in the design of a next generation of large-scale adaptive structures---optimal placements of a large number of actuators to control thermal deformations. After briefly reviewing the three most frequently used general approaches to derive a finite element formulation, the dissertation presents techniques associated with general shell finite element analysis using flat triangular laminated composite elements. The element used here has three nodes and eighteen degrees of freedom and is obtained by combining a triangular membrane element and a triangular plate bending element. The element includes the coupling effect between membrane deformation and bending deformation. The membrane element is derived from the linear strain triangular element using Cook's transformation. The discrete Kirchhoff triangular (DKT) element is used as the plate bending element. For completeness, a complete derivation of the DKT is presented. Geometrically nonlinear finite element formulation is derived for the analysis of adaptive structures under the combined thermal and electrical loads. Next, we solve the optimization problems of placing a large number of piezoelectric actuators to control thermal distortions in a large mirror in the presence of four different thermal loads. We then extend this to a multi-objective optimization problem of determining only one set of piezoelectric actuator locations that can be used to control the deformation in the same mirror under the action of any one of the four thermal loads. A series of genetic algorithms, GA Version 1, 2 and 3, were developed to find the optimal locations of piezoelectric actuators from the order of 1021 ˜ 1056 candidate placements. Introducing a variable population approach, we improve the flexibility of selection operation in genetic algorithms. Incorporating mutation and hill climbing into micro-genetic algorithms, we are able to develop a more efficient genetic algorithm. Through extensive numerical experiments, we find that the design search space for the optimal placements of a large number of actuators is highly multi-modal and that the most distinct nature of genetic algorithms is their robustness. They give results that are random but with only a slight variability. The genetic algorithms can be used to get adequate solution using a limited number of evaluations. To get the highest quality solution, multiple runs including different random seed generators are necessary. The investigation time can be significantly reduced using a very coarse grain parallel computing. Overall, the methodology of using finite element analysis and genetic algorithm optimization provides a robust solution approach for the challenging problem of optimal placements of a large number of actuators in the design of next generation of adaptive structures.

  18. 3D Gaussian Beam Modeling

    DTIC Science & Technology

    2011-09-01

    optimized building blocks such as a parallelized tri-diagonal linear solver (used in the “implicit finite differences ” and split-step Pade PE models...and Ding Lee. “A finite - difference treatment of interface conditions for the parabolic wave equation: The horizontal interface.” The Journal of the...Acoustical Society of America, 71(4):855, 1982. 3. Ding Lee and Suzanne T. McDaniel. “A finite - difference treatment of interface conditions for

  19. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES

    PubMed Central

    Wan, Xiaohai; Li, Zhilin

    2012-01-01

    Solving a Helmholtz equation Δu + λu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of λ is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multigrid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient λ is inversely proportional to the mesh size. PMID:22701346

  20. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES.

    PubMed

    Wan, Xiaohai; Li, Zhilin

    2012-06-01

    Solving a Helmholtz equation Δu + λu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of λ is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multigrid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient λ is inversely proportional to the mesh size.

  1. A Finite Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces

    DTIC Science & Technology

    1991-09-01

    Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces by Victor W. Sparrow...The nonlinear acoustic propagation effects require a numerical solution in the time domain. To model a porous ground surface, which in the frequency...incident on the hard and porous surfaces were produced. The model predicted that near grazing finite amplitude acoustic blast waves decay with distance

  2. A progress report on estuary modeling by the finite-element method

    USGS Publications Warehouse

    Gray, William G.

    1978-01-01

    Various schemes are investigated for finite-element modeling of two-dimensional surface-water flows. The first schemes investigated combine finite-element spatial discretization with split-step time stepping schemes that have been found useful in finite-difference computations. Because of the large number of numerical integrations performed in space and the large sparse matrices solved, these finite-element schemes were found to be economically uncompetitive with finite-difference schemes. A very promising leapfrog scheme is proposed which, when combined with a novel very fast spatial integration procedure, eliminates the need to solve any matrices at all. Additional problems attacked included proper propagation of waves and proper specification of the normal flow-boundary condition. This report indicates work in progress and does not come to a definitive conclusion as to the best approach for finite-element modeling of surface-water problems. The results presented represent findings obtained between September 1973 and July 1976. (Woodard-USGS)

  3. Biology-Culture Co-evolution in Finite Populations.

    PubMed

    de Boer, Bart; Thompson, Bill

    2018-01-19

    Language is the result of two concurrent evolutionary processes: biological and cultural inheritance. An influential evolutionary hypothesis known as the moving target problem implies inherent limitations on the interactions between our two inheritance streams that result from a difference in pace: the speed of cultural evolution is thought to rule out cognitive adaptation to culturally evolving aspects of language. We examine this hypothesis formally by casting it as as a problem of adaptation in time-varying environments. We present a mathematical model of biology-culture co-evolution in finite populations: a generalisation of the Moran process, treating co-evolution as coupled non-independent Markov processes, providing a general formulation of the moving target hypothesis in precise probabilistic terms. Rapidly varying culture decreases the probability of biological adaptation. However, we show that this effect declines with population size and with stronger links between biology and culture: in realistically sized finite populations, stochastic effects can carry cognitive specialisations to fixation in the face of variable culture, especially if the effects of those specialisations are amplified through cultural evolution. These results support the view that language arises from interactions between our two major inheritance streams, rather than from one primary evolutionary process that dominates another.

  4. Mixed models and reduction method for dynamic analysis of anisotropic shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Peters, J. M.

    1985-01-01

    A time-domain computational procedure is presented for predicting the dynamic response of laminated anisotropic shells. The two key elements of the procedure are: (1) use of mixed finite element models having independent interpolation (shape) functions for stress resultants and generalized displacements for the spatial discretization of the shell, with the stress resultants allowed to be discontinuous at interelement boundaries; and (2) use of a dynamic reduction method, with the global approximation vectors consisting of the static solution and an orthogonal set of Lanczos vectors. The dynamic reduction is accomplished by means of successive application of the finite element method and the classical Rayleigh-Ritz technique. The finite element method is first used to generate the global approximation vectors. Then the Rayleigh-Ritz technique is used to generate a reduced system of ordinary differential equations in the amplitudes of these modes. The temporal integration of the reduced differential equations is performed by using an explicit half-station central difference scheme (Leap-frog method). The effectiveness of the proposed procedure is demonstrated by means of a numerical example and its advantages over reduction methods used with the displacement formulation are discussed.

  5. Meso-Scale Finite Element Analysis of Mechanical Behavior of 3D Braided Composites Subjected to Biaxial Tension Loadings

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Curiel-Sosa, Jose L.; Bui, Tinh Quoc

    2018-04-01

    In many engineering applications, 3D braided composites are designed for primary loading-bearing structures, and they are frequently subjected to multi-axial loading conditions during service. In this paper, a unit-cell based finite element model is developed for assessment of mechanical behavior of 3D braided composites under different biaxial tension loadings. To predict the damage initiation and evolution of braiding yarns and matrix in the unit-cell, we thus propose an anisotropic damage model based on Murakami damage theory in conjunction with Hashin failure criteria and maximum stress criteria. To attain exact stress ratio, force loading mode of periodic boundary conditions which never been attempted before is first executed to the unit-cell model to apply the biaxial tension loadings. The biaxial mechanical behaviors, such as the stress distribution, tensile modulus and tensile strength are analyzed and discussed. The damage development of 3D braided composites under typical biaxial tension loadings is simulated and the damage mechanisms are revealed in the simulation process. The present study generally provides a new reference to the meso-scale finite element analysis (FEA) of multi-axial mechanical behavior of other textile composites.

  6. Flux-corrected transport algorithms for continuous Galerkin methods based on high order Bernstein finite elements

    NASA Astrophysics Data System (ADS)

    Lohmann, Christoph; Kuzmin, Dmitri; Shadid, John N.; Mabuza, Sibusiso

    2017-09-01

    This work extends the flux-corrected transport (FCT) methodology to arbitrary order continuous finite element discretizations of scalar conservation laws on simplex meshes. Using Bernstein polynomials as local basis functions, we constrain the total variation of the numerical solution by imposing local discrete maximum principles on the Bézier net. The design of accuracy-preserving FCT schemes for high order Bernstein-Bézier finite elements requires the development of new algorithms and/or generalization of limiting techniques tailored for linear and multilinear Lagrange elements. In this paper, we propose (i) a new discrete upwinding strategy leading to local extremum bounded low order approximations with compact stencils, (ii) high order variational stabilization based on the difference between two gradient approximations, and (iii) new localized limiting techniques for antidiffusive element contributions. The optional use of a smoothness indicator, based on a second derivative test, makes it possible to potentially avoid unnecessary limiting at smooth extrema and achieve optimal convergence rates for problems with smooth solutions. The accuracy of the proposed schemes is assessed in numerical studies for the linear transport equation in 1D and 2D.

  7. Equivalence between short-time biphasic and incompressible elastic material responses.

    PubMed

    Ateshian, Gerard A; Ellis, Benjamin J; Weiss, Jeffrey A

    2007-06-01

    Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response deltat

  8. Ground State and Finite Temperature Lanczos Methods

    NASA Astrophysics Data System (ADS)

    Prelovšek, P.; Bonča, J.

    The present review will focus on recent development of exact- diagonalization (ED) methods that use Lanczos algorithm to transform large sparse matrices onto the tridiagonal form. We begin with a review of basic principles of the Lanczos method for computing ground-state static as well as dynamical properties. Next, generalization to finite-temperatures in the form of well established finite-temperature Lanczos method is described. The latter allows for the evaluation of temperatures T>0 static and dynamic quantities within various correlated models. Several extensions and modification of the latter method introduced more recently are analysed. In particular, the low-temperature Lanczos method and the microcanonical Lanczos method, especially applicable within the high-T regime. In order to overcome the problems of exponentially growing Hilbert spaces that prevent ED calculations on larger lattices, different approaches based on Lanczos diagonalization within the reduced basis have been developed. In this context, recently developed method based on ED within a limited functional space is reviewed. Finally, we briefly discuss the real-time evolution of correlated systems far from equilibrium, which can be simulated using the ED and Lanczos-based methods, as well as approaches based on the diagonalization in a reduced basis.

  9. Solution of the advection-dispersion equation by a finite-volume eulerian-lagrangian local adjoint method

    USGS Publications Warehouse

    Healy, R.W.; Russell, T.F.

    1992-01-01

    A finite-volume Eulerian-Lagrangian local adjoint method for solution of the advection-dispersion equation is developed and discussed. The method is mass conservative and can solve advection-dominated ground-water solute-transport problems accurately and efficiently. An integrated finite-difference approach is used in the method. A key component of the method is that the integral representing the mass-storage term is evaluated numerically at the current time level. Integration points, and the mass associated with these points, are then forward tracked up to the next time level. The number of integration points required to reach a specified level of accuracy is problem dependent and increases as the sharpness of the simulated solute front increases. Integration points are generally equally spaced within each grid cell. For problems involving variable coefficients it has been found to be advantageous to include additional integration points at strategic locations in each well. These locations are determined by backtracking. Forward tracking of boundary fluxes by the method alleviates problems that are encountered in the backtracking approaches of most characteristic methods. A test problem is used to illustrate that the new method offers substantial advantages over other numerical methods for a wide range of problems.

  10. Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order

    NASA Astrophysics Data System (ADS)

    Morozovska, A. N.; Eliseev, E. A.

    2010-02-01

    The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.

  11. Axioms of adaptivity

    PubMed Central

    Carstensen, C.; Feischl, M.; Page, M.; Praetorius, D.

    2014-01-01

    This paper aims first at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods and second at some refinements of particular questions like the avoidance of (discrete) lower bounds, inexact solvers, inhomogeneous boundary data, or the use of equivalent error estimators. Solely four axioms guarantee the optimality in terms of the error estimators. Compared to the state of the art in the temporary literature, the improvements of this article can be summarized as follows: First, a general framework is presented which covers the existing literature on optimality of adaptive schemes. The abstract analysis covers linear as well as nonlinear problems and is independent of the underlying finite element or boundary element method. Second, efficiency of the error estimator is neither needed to prove convergence nor quasi-optimal convergence behavior of the error estimator. In this paper, efficiency exclusively characterizes the approximation classes involved in terms of the best-approximation error and data resolution and so the upper bound on the optimal marking parameters does not depend on the efficiency constant. Third, some general quasi-Galerkin orthogonality is not only sufficient, but also necessary for the R-linear convergence of the error estimator, which is a fundamental ingredient in the current quasi-optimality analysis due to Stevenson 2007. Finally, the general analysis allows for equivalent error estimators and inexact solvers as well as different non-homogeneous and mixed boundary conditions. PMID:25983390

  12. Anomalous finite-size effect due to quasidegenerate phases in triangular antiferromagnets with long-range interactions and mapping to the generalized six-state clock model

    NASA Astrophysics Data System (ADS)

    Nishino, Masamichi; Miyashita, Seiji

    2016-11-01

    The effect of long-range (LR) interactions on frustrated-spin models is an interesting problem, which provides rich ordering processes. We study the effect of LR interactions on triangular Ising antiferromagnets with the next-nearest-neighbor ferromagnetic interaction (TIAFF). In the thermodynamic limit, the LRTIAFF model should reproduce the corresponding mean-field results, in which successive phase transitions occur among various phases, i.e., the disordered paramagnetic phase, so-called partially disordered phase, three-sublattice ferrimagnetic phase, and two-sublattice ferrimagnetic phase. In the present paper we focus on the magnetic susceptibility at the transition point between the two-sublattice ferrimagnetic and the disordered paramagnetic phases at relatively large ferromagnetic interactions. In the mean-field analysis, the magnetic susceptibility shows no divergence at the transition point. In contrast, a divergencelike enhancement of the susceptibility is observed in Monte Carlo simulations in finite-size systems. We investigate the origin of this difference and find that it is attributed to a virtual degeneracy of the free energies of the partially disordered and 2-FR phases. We also exploit a generalized six-state clock model with an LR interaction, which is a more general system with Z6 symmetry. We discuss the phase diagram of this model and find that it exhibits richer transition patterns and contains the physics of the LRTIAFF model.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giorda, Paolo; Zanardi, Paolo; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

    We analyze the dynamical-algebraic approach to universal quantum control introduced in P. Zanardi and S. Lloyd, e-print quant-ph/0305013. The quantum state space H encoding information decomposes into irreducible sectors and subsystems associated with the group of available evolutions. If this group coincides with the unitary part of the group algebra CK of some group K then universal control is achievable over the K-irreducible components of H. This general strategy is applied to different kinds of bosonic systems. We first consider massive bosons in a double well and show how to achieve universal control over all finite-dimensional Fock sectors. We thenmore » discuss a multimode massless case giving the conditions for generating the whole infinite-dimensional multimode Heisenberg-Weyl enveloping algebra. Finally we show how to use an auxiliary bosonic mode coupled to finite-dimensional systems to generate high-order nonlinearities needed for universal control.« less

  14. Matrix-Product-State Algorithm for Finite Fractional Quantum Hall Systems

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Bhatt, R. N.

    2015-09-01

    Exact diagonalization is a powerful tool to study fractional quantum Hall (FQH) systems. However, its capability is limited by the exponentially increasing computational cost. In order to overcome this difficulty, density-matrix-renormalization-group (DMRG) algorithms were developed for much larger system sizes. Very recently, it was realized that some model FQH states have exact matrix-product-state (MPS) representation. Motivated by this, here we report a MPS code, which is closely related to, but different from traditional DMRG language, for finite FQH systems on the cylinder geometry. By representing the many-body Hamiltonian as a matrix-product-operator (MPO) and using single-site update and density matrix correction, we show that our code can efficiently search the ground state of various FQH systems. We also compare the performance of our code with traditional DMRG. The possible generalization of our code to infinite FQH systems and other physical systems is also discussed.

  15. Modeling and analysis of the space shuttle nose-gear tire with semianalytic finite elements

    NASA Technical Reports Server (NTRS)

    Kim, Kyun O.; Noor, Ahmed K.; Tanner, John A.

    1990-01-01

    A computational procedure is presented for the geometrically nonlinear analysis of aircraft tires. The Space Shuttle Orbiter nose gear tire was modeled by using a two-dimensional laminated anisotropic shell theory with the effects of variation in material and geometric parameters included. The four key elements of the procedure are: (1) semianalytic finite elements in which the shell variables are represented by Fourier series in the circumferential direction and piecewise polynominals in the meridional direction; (2) a mixed formulation with the fundamental unknowns consisting of strain parameters, stress-resultant parameters, and generalized displacements; (3) multilevel operator splitting to effect successive simplifications, and to uncouple the equations associated with different Fourier harmonics; and (4) multilevel iterative procedures and reduction techniques to generate the response of the shell. Numerical results of the Space Shuttle Orbiter nose gear tire model are compared with experimental measurements of the tire subjected to inflation loading.

  16. Elasto visco-plastic flow with special attention to boundary conditions

    NASA Technical Reports Server (NTRS)

    Shimazaki, Y.; Thompson, E. G.

    1981-01-01

    A simple but nontrivial steady-state creeping elasto visco-plastic (Maxwell fluid) radial flow problem is analyzed, with special attention given to the effects of the boundary conditions. Solutions are obtained through integration of a governing equation on stress using the Runge-Kutta method for initial value problems and finite differences for boundary value problems. A more general approach through the finite element method, an approach that solves for the velocity field rather than the stress field and that is applicable to a wide range of problems, is presented and tested using the radial flow example. It is found that steady-state flows of elasto visco-plastic materials are strongly influenced by the state of stress of material as it enters the region of interest. The importance of this boundary or initial condition in analyses involving materials coming into control volumes from unusual stress environments is emphasized.

  17. Toward performance portability of the Albany finite element analysis code using the Kokkos library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.

    Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less

  18. Toward performance portability of the Albany finite element analysis code using the Kokkos library

    DOE PAGES

    Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.; ...

    2018-02-05

    Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less

  19. A Penalty Method for the Numerical Solution of Hamilton-Jacobi-Bellman (HJB) Equations in Finance

    NASA Astrophysics Data System (ADS)

    Witte, J. H.; Reisinger, C.

    2010-09-01

    We present a simple and easy to implement method for the numerical solution of a rather general class of Hamilton-Jacobi-Bellman (HJB) equations. In many cases, the considered problems have only a viscosity solution, to which, fortunately, many intuitive (e.g. finite difference based) discretisations can be shown to converge. However, especially when using fully implicit time stepping schemes with their desireable stability properties, one is still faced with the considerable task of solving the resulting nonlinear discrete system. In this paper, we introduce a penalty method which approximates the nonlinear discrete system to an order of O(1/ρ), where ρ>0 is the penalty parameter, and we show that an iterative scheme can be used to solve the penalised discrete problem in finitely many steps. We include a number of examples from mathematical finance for which the described approach yields a rigorous numerical scheme and present numerical results.

  20. Experimental quantum key distribution with finite-key security analysis for noisy channels.

    PubMed

    Bacco, Davide; Canale, Matteo; Laurenti, Nicola; Vallone, Giuseppe; Villoresi, Paolo

    2013-01-01

    In quantum key distribution implementations, each session is typically chosen long enough so that the secret key rate approaches its asymptotic limit. However, this choice may be constrained by the physical scenario, as in the perspective use with satellites, where the passage of one terminal over the other is restricted to a few minutes. Here we demonstrate experimentally the extraction of secure keys leveraging an optimal design of the prepare-and-measure scheme, according to recent finite-key theoretical tight bounds. The experiment is performed in different channel conditions, and assuming two distinct attack models: individual attacks or general quantum attacks. The request on the number of exchanged qubits is then obtained as a function of the key size and of the ambient quantum bit error rate. The results indicate that viable conditions for effective symmetric, and even one-time-pad, cryptography are achievable.

  1. A geometrically nonlinear theory of elastic plates

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Atilgan, Ali R.; Danielson, D. A.

    1992-01-01

    A set of kinematic and intrinsic equilibrium equations is derived for plates undergoing large deflection and rotation but with small strain. The large rotation is treated by the general finite rotation of a frame in which the material points that are originally along a normal line in the undeformed plate undergo only small displacements. Exact intrinsic virtual strain-displacement relations are derived; using a reduced 2-D strain energy function from which the warping has been systematically eliminated, a set of intrinsic equilibrium equations follows. It is demonstrated that only five equilibrium equations can be derived in this way, because the component of virtual rotation about the normal is not independent. These equations include terms which cannot be obtained without the use of a finite rotation vector which contains three nonzero components. These extra terms correspond to the difference of in-plane shear stress resultants in other theories.

  2. Relativistic elliptic matrix tops and finite Fourier transformations

    NASA Astrophysics Data System (ADS)

    Zotov, A.

    2017-10-01

    We consider a family of classical elliptic integrable systems including (relativistic) tops and their matrix extensions of different types. These models can be obtained from the “off-shell” Lax pairs, which do not satisfy the Lax equations in general case but become true Lax pairs under various conditions (reductions). At the level of the off-shell Lax matrix, there is a natural symmetry between the spectral parameter z and relativistic parameter η. It is generated by the finite Fourier transformation, which we describe in detail. The symmetry allows one to consider z and η on an equal footing. Depending on the type of integrable reduction, any of the parameters can be chosen to be the spectral one. Then another one is the relativistic deformation parameter. As a by-product, we describe the model of N2 interacting GL(M) matrix tops and/or M2 interacting GL(N) matrix tops depending on a choice of the spectral parameter.

  3. Prethermalization and persistent order in the absence of a thermal phase transition

    NASA Astrophysics Data System (ADS)

    Halimeh, Jad C.; Zauner-Stauber, Valentin; McCulloch, Ian P.; de Vega, Inés; Schollwöck, Ulrich; Kastner, Michael

    2017-01-01

    We numerically study the dynamics after a parameter quench in the one-dimensional transverse-field Ising model with long-range interactions (∝1 /rα with distance r ), for finite chains and also directly in the thermodynamic limit. In nonequilibrium, i.e., before the system settles into a thermal state, we find a long-lived regime that is characterized by a prethermal value of the magnetization, which in general differs from its thermal value. We find that the ferromagnetic phase is stabilized dynamically: as a function of the quench parameter, the prethermal magnetization shows a transition between a symmetry-broken and a symmetric phase, even for those values of α for which no finite-temperature transition occurs in equilibrium. The dynamical critical point is shifted with respect to the equilibrium one, and the shift is found to depend on α as well as on the quench parameters.

  4. A generalized volumetric dispersion model for a class of two-phase separation/reaction: finite difference solutions

    NASA Astrophysics Data System (ADS)

    Siripatana, Chairat; Thongpan, Hathaikarn; Promraksa, Arwut

    2017-03-01

    This article explores a volumetric approach in formulating differential equations for a class of engineering flow problems involving component transfer within or between two phases. In contrast to conventional formulation which is based on linear velocities, this work proposed a slightly different approach based on volumetric flow-rate which is essentially constant in many industrial processes. In effect, many multi-dimensional flow problems found industrially can be simplified into multi-component or multi-phase but one-dimensional flow problems. The formulation is largely generic, covering counter-current, concurrent or batch, fixed and fluidized bed arrangement. It was also intended to use for start-up, shut-down, control and steady state simulation. Since many realistic and industrial operation are dynamic with variable velocity and porosity in relation to position, analytical solutions are rare and limited to only very simple cases. Thus we also provide a numerical solution using Crank-Nicolson finite difference scheme. This solution is inherently stable as tested against a few cases published in the literature. However, it is anticipated that, for unconfined flow or non-constant flow-rate, traditional formulation should be applied.

  5. Finite difference time domain calculation of transients in antennas with nonlinear loads

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.; Kunz, Karl S.; Chamberlin, Kent

    1991-01-01

    Determining transient electromagnetic fields in antennas with nonlinear loads is a challenging problem. Typical methods used involve calculating frequency domain parameters at a large number of different frequencies, then applying Fourier transform methods plus nonlinear equation solution techniques. If the antenna is simple enough so that the open circuit time domain voltage can be determined independently of the effects of the nonlinear load on the antennas current, time stepping methods can be applied in a straightforward way. Here, transient fields for antennas with more general geometries are calculated directly using Finite Difference Time Domain (FDTD) methods. In each FDTD cell which contains a nonlinear load, a nonlinear equation is solved at each time step. As a test case, the transient current in a long dipole antenna with a nonlinear load excited by a pulsed plane wave is computed using this approach. The results agree well with both calculated and measured results previously published. The approach given here extends the applicability of the FDTD method to problems involving scattering from targets, including nonlinear loads and materials, and to coupling between antennas containing nonlinear loads. It may also be extended to propagation through nonlinear materials.

  6. Using finite element modelling and experimental methods to investigate planar coil sensor topologies for inductive measurement of displacement

    NASA Astrophysics Data System (ADS)

    Moreton, Gregory; Meydan, Turgut; Williams, Paul

    2018-04-01

    The usage of planar sensors is widespread due to their non-contact nature and small size profiles, however only a few basic design types are generally considered. In order to develop planar coil designs we have performed extensive finite element modelling (FEM) and experimentation to understand the performance of different planar sensor topologies when used in inductive sensing. We have applied this approach to develop a novel displacement sensor. Models of different topologies with varying pitch values have been analysed using the ANSYS Maxwell FEM package, furthermore the models incorporated a movable soft magnetic amorphous ribbon element. The different models used in the FEM were then constructed and experimentally tested with topologies that included mesh, meander, square coil, and circular coil configurations. The sensors were used to detect the displacement of the amorphous ribbon. A LabView program controlled both the displacement stage and the impedance analyser, the latter capturing the varying inductance values with ribbon displacement. There was good correlation between the FEM models and the experimental data confirming that the methodology described here offers an effective way for developing planar coil based sensors with improved performance.

  7. Self-energy-modified Poisson-Nernst-Planck equations: WKB approximation and finite-difference approaches.

    PubMed

    Xu, Zhenli; Ma, Manman; Liu, Pei

    2014-07-01

    We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation. This is achieved by the self energy of test ions through solving a generalized Debye-Hückel (DH) equation. We develop numerical methods for the system composed of the PNP and DH equations. Particularly, toward the numerical challenge of solving the high-dimensional DH equation, we developed an analytical WKB approximation and a numerical approach based on the selective inversion of sparse matrices. The model and numerical methods are validated by simulating the charge diffusion in electrolytes between two electrodes, for which effects of dielectrics and correlation are investigated by comparing the results with the prediction by the classical PNP theory. We find that, at the length scale of the interface separation comparable to the Bjerrum length, the results of the modified equations are significantly different from the classical PNP predictions mostly due to the dielectric effect. It is also shown that when the ion self energy is in weak or mediate strength, the WKB approximation presents a high accuracy, compared to precise finite-difference results.

  8. Three-dimensional wave field modeling by a collocated-grid finite-difference method in the anelastic model with surface topography

    NASA Astrophysics Data System (ADS)

    Wang, N.; Li, J.; Borisov, D.; Gharti, H. N.; Shen, Y.; Zhang, W.; Savage, B. K.

    2016-12-01

    We incorporate 3D anelastic attenuation into the collocated-grid finite-difference method on curvilinear grids (Zhang et al., 2012), using the rheological model of the generalized Maxwell body (Emmerich and Korn, 1987; Moczo and Kristek, 2005; Käser et al., 2007). We follow a conventional procedure to calculate the anelastic coefficients (Emmerich and Korn, 1987) determined by the Q(ω)-law, with a modification in the choice of frequency band and thus the relaxation frequencies that equidistantly cover the logarithmic frequency range. We show that such an optimization of anelastic coefficients is more accurate when using a fixed number of relaxation mechanisms to fit the frequency independent Q-factors. We use curvilinear grids to represent the surface topography. The velocity-stress form of the 3D isotropic anelastic wave equation is solved with a collocated-grid finite-difference method. Compared with the elastic case, we need to solve additional material-independent anelastic functions (Kristek and Moczo, 2003) for the mechanisms at each relaxation frequency. Based on the stress-strain relation, we calculate the spatial partial derivatives of the anelastic functions indirectly thereby saving computational storage and improving computational efficiency. The complex-frequency-shifted perfectly matched layer (CFS-PML) is used for the absorbing boundary condition based on the auxiliary difference equation (Zhang and Shen, 2010). The traction image method (Zhang and Chen, 2006) is employed for the free-surface boundary condition. We perform several numerical experiments including homogeneous full-space models and layered half-space models, considering both flat and 3D Gaussian-shape hill surfaces. The results match very well with those of the spectral-element method (Komatitisch and Tromp, 2002; Savage et al., 2010), verifying the simulations by our method in the anelastic model with surface topography.

  9. Nilpotent symmetries in supergroup field cosmology

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sudhaker

    2015-06-01

    In this paper, we study the gauge invariance of the third quantized supergroup field cosmology which is a model for multiverse. Further, we propose both the infinitesimal (usual) as well as the finite superfield-dependent BRST symmetry transformations which leave the effective theory invariant. The effects of finite superfield-dependent BRST transformations on the path integral (so-called void functional in the case of third quantization) are implemented. Within the finite superfield-dependent BRST formulation, the finite superfield-dependent BRST transformations with specific parameter switch the void functional from one gauge to another. We establish this result for the most general gauge with the help of explicit calculations which holds for all possible sets of gauge choices at both the classical and the quantum levels.

  10. Finite Element Analysis of a NASA National Transonic Facility Wind Tunnel Balance

    NASA Technical Reports Server (NTRS)

    Lindell, Michael C.

    1996-01-01

    This paper presents the results of finite element analyses and correlation studies performed on a NASA National Transonic Facility (NTF) Wind Tunnel balance. In the past NASA has relied primarily on classical hand analyses, coupled with relatively large safety factors, for predicting maximum stresses in wind tunnel balances. Now, with the significant advancements in computer technology and sophistication of general purpose analysis codes, it is more reasonable to pursue finite element analyses of these balances. The correlation studies of the present analyses show very good agreement between the analyses and data measured with strain gages and therefore the studies give higher confidence for using finite element analyses to analyze and optimize balance designs in the future.

  11. Finite Element Analysis of a NASA National Transonic Facility Wide Tunnel Balance

    NASA Technical Reports Server (NTRS)

    Lindell, Michael C. (Editor)

    1999-01-01

    This paper presents the results of finite element analyses and correlation studies performed on a NASA National Transonic Facility (NTF) Wind Tunnel balance. In the past NASA has relied primarily on classical hand analyses, coupled with relatively large safety factors, for predicting maximum stresses in wind tunnel balances. Now, with the significant advancements in computer technology and sophistication of general purpose analysis codes, it is more reasonable to pursue finite element analyses of these balances. The correlation studies of the present analyses show very good agreement between the analyses and data measured with strain gages and therefore the studies give higher confidence for using finite element analyses to analyze and optimize balance designs in the future.

  12. Some effects of finite spatial resolution on skin friction measurements in turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Westphal, Russell V.

    1988-01-01

    The effects of finite spatial resolution often cause serious errors in measurements in turbulent boundary layers, with particularly large effects for measurements of fluctuating skin friction and velocities within the sublayer. However, classical analyses of finite spatial resolution effects have generally not accounted for the substantial inhomogeneity and anisotropy of near-wall turbulence. The present study has made use of results from recent computational simulations of wall-bounded turbulent flows to examine spatial resolution effects for measurements made at a wall using both single-sensor probes and those employing two sensing volumes in a V shape. Results are presented to show the effects of finite spatial resolution on a variety of quantitites deduced from the skin friction field.

  13. A finite state, finite memory minimum principle, part 2. [a discussion of game theory, signaling, stochastic processes, and control theory

    NASA Technical Reports Server (NTRS)

    Sandell, N. R., Jr.; Athans, M.

    1975-01-01

    The development of the theory of the finite - state, finite - memory (FSFM) stochastic control problem is discussed. The sufficiency of the FSFM minimum principle (which is in general only a necessary condition) was investigated. By introducing the notion of a signaling strategy as defined in the literature on games, conditions under which the FSFM minimum principle is sufficient were determined. This result explicitly interconnects the information structure of the FSFM problem with its optimality conditions. The min-H algorithm for the FSFM problem was studied. It is demonstrated that a version of the algorithm always converges to a particular type of local minimum termed a person - by - person extremal.

  14. Research on Finite Element Model Generating Method of General Gear Based on Parametric Modelling

    NASA Astrophysics Data System (ADS)

    Lei, Yulong; Yan, Bo; Fu, Yao; Chen, Wei; Hou, Liguo

    2017-06-01

    Aiming at the problems of low efficiency and poor quality of gear meshing in the current mainstream finite element software, through the establishment of universal gear three-dimensional model, and explore the rules of unit and node arrangement. In this paper, a finite element model generation method of universal gear based on parameterization is proposed. Visual Basic program is used to realize the finite element meshing, give the material properties, and set the boundary / load conditions and other pre-processing work. The dynamic meshing analysis of the gears is carried out with the method proposed in this pape, and compared with the calculated values to verify the correctness of the method. The method greatly shortens the workload of gear finite element pre-processing, improves the quality of gear mesh, and provides a new idea for the FEM pre-processing.

  15. The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction.

    PubMed

    Casey, M

    1996-08-15

    Recurrent neural networks (RNNs) can learn to perform finite state computations. It is shown that an RNN performing a finite state computation must organize its state space to mimic the states in the minimal deterministic finite state machine that can perform that computation, and a precise description of the attractor structure of such systems is given. This knowledge effectively predicts activation space dynamics, which allows one to understand RNN computation dynamics in spite of complexity in activation dynamics. This theory provides a theoretical framework for understanding finite state machine (FSM) extraction techniques and can be used to improve training methods for RNNs performing FSM computations. This provides an example of a successful approach to understanding a general class of complex systems that has not been explicitly designed, e.g., systems that have evolved or learned their internal structure.

  16. Heat transfer model and finite element formulation for simulation of selective laser melting

    NASA Astrophysics Data System (ADS)

    Roy, Souvik; Juha, Mario; Shephard, Mark S.; Maniatty, Antoinette M.

    2017-10-01

    A novel approach and finite element formulation for modeling the melting, consolidation, and re-solidification process that occurs in selective laser melting additive manufacturing is presented. Two state variables are introduced to track the phase (melt/solid) and the degree of consolidation (powder/fully dense). The effect of the consolidation on the absorption of the laser energy into the material as it transforms from a porous powder to a dense melt is considered. A Lagrangian finite element formulation, which solves the governing equations on the unconsolidated reference configuration is derived, which naturally considers the effect of the changing geometry as the powder melts without needing to update the simulation domain. The finite element model is implemented into a general-purpose parallel finite element solver. Results are presented comparing to experimental results in the literature for a single laser track with good agreement. Predictions for a spiral laser pattern are also shown.

  17. A class of hybrid finite element methods for electromagnetics: A review

    NASA Technical Reports Server (NTRS)

    Volakis, J. L.; Chatterjee, A.; Gong, J.

    1993-01-01

    Integral equation methods have generally been the workhorse for antenna and scattering computations. In the case of antennas, they continue to be the prominent computational approach, but for scattering applications the requirement for large-scale computations has turned researchers' attention to near neighbor methods such as the finite element method, which has low O(N) storage requirements and is readily adaptable in modeling complex geometrical features and material inhomogeneities. In this paper, we review three hybrid finite element methods for simulating composite scatterers, conformal microstrip antennas, and finite periodic arrays. Specifically, we discuss the finite element method and its application to electromagnetic problems when combined with the boundary integral, absorbing boundary conditions, and artificial absorbers for terminating the mesh. Particular attention is given to large-scale simulations, methods, and solvers for achieving low memory requirements and code performance on parallel computing architectures.

  18. Human exposure assessment in the near field of GSM base-station antennas using a hybrid finite element/method of moments technique.

    PubMed

    Meyer, Frans J C; Davidson, David B; Jakobus, Ulrich; Stuchly, Maria A

    2003-02-01

    A hybrid finite-element method (FEM)/method of moments (MoM) technique is employed for specific absorption rate (SAR) calculations in a human phantom in the near field of a typical group special mobile (GSM) base-station antenna. The MoM is used to model the metallic surfaces and wires of the base-station antenna, and the FEM is used to model the heterogeneous human phantom. The advantages of each of these frequency domain techniques are, thus, exploited, leading to a highly efficient and robust numerical method for addressing this type of bioelectromagnetic problem. The basic mathematical formulation of the hybrid technique is presented. This is followed by a discussion of important implementation details-in particular, the linear algebra routines for sparse, complex FEM matrices combined with dense MoM matrices. The implementation is validated by comparing results to MoM (surface equivalence principle implementation) and finite-difference time-domain (FDTD) solutions of human exposure problems. A comparison of the computational efficiency of the different techniques is presented. The FEM/MoM implementation is then used for whole-body and critical-organ SAR calculations in a phantom at different positions in the near field of a base-station antenna. This problem cannot, in general, be solved using the MoM or FDTD due to computational limitations. This paper shows that the specific hybrid FEM/MoM implementation is an efficient numerical tool for accurate assessment of human exposure in the near field of base-station antennas.

  19. General Relativity and Energy

    ERIC Educational Resources Information Center

    Jackson, A. T.

    1973-01-01

    Reviews theoretical and experimental fundamentals of Einstein's theory of general relativity. Indicates that recent development of the theory of the continually expanding universe may lead to revision of the space-time continuum of the finite and unbounded universe. (CC)

  20. Asymptotic analysis of numerical wave propagation in finite difference equations

    NASA Technical Reports Server (NTRS)

    Giles, M.; Thompkins, W. T., Jr.

    1983-01-01

    An asymptotic technique is developed for analyzing the propagation and dissipation of wave-like solutions to finite difference equations. It is shown that for each fixed complex frequency there are usually several wave solutions with different wavenumbers and the slowly varying amplitude of each satisfies an asymptotic amplitude equation which includes the effects of smoothly varying coefficients in the finite difference equations. The local group velocity appears in this equation as the velocity of convection of the amplitude. Asymptotic boundary conditions coupling the amplitudes of the different wave solutions are also derived. A wavepacket theory is developed which predicts the motion, and interaction at boundaries, of wavepackets, wave-like disturbances of finite length. Comparison with numerical experiments demonstrates the success and limitations of the theory. Finally an asymptotic global stability analysis is developed.

Top