Extension of Generalized Fluid System Simulation Program's Fluid Property Database
NASA Technical Reports Server (NTRS)
Patel, Kishan
2011-01-01
This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Leclair, Andre; Moore, Ric; Schallhorn, Paul
2011-01-01
GFSSP stands for Generalized Fluid System Simulation Program. It is a general-purpose computer program to compute pressure, temperature and flow distribution in a flow network. GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches. It was primarily developed to analyze Internal Flow Analysis of a Turbopump Transient Flow Analysis of a Propulsion System. GFSSP development started in 1994 with an objective to provide a generalized and easy to use flow analysis tool for thermo-fluid systems.
Generalized Fluid System Simulation Program, Version 6.0
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; LeClair, A. C.; Moore, A.; Schallhorn, P. A.
2013-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependant flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 25 demonstrated example problems.
Generalized Fluid System Simulation Program (GFSSP) - Version 6
NASA Technical Reports Server (NTRS)
Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul
2015-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.
Generalized Fluid System Simulation Program, Version 5.0-Educational
NASA Technical Reports Server (NTRS)
Majumdar, A. K.
2011-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems.
Generalized Fluid System Simulation Program, Version 6.0
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; LeClair, A. C.; Moore, R.; Schallhorn, P. A.
2016-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a general purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. Two thermodynamic property programs (GASP/WASP and GASPAK) provide required thermodynamic and thermophysical properties for 36 fluids: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutene, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride, ammonia, hydrogen peroxide, and air. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. The users can also supply property tables for fluids that are not in the library. Twenty-four different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include pipe flow, flow through a restriction, noncircular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct
A Generalized Fluid System Simulation Program to Model Flow Distribution in Fluid Networks
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Bailey, John W.; Schallhorn, Paul; Steadman, Todd
1998-01-01
This paper describes a general purpose computer program for analyzing steady state and transient flow in a complex network. The program is capable of modeling phase changes, compressibility, mixture thermodynamics and external body forces such as gravity and centrifugal. The program's preprocessor allows the user to interactively develop a fluid network simulation consisting of nodes and branches. Mass, energy and specie conservation equations are solved at the nodes; the momentum conservation equations are solved in the branches. The program contains subroutines for computing "real fluid" thermodynamic and thermophysical properties for 33 fluids. The fluids are: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride and ammonia. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. Seventeen different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include: pipe flow, flow through a restriction, non-circular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, and a Joule-Thompson device. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. This paper also illustrates the application and verification of the code by comparison with Hardy Cross method for steady state flow and analytical solution for unsteady flow.
Modeling Two-Phase Flow and Vapor Cycles Using the Generalized Fluid System Simulation Program
NASA Technical Reports Server (NTRS)
Smith, Amanda D.; Majumdar, Alok K.
2017-01-01
This work presents three new applications for the general purpose fluid network solver code GFSSP developed at NASA's Marshall Space Flight Center: (1) cooling tower, (2) vapor-compression refrigeration system, and (3) vapor-expansion power generation system. These systems are widely used across engineering disciplines in a variety of energy systems, and these models expand the capabilities and the use of GFSSP to include fluids and features that are not part of its present set of provided examples. GFSSP provides pressure, temperature, and species concentrations at designated locations, or nodes, within a fluid network based on a finite volume formulation of thermodynamics and conservation laws. This paper describes the theoretical basis for the construction of the models, their implementation in the current GFSSP modeling system, and a brief evaluation of the usefulness of the model results, as well as their applicability toward a broader spectrum of analytical problems in both university teaching and engineering research.
NASA Technical Reports Server (NTRS)
DiSalvo, Roberto; Deaconu, Stelu; Majumdar, Alok
2006-01-01
One of the goals of this program was to develop the experimental and analytical/computational tools required to predict the flow of non-Newtonian fluids through the various system components of a propulsion system: pipes, valves, pumps etc. To achieve this goal we selected to augment the capabilities of NASA's Generalized Fluid System Simulation Program (GFSSP) software. GFSSP is a general-purpose computer program designed to calculate steady state and transient pressure and flow distributions in a complex fluid network. While the current version of the GFSSP code is able to handle various systems components the implicit assumption in the code is that the fluids in the system are Newtonian. To extend the capability of the code to non-Newtonian fluids, such as silica gelled fuels and oxidizers, modifications to the momentum equations of the code have been performed. We have successfully implemented in GFSSP flow equations for fluids with power law behavior. The implementation of the power law fluid behavior into the GFSSP code depends on knowledge of the two fluid coefficients, n and K. The determination of these parameters for the silica gels used in this program was performed experimentally. The n and K parameters for silica water gels were determined experimentally at CFDRC's Special Projects Laboratory, with a constant shear rate capillary viscometer. Batches of 8:1 (by weight) water-silica gel were mixed using CFDRC s 10-gallon gelled propellant mixer. Prior to testing the gel was allowed to rest in the rheometer tank for at least twelve hours to ensure that the delicate structure of the gel had sufficient time to reform. During the tests silica gel was pressure fed and discharged through stainless steel pipes ranging from 1", to 36", in length and three diameters; 0.0237", 0.032", and 0.047". The data collected in these tests included pressure at tube entrance and volumetric flowrate. From these data the uncorrected shear rate, shear stress, residence time
Fluid Management System (FMS) fluid systems overview
NASA Technical Reports Server (NTRS)
Baird, R. S.
1990-01-01
Viewgraphs on fluid management system (FMS) fluid systems overview are presented. Topics addressed include: fluid management system description including system requirements (integrated nitrogen system, integrated water system, and integrated waste gas system) and physical description; and fluid management system evolution.
NASA Technical Reports Server (NTRS)
Majumdar, Alok
2013-01-01
The purpose of the paper is to present the analytical capability developed to model no vent chill and fill of cryogenic tank to support CPST (Cryogenic Propellant Storage and Transfer) program. Generalized Fluid System Simulation Program (GFSSP) was adapted to simulate charge-holdvent method of Tank Chilldown. GFSSP models were developed to simulate chilldown of LH2 tank in K-site Test Facility and numerical predictions were compared with test data. The report also describes the modeling technique of simulating the chilldown of a cryogenic transfer line and GFSSP models were developed to simulate the chilldown of a long transfer line and compared with test data.
A Novel Approach for Modeling Chemical Reaction in Generalized Fluid System Simulation Program
NASA Technical Reports Server (NTRS)
Sozen, Mehmet; Majumdar, Alok
2002-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a computer code developed at NASA Marshall Space Flight Center for analyzing steady state and transient flow rates, pressures, temperatures, and concentrations in a complex flow network. The code, which performs system level simulation, can handle compressible and incompressible flows as well as phase change and mixture thermodynamics. Thermodynamic and thermophysical property programs, GASP, WASP and GASPAK provide the necessary data for fluids such as helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, water, a hydrogen, isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, several refrigerants, nitrogen trifluoride and ammonia. The program which was developed out of need for an easy to use system level simulation tool for complex flow networks, has been used for the following purposes to name a few: Space Shuttle Main Engine (SSME) High Pressure Oxidizer Turbopump Secondary Flow Circuits, Axial Thrust Balance of the Fastrac Engine Turbopump, Pressurized Propellant Feed System for the Propulsion Test Article at Stennis Space Center, X-34 Main Propulsion System, X-33 Reaction Control System and Thermal Protection System, and International Space Station Environmental Control and Life Support System design. There has been an increasing demand for implementing a combustion simulation capability into GFSSP in order to increase its system level simulation capability of a liquid rocket propulsion system starting from the propellant tanks up to the thruster nozzle for spacecraft as well as launch vehicles. The present work was undertaken for addressing this need. The chemical equilibrium equations derived from the second law of thermodynamics and the energy conservation equation derived from the first law of thermodynamics are solved simultaneously by a Newton-Raphson method. The numerical scheme was implemented as a User
General Fluid System Simulation Program to Model Secondary Flows in Turbomachinery
NASA Technical Reports Server (NTRS)
Majumdar, Alok K.; Van Hoosier, Katherine P.
1995-01-01
The complexity and variety of turbomachinery flow circuits created a need for a general fluid system simulation program for test data anomaly resolution as well as design review. The objective of the paper is to present a computer program that has been developed to support Marshall Space Flight Center's turbomachinery internal flow analysis efforts. The computer program solves for the mass. energy and species conservation equation at each node and flow rate equation at each branch of the network by a novel numerical procedure which is a combination of both Newton-Ralphson and successive substitution method and uses a thermodynamic property program for computing real gas properties. A generalized, robust, modular, and 'user-friendly' computer program has been developed to model internal flow rates, pressures, temperatures, concentrations of gas mixtures and axial thrusts. The program can be used for any network for compressible and incompressible flows, choked flow, change of phase and gaseous mixturecs. The code has been validated by comparing the predictions with Space Shuttle Main Engine test data.
Classifications of fluid systems
1997-06-01
Descriptions of fluid-system classifications, product functions and source companies are listed on these pages. System descriptions and product definitions have been kept as simple as possible and, wherever practical, reflect general industry practice and terminology consistent with descriptions adopted by the American Petroleum Institute (API) and the International Association of Drilling Contractors (IADC). Nine distinct fluid systems are defined, with the first six being water-based. Next are oil- and synthetic-based systems, along with the last, which consists of air, mist, foam or gas as the circulating medium. All chemicals and fluid systems listed in these tables are designed for use in drilling, completion and workover operations.
Spinning fluids in general relativity
NASA Technical Reports Server (NTRS)
Ray, J. R.; Smalley, L. L.
1982-01-01
General relativity field equations are employed to examine a continuous medium with internal spin. A variational principle formerly applied in the special relativity case is extended to the general relativity case, using a tetrad to express the spin density and the four-velocity of the fluid. An energy-momentum tensor is subsequently defined for a spinning fluid. The equations of motion of the fluid are suggested to be useful in analytical studies of galaxies, for anisotropic Bianchi universes, and for turbulent eddies.
Spinning fluids in general relativity
NASA Technical Reports Server (NTRS)
Ray, J. R.; Smalley, L. L.
1982-01-01
General relativity field equations are employed to examine a continuous medium with internal spin. A variational principle formerly applied in the special relativity case is extended to the general relativity case, using a tetrad to express the spin density and the four-velocity of the fluid. An energy-momentum tensor is subsequently defined for a spinning fluid. The equations of motion of the fluid are suggested to be useful in analytical studies of galaxies, for anisotropic Bianchi universes, and for turbulent eddies.
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; Hedayat, A.
2015-01-01
This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects.
NASA Technical Reports Server (NTRS)
Majumdar, A. K.
2011-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems. This supplement gives the input and output data files for the examples.
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; Hedayat, A.
2015-01-01
This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects. The need for a generalized computer program for thermofluid analysis in a flow network has been felt for a long time in aerospace industries. Designers of thermofluid systems often need to know pressures, temperatures, flow rates, concentrations, and heat transfer rates at different parts of a flow circuit for steady state or transient conditions. Such applications occur in propulsion systems for tank pressurization, internal flow analysis of rocket engine turbopumps, chilldown of cryogenic tanks and transfer lines, and many other applications of gas-liquid systems involving fluid transients and conjugate heat and mass transfer. Computer resource requirements to perform time-dependent, three-dimensional Navier-Stokes computational fluid dynamic (CFD) analysis of such systems are prohibitive and therefore are not practical. Available commercial codes are generally suitable for steady state, single-phase incompressible flow. Because of the proprietary nature of such codes, it is not possible to extend their capability to satisfy the above-mentioned needs. Therefore, the Generalized Fluid System Simulation Program (GFSSP1) has been developed at NASA
NASA Astrophysics Data System (ADS)
Xu, Chongming
2009-05-01
The approximation method in multiple coordinate systems at first post Newtonian (1 PN) level has been established by Darmour, Soffel and Xu (Phys. Rev. D(PRD) 43, 3273 (1991);D 45, 1017(1992);D 47, 3124 (1993);D 49, 618 (1994)). Normally, to discuss an astronomical object (e.g. a star in binary systems or the earth in solar system) we need multiple coordinate systems, especially for precise astrometry 1 PN (some time even 2 PN) approximate method is required. As we know up to now the ideas on elastic body, fluid, rigid body and liquid in the framework of Newtonian physics are still very useful for understanding and calculating some practical problems. Although the general relativistic theories of elastic body, general relativistic hydrodynamics and post-Newtonian quasi-rigid body have been discussed by many authors (including our papers (PRD63, 043002(2001); D63, 064001(2001); D68, 064009(2003); D69, 024003(2004); D71,024030 (2005))), but there is no completing discussion on all of these ideas in a unified point view. The applications of these ideas in the general relativity are important in the research fields of astrometry and geophysics, especially in case precise measurements reach so higher level (millimicro arc sec). The extended relativistic versions of these ideas should be revised the Newtonian results. In this paper, we shall give a complete discussion on all of these ideas in 1 PN approximation. We shall clarify the ideas on perfect elastic material, quasi-rigid body, quasi-liquid and so on with some precise mathematical forms. For fluid we show the hydrodynamic equations of a non-perfect fluid in multiple coordinates systems (both local and global).
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak; Majumdar, Alok
2007-01-01
The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.
General Transient Fluid Flow Algorithm
Amsden, A. A.; Ruppel, H. M.; Hirt, C. W.
1992-03-12
SALE2D calculates two-dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program.
NASA Technical Reports Server (NTRS)
1974-01-01
Performance testing carried out in the development of the prototype zero-g fluid infusion system is described and summarized. Engineering tests were performed in the course of development, both on the original breadboard device and on the prototype system. This testing was aimed at establishing baseline system performance parameters and facilitating improvements. Acceptance testing was then performed on the prototype system to verify functional performance. Acceptance testing included a demonstration of the fluid infusion system on a laboratory animal.
Generalized Langevin Theory for Inhomogeneous Fluids.
NASA Astrophysics Data System (ADS)
Grant, Martin Garth
This thesis presents a molecular theory of the dynamics of inhomogeneous fluids. Dynamical correlations in a nonuniform system are studied through the generalized Langevin approach. The equations of motion (formally exact) are obtained for the number density, momentum density, energy density, stress tensor and heat flux. We evaluate all the relevant sum rules appearing in the frequency matrix exactly in terms of microscopic pair potentials and an external field. We show using functional derivatives how these microscopic sum rules relate to more familiar, though now nonlocal, hydrodynamic-like quantities. The set of equations is closed by a Markov approximation in the equations for stress tensor and heat flux. As a result, these equations become analogous to Grad's 13-moment equations for low density fluids and constitute a generalization to inhomogeneous fluids of the work of Schofield and Akcasu-Daniels. We apply this formalism to several problems. We study the correlation of currents orthogonal to a diffuse planar, liquid-vapour, interface, introducing new nonlocal elastic moduli and new nonlocal, frequency dependent, viscosities. Novel symmetry breaking contributions are obtained, which are related to the Young-Laplace equation for pressure balance. The normal modes, associated with the symmetry breaking interface in the liquid-vapour system, are analyzed, taking into account the nonlocal nature of the diffuse planar interface. We obtain the classical dispersion relation for capillary waves, observed in light scattering experiments, from an adiabatic (molecular) approach. We consider the 'capillary wave model' (CWM) of the equilibrium liquid-vapour interface. CWM is reformulated to be consistent with capillary waves; corrections to the standard CWM results, due to self-consistent long range coupling, are obtained for finite surface area and nonzero gravitational acceleration. Finally, we obtain the Landau-Lifshitz theory of fluctuating hydrodynamics from the
Heath, R.T.; Gerlach, C.R.
1986-05-13
A fluid pumping system is described for use with a natural gas dehydrating system or the like having an absorber apparatus for removing water from wet natural gas to produce dry natural gas by use of a dessicant agent such as glycol, and a glycol treater apparatus for producing a source of dry glycol from wet glycol received from the absorber apparatus. The system consists of: a fluid pump means operatively connected between dry glycol source and absorber apparatus for pumping dry glycol from the dry glycol source to the absorber apparatus; a fluid operable piston motor means operatively associated with the pump means for driving the pump means and having fluid inlet passage means for receiving wet glycol from the absorber and fluid outlet passage means for delivering wet glycol to the glycol reboiler means wherein energy derived from the flow of fluid passing through the fluid inlet passage means provides the entire motivating force for the motor means and the pump means; the fluid pump means comprising a first pair of equal diameter chamber portion of a double acting piston means having a piston rod with two oppositely positioned piston heads at terminal ends thereof received within two oppositely positioned cylinders mounted on a fixed central body which slidably supports the piston rod; the fluid operable motor means comprising a second pair of equal diameter chamber portions of the double acting piston means; the effective areas of outwardly directed faces of the piston heads being substantially greater than the effective areas of inwardly directed faces of the piston heads; and a wet glycol passage shifting means associated with the fluid motor means for automatically changing the porting of the fluid motor means at the end of a piston stroke for producing reciprocal piston motion in the fluid motor means including toggle means actuated by the piston rod.
Bespalova, N A; Kontorshchikova, K N; Vorob'eva, A V
2010-01-01
The efficacy of perfluoran submucous administration in the postoperative period in patients with chronic parodontal diseases was studied over the dynamics of indicators of oral fluid antioxidant system and lipids peroxide oxidation. It was established that perfluoran submucous administration during postoperative period increased the efficacy of postoperative wound healing and decreased the risk of disease relapse development.
Semans, Joseph P.; Johnson, Peter G.; LeBoeuf, Jr., Robert F.; Kromka, Joseph A.; Goron, Ronald H.; Hay, George D.
1993-01-01
A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.
Semans, J.P.; Johnson, P.G.; LeBoeuf, R.F. Jr.; Kromka, J.A.; Goron, R.H.; Hay, G.D.
1991-04-30
This invention, a trainer mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.
2009-07-08
ISS020-E-018121 (8 July 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, works with the Fluid Servicing System (FSS) in the Columbus laboratory of the International Space Station.
2009-07-08
ISS020-E-018118 (8 July 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, works with the Fluid Servicing System (FSS) in the Columbus laboratory of the International Space Station.
Multiphase fluid characterization system
Sinha, Dipen N.
2014-09-02
A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.
Lemos, Jose P. S.; Zanchin, Vilson T.
2009-07-15
Previous theorems concerning Weyl type systems, including Majumdar-Papapetrou systems, are generalized in two ways, namely, we take these theorems into d spacetime dimensions (d{>=}4), and we also consider the very interesting Weyl-Guilfoyle systems, i.e., general relativistic charged fluids with nonzero pressure. In particular within the Newton-Coulomb theory of charged gravitating fluids, a theorem by Bonnor (1980) in three-dimensional space is generalized to arbitrary (d-1)>3 space dimensions. Then, we prove a new theorem for charged gravitating fluid systems in which we find the condition that the charge density and the matter density should obey. Within general relativity coupled to charged dust fluids, a theorem by De and Raychaudhuri (1968) in four-dimensional spacetime is rendered into arbitrary d>4 dimensions. Then a theorem, new in d=4 and d>4 dimensions, for Weyl-Guilfoyle systems, is stated and proved, in which we find the condition that the charge density, the matter density, the pressure, and the electromagnetic energy density should obey. This theorem comprises, in particular cases, a theorem by Gautreau and Hoffman (1973) and results in four dimensions by Guilfoyle (1999). Upon connection of an interior charged solution to an exterior Tangherlini solution (i.e., a Reissner-Nordstroem solution in d dimensions), one is able to give a general definition for gravitational mass for this kind of relativistic systems and find a mass relation with several quantities of the interior solution. It is also shown that for sources of finite extent the mass is identical to the Tolman mass.
NASA Technical Reports Server (NTRS)
Johnston, A. S., (Nick); Ryder, Mel; Tyler, Tony R.
1998-01-01
An automated fluid and power interface system needs to be developed for future space missions which require on orbit consumable replenishment. Current method of fluid transfer require manned vehicles and extravehicular activity. Currently the US does not have an automated capability for consumable transfer on-orbit. This technology would benefit both Space Station and long duration satellites. In order to provide this technology the Automated Fluid Interface System (AFIS) was developed. The AFIS project was an advanced development program aimed at developing a prototype satellite servicer for future space operations. This mechanism could transfer propellants, cryogens, fluids, gasses, electrical power, and communications from a tanker unit to the orbiting satellite. The development of this unit was a cooperative effort between Marshall Space Flight Center in Huntsville, Alabama, and Moog, Inc. in East Aurora, New York. An engineering model was built and underwent substantial development testing at Marshall Space Flight Center (MSFC). While the AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit. The lessons learned from testing the AFIS provided the foundation for the next generation fluid transfer mechanism, the Orbital Fluid Transfer System (OFTS). The OFTS project was a study contract with MSFC and Moog, Inc. The OFTS was designed for the International Space Station (ISS), but its flexible design could used for long duration satellite missions and other applications. The OFTS was designed to be used after docking. The primary function was to transfer bipropellants and high pressure gases. The other items addressed by this task included propellant storage, hardware integration, safety and control system issues. A new concept for high pressure couplings was also developed. The results of the AFIS testing provided an excellent basis for the OFTS design. The OFTS
NASA Technical Reports Server (NTRS)
Johnston, A. S., (Nick); Ryder, Mel; Tyler, Tony R.
1998-01-01
An automated fluid and power interface system needs to be developed for future space missions which require on orbit consumable replenishment. Current method of fluid transfer require manned vehicles and extravehicular activity. Currently the US does not have an automated capability for consumable transfer on-orbit. This technology would benefit both Space Station and long duration satellites. In order to provide this technology the Automated Fluid Interface System (AFIS) was developed. The AFIS project was an advanced development program aimed at developing a prototype satellite servicer for future space operations. This mechanism could transfer propellants, cryogens, fluids, gasses, electrical power, and communications from a tanker unit to the orbiting satellite. The development of this unit was a cooperative effort between Marshall Space Flight Center in Huntsville, Alabama, and Moog, Inc. in East Aurora, New York. An engineering model was built and underwent substantial development testing at Marshall Space Flight Center (MSFC). While the AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit. The lessons learned from testing the AFIS provided the foundation for the next generation fluid transfer mechanism, the Orbital Fluid Transfer System (OFTS). The OFTS project was a study contract with MSFC and Moog, Inc. The OFTS was designed for the International Space Station (ISS), but its flexible design could used for long duration satellite missions and other applications. The OFTS was designed to be used after docking. The primary function was to transfer bipropellants and high pressure gases. The other items addressed by this task included propellant storage, hardware integration, safety and control system issues. A new concept for high pressure couplings was also developed. The results of the AFIS testing provided an excellent basis for the OFTS design. The OFTS
NASA Technical Reports Server (NTRS)
Huggett, Daniel J.; Majumdar, Alok
2013-01-01
Cryogenic propellants are readily heated when used. This poses a problem for rocket engine efficiency and effective boot-strapping of the engine, as seen in the "hot" LOX (Liquid Oxygen) problem on the S-1 stage of the Saturn vehicle. In order to remedy this issue, cryogenic fluids were found to be sub-cooled by injection of a warm non-condensing gas. Experimental results show that the mechanism behind the sub-cooling is evaporative cooling. It has been shown that a sub-cooled temperature difference of approximately 13 deg F below saturation temperature [1]. The phenomenon of sub-cooling of cryogenic propellants by a non-condensing gas is not readily available with the General Fluid System Simulation Program (GFSSP) [2]. GFSSP is a thermal-fluid program used to analyze a wide variety of systems that are directly impacted by thermodynamics and fluid mechanics. In order to model this phenomenon, additional capabilities had to be added to GFSSP in the form of a FORTRAN coded sub-routine to calculate the temperature of the sub-cooled fluid. Once this was accomplished, the sub-routine was implemented to a GFSSP model that was created to replicate an experiment that was conducted to validate the GFSSP results.
Fluid management system technology discipline
NASA Technical Reports Server (NTRS)
Symons, E. Patrick
1990-01-01
Viewgraphs on fluid management system technology discipline for Space Station Freedom are presented. Topics covered include: subcritical cryogenic storage and transfer; fluid handling; and components and instrumentation.
Intravenous Fluid Generation System
NASA Technical Reports Server (NTRS)
McQuillen, John; McKay, Terri; Brown, Daniel; Zoldak, John
2013-01-01
The ability to stabilize and treat patients on exploration missions will depend on access to needed consumables. Intravenous (IV) fluids have been identified as required consumables. A review of the Space Medicine Exploration Medical Condition List (SMEMCL) lists over 400 medical conditions that could present and require treatment during ISS missions. The Intravenous Fluid Generation System (IVGEN) technology provides the scalable capability to generate IV fluids from indigenous water supplies. It meets USP (U.S. Pharmacopeia) standards. This capability was performed using potable water from the ISS; water from more extreme environments would need preconditioning. The key advantage is the ability to filter mass and volume, providing the equivalent amount of IV fluid: this is critical for remote operations or resource- poor environments. The IVGEN technology purifies drinking water, mixes it with salt, and transfers it to a suitable bag to deliver a sterile normal saline solution. Operational constraints such as mass limitations and lack of refrigeration may limit the type and volume of such fluids that can be carried onboard the spacecraft. In addition, most medical fluids have a shelf life that is shorter than some mission durations. Consequently, the objective of the IVGEN experiment was to develop, design, and validate the necessary methodology to purify spacecraft potable water into a normal saline solution, thus reducing the amount of IV fluids that are included in the launch manifest. As currently conceived, an IVGEN system for a space exploration mission would consist of an accumulator, a purifier, a mixing assembly, a salt bag, and a sterile bag. The accumulator is used to transfer a measured amount of drinking water from the spacecraft to the purifier. The purifier uses filters to separate any air bubbles that may have gotten trapped during the drinking water transfer from flowing through a high-quality deionizing cartridge that removes the impurities in
NASA Technical Reports Server (NTRS)
Lurie, Boris J. (Inventor); Schier, J. Alan (Inventor); Iskenderian, Theodore C. (Inventor)
1991-01-01
An improved fluid actuating system for imparting motion to a body such as a spacecraft is disclosed. The fluid actuating system consists of a fluid mass that may be controllably accelerated through at least one fluid path whereby an opposite acceleration is experienced by the spacecraft. For full control of the spacecraft's orientation, the system would include a plurality of fluid paths. The fluid paths may be circular or irregular, and the fluid paths may be located on the interior or exterior of the spacecraft.
Taking Fluid Mechanics to the General Public
NASA Astrophysics Data System (ADS)
Guyon, Etienne; Guyon, Marie Yvonne
2014-01-01
Fluid flow phenomena are omnipresent; they can be observed and described in many locations and circumstances. However, in most cases, their presence does not stimulate an interest in science. We consider successively domains of activities in which the presence of fluid flow phenomena can be used: natural sites, industrial ones, sporting events, artistic creations and presentations, the production of images and books, science museums, cultural centers, and also popular mass media. The last section is devoted to outreach activities that can be practiced within the educational system.
A systems approach to theoretical fluid mechanics: Fundamentals
NASA Technical Reports Server (NTRS)
Anyiwo, J. C.
1978-01-01
A preliminary application of the underlying principles of the investigator's general system theory to the description and analyses of the fluid flow system is presented. An attempt is made to establish practical models, or elements of the general fluid flow system from the point of view of the general system theory fundamental principles. Results obtained are applied to a simple experimental fluid flow system, as test case, with particular emphasis on the understanding of fluid flow instability, transition and turbulence.
A Generalized Fluid Formulation for Turbomachinery Computations
NASA Technical Reports Server (NTRS)
Merkle, Charles L.; Sankaran, Venkateswaran; Dorney, Daniel J.; Sondak, Douglas L.
2003-01-01
A generalized formulation of the equations of motion of an arbitrary fluid are developed for the purpose of defining a common iterative algorithm for computational procedures. The method makes use of the equations of motion in conservation form with separate pseudo-time derivatives used for defining the numerical flux for a Riemann solver and the convergence algorithm. The partial differential equations are complemented by an thermodynamic and caloric equations of state of a complexity necessary for describing the fluid. Representative solutions with a new code based on this general equation formulation are provided for three turbomachinery problems. The first uses air as a working fluid while the second uses gaseous oxygen in a regime in which real gas effects are of little importance. These nearly perfect gas computations provide a basis for comparing with existing perfect gas code computations. The third case is for the flow of liquid oxygen through a turbine where real gas effects are significant. Vortex shedding predictions with the LOX formulations reduce the discrepancy between perfect gas computations and experiment by approximately an order of magnitude, thereby verifying the real gas formulation as well as providing an effective case where its capabilities are necessary.
NASA Technical Reports Server (NTRS)
Hammond, J. C.
1975-01-01
Development of a fluid infusion system was undertaken in response to a need for an intravenous infusion device operable under conditions of zero-g. The initial design approach, pursued in the construction of the first breadboard instrument, was to regulate the pressure of the motive gas to produce a similar regulated pressure in the infusion liquid. This scheme was not workable because of the varying bag contact area, and a major design iteration was made. A floating sensor plate in the center of the bag pressure plate was made to operate a pressure regulator built into the bellows assembly, effectively making liquid pressure the directly controlled variable. Other design changes were made as experience was gained with the breadboard. Extensive performance tests were conducted on both the breadboard and the prototype device; accurately regulated flows from 6 m1/min to 100 m1/min were achieved. All system functions were shown to operate satisfactorily.
General dynamical density functional theory for classical fluids.
Goddard, Benjamin D; Nold, Andreas; Savva, Nikos; Pavliotis, Grigorios A; Kalliadasis, Serafim
2012-09-21
We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects which strongly influence the nonequilibrium properties of the system. We derive a general dynamical density functional theory which shows very good agreement with full Langevin dynamics. In suitable limits, we recover existing dynamical density functional theories and a Navier-Stokes-like equation with additional nonlocal terms.
Generalized Langevin theory for inhomogeneous fluids: The equations of motion
NASA Astrophysics Data System (ADS)
Grant, Martin; Desai, Rashmi C.
1982-05-01
We use the generalized Langevin approach to study the dynamical correlations in an inhomogeneous system. The equations of motion (formally exact) are obtained for the number density, momentum density, energy density, stress tensor, and heat flux. We evaluate all the relevant sum rules appearing in the frequency matrix exactly in terms of microscopic pair potentials and an external field. We show using functional derivatives how these microscopic sum rules relate to more familiar, though now nonlocal, hydrodynamiclike quantities. The set of equations is closed by a Markov approximation in the equations for stress tensor and heat flux. As a result, these equations become analogous to Grad's 13-moment equations for low-density fluids and constitute a generalization to inhomogeneous fluids of the work of Schofield and Akcasu-Daniels. We also indicate how the resulting general set of equations would simplify for systems in which the inhomogeneity is unidirectional, e.g., a liquid-vapor interface.
Houck, E.D.
1994-10-11
An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.
Houck, Edward D.
1994-01-01
An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.
Houck, E.D.
1993-12-31
This invention comprises a fluid sampling system which allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped up into a sampling jet of venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decrease, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodicially leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.
Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad
2006-06-06
A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.
NASA Astrophysics Data System (ADS)
Zhao, Xue-Hui; Tian, Bo; Chai, Jun; Wu, Yu-Xiao; Guo, Yong-Jiang
2016-11-01
Under investigation in this paper is a generalized variable-coefficient Boussinesq system, which describes the propagation of the shallow water waves in the two-layered fluid flow. Bilinear forms, Bäcklund transformation and Lax pair are derived by virtue of the Bell polynomials. Hirota method is applied to construct the one- and two-soliton solutions. Propagation and interaction of the solitons are illustrated graphically: kink- and bell-shape solitons are obtained; shapes of the solitons are affected by the variable coefficients α1, α3 and α4 during the propagation, kink- and anti-bell-shape solitons are obtained when α3 > 0, anti-kink- and bell-shape solitons are obtained when α3 < 0; Head-on interaction between the two bidirectional solitons, overtaking interaction between the two unidirectional solitons are presented; interactions between the two solitons are elastic.
Ultrasonic Fluid Quality Sensor System
Gomm, Tyler J.; Kraft, Nancy C.; Phelps, Larry D.; Taylor, Steven C.
2003-10-21
A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.
Ultrasonic fluid quality sensor system
Gomm, Tyler J.; Kraft, Nancy C.; Phelps, Larry D.; Taylor, Steven C.
2002-10-08
A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.
Generalized dark energy interactions with multiple fluids
NASA Astrophysics Data System (ADS)
van de Bruck, Carsten; Mifsud, Jurgen; Mimoso, José P.; Nunes, Nelson J.
2016-11-01
In the search for an explanation for the current acceleration of the Universe, scalar fields are the most simple and useful tools to build models of dark energy. This field, however, must in principle couple with the rest of the world and not necessarily in the same way to different particles or fluids. We provide the most complete dynamical system analysis to date, consisting of a canonical scalar field conformally and disformally coupled to both dust and radiation. We perform a detailed study of the existence and stability conditions of the systems and comment on constraints imposed on the disformal coupling from Big-Bang Nucleosynthesis and given current limits on the variation of the fine-structure constant.
Generalized Archimedes' principle in active fluids
NASA Astrophysics Data System (ADS)
Razin, Nitzan; Voituriez, Raphael; Elgeti, Jens; Gov, Nir S.
2017-09-01
We show how a gradient in the motility properties of noninteracting pointlike active particles can cause a pressure gradient that pushes a large inert object. We calculate the force on an object inside a system of active particles with position-dependent motion parameters, in one and two dimensions, and show that a modified Archimedes' principle is satisfied. We characterize the system, both in terms of the model parameters and in terms of experimentally measurable quantities: the spatial profiles of the density, velocity and pressure. This theoretical analysis is motivated by recent experiments, which showed that the nucleus of a mouse oocyte (immature egg cell) moves from the cortex to the center due to a gradient of activity of vesicles propelled by molecular motors; it more generally applies to artificial systems of controlled localized activity.
Saffman-Taylor instability for generalized Newtonian fluids.
Mora, S; Manna, M
2009-07-01
We study theoretically the linear Saffman-Taylor instability for non-Newtonian fluids in a Hele-Shaw cell. After introducing the notion of generalized Newtonian fluid we calculate the associated Darcy's law. We derive the relation governing the growth rate of normal modes for a large class of non-Newtonian flows. For shear-thinning fluids at high shear rate our theory provides Darcy's laws free of the nonphysical divergences appearing in the classical approaches. We characterize fluids which develop instabilities faster than Newtonian fluids under the same hydrodynamical conditions. Another primary result that this paper provides is that for some shear-thickening fluids, all normal modes are stable.
Fluid management systems technology summaries
NASA Technical Reports Server (NTRS)
Stark, J. A.; Blatt, M. H.; Bennett, F. O., Jr.; Campbell, B. J.
1974-01-01
A summarization and categorization of the pertinent literature associated with fluid management systems technology having potential application to in-orbit fluid transfer and/or associated storage are presented. A literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in the following manner: (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4) major results, and (5) comments of the reviewer. Pertinent figures are presented on a single facing page separate from the text. Specific areas covered are: fluid line dynamics and thermodynamics, low-g mass gauging, other instrumentation, stratification/pressurization, low-g vent systems, fluid mixing refrigeration and reliquefaction, and low-g interface control and liquid acquisition systems. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.
Large scale cryogenic fluid systems testing
NASA Technical Reports Server (NTRS)
1992-01-01
NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Majumdar, Alok; Tiller, Bruce
2001-01-01
A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program SINDA/G. The flow code, GFSSP, is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasisteady (unsteady solid, steady fluid) conjugate heat transfer modeling.
Wellbottom fluid implosion treatment system
Brieger, Emmet F.
2001-01-01
A system for inducing implosion shock forces on perforation traversing earth formations with fluid pressure where an implosion tool is selected relative to a shut in well pressure and a tubing pressure to have a large and small area piston relationship in a well tool so that at a predetermined tubing pressure the pistons move a sufficient distance to open an implosion valve which permits a sudden release of well fluid pressure into the tubing string and produces an implosion force on the perforations. A pressure gauge on the well tool records tubing pressure and well pressure as a function of time.
Rethinking hospital general ward ventilation design using computational fluid dynamics.
Yam, R; Yuen, P L; Yung, R; Choy, T
2011-01-01
Indoor ventilation with good air quality control minimises the spread of airborne respiratory and other infections in hospitals. This article considers the role of ventilation in preventing and controlling infection in hospital general wards and identifies a simple and cost-effective ventilation design capable of reducing the chances of cross-infection. Computational fluid dynamic (CFD) analysis is used to simulate and compare the removal of microbes using a number of different ventilation systems. Instead of the conventional corridor air return arrangement used in most general wards, air return is rearranged so that ventilation is controlled from inside the ward cubicle. In addition to boosting the air ventilation rate, the CFD results reveal that ventilation performance and the removal of microbes can be significantly improved. These improvements are capable of matching the standards maintained in a properly constructed isolation room, though at much lower cost. It is recommended that the newly identified ventilation parameters be widely adopted in the design of new hospital general wards to minimise cross-infection. The proposed ventilation system can also be retrofitted in existing hospital general wards with far less disruption and cost than a full-scale refurbishment. Copyright Â© 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.
1979-11-30
reference, it is mentioned that sodium , potassium , calcium, etc,, were found on the slide and presumably originated from the oil. Ref. [6] re- ports...technique. These tests showed that changes in the wear rate of a system or component could be readily detected by the ferrograph. The lack of...Concentrations in Terms of Wear Rate Fluid Sampling Wear Debris Recovery VII. FERROGRAPHIC STANDARDIZATION 54 The Case for Standardization TTCP Results VIIl
Intraoperative Fluids and Fluid Management for Ambulatory Dental Sedation and General Anesthesia
Saraghi, Mana
2015-01-01
Intravenous fluids are administered in virtually every parenteral sedation and general anesthetic. The purpose of this article is to review the physiology of body-water distribution and fluid dynamics at the vascular endothelium, evaluation of fluid status, calculation of fluid requirements, and the clinical rationale for the use of various crystalloid and colloid solutions. In the setting of elective dental outpatient procedures with minor blood loss, isotonic balanced crystalloid solutions are the fluids of choice. Colloids, on the other hand, have no use in outpatient sedation or general anesthesia for dental or minor oral surgery procedures but may have several desirable properties in long and invasive maxillofacial surgical procedures where advanced hemodynamic monitoring may assess the adequacy of intravascular volume. PMID:26650497
Intraoperative Fluids and Fluid Management for Ambulatory Dental Sedation and General Anesthesia.
Saraghi, Mana
2015-01-01
Intravenous fluids are administered in virtually every parenteral sedation and general anesthetic. The purpose of this article is to review the physiology of body-water distribution and fluid dynamics at the vascular endothelium, evaluation of fluid status, calculation of fluid requirements, and the clinical rationale for the use of various crystalloid and colloid solutions. In the setting of elective dental outpatient procedures with minor blood loss, isotonic balanced crystalloid solutions are the fluids of choice. Colloids, on the other hand, have no use in outpatient sedation or general anesthesia for dental or minor oral surgery procedures but may have several desirable properties in long and invasive maxillofacial surgical procedures where advanced hemodynamic monitoring may assess the adequacy of intravascular volume.
Compressor bleed cooling fluid feed system
Donahoo, Eric E; Ross, Christopher W
2014-11-25
A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.
On generalized Volterra systems
NASA Astrophysics Data System (ADS)
Charalambides, S. A.; Damianou, P. A.; Evripidou, C. A.
2015-01-01
We construct a large family of evidently integrable Hamiltonian systems which are generalizations of the KM system. The algorithm uses the root system of a complex simple Lie algebra. The Hamiltonian vector field is homogeneous cubic but in a number of cases a simple change of variables transforms such a system to a quadratic Lotka-Volterra system. We present in detail all such systems in the cases of A3, A4 and we also give some examples from higher dimensions. We classify all possible Lotka-Volterra systems that arise via this algorithm in the An case.
Analysis of fluid/mechanical systems using EASY5
NASA Technical Reports Server (NTRS)
Clark, Robert W., Jr.; Arndt, Scott D.; Hurlbert, Eric A.
1992-01-01
This paper illustrates how the use of a general analysis package can simplify modeling and analyzing fluid/mechanical systems. One such package is EASY5, a Boeing Computer Services product. The basic transmission line equations for modeling piped fluid systems are presented, as well as methods of incorporating these equations into the EASY5 environment. The paper describes how this analysis tool has been used to model several fluid subsystems of the Space Shuttle Orbiter.
Volume transport and generalized hydrodynamic equations for monatomic fluids.
Eu, Byung Chan
2008-10-07
In this paper, the effects of volume transport on the generalized hydrodynamic equations for a pure simple fluid are examined from the standpoint of statistical mechanics and, in particular, kinetic theory of fluids. First, we derive the generalized hydrodynamic equations, namely, the constitutive equations for the stress tensor and heat flux for a single-component monatomic fluid, from the generalized Boltzmann equation in the presence of volume transport. Then their linear steady-state solutions are derived and examined with regard to the effects of volume transport on them. The generalized hydrodynamic equations and linear constitutive relations obtained for nonconserved variables make it possible to assess Brenner's proposition [Physica A 349, 11 (2005); Physica A 349, 60 (2005)] for volume transport and attendant mass and volume velocities as well as the effects of volume transport on the Newtonian law of viscosity, compression/dilatation (bulk viscosity) phenomena, and Fourier's law of heat conduction. On the basis of study made, it is concluded that the notion of volume transport is sufficiently significant to retain in irreversible thermodynamics of fluids and fluid mechanics.
System for connecting fluid couplings
NASA Technical Reports Server (NTRS)
Cody, Joseph C. (Inventor); Matthews, Paul R. (Inventor)
1990-01-01
A system for mating fluid transfer couplings is constructed having a male connector which is provided with a pair of opposed rollers mounted to an exterior region thereof. A male half of a fluid transfer coupling is rotatably supported in an opening in an end of the connector and is equipped with an outwardly extending forward portion. The forward portion locks into an engagement and locking region of a female half of the fluid transfer coupling, with female half being rotatably supported in a receptacle. The receptacle has an opening aligned with locking region, with this opening having a pair of concentric, annularly disposed ramps extending around an interior portion of opening. These ramps are inclined toward the interior of the receptacle and are provided with slots through which rollers of the connector pass. After the connector is inserted into the receptacle (engaging forward portion into engagement region), relative rotation between the connector and receptacle causes the rollers to traverse ramps until the rollers abut and are gripped by retainers. This axially forces the forward portion into locked, sealed engagement with the engagement region.
Generalized fluid theory including non-Maxwellian kinetic effects
Izacard, Olivier
2017-03-29
The results obtained by the plasma physics community for the validation and the prediction of turbulence and transport in magnetized plasmas come mainly from the use of very central processing unit (CPU)-consuming particle-in-cell or (gyro)kinetic codes which naturally include non-Maxwellian kinetic effects. To date, fluid codes are not considered to be relevant for the description of these kinetic effects. Here, after revisiting the limitations of the current fluid theory developed in the 19th century, we generalize the fluid theory including kinetic effects such as non-Maxwellian super-thermal tails with as few fluid equations as possible. The collisionless and collisional fluid closuresmore » from the nonlinear Landau Fokker–Planck collision operator are shown for an arbitrary collisionality. Indeed, the first fluid models associated with two examples of collisionless fluid closures are obtained by assuming an analytic non-Maxwellian distribution function. One of the main differences with the literature is our analytic representation of the distribution function in the velocity phase space with as few hidden variables as possible thanks to the use of non-orthogonal basis sets. These new non-Maxwellian fluid equations could initiate the next generation of fluid codes including kinetic effects and can be expanded to other scientific disciplines such as astrophysics, condensed matter or hydrodynamics. As a validation test, we perform a numerical simulation based on a minimal reduced INMDF fluid model. The result of this test is the discovery of the origin of particle and heat diffusion. The diffusion is due to the competition between a growing INMDF on short time scales due to spatial gradients and the thermalization on longer time scales. Here, the results shown here could provide the insights to break some of the unsolved puzzles of turbulence.« less
Generalized fluid theory including non-Maxwellian kinetic effects
NASA Astrophysics Data System (ADS)
Izacard, Olivier
2017-04-01
The results obtained by the plasma physics community for the validation and the prediction of turbulence and transport in magnetized plasmas come mainly from the use of very central processing unit (CPU)-consuming particle-in-cell or (gyro)kinetic codes which naturally include non-Maxwellian kinetic effects. To date, fluid codes are not considered to be relevant for the description of these kinetic effects. Here, after revisiting the limitations of the current fluid theory developed in the 19th century, we generalize the fluid theory including kinetic effects such as non-Maxwellian super-thermal tails with as few fluid equations as possible. The collisionless and collisional fluid closures from the nonlinear Landau Fokker-Planck collision operator are shown for an arbitrary collisionality. Indeed, the first fluid models associated with two examples of collisionless fluid closures are obtained by assuming an analytic non-Maxwellian distribution function (e.g. the INMDF (Izacard, O. 2016b Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas. Phys. Plasmas 23, 082504) that stands for interpreted non-Maxwellian distribution function). One of the main differences with the literature is our analytic representation of the distribution function in the velocity phase space with as few hidden variables as possible thanks to the use of non-orthogonal basis sets. These new non-Maxwellian fluid equations could initiate the next generation of fluid codes including kinetic effects and can be expanded to other scientific disciplines such as astrophysics, condensed matter or hydrodynamics. As a validation test, we perform a numerical simulation based on a minimal reduced INMDF fluid model. The result of this test is the discovery of the origin of particle and heat diffusion. The diffusion is due to the competition between a growing INMDF on short time scales due to spatial gradients and the thermalization on longer time scales. The results
General-relativistic rotation laws in rotating fluid bodies
NASA Astrophysics Data System (ADS)
Mach, Patryk; Malec, Edward
2015-06-01
We formulate new general-relativistic extensions of Newtonian rotation laws for self-gravitating stationary fluids. They have been used to rederive, in the first post-Newtonian approximation, the well-known geometric dragging of frames. We derive two other general-relativistic weak-field effects within rotating tori: the recently discovered dynamic antidragging and a new effect that measures the deviation from the Keplerian motion and/or the contribution of the fluids self-gravity. One can use the rotation laws to study the uniqueness and the convergence of the post-Newtonian approximations as well as the existence of the post-Newtonian limits.
General curvilinear coordinate systems
NASA Technical Reports Server (NTRS)
Thompson, J. P.
1982-01-01
The basic ideas of the construction and use of numerically-generated boundary-fitted coordinate systems for the numerical solution of partial differential equations are discussed. With such coordinate systems, all computation can be done on a fixed square grid in the rectangular transformed region regardless of the shape or movement of the physical boundaries. A number of different types of configurations for the transformed region and the basic transformation relations from a cartesian system to a general curvilinear system are given. The material of this paper is applicable to all types of coordinate system generation.
Mimicking static anisotropic fluid spheres in general relativity
NASA Astrophysics Data System (ADS)
Boonserm, Petarpa; Ngampitipan, Tritos; Visser, Matt
2016-11-01
We argue that an arbitrary general relativistic static anisotropic fluid sphere, (static and spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully mimicked by suitable linear combinations of theoretically attractive and quite simple classical matter: a classical (charged) isotropic perfect fluid, a classical electromagnetic field and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore, we show how this decomposition relates to the distribution of both electric charge density and scalar charge density throughout the model. The generalized TOV equation implies that the perfect fluid component in this model is automatically in internal equilibrium, with pressure forces, electric forces, and scalar forces balancing the gravitational pseudo-force. Consequently, we can build theoretically attractive matter models that can be used to mimic almost any static spherically symmetric spacetime.
On the thermodynamics of some generalized second-grade fluids
Man CS, Massoudi M
2010-01-01
The generalized second-grade fluids, which have been used for modeling the creep of ice and the flow of coal-water and coal-oil slurries, are among the simplest non-Newtonian fluid models that can describe shear-thinning/thickening and exhibit normal stress effects. In this article, we conduct thermodynamic analysis on a class of generalized second-grade fluids, one distinguishing feature of which is the existence of a constitutive function that describes frictional heating. We work within the framework of Serrin’s original formulation of neoclassical thermodynamics, where internal energy and entropy functions, if they exist for a continuous body at all, are to be derived from the classical First Law and (quantitatively reformulated) Second Law of thermodynamics for cycles. For the class of generalized second-grade fluids in question, we show from the First Law that an internal energy density u exists, and we derive the equation of energy balance; from the Second Law, we demonstrate the existence of an entropy density s and derive the Clausius–Duhem inequality that it satisfies.We obtain explicit expressions for u, s and the frictional heating , and derive thermodynamic restrictions on thematerial functions of temperature μ, α1, and α2 that appear in the constitutive relation for the Cauchy stress. For the special case of second-grade fluids, our expressions for u and s agree with those which Dunn and Fosdick [6] derived under the theoretical framework of the rational thermodynamics of Coleman and Noll.
Parametric Modeling for Fluid Systems
NASA Technical Reports Server (NTRS)
Pizarro, Yaritzmar Rosario; Martinez, Jonathan
2013-01-01
Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.
Spinning fluids in general relativity. II - Self-consistent formulation
NASA Technical Reports Server (NTRS)
Ray, John R.; Smalley, Larry, L.; Krisch, Jean P.
1987-01-01
Methods used earlier to derive the equations of motion for a spinning fluid in the Einstein-Cartan theory are specialized to the case of general relativity. The main idea is to include the spin as a thermodynamic variable in the theory.
Spinning fluids in general relativity. II - Self-consistent formulation
NASA Technical Reports Server (NTRS)
Ray, John R.; Smalley, Larry, L.; Krisch, Jean P.
1987-01-01
Methods used earlier to derive the equations of motion for a spinning fluid in the Einstein-Cartan theory are specialized to the case of general relativity. The main idea is to include the spin as a thermodynamic variable in the theory.
Safety drain system for fluid reservoir
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)
2012-01-01
A safety drain system includes a plurality of drain sections, each of which defines distinct fluid flow paths. At least a portion of the fluid flow paths commence at a side of the drain section that is in fluid communication with a reservoir's fluid. Each fluid flow path at the side communicating with the reservoir's fluid defines an opening having a smallest dimension not to exceed approximately one centimeter. The drain sections are distributed over at least one surface of the reservoir. A manifold is coupled to the drain sections.
Thermal fluids in low temperature systems. Part 2
Lynde, P.G.; Yonkers, E.D.
1996-02-01
This article focuses on the lifeblood of these systems, the thermal transfer fluid itself. Low-temperature heat-transfer fluids are used to condition engine fluids, test chambers, cooling fluids, or a combination of these in environmental test facilities. To meet the specific test criteria, these fluids may be required to maintain pumpability and function with thermal efficiency at temperatures as low as {minus}120 F. This article presents information related to heat-transfer fluids used in low-temperature cooling applications. Three general groups of fluids are discussed: water-based antifreezes (ethylene and propylene glycol solutions); chlorinated solvents (methylene chloride and trichloroethylene); organic and synthetic coolants (diethylbenzene, two forms of dimethylpolysiloxane, heavy naphtha hydrotreated, and citrus terpene).
Fluid management system for a zero gravity cryogenic storage system
NASA Technical Reports Server (NTRS)
Lak, Tibor I. (Inventor)
1995-01-01
The fluid management system comprises a mixing/recirculation system including an external recirculation pump for receiving fluid from a zero gravity storage system and returning an output flow of the fluid to the storage system. An internal axial spray injection system is provided for receiving a portion of the output flow from the recirculation pump. The spray injection system thermally de-stratifies liquid and gaseous cryogenic fluid stored in the storage system.
Fluid sampling system for a nuclear reactor
Lau, Louis K.; Alper, Naum I.
1994-01-01
A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.
Fluid sampling system for a nuclear reactor
Lau, L.K.; Alper, N.I.
1994-11-22
A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.
Counterflow diffusion flames of general fluids: Oxygen/hydrogen mixtures
Ribert, Guillaume; Zong, Nan; Yang, Vigor; Pons, Laetitia; Darabiha, Nasser; Candel, Sebastien
2008-08-15
A comprehensive framework has been established for studying laminar counterflow diffusion flames for general fluids over the entire regime of thermodynamic states. The model incorporates a unified treatment of fundamental thermodynamic and transport theories into an existing flow solver DMCF to treat detailed chemical kinetic mechanisms and multispecies transport. The resultant scheme can thus be applied to fluids in any state. Both subcritical and supercritical conditions are considered. As a specific example, diluted and undiluted H{sub 2}/O{sub 2} flames are investigated at pressures of 1-25 MPa and oxygen inlet temperatures of 100 and 300 K. The effects of pressure p and strain rate {epsilon}{sub s} on the heat release rate q{sub s}-dot, extinction limit, and flame structure are examined. In addition, the impact of cross-diffusion terms, such as the Soret and Dufour effects, on the flame behavior is assessed. Results indicate that the flame thickness {delta}{sub f} and heat release rate correlate well with the square root of the pressure multiplied by the strain rate. The strain rate at the extinction limit exhibits a quasi-linear dependence on p. Significant real-fluid effects take place in the transcritical regimes, as evidenced by the steep property variations in the local flowfield. However, their net influence on the flame properties appears to be limited due to the ideal-gas behavior of fluids in the high-temperature zone. (author)
Space station integrated propulsion and fluid system study: Fluid systems configuration databook
NASA Technical Reports Server (NTRS)
Rose, L.; Bicknell, B.; Bergman, D.; Wilson, S.
1987-01-01
This databook contains fluid system requirements and system descriptions for Space Station program elements including the United States and International modules, integrated fluid systems, attached payloads, fluid servicers and vehicle accommodation facilities. Separate sections are devoted to each of the program elements and include a discussion of the overall system requirements, specific fluid systems requirements and systems descriptions. The systems descriptions contain configurations, fluid inventory data and component lists. In addition, a list of information sources is referenced at the end of each section.
Kazarina, L N; Vdovina, L V; Dubrovskaia, E N
2010-01-01
Results of laboratory investigations of the estimation of peroxide oxidation of lipids and antioxidant protection in the oral fluid of the patients with chronic generalizating parodontitis and arterial hypertension with using mexidol. It was shown that the normalization of parameters of the primary and second products of peroxidation with mexidol action, antioxidant protection of oral liquid increased that was favorably reflected in structures and functions of cell.
Compressibility measurement of fluid-system ullage
NASA Technical Reports Server (NTRS)
Dzienis, D. A.; See, E. C.
1977-01-01
Portable self-contained instrument measures volume of free gas or air trapped in closed fluid systems, such as lubricating-oil lines or hydraulic brakes. In response to measurement readings, operator may use device to accurately add or withdraw fluid to or from system.
NASA Technical Reports Server (NTRS)
Burkhardt, Z.; Ramachandran, N.; Majumdar, A.
2017-01-01
Fluid Transient analysis is important for the design of spacecraft propulsion system to ensure structural stability of the system in the event of sudden closing or opening of the valve. Generalized Fluid System Simulation Program (GFSSP), a general purpose flow network code developed at NASA/MSFC is capable of simulating pressure surge due to sudden opening or closing of valve when thermodynamic properties of real fluid are available for the entire range of simulation. Specifically GFSSP needs an accurate representation of pressure-density relationship in order to predict pressure surge during a fluid transient. Unfortunately, the available thermodynamic property programs such as REFPROP, GASP or GASPAK does not provide the thermodynamic properties of Monomethylhydrazine (MMH). This paper will illustrate the process used for building a customized table of properties of state variables from available properties and speed of sound that is required by GFSSP for simulation. Good agreement was found between the simulations and measured data. This method can be adopted for modeling flow networks and systems with other fluids whose properties are not known in detail in order to obtain general technical insight. Rigorous code validation of this approach will be done and reported at a future date.
A general framework for robust control in fluid mechanics
NASA Astrophysics Data System (ADS)
Bewley, Thomas R.; Temam, Roger; Ziane, Mohammed
2000-04-01
The application of optimal control theory to complex problems in fluid mechanics has proven to be quite effective when complete state information from high-resolution numerical simulations is available [P. Moin, T.R. Bewley, Appl. Mech. Rev., Part 2 47 (6) (1994) S3-S13; T.R. Bewley, P. Moin, R. Temam, J. Fluid Mech. (1999), submitted for publication]. In this approach, an iterative optimization algorithm based on the repeated computation of an adjoint field is used to optimize the controls for finite-horizon nonlinear flow problems [F. Abergel, R. Temam, Theoret. Comput. Fluid Dyn. 1 (1990) 303-325]. In order to extend this infinite-dimensional optimization approach to control externally disturbed flows in which the controls must be determined based on limited noisy flow measurements alone, it is necessary that the controls computed be insensitive to both state disturbances and measurement noise. For this reason, robust control theory, a generalization of optimal control theory, has been examined as a technique by which effective control algorithms which are insensitive to a broad class of external disturbances may be developed for a wide variety of infinite-dimensional linear and nonlinear problems in fluid mechanics. An aim of the present paper is to put such algorithms into a rigorous mathematical framework, for it cannot be assumed at the outset that a solution to the infinite-dimensional robust control problem even exists. In this paper, conditions on the initial data, the parameters in the cost functional, and the regularity of the problem are established such that existence and uniqueness of the solution to the robust control problem can be proven. Both linear and nonlinear problems are treated, and the 2D and 3D nonlinear cases are treated separately in order to get the best possible estimates. Several generalizations are discussed and an appropriate numerical method is proposed.
Generalized approach to global renormalization-group theory for fluids
NASA Astrophysics Data System (ADS)
Ramana, A. Sai Venkata; Menon, S. V. G.
2012-04-01
The global renormalization-group theory (GRGT) for fluids is derived starting with the square-gradient approximation for the Helmholtz free energy functional such that any mean-field free energy density and direct correlation function can be employed. The new derivation uses Wilson's functions for representing density fluctuations, thereby relaxing the assumption of cosine variation of density fluctuations used in earlier approaches. The generality of the present approach is shown by deriving the relationships to the earlier developments. A qualitative way to infer the free parameters in the present form of GRGT is also suggested. The new theory is applied to square-well fluids of ranges 1.5 and 3.0 (in units of hard-sphere diameter) and Lennard-Jones fluids. It is shown that the present theory produces a flat isotherm in the two-phase region. Thus the theory accounts for fluctuations at all length scales and avoids the use of Maxwell's construction. An analysis of the liquid-vapor phase diagrams and the critical constants obtained for different potentials shows that, with a mean-field free energy density that is accurate away from the critical region and an appropriate coarse graining length for the mean-field theory, GRGT can provide results in good agreement with the simulation and experimental results.
Interfacing a General Purpose Fluid Network Flow Program with the SINDA/G Thermal Analysis Program
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Popok, Daniel
1999-01-01
A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program Systems Improved Numerical Differencing Analyzer/Gaski (SINDA/G). The flow code, Generalized Fluid System Simulation Program (GFSSP), is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasi-steady (unsteady solid, steady fluid) conjugate heat transfer modeling.
An overview of boundary integral formulations for potential flows in fluid-fluid systems
NASA Astrophysics Data System (ADS)
Canot, E.; Achard, J.-L.
Three-dimensional flow problems involving a system of two incompressible constant-density fluids separated by a moving interface are investigated, comparing the theoretical foundations and numerical implementation of two classes of boundary-integral methods based on the irrotational-flow approximation (Baker et al., 1982; Roberts, 1983). Although the strength of the singularity induced at the interface obeys a general Fredholm integral equation of the second kind in each case, the method of Roberts is found to be simpler to apply in practice. Numerical results for vibration in a spherical globule and for the axisymmetric Rayleigh-Taylor instability in an unbounded fluid-fluid system are presented in graphs and discussed in detail: good general agreement with experimental data is observed.
Expanding perfect fluid generalizations of the C metric
Wylleman, Lode; Beke, David
2010-05-15
Petrov type D gravitational fields, generated by a perfect fluid with spatially homogeneous energy density and with flow lines which form a nonshearing and nonrotating timelike congruence, are reexamined. It turns out that the anisotropic such spacetimes, which comprise the vacuum C metric as a limit case, can have nonzero expansion, contrary to the conclusion in the original investigation by Barnes [A. Barnes, Gen. Relativ. Gravit. 4, 105 (1973).]. Apart from the static members, this class consists of cosmological models with precisely one symmetry. The general line element is constructed and some important properties are discussed. It is also shown that purely electric Petrov type D vacuum spacetimes admit shear-free normal timelike congruences everywhere, even in the nonstatic regions. This result incited to deduce intrinsic, easily testable criteria regarding shear-free normality and staticity of Petrov type D spacetimes in general, which are added in an appendix.
Fluid permeability measurement system and method
Hallman, Jr., Russell Louis; Renner, Michael John
2008-02-05
A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.
GVS - GENERAL VISUALIZATION SYSTEM
NASA Technical Reports Server (NTRS)
Keith, S. R.
1994-01-01
The primary purpose of GVS (General Visualization System) is to support scientific visualization of data output by the panel method PMARC_12 (inventory number ARC-13362) on the Silicon Graphics Iris computer. GVS allows the user to view PMARC geometries and wakes as wire frames or as light shaded objects. Additionally, geometries can be color shaded according to phenomena such as pressure coefficient or velocity. Screen objects can be interactively translated and/or rotated to permit easy viewing. Keyframe animation is also available for studying unsteady cases. The purpose of scientific visualization is to allow the investigator to gain insight into the phenomena they are examining, therefore GVS emphasizes analysis, not artistic quality. GVS uses existing IRIX 4.0 image processing tools to allow for conversion of SGI RGB files to other formats. GVS is a self-contained program which contains all the necessary interfaces to control interaction with PMARC data. This includes 1) the GVS Tool Box, which supports color histogram analysis, lighting control, rendering control, animation, and positioning, 2) GVS on-line help, which allows the user to access control elements and get information about each control simultaneously, and 3) a limited set of basic GVS data conversion filters, which allows for the display of data requiring simpler data formats. Specialized controls for handling PMARC data include animation and wakes, and visualization of off-body scan volumes. GVS is written in C-language for use on SGI Iris series computers running IRIX. It requires 28Mb of RAM for execution. Two separate hardcopy documents are available for GVS. The basic document price for ARC-13361 includes only the GVS User's Manual, which outlines major features of the program and provides a tutorial on using GVS with PMARC_12 data. Programmers interested in modifying GVS for use with data in formats other than PMARC_12 format may purchase a copy of the draft GVS 3.1 Software Maintenance
Surface cleanliness of fluid systems, specification for
NASA Technical Reports Server (NTRS)
1995-01-01
This specification establishes surface cleanliness levels, test methods, cleaning and packaging requirements, and protection and inspection procedures for determining surface cleanliness. These surfaces pertain to aerospace parts, components, assemblies, subsystems, and systems in contact with any fluid medium.
General proof of the entropy principle for self-gravitating fluid in f ( R) gravity
NASA Astrophysics Data System (ADS)
Fang, Xiongjun; Guo, Minyong; Jing, Jiliang
2016-08-01
The discussions on the connection between gravity and thermodynamics attract much attention recently. We consider a static self-gravitating perfect fluid system in f ( R) gravity, which is an important theory could explain the accelerated expansion of the universe. We first show that the Tolman-Oppenheimer-Volkoff equation of f ( R) theories can be obtained by thermodynamical method in spherical symmetric spacetime. Then we prove that the maximum entropy principle is also valid for f ( R) gravity in general static spacetimes beyond spherical symmetry. The result shows that if the constraint equation is satisfied and the temperature of fluid obeys Tolmans law, the extrema of total entropy implies other components of gravitational equations. Conversely, if f ( R) gravitational equation hold, the total entropy of the fluid should be extremum. Our work suggests a general and solid connection between f ( R) gravity and thermodynamics.
NASA Astrophysics Data System (ADS)
Liang, Li-Fu; Liu, Zong-Min; Guo, Qing-Yong
2009-03-01
The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived.
Numerical Modeling of Fluid Transient in Cryogenic Fluid Network of Rocket Propulsion System
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Flachbart, Robin
2003-01-01
Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicles propulsion systems. These transients often occur at system activation and shut down. For ground safety reasons, many spacecrafts are launched with the propellant lines dry. These lines are often evacuated by the time the spacecraft reaches orbit. When the propellant isolation valve opens during propulsion system activation, propellant rushes into lines creating a pressure surge. During propellant system shutdown, a pressure surge is created due to sudden closure of a valve. During both activation and shutdown, pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. The method of characteristics is the most widely used method of calculating fluid transients in pipeline [ 1,2]. The method of characteristics, however, has limited applications in calculating flow distribution in complex flow circuits with phase change, heat transfer and rotational effects. A robust cryogenic propulsion system analyzer must have the capability to handle phase change, heat transfer, chemical reaction, rotational effects and fluid transients in conjunction with subsystem flow model for pumps, valves and various pipe fittings. In recent years, such a task has been undertaken at Marshall Space Flight Center with the development of the Generalized Fluid System Simulation Program (GFSSP), which is based on finite volume method in fluid network [3]. GFSSP has been extensively verified and validated by comparing its predictions with test data and other numerical methods for various applications such as internal flow of turbo-pump [4], propellant tank pressurization [5,6], chilldown of cryogenic transfer line [7] and squeeze film damper rotordynamics [8]. The purpose of the present paper is to investigate the applicability of the finite volume method to predict fluid transient in cryogenic flow
NASA Astrophysics Data System (ADS)
Pfister, Herbert
2011-04-01
In comparison to previous existence proofs for static and spherically symmetric perfect fluid stars in general relativity the new proof applies to a more general class of equations of state. In the star's interior we allow for piecewise Lipschitz continuous functions, including in this way the physically important case of phase transitions. Near the star's surface we allow for even more general functions, thereby including a large class of polytropic equations of state. Furthermore, the proof technique proceeds along standard techniques of functional analysis (Banach's fixed point theorem), and therefore applies in a similar manner to static stars in Newtonian gravity, and perhaps to rotating Newtonian and Einsteinian stars. In detail, the Einstein field equations for static perfect fluid stars are transformed to a system of coupled nonlinear integral equations being valid equally in the matter region and in the vacuum exterior. These integral equations are interpreted as a mapping in a Banach space. With the standard iteration technique, beginning with appropriate start functions, it is proven that the mapping has a unique fixed point, and that the solutions have appropriate regularity properties determined by the properties of the equation of state. The introduction gives an overview of earlier work on such systems, on the question of sphericity of static fluid stars, and on possible extensions of the above methods to rotating Newtonian and Einsteinian stars. An outlook addresses the question whether our proof method may be extensible to piecewise Hölder continuous equations of state.
Viscous generalized Chaplygin gas as a unified dark fluid
NASA Astrophysics Data System (ADS)
Li, Wei; Xu, Lixin
2013-06-01
In this paper, we revisit viscous generalized Chaplygin gas (VGCG) as a unified dark fluid, which modifies the pressure only by redefining the effective pressure p eff, according to p_{eff}=p-√{3}ζ0ρ, where ζ 0 is the newly added model parameter which characterizes the viscous property and can be determined by the cosmic observations. By using the currently available cosmic observational data from WMAP, BAO, and SN Ia, the model parameter space is obtained via a Markov Chain Monte Carlo method: ζ0=0.000708_{- 0.00155- 0.00311- 0.00503}^{+ 0.00151+ 0.00275+ 0.00425} in 1, 2, 3 σ regions. The results show that the viscous effect is very small due the value ζ 0≈0 and the VGCG model can match observational data points as well as ΛCDM model.
Generalized Newtonian fluid flow through fibrous porous media
NASA Astrophysics Data System (ADS)
Mierzwiczak, Magdalena; Kołodziej, Jan Adam; Grabski, Jakub Krzysztof
2016-06-01
The numerical calculations of the velocity field and the component of transverse permeability in the filtration equation for steady, incompressible flow of the generalized Newtonian fluid through the assemblages of cylindrical fibers are presented in this paper. The fibers are arranged regularly in arrays. Flow is transverse with respect to the fibers. The non-linear governing equation in the repeated element of the array is solved using iteration method. At each iteration step the method of fundamental solutions and the method of particular solutions are used. The bundle of fibers is treated as a porous media and on the base of velocity field the permeability coefficients are calculated as a function of porosity.
Wireless Fluid Level Measuring System
NASA Technical Reports Server (NTRS)
Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor)
2007-01-01
A level-sensing probe positioned in a tank is divided into sections with each section including (i) a fluid-level capacitive sensor disposed along the length thereof, (ii) an inductor electrically coupled to the capacitive sensor, (iii) a sensor antenna positioned for inductive coupling to the inductor, and (iv) an electrical conductor coupled to the sensor antenna. An electrically non-conductive housing accessible from a position outside of the tank houses antennas arrayed in a pattern. Each antenna is electrically coupled to the electrical conductor from a corresponding one of the sections. A magnetic field response recorder has a measurement head with transceiving antennas arrayed therein to correspond to the pattern of the housing's antennas. When a measurement is to be taken, the measurement head is mechanically coupled to the housing so that each housing antenna is substantially aligned with a specific one of the transceiving antennas.
Fluid circulation systems in the Alpine External Crystalline Massifs
NASA Astrophysics Data System (ADS)
Boutoux, Alexandre; Bellahsen, Nicolas; Verlaguet, Anne; Lacombe, Olivier
2014-05-01
At mid-crustal levels, rock permeability is believed to be very low except in active fault/shear zones. In sedimentary rocks undergoing tectonic burial during collisional shortening, fluid flow is thus considered to be a small-scale process restricted to the sedimentary unit, until the fluid system locally opens during strain localization in fault/shear zones. During the Alpine collision, the European proximal passive margin (Dauphinois/Helvetic domains, including the External Crystalline Massifs, ECM: Aar, Mont Blanc, Aiguilles Rouges, Oisans massifs) was buried at mid-crustal depth under the internal units and was subsequently shortened and exhumed with contrasting kinematics. Indeed, some of the main tectonic units are sedimentary nappes detached from their basement while other are linked to main basement shear zones. In this context, many studies of fluid system evolution have been published, mainly focused on the largest tectonic units (e.g., Morcles nappe) and/or on thrust/shear zones with large displacement (e.g., Glarus thrust). In this contribution, we focused on tectonic structures located in the Oisans massif where small amount of shortening occurred (smaller than in the northern ECM, Mont Blanc and Aar). We performed geochemical and microthermometric analyses on calcite + quartz vein and host-rock samples to document and discuss the fluid source and pathway, the scale of circulation and the fluid-rock interactions. The fluid system in the Oisans ECM is compared to the fluid systems in other ECM and can be considered as an early and/or less shortened analogue. In the Oisans massif cover, the fluid system is generally closed, except locally above the main basement shear zones where signatures of basement-derived fluids were identified by trace element analysis. In contrast, in the Mont Blanc massif, fluids were channelized in the main basement shear zones, while in the Morcles nappe (i.e., the presumable cover of the Mont Blanc), deep fluids may have been
Fluid delivery manifolds and microfluidic systems
Renzi, Ronald F.; Sommer, Gregory J.; Singh, Anup K.; Hatch, Anson V.; Claudnic, Mark R.; Wang, Ying-Chih; Van de Vreugde, James L.
2017-02-28
Embodiments of fluid distribution manifolds, cartridges, and microfluidic systems are described herein. Fluid distribution manifolds may include an insert member and a manifold base and may define a substantially closed channel within the manifold when the insert member is press-fit into the base. Cartridges described herein may allow for simultaneous electrical and fluidic interconnection with an electrical multiplex board and may be held in place using magnetic attraction.
Control system for fluid heated steam generator
Boland, James F.; Koenig, John F.
1985-01-01
A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.
Control system for fluid heated steam generator
Boland, J.F.; Koenig, J.F.
1984-05-29
A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.
NASA Technical Reports Server (NTRS)
Reardon, John E.; Violett, Duane L., Jr.
1991-01-01
The AFAS Database System was developed to provide the basic structure of a comprehensive database system for the Marshall Space Flight Center (MSFC) Structures and Dynamics Laboratory Aerophysics Division. The system is intended to handle all of the Aerophysics Division Test Facilities as well as data from other sources. The system was written for the DEC VAX family of computers in FORTRAN-77 and utilizes the VMS indexed file system and screen management routines. Various aspects of the system are covered, including a description of the user interface, lists of all code structure elements, descriptions of the file structures, a description of the security system operation, a detailed description of the data retrieval tasks, a description of the session log, and a description of the archival system.
Filling of orbital fluid management systems
NASA Technical Reports Server (NTRS)
Merino, F.; Blatt, M. H.; Thies, N. C.
1978-01-01
A study was performed with three objectives: (1) analyze fluid management system fill under orbital conditions; (2) determine what experimentation is needed; and (3) develop an experimental program. The fluid management system was a 1.06m (41.7 in) diameter pressure vessel with screen channel device. Analyses were conducted using liquid hydrogen and N2O4. The influence of helium and autogenous pressurization systems was considered. Analyses showed that fluid management system fill will be more difficult with a cryogen than with an earth storable. The key to a successful fill with cryogens is in devising techniques for filling without vent liquid, and removing trapped vapor from the screen device at tank fill completion. This will be accomplished with prechill, fill, and vapor condensation processes. Refill will require a vent and purge process, to dilute the residual helium, prior to introducing liquid. Neither prechill, chill, nor purge processes will be required for earth storables.
2012-01-01
use of, norms that are readily calculable , and (3) to use, or permit the use of, norms that yield a satisfactory interpretation in physical problems...an input-output system. F is a causal mapping and (Y; F; U) is a causal system if and only if for all t and for all u; v 2 U such that ku vkt = 0 it...in the invertibility calculation becomes an equality. 6-8 NSWCDD/TR-12/79 sup A#2A# sup t;y kytkt + eFt(u#t ) t (1 + kytkt)(1 + []A # t [] N
NASA Technical Reports Server (NTRS)
Bicknell, B.; Wilson, S.; Dennis, M.; Lydon, M.
1988-01-01
Commonality and integration of propulsion and fluid systems associated with the Space Station elements are being evaluated. The Space Station elements consist of the core station, which includes habitation and laboratory modules, nodes, airlocks, and trusswork; and associated vehicles, platforms, experiments, and payloads. The program is being performed as two discrete tasks. Task 1 investigated the components of the Space Station architecture to determine the feasibility and practicality of commonality and integration among the various propulsion elements. This task was completed. Task 2 is examining integration and commonality among fluid systems which were identified by the Phase B Space Station contractors as being part of the initial operating capability (IOC) and growth Space Station architectures. Requirements and descriptions for reference fluid systems were compiled from Space Station documentation and other sources. The fluid systems being examined are: an experiment gas supply system, an oxygen/hydrogen supply system, an integrated water system, the integrated nitrogen system, and the integrated waste fluids system. Definitions and descriptions of alternate systems were developed, along with analyses and discussions of their benefits and detriments. This databook includes fluid systems descriptions, requirements, schematic diagrams, component lists, and discussions of the fluid systems. In addition, cost comparison are used in some cases to determine the optimum system for a specific task.
Perfect fluid in Lagrangian formulation due to generalized three-form field
NASA Astrophysics Data System (ADS)
Wongjun, Pitayuth
2017-07-01
A Lagrangian formulation of perfect fluid due to a noncanonical three-form field is investigated. The thermodynamic quantities such as energy density, pressure and the four velocity are obtained and then analyzed by comparing with the k-essence scalar field. The nonrelativistic matter due to the generalized three-form field with the equation of state parameter being zero is realized while it might not be possible for the k-essence scalar field. We also found that nonadiabatic pressure perturbations can be possibly generated. The fluid dynamics of the perfect fluid due to the three-form field corresponds to the system in which the number of particles is not conserved. We argue that it is interesting to use this three-form field to represent the dark matter for the classical interaction theory between dark matter and dark energy.
Dong, S.
2015-02-15
We present a family of physical formulations, and a numerical algorithm, based on a class of general order parameters for simulating the motion of a mixture of N (N⩾2) immiscible incompressible fluids with given densities, dynamic viscosities, and pairwise surface tensions. The N-phase formulations stem from a phase field model we developed in a recent work based on the conservations of mass/momentum, and the second law of thermodynamics. The introduction of general order parameters leads to an extremely strongly-coupled system of (N−1) phase field equations. On the other hand, the general form enables one to compute the N-phase mixing energy density coefficients in an explicit fashion in terms of the pairwise surface tensions. We show that the increased complexity in the form of the phase field equations associated with general order parameters in actuality does not cause essential computational difficulties. Our numerical algorithm reformulates the (N−1) strongly-coupled phase field equations for general order parameters into 2(N−1) Helmholtz-type equations that are completely de-coupled from one another. This leads to a computational complexity comparable to that for the simplified phase field equations associated with certain special choice of the order parameters. We demonstrate the capabilities of the method developed herein using several test problems involving multiple fluid phases and large contrasts in densities and viscosities among the multitude of fluids. In particular, by comparing simulation results with the Langmuir–de Gennes theory of floating liquid lenses we show that the method using general order parameters produces physically accurate results for multiple fluid phases.
Scaling fluid content-pressure relations of different fluid systems in porous media
Lenhard, R.J.
1994-04-01
Two-fluid-phase relations among fluid saturations (S) and pressures (P) have historically been used to predict S-P relations for three-fluid-phase systems consisting of a gas, nonaqueous phase liquid (NAPL), and water, because measurements of three-phase S-P relations are complex. Two-phase S-P relations of air-NAPL systems are generally used to predict the behavior between total-liquid saturations of three-phase systems and air-NAPL capillary pressures. Two-phase S-P relations of NAPL-water systems are generally used to predict the behavior between water saturations of three-phase systems and NAPL-water capillary pressures. Because S-P measurements are very time-consuming, investigators have attempted to scale S-P relations so that fewer measurements would be required. A S-P scaling technique is discussed in this paper, and methods to predict the scaling factors are evaluated.
NASA Astrophysics Data System (ADS)
Sochi, Taha
2015-05-01
We continue our investigation to the use of the variational method to derive flow relations for generalized Newtonian fluids in confined geometries. While in the previous investigations we used the straight circular tube geometry with eight fluid rheological models to demonstrate and establish the variational method, the focus here is on the plane long thin slit geometry using those eight rheological models, namely: Newtonian, power law, Ree-Eyring, Carreau, Cross, Casson, Bingham and Herschel-Bulkley. We demonstrate how the variational principle based on minimizing the total stress in the flow conduit can be used to derive analytical expressions, which are previously derived by other methods, or used in conjunction with numerical procedures to obtain numerical solutions which are virtually identical to the solutions obtained previously from well established methods of fluid dynamics. In this regard, we use the method of Weissenberg-Rabinowitsch- Mooney-Schofield (WRMS), with our adaptation from the circular pipe geometry to the long thin slit geometry, to derive analytical formulae for the eight types of fluid where these derived formulae are used for comparison and validation of the variational formulae and numerical solutions. Although some examples may be of little value, the optimization principle which the variational method is based upon has a significant theoretical value as it reveals the tendency of the flow system to assume a configuration that minimizes the total stress. Our proposal also offers a new methodology to tackle common problems in fluid dynamics and rheology.
SINFAC - SYSTEMS IMPROVED NUMERICAL FLUIDS ANALYSIS CODE
NASA Technical Reports Server (NTRS)
Costello, F. A.
1994-01-01
The Systems Improved Numerical Fluids Analysis Code, SINFAC, consists of additional routines added to the April 1983 revision of SINDA, a general thermal analyzer program. The purpose of the additional routines is to allow for the modeling of active heat transfer loops. The modeler can simulate the steady-state and pseudo-transient operations of 16 different heat transfer loop components including radiators, evaporators, condensers, mechanical pumps, reservoirs and many types of valves and fittings. In addition, the program contains a property analysis routine that can be used to compute the thermodynamic properties of 20 different refrigerants. SINFAC can simulate the response to transient boundary conditions. SINFAC was first developed as a method for computing the steady-state performance of two phase systems. It was then modified using CNFRWD, SINDA's explicit time-integration scheme, to accommodate transient thermal models. However, SINFAC cannot simulate pressure drops due to time-dependent fluid acceleration, transient boil-out, or transient fill-up, except in the accumulator. SINFAC also requires the user to be familiar with SINDA. The solution procedure used by SINFAC is similar to that which an engineer would use to solve a system manually. The solution to a system requires the determination of all of the outlet conditions of each component such as the flow rate, pressure, and enthalpy. To obtain these values, the user first estimates the inlet conditions to the first component of the system, then computes the outlet conditions from the data supplied by the manufacturer of the first component. The user then estimates the temperature at the outlet of the third component and computes the corresponding flow resistance of the second component. With the flow resistance of the second component, the user computes the conditions down stream, namely the inlet conditions of the third. The computations follow for the rest of the system, back to the first component
Fluid Power Systems. Energy Technology Series.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This course in fluid power systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored…
Pressurized fluid damping of nanoelectromechanical systems.
Svitelskiy, Oleksiy; Sauer, Vince; Liu, Ning; Cheng, Kar-Mun; Finley, Eric; Freeman, Mark R; Hiebert, Wayne K
2009-12-11
Interactions of nanoscale structures with fluids are of current interest both in the elucidation of fluid dynamics at these small scales, and in determining the ultimate performance of nanoelectromechanical systems outside of vacuum. We present a comprehensive study of nanomechanical damping in three gases (He, N2, CO2), and liquid CO2. Resonant dynamics in multiple devices of varying size and frequency is measured over 10 decades of pressure (1 mPa-20 MPa) using time-domain stroboscopic optical interferometry. The wide pressure range allows full exploration of the regions of validity of Newtonian and non-Newtonian flow damping models. Observing free molecular flow behavior extending above 1 atm, we find a fluid relaxation time model to be valid throughout, but not beyond, the non-Newtonian regime, and a Newtonian flow vibrating spheres model to be valid in the viscous limit.
MR fluid haptic system for regional anesthesia training simulation system.
Lim, Yi-Je; Valdivia, Pablo; Chang, Chuyin; Tardella, Neil
2008-01-01
Magneto-Rheological (MR) fluid is a class of controllable smart material whose rheological properties may be rapidly varied by the application of a magnetic field. In this paper we focus on our MR fluid based haptic system providing accurate haptic feedback for needle insertion and syringe injection. We use the essential characteristic of MR fluid, a controllable yielding strength in milliseconds under magnetic field, in our innovative MR fluids-based haptic feedback device that imposes simulated force for the regional anesthesia simulator.
The Rayleigh-Stokes problem for an edge in a generalized Oldroyd-B fluid
NASA Astrophysics Data System (ADS)
Fetecau, Corina; Jamil, Muhammad; Fetecau, Constantin; Vieru, Dumitru
2009-09-01
The velocity field corresponding to the Rayleigh-Stokes problem for an edge, in an incompressible generalized Oldroyd-B fluid has been established by means of the double Fourier sine and Laplace transforms. The fractional calculus approach is used in the constitutive relationship of the fluid model. The obtained solution, written in terms of the generalized G-functions, is presented as a sum of the Newtonian solution and the corresponding non-Newtonian contribution. The solution for generalized Maxwell fluids, as well as those for ordinary Maxwell and Oldroyd-B fluids, performing the same motion, is obtained as a limiting case of the present solution. This solution can be also specialized to give the similar solution for generalized second grade fluids. However, for simplicity, a new and simpler exact solution is established for these fluids. For β → 1, this last solution reduces to a previous solution obtained by a different technique.
Studies of complexity in fluid systems
Kadanoff, L.P.; Constantin, P.; Dupont, T.F.; Nagel, S.
1993-02-01
Objective is to bring together researchers from several disciplines (mathematics, numerical computation, theoretical and experimental physics) who share an interest in the development of complexity in fluid systems. Work is in progress on development of singular interfluid interfaces on several fronts. Striking variations in droplet formation can be observed in physical experiments and simulations based on simple models. High-speed photographs are being taken of small liquid drop breaking into droplets. Experimental studies of granular materials are being continued.
Testing of the Automated Fluid Interface System
NASA Technical Reports Server (NTRS)
Johnston, A. S.; Tyler, Tony R.
1998-01-01
The Automated Fluid Interface System (AFIS) is an advanced development prototype satellite servicer. The device was designed to transfer consumables from one spacecraft to another. An engineering model was built and underwent development testing at Marshall Space Flight Center. While the current AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit.
Generalized coupling parameter expansion: application to square well and Lennard-Jones fluids.
Sai Venkata Ramana, A
2013-07-28
The coupling parameter expansion in thermodynamic perturbation theory of simple fluids is generalized to include the derivatives of bridge function with respect to coupling parameter. We applied seventh order version of the theory to Square-Well (SW) and Lennard-Jones (LJ) fluids using Sarkisov Bridge function. In both cases, the theory reproduced the radial distribution functions obtained from integral equation theory (IET) and simulations with good accuracy. Also, the method worked inside the liquid-vapor coexistence region where the IETs are known to fail. In the case of SW fluids, the use of Carnahan-Starling expression for Helmholtz free energy density of Hard-Sphere reference system has improved the liquid-vapor phase diagram (LVPD) over that obtained from IET with the same bridge function. The derivatives of the bridge function are seen to have significant effect on the liquid part of the LVPD. For extremely narrow SW fluids, we found that the third order theory is more accurate than the higher order versions. However, considering the convergence of the perturbation series, we concluded that the accuracy of the third order version is a spurious result. We also obtained the surface tension for SW fluids of various ranges. Results of present theory and simulations are in good agreement. In the case of LJ fluids, the equation of state obtained from the present method matched with that obtained from IET with negligible deviation. We also obtained LVPD of LJ fluid from virial and energy routes and found that there is slight inconsistency between the two routes. The applications lead to the following conclusions. In cases where reference system properties are known accurately, the present method gives results which are very much improved over those obtained from the IET with the same bridge function. In cases where reference system data is not available, the method serves as an alternative way of solving the Ornstein-Zernike equation with a given closure relation
Inhomogeneous generalizations of Bianchi type VIh models with perfect fluid
NASA Astrophysics Data System (ADS)
Roy, S. R.; Prasad, A.
1991-07-01
Inhomogeneous universes admitting an Abelian G2 of isometry and filled with perfect fluid have been derived. These contain as special cases exact homogeneous universes of Bianchi type VIh. Many of these universes asymptotically tend to homogeneous Bianchi VIh universes. The models have been discussed for their physical and kinematical behaviors.
SALE2D. General Transient Fluid Flow Algorithm
Amsden, A.A.; Ruppel, H.M.; Hirt, C.W.
1981-06-01
SALE2D calculates two-dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program.
General Systems Theory and Instructional Systems Design.
ERIC Educational Resources Information Center
Salisbury, David F.
1990-01-01
Describes basic concepts in the field of general systems theory (GST) and identifies commonalities that exist between GST and instructional systems design (ISD). Models and diagrams that depict system elements in ISD are presented, and two matrices that show how GST has been used in ISD literature are included. (11 references) (LRW)
Fluid flow dynamics in MAS systems
NASA Astrophysics Data System (ADS)
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.
Fluid flow dynamics in MAS systems.
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor. Copyright © 2015 Elsevier Inc. All rights reserved.
Fluid spheres of uniform density in general relativity
Ponce de Leon, J.
1986-01-01
A number of exact solutions for spherically symmetric nonstatic fluids of uniform density, surrounded by empty space, are derived and investigated. Solutions that represent expanding and contracting spheres, which tend asymptotically to static configurations described by the Schwarzschild interior solution ( rho = const), are obtained In some cases the motion of contraction or expansion is reversed, while in other cases there is no bouncing at all. Oscillating solutions are presented.
Precision Clean Hardware: Maintenance of Fluid Systems Cleanliness
NASA Technical Reports Server (NTRS)
Sharp, Sheila; Pedley, Mike; Bond, Tim; Quaglino, Joseph; Lorenz, Mary Jo; Bentz, Michael; Banta, Richard; Tolliver, Nancy; Golden, John; Levesque, Ray
2003-01-01
The ISS fluid systems are so complex that fluid system cleanliness cannot be verified at the assembly level. A "build clean / maintain clean" approach was used by all major fluid systems: Verify cleanliness at the detail and subassembly level. Maintain cleanliness during assembly.
Telerobotic on-orbit remote fluid resupply system
NASA Technical Reports Server (NTRS)
1990-01-01
The development of a telerobotic on-orbit fluid resupply demonstration system is described. A fluid transfer demonstration system was developed which functionally simulates operations required to remotely transfer fluids (liquids or gases) from a servicing spacecraft to a receiving spacecraft through the use of telerobotic manipulations. The fluid system is representative of systems used by current or planned spacecraft and propulsion stages requiring on-orbit remote resupply. The system was integrated with an existing MSFC remotely controlled manipulator arm to mate/demate couplings for demonstration and evaluation of a complete remotely operated fluid transfer system.
System and method for improving performance of a fluid sensor for an internal combustion engine
Kubinski, David [Canton, MI; Zawacki, Garry [Livonia, MI
2009-03-03
A system and method for improving sensor performance of an on-board vehicle sensor, such as an exhaust gas sensor, while sensing a predetermined substance in a fluid flowing through a pipe include a structure for extending into the pipe and having at least one inlet for receiving fluid flowing through the pipe and at least one outlet generally opposite the at least one inlet, wherein the structure redirects substantially all fluid flowing from the at least one inlet to the sensor to provide a representative sample of the fluid to the sensor before returning the fluid through the at least one outlet.
Blair, Clancy
2006-04-01
This target article considers the relation of fluid cognitive functioning to general intelligence. A neurobiological model differentiating working memory/executive function cognitive processes of the prefrontal cortex from aspects of psychometrically defined general intelligence is presented. Work examining the rise in mean intelligence-test performance between normative cohorts, the neuropsychology and neuroscience of cognitive function in typically and atypically developing human populations, and stress, brain development, and corticolimbic connectivity in human and nonhuman animal models is reviewed and found to provide evidence of mechanisms through which early experience affects the development of an aspect of cognition closely related to, but distinct from, general intelligence. Particular emphasis is placed on the role of emotion in fluid cognition and on research indicating fluid cognitive deficits associated with early hippocampal pathology and with dysregulation of the hypothalamic-pituitary-adrenal axis stress-response system. Findings are seen to be consistent with the idea of an independent fluid cognitive construct and to assist with the interpretation of findings from the study of early compensatory education for children facing psychosocial adversity and from behavior genetic research on intelligence. It is concluded that ongoing development of neurobiologically grounded measures of fluid cognitive skills appropriate for young children will play a key role in understanding early mental development and the adaptive success to which it is related, particularly for young children facing social and economic disadvantage. Specifically, in the evaluation of the efficacy of compensatory education efforts such as Head Start and the readiness for school of children from diverse backgrounds, it is important to distinguish fluid cognition from psychometrically defined general intelligence.
NASA Astrophysics Data System (ADS)
Stefansson, A.; Keller, N. S.; Gunnarsson Robin, J.; Kjartansdottir, R.; Ono, S.; Sveinbjörnsdottir, A. E.
2014-12-01
Carbon and sulfur are among major components in geothermal systems. They are found in various oxidation state and present in solid phases and fluids (water and vapor). In order to study the reactions and mass movement within multiphase geothermal systems, we have combined geochemical fluid-fluid and fluid-rock modelling with sulfur and carbon isotope fractionation modelling and compared the results with measured carbon and sulfur isotopes in geothermal fluids (water and vapor) for selected low- and high-enthalpy geothermal systems in Iceland. In this study we have focused on δ34S for H2S in vapor and water and SO4 in water as well as δ13C for CO2 in vapor and water phases. Isotope fractionations for CO2 and H2S between vapor and liquid water, upon aqueous speciation and upon carbonate and sulfide mineral formation were revised. These were combined with reaction modelling involving closed system boiling and progressive water-rock interaction to constrain the mass movement and isotope abundance between various phases. The results indicate that for a closed system, carbon and sulfur isotope abundance is largely dependent on progressive fluid-fluid and fluid-rock interaction and the initial total δ34S and δ13C value of the system. Initially, upon progressive fluid rock interaction the δ34S and δ13C values for the bulk aqueous phase approach that of the host rocks. Secondary mineral formation may alter these values, the exact isotope value of the mineral and resulting aqueous phase depending on aqueous speciation and isotope fractionation factor. In turn, aqueous speciation and mineral saturation depends on progressive fluid-rock interaction, fluid-fluid interaction, temperature and acid supply to the system. Depressurization boiling also results in isotope fractionation, the exact isotope value of the vapor and aqueous phase depending on aqueous speciation and isotope fractionation fractor. In this way, carbon and sulfur isotopes may be used combined with
Yu, Yinan; Dong, Jing; Xu, Zifeng; Shen, Hao; Zheng, Jijian
2015-02-01
Pleth variability index (PVI), a noninvasive dynamic indicator of fluid responsiveness has been demonstrated to be useful in the management of the patients with goal directed fluid therapy under general anesthesia, but whether PVI can be used to optimize fluid management under combined general and epidural anesthesia (GEN-EPI) remains to be elucidated. The aim of our study was to explore the impact of PVI as a goal-directed fluid therapy parameter on the tissue perfusion for patients with GEN-EPI. Thirty ASA I-II patients scheduled for major abdominal surgeries under GEN-EPI were randomized into PVI-directed fluid management group (PVI group) and non PVI-directed fluid management group (control group). 2 mL/kg/h crystalloid fluid infusion was maintained in PVI group, once PVI>13%, a 250 mL colloid or crystalloid was rapidly infused. 4-8 mL/kg/h crystalloid fluid infusion was maintained in control group, and quick fluid infusion was initiated if mean arterial blood pressure (BP)<65 mmHg. Small doses of norepinephrine were given to keep mean arterial BP above 65 mmHg as needed in both groups. Perioperative lactate levels, hemodynamic changes were recorded individually. The total amount of intraoperative fluids, the amount of crystalloid fluid and the first hour blood lactate levels during surgery were significantly lower in PVI than control group, P<0.05. PVI-based goal-directed fluid management can reduce the intraoperative fluid amount and blood lactate levels in patients under GEN-EPI, especially the crystalloid. Furthermore, the first hour following GEN-EPI might be the critical period for anesthesiologist to optimize the fluid management.
Heat pipe systems using new working fluids
NASA Technical Reports Server (NTRS)
Chao, David F. (Inventor); Zhang, Nengli (Inventor)
2004-01-01
The performance of a heat pipe system is greatly improved by the use of a dilute aqueous solution of about 0.0005 and about 0.005 moles per liter of a long chain alcohol as the working fluid. The surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value, for example about 40.degree. C. for n-heptanol solutions. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. Thus, the bubble size at departure is substantially reduced at higher frequencies and, therefore, increases the boiling limit of heat pipes. This feature is useful in microgravity conditions. In addition to microgravity applications, the heat pipe system may be used for commercial, residential and vehicular air conditioning systems, micro heat pipes for electronic devices, refrigeration and heat exchangers, and chemistry and cryogenics.
A modular system for computational fluid dynamics
NASA Astrophysics Data System (ADS)
McCarthy, D. R.; Foutch, D. W.; Shurtleff, G. E.
This paper describes the Modular System for Compuational Fluid Dynamics (MOSYS), a software facility for the construction and execution of arbitrary solution procedures on multizone, structured body-fitted grids. It focuses on the structure and capabilities of MOSYS and the philosophy underlying its design. The system offers different levels of capability depending on the objectives of the user. It enables the applications engineer to quickly apply a variety of methods to geometrically complex problems. The methods developer can implement new algorithms in a simple form, and immediately apply them to problems of both theoretical and practical interest. And for the code builder it consitutes a toolkit for fast construction of CFD codes tailored to various purposes. These capabilities are illustrated through applications to a particularly complex problem encountered in aircraft propulsion systems, namely, the analysis of a landing aircraft in reverse thrust.
30 CFR 250.455 - What are the general requirements for a drilling fluid program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... drilling fluid program? 250.455 Section 250.455 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.455 What are the general requirements for...
NASA Astrophysics Data System (ADS)
Bae, Hyeong-Ohk; Wolf, Jörg
2017-02-01
We prove the local regularity of a weak solution {\\varvec{u}} to the equations of a generalized Newtonian fluid with power law 1< q ≤ 2 if {\\varvec{u}} belongs to a suitable Lebesgue space. This result extends the well-known Serrin condition for weak solutions of the Navier-Stokes equations to the shear-thinning fluids.
Age Differences in Fluid Intelligence: Contributions of General Slowing and Frontal Decline
ERIC Educational Resources Information Center
Bugg, Julie M.; Zook, Nancy A.; DeLosh, Edward L.; Davalos, Deana B.; Davis, Hasker P.
2006-01-01
The current study examined the contributions of general slowing and frontal decline to age differences in fluid intelligence. Participants aged 20-89 years completed Block Design, Matrix Reasoning, simple reaction time, choice reaction time, Wisconsin Card Sorting, and Tower of London tasks. Age-related declines in fluid intelligence, speed of…
Age Differences in Fluid Intelligence: Contributions of General Slowing and Frontal Decline
ERIC Educational Resources Information Center
Bugg, Julie M.; Zook, Nancy A.; DeLosh, Edward L.; Davalos, Deana B.; Davis, Hasker P.
2006-01-01
The current study examined the contributions of general slowing and frontal decline to age differences in fluid intelligence. Participants aged 20-89 years completed Block Design, Matrix Reasoning, simple reaction time, choice reaction time, Wisconsin Card Sorting, and Tower of London tasks. Age-related declines in fluid intelligence, speed of…
Sustained and generalized extracellular fluid expansion following heat acclimation
Patterson, Mark J; Stocks, Jodie M; Taylor, Nigel A S
2004-01-01
We measured intra- and extravascular body-fluid compartments in 12 resting males before (day 1; control), during (day 8) and after (day 22) a 3-week, exercise–heat acclimation protocol to investigate plasma volume (PV) changes. Our specific focus was upon the selective nature of the acclimation-induced PV expansion, and the possibility that this expansion could be sustained during prolonged acclimation. Acclimation was induced by cycling in the heat, and involved 16 treatment days (controlled hyperthermia (90 min); core temperature = 38.5°C) and three experimental exposures (40 min rest, 96.9 min (s.d. 9.5 min) cycling), each preceded by a rest day. The environmental conditions were a temperature of 39.8°C (s.d. 0.5°C) and relative humidity of 59.2% (s.d. 0.8%). On days 8 and 22, PV was expanded and maintained relative to control values (day 1: 44.0 ± 1.8; day 8: 48.8 ± 1.7; day 22: 48.8 ± 2.0 ml kg−1; P < 0.05). The extracellular fluid compartment (ECF) was equivalently expanded from control values on days 8 (279.6 ± 14.2versus 318.6 ± 14.3 ml kg−1; n = 8; P < 0.05) and 22 (287.5 ± 10.6 versus 308.4 ± 14.8 ml kg−1; n = 12; P < 0.05). Plasma electrolyte, total protein and albumin concentrations were unaltered following heat acclimation (P > 0.05), although the total plasma content of these constituents was elevated (P < 0.05). The PV and interstitial fluid (ISF) compartments exhibited similar relative expansions on days 8 (15.0 ± 2.2% versus 14.7 ± 4.1%; P > 0.05) and 22 (14.4 ± 3.6%versus 6.4 ± 2.2%; P = 0.10). It is concluded that the acclimation-induced PV expansion can be maintained following prolonged heat acclimation. In addition, this PV expansion was not selective, but represented a ubiquitous expansion of the extracellular compartment. PMID:15218070
Fluid injection device for high-pressure systems
NASA Technical Reports Server (NTRS)
Copeland, E. J.; Ward, J. B.
1970-01-01
Screw activated device, consisting of a compressor, shielded replaceable ampules, a multiple-element rubber gland, and a specially constructed fluid line fitting, injects measured amounts of fluids into a pressurized system. It is sturdy and easily manipulated.
Kong, Feng; Chen, Zhencai; Xue, Song; Wang, Xu; Liu, Jia
2015-11-01
Lower parental education impairs cognitive abilities of their offspring such as general fluid intelligence dependent on the prefrontal cortex (PFC), but the independent contribution of mother's and father's education is unknown. We used an individual difference approach to test whether mother's and father's education independently affected general fluid intelligence in emerging adulthood at both the behavioral and neural level. Behaviorally, mother's but not father's education accounted for unique variance in general fluid intelligence in emerging adulthood (assessed by the Raven's advanced progressive matrices). Neurally, the whole-brain correlation analysis revealed that the regional gray matter volume (rGMV) in the medial PFC was related to both mother's education and general fluid intelligence but not father's education. Furthermore, after controlling for mother's education, the association between general fluid intelligence and the rGMV in medial PFC was no longer significant, indicating that mother's education plays an important role in influencing the structure of the medial PFC associated with general fluid intelligence. Taken together, our study provides the first behavioral and neural evidence that mother's education is a more important determinant of general cognitive ability in emerging adulthood than father's education. © 2015 Wiley Periodicals, Inc.
Conformal collineations and anisotropic fluids in general relativity
NASA Astrophysics Data System (ADS)
Duggal, K. L.; Sharma, R.
1986-10-01
Recently, Herrera et al. [L. Herrera, J. Jimenez, L. Leal, J. Ponce de Leon, M. Esculpi, and V. Galino, J. Math. Phys. 25, 3274 (1984)] studied the consequences of the existence of a one-parameter group of conformal motions for anisotropic matter. They concluded that for special conformal motions, the stiff equation of state (p=μ) is singled out in a unique way, provided the generating conformal vector field is orthogonal to the four-velocity. In this paper, the same problem is studied by using conformal collineations (which include conformal motions as subgroups). It is shown that, for a special conformal collineation, the stiff equation of state is not singled out. Non-Einstein Ricci-recurrent spaces are considered as physical models for the fluid matter.
Degradation and healing in a generalized neo-Hookean solid due to infusion of a fluid
NASA Astrophysics Data System (ADS)
Karra, Satish; Rajagopal, K. R.
2012-02-01
The mechanical response and load bearing capacity of high performance polymer composites changes due to degradation or healing associated with diffusion of a fluid, temperature, oxidation or the extent of the deformation. Hence, there is a need to study the response of bodies under such degradation/healing mechanisms. In this paper, we study the effect of degradation and healing due to the diffusion of a fluid on the response of a solid which prior to the diffusion can be described by the generalized neo-Hookean model. We show that a generalized neo-Hookean solid—which behaves like an elastic body (i.e., it does not produce entropy) within a purely mechanical context—creeps and stress relaxes due to degradation/healing when infused with a fluid and behaves like a body whose material properties are time dependent. We specifically investigate the torsion of a degrading/healing generalized neo-Hookean circular cylindrical annulus infused with a fluid. The equations of equilibrium for a generalized neo-Hookean solid are solved together with the convection-diffusion equation for the fluid concentration. Different boundary conditions for the fluid concentration are also considered. We also solve the problem for the case when the diffusivity of the fluid depends on the deformation of the generalized neo-Hookean solid.
Phase transitions in fluids and biological systems
NASA Astrophysics Data System (ADS)
Sipos, Maksim
In this thesis, I consider systems from two seemingly different fields: fluid dynamics and microbial ecology. In these systems, the unifying features are the existences of global non-equilibrium steady states. I consider generic and statistical models for transitions between these global states, and I relate the model results with experimental data. A theme of this thesis is that these rather simple, minimal models are able to capture a lot of functional detail about complex dynamical systems. In Part I, I consider the transition between laminar and turbulent flow. I find that quantitative and qualitative features of pipe flow experiments, the superexponential lifetime and the splitting of turbulent puffs, and the growth rate of turbulent slugs, can all be explained by a coarse-grained, phenomenological model in the directed percolation universality class. To relate this critical phenomena approach closer to the fluid dynamics, I consider the transition to turbulence in the Burgers equation, a simplified model for Navier-Stokes equations. Via a transformation to a model of directed polymers in a random medium, I find that the transition to Burgers turbulence may also be in the directed percolation universality class. This evidence implies that the turbulent-to-laminar transition is statistical in nature and does not depend on details of the Navier-Stokes equations describing the fluid flow. In Part II, I consider the disparate subject of microbial ecology where the complex interactions within microbial ecosystems produce observable patterns in microbe abundance, diversity and genotype. In order to be able to study these patterns, I develop a bioinformatics pipeline to multiply align and quickly cluster large microbial metagenomics datasets. I also develop a novel metric that quantifies the degree of interactions underlying the assembly of a microbial ecosystem, particularly the transition between neutral (random) and niche (deterministic) assembly. I apply this
Forced fluid dynamics from blackfolds in general supergravity backgrounds
NASA Astrophysics Data System (ADS)
Armas, Jay; Gath, Jakob; Niarchos, Vasilis; Obers, Niels A.; Pedersen, Andreas Vigand
2016-10-01
We present a general treatment of the leading order dynamics of the collective modes of charged dilatonic p-brane solutions of (super) gravity theories in arbitrary backgrounds. To this end we employ the general strategy of the blackfold approach which is based on a long-wavelength derivative expansion around an exact or approximate solution of the (super)gravity equations of motion. The resulting collective mode equations are formulated as forced hydrodynamic equations on dynamically embedded hypersurfaces. We derive them in full generality (including all possible asymptotic fluxes and dilaton profiles) in a far-zone analysis of the (super)gravity equations and in representative examples in a near-zone analysis. An independent treatment based on the study of external couplings in hydrostatic partition functions is also presented. Special emphasis is given to the forced collective mode equations that arise in type IIA/B and eleven-dimensional supergravities, where besides the standard Lorentz force couplings our analysis reveals additional couplings to the background, including terms that arise from Chern-Simons interactions. We also present a general overview of the blackfold approach and some of the key conceptual issues that arise when applied to arbitrary backgrounds.
A flexible micro fluid transport system featuring magnetorheological elastomer
NASA Astrophysics Data System (ADS)
Behrooz, Majid; Gordaninejad, Faramarz
2016-02-01
This study presents a flexible magnetically-actuated micro fluid transport system utilizing an isotropic magnetorheological elastomer (MRE). Theoretical modeling and analysis of this system is presented for a two-dimensional model. This fluid transport system can propel the fluid by applying a fluctuating magnetic field on the MRE. The magneto-fluid-structure interaction analysis is employed to determine movement of the solid domain and the velocity of the fluid under a controllable magnetic field. The effects of key material, geometric, and magnetic parameters on the behavior of this system are examined. It is demonstrated that the proposed system can propel the fluid unidirectionally, and the volume of the transported fluid is significantly affected by some of the design parameters.
Safety features of subcritical fluid fueled systems
Bell, C.R.
1995-10-01
Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible.
Method of calibrating a fluid-level measurement system
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)
2010-01-01
A method of calibrating a fluid-level measurement system is provided. A first response of the system is recorded when the system's sensor(s) is (are) not in contact with a fluid of interest. A second response of the system is recorded when the system's sensor(s) is (are) fully immersed in the fluid of interest. Using the first and second responses, a plurality of expected responses of the system's sensor(s) is (are) generated for a corresponding plurality of levels of immersion of the sensor(s) in the fluid of interest.
An intelligent data acquisition system for fluid mechanics research
NASA Technical Reports Server (NTRS)
Cantwell, E. R.; Zilliac, G.; Fukunishi, Y.
1989-01-01
This paper describes a novel data acquisition system for use with wind-tunnel probe-based measurements, which incorporates a degree of specific fluid dynamics knowledge into a simple expert system-like control program. The concept was developed with a rudimentary expert system coupled to a probe positioning mechanism operating in a small-scale research wind tunnel. The software consisted of two basic elements, a general-purpose data acquisition system and the rulebased control element to take and analyze data and supplying decisions as to where to measure, how many data points to take, and when to stop. The system was validated in an experiment involving a vortical flow field, showing that it was possible to increase the resolution of the experiment or, alternatively, reduce the total number of data points required, to achieve parity with the results of most conventional data acquisition approaches.
An intelligent data acquisition system for fluid mechanics research
NASA Technical Reports Server (NTRS)
Cantwell, E. R.; Zilliac, G.; Fukunishi, Y.
1989-01-01
This paper describes a novel data acquisition system for use with wind-tunnel probe-based measurements, which incorporates a degree of specific fluid dynamics knowledge into a simple expert system-like control program. The concept was developed with a rudimentary expert system coupled to a probe positioning mechanism operating in a small-scale research wind tunnel. The software consisted of two basic elements, a general-purpose data acquisition system and the rulebased control element to take and analyze data and supplying decisions as to where to measure, how many data points to take, and when to stop. The system was validated in an experiment involving a vortical flow field, showing that it was possible to increase the resolution of the experiment or, alternatively, reduce the total number of data points required, to achieve parity with the results of most conventional data acquisition approaches.
Evolution of the fluid delivery control system for the Space Station Freedom fluid tank sets
NASA Astrophysics Data System (ADS)
Schweickart, Russell B.
1992-07-01
One set of components in the Environmental Control and Life Support System (ECLSS) on Space Station Freedom is the Fluid Tank Sets (FTS). Development of the strategy for controlling the condition of the fluids in the FTS has involved optimizing the application of a limited amount of heater power in order to meet fluid delivery requirements. Refinement of the fluid delivery requirements has focused the selection of control methodology. In order to maintain the fluid pressure within a supercritical pressure band, the final control scheme includes a dual mode heater. Additional control functions are necessary for preventing overpressurization and two-phase fluid conditions. Finally, controller software will include temperature and pressure limits on the heater for contingency and bleed-to-residual fluid delivery modes.
Concept of planetary gear system to control fluid mixture ratio
NASA Technical Reports Server (NTRS)
Mcgroarty, J. D.
1966-01-01
Mechanical device senses and corrects for fluid flow departures from the selected flow ratio of two fluids. This system has been considered for control of rocket engine propellant mixture control but could find use wherever control of the flow ratio of any two fluids is desired.
System and Method for Wirelessly Determining Fluid Volume
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)
2009-01-01
A system and method are provided for determining the volume of a fluid in container. Sensors are positioned at distinct locations in a container of a fluid. Each sensor is sensitive to an interface defined by the top surface of the fluid. Interfaces associated with at least three of the sensors are determined and used to find the volume of the fluid in the container in a geometric process.
Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.
Hansen, J S
2013-09-01
This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point.
Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok
2011-01-01
Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.
High gliding fluid power generation system with fluid component separation and multiple condensers
Mahmoud, Ahmad M; Lee, Jaeseon; Radcliff, Thomas D
2014-10-14
An example power generation system includes a vapor generator, a turbine, a separator and a pump. In the separator, the multiple components of the working fluid are separated from each other and sent to separate condensers. Each of the separate condensers is configured for condensing a single component of the working fluid. Once each of the components condense back into a liquid form they are recombined and exhausted to a pump that in turn drives the working fluid back to the vapor generator.
Fluid dynamics of double diffusive systems
Koseff, J.R.
1989-04-07
A study of mixing processes in doubly diffusive systems is being conducted. Continuous gradients of two diffusing components (heat and salinity in our case) are being used as initial conditions, and forcing is introduced by lateral heating and surface shear. The goals of the proposed work include: (1) quantification of the effects of finite amplitude disturbances on stable, double diffusive systems, particularly with respect to lateral heating, (2) development of an improved understanding of the physical phenomena present in wind-driven shear flows in double diffusive stratified environments, (3) increasing our knowledge-base on turbulent flow in stratified environments and how to represent it, and (4) formulation of a numerical code for such flows. The work is being carried out in an experimental facility which is located in the Stanford Environmental Fluid Mechanics Laboratory, and on laboratory minicomputers and CRAY computers. In particular we are focusing on the following key issues: (1) the formation and propagation of double diffusive intrusions away from a heated wall and the effects of lateral heating on the double diffusive system; (2) the interaction between the double diffusively influenced fluxes and the turbulence induced fluxes; (3) the measurement of heat and mass fluxes; and (4) the influence of double diffusive gradients on mixed layer deepening. 1 fig.
Tracing Injection Fluids in Engineered Geothermal Systems
NASA Astrophysics Data System (ADS)
Rose, P. E.; Leecaster, K.; Mella, M.; Ayling, B.; Bartl, M. H.
2011-12-01
The reinjection of produced fluids is crucial to the effective management of geothermal reservoirs, since it provides a mechanism for maintaining reservoir pressures while allowing for the disposal of a toxic byproduct. Tracers are essential to the proper location of injection wells since they are the only known tool for reliably characterizing the flow patterns of recirculated fluids. If injection wells are placed too close to production wells, then reinjected fluids do not have sufficient residence time to extract heat from the reservoir and premature thermal breakthrough results. If injection wells are placed too far away, then the reservoir risks unacceptable pressure loss. Several thermally stable compounds from a family of very detectable fluorescent organic compounds (the naphthalene sulfonates) were characterized and found to be effective for use as geothermal tracers. Through batch-autoclave reactions, their Arrhenius pseudo-first-order decay-rate constants were determined. An analytical method was developed that allows for the laboratory determination of concentrations in the low parts-per-trillion range. Field experiments in numerous geothermal reservoirs throughout the world have confirmed the laboratory findings. Whereas conservative tracers such as the naphthalene sulfonates are effective tools for indicating interwell flow patterns and for measuring reservoir pore volumes, 'reactive' tracers can be used to constrain fracture surface area, which is the effective area for heat extraction. This is especially important for engineered geothermal system (EGS) wells, since reactive tracers can be used to measure fracture surface area immediately after drilling and while the well stimulation equipment is still on site. The reactive properties of these tracers that can be exploited to constrain fracture surface area are reversible sorption, contrasting diffusivity, and thermal decay. Laboratory batch- and flow-reactor experiments in combination with numerical
Studies of complexity in fluid systems
Nagel, Sidney R.
2000-06-12
This is the final report of Grant DE-FG02-92ER25119, ''Studies of Complexity in Fluids'', we have investigated turbulence, flow in granular materials, singularities in evolution of fluid surfaces and selective withdrawal fluid flows. We have studied numerical methods for dealing with complex phenomena, and done simulations on the formation of river networks. We have also studied contact-line deposition that occurs in a drying drop.
14 CFR 23.1097 - Carburetor deicing fluid system capacity.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor deicing fluid system capacity... Powerplant Induction System § 23.1097 Carburetor deicing fluid system capacity. (a) The capacity of each... operation. (b) If the available preheat exceeds 50 °F. but is less than 100 °F., the capacity of the...
14 CFR 23.1097 - Carburetor deicing fluid system capacity.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor deicing fluid system capacity... Powerplant Induction System § 23.1097 Carburetor deicing fluid system capacity. (a) The capacity of each... operation. (b) If the available preheat exceeds 50 °F. but is less than 100 °F., the capacity of the...
14 CFR 23.1097 - Carburetor deicing fluid system capacity.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor deicing fluid system capacity... Powerplant Induction System § 23.1097 Carburetor deicing fluid system capacity. (a) The capacity of each... operation. (b) If the available preheat exceeds 50 °F. but is less than 100 °F., the capacity of the...
14 CFR 23.1097 - Carburetor deicing fluid system capacity.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor deicing fluid system capacity... Powerplant Induction System § 23.1097 Carburetor deicing fluid system capacity. (a) The capacity of each... operation. (b) If the available preheat exceeds 50 °F. but is less than 100 °F., the capacity of the...
14 CFR 23.1097 - Carburetor deicing fluid system capacity.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor deicing fluid system capacity... Powerplant Induction System § 23.1097 Carburetor deicing fluid system capacity. (a) The capacity of each... operation. (b) If the available preheat exceeds 50 °F. but is less than 100 °F., the capacity of the...
Controlled differential pressure system for an enhanced fluid blending apparatus
Hallman, Jr., Russell Louis
2009-02-24
A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.
Systems, compositions, and methods for fluid purification
Ho, W.S. Winston; Verweij, Hendrik; Shqau, Krenar; Ramasubranian, Kartik
2015-12-22
Disclosed herein are membranes comprising a substrate, a support layer, and a selective layer. In some embodiments the membrane may further comprise a permeable layer. Methods of forming membranes are also disclosed comprising forming a support layer on a substrate, removing adsorbed species from the support layer, preparing a solution containing inorganic materials of a selective layer, contacting the support layer with the solution, drying the membrane, and exposing the membrane to rapid thermal processing. Also disclosed are methods of fluid purification comprising providing a membrane having a feed side and a permeable side, passing a fluid mixture across the feed side of the membrane, providing a driving force for transmembrane permeation, removing from the permeate side a permeate stream enriched in a purified fluid, and withdrawing from the feed side a fluid that is depleted in a purified fluid.
Fluid thrust control system. [for liquid propellant rocket engines
NASA Technical Reports Server (NTRS)
Howell, W. L.; Jansen, H. B.; Lehmann, E. N. (Inventor)
1968-01-01
A pure fluid thrust control system is described for a pump-fed, regeneratively cooled liquid propellant rocket engine. A proportional fluid amplifier and a bistable fluid amplifier control overshoot in the starting of the engine and take it to a predetermined thrust. An ejector type pump is provided in the line between the liquid hydrogen rocket nozzle heat exchanger and the turbine driving the fuel pump to aid in bringing the fluid at this point back into the regular system when it is not bypassed. The thrust control system is intended to function in environments too severe for mechanical controls.
Exact solution of an electroosmotic flow for generalized Burgers fluid in cylindrical domain
NASA Astrophysics Data System (ADS)
Khan, Masood; Farooq, Asma; Khan, Waqar Azeem; Hussain, Mazhar
The present paper reports a theoretical study of the dynamics of an electroosmotic flow (EOF) in cylindrical domain. The Cauchy momentum equation is first simplified by incorporating the electrostatic body force in the electric double layer and the generalized Burgers fluid constitutive model. The electric potential distribution is given by the linearized Poisson-Boltzmann equation. After solving the linearized Poisson-Boltzmann equation, the Cauchy momentum equation with electrostatic body force is solved analytically by using the temporal Fourier and finite Hankel transforms. The effects of important involved parameters are examined and presented graphically. The results obtained reveal that the magnitude of velocity increases with increase of the Debye-Huckel and electrokinetic parameters. Further, it is shown that the results presented for generalized Burgers fluid are quite general so that results for the Burgers, Oldroyd-B, Maxwell and Newtonian fluids can be obtained as limiting cases.
Transient thermal analysis of fluid systems
NASA Technical Reports Server (NTRS)
Chandler, G. D.; Trust, R. D.
1977-01-01
Computer program performs transient thermal analysis of any 2-node to 200-node-thermal network, which transports heat by fluid flow convection. Program can be modified to add conduction along tubes and radiation.
A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme
NASA Astrophysics Data System (ADS)
Meng, Hua; Yang, Vigor
2003-07-01
A unified treatment of general fluid thermodynamics is developed to handle fluid flows over their entire thermodynamic states. The analysis is based on the concepts of partial-mass and partial-density properties, and accommodates thermodynamic non-idealities and transport anomalies in the transcritical regime. The resultant routine is incorporated into a preconditioning scheme. All the thermophysical properties and numerical Jacobian matrices are derived directly from fundamental thermodynamic theories, rendering a robust algorithm valid for fluid flows at all speeds and at all thermodynamic states. As a specific example, a modified Soave-Redlich-Kwong equation of state is employed to obtain the fluid p- V- T properties. Several test cases concerning supercritical droplet vaporization in both quiescent and convective environments are presented to demonstrate the effectiveness of the present algorithm.
Cosmological tests of generalized RS brane-worlds with Weyl fluid
NASA Astrophysics Data System (ADS)
Gergely, László Á.; Keresztes, Zoltán; Szabó, Gyula M.
2007-11-01
A class of generalized Randall-Sundrum type II (RS) brane-world models with Weyl fluid are confronted with the Gold supernovae data set and BBN constraints. We consider three models with different evolutionary history of the Weyl fluid, characterized by the parameter α. For α = 0 the Weyl curvature of the bulk appears as dark radiation on the brane, while for α = 2 and 3 the brane radiates, leaving a Weyl fluid on the brane with energy density decreasing slower than that of (dark) matter. In each case the contribution Ωd of the Weyl fluid represents but a few percent of the energy content of the Universe. All models fit reasonably well the Gold2006 data. The best fit model for α = 0 is for Ωd = 0.04. In order to obey BBN constraints in this model however, the brane had to radiate at earlier times.
Smoothed particle hydrodynamics model for phase separating fluid mixtures. I. General equations.
Thieulot, Cedric; Janssen, L P B M; Español, Pep
2005-07-01
We present a thermodynamically consistent discrete fluid particle model for the simulation of a recently proposed set of hydrodynamic equations for a phase separating van der Waals fluid mixture [P. Español and C.A.P. Thieulot, J. Chem. Phys. 118, 9109 (2003)]. The discrete model is formulated by following a discretization procedure given by the smoothed particle hydrodynamics (SPH) method within the thermodynamically consistent general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) framework. Each fluid particle carries information on the mass, momentum, energy, and the mass fraction of the different components. The discrete model allows one to simulate nonisothermal dynamic evolution of phase separating fluids with surface tension effects while respecting the first and second laws of thermodynamics exactly.
Smoothed particle hydrodynamics model for phase separating fluid mixtures. I. General equations
NASA Astrophysics Data System (ADS)
Thieulot, Cedric; Janssen, L. P. B. M.; Español, Pep
2005-07-01
We present a thermodynamically consistent discrete fluid particle model for the simulation of a recently proposed set of hydrodynamic equations for a phase separating van der Waals fluid mixture [P. Español and C.A.P. Thieulot, J. Chem. Phys. 118, 9109 (2003)]. The discrete model is formulated by following a discretization procedure given by the smoothed particle hydrodynamics (SPH) method within the thermodynamically consistent general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) framework. Each fluid particle carries information on the mass, momentum, energy, and the mass fraction of the different components. The discrete model allows one to simulate nonisothermal dynamic evolution of phase separating fluids with surface tension effects while respecting the first and second laws of thermodynamics exactly.
Statistical mechanics of homogeneous partly pinned fluid systems.
Krakoviack, Vincent
2010-12-01
The homogeneous partly pinned fluid systems are simple models of a fluid confined in a disordered porous matrix obtained by arresting randomly chosen particles in a one-component bulk fluid or one of the two components of a binary mixture. In this paper, their configurational properties are investigated. It is shown that a peculiar complementarity exists between the mobile and immobile phases, which originates from the fact that the solid is prepared in presence of and in equilibrium with the adsorbed fluid. Simple identities follow, which connect different types of configurational averages, either relative to the fluid-matrix system or to the bulk fluid from which it is prepared. Crucial simplifications result for the computation of important structural quantities, both in computer simulations and in theoretical approaches. Finally, possible applications of the model in the field of dynamics in confinement or in strongly asymmetric mixtures are suggested.
Dehydration, hemodynamics and fluid volume optimization after induction of general anesthesia
Li, Yuhong; He, Rui; Ying, Xiaojiang; Hahn, Robert G
2014-01-01
OBJECTIVES: Fluid volume optimization guided by stroke volume measurements reduces complications of colorectal and high-risk surgeries. We studied whether dehydration or a strong hemodynamic response to general anesthesia increases the probability of fluid responsiveness before surgery begins. METHODS: Cardiac output, stroke volume, central venous pressure and arterial pressures were measured in 111 patients before general anesthesia (baseline), after induction and stepwise after three bolus infusions of 3 ml/kg of 6% hydroxyethyl starch 130/0.4 (n = 86) or Ringer's lactate (n = 25). A subgroup of 30 patients who received starch were preloaded with 500 ml of Ringer's lactate. Blood volume changes were estimated from the hemoglobin concentration and dehydration was estimated from evidence of renal water conservation in urine samples. RESULTS: Induction of anesthesia decreased the stroke volume to 62% of baseline (mean); administration of fluids restored this value to 84% (starch) and 68% (Ringer's). The optimized stroke volume index was clustered around 35-40 ml/m2/beat. Additional fluid boluses increased the stroke volume by ≥10% (a sign of fluid responsiveness) in patients with dehydration, as suggested by a low cardiac index and central venous pressure at baseline and by high urinary osmolality, creatinine concentration and specific gravity. Preloading and the hemodynamic response to induction did not correlate with fluid responsiveness. The blood volume expanded 2.3 (starch) and 1.8 (Ringer's) times over the infused volume. CONCLUSIONS: Fluid volume optimization did not induce a hyperkinetic state but ameliorated the decrease in stroke volume caused by anesthesia. Dehydration, but not the hemodynamic response to the induction, was correlated with fluid responsiveness. PMID:25627992
Space station integrated propulsion and fluid systems study
NASA Technical Reports Server (NTRS)
Bicknell, B.; Wilson, S.; Dennis, M.; Shepard, D.; Rossier, R.
1988-01-01
The program study was performed in two tasks: Task 1 addressed propulsion systems and Task 2 addressed all fluid systems associated with the Space Station elements, which also included propulsion and pressurant systems. Program results indicated a substantial reduction in life cycle costs through integrating the oxygen/hydrogen propulsion system with the environmental control and life support system, and through supplying nitrogen in a cryogenic gaseous supercritical or subcritical liquid state. A water sensitivity analysis showed that increasing the food water content would substantially increase the amount of water available for propulsion use and in all cases, the implementation of the BOSCH CO2 reduction process would reduce overall life cycle costs to the station and minimize risk. An investigation of fluid systems and associated requirements revealed a delicate balance between the individual propulsion and fluid systems across work packages and a strong interdependence between all other fluid systems.
Brake Fluid Compatibility Studies with Advanced Brake Systems
2016-01-16
brake fluid in a hydraulic power brake system revealed deposits only with the silicone brake fluid after 20,000- cycles of testing. These results are...revealed deposits formed only with the silicone brake fluid after 20,000- cycles of testing. The objective was accomplished by conducting static soak...testing to halt when testing MIL-PRF-46176. Deposits were not present in SAE J1703 testing for the same number of test cycles . The objective of this
System for Dispensing a Precise Amount of Fluid
Benett, William J.; Krulevitch, Peter A.; Visuri, Steven R.; Dzenitis, John M.; Ness, Kevin D.
2008-08-12
A dispensing system delivers a precise amount of fluid for biological or chemical processing and/or analysis. Dispensing means moves the fluid. The dispensing means is operated by a pneumatic force. Connection means delivers the fluid to the desired location. An actuator means provides the pneumatic force to the dispensing means. Valving means transmits the pneumatic force from the actuator means to the dispensing means.
Multidimensional Plasma Sheath Modeling Using The Three Fluid Plasma Model in General Geometries
NASA Astrophysics Data System (ADS)
Lilly, Robert; Shumlak, Uri
2012-10-01
There has been renewed interest in the use of plasma actuators for high speed flow control applications. In the plasma actuator, current is driven through the surrounding weakly ionized plasma to impart control moments on the hypersonic vehicle. This expanded general geometry study employs the three-fluid (electrons, ions,neutrals) plasma model as it allows the capture of electron inertial effects, as well as energy and momentum transfer between the charged and neutral species. Previous investigations have typically assumed an electrostatic electric field. This work includes the full electrodynamics in general geometries. Past work utilizing the research code WARPX (Washington Approximate Riemann Problem) employed cartesian grids. In this work, the problem is expanded to general geometries with the euler fluid equations employing Braginskii closure. In addition, WARPX general geometry grids are generated from Cubit or CAD files. Comparisons are made against AFRL magnetized plasma actuator experiments.
Inhomogeneous generalizations of Bianchi Type VIh universes with stiff perfect fluid and radiation
NASA Astrophysics Data System (ADS)
Roy, S. R.; Prasad, A.
1995-03-01
Families of inhomogeneous models filled with a stiff perfect fluid and radiation have been derived in which there is no flow of total momentum. The models are generalizations of those of Bianchi Type VIh and are discussed for some particular forms of the arbitrary functions appearing in them.
Inspection Time Correlates with General Speed of Processing but Not with Fluid Ability.
ERIC Educational Resources Information Center
Burns, Nicholas R.; Nettelbeck, Ted; Cooper, Christopher J.
1999-01-01
Administered marker tests for 5 of the constructs described in the Gf-Gc theory (fluid ability-crystallized ability) of cognitive abilities to 64 adults who also completed inspection time estimation. Results were consistent with the proposition that general intelligence depends exclusively or substantially on speed of processing. (SLD)
The energy-momentum tensor for a dissipative fluid in general relativity
NASA Astrophysics Data System (ADS)
Pimentel, Oscar M.; Lora-Clavijo, F. D.; González, Guillermo A.
2016-10-01
Considering the growing interest of the astrophysicist community in the study of dissipative fluids with the aim of getting a more realistic description of the universe, we present in this paper a physical analysis of the energy-momentum tensor of a viscous fluid with heat flux. We introduce the general form of this tensor and, using the approximation of small velocity gradients, we relate the stresses of the fluid with the viscosity coefficients, the shear tensor and the expansion factor. Exploiting these relations, we can write the stresses in terms of the extrinsic curvature of the normal surface to the 4-velocity vector of the fluid, and we can also establish a connection between the perfect fluid and the symmetries of the spacetime. On the other hand, we calculate the energy conditions for a dissipative fluid through contractions of the energy-momentum tensor with the 4-velocity vector of an arbitrary observer. This method is interesting because it allows us to compute the conditions in a reasonably easy way and without considering any approximation or restriction on the energy-momentum tensor.
Power systems utilizing the heat of produced formation fluid
Lambirth, Gene Richard [Houston, TX
2011-01-11
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method includes treating a hydrocarbon containing formation. The method may include providing heat to the formation; producing heated fluid from the formation; and generating electricity from at least a portion of the heated fluid using a Kalina cycle.
UAH/NASA Workshop on Fluids Experiment System
NASA Technical Reports Server (NTRS)
Hendricks, J. (Editor); Askins, B. (Editor)
1979-01-01
The Fluids Experiment System is being developed to fit into a Spacelab rack. Papers presented at this workshop describe a variety of fluid and chemical experiments that would be of great benefit to researchers of processes in a low gravity environment.
Fluid Power Systems Maintenance and Operation. Instructor's Guide.
ERIC Educational Resources Information Center
Paule, Bob A.
Written to complement the Fluid Power/Basic Hydraulic and Basic Pneumatics guides, this curriculum guide contains materials for a seven-unit course in fluid power systems maintenance and operation. Units, which consist of one to eight lessons, cover these topics: preventive maintenance, repair machine malfunctions, overhaul/recondition hydraulic…
Fluid Power Systems Maintenance and Operation. Instructor's Guide.
ERIC Educational Resources Information Center
Paule, Bob A.
Written to complement the Fluid Power/Basic Hydraulic and Basic Pneumatics guides, this curriculum guide contains materials for a seven-unit course in fluid power systems maintenance and operation. Units, which consist of one to eight lessons, cover these topics: preventive maintenance, repair machine malfunctions, overhaul/recondition hydraulic…
Methods and systems for integrating fluid dispensing technology with stereolithography
Medina, Francisco; Wicker, Ryan; Palmer, Jeremy A.; Davis, Don W.; Chavez, Bart D.; Gallegos, Phillip L.
2010-02-09
An integrated system and method of integrating fluid dispensing technologies (e.g., direct-write (DW)) with rapid prototyping (RP) technologies (e.g., stereolithography (SL)) without part registration comprising: an SL apparatus and a fluid dispensing apparatus further comprising a translation mechanism adapted to translate the fluid dispensing apparatus along the Z-, Y- and Z-axes. The fluid dispensing apparatus comprises: a pressurized fluid container; a valve mechanism adapted to control the flow of fluid from the pressurized fluid container; and a dispensing nozzle adapted to deposit the fluid in a desired location. To aid in calibration, the integrated system includes a laser sensor and a mechanical switch. The method further comprises building a second part layer on top of the fluid deposits and optionally accommodating multi-layered circuitry by incorporating a connector trace. Thus, the present invention is capable of efficiently building single and multi-material SL fabricated parts embedded with complex three-dimensional circuitry using DW.
Urinary Analysis of Fluid Retention in the General Population: A Cross-Sectional Study
Grankvist, Nina; Krizhanovskii, Camilla
2016-01-01
Objective Renal conservation (retention) of fluid might affect the outcome of hospital care and can be indicated by increased urinary concentrations of metabolic waste products. We obtained a reference material for further studies by exploring the prevalence of fluid retention in a healthy population. Methods Spot urine sampling was performed in 300 healthy hospital workers. A previously validated algorithm summarized the urine-specific gravity, osmolality, creatinine, and color to a fluid retention index (FRI), where 4.0 is the cut-off for fluid retention consistent with dehydration. In 50 of the volunteers, we also studied the relationships between FRI, plasma osmolality, and water-retaining hormones. Results The cut-off for fluid retention (FRI ≥ 4.0) was reached by 38% of the population. No correlation was found between the FRI and the time of the day of urine sample collection, and the FRI was only marginally correlated with the time period spent without fluid intake. Volunteers with fluid retention were younger, generally men, and more often had albuminuria (88% vs. 34%, P < 0.001). Plasma osmolality and plasma sodium were somewhat higher in those with a high FRI (mean 294.8 vs. 293.4 mosmol/kg and 140.3 vs. 139.9 mmol/l). Plasma vasopressin was consistently below the limit of detection, and the plasma cortisol, aldosterone, and renin concentrations were similar in subjects with a high or low FRI. The very highest FRI values (≥ 5.0, N = 61) were always accompanied by albuminuria. Conclusion Fluid retention consistent with moderate dehydration is common in healthy staff working in a Swedish hospital. PMID:27764121
A General Nonlinear Fluid Model for Reacting Plasma-Neutral Mixtures
Meier, E T; Shumlak, U
2012-04-06
A generalized, computationally tractable fluid model for capturing the effects of neutral particles in plasmas is derived. The model derivation begins with Boltzmann equations for singly charged ions, electrons, and a single neutral species. Electron-impact ionization, radiative recombination, and resonant charge exchange reactions are included. Moments of the reaction collision terms are detailed. Moments of the Boltzmann equations for electron, ion, and neutral species are combined to yield a two-component plasma-neutral fluid model. Separate density, momentum, and energy equations, each including reaction transfer terms, are produced for the plasma and neutral equations. The required closures for the plasma-neutral model are discussed.
On the Rayleigh-Stokes problem for generalized fractional Oldroyd-B fluids
NASA Astrophysics Data System (ADS)
Bazhlekova, E.; Bazhlekov, I.
2015-10-01
We consider the initial-boundary value problem for the velocity distribution of a unidirectional flow of a generalized Oldroyd-B fluid with fractional derivative model. It involves two different Riemann-Liouville fractional derivatives in time. The problem is studied in a general abstract setting, based on a reformulation as a Volterra integral equation with kernel represented in terms of Mittag-Leffler functions. Special attention is paid to the solution behavior in the scalar case, using some facts of the theory of the Bernstein functions. Numerical experiments are performed for different values of the parameters and plots are presented and discussed. The results are compared to those obtained in the limiting cases of generalized fractional Maxwell and second grade fluids.
Principles of Design of Fluid Transport Systems in Zoology
NASA Astrophysics Data System (ADS)
Labarbera, Michael
1990-08-01
Fluid transport systems mediate the transfer of materials both within an organism and between an organism and its environment. The architecture of fluid transport systems is determined by the small distances over which transfer processes are effective and by hydrodynamic and energetic constraints. All fluid transport systems within organisms exhibit one of two geometries, a simple tube interrupted by a planar transfer region or a branched network of vessels linking widely distributed transfer regions; each is determined by different morphogenetic processes. By exploiting the signal inherent in local shear stress on the vessel walls, animals have repeatedly evolved a complex branching hierarchy of vessels approximating a globally optimal system that minimizes the costs of the construction and maintenance of the fluid transport system.
NASA Astrophysics Data System (ADS)
Mirigian, Stephen; Schweizer, Kenneth S.
2014-05-01
We generalize the force-level nonlinear Langevin equation theory of single particle hopping to include collective effects associated with long range elastic distortion of the liquid. The activated alpha relaxation event is of a mixed spatial character, involving two distinct, but inter-related, local and collective barriers. There are no divergences at volume fractions below jamming or temperatures above zero Kelvin. The ideas are first developed and implemented analytically and numerically in the context of hard sphere fluids. In an intermediate volume fraction crossover regime, the local cage process is dominant in a manner consistent with an apparent Arrhenius behavior. The super-Arrhenius collective barrier is more strongly dependent on volume fraction, dominates the highly viscous regime, and is well described by a nonsingular law below jamming. The increase of the collective barrier is determined by the amplitude of thermal density fluctuations, dynamic shear modulus or transient localization length, and a growing microscopic jump length. Alpha relaxation time calculations are in good agreement with recent experiments and simulations on dense fluids and suspensions of hard spheres. Comparisons of the theory with elastic models and entropy crisis ideas are explored. The present work provides a foundation for constructing a quasi-universal, fit-parameter-free theory for relaxation in thermal molecular liquids over 14 orders of magnitude in time.
Mirigian, Stephen; Schweizer, Kenneth S
2014-05-21
We generalize the force-level nonlinear Langevin equation theory of single particle hopping to include collective effects associated with long range elastic distortion of the liquid. The activated alpha relaxation event is of a mixed spatial character, involving two distinct, but inter-related, local and collective barriers. There are no divergences at volume fractions below jamming or temperatures above zero Kelvin. The ideas are first developed and implemented analytically and numerically in the context of hard sphere fluids. In an intermediate volume fraction crossover regime, the local cage process is dominant in a manner consistent with an apparent Arrhenius behavior. The super-Arrhenius collective barrier is more strongly dependent on volume fraction, dominates the highly viscous regime, and is well described by a nonsingular law below jamming. The increase of the collective barrier is determined by the amplitude of thermal density fluctuations, dynamic shear modulus or transient localization length, and a growing microscopic jump length. Alpha relaxation time calculations are in good agreement with recent experiments and simulations on dense fluids and suspensions of hard spheres. Comparisons of the theory with elastic models and entropy crisis ideas are explored. The present work provides a foundation for constructing a quasi-universal, fit-parameter-free theory for relaxation in thermal molecular liquids over 14 orders of magnitude in time.
String-fluid transition in systems with aligned anisotropic interactions.
Brandt, P C; Ivlev, A V; Morfill, G E
2010-06-21
Systems with aligned anisotropic interactions between particles exhibit numerous phase transitions. A remarkable example of the fluid phase transition occurring in such systems is the formation of particle strings--the so-called "string" or "chain" fluids. We employ an approach based on the Ornstein-Zernike (OZ) equation, which allows us to calculate structural properties of fluids with aligned anisotropic interactions. We show that the string-fluid transition can be associated with the bifurcation of the "isotropic" correlation length into two distinct scales which characterize the longitudinal and transverse order in string fluids and, hence, may be used as a fingerprint of this transition. The comparison of the proposed OZ theory with the Monte Carlo simulations reveals fairly good agreement.
System and method measuring fluid flow in a conduit
Ortiz, M.G.; Kidd, T.G.
1999-05-18
A system is described for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements. 3 figs.
System and method measuring fluid flow in a conduit
Ortiz, Marcos German; Kidd, Terrel G.
1999-01-01
A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.
Standard recommended practice for viscosity system for industrial fluid lubricants
Not Available
1980-01-01
This system is applicable to all petroleum-base fluid lubricants and nonpetroleum materials which may be readily blended to produce fluid lubricants of a desired viscosity, that is, lubricants for bearings, gears, compressor cylinders, hydraulic fluids, etc. This system is applicable to fluids ranging in kinematic viscosity from 2 to 1500 cSt (mm/sup 2//s) as measured at a reference temperature of 40/sup 0/C. Expressed in approximate equivalents, the range would be 32 to 7000 SUS. In the category of petroleum-base fluids, this covers the range from kerosine to heavy cylinder oils. The purpose of this system is twofold: to establish a series of definite viscosity levels so that lubricant suppliers, lubricant users, ad equipment designers will have a uniform and common basis for designating, specifying, or selecting the viscosity of industrial fluid lubricants; and to eliminate unjustified intermediate viscosities, thereby reducing the total number of viscosity grades used in the lubrication of industrial equipment. This system provides a suitable number of viscosity grades, a uniform reference temperature, a uniform viscosity tolerance, and a nomenclature system for identifying the viscosity characteristics of each grade. It implies no evaluation of lubricant quality and applies to no property of a fluid other than its viscosity at the reference temperature. It does not apply to those lubricants used primarily with automotive equipment and identified with an SAE number.
NASA Astrophysics Data System (ADS)
Wu, Xiao-Gang; Yu, Wei-Lun; Cen, Hai-Peng; Wang, Yan-Qin; Guo, Yuan; Chen, Wei-Yi
2015-02-01
A hierarchical model is developed to predict the streaming potential (SP) in the canaliculi of a loaded osteon. Canaliculi are assumed to run straight across the osteon annular cylinder wall, while disregarding the effect of lacuna. SP is generalized by the canalicular fluid flow. Analytical solutions are obtained for the canalicular fluid velocity, pressure, and SP. Results demonstrate that SP amplitude (SPA) is proportional to the pressure difference, strain amplitude, frequency, and strain rate amplitude. However, the key loading factor governing SP is the strain rate, which is a representative loading parameter under the specific physiological state. Moreover, SPA is independent of canalicular length. This model links external loads to the canalicular fluid pressure, velocity, and SP, which can facilitate further understanding of the mechanotransduction and electromechanotransduction mechanisms of bones.
Lithium isotope traces magmatic fluid in a seafloor hydrothermal system
Yang, Dan; Hou, Zengqian; Zhao, Yue; Hou, Kejun; Yang, Zhiming; Tian, Shihong; Fu, Qiang
2015-01-01
Lithium isotopic compositions of fluid inclusions and hosted gangue quartz from a giant volcanogenic massive sulfide deposit in China provide robust evidence for inputting of magmatic fluids into a Triassic submarine hydrothermal system. The δ7Li results vary from +4.5‰ to +13.8‰ for fluid inclusions and from +6.7‰ to +21.0‰ for the hosted gangue quartz(9 gangue quartz samples containing primary fluid inclusions). These data confirm the temperature-dependent Li isotopic fractionation between hydrothermal quartz and fluid (i.e., Δδ7Liquartz-fluid = –8.9382 × (1000/T) + 22.22(R2 = 0.98; 175 °C–340 °C)), which suggests that the fluid inclusions are in equilibrium with their hosted quartz, thus allowing to determine the composition of the fluids by using δ7Liquartz data. Accordingly, we estimate that the ore-forming fluids have a δ7Li range from −0.7‰ to +18.4‰ at temperatures of 175–340 °C. This δ7Li range, together with Li–O modeling , suggest that magmatic fluid played a significant role in the ore formation. This study demonstrates that Li isotope can be effectively used to trace magmatic fluids in a seafloor hydrothermal system and has the potential to monitor fluid mixing and ore-forming process. PMID:26347051
Method for controlling clathrate hydrates in fluid systems
Sloan, Jr., Earle D.
1995-01-01
Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member and/or six member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone.
General Systems Theory and Instructional Design.
ERIC Educational Resources Information Center
Salisbury, David F.
The use of general systems theory in the field of instructional systems design (ISD) is explored in this paper. Drawing on work by Young, the writings of 12 representative ISD writers and researchers were surveyed to determine the use of 60 general systems theory concepts by the individual authors. The average number of concepts used by these…
Considerations of a nonhomogeneous fluid in the deep groundwater flow system at Hanford
Nelson, R.W.
1988-11-01
This report presents such a general theory capable of describing the flow on nonhomogeneous fluids in porous media, theory that is a composite from several disciplines including groundwater hydrology, soil physics, civil engineering, petroleum reservoir engineering, mechanics, and mathematical physics. The report discussed the conceptual basis for considering the flow of nonhomogeneous fluids. From this conceptual basis emphasis shifts to providing complete definitions and then appropriately describing those definitions in mathematical terms. Throughout the report, the necessary assumptions are stated in detail because the limitations of any theory are best assessed through careful scrutiny of the assumptions. From the mathematical definitions with appropriate functional dependence the results and constraints needed are derived to provide the general theory necessary to describe the flow of nonhomogeneous fluids in porous media. Particular attention is given to comparing the general theory with the classical theory of flow for a homogeneous fluid. Such comparison provides significant insight to the effects of variable fluid properties on subsurface flow systems. The comparisons also indicate the importance of carefully formulating subsurface flow models within the more general theoretical framework describing the flow of nonhomogeneous fluids in porous media. 29 refs.; 6 figs.; 1 tab.
Generalized asymptotic expansions for coupled wavenumbers in fluid-filled cylindrical shells
NASA Astrophysics Data System (ADS)
Kunte, M. V.; Sarkar, Abhijit; Sonti, Venkata R.
2010-12-01
Analytical expressions are found for the coupled wavenumbers in an infinite fluid-filled cylindrical shell using the asymptotic methods. These expressions are valid for any general circumferential order ( n). The shallow shell theory (which is more accurate at higher frequencies) is used to model the cylinder. Initially, the in vacuo shell is dealt with and asymptotic expressions are derived for the shell wavenumbers in the high- and the low-frequency regimes. Next, the fluid-filled shell is considered. Defining a relevant fluid-loading parameter μ, we find solutions for the limiting cases of small and large μ. Wherever relevant, a frequency scaling parameter along with some ingenuity is used to arrive at an elegant asymptotic expression. In all cases, Poisson's ratio ν is used as an expansion variable. The asymptotic results are compared with numerical solutions of the dispersion equation and the dispersion relation obtained by using the more general Donnell-Mushtari shell theory ( in vacuo and fluid-filled). A good match is obtained. Hence, the contribution of this work lies in the extension of the existing literature to include arbitrary circumferential orders ( n).
ERIC Educational Resources Information Center
Conway, Andrew R. A.; Cowan, Nelsin; Bunting, Michael F.; Therriault, David J.; Minkoff, Scott R. B.
2002-01-01
Studied the interrelationships among general fluid intelligence, short-term memory capacity, working memory capacity, and processing speed in 120 young adults and used structural equation modeling to determine the best predictor of general fluid intelligence. Results suggest that working memory capacity, but not short-term memory capacity or…
Systems, Methods and Apparatus for Determining Physical Properties of Fluids
NASA Technical Reports Server (NTRS)
Butas, John P. (Inventor); VanBuskirk, Paul D. (Inventor)
2007-01-01
In some embodiments, systems and methods and apparatus are provided through which the equation of state is used to control a process through analyses of one or more properties of a fluid through an interactive modeler that models the equation of state for the fluid in the process based on measured signals and for selectively enabling the modeling of control changes to the process. In some embodiments, a device generates an indication of machine health based on variations on the equation of state for a fluid in a machine. In some embodiments, one or more properties for the fluid from at least one unmeasured machine parameter in the interactive modeler are determined for the machine at various operating states. In some embodiments, a difference between an expected one or more properties of the fluid beyond a set point indicates the health of the machine
NASA Astrophysics Data System (ADS)
Zhao, Guangpu; Jian, Yongjun; Chang, Long; Buren, Mandula
2015-08-01
By using the method of separation of variables, an analytical solution for the magnetohydrodynamic (MHD) flow of the generalized Maxwell fluids under AC electric field through a two-dimensional rectangular micropump is reduced. By the numerical computation, the variations of velocity profiles with the electrical oscillating Reynolds number Re, the Hartmann number Ha, the dimensionless relaxation time De are studied graphically. Further, the comparison with available experimental data and relevant researches is presented.
Ice Detector and Deicing Fluid Effectiveness Monitoring System
NASA Technical Reports Server (NTRS)
Seegmiller, H. Lee B. (Inventor)
1996-01-01
An ice detector and deicing fluid effectiveness monitoring system for an aircraft is disclosed. The ice detection portion is particularly suited for use in flight to notify the flight crew of an accumulation of ice on an aircraft lifting and control surfaces, or helicopter rotors, whereas the deicing fluid effectiveness monitoring portion is particularly suited for use on the ground to notify the flight crew of the possible loss of the effectiveness of the deicing fluid. The ice detection portion comprises a temperature sensor and a parallel arrangement of electrodes whose coefficient of coupling is indicative of the formation of the ice, as well as the thickness of the formed ice. The fluid effectiveness monitoring portion comprises a temperature sensor and an ionic-conduction cell array that measures the conductivity of the deicing fluid which is indicative of its concentration and, thus, its freezing point. By measuring the temperature and having knowledge of the freezing point of the deicing fluid, the fluid effectiveness monitoring portion predicts when the deicing fluid may lose its effectiveness because its freezing point may correspond to the temperature of the ambient.
Space station integrated propulsion and fluid systems study
NASA Technical Reports Server (NTRS)
Rose, L.; Bergman, D.; Bicknell, B.; Wilson, S.
1987-01-01
This Databook addresses the integration of fluid systems of the Space Station program. It includes a catalog of components required for the Space Station elements fluid systems and information on potential hardware commonality. The components catalog is in four parts. The first part lists the components defined for all the fluid systems identified in EP 2.1, Space Station Program Fluid Systems Configuration Databook. The components are cross-referenced in three sections. Section 2.1 lists the components by the fluid system in which they are used. Section 2.2 lists the components by type. Section 2.3 lists by the type of fluid media handled by the component. The next part of the catalog provides a description of the individual component. This section (2.4) is made up of data retrieved from Martin Marietta Denver Aerospace component data base. The third part is an assessment of propulsion hardware technology requirements. Section 2.5 lists components identified during the study as requiring development prior to flight qualification. Finally, Section 2.6 presents the results of the evaluation of commonality between components. The specific requirements of each component have been reviewed and duplication eliminated.
Evaluation of high-pressure drilling fluid supply systems
McDonald, M.C.; Reichman, J.M.; Theimer, K.J.
1981-10-01
A study was undertaken to help determine the technical and economic feasibility of developing a high-pressure fluid-jet drilling system for the production of geothermal wells. Three system concepts were developed and analyzed in terms of costs, component availability, and required new-component development. These concepts included a single-conduit system that supplies the downhole cutting nozzles directly via surface-located high-pressure pumps; a single-conduit system utilizing low-pressure surface pumps to supply and operate a high-pressure downhole pump, which in turn supplies the cutting nozzles; and a dual-conduit system supplying surface-generated high-pressure fluid for cutting via one conduit and low-pressure scavenging fluid via the other. It is concluded that the single-conduit downhole pump system concept has the greatest potential for success in this application. 28 figures, 11 tables.
Heat-Transfer Fluids for Solar-Energy Systems
NASA Technical Reports Server (NTRS)
Parker, J. C.
1982-01-01
43-page report investigates noncorrosive heat-transport fluids compatible with both metallic and nonmetallic solar collectors and plumbing systems. Report includes tables and figures of X-ray inspections for corrosion and schematics of solar-heat transport systems and heat rejection systems.
Heat-Transfer Fluids for Solar-Energy Systems
NASA Technical Reports Server (NTRS)
Parker, J. C.
1982-01-01
43-page report investigates noncorrosive heat-transport fluids compatible with both metallic and nonmetallic solar collectors and plumbing systems. Report includes tables and figures of X-ray inspections for corrosion and schematics of solar-heat transport systems and heat rejection systems.
Optical fiber system for saline concentration measurement in drilling fluids
NASA Astrophysics Data System (ADS)
Caetano, L. A. C.; Fontoura, S. A. B.; Torres, P. I.; Valente, L. C. G.
2001-08-01
Laboratory setups are used to simulate real conditions in which drilling fluid and shales interact during an oil well drilling process. The present work describes the development of fiber optic systems capable of measuring the ionic diffusion in water-based fluids under high pressure. Two alternatives have been tested and calibrations are presented for both. The most successful one was tested in a real experiment in which the concentration of CaCl2 has been continuously measured during five days. Starting from pure water, the final ionic concentration measured by this method was compared with the result from chemical analysis of the fluid with very good agreement.
NASA Astrophysics Data System (ADS)
Tripathi, Dharmendra; Pandey, S. K.; Das, S.
2011-07-01
The present investigation deals with the peristaltic transport of generalized Burgers' fluid with fractional element model in a channel. The analysis is carried out under long wavelength and low Reynolds number assumptions. An efficient mathematical tool, namely, Adomian decomposition method, is used to obtain the analytical approximate solutions of the fractional differential equation. The channel is governed by the propagation of sinusoidal waves that help the walls contract and relax but not expand beyond the natural boundary. The expressions of axial velocity, volume flow rate and pressure gradient are obtained. The effects of the fractional parameters and the material constants are discussed on pressure difference and the friction force across one wavelength. The comparative studies for various models of viscoelastic fluids such as fractional generalized Burgers' model, generalized Burgers' model, fractional Burgers' model and Burgers' model are performed. It is inferred that the movement of viscoelastic chyme with generalized Burgers' model through the small intestine is favorable in comparison to the movement of viscoelastic chyme with fractional generalized Burgers' model.
Gestalt Therapy and General System Theory.
ERIC Educational Resources Information Center
Whitner, Phillip A.
While General Systems Theory (GST) concepts appear to be applicable in explaining some of the phenomena that occur in a Gestalt Therapy group, research is needed to support this assumption. General Systems Theory may not be a group theory per se. Instead, GST may be a theory about groups. A meta-theory exists where its value and usefulness is…
Gestalt Therapy and General System Theory.
ERIC Educational Resources Information Center
Whitner, Phillip A.
While General Systems Theory (GST) concepts appear to be applicable in explaining some of the phenomena that occur in a Gestalt Therapy group, research is needed to support this assumption. General Systems Theory may not be a group theory per se. Instead, GST may be a theory about groups. A meta-theory exists where its value and usefulness is…
Wireless Fluid-Level Measurement System Equips Boat Owners
NASA Technical Reports Server (NTRS)
2008-01-01
While developing a measurement acquisition system to be used to retrofit aging aircraft with vehicle health monitoring capabilities, Langley Research Center developed an innovative wireless fluid-level measurement system. The NASA technology was of interest to Tidewater Sensors LLC, of Newport News, Virginia, because of its many advantages over conventional fuel management systems, including its ability to provide an accurate measurement of volume while a boat is experiencing any rocking motion due to waves or people moving about on the boat. These advantages led the company to license this novel fluid-level measurement system from NASA for marine applications.
Towards a smart non-invasive fluid loss measurement system.
Suryadevara, N K; Mukhopadhyay, S C; Barrack, L
2015-04-01
In this article, a smart wireless sensing non-invasive system for estimating the amount of fluid loss, a person experiences while physical activity is presented. The system measures three external body parameters, Heart Rate, Galvanic Skin Response (GSR, or skin conductance), and Skin Temperature. These three parameters are entered into an empirically derived formula along with the user's body mass index, and estimation for the amount of fluid lost is determined. The core benefit of the developed system is the affluence usage in combining with smart home monitoring systems to care elderly people in ambient assisted living environments as well in automobiles to monitor the body parameters of a motorist.
Development and testing of the Automated Fluid Interface System
NASA Technical Reports Server (NTRS)
Milton, Martha E.; Tyler, Tony R.
1993-01-01
The Automated Fluid Interface System (AFIS) is an advanced development program aimed at becoming the standard interface for satellite servicing for years to come. The AFIS will be capable of transferring propellants, fluids, gasses, power, and cryogens from a tanker to an orbiting satellite. The AFIS program currently under consideration is a joint venture between the NASA/Marshall Space Flight Center and Moog, Inc. An engineering model has been built and is undergoing development testing to investigate the mechanism's abilities.
Systems and methods for separating particles and/or substances from a sample fluid
Mariella, Jr., Raymond P.; Dougherty, George M.; Dzenitis, John M.; Miles, Robin R.; Clague, David S.
2016-11-01
Systems and methods for separating particles and/or toxins from a sample fluid. A method according to one embodiment comprises simultaneously passing a sample fluid and a buffer fluid through a chamber such that a fluidic interface is formed between the sample fluid and the buffer fluid as the fluids pass through the chamber, the sample fluid having particles of interest therein; applying a force to the fluids for urging the particles of interest to pass through the interface into the buffer fluid; and substantially separating the buffer fluid from the sample fluid.
Generalized Environment for Modeling Systems
2012-02-07
-04) created at INL to work inside SharePoint. The GUI tool links slider bars and drop downs to specific inputs and output of the ModelCenter model that is executable from SharePoint. The modeler also creates in SAS, dashboards, graphs and tables that are exposed by links and SAS and ModelCenter Web Parts into the SharePoint system. The user can then log into SharePoint, move slider bars and select drop down lists to configure the model parameters, click to run the model, and then view the output results that are based on their particular input choices. The main point is that GEMS eliminates the need for a programmer to connect and create the web artifacts necessary to implement and deliver an executable model or decision aid to customers.
NASA Astrophysics Data System (ADS)
Taetz, Stephan; John, Timm; Bröcker, Michael; Spandler, Carl; Stracke, Andreas
2017-04-01
A better understanding of the subduction zone fluid cycle and its mechanical feedback requires in-depth knowledge of how fluids flow within and out of the descending slabs. In order to develop reliable quantitative models of fluid flow, the general relationship between dehydration reactions, fluid pathway formation, and the dimensions and timescales of distinct fluid flow events have to be explored. The high-pressure/low-temperature metamorphic rocks of the Pouébo Eclogite Mélange in New Caledonia provide an excellent opportunity to study the fluid flux in a subduction zone setting. Fluid dynamics are recorded by high-pressure veins that cross-cut eclogite facies mélange blocks from this occurrence. Two types of garnet-quartz-phengite veins can be distinguished. These veins record both synmetamorphic internal fluid release by mineral breakdown reactions (type I veins) as well as infiltration of an external fluid (type II veins) and the associated formation of a reaction halo. The overall dehydration, fluid accumulation and fluid migration documented by the type I veins occurred on a timescale of 10^5-106 years that is mainly given by the geometry and convergence rate of the subduction system. In order to quantify the timeframe of fluid-rock interaction between the external fluid and the wall-rock, we have applied Li-isotope chronology. A continuous profile was sampled perpendicular to a type II vein including material from the vein, the reaction selvage and the immediate host rock. Additional drill cores were taken from parts of the outcrop that most likely remained completely unaffected by fluid infiltration-induced alteration. Different Li concentrations in the internal and external fluid reservoirs produced a distinct diffusion profile of decreasing Li concentration and increasing δ7Li as the reaction front propagated into the host-rock. Li-chronometric constraints indicate that fluid-rock interaction related to the formation of the type II veins and had
Fluid-filled blood pressure measurement systems.
Li, J K; van Brummelen, A G; Noordergraaf, A
1976-05-01
The performance of catheter-manometer systems for the measurement of pulsatile pressure has been evaluated by both experimental techniques and theoretical considerations. The former approach has shown, on occasion, multiple maxima in the amplitude response. The latter has been approached in a variety of ways, ranging from extreme lumping to application of transmission line theory while employing different configurations in the system's representation. Multiple maxima have also been seen, The present paper identifies the sources of the differences found and compares the relative merits of various theoretical approaches. It introduces the compliance of the system as a figure of merit and provides a simple first-order approximation formula for evaluation of the quality of a system. Damping and impedance matching to improve the system's frequency response were studied. It was found that they were not needed in a very stiff or a very compliant system, nor should one worry about the representation of such a system.
Fluid dynamics of double diffusive systems
Koseff, J.R.
1990-04-03
The major accomplishments of our initial research period (August 1, 1987, to March 1, 1990) are as follows; we completed construction of the experimental facility. Originally, it had been our intent to modify an existing facility in our laboratory. When this became impractical we constructed a new stand-alone facility. Modified an existing three-dimensional numerical code developed in our laboratory, SEAFLOS1, by incorporating a salinity transport equation. Developed experimental and analytical techniques, and performed both physical and numerical experiments for a wide range of initial and boundary conditions. Focused our overall research effort to answer the following four questions pertaining to the formation of convective intrusions due to lateral temperature gradients established by sidewall heating. (1) What is the internal structure of the convective intrusions as a function of the initial stratification and sidewall heating rates (2) What is the correct scaling for the initial vertical dimension of the intrusions (3) How does the merging process vary as a function of initial stratification and sidewall heating rate (4) Is the sidewall heating critical for continued propagation of the intrusions, or is it merely a trigger which releases the internal instability in the fluid
Hansen, J S; Daivis, Peter J; Dyre, Jeppe C; Todd, B D; Bruus, Henrik
2013-01-21
The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies. To account for the correlations at these scales, we derive a phenomenological expression for the frequency dependent rotational viscosity and wavevector and frequency dependent longitudinal spin viscosity. From this we observe a significant coupling enhancement between the molecular angular velocity and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points.
Towards a generalized computational fluid dynamics technique for all Mach numbers
NASA Technical Reports Server (NTRS)
Walters, R. W.; Slack, D. C.; Godfrey, A. G.
1993-01-01
flux formulae. In addition, we improved the convergence rate of the implicit time integration schemes in GASP through the use of inner iteration strategies and the use of the GMRES (General Minimized Resisual) which belongs to the class of algorithms referred to as Krylov subspace iteration. Finally, we significantly improved the practical utility of GASP through the addition of mesh sequencing, a technique in which computations begin on a coarse grid and get interpolated onto successively finer grids. The fluid dynamic problems of interest to the propulsion community involve complex flow physics spanning different velocity regimes and possibly involving chemical reactions. This class of problems results in widely disparate time scales causing numerical stiffness. Even in the absence of chemical reactions, eigenvalue stiffness manifests itself at transonic and very low speed flows which can be quantified by the large condition number of the system and evidenced by slow convergence rates. This results in the need for thorough numerical analysis and subsequent implementation of sophisticated numerical techniques for these difficult yet practical problems. As a result of this work, we have been able to extend the range of applicability of compressible codes to very low speed inviscid flows (M = .001) and reacting flows.
NASA Technical Reports Server (NTRS)
Farassat, Fereidoun; Myers, Michael K.
2011-01-01
This paper is the first part of a three part tutorial on multidimensional generalized functions (GFs) and their applications in aeroacoustics and fluid mechanics. The subject is highly fascinating and essential in many areas of science and, in particular, wave propagation problems. In this tutorial, we strive to present rigorously and clearly the basic concepts and the tools that are needed to use GFs in applications effectively and with ease. We give many examples to help the readers in understanding the mathematical ideas presented here. The first part of the tutorial is on the basic concepts of GFs. Here we define GFs, their properties and some common operations on them. We define the important concept of generalized differentiation and then give some interesting elementary and advanced examples on Green's functions and wave propagation problems. Here, the analytic power of GFs in applications is demonstrated with ease and elegance. Part 2 of this tutorial is on the diverse applications of generalized derivatives (GDs). Part 3 is on generalized Fourier transformations and some more advanced topics. One goal of writing this tutorial is to convince readers that, because of their powerful operational properties, GFs are absolutely essential and useful in engineering and physics, particularly in aeroacoustics and fluid mechanics.
Analyses of ACPL thermal/fluid conditioning system
NASA Technical Reports Server (NTRS)
Stephen, L. A.; Usher, L. H.
1976-01-01
Results of engineering analyses are reported. Initial computations were made using a modified control transfer function where the systems performance was characterized parametrically using an analytical model. The analytical model was revised to represent the latest expansion chamber fluid manifold design, and systems performance predictions were made. Parameters which were independently varied in these computations are listed. Systems predictions which were used to characterize performance are primarily transient computer plots comparing the deviation between average chamber temperature and the chamber temperature requirement. Additional computer plots were prepared. Results of parametric computations with the latest fluid manifold design are included.
Geological controls on supercritical fluid resources in volcanic geothermal systems
NASA Astrophysics Data System (ADS)
Scott, S. W.; Driesner, T.; Weis, P.
2014-12-01
Large-scale fluid convection in conventional volcanic geothermal systems is driven by the hydrothermal cooling of shallow intrusions. Recently, there has been increased interest in tapping supercritical fluid resources in volcanic geothermal systems, since such fluid reservoirs could provide a roughly order-of-magnitude greater potential for electricity production than conventional geothermal wells drilled to temperatures of 250-300 °C. The potential of supercritical geothermal reservoirs was demonstrated in 2010, when the Iceland Deep Drilling Project (IDDP) drilled into liquid magma at 2 km depth and encountered an overlying permeable, high-temperature (~450 °C) fluid reservoir capable of more than ~30 MWe of electricity production. However, a conceptual model describing the main factors governing the extent and structure of target reservoirs has remained elusive. Here, we present the first systematic investigation of the role of rock permeability, the brittle-ductile transition temperature, and the depth of magma chamber emplacement on the development of supercritical fluid reservoirs. We use the numerical modeling code CSMP++ to model two-phase flow of compressible water around an initially elliptical, 900 °C intrusion. Our models indicate that potentially exploitable supercritical fluid resources are an integral part of many magma-driven geothermal systems. Hotter and more extensive reservoirs are promoted by a brittle-ductile transition temperature higher than ~400 °C, an intrusion depth less than 3 km, and a host rock permeability of 10-14 to 10-15 m2. The systematic dependence of the size, location and hydrologic behavior of supercritical reservoirs on these factors aids the development of exploration models for different volcanic settings. In addition, by serving as the main agents of heat transfer at the interface of an intrusion and the overlying hydrothermal system, supercritical fluid reservoirs play a decisive role in determining the overall
General Relativity Without General Relativity: Self-Gravitating Systems and Effective Geometries
NASA Astrophysics Data System (ADS)
Bini, Donato; Cherubini, Christian; Filippi, Simonetta; Geralico, Andrea
Perturbations of Newtonian self-gravitating barotropic perfect fluid systems can be studied via an extension of the "effective geometry" formalism. The case of polytropic spherical stars described by the Lane-Emden equation has been studied in the past in the known cases of existing explicit solutions relevant for both stellar and galactic dynamics. Applications of the formalism in the case of rotating configurations found via William's "matching method" and possible generalizations are here discussed. The present formulation represents another natural scenario, in addition with the usual one of quantum condensates in laboratories, in which the acoustic analogy has physical relevance.
Generalized multiscale finite element method for non-Newtonian fluid flow in perforated domain
NASA Astrophysics Data System (ADS)
Chung, E. T.; Iliev, O.; Vasilyeva, M. V.
2016-10-01
In this work, we consider a non-Newtonian fluid flow in perforated domains. Fluid flow in perforated domains have a multiscale nature and solution techniques for such problems require high resolution. In particular, the discretization needs to honor the irregular boundaries of perforations. This gives rise to a fine-scale problems with many degrees of freedom which can be very expensive to solve. In this work, we develop a multiscale approach that attempt to solve such problems on a coarse grid by constructing multiscale basis functions. We follow Generalized Multiscale Finite Element Method (GMsFEM) [1, 2] and develop a multiscale procedure where we identify multiscale basis functions in each coarse block using snapshot space and local spectral problems [3, 4]. We show that with a few basis functions in each coarse block, one can accurately approximate the solution, where each coarse block can contain many small inclusions.
Exact relativistic expressions for wave refraction in a generally moving fluid.
Cavalleri, G; Tonni, E; Barbero, F
2013-04-01
The law for the refraction of a wave when the two fluids and the interface are moving with relativistic velocities is given in an exact form, at the same time correcting a first order error in a previous paper [Cavalleri and Tonni, Phys. Rev. E 57, 3478 (1998)]. The treatment is then extended to a generally moving fluid with variable refractive index, ready to be applied to the refraction of acoustic, electromagnetic, or magnetohydrodynamic waves in the atmosphere of rapidly rotating stars. In the particular case of a gas cloud receding because of the universe expansion, our result can be applied to predict observable micro- and mesolensings. The first order approximation of our exact result for the deviation due to refraction of the light coming from a further quasar has a relativistic dependence equal to the one obtained by Einsteins' linearized theory of gravitation.
A Generalized Multi-Phase Framework for Modeling Cavitation in Cryogenic Fluids
NASA Technical Reports Server (NTRS)
Dorney, Dan (Technical Monitor); Hosangadi, Ashvin; Ahuja, Vineet
2003-01-01
A generalized multi-phase formulation for cavitation in fluids operating at temperatures elevated relative to their critical temperatures is presented. The thermal effects and the accompanying property variations due to phase change are modeled rigorously. Thermal equilibrium is assumed and fluid thermodynamic properties are specified along the saturation line using the NIST-12 databank. Fundamental changes in the physical characteristics of the cavity when thermal effects become pronounced are identified; the cavity becomes more porous, the interface less distinct, and has increased entrainment when temperature variations are present. Quantitative estimates of temperature and pressure depressions in both liquid nitrogen and liquid hydrogen were computed and compared with experimental data of Hord for hydrofoils. Excellent estimates of the leading edge temperature and pressure depression were obtained while the comparisons in the cavity closure region were reasonable. Liquid nitrogen cavities were consistently found to be in thermal equilibrium while liquid hydrogen cavities exhibited small, but distinct, non-equilibrium effects.
ISS-CREAM Thermal and Fluid System Design and Analysis
NASA Technical Reports Server (NTRS)
Thorpe, Rosemary S.
2015-01-01
Thermal and Fluids Analysis Workshop (TFAWS), Silver Spring MD NCTS 21070-15. The ISS-CREAM (Cosmic Ray Energetics And Mass for the International Space Station) payload is being developed by an international team and will provide significant cosmic ray characterization over a long time frame. Cold fluid provided by the ISS Exposed Facility (EF) is the primary means of cooling for 5 science instruments and over 7 electronics boxes. Thermal fluid integrated design and analysis was performed for CREAM using a Thermal Desktop model. This presentation will provide some specific design and modeling examples from the fluid cooling system, complex SCD (Silicon Charge Detector) and calorimeter hardware, and integrated payload and ISS level modeling. Features of Thermal Desktop such as CAD simplification, meshing of complex hardware, External References (Xrefs), and FloCAD modeling will be discussed.
Determination of gas volume trapped in a closed fluid system
NASA Technical Reports Server (NTRS)
Hunter, W. F.; Jolley, J. E.
1971-01-01
Technique involves extracting known volume of fluid and measuring system before and after extraction, volume of entrapped gas is then computed. Formula derived from ideal gas laws is basis of this method. Technique is applicable to thermodynamic cycles and hydraulic systems.
Fluid Servicing System (FSS) in the US Lab
2009-11-05
ISS021-E-021416 (5 Nov. 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 21 flight engineer, uses the Fluid Servicing System (FSS) to refill Internal Thermal Control System (ITCS) loops with fresh coolant in the Destiny laboratory of the International Space Station.
Fluid Delivery System For Capillary Electrophoretic Applications.
Li, Qingbo; Liu, Changsheng; Kane, Thomas E.; Kernan, John R.; Sonnenschein, Bernard; Sharer, Michael V.
2002-04-23
An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.
Generalized Einstein relation for the mutual diffusion coefficient of a binary fluid mixture
NASA Astrophysics Data System (ADS)
Felderhof, B. U.
2017-08-01
The method employed by Einstein to derive his famous relation between the diffusion coefficient and the friction coefficient of a Brownian particle is used to derive a generalized Einstein relation for the mutual diffusion coefficient of a binary fluid mixture. The expression is compared with the one derived by de Groot and Mazur from irreversible thermodynamics and later by Batchelor for a Brownian suspension. A different result was derived by several other workers in irreversible thermodynamics. For a nearly incompressible solution, the generalized Einstein relation agrees with the expression derived by de Groot and Mazur. The two expressions also agree to first order in solute density. For a Brownian suspension, the result derived from the generalized Smoluchowski equation agrees with both expressions.
Generalized Einstein relation for the mutual diffusion coefficient of a binary fluid mixture.
Felderhof, B U
2017-08-21
The method employed by Einstein to derive his famous relation between the diffusion coefficient and the friction coefficient of a Brownian particle is used to derive a generalized Einstein relation for the mutual diffusion coefficient of a binary fluid mixture. The expression is compared with the one derived by de Groot and Mazur from irreversible thermodynamics and later by Batchelor for a Brownian suspension. A different result was derived by several other workers in irreversible thermodynamics. For a nearly incompressible solution, the generalized Einstein relation agrees with the expression derived by de Groot and Mazur. The two expressions also agree to first order in solute density. For a Brownian suspension, the result derived from the generalized Smoluchowski equation agrees with both expressions.
NASA Astrophysics Data System (ADS)
Kang, Jianhong; Xu, Mingyu
2009-04-01
The exact solutions are obtained for unsteady unidirectional flows of a generalized second-order fluid through a rectangular conduit. The fractional calculus in the constitutive relationship of a non-Newtonian fluid is introduced. We construct the solutions by means of Fourier transform and the discrete Laplace transform of the sequential derivatives and the double finite Fourier transform. The solutions for Newtonian fluid between two infinite parallel plates appear as limiting cases of our solutions.
Preparation of drug delivery systems using supercritical fluid technology.
Kompella, U B; Koushik, K
2001-01-01
Small changes in temperature and pressure near the critical region induce dramatic changes in the density and solubility of supercritical fluids, thereby facilitating the use of environmentally benign agents such as CO2 for their solvent and antisolvent properties in processing a wide variety of materials. While supercritical fluid technologies have been in commercial use in the food and chromatography industries for several years, only recently has this technology made inroads in the formulation of drug delivery systems. This review summarizes some of the recent applications of supercritical fluid technology in the preparation of drug delivery systems. Drugs containing polymeric particles, plain drug particles, solute-containing liposomes, and inclusion complexes of drug and carrier have been formulated using this technology. Also, polymer separation using this technology is enabling the selection of a pure fraction of a polymer, thereby allowing a more precise control of drug release from polymeric delivery systems.
Generalized Predictive and Neural Generalized Predictive Control of Aerospace Systems
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.
2000-01-01
The research work presented in this thesis addresses the problem of robust control of uncertain linear and nonlinear systems using Neural network-based Generalized Predictive Control (NGPC) methodology. A brief overview of predictive control and its comparison with Linear Quadratic (LQ) control is given to emphasize advantages and drawbacks of predictive control methods. It is shown that the Generalized Predictive Control (GPC) methodology overcomes the drawbacks associated with traditional LQ control as well as conventional predictive control methods. It is shown that in spite of the model-based nature of GPC it has good robustness properties being special case of receding horizon control. The conditions for choosing tuning parameters for GPC to ensure closed-loop stability are derived. A neural network-based GPC architecture is proposed for the control of linear and nonlinear uncertain systems. A methodology to account for parametric uncertainty in the system is proposed using on-line training capability of multi-layer neural network. Several simulation examples and results from real-time experiments are given to demonstrate the effectiveness of the proposed methodology.
Immiscible fluid: Heat of fusion heat storage system
NASA Technical Reports Server (NTRS)
Edie, D. D.; Melsheimer, S. S.; Mullins, J. C.
1980-01-01
Both heat and mass transfer in direct contact aqueous crystallizing systems were studied as part of a program desig- ned to evaluate the feasibility of direct contact heat transfer in phase change storage using aqueous salt system. Major research areas, discussed include (1) crystal growth velocity study on selected salts; (2) selection of salt solutions; (3) selection of immiscible fluids; (4) studies of heat transfer and system geometry; and (5) system demonstration.
Diagram of Liquid Rocket Systems General Arrangement
1964-05-21
S64-05966 (1964) --- Diagram shows the general arrangement of the liquid rocket systems on the Gemini spacecraft are shown. The locations of the 25-pound, 85-pound and 100-pound thrusters of the orbital attitude and maneuver system and the 25-pound thrusters of the re-entry control system are shown.
Systems and methods for multi-fluid geothermal energy systems
Buscheck, Thomas A.
2017-09-19
A method for extracting geothermal energy from a geothermal reservoir formation. A production well is used to extract brine from the reservoir formation. At least one of nitrogen (N.sub.2) and carbon dioxide (CO.sub.2) may be used to form a supplemental working fluid which may be injected into a supplemental working fluid injection well. The supplemental working fluid may be used to augment a pressure of the reservoir formation, to thus drive a flow of the brine out from the reservoir formation.
LHC II system sensitivity to magnetic fluids
NASA Astrophysics Data System (ADS)
Cotae, Vlad; Creanga, Ioan
2005-03-01
Experiments have been designed to reveal the influences of ferrofluid treatment and static magnetic field exposure on the photosynthetic system II, where the light harvesting complex (LHC II) controls the ratio chlorophyll a/ chlorophyll b (revealing, indirectly, the photosynthesis rate). Spectrophotometric measurement of chlorophyll content revealed different influences for relatively low ferrofluid concentrations (10-30 μl/l) in comparison to higher concentrations (70-100 μl/l). The overlapped effect of the static magnetic field shaped better the stimulatory ferrofluid action on LHC II system in young poppy plantlets.
The fluid systems for the SLD Cherenkov ring imaging detector
Abe, K.; Hasegawa, K.; Hasegawa, Y.; Iwasaki, Y.; Suekane, F.; Yuta, H.; Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; McCulloch, M.; McShurley, D.; Mueller, G.; Muller, D.; Nagamine, T.; Pavel, T.J.; Peterson, H.; Ratcliff, B.; Reif, R.; Rensing, P.; Schultz, D.; Shapiro, S.; Shaw, H.; Simopoulos, C.; Solodov, E.; Toge, N.; Vavra, J.; Watt, R.; Weber, T.; Williams, S.H.; Baird, K.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Word, G.; Bean, A.; Caldwell, D.O.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Yellin, S.; Ben-David, R.; Manly, S.; Snyder, J.; Turk, J.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Schneider, M.; Williams, D.A.; Coller, J.; Shank, J.T.; Whitaker, J.S.; d`Oliveira, A.; Johnson, R.A.; Martinez, J.; Nussbaum, M.; Santha, A.K.S.; Sokoloff, M.D.; Stockdale, I.; Wilson, R.J.
1992-10-01
We describe the design and operation of the fluid delivery, monitor and control systems for the SLD barrel Cherenkov Ring Imaging Detector (CRID). The systems deliver drift gas (C{sub 2}H{sub 6} + TMAE), radiator gas (C{sub 5}F{sub 12} + N{sub 2}) and radiator liquid (C{sub 6}F{sub 14}). Measured critical quantities such as electron lifetime in the drift gas and ultra-violet (UV) transparencies of the radiator fluids, together with the operational experience, are also reported.
Bianchi type-II universe with wet dark fluid in general theory of relativity
NASA Astrophysics Data System (ADS)
Mahanta, Chandra Rekha; Sheikh, Azizur Rahman
2017-09-01
In this paper, dark energy models of the universe filled with wet dark fluid are constructed in the frame work of LRS Bianchi type-II space-time in General Theory of Relativity. A new equation of state modeled on the equation of state p = γ ( ρ - ρ_{*} ), which can describe liquid including water, is used. The exact solutions of Einstein's field equations are obtained in quadrature form and the models corresponding to the cases γ = 0 and γ = 1 are discussed in details.
Backflushing system rapidly cleans fluid filters
NASA Technical Reports Server (NTRS)
Descamp, V. A.; Boex, M. W.; Hussey, M. W.; Larson, T. P.
1973-01-01
Self contained unit can backflush filter elements in fraction of the time expended by presently used equipment. This innovation may be of interest to manufacturers of hydraulic and pneumatic systems as well as to chemical, food, processing, and filter manufacturing industries.
Breadboard development of a fluid infusion system
NASA Technical Reports Server (NTRS)
Thompson, R. W.
1974-01-01
A functional breadboard of a zero gravity Intravenous Infusion System (IVI) is presented. Major components described are: (1) infusate pack pressurizers; (2) pump module; (3) infusion set; and (4) electronic control package. The IVI breadboard was designed to demonstrate the feasibility of using the parallel solenoid pump and spring powered infusate source pressurizers for the emergency infusion of various liquids in a zero gravity environment. The IVI was tested for flow rate and sensitivity to back pressure at the needle. Results are presented.
Atabay, Keramettin
1979-01-01
The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.
Zielinski, Edward A.; Comparato, Joseph R.
1979-01-01
The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.
Self-gravitating fluid systems and galactic dark matter
NASA Astrophysics Data System (ADS)
Banik, Uddipan; Dey, Dipanjan; Bhattacharya, Kaushik; Sarkar, Tapobrata
2017-09-01
We study gravitational collapse with anisotropic pressures, whose end stage can mimic space-times that are seeded by galactic dark matter. To this end, we identify a class of space-times (with conical defects) that can arise out of such a collapse process, and admit stable circular orbits at all radial distances. These have a naked singularity at the origin. An example of such a space-time is seen to be the Bertrand space-time discovered by Perlick, that admits closed, stable orbits at all radii. Using relativistic two-fluid models, we show that our galactic space-times might indicate exotic matter, i.e one of the component fluids may have negative pressure for a certain asymptotic fall off of the associated mass density, in the Newtonian limit. We complement this analysis by studying some simple examples of Newtonian two-fluid systems, and compare this with the Newtonian limit of the relativistic systems considered.
Method for controlling clathrate hydrates in fluid systems
Sloan, E.D. Jr.
1995-07-11
Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.
Method for controlling clathrate hydrates in fluid systems
Sloan, Jr., Earle D.
1995-01-01
Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.
The function and structure of the cerebrospinal fluid outflow system
2010-01-01
This review traces the development of our understanding of the anatomy and physiological properties of the two systems responsible for the drainage of cerebrospinal fluid (CSF) into the systemic circulation. The roles of the cranial and spinal arachnoid villi (AV) and the lymphatic outflow systems are evaluated as to the dominance of one over the other in various species and degree of animal maturation. The functional capabilities of the total CSF drainage system are presented, with evidence that the duality of the system is supported by the changes in fluid outflow dynamics in human and sub-human primates in hydrocephalus. The review also reconciles the relative importance and alterations of each of the outflow systems in a variety of clinical pathological conditions. PMID:20565964
NASA Technical Reports Server (NTRS)
Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali
2016-01-01
This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.
Numerical Modeling of an Integrated Vehicle Fluids System Loop for Pressurizing a Cryogenic Tank
NASA Technical Reports Server (NTRS)
LeClair, A. C.; Hedayat, A.; Majumdar, A. K.
2017-01-01
This paper presents a numerical model of the pressurization loop of the Integrated Vehicle Fluids (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance to reduce system weight and enhance reliability, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) conducted tests to verify the functioning of the IVF system using a flight-like tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to support the test program. This paper presents the simulation of three different test series, comparison of numerical prediction and test data and a novel method of presenting data in a dimensionless form. The paper also presents a methodology of implementing a compressor map in a system level code.
TOUGH2: A general-purpose numerical simulator for multiphase fluid and heat flow
Pruess, K.
1991-05-01
TOUGH2 is a numerical simulation program for nonisothermal flows of multicomponent, multiphase fluids in porous and fractured media. The chief applications for which TOUGH2 is designed are in geothermal reservoir engineering, nuclear waste disposal, and unsaturated zone hydrology. A successor to the TOUGH program, TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures, facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. This report includes a detailed description of governing equations, program architecture, and user features. Enhancements in data inputs relative to TOUGH are described, and a number of sample problems are given to illustrate code applications. 46 refs., 29 figs., 12 tabs.
Generalized fictitious methods for fluid-structure interactions: Analysis and simulations
NASA Astrophysics Data System (ADS)
Yu, Yue; Baek, Hyoungsu; Karniadakis, George Em
2013-07-01
We present a new fictitious pressure method for fluid-structure interaction (FSI) problems in incompressible flow by generalizing the fictitious mass and damping methods we published previously in [1]. The fictitious pressure method involves modification of the fluid solver whereas the fictitious mass and damping methods modify the structure solver. We analyze all fictitious methods for simplified problems and obtain explicit expressions for the optimal reduction factor (convergence rate index) at the FSI interface [2]. This analysis also demonstrates an apparent similarity of fictitious methods to the FSI approach based on Robin boundary conditions, which have been found to be very effective in FSI problems. We implement all methods, including the semi-implicit Robin based coupling method, in the context of spectral element discretization, which is more sensitive to temporal instabilities than low-order methods. However, the methods we present here are simple and general, and hence applicable to FSI based on any other spatial discretization. In numerical tests, we verify the selection of optimal values for the fictitious parameters for simplified problems and for vortex-induced vibrations (VIV) even at zero mass ratio ("for-ever-resonance"). We also develop an empirical a posteriori analysis for complex geometries and apply it to 3D patient-specific flexible brain arteries with aneurysms for very large deformations. We demonstrate that the fictitious pressure method enhances stability and convergence, and is comparable or better in most cases to the Robin approach or the other fictitious methods.
Building a generalized distributed system model
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
1991-01-01
A number of topics related to building a generalized distributed system model are discussed. The effects of distributed database modeling on evaluation of transaction rollbacks, the measurement of effects of distributed database models on transaction availability measures, and a performance analysis of static locking in replicated distributed database systems are covered.
GPLAN: A Generalized Data Base Planning System.
ERIC Educational Resources Information Center
Nunamaker, J. F., Jr.; And Others
It is recognized that there is a major gap between the promises of large data bases and optimization and simulation models and their actual ability to solve real world problems. This document describes a Generalized Data Base Planning System (GPLAN), currently being developed at Purdue University, that is proposed as a system to bridge this gap. A…
46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Requirements for miscellaneous fluid power and control...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and...
46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2010-10-01 2010-10-01 false Requirements for miscellaneous fluid power and...
46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2011-10-01 2011-10-01 false Requirements for miscellaneous fluid power and...
46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Requirements for miscellaneous fluid power and control...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control...
46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Requirements for miscellaneous fluid power and control...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control...
System proportions fluid-flow in response to demand signals
NASA Technical Reports Server (NTRS)
1966-01-01
Control system provides proportioned fluid flow rates in response to demand signals. It compares a digital signal, representing a flow demand, with a reference signal to yield a control voltage to one or more solenoid valves connected to orifices of a predetermined size.
Cellular Biotechnology Operations Support System Fluid Dynamics Investigation
NASA Technical Reports Server (NTRS)
2003-01-01
Aboard the International Space Station (ISS), the Tissue Culture Medium (TCM) is the bioreactor vessel in which cell cultures are grown. With its two syringe ports, it is much like a bag used to administer intravenous fluid, except it allows gas exchange needed for life. The TCM contains cell culture medium, and when frozen cells are flown to the ISS, they are thawed and introduced to the TCM through the syringe ports. In the Cellular Biotechnology Operations Support System-Fluid Dynamics Investigation (CBOSS-FDI) experiment, several mixing procedures are being assessed to determine which method achieves the most uniform mixing of growing cells and culture medium.
Cellular Biotechnology Operations Support System Fluid Dynamics Investigation
NASA Technical Reports Server (NTRS)
2003-01-01
Aboard the International Space Station (ISS), the Tissue Culture Medium (TCM) is the bioreactor vessel in which cell cultures are grown. With its two syringe ports, it is much like a bag used to administer intravenous fluid, except it allows gas exchange needed for life. The TCM contains cell culture medium, and when frozen cells are flown to the ISS, they are thawed and introduced to the TCM through the syringe ports. In the Cellular Biotechnology Operations Support System-Fluid Dynamics Investigation (CBOSS-FDI) experiment, several mixing procedures are being assessed to determine which method achieves the most uniform mixing of growing cells and culture medium.
Internal fluid mechanics research on supercomputers for aerospace propulsion systems
NASA Technical Reports Server (NTRS)
Miller, Brent A.; Anderson, Bernhard H.; Szuch, John R.
1988-01-01
The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described.
Fluid shear influences on the performance of hydraulic flocculation systems.
Tse, Ian C; Swetland, Karen; Weber-Shirk, Monroe L; Lion, Leonard W
2011-11-01
Gravity driven hydraulic flocculators that operate in the absence of reliable electric power are better suited to meet the water treatment needs of green communities, resource-poor communities, and developing countries than conventional mechanical flocculators. However, current understanding regarding the proper design and operation of hydraulic flocculation systems is insufficient. Of particular interest is the optimal fluid shear level needed to produce low turbidity water. A hydraulic tube flocculator was used to study how fluid shear levels affect the settling properties of a flocculated alum-kaolin suspension. A Flocculation Residual Turbidity Analyzer (FReTA) was used to quantitatively compare the sedimentation velocity distributions and the post-sedimentation residual turbidities of the flocculated suspensions to see how they were affected by varying fluid shear, G, and hydraulic residence time, θ, while holding collision potential, Gθ, constant. Results show that floc breakup occurred at all velocity gradients evaluated. High floc settling velocities were correlated with low residual turbidities, both of which were optimized at low fluid shear levels and long fluid residence times. This study shows that, for hydraulic flocculation systems under the conditions described in this paper, low turbidity water is produced when fluid shear is kept at a minimum. Use of the product Gθ for design of laminar flow tube flocculators is insufficient if residual turbidity is used as the metric for performance. At any Gθ within the range tested in this study, best performance is obtained when G is small and θ is long. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Roberts, G. O.; Fowlis, W. W.; Miller, T. L.
1984-01-01
Numerical methods are used to design a spherical baroclinic flow model experiment of the large scale atmosphere flow for Spacelab. The dielectric simulation of radial gravity is only dominant in a low gravity environment. Computer codes are developed to study the processes at work in crystal growing systems which are also candidates for space flight. Crystalline materials rarely achieve their potential properties because of imperfections and component concentration variations. Thermosolutal convection in the liquid melt can be the cause of these imperfections. Such convection is suppressed in a low gravity environment. Two and three dimensional finite difference codes are being used for this work. Nonuniform meshes and implicit iterative methods are used. The iterative method for steady solutions is based on time stepping but has the options of different time steps for velocity and temperature and of a time step varying smoothly with position according to specified powers of the mesh spacings. This allows for more rapid convergence. The code being developed for the crystal growth studies allows for growth of the crystal as the solid-liquid interface. The moving interface is followed using finite differences; shape variations are permitted. For convenience in applying finite differences in the solid and liquid, a time dependent coordinate transformation is used to make this interface a coordinate surface.
Automatic TLI recognition system, general description
Lassahn, G.D.
1997-02-01
This report is a general description of an automatic target recognition system developed at the Idaho National Engineering Laboratory for the Department of Energy. A user`s manual is a separate volume, Automatic TLI Recognition System, User`s Guide, and a programmer`s manual is Automatic TLI Recognition System, Programmer`s Guide. This system was designed as an automatic target recognition system for fast screening of large amounts of multi-sensor image data, based on low-cost parallel processors. This system naturally incorporates image data fusion, and it gives uncertainty estimates. It is relatively low cost, compact, and transportable. The software is easily enhanced to expand the system`s capabilities, and the hardware is easily expandable to increase the system`s speed. In addition to its primary function as a trainable target recognition system, this is also a versatile, general-purpose tool for image manipulation and analysis, which can be either keyboard-driven or script-driven. This report includes descriptions of three variants of the computer hardware, a description of the mathematical basis if the training process, and a description with examples of the system capabilities.
NASA Astrophysics Data System (ADS)
Ullah, Saif; Ullah, Arshad; Iqbal, Mohsan
2015-12-01
This investigation deals with analytical solutions of thin film flow for withdrawal and drainage of an incompressible generalized Oldroyd-B fluid on a vertical cylinder under the influence of non-isothermal effects. The derived solutions are presented under series form for velocity profile, temperature distribution, volume flux, average film velocity and shear stress in both cases. These solutions satisfy both the governing equations and all imposed initial and boundary conditions. The corresponding exact solutions for Newtonian fluid are also obtained as a special case of our derived solutions. Moreover, solutions for generalized Maxwell fluid and Power Law model, performing the same motion, can be obtained as limiting cases of our general solutions. The influence of pertinent parameters on the fluid motion is also underlined by graphical illustration.
Sustainable fouling management for spacecraft fluid handling systems
NASA Astrophysics Data System (ADS)
Thomas, Evan Alexander Beirne
Current technologies for microgravity fluid management utilize centripetal acceleration or capillary action to separate liquids from gases without gravity buoyancy. Centripetal acceleration hardware is prone to failure from fouling, while capillary technologies have only been utilized in favorable wetting environments, wherein the contact angle of the liquid, Qadv, a key design parameter, is reliably low. In this work, the impact of wastewater fouling on Qadv, is characterized, and the results applied to the development of a capillary static phase separator. Mean wastewater Qadv, on clean surfaces are between ≈78° and ≈89° on hydrophilic surfaces, and up to over ≈105° on hydrophobic surfaces. Small crystalline growth on the order of 10microm can lower advancing contact angles Qadv, by approximately 30°, while biofilm growth can lower them by approximately 15o. Vacuum drying of fouled surfaces increased Qadv, by about 8°, and defects greater in height than 5% of the capillary length increased Qadv, by approximately 30°. Interestingly, the promotion of wastewater fouling may even improve the performance of capillary dependent fluid management systems, and designs attempting to exploit wastewater wetting must account for highly variable wetting conditions. Reduced gravity flight tests demonstrated a static phase separator that achieved nearly 100% separation of gas from fluids with widely varying Qadv. The system uses centrifugal force to coalesce droplets via a circular path; collects bulk fluid via capillary geometries (wetting) or air drag (non-wetting); and contains bulk fluid by capillary force; while minimizing liquid carryover into the air stream by pinning edges (wetting) or tortuous path (non-wetting). Instead of attempting to prevent or reduce wastewater fouling, sustainable fluid management systems can be designed to accommodate fouling. For example, a lunar outpost water recovery system could be encouraged to foul regolith media and form
A gun recoil system employing a magnetorheological fluid damper
NASA Astrophysics Data System (ADS)
Li, Z. C.; Wang, J.
2012-10-01
This research aims to design and control a full scale gun recoil buffering system which works under real firing impact loading conditions. A conventional gun recoil absorber is replaced with a controllable magnetorheological (MR) fluid damper. Through dynamic analysis of the gun recoil system, a theoretical model for optimal design and control of the MR fluid damper for impact loadings is derived. The optimal displacement, velocity and optimal design rules are obtained. By applying the optimal design theory to protect against impact loadings, an MR fluid damper for a full scale gun recoil system is designed and manufactured. An experimental study is carried out on a firing test rig which consists of a 30 mm caliber, multi-action automatic gun with an MR damper mounted to the fixed base through a sliding guide. Experimental buffering results under passive control and optimal control are obtained. By comparison, optimal control is better than passive control, because it produces smaller variation in the recoil force while achieving less displacement of the recoil body. The optimal control strategy presented in this paper is open-loop with no feedback system needed. This means that the control process is sensor-free. This is a great benefit for a buffering system under impact loading, especially for a gun recoil system which usually works in a harsh environment.
State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems
NASA Astrophysics Data System (ADS)
Lyczkowski, R. W.; Bouillard, J. X.; Ding, J.; Chang, S. L.; Burge, S. W.
1994-05-01
As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBR's) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBR's and pneumatic and slurry components are computed by ANL's EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale, and biomass as energy sources; to retain energy security; and to remediate waste and ecological problems.
State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems
Lyczkowski, R.W.; Bouillard, J.X.; Ding, J.; Chang, S.L.; Burge, S.W.
1994-05-12
As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBRS) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBRs and pneumatic and slurry components are computed by ANL`s EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.
An annotation system for 3D fluid flow visualization
NASA Technical Reports Server (NTRS)
Loughlin, Maria M.; Hughes, John F.
1995-01-01
Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.
The development of variably compliant haptic systems using magnetorheological fluids
NASA Astrophysics Data System (ADS)
Ahmadkhanlou, Farzad; Washington, Gregory N.; Wang, Yingru; Bechtel, Stephen E.
2005-05-01
In this study the authors develop haptic systems for telerobotic surgery. In order to model the full range of tactile force exhibited from an MR damper a microstructural, kinetic theory-based model of Magnetorheological (MR) fluids has been developed. Microscale constitutive equations relating flow, stress, and particle orientation are produced. The model developed is fully vectorial and relationships between the stress tensor and the applied magnetic field vector are fully exploited. The higher accuracy of the model in this regard gives better force representations of highly compliant objects. This model is then applied in force feedback control of single degree of freedom (SDOF) and two degrees of freedom (2DOF) systems. Carbonyl iron powders with different particle sizes mixed with silicone oils with different viscosities are used to make several sample MR fluids. These MR fluid samples are then used in three different designed MR dampers. A State feedback control algorithm is employed to control a SDOF system and tracking a 2-D profile path using a special innovative MR force feedback joystick. The results indicate that the MR based force feedback dampers can be used as effective haptic devices. The systems designed and constructed in this paper can be extended to a three degree of freedom force feedback system appropriate for telerobotic surgery.
Well behaved parametric class of relativistic charged fluid ball in general relativity
NASA Astrophysics Data System (ADS)
Pant, Neeraj
2011-04-01
The paper presents a class of interior solutions of Einstein-Maxwell field equations of general relativity for a static, spherically symmetric distribution of the charged fluid. This class of solutions describes well behaved charged fluid balls. The class of solutions gives us wide range of parameter K (0≤ K≤42) for which the solution is well behaved hence, suitable for modeling of super dense star. For this solution the mass of a star is maximized with all degree of suitability and by assuming the surface density ρ b =2×1014 g/cm3. Corresponding to K=2 and X=0.30, the maximum mass of the star comes out to be 4.96 M Θ with linear dimension 34.16 km and central redshift and surface redshift 2.1033 and 0.683 respectively. In absence of the charge we are left behind with the well behaved fourth model of Durgapal (J. Phys., A, Math. Gen. 15:2637, 1982).
A generalized hydrodynamic model for acoustic mode stability in viscoelastic plasma fluid
NASA Astrophysics Data System (ADS)
Borah, B.; Haloi, A.; Karmakar, P. K.
2016-05-01
In this paper a generalized hydrodynamic (GH) model to investigate acoustic-mode excitation and stability in simplified strongly coupled bi-component plasma is proposed. The goal is centered in seeing the viscoelasticity-influences on the instability properties. The dispersive and nondispersive features are methodologically explored followed by numerical illustrations. It is seen that, unlike usual plasma acoustic mode, here the mode stability is drastically modified due to the considered viscoelastic effects contributed from both the electronic and ionic fluids. For example, it is found that there exists an excitation threshold value on angular wavenumber, K ≈3 in the K-space on the Debye scale, beyond which only dispersive characteristic features prevail. Further, it is demonstrated that the viscoelastic relaxation time plays a stabilizing influential role on the wave dynamics. In contrast, it is just opposite for the effective viscoelastic relaxation effect. Consistency with the usual viscoelasticity-free situations, with and without plasma approximation taken into account, is also established and explained. It is identified and conjectured that the plasma fluid viscoelasticity acts as unavoidable dispersive agency in attributing several new characteristics to acoustic wave excitation and propagation. The analysis is also exploited to derive a quantitative glimpse on the various basic properties and dimensionless numbers of the viscoelastic plasma. Finally, extended implications of our results tentative to different cosmic, space and astrophysical situations, amid the entailed facts and faults, are highlighted together with indicated future directions.
Generalized Input-Output Inequality Systems
Liu Yingfan Zhang Qinghong
2006-09-15
In this paper two types of generalized Leontief input-output inequality systems are introduced. The minimax properties for a class of functions associated with the inequalities are studied. Sufficient and necessary conditions for the inequality systems to have solutions are obtained in terms of the minimax value. Stability analysis for the solution set is provided in terms of upper semi-continuity and hemi-continuity of set-valued maps.
14 CFR 23.1099 - Carburetor deicing fluid system detail design.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor deicing fluid system detail... Powerplant Induction System § 23.1099 Carburetor deicing fluid system detail design. Each carburetor deicing fluid system must meet the applicable requirements for the design of a fuel system, except as specified...
14 CFR 23.1099 - Carburetor deicing fluid system detail design.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor deicing fluid system detail... Powerplant Induction System § 23.1099 Carburetor deicing fluid system detail design. Each carburetor deicing fluid system must meet the applicable requirements for the design of a fuel system, except as specified...
14 CFR 23.1099 - Carburetor deicing fluid system detail design.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor deicing fluid system detail... Powerplant Induction System § 23.1099 Carburetor deicing fluid system detail design. Each carburetor deicing fluid system must meet the applicable requirements for the design of a fuel system, except as specified...
14 CFR 23.1099 - Carburetor deicing fluid system detail design.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor deicing fluid system detail... Powerplant Induction System § 23.1099 Carburetor deicing fluid system detail design. Each carburetor deicing fluid system must meet the applicable requirements for the design of a fuel system, except as specified...
14 CFR 23.1099 - Carburetor deicing fluid system detail design.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor deicing fluid system detail... Powerplant Induction System § 23.1099 Carburetor deicing fluid system detail design. Each carburetor deicing fluid system must meet the applicable requirements for the design of a fuel system, except as specified...
Recent Updates to the CFD General Notation System (CGNS)
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Wedan, Bruce; Hauser, Thomas; Poinot, Marc
2012-01-01
The CFD General Notation System (CGNS) - a general, portable, and extensible standard for the storage and retrieval of computational fluid dynamics (CFD) analysis data has been in existence for more than a decade (Version 1.0 was released in May 1998). Both structured and unstructured CFD data are covered by the standard, and CGNS can be easily extended to cover any sort of data imaginable, while retaining backward compatibility with existing CGNS data files and software. Although originally designed for CFD, it is readily extendable to any field of computational analysis. In early 2011, CGNS Version 3.1 was released, which added significant capabilities. This paper describes these recent enhancements and highlights the continued usefulness of the CGNS methodology.
General Dynamical Equations for Dingle's Space-Times Filled with a Charged Non-perfect Fluid
NASA Astrophysics Data System (ADS)
Hasmani, A. H.
2009-12-01
In this paper we have assumed charged non-perfect fluid as the material content of the space-time. The expression for the “ mass function- M( r, y, z, t)” is obtained for the general situation and the contributions from the Ricci tensor in the form of material energy density ρ, pressure anisotropy [p2+p3/2-p1] , electromagnetic field energy ℰ and the conformal Weyl tensor, viz. energy density of the free gravitational field ɛ (=-3Ψ2/4π) are made explicit. This work is an extension of the work obtained earlier by Rao and Hasmani (Math. Today XIIA:71, 1993; New Directions in Relativity and Cosmology, Hadronic Press, Nonantum, 1997) for deriving general dynamical equations for Dingle’s space-times described by this most general orthogonal metric, ds^2=exp(ν)dt^2-exp(λ)dr^2-exp(2α)dy^2-exp(2β)dz^2, where ν, λ, α and β are functions of all four space-time variables r, y, z and t.
Generalized Training Devices for Avionic Systems Maintenance.
ERIC Educational Resources Information Center
Parker, Edward L.
A research study was conducted to determine the feasibility and desirability of developing generalized training equipment for use in avionic systems maintenance training. The study consisted of a group of survey and analytic tasks to provide useful guidance to serve the needs of the Naval Aviation community in future years. The study had four…
Invariant of dynamical systems: A generalized entropy
Meson, A.M.; Vericat, F. |
1996-09-01
In this work the concept of entropy of a dynamical system, as given by Kolmogorov, is generalized in the sense of Tsallis. It is shown that this entropy is an isomorphism invariant, being complete for Bernoulli schemes. {copyright} {ital 1996 American Institute of Physics.}
Boron isotope systematics of hydrothermal fluids from submarine hydrothermal systems
NASA Astrophysics Data System (ADS)
Yamaoka, K.; Hong, E.; Ishikawa, T.; Gamo, T.; Kawahata, H.
2013-12-01
Boron is highly mobile in submarine hydrothermal systems and useful to trace the process of water-rock reaction. In this study, we measured the boron content and isotopic composition of vent fluids collected from arc-backarc hydrothermal systems in the western Pacific. In sediment-starved hydrothermal systems (Manus Basin, Suiyo Seamount, and Mariana Trough), the boron content and isotopic composition of vent fluids are dependent on type of host rock. The end member fluids from MORB-like basalt-hosted Vienna Woods in the Manus Basin showed low boron content and high δ11B value (0.53 mM, 29.8‰), while dacite-hosted PACMANUS and the Suiyo Seamount showed high boron contents and low δ11B values (1.45 and 1.52 mM, 13.6 and 18.5‰, respectively). The Alice Springs and Forecast Vent field in the Mariana Trough showed values intermediate between them (0.72 and 0.63 mM, 19.9 and 24.0‰, respectively), reflecting reaction of seawater and basalt influenced by slab material. In phase separated hydrothermal systems (North Fiji Basin), boron content and isotopic composition of vent fluids (0.44-0.56 mM, 34.5-35.9‰) were similar to those in the Vienna Woods. Considering little fractionation of boron and boron isotope during phase separation demonstrated by the previous experimental studies, it is suggested that the host rock in the North Fiji Basin is MORB-like basalt. In sediment-hosted hydrothermal system (Okinawa Trough), the reaction with boron-enriched sediment following seawater-rock reaction resulted in significantly high boron contents and low δ11B values of vent fluids (4.4-5.9 mM, 1.5-2.6‰). The water-sediment ratio was estimated to be ~2. In spite of the different geological settings, the end member fuids from all vent fields are enriched in B relative to seawater (0.41 mM, 39.6‰) and the δ11B values are inversely propotional to the boron concentrations. It suggests that boron isotopic composition of vent fluid predominantly depends on the amount of
Evolution of a totally fiber optic fluid detection system
Schopper, M.D.; Taylor, J.L. III; Bennett, P.R. Jr.
1995-12-31
As environmental and safety requirements for Aboveground Storage Tank (AST) operators increase, the demand for suitable leak detection equipment and methodology has brought about innovative sensor technology. Increasing opportunities to apply this new technology have arisen as state and local ordinances begin to mandate secondary containment and continuous leak detection. Similar federal requirements appear to be on the horizon. Due to the fact that most available leak detection systems have been devised for use in underground storage tank (UST) systems, most products currently available are not amenable to AST application. This is due to the long distances and the vast electrically restricted areas typical in AST setting. There now exists a need for innovative AST specific fluid detection technology. An improved method has been developed for continuously monitoring roof drains and the interstitial spaces in double-bottomed ASTs. Additionally, the system is used for conducting bottom water draws and monitors storm water drains. This technique employs fiber optic sensors which can be placed up to 100 meters from their photoelectric controller. Because the sensor system distinguishes between fluids based on the principle of refractive index, the intermittent presence of water does not undermine its function as a fluid detector since water is discerned from various hydrocarbons. This paper describes the evolution of the new methodology, from initial analog prototype to fully digital, commercial implementation in a modern fuel terminal.
A fluid-based measurement system for airborne radioxenon surveillance
Rooney, B.; Gross, K.C.; Nietert, R.; Valentine, J.; Russ, W.
1997-10-01
A new and innovative technique for concentrating heavy noble gases from the atmosphere and subsequently measuring the radioactive xenon isotopes has recently been developed at Argonne National Laboratory. The concentration technique is based on the discovery of a phenomenon where certain organic fluids absorb heavy noble gases with very high efficiency at room temperature and release the noble gases when slightly warmed (about 60{degrees}C). Research has been conducted to study the application of this technology to the design of an ultra sensitive radioxenon measurement system. Such a system could be used to monitor or sample the atmosphere for noble gas fission products ({sup 133}Xe, {sup 133m}Xe, and {sup 135}Xe) generated by nuclear testing. A system that utilizes this fluid-based technology provides a simpler, more portable, less-expensive means of concentrating xenon than current cryogenic techniques and avoids some of the complications associated with charcoal-based systems. Preliminary experiments to demonstrate the feasibility of utilizing this fluid-based technology in the design of an atmospheric radioxenon measurement have been very promising and research is continuing toward applying this technology to monitoring activities which support the Comprehensive Test Ban Treaty (CTBT).
McClure, James E.; Berrill, Mark A.; Gray, William G.; Miller, Cass T.
2016-09-02
Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, or the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.
McClure, James E.; Berrill, Mark A.; Gray, William G.; ...
2016-09-02
Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less
McClure, James E.; Berrill, Mark A.; Gray, William G.; Miller, Cass T.
2016-09-02
Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, or the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.
Modeling dynamically coupled fluid-duct systems with finite line elements
NASA Technical Reports Server (NTRS)
Saxon, J. B.
1994-01-01
Structural analysis of piping systems, especially dynamic analysis, typically considers the duct structure and the contained fluid column separately. Coupling of these two systems, however, forms a new dynamic system with characteristics not necessarily described by the superposition of the two component system's characteristics. Methods for modeling the two coupled components simultaneously using finite line elements are presented. Techniques for general duct intersections, area or direction changes, long radius bends, hydraulic losses, and hydraulic impedances are discussed. An example problem and results involving time transients are presented. Additionally, a program to enhance post-processing of line element models is discussed.
System-size effects in ionic fluids under periodic boundary conditions.
Thompson, Jeff P; Sanchez, Isaac C
2016-12-07
We investigate the system-size dependence of the thermodynamic properties of ionic fluids under periodic boundary conditions. Following an approach previously developed in the context of quantum Monte Carlo simulations of many-electron systems, we show that the leading-order finite-size artifact in the Coulomb energy per particle of a classical fluid of N structureless ions at given density and temperature is simply -kBT(2N)(-1). Analytical approximations for the periodicity-induced size dependence of the excess thermodynamic properties of the fluid in the weak-coupling regime are obtained within the linearized Debye-Hückel theory. Theoretical results are compared with published simulations of the one-component plasma and our own simulations of a primitive-model electrolyte solution. Our work is directly relevant to estimating finite-size corrections in simulations of charged fluids comprising structureless ions embedded in continuous media. We outline in the Appendix how some of our formal results may be generalized to molecular fluids with mobile ions; e.g., electrolyte solutions with explicit solvent.
System-size effects in ionic fluids under periodic boundary conditions
NASA Astrophysics Data System (ADS)
Thompson, Jeff P.; Sanchez, Isaac C.
2016-12-01
We investigate the system-size dependence of the thermodynamic properties of ionic fluids under periodic boundary conditions. Following an approach previously developed in the context of quantum Monte Carlo simulations of many-electron systems, we show that the leading-order finite-size artifact in the Coulomb energy per particle of a classical fluid of N structureless ions at given density and temperature is simply -kBT(2N)-1 . Analytical approximations for the periodicity-induced size dependence of the excess thermodynamic properties of the fluid in the weak-coupling regime are obtained within the linearized Debye-Hückel theory. Theoretical results are compared with published simulations of the one-component plasma and our own simulations of a primitive-model electrolyte solution. Our work is directly relevant to estimating finite-size corrections in simulations of charged fluids comprising structureless ions embedded in continuous media. We outline in the Appendix how some of our formal results may be generalized to molecular fluids with mobile ions; e.g., electrolyte solutions with explicit solvent.
Unified computational method for design of fluid loop systems
NASA Astrophysics Data System (ADS)
Furukawa, Masao
1991-12-01
Various kinds of empirical formulas of Nusselt numbers, fanning friction factors, and pressure loss coefficients were collected and reviewed with the object of constructing a common basis of design calculations of pumped fluid loop systems. The practical expressions obtained after numerical modifications are listed in tables with identification numbers corresponding to configurations of the flow passages. Design procedure of a cold plate and of a space radiator are clearly shown in a series of mathematical relations coupled with a number of detailed expressions which are put in the tables in order of numerical computations. Weight estimate models and several pump characteristics are given in the tables as a result of data regression. A unified computational method based upon the above procedure is presented for preliminary design analyses of a fluid loop system consisting of cold plates, plane radiators, mechanical pumps, valves, and so on.
High-viscosity fluid threads in weakly diffusive microfluidic systems
NASA Astrophysics Data System (ADS)
Cubaud, T.; Mason, T. G.
2009-07-01
We provide an overview of the flow dynamics of highly viscous miscible liquids in microfluidic geometries. We focus on the lubricated transport of high-viscosity fluids interacting with less viscous fluids, and we review methods for producing and manipulating single and multiple core-annular flows, i.e. viscous threads, in compact and plane microgeometries. In diverging slit microchannels, a thread's buckling instabilities can be employed for generating ordered and disordered miscible microstructures, as well as for partially blending low- and high-viscosity materials. The shear-induced destabilization of a thread that flows off-center in a square microchannel is examined as a means for continuously producing miscible dispersions. We show original compound threads and viscous dendrites that are generated using three fluids, each of which has a large viscosity contrast with the others. Thread motions in zones of microchannel extensions are examined in both miscible and immiscible environments. We demonstrate that high-viscosity fluid threads in weakly diffusive microfluidic systems correspond to the viscous primary flow and can be used as a starting point for studying and understanding the destabilizing effects of interfacial tension as well as diffusion. Characteristic of lubricated transport, threads facilitate the transport of very viscous materials in small fluidic passages, while mitigating dissipation. Threads are also potentially promising for soft material synthesis and diagnostics with independent control of the thread specific surface and residence time in micro-flow reactors.
Circulating Fluid-Bed Technology for Advanced Power Systems
Shadle, Lawrence J.; Ludlow, J. Christopher; Mei, Joseph S.; Guenther, Christopher
2001-11-06
Circulating fluid bed technology offers the advantages of a plug flow, yet well-mixed, and high throughput reactor for power plant applications. The ability to effectively scale these systems in size, geometry, and operating conditions is limited because of the extensive deviation from ideal dilute gas-solids flow behavior (Monazam et al., 2001; Li, 1994). Two fluid computations show promise of accurately simulating the hydrodynamics in the riser circulating fluid bed; however, validation tests for large vessels with materials of interest to the power industry are lacking (Guenther et al., 2002). There is little available data in reactors large enough so that geometry (i.e. entrance, exit, and wall) effects do not dominate the hydrodynamics, yet with sufficiently large particle sizes to allow sufficiently large grid sizes to allow accurate and timely hydrodynamic simulations. To meet this need experimental tests were undertaken with relatively large particles of narrow size distribution in a large enough unit to reduce the contributions of wall effects and light enough to avoid geometry effects. While computational fluid dynamic calculations are capable of generating detailed velocity and density profiles, it is believed that the validation and model development begins with the ability to simulate the global flow regime transitions. The purpose of this research is to generate well-defined test data for model validation and to identify and measure critical parameters needed for these simulations.
Generalized thermalization in an integrable lattice system.
Cassidy, Amy C; Clark, Charles W; Rigol, Marcos
2011-04-08
After a quench, observables in an integrable system may not relax to the standard thermal values, but can relax to the ones predicted by the generalized Gibbs ensemble (GGE) [M. Rigol et al., Phys. Rev. Lett. 98, 050405 (2007)]. The GGE has been shown to accurately describe observables in various one-dimensional integrable systems, but the origin of its success is not fully understood. Here we introduce a microcanonical version of the GGE and provide a justification of the GGE based on a generalized interpretation of the eigenstate thermalization hypothesis, which was previously introduced to explain thermalization of nonintegrable systems. We study relaxation after a quench of one-dimensional hard-core bosons in an optical lattice. Exact numerical calculations for up to 10 particles on 50 lattice sites (≈10(10) eigenstates) validate our approach.
Medical Information Management System (MIMS): A generalized interactive information system
NASA Technical Reports Server (NTRS)
Alterescu, S.; Friedman, C. A.; Hipkins, K. R.
1975-01-01
An interactive information system is described. It is a general purpose, free format system which offers immediate assistance where manipulation of large data bases is required. The medical area is a prime area of application. Examples of the system's operation, commentary on the examples, and a complete listing of the system program are included.
Druzhinina, O V; Shestakov, A A
2002-10-31
A generalized direct Lyapunov method is put forward for the study of stability and attraction in general time systems of the following types: the classical dynamical system in the sense of Birkhoff, the general system in the sense of Zubov, the general system in the sense of Seibert, the general system with delay, and the general 'input-output' system. For such systems, with the help of generalized Lyapunov functions with respect to two filters, two quasifilters, or two filter bases, necessary and sufficient conditions for stability and attraction are obtained under minimal assumptions about the mathematical structure of the general system.
On solar system dynamics in general relativity
NASA Astrophysics Data System (ADS)
Battista, Emmanuele; Esposito, Giampiero; di Fiore, Luciano; Dell'Agnello, Simone; Simo, Jules; Grado, Aniello
Recent work in the literature has advocated using the Earth-Moon-planetoid Lagrangian points as observables, in order to test general relativity and effective field theories of gravity in the solar system. However, since the three-body problem of classical celestial mechanics is just an approximation of a much more complicated setting, where all celestial bodies in the solar system are subject to their mutual gravitational interactions, while solar radiation pressure and other sources of nongravitational perturbations also affect the dynamics, it is conceptually desirable to improve the current understanding of solar system dynamics in general relativity, as a first step towards a more accurate theoretical study of orbital motion in the weak-gravity regime. For this purpose, starting from the Einstein equations in the de Donder-Lanczos gauge, this paper arrives first at the Levi-Civita Lagrangian for the geodesic motion of planets, showing in detail under which conditions the effects of internal structure and finite extension get canceled in general relativity to first post-Newtonian order. The resulting nonlinear ordinary differential equations for the motion of planets and satellites are solved for the Earth’s orbit about the Sun, written down in detail for the Sun-Earth-Moon system, and investigated for the case of planar motion of a body immersed in the gravitational field produced by the other bodies (e.g. planets with their satellites). At this stage, we prove an exact property, according to which the fourth-order time derivative of the original system leads to a linear system of ordinary differential equations. This opens an interesting perspective on forthcoming research on planetary motions in general relativity within the solar system, although the resulting equations remain a challenge for numerical and qualitative studies. Last, the evaluation of quantum corrections to location of collinear and noncollinear Lagrangian points for the planar restricted
Analysis of Direct Samples of Early Solar System Aqueous Fluids
NASA Technical Reports Server (NTRS)
Zolensky, Michael E.; Bodnar, R J.; Fedele, L.; Yurimoto,H.; Itoh, S.; Fries, M.; Steele, A.
2012-01-01
Over the past three decades we have become increasingly aware of the fundamental importance of water, and aqueous alteration, on primitive solar-system bodies. Some carbonaceous and ordinary chondrites have been altered by interactions with liquid water within the first 10 million years after formation of their parent asteroids. Millimeter to centimeter-sized aggregates of purple halite containing aqueous fluid inclusions were found in the matrix of two freshly-fallen brecciated H chondrite falls, Monahans (1998, hereafter simply "Monahans") (H5) and Zag (H3-6) (Zolensky et al., 1999; Whitby et al., 2000; Bogard et al., 2001) In order to understand origin and evolution of the aqueous fluids inside these inclusions we much measure the actual fluid composition, and also learn the O and H isotopic composition of the water. It has taken a decade for laboratory analytical techniques to catch up to these particular nanomole-sized aqueous samples. We have recently been successful in (1) measuring the isotopic composition of H and O in the water in a few fluid inclusions from the Zag and Monahans halite, (2) mineralogical characterization of the solid mineral phases associated with the aqueous fluids within the halite, and (3) the first minor element analyses of the fluid itself. A Cameca ims-1270 equipped with a cryo-sample-stage of Hokkaido University was specially prepared for the O and H isotopic measurements. The cryo-sample-stage (Techno. I. S. Corp.) was cooled down to c.a. -190 C using liquid nitrogen at which the aqueous fluid in inclusions was frozen. We excavated the salt crystal surfaces to expose the frozen fluids using a 15 keV Cs+ beam and measured negative secondary ions. The secondary ions from deep craters of approximately 10 m in depth emitted stably but the intensities changed gradually during measurement cycles because of shifting states of charge compensation, resulting in rather poor reproducibility of multiple measurements of standard fluid
Liu, Chang; Dodin, Ilya Y.
2015-08-15
The nonlinear frequency shift is derived in a transparent asymptotic form for intense Langmuir waves in general collisionless plasma. The formula describes both fluid and kinetic effects simultaneously. The fluid nonlinearity is expressed, for the first time, through the plasma dielectric function, and the kinetic nonlinearity accounts for both smooth distributions and trapped-particle beams. Various known limiting scalings are reproduced as special cases. The calculation avoids differential equations and can be extended straightforwardly to other nonlinear plasma waves.
Bcc crystal-fluid interfacial free energy in Yukawa systems.
Heinonen, V; Mijailović, A; Achim, C V; Ala-Nissila, T; Rozas, R E; Horbach, J; Löwen, H
2013-01-28
We determine the orientation-resolved interfacial free energy between a body-centered-cubic (bcc) crystal and the coexisting fluid for a many-particle system interacting via a Yukawa pair potential. For two different screening strengths, we compare results from molecular dynamics computer simulations, density functional theory, and a phase-field-crystal approach. Simulations predict an almost orientationally isotropic interfacial free energy of 0.12k(B)T/a(2) (with k(B)T denoting the thermal energy and a the mean interparticle spacing), which is independent of the screening strength. This value is in reasonable agreement with our Ramakrishnan-Yussouff density functional calculations, while a high-order fitted phase-field-crystal approach gives about 2-3 times higher interfacial free energies for the Yukawa system. Both field theory approaches also give a considerable anisotropy of the interfacial free energy. Our result implies that, in the Yukawa system, bcc crystal-fluid free energies are a factor of about 3 smaller than face-centered-cubic crystal-fluid free energies.
Fluid technology (selected components, devices, and systems): A compilation
NASA Technical Reports Server (NTRS)
1974-01-01
Developments in fluid technology and hydraulic equipment are presented. The subjects considered are: (1) the use of fluids in the operation of switches, amplifiers, and servo devices, (2) devices and data for laboratory use in the study of fluid dynamics, and (3) the use of fluids as controls and certain methods of controlling fluids.
From a quasi-static fluid-based evolutionary topology optimization to a generalization of BESO
NASA Astrophysics Data System (ADS)
Daróczy, László; Jármai, Károly
2015-05-01
A new algorithm is proposed for topology optimization based on a fluid dynamics analogy. It possesses characteristics similar to most well-known methods, such as the Evolutionary Structural Optimization (ESO)/Bidirectional Evolutionary Structural Optimization (BESO) method due to Xie and Steven (1993, "A Simple Evolutionary Procedure for Structural Optimisation." Computers and Structures 49 (5): 885-896.), which works with discrete values, and the Solid Isotropic Material with Penalization (SIMP) method due to Bendsøe (1989, "Optimal Shape Design as aMaterial Distribution Problem." Structural Optimization 1 (4): 193-202.) and Zhou and Rozvany (1991, "The COCAlgorithm-Part II: Topological, Geometry and Generalized Shape Optimization." Computer Methods in Applied Mechanics and Engineering 89 (1-3): 309-336.) (using Optimality Criterion (OC) or Method of Moving Asymptotes (MMA)), which works with intermediate values, as it is able to work both with discrete and intermediate densities, but always yields a solution with discrete densities. It can be proven mathematically that the new method is a generalization of the BESO method and using appropriate parameters it will operate exactly as the BESO method. The new method is less sensitive to rounding errors of the matrix solver as compared to the BESO method and is able to give alternative topologies to well-known problems. The article presents the basic idea and the optimization algorithm, and compares the results of three cantilever optimizations to the results of the SIMP and BESO methods.
Generalization versus specialization in plant pollination systems.
Johnson; Steiner
2000-04-01
The long-standing notion that most angiosperm flowers are specialized for pollination by particular animal types, such as birds or bees, has been challenged recently on the basis of apparent widespread generalization in pollination systems. At the same time, biologists working mainly in the tropics and the species-rich temperate floras of the Southern hemisphere are documenting pollination systems that are remarkably specialized, often involving a single pollinator species. Current studies are aimed at understanding: (1) the ecological forces that have favoured either generalization or specialization in particular lineages and regions; (2) the implications for selection on floral traits and divergence of populations; and (3) the risk of collapse in plant-pollinator mutualisms of varying specificity.
NASA Astrophysics Data System (ADS)
Pant, Neeraj; Rajasekhara, S.
2011-05-01
The paper presents a variety of classes of interior solutions of Einstein-Maxwell field equations of general relativity for a static, spherically symmetric distribution of the charged fluid with well behaved nature. These classes of solutions describe perfect fluid balls with positively finite central pressure, positively finite central density; their ratio is less than one and causality condition is obeyed at the center. The outmarch of pressure, density, pressure-density ratio and the adiabatic speed of sound is monotonically decreasing for these solutions. Keeping in view of well behaved nature of these solutions, two new classes of solutions are being studied extensively. Moreover, these classes of solutions give us wide range of constant K for which the solutions are well behaved hence, suitable for modeling of super dense star. For solution (I1) the mass of a star is maximized with all degree of suitability and by assuming the surface density ρ b =2×1014 g/cm3 corresponding to K=1.19 and X=0.20, the maximum mass of the star comes out to be 2.5 M Θ with linear dimension 25.29 Km and central redshift 0.2802. It has been observed that with the increase of charge parameter K, the mass of the star also increases. For n=4,5,6,7, the charged solutions are well behaved with their neutral counterparts however, for n=1,2,3, the charged solution are well behaved but their neutral counterparts are not well behaved.
General Electric Unattended Power System Study. Addendum
1980-05-01
Only minor, inexpensive changes in the fuel panel, portions of the electrical control panel, and type of burner are required to convert from one type of... converts chemical energy into electrical energy. The capacity of the fuel cell is limited only by the supply of fuel, commonly referred to as the...ESD-TR-80-124 MTR- 3844 GENERAL ELECTRIC UNATTENDED POWER SYSTEM STUDY ADDENDUM BY D.D. BREGENZER MAY 1980 dg:C Prepared for DEPUTY FOR SURVEILLANCE
Microgravity fluid management requirements of advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, Robert P.
1987-01-01
The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.
Transient thermohydraulic modeling of two-phase fluid systems
NASA Astrophysics Data System (ADS)
Blet, N.; Delalandre, N.; Ayel, V.; Bertin, Y.; Romestant, C.; Platel, V.
2012-11-01
This paper presents a transient thermohydraulic modeling, initially developed for a capillary pumped loop in gravitational applications, but also possibly suitable for all kinds of two-phase fluid systems. Using finite volumes method, it is based on Navier-Stokes equations for transcribing fluid mechanical aspects. The main feature of this 1D-model is based on a network representation by analogy with electrical. This paper also proposes a parametric study of a counterflow condenser following the sensitivity to inlet mass flow rate and cold source temperature. The comparison between modeling results and experimental data highlights a good numerical evaluation of temperatures. Furthermore, the model is able to represent a pretty good dynamic evolution of hydraulic variables.
Method, apparatus and system for controlling fluid flow
McMurtrey, Ryan D.; Ginosar, Daniel M.; Burch, Joesph V.
2007-10-30
A system, apparatus and method of controlling the flow of a fluid are provided. In accordance with one embodiment of the present invention, a flow control device includes a valve having a flow path defined therethrough and a valve seat in communication with the flow path with a valve stem disposed in the valve seat. The valve stem and valve seat are cooperatively configured to cause mutual relative linear displacement thereof in response to rotation of the valve stem. A gear member is coupled with the rotary stem and a linear positioning member includes a portion which complementarily engages the gear member. Upon displacement of the linear positioning member along a first axis, the gear member and rotary valve stem are rotated about a second axis and the valve stem and valve seat are mutually linearly displaced to alter the flow of fluid through the valve.
Eleven theses of general systems theory (GST)
Waelchli, F.
1992-12-31
This paper chronicles an effort to distill and order (for purposes of discussion and elaboration) frequently mentioned and significant ideas encountered in the literature of General Systems theory (GST). The product is a set of eleven theses, representing the author`s selection and collation of seminal and recurrent GST themes. The author argues that attention to theory could aid the effort to develop practical applications of systems thinking. (Remember that a thesis is a statement or assertion, offered originally without proof, as the basis for an argument, discussion, or empirical test). 10 refs.
Advanced Digital Avionics System for general aviation
NASA Technical Reports Server (NTRS)
Smyth, R. K.; Hoh, R. H.; Teper, G. L.
1977-01-01
Objectives and functions of the Advanced Digital Avionics System (ADAS) for general aviation are outlined with particular reference to navigation, flight control, engine management, ATC surveillance, flight management, communications, and the pilot controls and displays. The resulting ADAS design comprises the selection of off-the-shelf avionics to be integrated with ADAS-unique elements including new pilot displays and controls along with a microcomputer control complex (MCC). Reasons for which the ADAS achieves increased avionics capability are mentioned, including overall system integration through the MCC and pilot orientation from navigation map display.
Instabilities of a spatial system of articulated pipes conveying fluid
NASA Technical Reports Server (NTRS)
Bohn, M. P.; Herrmann, G.
1974-01-01
A spatial system of two articulated pipes conveying fluid is examined analytically and experimentally. As the flow rate is increased, stable equilibrium may be lost by either divergence (static buckling) or by flutter (oscillations with increasing amplitude), depending upon the value of an angle beta which measures the 'out-of-planeness' of the system. It is found that in the range O less than beta less than 90 deg there exists a transition value below which stability is lost by flutter and above which stability is lost by divergence.
A general architecture for intelligent training systems
NASA Technical Reports Server (NTRS)
Loftin, R. Bowen
1987-01-01
A preliminary design of a general architecture for autonomous intelligent training systems was developed. The architecture integrates expert system technology with teaching/training methodologies to permit the production of systems suitable for use by NASA, other government agencies, industry, and academia in the training of personnel for the performance of complex, mission-critical tasks. The proposed architecture consists of five elements: a user interface, a domain expert, a training session manager, a trainee model, and a training scenario generator. The design of this architecture was guided and its efficacy tested through the development of a system for use by Mission Control Center Flight Dynamics Officers in training to perform Payload-Assist Module Deploys from the orbiter.
Acoustic design criteria in a general system for structural optimization
NASA Technical Reports Server (NTRS)
Brama, Torsten
1990-01-01
Passenger comfort is of great importance in most transport vehicles. For instance, in the new generation of regional turboprop aircraft, a low noise level is vital to be competitive on the market. The possibilities to predict noise levels analytically has improved rapidly in recent years. This will make it possible to take acoustic design criteria into account in early project stages. The development of the ASKA FE-system to include also acoustic analysis has been carried out at Saab Aircraft Division and the Aeronautical Research Institute of Sweden in a joint project. New finite elements have been developed to model the free fluid, porous damping materials, and the interaction between the fluid and structural degrees of freedom. The FE approach to the acoustic analysis is best suited for lower frequencies up to a few hundred Hz. For accurate analysis of interior cabin noise, large 3-D FE-models are built, but 2-D models are also considered to be useful for parametric studies and optimization. The interest is here focused on the introduction of an acoustic design criteria in the general structural optimization system OPTSYS available at the Saab Aircraft Division. The first implementation addresses a somewhat limited class of problems. The problems solved are formulated: Minimize the structural weight by modifying the dimensions of the structure while keeping the noise level in the cavity and other structural design criteria within specified limits.
Generalized Detectability for Discrete Event Systems
Shu, Shaolong; Lin, Feng
2011-01-01
In our previous work, we investigated detectability of discrete event systems, which is defined as the ability to determine the current and subsequent states of a system based on observation. For different applications, we defined four types of detectabilities: (weak) detectability, strong detectability, (weak) periodic detectability, and strong periodic detectability. In this paper, we extend our results in three aspects. (1) We extend detectability from deterministic systems to nondeterministic systems. Such a generalization is necessary because there are many systems that need to be modeled as nondeterministic discrete event systems. (2) We develop polynomial algorithms to check strong detectability. The previous algorithms are based on observer whose construction is of exponential complexity, while the new algorithms are based on a new automaton called detector. (3) We extend detectability to D-detectability. While detectability requires determining the exact state of a system, D-detectability relaxes this requirement by asking only to distinguish certain pairs of states. With these extensions, the theory on detectability of discrete event systems becomes more applicable in solving many practical problems. PMID:21691432
GENERAL EARTHQUAKE-OBSERVATION SYSTEM (GEOS).
Borcherdt, R.D.; Fletcher, Joe B.; Jensen, E.G.; Maxwell, G.L.; VanSchaack, J.R.; Warrick, R.E.; Cranswick, E.; Johnston, M.J.S.; McClearn, R.
1985-01-01
Microprocessor technology has permitted the development of a General Earthquake-Observation System (GEOS) useful for most seismic applications. Central-processing-unit control via robust software of system functions that are isolated on hardware modules permits field adaptability of the system to a wide variety of active and passive seismic experiments and straightforward modification for incorporation of improvements in technology. Various laboratory tests and numerous deployments of a set of the systems in the field have confirmed design goals, including: wide linear dynamic range (16 bit/96 dB); broad bandwidth (36 hr to 600 Hz; greater than 36 hr available); selectable sensor-type (accelerometer, seismometer, dilatometer); selectable channels (1 to 6); selectable record mode (continuous, preset, trigger); large data capacity (1. 4 to 60 Mbytes); selectable time standard (WWVB, master, manual); automatic self-calibration; simple field operation; full capability to adapt system in the field to a wide variety of experiments; low power; portability; and modest costs. System design goals for a microcomputer-controlled system with modular software and hardware components as implemented on the GEOS are presented. The systems have been deployed for 15 experiments, including: studies of near-source strong motion; high-frequency microearthquakes; crustal structure; down-hole wave propagation; teleseismicity; and earth-tidal strains.
NASA Astrophysics Data System (ADS)
McClure, James E.; Berrill, Mark A.; Gray, William G.; Miller, Cass T.
2016-09-01
Multiphase flows in porous medium systems are typically modeled at the macroscale by applying the principles of continuum mechanics to develop models that describe the behavior of averaged quantities, such as fluid pressure and saturation. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating the capillary pressure to fluid saturation and, in some cases, other topological invariants such as interfacial area and the Euler characteristic (or average Gaussian curvature). The forms that are used in traditional models, which typically consider only the relationship between capillary pressure and saturation, are hysteretic. An unresolved question is whether the inclusion of additional morphological and topological measures can lead to a nonhysteretic closure relation. Relying on the lattice Boltzmann (LB) method, we develop an approach to investigate equilibrium states for a two-fluid-phase porous medium system, which includes disconnected nonwetting phase features. A set of simulations are performed within a random close pack of 1964 spheres to produce a total of 42 908 distinct equilibrium configurations. This information is evaluated using generalized additive models to quantitatively assess the degree to which functional relationships can explain the behavior of the equilibrium data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and nonhysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. To our knowledge, this work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parametrizations investigated, and the broad set of functions examined. The conclusion of essentially nonhysteretic behavior provides
McClure, James E; Berrill, Mark A; Gray, William G; Miller, Cass T
2016-09-01
Multiphase flows in porous medium systems are typically modeled at the macroscale by applying the principles of continuum mechanics to develop models that describe the behavior of averaged quantities, such as fluid pressure and saturation. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating the capillary pressure to fluid saturation and, in some cases, other topological invariants such as interfacial area and the Euler characteristic (or average Gaussian curvature). The forms that are used in traditional models, which typically consider only the relationship between capillary pressure and saturation, are hysteretic. An unresolved question is whether the inclusion of additional morphological and topological measures can lead to a nonhysteretic closure relation. Relying on the lattice Boltzmann (LB) method, we develop an approach to investigate equilibrium states for a two-fluid-phase porous medium system, which includes disconnected nonwetting phase features. A set of simulations are performed within a random close pack of 1964 spheres to produce a total of 42 908 distinct equilibrium configurations. This information is evaluated using generalized additive models to quantitatively assess the degree to which functional relationships can explain the behavior of the equilibrium data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and nonhysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. To our knowledge, this work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parametrizations investigated, and the broad set of functions examined. The conclusion of essentially nonhysteretic behavior provides
21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...
21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...
21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...
21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...
21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...
NASA Astrophysics Data System (ADS)
Talon, Laurent; Chevalier, Thibaud
2014-11-01
Non-Newtonian fluids have practical applications in very different domains. Indeed, polymer mixture, paints, slurries, colloidal suspensions, emulsions, foams or heavy oil present complex rheologies. Among the large number of different non-Newtonian fluids an important class of behavior is represented by the yield-stress fluids, viz. fluids that require a minimum of stress to flow. Yield stress fluids are usually modelled as a Bingham fluid or by the Herschel-Bulkley equation. However, simulating flow of a Bingham fluid in porous media still remains a challenging task as the yield stress may significantly alter the numerical stability and precision. In the present work, we use a Lattice-Boltzmann TRT scheme to determine this type of flow in a synthetic porous medium or fracture. Different pressure drops ΔP have been applied in order to derive a generalization of the Darcy's equation. Three different scaling regimes can be distinguished when plotting the dimensionless flow rate q as function of the distance to the critical pressure ΔP - ΔPc . In this presentation, we will investigate the importance of the heterogeneities on those flowing regimes. ANR-12-MONU-0011.
Cerebrospinal fluid flow dynamics in the central nervous system.
Sweetman, Brian; Linninger, Andreas A
2011-01-01
Cine-phase-contrast-MRI was used to measure the three-dimensional cerebrospinal fluid (CSF) flow field inside the central nervous system (CNS) of a healthy subject. Image reconstruction and grid generation tools were then used to develop a three-dimensional fluid-structure interaction model of the CSF flow inside the CNS. The CSF spaces were discretized using the finite-element method and the constitutive equations for fluid and solid motion solved in ADINA-FSI 8.6. Model predictions of CSF velocity magnitude and stroke volume were found to be in excellent agreement with the experimental data. CSF pressure gradients and amplitudes were computed in all regions of the CNS. The computed pressure gradients and amplitudes closely match values obtained clinically. The highest pressure amplitude of 77 Pa was predicted to occur in the lateral ventricles. The pressure gradient between the lateral ventricles and the lumbar region of the spinal canal did not exceed 132 Pa (~1 mmHg) at any time during the cardiac cycle. The pressure wave speed in the spinal canal was predicted and found to agree closely with values previously reported in the literature. Finally, the forward and backward motion of the CSF in the ventricles was visualized, revealing the complex mixing patterns in the CSF spaces. The mathematical model presented in this article is a prerequisite for developing a mechanistic understanding of the relationships among vasculature pulsations, CSF flow, and CSF pressure waves in the CNS.
Modeling interfacial area transport in multi-fluid systems
Yarbro, Stephen Lee
1996-11-01
Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacial area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.
Smart Fluid Systems: The Advent of Autonomous Liquid Robotics.
Chiolerio, A; Quadrelli, Marco B
2017-07-01
Organic, inorganic or hybrid devices in the liquid state, kept in a fixed volume by surface tension or by a confining membrane that protects them from a harsh environment, could be used as biologically inspired autonomous robotic systems with unique capabilities. They could change shape according to a specific exogenous command or by means of a fully integrated adaptive system, and provide an innovative solution for many future applications, such as space exploration in extreme or otherwise challenging environments, post-disaster search and rescue in ground applications, compliant wearable devices, and even in the medical field for in vivo applications. This perspective provides an initial assessment of existing capabilities that could be leveraged to pursue the topic of "Smart Fluid Systems" or "Liquid Engineered Systems".
Single-file mobility of water-like fluid in a generalized Frenkel-Kontorova model.
Ternes, Patricia; Mendoza-Coto, Alejandro; Salcedo, Evy
2017-07-21
In this work, we used a generalized Frenkel-Kontorova model to study the mobility of water molecules inside carbon nanotubes with small radius at low temperatures. Our simulations show that the mobility of confined water decreases monotonically increasing the amplitude of the substrate potential at fixed commensurations. On the other hand, the mobility of the water molecules shows a non-monotonic behavior when varying the commensuration. This result indicates that the mobility of the confined fluid presents different behavior regimes depending on the amplitude of the water-nanotube interaction. In order to qualitatively understand these results, we study analytically the driven Frenkel-Kontorova model at finite temperatures. This analysis allows us to obtain the curves of the mobility versus commensurations, at fixed substrate potentials. Such curves show the existence of three regimes of mobility behavior as a function of the commensuration ratio. Additionally, our study indicates a nontrivial and strong dependence of the mobility with a quantity that can be interpreted as an effective amplitude of the substrate potential, depending on the bare amplitude of the substrate potential, the commensuration ratio, and temperature.
Single-file mobility of water-like fluid in a generalized Frenkel-Kontorova model
NASA Astrophysics Data System (ADS)
Ternes, Patricia; Mendoza-Coto, Alejandro; Salcedo, Evy
2017-07-01
In this work, we used a generalized Frenkel-Kontorova model to study the mobility of water molecules inside carbon nanotubes with small radius at low temperatures. Our simulations show that the mobility of confined water decreases monotonically increasing the amplitude of the substrate potential at fixed commensurations. On the other hand, the mobility of the water molecules shows a non-monotonic behavior when varying the commensuration. This result indicates that the mobility of the confined fluid presents different behavior regimes depending on the amplitude of the water-nanotube interaction. In order to qualitatively understand these results, we study analytically the driven Frenkel-Kontorova model at finite temperatures. This analysis allows us to obtain the curves of the mobility versus commensurations, at fixed substrate potentials. Such curves show the existence of three regimes of mobility behavior as a function of the commensuration ratio. Additionally, our study indicates a nontrivial and strong dependence of the mobility with a quantity that can be interpreted as an effective amplitude of the substrate potential, depending on the bare amplitude of the substrate potential, the commensuration ratio, and temperature.
Híjar, Humberto
2015-02-01
We study the Brownian motion of a particle bound by a harmonic potential and immersed in a fluid with a uniform shear flow. We describe this problem first in terms of a linear Fokker-Planck equation which is solved to obtain the probability distribution function for finding the particle in a volume element of its associated phase space. We find the explicit form of this distribution in the stationary limit and use this result to show that both the equipartition law and the equation of state of the trapped particle are modified from their equilibrium form by terms increasing as the square of the imposed shear rate. Subsequently, we propose an alternative description of this problem in terms of a generalized Langevin equation that takes into account the effects of hydrodynamic correlations and sound propagation on the dynamics of the trapped particle. We show that these effects produce significant changes, manifested as long-time tails and resonant peaks, in the equilibrium and nonequilibrium correlation functions for the velocity of the Brownian particle. We implement numerical simulations based on molecular dynamics and multiparticle collision dynamics, and observe a very good quantitative agreement between the predictions of the model and the numerical results, thus suggesting that this kind of numerical simulations could be used as complement of current experimental techniques.
An analysis of general chain systems
NASA Technical Reports Server (NTRS)
Passerello, C. E.; Huston, R. L.
1972-01-01
A general analysis of dynamic systems consisting of connected rigid bodies is presented. The number of bodies and their manner of connection is arbitrary so long as no closed loops are formed. The analysis represents a dynamic finite element method, which is computer-oriented and designed so that nonworking, interval constraint forces are automatically eliminated. The method is based upon Lagrange's form of d'Alembert's principle. Shifter matrix transformations are used with the geometrical aspects of the analysis. The method is illustrated with a space manipulator.
Design Considerations for Artificial Lifting of Enhanced Geothermal System Fluids
Xina Xie; K. K. Bloomfield; G. L. Mines; G. M. Shook
2005-07-01
This work evaluates the effect of production well pumping requirements on power generation. The amount of work that can be extracted from a geothermal fluid and the rate at which this work is converted to power increase as the reservoir temperature increases. Artificial lifting is an important issue in this process. The results presented are based on a configuration comprising one production well and one injection well, representing an enhanced geothermal system. The effects of the hydraulic conductivity of the geothermal reservoir, the flow rate, and the size of the production casing are considered in the study. Besides submersible pumps, the possibility of using lineshaft pumps is also discussed.
An alternative circulating fluid bed bottom ash removal system
Barsin, J.A.; Carrea, A.
1999-07-01
Circulating fluid beds pose two challenges for the removal of spent or unreacted calcined limestone and coal ash from the bottom of the bed. The furnace operates under a positive pressure and thus a seal must be maintained between the ambient and the furnace and secondly the bottom ash is discharged at about 1600 F and must be cooled down before transported into a storage silo. In the higher bottom ash-loaded units (firing lignite or anthracite culm) this cooling represents a significant portion of the latent heat lost to the stream generator, thus affecting the overall heat rate. Also the material is abrasive traditionally which has had a negative effect upon the removal system life and maintenance costs. Now there is an alternative to the existing present water screw or auxiliary bed cooler systems applied in the past. This presentation reviews the successful application of a dry bottom ash removal system to pulverized coal (PC) fired units, the experimental and commercial scale developmental work to determine if that PC concept is applicable to Circulating Fluid Bed Units, and projected savings that might be realized if heat recovery, carbon recovery, reduction in parasitic power and maintenance costs all could be improved. The power generation industry typically demands at minimum a commercial demonstration of new technology prior to application and therefore a host site for dry bottom ash removal technology is sought.
An alternative circulating fluid bed bottom ash removal system
Barsin, J.A.; Carrea, A.
1999-11-01
Circulating fluid beds pose two challenges for the removal of spent or unreacted calcined limestone and coal ash from the bottom of the bed. The furnace operates under a positive pressure and thus a seal must be maintained between the ambient and the furnace and secondly the bottom ash is discharged at about 1600 F and must be cooled down before transported into a storage silo. In the higher bottom ash-loaded units (firing lignite or anthracite culm) this cooling represents a significant portion of the latent heat lost to the steam generator, thus affecting the overall heat rate. Also the material is abrasive traditionally which has had a negative effect upon the removal system life and maintenance costs. Now there is an alternative to the existing present water screw or auxiliary bed cooler systems applied in the past. This presentation reviews the successful application of a dry bottom ash removal system to pulverized coal (PC) fired units, the experimental and commercial scale developmental work to determine if that PC concept is applicable to Circulating Fluid Bed Units, and projected savings that might be realized if heat recovery, carbon recovery, reduction in parasitic power and maintenance costs all could be improved. The power generation industry typically demands at minimum a commercial demonstration of new technology prior to application and therefore a host site for dry bottom ash removal technology is sought.
The energetics of stochastic continuum equations for fluid systems
NASA Astrophysics Data System (ADS)
Fleming, Rex J.
1991-05-01
The numerical solution of the relevant prognostic equations for fluid systems involves sources of uncertainty in the initial conditions and uncertainty in the external forces applied to a physical system. The purpose of the note is to introduce stochastic continuum equations for fluid systems that express the uncertainty dynamically. These equations, written in analytical form, describe continuous field quantities which dynamically predict the future and its believability. Beginning with the Navier-Stokes equations and expressing uncertainty as continuous field quantities, one avoids the serious shortcomings and computational redundancy of previous methods using discrete amplitudes (gridpoints or orthogonal functions). No assumptions are made concerning the original deterministic equations, which predict the evolution of a single point in phase space. Rather, these are a subset of the stochastic continuum equations, which predict an infinite cloud of points in phase space. The amount of detailed structure in the shape of the cloud depends upon the degree of derivative closure used in the continuum equations. The solution of the stochastic continuum equations offers a tremendous computational improvement over previous fully stochastic dynamic methods. The equations are perfectly suited to the new emerging parallel computer architecture.
Medical Information Management System (MIMS): A Generalized Interactive Information System.
ERIC Educational Resources Information Center
Alterescu,Sidney; And Others
This report describes an interactive information system. It is a general purpose, free format system which can offer immediate assistance where manipulation of large data bases is required. The medical area is a prime area of application. The report is designed to serve as a manual for potential users--nontechnical personnel who will use the…
Fatality Analysis Reporting System, General Estimates System: 2001 Data Summary.
ERIC Educational Resources Information Center
2003
The Fatality Analysis Reporting System (FARS), which became operational in 1975, contains data on a census of fatal traffic crashes within the 50 states, the District of Columbia, and Puerto Rico. The General Estimates System (GES), which began in 1988, provides data from a nationally representative probability sample selected from all…
Slow inviscid flows of a compressible fluid in spatially inhomogeneous systems.
Ruban, V P
2001-09-01
An ideal compressible fluid is considered, with an equilibrium density being a given function of coordinates due to presence of some static external forces. The slow flows in such system, which do not disturb the density, are investigated with the help of the Hamiltonian formalism. The equations of motion of the system are derived for an arbitrary given topology of the vorticity field. The general form of the Lagrangian for frozen-in vortex lines is established. The local induction approximation for motion of slender vortex filaments in several inhomogeneous physical models is studied.
A study analysis of cable-body systems totally immersed in a fluid stream
NASA Technical Reports Server (NTRS)
Delaurier, J. D.
1972-01-01
A general stability analysis of a cable-body system immersed in a fluid stream is presented. The analytical portion of this analysis treats the system as being essentially a cable problem, with the body dynamics giving the end conditions. The mathematical form of the analysis consists of partial differential wave equations, with the end and auxiliary conditions being determined from the body equations of motion. The equations uncouple to give a lateral problem and a longitudinal problem as in first order airplane dynamics. A series of tests on a tethered wind tunnel model provide a comparison of the theory with experiment.
A comprehensive approach using fuzzy logic to select fracture fluid systems
Xiong, H.; Davidson, B.; Holditch, S.A.; Saunders, B.
1997-01-01
This system, which consists of several fuzzy logic evaluators, can also be applied to similar problems associated with drilling, completing and working over wells. With formation information, the fuzzy logic system first determines base fluid, viscosifying method and energization method before choosing the 3--5 best combinations of possible fluids. The system then determines polymer type and loading, crosslinker, gas type if necessary, and other additives for the fluid systems. Also using fuzzy logic, this system checks the compatibility of the fluid and additives with formation fluids and composition.
Finsler Connection for General Lagrangian Systems
NASA Astrophysics Data System (ADS)
Kozma, László; Ootsuka, Takayoshi
2016-10-01
We give a new simplified definition of a nonlinear connection of Finsler geometry which could be applied not only for regular cases but also for singular ones. For the regular case, it corresponds to the nonlinear part of the Berwald connection, but our connection is expressed not in the line element space but in the point-Finsler space. From this point of view we recognize a Finsler metric L(x, dx) as a "nonlinear form", which could be regarded as a generalization of the original expression of Riemannian metric, √{gμυ (x) dxμ dxυ } . Furthermore our formulae are easy to calculate compared to the conventional methods, which encourages applications to physics. This definition can be used in the case where the Finsler metric is singular, which corresponds to gauge constrained systems in mechanics. Some nontrivial examples of constrained systems are introduced for exposition of applicability of the connection.
Transient fluid flow and heat transfer in petroleum production systems
NASA Astrophysics Data System (ADS)
Lin, Dongqing
Heat transfer is an important phenomenon in both wellbore and reservoir. The pertinent temperature distribution can provide a valuable perspective in analyzing and optimizing the oil production. In this work, two kinds of co-production, production fluid through the annulus and tubing, and through two independent tubings, have been modeled using steady state analysis. The fluid temperatures in the production string and annulus have been solved analytically in both cases. Furthermore, we extended the theory of steady state energy transport to remedy asphaltene deposition problem by circulating the cooling fluid in the annulus. Due to the complex nature of two-phase flow in the oil/gas production, more reliable mechanistic modeling approaches have been developed since early 1980's. Rooted in Hasan-Kabir model, we have developed a wellbore/reservoir coupling simulator for the transient non-Darcy two-phase flow in the flow-after-flow well test. The entire historical flow behavior has been modeled using superposition method and validated with field data. Our second simulation is for the investigation of a blowout well, which is a great concern in the oil field. When the pressure in the wellbore is sufficiently high, the fluids will attain sonic velocity at the wellhead. We presented a computational algorithm to estimate the blowout rate in a given wellbore/reservoir system and examined four major parameters, such as formation permeability, Gas-Oil-Ratio (GOR), reservoir pressure and tubing diameter. The transient nature of this approach also illustrates the evolution process of a blowout. We have also developed a transient simulator to determine the location and severity of a blockage in a gas pipeline based on the theory of two-phase flow and pressure transient analysis. The presence of a sizeable blockage will affect the outlet gas pressure response by decreasing the available pipe volume and increasing the friction loss of the fluid flow. The simulator solves for the
30 CFR 250.455 - What are the general requirements for a drilling fluid program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... drilling fluid program? 250.455 Section 250.455 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.455 What...
30 CFR 250.455 - What are the general requirements for a drilling fluid program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... drilling fluid program? 250.455 Section 250.455 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.455 What are the...
30 CFR 250.455 - What are the general requirements for a drilling fluid program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... drilling fluid program? 250.455 Section 250.455 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.455 What are the...
30 CFR 250.455 - What are the general requirements for a drilling fluid program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... drilling fluid program? 250.455 Section 250.455 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.455 What are the...
ERIC Educational Resources Information Center
Batey, Mark; Chamorro-Premuzic, Tomas; Furnham, Adrian
2009-01-01
Two studies examined the relationships between measures of intelligence, personality and divergent thinking (DT) in student samples. Study one investigated the incremental validity of measures of IQ and fluid intelligence with the Big Five Personality Inventory with regards to DT. Significant relationships of DT to fluid intelligence, Extraversion…
ERIC Educational Resources Information Center
Batey, Mark; Chamorro-Premuzic, Tomas; Furnham, Adrian
2009-01-01
Two studies examined the relationships between measures of intelligence, personality and divergent thinking (DT) in student samples. Study one investigated the incremental validity of measures of IQ and fluid intelligence with the Big Five Personality Inventory with regards to DT. Significant relationships of DT to fluid intelligence, Extraversion…
21 CFR 866.5800 - Seminal fluid (sperm) immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Seminal fluid (sperm) immunological test system. 866.5800 Section 866.5800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5800 Seminal fluid (sperm) immunological test system. (a) Identification. A seminal fluid (sperm...
21 CFR 866.5800 - Seminal fluid (sperm) immunological test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Seminal fluid (sperm) immunological test system. 866.5800 Section 866.5800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5800 Seminal fluid (sperm) immunological test system. (a) Identification. A seminal fluid (sperm...
21 CFR 866.5800 - Seminal fluid (sperm) immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Seminal fluid (sperm) immunological test system. 866.5800 Section 866.5800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5800 Seminal fluid (sperm) immunological test system. (a) Identification. A seminal fluid (sperm...
21 CFR 866.5800 - Seminal fluid (sperm) immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Seminal fluid (sperm) immunological test system. 866.5800 Section 866.5800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5800 Seminal fluid (sperm) immunological test system. (a) Identification. A seminal fluid (sperm...
21 CFR 866.5800 - Seminal fluid (sperm) immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Seminal fluid (sperm) immunological test system. 866.5800 Section 866.5800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5800 Seminal fluid (sperm) immunological test system. (a) Identification. A seminal fluid (sperm...
Possibilistic systems within a general information theory
Joslyn, C.
1999-06-01
The author surveys possibilistic systems theory and place it in the context of Imprecise Probabilities and General Information Theory (GIT). In particular, he argues that possibilistic systems hold a distinct position within a broadly conceived, synthetic GIT. The focus is on systems and applications which are semantically grounded by empirical measurement methods (statistical counting), rather than epistemic or subjective knowledge elicitation or assessment methods. Regarding fuzzy measures as special provisions, and evidence measures (belief and plausibility measures) as special fuzzy measures, thereby he can measure imprecise probabilities directly and empirically from set-valued frequencies (random set measurement). More specifically, measurements of random intervals yield empirical fuzzy intervals. In the random set (Dempster-Shafer) context, probability and possibility measures stand as special plausibility measures in that their distributionality (decomposability) maps directly to an aggregable structure of the focal classes of their random sets. Further, possibility measures share with imprecise probabilities the ability to better handle open world problems where the universe of discourse is not specified in advance. In addition to empirically grounded measurement methods, possibility theory also provides another crucial component of a full systems theory, namely prediction methods in the form of finite (Markov) processes which are also strictly analogous to the probabilistic forms.
Computational fluid dynamics (CFD) studies of a miniaturized dissolution system.
Frenning, G; Ahnfelt, E; Sjögren, E; Lennernäs, H
2017-04-15
Dissolution testing is an important tool that has applications ranging from fundamental studies of drug-release mechanisms to quality control of the final product. The rate of release of the drug from the delivery system is known to be affected by hydrodynamics. In this study we used computational fluid dynamics to simulate and investigate the hydrodynamics in a novel miniaturized dissolution method for parenteral formulations. The dissolution method is based on a rotating disc system and uses a rotating sample reservoir which is separated from the remaining dissolution medium by a nylon screen. Sample reservoirs of two sizes were investigated (SR6 and SR8) and the hydrodynamic studies were performed at rotation rates of 100, 200 and 400rpm. The overall fluid flow was similar for all investigated cases, with a lateral upward spiraling motion and central downward motion in the form of a vortex to and through the screen. The simulations indicated that the exchange of dissolution medium between the sample reservoir and the remaining release medium was rapid for typical screens, for which almost complete mixing would be expected to occur within less than one minute at 400rpm. The local hydrodynamic conditions in the sample reservoirs depended on their size; SR8 appeared to be relatively more affected than SR6 by the resistance to liquid flow resulting from the screen. Copyright © 2017 Elsevier B.V. All rights reserved.
Efficient randomized methods for stability analysis of fluids systems
NASA Astrophysics Data System (ADS)
Dawson, Scott; Rowley, Clarence
2016-11-01
We show that probabilistic algorithms that have recently been developed for the approximation of large matrices can be utilized to numerically evaluate the properties of linear operators in fluids systems. In particular, we present an algorithm that is well suited for optimal transient growth (i.e., nonmodal stability) analysis. For non-normal systems, such analysis can be important for analyzing local regions of convective instability, and in identifying high-amplitude transients that can trigger nonlinear instabilities. Our proposed algorithms are easy to wrap around pre-existing timesteppers for linearized forward and adjoint equations, are highly parallelizable, and come with known error bounds. Furthermore, they allow for efficient computation of optimal growth modes for numerous time horizons simultaneously. We compare the proposed algorithm to both direct matrix-forming and Krylov subspace approaches on a number of test problems. We will additionally discuss the potential for randomized methods to assist more broadly in the speed-up of algorithms for analyzing both fluids data and operators. Supported by AFOSR Grant FA9550-14-1-0289.
NASA Astrophysics Data System (ADS)
Li, Qiang; Yu, Guichang; Liu, Shulian; Zheng, Shuiying
2012-09-01
Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approach is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the journal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system.
GIDL: Generalized Interference Detection and Localization System
NASA Astrophysics Data System (ADS)
Gromov, Konstantin Gennadievich
The Local Area Augmentation System (LAAS) and the Wide Area Augmentation System (WAAS) are being developed by the U.S. Federal Aviation Administration (FAA) to provide satellite navigation performance compliant with the stringent requirements for aircraft precision approach and landing. A primary design goal of both systems is to insure that signal-in-space failures are detected by ground facilities and to exclude the affected measurements before differential corrections are broadcast to users. One such failure is unintentional interference or intentional jamming in the GPS frequency band. To protect integrity, LAAS and WAAS ground facilities must quickly detect the presence of any hazardous interference falling within the restricted band used by GPS. To protect availability, ground personnel must be able to quickly locate and deactivate the interference source. In order to serve this purpose, the prototype Generalized Interference Detection and Localization System (GIDL) has been developed. This prototype includes four antennae and RF sections slaved to a common clock to allow detection and determination of a three-dimensional interference location. Measurements of differential signal propagation delays across the multiple baselines between the GIDL antennae are combined to estimate the location of the undesired interference transmitter. The GIDL system can be implemented in parallel with a three- or four-receiver LAAS ground facility (sharing components with the LAAS reference receivers and processors) or as a separate installation to support nearby LAAS and WAAS sites. This dissertation describes the GIDL theory and GIDL receiver design and derives theoretical predictions of the ability of the GIDL to accurately locate interference sources. The GIDL System has been successfully demonstrated to the Federal Aviation Administration (FAA).
NASA Astrophysics Data System (ADS)
Murad, Mohammad Hassan; Fatema, Saba
2013-02-01
This paper presents a new family of interior solutions of Einstein-Maxwell field equations in general relativity for a static spherically symmetric distribution of a charged perfect fluid with a particular form of charge distribution. This solution gives us wide range of parameter, K, for which the solution is well behaved hence, suitable for modeling of superdense star. For this solution the gravitational mass of a star is maximized with all degree of suitability by assuming the surface density equal to normal nuclear density, ρ nm=2.5×1017 kg m-3. By this model we obtain the mass of the Crab pulsar, M Crab, 1.36 M ⊙ and radius 13.21 km, constraining the moment of inertia > 1.61×1038 kg m2 for the conservative estimate of Crab nebula mass 2 M ⊙. And M Crab=1.96 M ⊙ with radius R Crab=14.38 km constraining the moment of inertia > 3.04×1038 kg m2 for the newest estimate of Crab nebula mass, 4.6 M ⊙. These results are quite well in agreement with the possible values of mass and radius of Crab pulsar. Besides this, our model yields moments of inertia for PSR J0737-3039A and PSR J0737-3039B, I A =1.4285×1038 kg m2 and I B =1.3647×1038 kg m2 respectively. It has been observed that under well behaved conditions this class of solutions gives us the overall maximum gravitational mass of super dense object, M G(max)=4.7487 M ⊙ with radius R_{M_{max}}=15.24 km, surface redshift 0.9878, charge 7.47×1020 C, and central density 4.31 ρ nm.
Nováková, Lucie; Douša, Michal
2017-01-15
High throughput general chiral screening method using supercritical fluid chromatography was developed. This method takes an advantage of very fast gradient screening (3 min + 1 min isocratic hold) and generic enantioselectivity of the combined additive formed by 0.1% trifluoroacetic (TFA) acid and 0.1% diethylamine (DEA). The TFA/DEA combined additive was systematically added to organic modifiers methanol and isopropanol. Among five tested polysaccharide-based chiral stationary phases, amylose tris(3,5-dimethylphenylcarbamate) and cellulose tris(3,5-dimethylphenylcarbamate) provided the best enantioseparation success rate. Therefore, the proposed initial first-line screening includes four experiments using these two stationary phases and the above mentioned two combinations: CO2/methanol and CO2/isopropanol + the combined additive. If these stationary phases fail in the screening step, cellulose tris(3-chloro-4-methylphenylcarbamate) and cellulose tris(3,5-dichlorophenylcarbamate) can be proposed for the screening in the second line. For further optimization in case of insufficient resolution obtained in the screening phase fine tuning of temperature, BPR pressure and gradient slope was tested with unsuccessful results. An improvement of enantioselectivity was obtained only when gradient elution was replaced by isocratic elution with substantially lower amount of organic modifier, when changing the concentration of the additive or when using combined organic modifier, such as methanol/acetonitrile (1:1). Finally, to enable the MS compatibility, also volatile additives including ammonium formate and ammonium acetate were tested. The results were more encouraging than expected. Volatile buffers thus make an interesting option in chiral SFC screening methods, however, at the cost of somewhat lower enantioselectivity. Copyright Â© 2016 Elsevier B.V. All rights reserved.
Physical and chemical aspects of fluid evolution in hydrothermal ore systems
Cline, J.S.
1990-01-01
A one-dimensional, physical model describing two-phase fluid flow is used to simulate the effect of boiling on silica precipitation in geothermal and epithermal precious metal systems. The extent to which decreasing temperature and fluid vaporization are responsible for quartz precipitation is dependent on three related factors-the temperature of the fluid entering the two-phase system, the change in fluid temperature with respect to distance of fluid travel, and the extent of fluid vaporization in regions of gradual temperature decline. Boiling contributes to significant quartz precipitation in systems with high-temperature basal fluids, and in deeper portions of systems in which extensive vaporization occurs. Temperature reduction is a dominate precipitation mechanism in near-surface regions where temperature reduction is rapid, and in systems with lower temperature fluids. Quartz precipitation is most intense in systems with high mass flux/permeability ratios and low initial fluid temperatures. Geothermal systems with high mass flux/permeability and moderately low initial fluid temperatures are most effective in producing epithermal systems with abundant gold. Fluid evolution during the magnetic-hydrothermal transition and coincident molybdenite precipitation at Questa, New Mexico, has been traced using fluid inclusion microthermometry. The lack of cogenetic liquid- and vapor-rich inclusions, plus final homogenization of most saline, liquid-rich inclusions by halite dissolution indicate that high-salinity fluids were generated by a mechanism other than fluid immiscibility. Pressure flucuations are capable of producing the observed fluids and inclusion behavior. Solubility data indicate that the crystallizing aplite porphyry generated fluids with salinates as high as 57 wt.% NaCl equivalent.
Smart Fluid Systems: The Advent of Autonomous Liquid Robotics
2017-01-01
Organic, inorganic or hybrid devices in the liquid state, kept in a fixed volume by surface tension or by a confining membrane that protects them from a harsh environment, could be used as biologically inspired autonomous robotic systems with unique capabilities. They could change shape according to a specific exogenous command or by means of a fully integrated adaptive system, and provide an innovative solution for many future applications, such as space exploration in extreme or otherwise challenging environments, post‐disaster search and rescue in ground applications, compliant wearable devices, and even in the medical field for in vivo applications. This perspective provides an initial assessment of existing capabilities that could be leveraged to pursue the topic of “Smart Fluid Systems” or “Liquid Engineered Systems”. PMID:28725530
A scintillator purification plant and fluid handling system for SNO+
NASA Astrophysics Data System (ADS)
Ford, Richard J.
2015-08-01
A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with 130Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.
A scintillator purification plant and fluid handling system for SNO+
Ford, Richard J.
2015-08-17
A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with {sup 130}Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.
Generalized two-fluid equilibria: Understanding RT-1 experiments and beyond
NASA Astrophysics Data System (ADS)
Yoshida, Z.; Mahajan, S. M.; Mizushima, T.; Yano, Y.; Saitoh, H.; Morikawa, J.
2010-11-01
Diversity of plasma structures, which degenerates in the ideal magnetohydrodynamic model, can emerge in many ways in a two-fluid plasma endowed with a hierarchy of scales. We study the equilibrium structure of high-beta (high temperature and low-density) electrons in a relatively weak magnetic field. Spontaneous flow generation and strong diamagnetism are clear manifestations of the nonideal two-fluid dynamics scaled, respectively, by the ion and electron-inertia lengths (skin depths). The theory predicts stronger flow and diamagnetism in the nonlinear regime of the two-fluid dynamics.
Fluid Flow Prediction with Development System Interwell Connectivity Influence
NASA Astrophysics Data System (ADS)
Bolshakov, M.; Deeva, T.; Pustovskikh, A.
2016-03-01
In this paper interwell connectivity has been studied. First of all, literature review of existing methods was made which is divided into three groups: Statistically-Based Methods, Material (fluid) Propagation-Based Methods and Potential (pressure) Change Propagation-Based Method. The disadvantages of the first and second groups are as follows: methods do not involve fluid flow through porous media, ignore any changes of well conditions (BHP, skin factor, etc.). The last group considers changes of well conditions and fluid flow through porous media. In this work Capacitance method (CM) has been chosen for research. This method is based on material balance and uses weight coefficients lambdas to assess well influence. In the next step synthetic model was created for examining CM. This model consists of an injection well and a production well. CM gave good results, it means that flow rates which were calculated by analytical method (CM) show matching with flow rate in model. Further new synthetic model was created which includes six production and one injection wells. This model represents seven-spot pattern. To obtain lambdas weight coefficients, the delta function was entered using by minimization algorithm. Also synthetic model which has three injectors and thirteen producer wells was created. This model simulates seven-spot pattern production system. Finally Capacitance method (CM) has been adjusted on real data of oil Field Ω. In this case CM does not give enough satisfying results in terms of field data liquid rate. In conclusion, recommendations to simplify CM calculations were given. Field Ω is assumed to have one injection and one production wells. In this case, satisfying results for production rates and cumulative production were obtained.
Fluid-magmatic systems and volcanic centers in Northern Caucasus
NASA Astrophysics Data System (ADS)
Sobisevich, Alexey L.; Masurenkov, Yuri P.; Pouzich, Irina N.; Laverova, Ninel I.
2014-05-01
The fluid-magmatic activity within modern and Holocene volcanic centers of The Greater Caucasus is considered. Results of complimentary geological and geophysical studies carried out in the Elbrus volcanic area and the Pyatigorsk volcanic center are presented. The deep magmatic source and the peripheral magmatic chamber of the Elbrus volcano are outlined via comparative analysis of geological and experimental geophysical data (microgravity studies, magneto-telluric sounding, temperature variations measured in carbonaceous mineral waters). It has been determined that the peripheral magmatic chamber and the deep magmatic source are located at depths of 0-7 and 20-30 km below sea level, respectively, and the geothermal gradient beneath the volcano is 100°C/km. In this study, analysis of processes of modern heat outflux produced by carbonaceous springs in the Elbrus volcanic center is carried out with respect to updated information about spatial configuration of deep fluid-magmatic structures. It has been shown, that observed degradation and the rate of melting for the glaciers on the volcano's eastern slope are related both to climatic variations and endogenic heat flux. In the area of Caucasus Mineral Waters (Pyatigorsk volcanic center) the annular zonality of structural, petro-geochemical, geothermal, and hydrochemical features has been found. The likelihood of existence of peripheral magmatic source at depth of 9 - 15 km is suggested. The relation between hydro-chemical properties of Caucasus Mineral Waters and structural as well as petrologic and geochemical features of the fluid-magmatic system of the Pyatigorsk volcanic center is determined and discussed.
Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun
2014-12-07
Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.
Fluid-magmatic systems and volcanic centers in Northern Caucasus
NASA Astrophysics Data System (ADS)
Sobisevich, Alexey L.; Masurenkov, Yuri P.; Pouzich, Irina N.; Laverova, Ninel I.
2013-04-01
The central segment of Alpine mobile folded system and the Greater Caucasus is considered with respect to fluid-magmatic activity within modern and Holocene volcanic centers. A volcanic center is a combination of volcanoes, intrusions, and hydrothermal features supported by endogenous flow of matter and energy localised in space and steady in time; responsible for magma generation and characterized by structural representation in the form of circular dome and caldera associations. Results of complimentary geological and geophysical studies carried out in the Elbrus volcanic area and the Pyatogorsk volcanic center are presented. The deep magmatic source and the peripheral magmatic chamber of the Elbrus volcano are outlined via comparative analysis of geological and experimental geophysical data (microgravity studies, magneto-telluric profiling, temperature of carbonaceous mineral waters). It has been determined that the peripheral magmatic chamber and the deep magmatic source of the volcano are located at depths of 0-7 and 20-30 km below sea level, respectively, and the geothermal gradient beneath the volcano is 100°C/km. In this study, analysis of processes of modern heat outflux produced by carbonaceous springs in the Elbrus volcanic center is carried out with respect to updated information about spatial configuration of deep fluid-magmatic structures of the Elbrus volcano. It has been shown, that degradation of the Elbrus glaciers throughout the historical time is related both to climatic variations and endogenic heat. The stable fast rate of melting for the glaciers on the volcano's eastern slope is of theoretical and practical interest as factors of eruption prognosis. The system approach to studying volcanism implies that events that seem to be outside the studied process should not be ignored. This concerns glaciers located in the vicinity of volcanoes. The crustal rocks contacting with the volcanism products exchange matter and energy between each other
Fluid-magmatic systems and volcanic centers in Northern Caucasus
NASA Astrophysics Data System (ADS)
Sobisevich, A. L.; Masurenkov, Yu. P.; Pouzich, I. N.; Laverova, N. I.
2012-04-01
The central segment of Alpine mobile folded system and the Greater Caucasus is considered with respect to fluid-magmatic activity within modern and Holocene volcanic centers. A volcanic center is a combination of volcanoes, intrusions, and hydrothermal features supported by endogenous flow of matter and energy localised in space and steady in time; responsible for magma generation and characterized by structural representation in the form of circular dome and caldera associations. Results of complimentary geological and geophysical studies carried out in the Elbrus volcanic area and the Pyatogorsk volcanic center are presented. The deep magmatic source and the peripheral magmatic chamber of the Elbrus volcano are outlined via comparative analysis of geological and experimental geophysical data (microgravity studies, magneto-telluric profiling, temperature of carbonaceous mineral waters). It has been determined that the peripheral magmatic chamber and the deep magmatic source of the volcano are located at depths of 0-7 and 20-30 km below sea level, respectively, and the geothermal gradient beneath the volcano is 100°C/km. In this study, analysis of processes of modern heat outflux produced by carbonaceous springs in the Elbrus volcanic center is carried out with respect to updated information about spatial configuration of deep fluid-magmatic structures of the Elbrus volcano. It has been shown, that degradation of the Elbrus glaciers throughout the historical time is related both to climatic variations and endogenic heat. The stable fast rate of melting for the glaciers on the volcano's eastern slope is of theoretical and practical interest as factors of eruption prognosis. The system approach to studying volcanism implies that events that seem to be outside the studied process should not be ignored. This concerns glaciers located in the vicinity of volcanoes. The crustal rocks contacting with the volcanism products exchange matter and energy between each other
Zamir, Mair; Moore, James E; Fujioka, Hideki; Gaver, Donald P
2010-03-01
In the field of fluid flow within the human body, focus has been placed on the transportation of blood in the systemic circulation since the discovery of that system; but, other fluids and fluid flow phenomena pervade the body. Some of the most fascinating fluid flow phenomena within the human body involve fluids other than blood and a service other than transport--the lymphatic and pulmonary systems are two striking examples. While transport is still involved in both cases, this is not the only service which they provide and blood is not the only fluid involved. In both systems, filtration, extraction, enrichment, and in general some "treatment" of the fluid itself is the primary function. The study of the systemic circulation has also been conventionally limited to treating the system as if it were an open-loop system governed by the laws of fluid mechanics alone, independent of physiological controls and regulations. This implies that system failures can be explained fully in terms of the laws of fluid mechanics, which of course is not the case. In this paper we examine the clinical implications of these issues and of the special biofluid mechanics issues involved in the lymphatic and pulmonary systems.
Microgravity fluid management in two-phase thermal systems
NASA Technical Reports Server (NTRS)
Parish, Richard C.
1987-01-01
Initial studies have indicated that in comparison to an all liquid single phase system, a two-phase liquid/vapor thermal control system requires significantly lower pumping power, demonstrates more isothermal control characteristics, and allows greater operational flexibility in heat load placement. As a function of JSC's Work Package responsibility for thermal management of space station equipment external to the pressurized modules, prototype development programs were initiated on the Two-Phase Thermal Bus System (TBS) and the Space Erectable Radiator System (SERS). JSC currently has several programs underway to enhance the understanding of two-phase fluid flow characteristics. The objective of one of these programs (sponsored by the Microgravity Science and Applications Division at NASA-Headquarters) is to design, fabricate, and fly a two-phase flow regime mapping experiment in the Shuttle vehicle mid-deck. Another program, sponsored by OAST, involves the testing of a two-phase thermal transport loop aboard the KC-135 reduced gravity aircraft to identify system implications of pressure drop variation as a function of the flow quality and flow regime present in a representative thermal system.
Jansen, I G H; Schneiders, J J; Potters, W V; van Ooij, P; van den Berg, R; van Bavel, E; Marquering, H A; Majoie, C B L M
2014-08-01
Attempts have been made to associate intracranial aneurysmal hemodynamics with aneurysm growth and rupture status. Hemodynamics in aneurysms is traditionally determined with computational fluid dynamics by using generalized inflow boundary conditions in a parent artery. Recently, patient-specific inflow boundary conditions are being implemented more frequently. Our purpose was to compare intracranial aneurysm hemodynamics based on generalized versus patient-specific inflow boundary conditions. For 36 patients, geometric models of aneurysms were determined by using 3D rotational angiography. 2D phase-contrast MR imaging velocity measurements of the parent artery were performed. Computational fluid dynamics simulations were performed twice: once by using patient-specific phase-contrast MR imaging velocity profiles and once by using generalized Womersley profiles as inflow boundary conditions. Resulting mean and maximum wall shear stress and oscillatory shear index values were analyzed, and hemodynamic characteristics were qualitatively compared. Quantitative analysis showed statistically significant differences for mean and maximum wall shear stress values between both inflow boundary conditions (P < .001). Qualitative assessment of hemodynamic characteristics showed differences in 21 cases: high wall shear stress location (n = 8), deflection location (n = 3), lobulation wall shear stress (n = 12), and/or vortex and inflow jet stability (n = 9). The latter showed more instability for the generalized inflow boundary conditions in 7 of 9 patients. Using generalized and patient-specific inflow boundary conditions for computational fluid dynamics results in different wall shear stress magnitudes and hemodynamic characteristics. Generalized inflow boundary conditions result in more vortices and inflow jet instabilities. This study emphasizes the necessity of patient-specific inflow boundary conditions for calculation of hemodynamics in cerebral aneurysms by using
Design considerations for a micro-g superfluid helium fluid acquisition system
NASA Technical Reports Server (NTRS)
Lee, J. M.
1989-01-01
The general description, the operation, and the design of a superfluid helium (SFHe) fluid acquisition system (FAS) for use under microgravity conditions is presented. For the type of FAS considered here, where fine-mesh woven screens are used to retain flowing SFHe within a gallery arm (flow) channel, those forces which determine the flow dynamics are the micro-g accelerations, liquid surface tension, and tensile strength and cumulative pressure drops along a flow path that begins at the bulk liquid and ends at the entrance to a pump. For this case, the dimensionless number, N(T) is written as the ratio between the pressure drop across the screen and the surface tension forces at the screen for low fluid velocities. Static Bond number measurements have bene taken for SFHe using 325 x 2300 twilled Dutch screen and have indicated a screen pore hydraulic radius of 0.00031 cm.
NASA Astrophysics Data System (ADS)
Kumar, Jitendra; Gupta, Y. K.
2014-05-01
In this paper first ever we have developed a class of well behaved charged fluid spheres expressed by a space time with its hypersurfaces . as spheroid for the case 0< K<1 with surface density 2×1014 gm/cm3. The same utilized to construct a superdense star and seen that star satisfies all well behaved condition for 0< K≤0.038. The maximum mass occupied and the corresponding radius are found to be 4.830982M Θ and 20.7612 km respectively. The redshift at the center and on the surface is given z 0=0.425367 and z a =0.240901.
Computational fluid dynamics applications to improve crop production systems
USDA-ARS?s Scientific Manuscript database
Computational fluid dynamics (CFD), numerical analysis and simulation tools of fluid flow processes have emerged from the development stage and become nowadays a robust design tool. It is widely used to study various transport phenomena which involve fluid flow, heat and mass transfer, providing det...
Therapeutic Options for Controlling Fluids in the Visual System
NASA Technical Reports Server (NTRS)
Curry, Kristina M.; Wotring, Virginia E.
2014-01-01
Visual Impairment/Intracranial Pressure (VIIP) is a newly recognized risk at NASA. The VIIP project examines the effect of long-term exposure to microgravity on vision of crewmembers before and after they return to Earth. Diamox (acetazolamide) is a medication which is used to decrease intraocular pressure; however, it carries a 3% risk of kidney stones. Astronauts are at a higher risk of kidney stones during spaceflight and the use Diamox would only increase the risk; therefore alternative therapies were investigated. Histamine 2 (H2) antagonist acid blockers such as cimetidine, ranitidine, famotidine and nizatidine are typically used to relieve the symptoms of gastroesophageal reflux disease (GERD). H2 receptors have been found in the human visual system, which has led to research on the use of H2 antagonist blockers to control fluid production in the human eye. Another potential therapeutic strategy is targeted at aquaporins, which are water channels that help maintain fluid homeostasis. Aquaporin antagonists are also known to affect intracranial pressure which can in turn alter intraocular pressure. Studies on aquaporin antagonists suggest high potential for effective treatment. The primary objective of this investigation is to review existing research on alternate medications or therapy to significantly reduce intracranial and intraocular pressure. A literature review was conducted. Even though we do not have all the answers quite yet, a considerable amount of information was discovered, and findings were narrowed, which should allow for more conclusive answers to be found in the near future.
Computational Fluid Dynamics of Acoustically Driven Bubble Systems
NASA Astrophysics Data System (ADS)
Glosser, Connor; Lie, Jie; Dault, Daniel; Balasubramaniam, Shanker; Piermarocchi, Carlo
2014-03-01
The development of modalities for precise, targeted drug delivery has become increasingly important in medical care in recent years. Assemblages of microbubbles steered by acoustic pressure fields present one potential vehicle for such delivery. Modeling the collective response of multi-bubble systems to an intense, externally applied ultrasound field requires accurately capturing acoustic interactions between bubbles and the externally applied field, and their effect on the evolution of bubble kinetics. In this work, we present a methodology for multiphysics simulation based on an efficient transient boundary integral equation (TBIE) coupled with molecular dynamics (MD) to compute trajectories of multiple acoustically interacting bubbles in an ideal fluid under pulsed acoustic excitation. For arbitrary configurations of spherical bubbles, the TBIE solver self-consistently models transient surface pressure distributions at bubble-fluid interfaces due to acoustic interactions and relative potential flows induced by bubble motion. Forces derived from the resulting pressure distributions act as driving terms in the MD update at each timestep. The resulting method efficiently and accurately captures individual bubble dynamics for clouds containing up to hundreds of bubbles.
NATRAN2. Fluid Hammer Analysis 1D & 2D Systems
Shin, Y.W.; Valentin, R.A.
1992-03-03
NATRAN2 analyzes short-term pressure-pulse transients in a closed hydraulic system consisting of a two-dimensional axisymmetric domain connected to a one-dimensional piping network. The one-dimensional network may consist of series or parallel piping, pipe junctions, diameter discontinuities, junctions of three to six branches, closed ends, surge tanks, far ends, dummy junctions, acoustic impedance discontinuities, and rupture disks. By default, the working fluid is assumed to be liquid sodium without cavitation; but another working fluid can be specified in terms of its density, sonic speed, and viscosity. The source pressure pulse can arise from one of the following: a pressure-time function specified at some point in the two-dimensional domain, a pressure-time function or a sodium-water reaction specified at some point in the one-dimensional domain. The pressure pulse from a sodium-water reaction is assumed to be generated according to the dynamic model of Zaker and Salmon.
Fully automated dialysis system based on the central dialysis fluid delivery system.
Kawanishi, Hideki; Moriishi, Misaki; Sato, Takashi; Taoka, Masahiro
2009-01-01
The fully automated dialysis system (FADS) was developed as an improvement over previous patient monitors used in the treatment of hemodialysis, with the aim of standardizing and promoting labor-saving in such treatment. This system uses backfiltration dialysis fluid to perform priming, blood rinse back and rapid fluid replenishment, and causes guiding of blood into the dialyzer by the drainage pump for ultrafiltration. This requires that the dialysis fluid used be purified to a high level. The central dialysis fluid delivery system (CDDS) combines the process of the creation and supply of dialysis water and dialysis fluid to achieve a level of purity equivalent with ultrapure dialysis fluid. FADS has the further advantages of greater efficiency and streamlined operation, reducing human error and the risk of infection without requiring the storage or disposal of normal saline solution. The simplification of hemodialysis allows for greater frequency of dialysis or extended dialysis, enabling treatment to be provided in line with the patient's particular situation. FADS thus markedly improves the reliability, safety and standardization of dialysis procedures while ensuring labor-saving in these procedures, making it of particular utility for institutions dealing with dialysis on a large scale.
Working fluid selection for space-based two-phase heat transport systems
NASA Technical Reports Server (NTRS)
Mclinden, Mark O.
1988-01-01
The working fluid for externally-mounted, space-based two-phase heat transport systems is considered. A sequence of screening criteria involving freezing and critical point temperatures and latent heat of vaporization and vapor density are applied to a data base of 860 fluids. The thermal performance of the 52 fluids which pass this preliminary screening are then ranked according to their impact on the weight of a reference system. Upon considering other nonthermal criteria (flammability, toxicity, and chemical stability) a final set of 10 preferred fluids is obtained. The effects of variations in system parameters is investigated for these 10 fluids by means of a factorial design.
Tracing fluid pathways in Archean hydrothermal systems with imaging spectroscopy
NASA Astrophysics Data System (ADS)
von Ruitenbeek, F. J. A.; Cudahy, T.; Hale, M.; van der Werff, H. M. A.; van der Meer, F. D.
2008-09-01
Abstract Fossil submarine hydrothermal systems in Archean greenstone belts and other geologic terranes are important because of their relationship with volcanic massive sulfide (VMS) mineral deposits and their association with environments that are favorable for early forms of life. Interpretation and reconstruction of these systems is difficult because of their geologic complexity. Airborne imaging spectroscopy provides information about the presence, abundance, and composition of near-infrared active minerals at continuous spatial coverage and high spatial resolution, and can therefore be used to obtain new geologic insights into of the Archean hydrothermal systems. It was applied to the Panorama VMS-district in the Soanesville greenstone belt, Western Australia. Results from the analyses of 189 hand specimen showed that the wavelength position of the main absorption feature of white micas, a proxy for their Al content, varied between 2195 nm and 2225 nm. These wavelength variations and the relative abundance of white micas were used to reconstruct fossil fluid pathways from low-temperature recharge to hightemperature discharge zones. Results also showed that the absorption-wavelength variations of white micas could be mapped from airborne imaging spectroscopy using a stochastic method where the presence of white mica minerals and their absorption wavelengths in field measurements were predicted from hyperspectral band ratios. Analysis of the spatial patterns in segmented images, covering 52 km2, of white mica probability and their absorption wavelengths and their comparison with field data resulted in the identification of regional scale hydrothermal fluid pathways, a regional-scale K alteration event, and differences in hydrothermal regime between the northern and southern parts of the test area.
Pawaskar, Sainath Shrikant; Fisher, John; Jin, Zhongmin
2010-03-01
Contact detection in cartilage contact mechanics is an important feature of any analytical or computational modeling investigation when the biphasic nature of cartilage and the corresponding tribology are taken into account. The fluid flow boundary conditions will change based on whether the surface is in contact or not, which will affect the interstitial fluid pressurization. This in turn will increase or decrease the load sustained by the fluid phase, with a direct effect on friction, wear, and lubrication. In laboratory experiments or clinical hemiarthroplasty, when a rigid indenter or metallic prosthesis is used to apply load to the cartilage, there will not be any fluid flow normal to the surface in the contact region due to the impermeable nature of the indenter/prosthesis. In the natural joint, on the other hand, where two cartilage surfaces interact, flow will depend on the pressure difference across the interface. Furthermore, in both these cases, the fluid would flow freely in non-contacting regions. However, it should be pointed out that the contact area is generally unknown in advance in both cases and can only be determined as part of the solution. In the present finite element study, a general and robust algorithm was proposed to decide nodes in contact on the cartilage surface and, accordingly, impose the fluid flow boundary conditions. The algorithm was first tested for a rigid indenter against cartilage model. The algorithm worked well for two-dimensional four-noded and eight-noded axisymmetric element models as well as three-dimensional models. It was then extended to include two cartilages in contact. The results were in excellent agreement with the previous studies reported in the literature.
NASA Astrophysics Data System (ADS)
Aitova, E. V.; Bratsun, D. A.; Kostarev, K. G.; Mizev, A. I.; Mosheva, E. A.
2016-12-01
The development of convective instability in a two-layer system of miscible fluids placed in a narrow vertical gap has been studied theoretically and experimentally. The upper and lower layers are formed with aqueous solutions of acid and base, respectively. When the layers are brought into contact, the frontal neutralization reaction begins. We have found experimentally a new type of convective instability, which is characterized by the spatial localization and the periodicity of the structure observed for the first time in the miscible systems. We have tested a number of different acid-base systems and have found a similar patterning there. In our opinion, it may indicate that the discovered effect is of a general nature and should be taken into account in reaction-diffusion-convection problems as another tool with which the reaction can govern the movement of the reacting fluids. We have shown that, at least in one case (aqueous solutions of nitric acid and sodium hydroxide), a new type of instability called as the concentration-dependent diffusion convection is responsible for the onset of the fluid flow. It arises when the diffusion coefficients of species are different and depend on their concentrations. This type of instability can be attributed to a variety of double-diffusion convection. A mathematical model of the new phenomenon has been developed using the system of reaction-diffusion-convection equations written in the Hele-Shaw approximation. It is shown that the instability can be reproduced in the numerical experiment if only one takes into account the concentration dependence of the diffusion coefficients of the reagents. The dynamics of the base state, its linear stability and nonlinear development of the instability are presented. It is also shown that by varying the concentration of acid in the upper layer one can achieve the occurrence of chemo-convective solitary cell in the bulk of an almost immobile fluid. Good agreement between the
COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems
NASA Astrophysics Data System (ADS)
Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii
2014-05-01
Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the
Solid-fluid equilibrium of fused-hard-sphere systems: Free-volume theories and simulation
NASA Astrophysics Data System (ADS)
Gay, Shawn Christian
Historically, the theoretical investigation of solid-fluid phase equilibrium has largely focused on the freezing of hard spheres. Only relatively recently have theories begun to address the phase equilibria of systems of nonspherical molecules. This thesis details the application of various theoretical methods to predict the solid-fluid phase equilibria of systems of nonspherical molecules. The general approach is to first calculate the properties of systems of fused-hard-sphere molecules, and then model real systems by extending the fused-hard-sphere results using generalized van der Waals theory and perturbation theory to describe the effects of longer range interactions. Results of original research are presented that demonstrate the effectiveness of the theories, often by direct comparison with Monte Carlo simulation results and, where applicable, by comparison with experiment. We use a simple cell theory to calculate the free energy of the heteronuclear hard-dumbbell solid and an analytic equation of state to calculate the free energy of the fluid. Decreasing the ratio of the diameters of the spheres composing the dumbbell is found to increase the pressure at freezing. We have also calculated the distribution of free volumes in the solid phase of two-dimensional hard dumbbells. This information allows us to characterize a fluctuating cell theory as well as new statistical geometry relations for fused-hard-sphere systems presented in this thesis. Finally, we use simple cell theory results for hard dumbbells in a generalized van der Waals theory to calculate the solid-liquid phase transition for a system of dipolar hard dumbbells. Our model is chosen to approximate a methyl chloride molecule. Thermodynamic perturbation theory is used to include dipolar effects in the fluid equation of state, and static-lattice sums are used to approximate dipolar effects in the solid phase. We find that the presence of a dipole moment stabilizes a non-closepacking crystal
Safety System for Controlling Fluid Flow into a Suction Line
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)
2015-01-01
A safety system includes a sleeve fitted within a pool's suction line at the inlet thereof. An open end of the sleeve is approximately aligned with the suction line's inlet. The sleeve terminates with a plate that resides within the suction line. The plate has holes formed therethrough. A housing defining a plurality of distinct channels is fitted in the sleeve so that the distinct channels lie within the sleeve. Each of the distinct channels has a first opening on one end thereof and a second opening on another end thereof. The second openings reside in the sleeve. Each of the distinct channels is at least approximately three feet in length. The first openings are in fluid communication with the water in the pool, and are distributed around a periphery of an area of the housing that prevents coverage of all the first openings when a human interacts therewith.
Vortex element methods for fluid dynamic analysis of engineering systems
NASA Astrophysics Data System (ADS)
Lewis, Reginald Ivan
The surface-vorticity method of computational fluid mechanics is described, with an emphasis on turbomachinery applications, in an introduction for engineers. Chapters are devoted to surface singularity modeling; lifting bodies, two-dimensional airfoils, and cascades; mixed-flow and radial cascades; bodies of revolution, ducts, and annuli; ducted propellers and fans; three-dimensional and meridional flows in turbomachines; free vorticity shear layers and inverse methods; vortex dynamics in inviscid flows; the simulation of viscous diffusion in discrete vortex modeling; vortex-cloud modeling by the boundary-integral method; vortex-cloud models for lifting bodies and cascades; and grid systems for vortex dynamics and meridional flows. Diagrams, graphs, and the listings for a set of computer programs are provided.
Characterization of Fluid Flow in Paper-Based Microfluidic Systems
NASA Astrophysics Data System (ADS)
Walji, Noosheen; MacDonald, Brendan
2014-11-01
Paper-based microfluidic devices have been presented as a viable low-cost alternative with the versatility to accommodate many applications in disease diagnosis and environmental monitoring. Current microfluidic designs focus on the use of silicone and PDMS structures, and several models have been developed to describe these systems; however, the design process for paper-based devices is hindered by a lack of prediction capability. In this work we simplify the complex underlying physics of the capillary-driven flow mechanism in a porous medium and generate a practical numerical model capable of predicting the flow behaviour. We present our key insights regarding the properties that dictate the behaviour of fluid wicking in paper-based microfluidic devices. We compare the results from our model to experiments and discuss the application of our model to design of paper-based microfluidic devices for arsenic detection in drinking water in Bangladesh.
EXPERIMENTAL BUBBLE FORMATION IN A LARGE SCALE SYSTEM FOR NEWTONIAN AND NONNEWTONIAN FLUIDS
Leishear, R; Michael Restivo, M
2008-06-26
The complexities of bubble formation in liquids increase as the system size increases, and a photographic study is presented here to provide some insight into the dynamics of bubble formation for large systems. Air was injected at the bottom of a 28 feet tall by 30 inch diameter column. Different fluids were subjected to different air flow rates at different fluid depths. The fluids were water and non-Newtonian, Bingham plastic fluids, which have yield stresses requiring an applied force to initiate movement, or shearing, of the fluid. Tests showed that bubble formation was significantly different in the two types of fluids. In water, a field of bubbles was formed, which consisted of numerous, distributed, 1/4 to 3/8 inch diameter bubbles. In the Bingham fluid, large bubbles of 6 to 12 inches in diameter were formed, which depended on the air flow rate. This paper provides comprehensive photographic results related to bubble formation in these fluids.
PORTHOS - A computer code for solving general three-dimensional, time-dependent two-fluid equations
Chan, R.K.C.; Masiello, P.J.; Srikantiah, G.S.
1987-01-01
PORTHOS is a computer code for calculating three-dimensional steady-state or time dependent two-phase flow in porous or non-porous media. It was developed with the initial goal of simulating two-phase flows in steam generators of PWR nuclear power plants. However, the modular code design and the generality of approach allow application to a wide variety of problems in single phase or two-phase flow. The present method employs a finite difference technique to solve the complete set of two-fluid equations, i.e., the ''six-equation'' model which includes tow mass conservation equations, two momentum equations, two energy equations, as well as constitutive equations to effect closure of the system. The use of volume porosity and surface permeability allows the treatment of complex geometry. This paper describes the mathematical basis, the numerical solution procedure employed, and the results of comparisons with two sources of experimental data: the 8MW FRIGG loop experiment and the Electricite de France (EdF) Bugey 4 steam generator test. Calculations of the FRIGG experiment by PORTHOS, in terms of void fraction distribution, are in good agreement with measurements. Verification against the EdF data is also quite satisfactory.
Toledo, Juan Diego; Morell, Carlos; Vento, Maximo
2016-06-01
Using hypotonic intravenous solutions for baseline fluid needs in paediatric patients on a nil by mouth diet may cause serious complications, including hyponatraemia, cerebral oedema and even death. We analysed the evolution of natraemia and explored any adverse effects on children treated with intravenous isotonic fluids. This was a prospective study of 50 patients consecutively admitted to a general paediatric ward who were treated with isotonic intravenous fluids and on a nil by mouth diet. The most prevalent diagnosis was acute gastroenteritis (64%). Hyponatraemia, defined as sodium in plasma of <135 mEq/L, affected 22% of the subjects, but none displayed this during the first postadmission analysis at a median of eight hours. Sodium levels changed by an average of +0.64 mEq/L/hour. The subgroup analysis (0.91 versus 0.56 mEq/L/hour, p = 0.02) and multiple linear regression (R(2) = 0.756) showed a greater increase in sodium when patients had hyponatraemia on admission. Iatrogenic hyponatraemia was not detected, but two patients showed mild hypernatraemia and 35% developed clinically insignificant hyperchloraemia. Using intravenous isotonic fluids induced a positive trend in natraemia on a general paediatric ward, particularly if patients were hyponatraemic when admitted, and did not induce clinically relevant adverse effects. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Computational fluid dynamics for turbomachinery internal air systems.
Chew, John W; Hills, Nicholas J
2007-10-15
Considerable progress in development and application of computational fluid dynamics (CFD) for aeroengine internal flow systems has been made in recent years. CFD is regularly used in industry for assessment of air systems, and the performance of CFD for basic axisymmetric rotor/rotor and stator/rotor disc cavities with radial throughflow is largely understood and documented. Incorporation of three-dimensional geometrical features and calculation of unsteady flows are becoming commonplace. Automation of CFD, coupling with thermal models of the solid components, and extension of CFD models to include both air system and main gas path flows are current areas of development. CFD is also being used as a research tool to investigate a number of flow phenomena that are not yet fully understood. These include buoyancy-affected flows in rotating cavities, rim seal flows and mixed air/oil flows. Large eddy simulation has shown considerable promise for the buoyancy-driven flows and its use for air system flows is expected to expand in the future.
Weitz, Karl K.; Moore, Ronald J.
2010-07-13
A method and device are disclosed that provide for detection of fluid leaks in analytical instruments and instrument systems. The leak detection device includes a collection tube, a fluid absorbing material, and a circuit that electrically couples to an indicator device. When assembled, the leak detection device detects and monitors for fluid leaks, providing a preselected response in conjunction with the indicator device when contacted by a fluid.
Evaluation of MS-6 Fire-Resistant Fluid for 8000 PSI Lightweight Hydraulic Systems.
1981-10-10
3, an analysis was made to determine the eltects ot using MS-b at 8000 psi on the F-14 stabilizer actuator stiil- floss jind -,ize. 11 NADC-79120-60...fluid and mechanical compliance ) The measured water hammer surge agreed well with the calculated surge as shown below. Operating Fluid Fluid Measured...velocity is related to system compliance and fluid density as follows: e= c’ Eq. 1 (Ref. 7) Where, Pe effective bulk modulus c = velocity ,f pressure
42 CFR 493.1230 - Condition: General laboratory systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: General laboratory systems. 493.1230... SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Quality System for Nonwaived Testing General Laboratory Systems § 493.1230 Condition: General laboratory systems. Each laboratory...
42 CFR 493.1230 - Condition: General laboratory systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 5 2013-10-01 2013-10-01 false Condition: General laboratory systems. 493.1230... SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Quality System for Nonwaived Testing General Laboratory Systems § 493.1230 Condition: General laboratory systems. Each laboratory...
42 CFR 493.1230 - Condition: General laboratory systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: General laboratory systems. 493.1230... SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Quality System for Nonwaived Testing General Laboratory Systems § 493.1230 Condition: General laboratory systems. Each laboratory...
42 CFR 493.1230 - Condition: General laboratory systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 5 2012-10-01 2012-10-01 false Condition: General laboratory systems. 493.1230... SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Quality System for Nonwaived Testing General Laboratory Systems § 493.1230 Condition: General laboratory systems. Each laboratory...
42 CFR 493.1230 - Condition: General laboratory systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 5 2014-10-01 2014-10-01 false Condition: General laboratory systems. 493.1230... SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Quality System for Nonwaived Testing General Laboratory Systems § 493.1230 Condition: General laboratory systems. Each laboratory...
Chaos control and impact suppression in rotor-bearing system using magnetorheological fluid
NASA Astrophysics Data System (ADS)
Piccirillo, V.; Balthazar, J. M.; Tusset, A. M.
2015-11-01
In this paper a general dynamic model of a rotor-bearing system using magnetorheological fluid (MR) is presented. The mathematical model of the rotor-bearing system results from a Jeffcott rotor with two-degrees of freedom and discontinuous supports. The effect of magnetorheological fluid on vibration is investigated based on a model of a modified LuGre dynamical friction model. A comparison with equivalent rotor-bearing system is made to verify the contribution of MR in this system. In this study two different implementations of the control procedure are presented, one eliminating the chaotic behavior and the second suppressing the unbalancing vibration so as to avoid impact in rotor-bearing system. First, to control the undesirable chaos in rotor-bearing system a damped passive control methodology is used. On the other hand, to suppressing the impact vibration, the Fuzzy Logic Control is considered. Results demonstrate that undesirable behaviors of rotor can be avoided by varying the damping force.
Gámez, Francisco
2014-06-21
An extensive generalisation of the discrete perturbation theory for molecular multipolar non-spherical fluids is presented. An analytical expression for the Helmholtz free energy for an equivalent discrete potential is given as a function of density, temperature, and intermolecular parameters with implicit shape and multipolar dependence. By varying the intermolecular parameters through their geometrical and multipolar dependence, a set of molecular fluids are considered and their vapor-liquid phase diagrams are tested against available simulation data. Concretely, multipolar and non-polar Kihara and chainlike fluids are tested and it is found that this theoretical approach is able to reproduce qualitatively and quantitatively well the Monte Carlo data for the selected molecular potentials, except near the critical region.
Thermodynamic of fluids from a general equation of state: The molecular discrete perturbation theory
Gámez, Francisco
2014-06-21
An extensive generalisation of the discrete perturbation theory for molecular multipolar non-spherical fluids is presented. An analytical expression for the Helmholtz free energy for an equivalent discrete potential is given as a function of density, temperature, and intermolecular parameters with implicit shape and multipolar dependence. By varying the intermolecular parameters through their geometrical and multipolar dependence, a set of molecular fluids are considered and their vapor–liquid phase diagrams are tested against available simulation data. Concretely, multipolar and non-polar Kihara and chainlike fluids are tested and it is found that this theoretical approach is able to reproduce qualitatively and quantitatively well the Monte Carlo data for the selected molecular potentials, except near the critical region.
On a generalized Aharonov-Bohm plus oscillator system
NASA Astrophysics Data System (ADS)
Kibler, M.; Campigotto, C.
1993-09-01
Dynamical algebras, of the so(3,2) and so(3) types, are obtained for a generalized Aharanov-Bohm plus oscillator (ABO) system. Two types of coherent states are introduced for this generalized ABO system. A ( q,p)-analogue of this system is proposed that reduces to the generalized ABO system in the limiting case p= q-1=1. Finally, the classical motions for the generalized ABO system are briefly described.
System and method for determining velocity of electrically conductive fluid
NASA Technical Reports Server (NTRS)
Polzin, Kurt A. (Inventor); Korman, Valentin (Inventor); Markusic, Thomas E. (Inventor); Stanojev, Boris Johann (Inventor)
2008-01-01
A flowing electrically-conductive fluid is controlled between an upstream and downstream location thereof to insure that a convection timescale of the flowing fluid is less than a thermal diffusion timescale of the flowing fluid. First and second nodes of a current-carrying circuit are coupled to the fluid at the upstream location. A current pulse is applied to the current-carrying circuit so that the current pulse travels through the flowing fluid to thereby generate a thermal feature therein at the upstream location. The thermal feature is convected to the downstream location where it is monitored to detect a peak associated with the thermal feature so-convected. The velocity of the fluid flow is determined using a time-of-flight analysis.
Cryogenic Fluid Management Technologies for Advanced Green Propulsion Systems
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Meyer, Michael L.; Tucker, Stephen P.
2007-01-01
In support of the Exploration Vision for returning to the Moon and beyond, NASA and its partners are developing and testing critical cryogenic fluid propellant technologies that will meet the need for high performance propellants on long-term missions. Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of tank thermal and pressure control, fluid acquisition, mass gauging, and fluid transfer. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and required on-orbit margins, and simplify vehicle operations. The Propulsion and Cryogenic Advanced Development (PCAD) Project is performing experimental and analytical evaluation of several areas within Cryogenic Fluid Management (CFM) to enable NASA's Exploration Vision. This paper discusses the status of the PCAD CFM technology focus areas relative to the anticipated CFM requirements to enable execution of the Vision for Space Exploration.
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's...
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's...
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...
46 CFR 153.430 - Heat transfer systems; general.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...
The search for and analysis of direct samples of early Solar System aqueous fluids.
Zolensky, Michael E; Bodnar, Robert J; Yurimoto, Hisayoshi; Itoh, Shoichi; Fries, Marc; Steele, Andrew; Chan, Queenie H-S; Tsuchiyama, Akira; Kebukawa, Yoko; Ito, Motoo
2017-05-28
We describe the current state of the search for direct, surviving samples of early, inner Solar System fluids-fluid inclusions in meteorites. Meteoritic aqueous fluid inclusions are not rare, but they are very tiny and their characterization is at the state of the art for most analytical techniques. Meteoritic fluid inclusions offer us a unique opportunity to study early Solar System brines in the laboratory. Inclusion-by-inclusion analyses of the trapped fluids in carefully selected samples will, in the immediate future, provide us detailed information on the evolution of fluids as they interacted with anhydrous solid materials. Thus, real data can replace calculated fluid compositions in thermochemical calculations of the evolution of water and aqueous reactions in comets, asteroids, moons and the terrestrial planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).
The search for and analysis of direct samples of early Solar System aqueous fluids
NASA Astrophysics Data System (ADS)
Zolensky, Michael E.; Bodnar, Robert J.; Yurimoto, Hisayoshi; Itoh, Shoichi; Fries, Marc; Steele, Andrew; Chan, Queenie H.-S.; Tsuchiyama, Akira; Kebukawa, Yoko; Ito, Motoo
2017-04-01
We describe the current state of the search for direct, surviving samples of early, inner Solar System fluids-fluid inclusions in meteorites. Meteoritic aqueous fluid inclusions are not rare, but they are very tiny and their characterization is at the state of the art for most analytical techniques. Meteoritic fluid inclusions offer us a unique opportunity to study early Solar System brines in the laboratory. Inclusion-by-inclusion analyses of the trapped fluids in carefully selected samples will, in the immediate future, provide us detailed information on the evolution of fluids as they interacted with anhydrous solid materials. Thus, real data can replace calculated fluid compositions in thermochemical calculations of the evolution of water and aqueous reactions in comets, asteroids, moons and the terrestrial planets. This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.
Rodrigues, Clóves G; Silva, Carlos A B; Ramos, José G; Luzzi, Roberto
2017-02-01
A family of what can be so-called Maxwell times which arises in the context of higher-order generalized hydrodynamics (HOGH; also called mesoscopic hydrothermodynamics) is evidenced. This is done in the framework of a HOGH built within a statistical formalism in terms of a nonequilibrium statistical ensemble formalism. It consists in a description in terms of the densities of particles and energy and their fluxes of all orders, with the motion described by a set of coupled nonlinear integro-differential equations involving them. These Maxwell times have a fundamental role in determining the type of hydrodynamic motion that the system would display in the given conditions and constraints. They determine a Maxwell viscous force not present in the usual hydrodynamic equations, for example, in Navier-Stokes equation.
NASA Astrophysics Data System (ADS)
Rodrigues, Clóves G.; Silva, Carlos A. B.; Ramos, José G.; Luzzi, Roberto
2017-02-01
A family of what can be so-called Maxwell times which arises in the context of higher-order generalized hydrodynamics (HOGH; also called mesoscopic hydrothermodynamics) is evidenced. This is done in the framework of a HOGH built within a statistical formalism in terms of a nonequilibrium statistical ensemble formalism. It consists in a description in terms of the densities of particles and energy and their fluxes of all orders, with the motion described by a set of coupled nonlinear integro-differential equations involving them. These Maxwell times have a fundamental role in determining the type of hydrodynamic motion that the system would display in the given conditions and constraints. They determine a Maxwell viscous force not present in the usual hydrodynamic equations, for example, in Navier-Stokes equation.
The German General Staff System Revisited
1989-03-27
challenging of issues. The study will close with what generally is required in the way of political reform to make for a more complete solution to reform of...challenging of issues. The study will close with what generally is required in the way of political reform to make for a more complete solution to reform...divisions in 1934 ...." by Hitler. General staff resis- tance was based on conservatism, not technical or political oppo- sition. Furthermore, the brilliant
Aguilar Gutierrez, Oscar F; Herrera Valencia, Edtson E; Rey, Alejandro D
2017-10-01
Curvature dissipation is relevant in synthetic and biological processes, from fluctuations in semi-flexible polymer solutions, to buckling of liquid columns, tomembrane cell wall functioning. We present a micromechanical model of curvature dissipation relevant to fluid membranes and liquid surfaces based on a parallel surface parameterization and a stress constitutive equation appropriate for anisotropic fluids and fluid membranes.The derived model, aimed at high curvature and high rate of change of curvature in liquid surfaces and membranes, introduces additional viscous modes not included in the widely used 2D Boussinesq-Scriven rheological constitutive equation for surface fluids.The kinematic tensors that emerge from theparallel surface parameterization are the interfacial rate of deformation and the surface co-rotational Zaremba-Jaumann derivative of the curvature, which are used to classify all possibledissipative planar and non-planar modes. The curvature dissipation function that accounts for bending, torsion and twist rates is derived and analyzed under several constraints, including the important inextensional bending mode.A representative application of the curvature dissipation model to the periodic oscillation in nano-wrinkled outer hair cells show how and why curvature dissipation decreases with frequency, and why the 100kHz frequency range is selected. These results contribute to characterize curvature dissipation in membranes and liquid surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.
de, Vivo B.; Belkin, H.E.; Barbieri, M.; Chelini, W.; Lattanzi, P.; Lima, A.; Tolomeo, L.
1989-01-01
A fluid inclusion study of core from the Mofete 1, Mofete 2, Mofete 5, San Vito 1, and San Vito 3 geothermal wells (Campi Flegrei, Campania, Italy) indicates that the hydrothermal minerals were precipitated from aqueous fluids (??CO2) that were moderately saline (3-4 wt.% NaCl equiv.) to hypersaline (> 26 wt.% NaCl equiv.) and at least in part, boiling. Three types of primary fluid inclusions were found in authigenic K-feldspar, quartz, calcite, and epidote: (A) two-phase [liquid (L) + vapor (V)], liquid-rich inclusions with a range of salinity; (B) two-phase (L + V), vaporrich inclusions with low salinity; and (C) three-phase [L + V + crystals (NaCL)], liquid-rich inclusions with hypersalinity. Results of microthermometric and crushing studies are reported for twenty drill core samples taken from the lower portions of the five vertical wells. Data presented for selected core samples reveal a general decrease in porosity and increase in bulk density with increasing depth and temperature. Hydrothermal minerals commonly fill fractures and pore-spaces and define a zonation pattern, similar in all five wells studied, in response to increasing depth (pressure) and temperature. A greenschist facies assemblage, defined by albite + actinolite, gives way to an amphibolite facies, defined by plagioclase (andesine) + hornblende, in the San Vito 1 well at about 380??C. The fluid inclusion salinity values mimic the saline and hypersaline fluids found by drilling. Fluid inclusion V/L homogenization temperatures increase with depth and generally correspond to the extrapolated down-hole temperatures. However, fluid inclusion data for Mofete 5 and mineral assemblage data for San Vito 3, indicate fossil, higher-temperature regimes. A limited 87Sr/86Sr study of leachate (carbonate) and the leached cores shows that for most samples (except San Vito 3) the carbonate deposition has been from slightly 87Sr-enriched fluids and that Sr isotopic exchange has been incomplete. However, San
46 CFR 183.550 - General alarm systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) ELECTRICAL INSTALLATION Miscellaneous Systems and Requirements § 183.550 General alarm systems. All vessels... required by § 184.610 of this chapter may be used to sound the general alarm signal....
Solar heat transport fluids for solar energy collection systems: A collection of quarterly reports
NASA Technical Reports Server (NTRS)
1978-01-01
Noncorrosive fluid subsystem is being developed that is compatible with closed-loop solar heating and combined heating and hot water systems. The system is also to be compatible with both metallic and nonmetallic plumbing systems, and any combination of these. At least 100 gallons of each type of fluid recommended by the contractor will be delivered.
Steinsvåg, Kjersti; Galea, Karen S; Krüger, Kirsti; Peikli, Vegard; Sánchez-Jiménez, Araceli; Sætvedt, Esther; Searl, Alison; Cherrie, John W; van Tongeren, Martie
2011-05-01
Workers in the drilling section of the offshore petroleum industry are exposed to air pollutants generated by drilling fluids. Oil mist and oil vapour concentrations have been measured in the drilling fluid processing areas for decades; however, little work has been carried out to investigate exposure determinants such as drilling fluid viscosity and temperature. A study was undertaken to investigate the effect of two different oil-based drilling fluid systems and their temperature on oil mist, oil vapour, and total volatile organic compounds (TVOC) levels in a simulated shale shaker room at a purpose-built test centre. Oil mist and oil vapour concentrations were sampled simultaneously using a sampling arrangement consisting of a Millipore closed cassette loaded with glass fibre and cellulose acetate filters attached to a backup charcoal tube. TVOCs were measured by a PhoCheck photo-ionization detector direct reading instrument. Concentrations of oil mist, oil vapour, and TVOC in the atmosphere surrounding the shale shaker were assessed during three separate test periods. Two oil-based drilling fluids, denoted 'System 2.0' and 'System 3.5', containing base oils with a viscosity of 2.0 and 3.3-3.7 mm(2) s(-1) at 40°C, respectively, were used at temperatures ranging from 40 to 75°C. In general, the System 2.0 yielded low oil mist levels, but high oil vapour concentrations, while the opposite was found for the System 3.5. Statistical significant differences between the drilling fluid systems were found for oil mist (P = 0.025),vapour (P < 0.001), and TVOC (P = 0.011). Increasing temperature increased the oil mist, oil vapour, and TVOC levels. Oil vapour levels at the test facility exceeded the Norwegian oil vapour occupational exposure limit (OEL) of 30 mg m(-3) when the drilling fluid temperature was ≥50°C. The practice of testing compliance of oil vapour exposure from drilling fluids systems containing base oils with viscosity of ≤2.0 mm(2) s(-1) at 40
A Fluidic System for Mixing Two Fluids - Final Study.
The development of a double leg elbow proportional fluid amplifier to handle 5.85 gpm of water flow rate is described in detail. The amplifier has...expressions to predict the performance of the amplifier are also given. A mixing element comprised of two double leg elbow amplifiers stacked together to mix two fluids was designed and tested successfully. (Author)
Test instrumentation evaluates electrostatic hazards in fluid system
NASA Technical Reports Server (NTRS)
Collins, L. H.; Henry, R.; Krebs, D.
1967-01-01
RJ-1 fuel surface potential is measured with a probe to determine the degree of hazard originating from static electricity buildup in the hydraulic fluid. The probe is mounted in contact with the fluid surface and connected to an electrostatic voltmeter.
Design study of general aviation collision avoidance system
NASA Technical Reports Server (NTRS)
Bates, M. R.; Moore, L. D.; Scott, W. V.
1972-01-01
The selection and design of a time/frequency collision avoidance system for use in general aviation aircraft is discussed. The modifications to airline transport collision avoidance equipment which were made to produce the simpler general aviation system are described. The threat determination capabilities and operating principles of the general aviation system are illustrated.
On a family of well behaved perfect fluid balls as astrophysical objects in general relativity
NASA Astrophysics Data System (ADS)
Maurya, S. K.; Gupta, Y. K.
2011-07-01
A family of well behaved perfect fluid balls has been derived starting with the metric potential g 44= B(1+ Cr 2) n for all positive integral values of n. For n≥4, the members of this family are seen to satisfy the various physical conditions e.g. c 2 ρ≥ p≥0, dp/ dr<0, dρ/ dr<0, along with the velocity of sound (sqrt{dp/c2dρ} )< 1 and the adiabatic index (( p+ c 2 ρ)/ p)( dp/( c 2 dρ))>1. Also the pressure, energy density, velocity of sound and ratio of pressure and energy density are of monotonically decreasing towards the pressure free interface ( r= a). The fluid balls join smoothly with the Schwarzschild exterior model at r= a. The well behaved perfect fluid balls so obtained are utilised to construct the superdense star models with their surface density 2×1014 gm/cm3. We have found that the maximum mass of the fluid balls corresponding to various values of n are decreasing with the increasing values of n. Over all maximum mass for the whole family turns out to be 4.1848 M Θ and the corresponding radius as 19.4144 km while the red shift at the centre and red shift at surface as Z 0=1.6459 and Z a =0.6538 respectively this all happens for n=4. It is interesting to note that for higher values of n viz n≥170, the physical data start merging with that of Kuchowicz superdense star models and hence the family of fluid models tends to the Kuchowicz fluid models as n→∞. Consequently the maximum mass of the family of solution can not be less than 1.6096 M Θ which is the maximum mass occupied by the Kuchowicz superdense ball. Hence each member of the family for n≥4 provides the astrophysical objects like White dwarfs, Quark star, typical neutron star.
Criss, R.E.; Hofmeister, A.M.
1991-02-01
Fluid dynamics principles require that circulation of aqueous fluid will be practically ubiquitous in tectonically active parts of the Earth's crust and upper mantle. Both experiment and theory demonstrate that flow, generally in the form of unicells (Hadley circulation), always occurs for isothermal tilts above a very small critical angle ({approximately}5{degree}), for any non-zero permeability or Rayleigh number, and even for hot over cold geometries. Interestingly, heat transport rates in the unicellular regime are essentially conductive, so such flow, unlike more vigorous flow at higher Rayleigh number, is not properly termed convective. These principles have numerous geological ramifications, including: (1) many of the hydrothermal systems developed around epizonal intrusions should be dominantly unicellular in nature, which explains their aspect ratios and the smooth and very regular {delta}{sup 18}O variations that are produced in the rocks; (2) large, long-lived unicells are predicted to occur deep in the Earth's crust wherever Rayleigh numbers are finite and isotherms are substantially inclined, as in zones of batholith intrusion, regional metamorphism, and collision; (3) unicells with lateral dimensions of several hundred kilometers are predicted to be associated with subduction zones dipping more than 6-12{degree}, with fluid advection into the hot mantle wedge being instrumental in mantle metasomatism and in the generation of andesitic magmas.
MPI implementation of PHOENICS: A general purpose computational fluid dynamics code
Simunovic, S.; Zacharia, T.; Baltas, N.; Spalding, D.B.
1995-04-01
PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. The Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.
MPI implementation of PHOENICS: A general purpose computational fluid dynamics code
NASA Astrophysics Data System (ADS)
Simunovic, S.; Zacharia, T.; Baltas, N.; Spalding, D. B.
1995-03-01
PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. The Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.
Acoustic responses of coupled fluid-structure system by acoustic-structural analogy
NASA Technical Reports Server (NTRS)
Shin, Y. S.; Chargin, M. K.
1983-01-01
The use of an analogy between structural mechanics and acoustics makes it possible to solve fluid-structural interaction (FSI) problems using an existing structural analysis computer program. This method was implemented in MSC/NASTRAN program and the FSI analysis was performed using two dimensional coupled fluid beam model to assess and evaluate the adequacy of this approach. The coupled modal analysis of 3-D model is also briefly discussed. The normal mode, modal frequency response and transient response analysis of 2-D coupled fluid beam system is presented. The significant reduction of the acoustic pressure response at the fluid structure interface is observed as a result of fluid structure interaction.
On the first G 1 stiff fluid spike solution in General Relativity
NASA Astrophysics Data System (ADS)
Coley, A. A.; Gregoris, D.; Lim, W. C.
2016-11-01
Using the Geroch transformation we obtain the first example of an exact stiff fluid spike solution to the Einstein field equations in a closed form exhibiting a spacelike G 1 group of symmetries (i.e., with a single isometry). This new solution is of Petrov type I and exhibits a spike crossing which persists to the past, which allows us to better understand spike crossings in the context of structure formation.
A generalized equation for the resonance frequencies of a fluid-filled crack
NASA Astrophysics Data System (ADS)
Maeda, Yuta; Kumagai, Hiroyuki
2017-01-01
Although a model of the resonance of a rectangular fluid-filled crack (crack model) is one of the most frequently used source models of long-period seismic events at volcanoes, there has been no analytical solution for the resonance frequencies. We previously proposed an empirical expression for the resonance frequencies as a mathematical function of the crack length, aperture, and properties of the fluid and the surrounding elastic medium. However, the expression contained an empirical constant that had to be investigated numerically for each crack aspect ratio and oscillation mode, a requirement that prevented widespread use of the expression. In the present study, we examined the theoretical basis for the expression. We assumed that the ratio of the crack wall displacement to the fluid pressure near each crack edge varied as the square root of the distance from the edge. Using this assumption, we showed theoretically that the previously proposed empirical analytical expression was a good approximation (difference ≤ 2%) to another more complete expression. This theoretical expression is a closed form of a mathematical function of the crack model parameters and oscillation mode number; there are no empirical constants to be determined numerically. The expression thus enabled us to analytically compute the resonance frequencies for arbitrary rectangular cracks, and the results were in good agreement (difference ≤ 5%) with numerical solutions. Resonance frequencies of cracks can be very easily predicted using this expression. This predictive ability may enhance our quantitative understanding of the processes that generate long-period events at volcanoes.
Generalized Reduced Order Modeling of Aeroservoelastic Systems
NASA Astrophysics Data System (ADS)
Gariffo, James Michael
Transonic aeroelastic and aeroservoelastic (ASE) modeling presents a significant technical and computational challenge. Flow fields with a mixture of subsonic and supersonic flow, as well as moving shock waves, can only be captured through high-fidelity CFD analysis. With modern computing power, it is realtively straightforward to determine the flutter boundary for a single structural configuration at a single flight condition, but problems of larger scope remain quite costly. Some such problems include characterizing a vehicle's flutter boundary over its full flight envelope, optimizing its structural weight subject to aeroelastic constraints, and designing control laws for flutter suppression. For all of these applications, reduced-order models (ROMs) offer substantial computational savings. ROM techniques in general have existed for decades, and the methodology presented in this dissertation builds on successful previous techniques to create a powerful new scheme for modeling aeroelastic systems, and predicting and interpolating their transonic flutter boundaries. In this method, linear ASE state-space models are constructed from modal structural and actuator models coupled to state-space models of the linearized aerodynamic forces through feedback loops. Flutter predictions can be made from these models through simple eigenvalue analysis of their state-transition matrices for an appropriate set of dynamic pressures. Moreover, this analysis returns the frequency and damping trend of every aeroelastic branch. In contrast, determining the critical dynamic pressure by direct time-marching CFD requires a separate run for every dynamic pressure being analyzed simply to obtain the trend for the critical branch. The present ROM methodology also includes a new model interpolation technique that greatly enhances the benefits of these ROMs. This enables predictions of the dynamic behavior of the system for flight conditions where CFD analysis has not been explicitly
NASA Astrophysics Data System (ADS)
Ali, Farhad; Saqib, Muhammad; Khan, Ilyas; Ahmad Sheikh, Nadeem
2016-10-01
The present article applies the idea of Caputo-Fabrizio time fractional derivatives to magnetohydrodynamics (MHD) free convection flow of generalized Walters'-B fluid over a static vertical plate. Free convection is caused due to combined gradients of temperature and concentration. Hence, heat and mass transfers are considered together. The fractional model of Walters'-B fluid is used in the mathematical formulation of the problem. The problem is solved via the Laplace transform method. Exact solutions for velocity, temperature and concentration are obtained. The physical quantities of interest are examined through plots for various values of fractional parameter: α, Walters'-B parameter Γ, magnetic parameter M , Prandtl number Pr, Schmidt number Sc, thermal Grashof number Gr and mass Grashof number Gm. As a special case, the published results from open literature are recovered.
Toward multiscale modelings of grain-fluid systems
NASA Astrophysics Data System (ADS)
Chareyre, Bruno; Yuan, Chao; Montella, Eduard P.; Salager, Simon
2017-06-01
Computationally efficient methods have been developed for simulating partially saturated granular materials in the pendular regime. In contrast, one hardly avoid expensive direct resolutions of 2-phase fluid dynamics problem for mixed pendular-funicular situations or even saturated regimes. Following previous developments for single-phase flow, a pore-network approach of the coupling problems is described. The geometry and movements of phases and interfaces are described on the basis of a tetrahedrization of the pore space, introducing elementary objects such as bridge, meniscus, pore body and pore throat, together with local rules of evolution. As firmly established local rules are still missing on some aspects (entry capillary pressure and pore-scale pressure-saturation relations, forces on the grains, or kinetics of transfers in mixed situations) a multi-scale numerical framework is introduced, enhancing the pore-network approach with the help of direct simulations. Small subsets of a granular system are extracted, in which multiphase scenario are solved using the Lattice-Boltzman method (LBM). In turns, a global problem is assembled and solved at the network scale, as illustrated by a simulated primary drainage.
A more general system for Poisson series manipulation.
NASA Technical Reports Server (NTRS)
Cherniack, J. R.
1973-01-01
The design of a working Poisson series processor system is described that is more general than those currently in use. This system is the result of a series of compromises among efficiency, generality, ease of programing, and ease of use. The most general form of coefficients that can be multiplied efficiently is pointed out, and the place of general-purpose algebraic systems in celestial mechanics is discussed.
A more general system for Poisson series manipulation.
NASA Technical Reports Server (NTRS)
Cherniack, J. R.
1973-01-01
The design of a working Poisson series processor system is described that is more general than those currently in use. This system is the result of a series of compromises among efficiency, generality, ease of programing, and ease of use. The most general form of coefficients that can be multiplied efficiently is pointed out, and the place of general-purpose algebraic systems in celestial mechanics is discussed.
Lattice Boltzmann Modeling of Non-Newtonian Fluid Flow in Porous Medium Systems
NASA Astrophysics Data System (ADS)
Hauswirth, S.; Dye, A. L.; Schultz, P. B.; Bowers, C.; Miller, C. T.
2016-12-01
The ability to predict the behavior of non-Newtonian fluids in porous medium systems is critical for a wide-range of applications, including hydraulic fracturing, enhanced oil recovery, contaminant remediation, and biological systems. Development of accurate macroscale models of such systems requires an understanding of the relationship between the fluid and medium properties at the microscale and averaged macroscale properties. This study focuses specifically on guar gum, a major component of hydraulic fracturing fluids that exhibits Cross-model rheology. A lattice Boltzmann method (LBM) incorporating non-Newtonian behavior was developed and validated against a semi-analytical solution for Cross-model fluid flow between parallel plates. The developed LBM was then used to simulate a series of one-dimensional column flow experiments conducted with a range of fluids and porous medium materials. The computational results were used in conjunction with the experimental data to investigate the relationships between fluid and media properties, microscale physics, and macroscale parameters.
Iron Release and Precipitation in Fracture Fluid-Shale Fracturing Systems
NASA Astrophysics Data System (ADS)
Jew, A. D.; Joe-Wong, C. M.; Harrison, A. L.; Thomas, D.; Dustin, M. K.; Brown, G. E.; Maher, K.; Bargar, J.
2015-12-01
Hydraulic fracturing of unconventional hydrocarbon reservoirs is important to the United States energy portfolio. Hydrocarbon production from new wells generally declines rapidly over the initial months of production. One possible reason for the decrease is the mineralization and clogging of microfracture networks proximal to propped fractures. One important but relatively unexplored class of reactions is oxidation of Fe(II) derived from Fe(II)-bearing mineral dissolution (primarily pyrite and siderite) and subsequent precipitation of Fe(III)-(oxy)hydroxides. To explore this topic, we reacted fracture fluid with sand-sized and whole rock chips from four different geological localities (Marcellus Fm., Barnett Fm., Eagle Ford Fm., and Green River Fm.) containing highly varied concentrations of clays, carbonates, and TOC. Additionally, kerogen was isolated from the Green River Fm. and reacted with fracture fluid. All the shale sands showed an initial release of Fe into solution during the first 96 hours of reaction followed by a plateau or significant drop in Fe indicating that mineral precipitation occurred. Conversely, the Fe concentrations in the kerogen reactors kept increasing throughout the 3-week experiments. The whole rock samples showed a steady increase then a plateau in Fe during the 3-weeks, indicating a slower Fe release and subsequently, slower Fe precipitation. Reactors with Marcellus Fm. Sands contained dilute HCl, water only, the fracture fluid with no headspace, and fracture fluid with no HCl. Results from these experiments show that HCl is the most important additive for the promotion of Fe release into solution. Iron oxidation is not promoted solely by O2 or organics but instead requires a combination of the two for precipitation in these systems. These results indicate that Fe redox cycling is an important and complex part of hydraulic fracturing that most likely results in production slowdown over the life of a well.
System for concentrating and analyzing particles suspended in a fluid
Fiechtner, Gregory J [Bethesda, MD; Cummings, Eric B [Livermore, CA; Singh, Anup K [Danville, CA
2011-04-26
Disclosed is a device for separating and concentrating particles suspended in a fluid stream by using dielectrophoresis (DEP) to trap and/or deflect those particles as they migrate through a fluid channel. The method uses fluid channels designed to constrain a liquid flowing through it to uniform electrokinetic flow velocities. This behavior is achieved by connecting deep and shallow sections of channels, with the channel depth varying abruptly along an interface. By careful design of abrupt changes in specific permeability at the interface, an abrupt and spatially uniform change in electrokinetic force can be selected. Because these abrupt interfaces also cause a sharp gradient in applied electric fields, a DEP force also can be established along the interface. Depending on the complex conductivity of the suspended particles and the immersion liquid, the DEP force can controllably complement or oppose the local electrokinetic force transporting the fluid through the channel allowing for manipulation of particles suspended in the transporting liquid.
Thermal stability of frac fluids in aqueous systems
Tyssee, D.A.; Vetter, O.J.; Crichlow, H.B.
1980-02-07
Three laboratory methods were directed toward characterization of the frac polymer solutions: total organic carbon content, total carbohydrate content, and high pressure liquid chromatography. The results of return fluid analyses from the Raft River field experiments are described. (MHR)
46 CFR 154.1140 - Dry chemical system: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Dry chemical system: General. 154.1140 Section 154.1140... Firefighting System: Dry Chemical § 154.1140 Dry chemical system: General. Each liquefied flammable gas carrier must have a dry chemical firefighting system that meets §§ 154.1145 through 154.1170, Part 56...
46 CFR 154.1140 - Dry chemical system: General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Dry chemical system: General. 154.1140 Section 154.1140... Firefighting System: Dry Chemical § 154.1140 Dry chemical system: General. Each liquefied flammable gas carrier must have a dry chemical firefighting system that meets §§ 154.1145 through 154.1170, Part 56...
46 CFR 154.1140 - Dry chemical system: General.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Dry chemical system: General. 154.1140 Section 154.1140... Firefighting System: Dry Chemical § 154.1140 Dry chemical system: General. Each liquefied flammable gas carrier must have a dry chemical firefighting system that meets §§ 154.1145 through 154.1170, Part 56...
46 CFR 154.1140 - Dry chemical system: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Dry chemical system: General. 154.1140 Section 154.1140... Firefighting System: Dry Chemical § 154.1140 Dry chemical system: General. Each liquefied flammable gas carrier must have a dry chemical firefighting system that meets §§ 154.1145 through 154.1170, Part 56...
46 CFR 154.1140 - Dry chemical system: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Dry chemical system: General. 154.1140 Section 154.1140... Firefighting System: Dry Chemical § 154.1140 Dry chemical system: General. Each liquefied flammable gas carrier must have a dry chemical firefighting system that meets §§ 154.1145 through 154.1170, Part 56...
46 CFR 108.431 - Carbon dioxide systems: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure carbon...
46 CFR 108.431 - Carbon dioxide systems: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure carbon...
46 CFR 108.431 - Carbon dioxide systems: General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure carbon...
46 CFR 108.431 - Carbon dioxide systems: General.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure carbon...
46 CFR 108.431 - Carbon dioxide systems: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure carbon...
29 CFR 1910.160 - Fixed extinguishing systems, general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sprinkler systems which are covered by § 1910.159. (2) This section also applies to fixed systems not... 29 Labor 5 2010-07-01 2010-07-01 false Fixed extinguishing systems, general. 1910.160 Section 1910... § 1910.160 Fixed extinguishing systems, general. (a) Scope and application. (1) This section applies...
33 CFR 154.808 - Vapor control system, general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Vapor control system, general... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154.808 Vapor control system, general. (a) A vapor control system design and installation must...
46 CFR 154.1200 - Mechanical ventilation system: General.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Mechanical ventilation system: General. 154.1200 Section... Equipment Cargo Area: Mechanical Ventilation System § 154.1200 Mechanical ventilation system: General. (a... cargo handling equipment must have a fixed, exhaust-type mechanical ventilation system. (b) The...
46 CFR 154.1200 - Mechanical ventilation system: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Mechanical ventilation system: General. 154.1200 Section... Equipment Cargo Area: Mechanical Ventilation System § 154.1200 Mechanical ventilation system: General. (a... cargo handling equipment must have a fixed, exhaust-type mechanical ventilation system. (b) The...
46 CFR 154.1200 - Mechanical ventilation system: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Mechanical ventilation system: General. 154.1200 Section... Equipment Cargo Area: Mechanical Ventilation System § 154.1200 Mechanical ventilation system: General. (a... cargo handling equipment must have a fixed, exhaust-type mechanical ventilation system. (b) The...
NASA Technical Reports Server (NTRS)
1969-01-01
Levels of contamination in fluid systems can be determined by a definition of a particle by a mathematical model, a method for calculating the tolerance limits of contamination, and an estimation of the probability that the contamination on the surface will migrate with the fluid in the system.
NASA Technical Reports Server (NTRS)
Poppendiek, H. F.; Sabin, C. M.; Meckel, P. T.
1974-01-01
The research is reported in applying the axial fluid temperature differential flowmeter to a urine volume measurement system for space missions. The fluid volume measurement system is described along with the prototype equipment package. Flowmeter calibration, electronic signal processing, and typical void volume measurements are also described.
Three-dimensional wire-mesh capacitor system measures fluid density
NASA Technical Reports Server (NTRS)
1965-01-01
Gaging system automatically measures the bulk density of a stored, electrically nonconductive fluid containing varying portions of liquid and vapor. The system employs a three-dimensional wire-mesh capacitor whose capacitance varies with the bulk density of the fluid dielectric medium between the capacitor plates.
NASA Technical Reports Server (NTRS)
1969-01-01
Levels of contamination in fluid systems can be determined by a definition of a particle by a mathematical model, a method for calculating the tolerance limits of contamination, and an estimation of the probability that the contamination on the surface will migrate with the fluid in the system.
On the response of Burgers' fluid and its generalizations with pressure dependent moduli
NASA Astrophysics Data System (ADS)
Muliana, Anastasia; Rajagopal, K. R.; Wineman, Alan
2013-05-01
This manuscript presents a systematic investigation of the response of a Burgers' viscoelastic fluid model with stress-dependent material parameters. Such a model has been used extensively in geomechanics as well as to describe the response of materials like asphalt. The stress, strain, and time relation of Burgers' fluid model is expressed with second order differential operators applied to the stress and strain. The nonlinearity is due to the stress dependence of the material parameters, i.e., the fluid viscosity and the parameter related to the characteristic time. We impose discontinuity conditions, whose necessity was not recognized until the recent work of Prusa and Rajagopal (2011), for the stress and strain and also for the stress- and strain rates such that we satisfy the following assumptions: if there is a jump discontinuity in strain there should be a jump discontinuity in the corresponding stress, and if there is a small change in strain there ought to be a small change in the corresponding stress. These assumptions are also applied when a stress history is considered as input. We present constraints on the stress-dependent material functions in order to obtain a physically meaningful solution that describes the viscoelastic response of materials. We also allow different responses for tension and compression and perform parametric studies geared towards obtaining an understanding of the effect of nonlinear stress-dependent functions on the stress-relaxation and creep deformation under various loading histories. It is important to recognize that methods such as time-temperature superposition or the use of Laplace transforms that are useful in the case of the classical linear viscoelastic material will not work in the case of the non-linear model considered in this paper.
Establishment of a Cutting Fluid Control System. Phase II.
1982-05-01
grouped into three categories using manufacturer supplied data: heavy duty, medium duty and light duty. Also, each category was 2 subdivided into...Material Force data was collected during metal removal tests using a Honeywell 1858 Visicorder which utilizes light sensitive paper and fiber optics...ADSOL I 35 EU lIE I . . i a. light duty. Also, this table further divides the fluids into the specific types of cutting fluids: emulsions, semi
Laboratory and Field Evaluation of Fluid-Loss Additive Systems Used in the Williston Basin
Woo, G.T.; Cramer, D.D.
1984-05-01
Many formations in the Williston Basin are naturally fractured limestones and dolomites. Naturally fractured reservoirs are typically the most difficult to maintain control of fracturing fluid leakoff. Treatments in the Mission Canyon, Midale and Ratcliffe formations of the Madison Group have had high fracturing fluid leakoffs. Polymer/inert solids mixtures, 100 mesh sand, silica flour and oil-soluble resins have been used in an attempt to control fluid loss. These additives have not consistently solved the problem of excessive fluid loss, and frequent screenouts, gel-outs or pressure-outs have resulted. A laboratory simulation of naturally fractured reservoir leakoff was employed to evaluate the efficiency of ten fluid loss additive systems. Tapered-slot fluid loss tests and proppant pack damage tests were performed using each additive system. Five fluid loss additive systems were identified which performed well in both tests. This paper also summarizes the results of a field evaluation of nine of the original ten fluid loss additive systems used in 70 wells in the Madison Group. Two fluid loss additive systems, a mixture of silica flour and 100 mesh sand, and a mixture of oil-soluble resin (nominal 250 mesh) and 100 mesh sand, performed well in the laboratory tests and had a high success rate in the field.
General mechanism for the meandering instability of rivulets of Newtonian fluids.
Daerr, A; Eggers, J; Limat, L; Valade, N
2011-05-06
A rivulet flowing down an inclined plane often does not follow a straight path, but starts to meander spontaneously. Here we show that this instability is the result of two key ingredients: fluid inertia and anisotropy of the friction between rivulet and substrate. Meandering only occurs if the motion normal to the instantaneous flow direction is more difficult than parallel to it. We give a quantitative criterion for the onset of meandering and confirm it by comparing to the flow of a rivulet between two glass plates which are wetted completely. Above the threshold, the rivulet follows an irregular pattern with a typical wavelength of a few cm.
Reduced-order modeling of fluids systems, with applications in unsteady aerodynamics
NASA Astrophysics Data System (ADS)
Dawson, Scott T. M.
This thesis focuses on two major themes: modeling and understanding the dynamics of rapidly pitching airfoils, and developing methods that can be used to extract models and pertinent features from datasets obtained in the study of these and other systems in fluid mechanics and aerodynamics. Much of the work utilizes in some capacity dynamic mode decomposition (DMD), a recently developed method to extract dynamical features and models from data. The investigation of pitching airfoils includes both wind tunnel experiments and direct numerical simulations. Experiments are performed on a NACA 0012 airfoil undergoing rapid pitching motion, with the focus on developing a switched linear modeling framework that can accurately predict unsteady aerodynamic forces and pressure distributions throughout arbitrary pitching motions. Numerical simulations are used to study the behavior of sinusoidally pitching airfoils. By systematically varying the amplitude, frequency, mean angle and axis of pitching, a comprehensive database of results is acquired, from which interesting regions in parameter space are identified and studied. Attention is given to pitching at "preferred" frequencies, where vortex shedding in the wake is excited or amplified, leading to larger lift forces. More generally, the ability to extract nonlinear models that describe the behavior of complex fluids systems can assist in not only understanding the dominant features of such systems, but also to achieve accurate prediction and control. One potential avenue to achieve this objective is through numerical approximation of the Koopman operator, an infinite-dimensional linear operator capable of describing finite-dimensional nonlinear systems, such as those that might describe the dominant dynamics of fluids systems. This idea is explored by showing that algorithms designed to approximate the Koopman operator can indeed be utilized to accurately model nonlinear fluids systems, even when the data available is
Existence of global solutions for a chemotaxis-fluid system with nonlinear diffusion
NASA Astrophysics Data System (ADS)
Chung, Yun-Sung; Kang, Kyungkeun
2016-04-01
We consider a coupled system consisting of the Navier-Stokes equations and a porous medium type of Keller-Segel system that model the motion of swimming bacteria living in fluid and consuming oxygen. We establish the global-in-time existence of weak solutions for the Cauchy problem of the system in dimension three. In addition, if the Stokes system, instead Navier-Stokes system, is considered for the fluid equation, we prove that bounded weak solutions exist globally in time.
Sullivan, Scott C; Fansler, Douglas
2014-10-14
A vehicle having multiple isolated fluid circuits configured to be filled through a common fill port includes a first fluid circuit disposed within the vehicle, the first fluid circuit having a first fill port, a second fluid circuit disposed within the vehicle, and a conduit defining a fluid passageway between the first fluid circuit and second fluid circuit, the conduit including a valve. The valve is configured such that the first and second fluid circuits are fluidly coupled via the passageway when the valve is open, and are fluidly isolated when the valve is closed.
A fluid mechanical model for mixing in a plankton predator-prey system
NASA Astrophysics Data System (ADS)
Peng, J.; Dabiri, J. O.
2009-04-01
A Lagrangian method is developed to study mixing of small particles in open flows. Particle Lagrangian Coherent Structures (pLCS) are identified as transport barriers in the dynamical systems of particles. We apply this method to a planktonic predator-prey system in which moon jellyfish Aurelia aurita uses its body motion to generate fluid currents which carry their prey to the vicinity of their capture appendages. With the flow generated by the jellyfish experimentally measured and the dynamics of prey particles in the flow described by a modified Maxey-Riley equation, we use pLCS to identify the capture region in which prey can be captured. The properties of the capture region enable analysis of the effects of several physiological and mechanical parameters on the predator-prey interaction, such as prey size, escape force, predator perception, etc. The method provides a new methodology to study dynamics and mixing of small organisms in general.
Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems
NASA Astrophysics Data System (ADS)
Douville, Eric; Bienvenu, Philippe; Charlou, Jean Luc; Donval, Jean Pierre; Fouquet, Yves; Appriou, Pierre; Gamo, Toshitaka
1999-03-01
Rare earth element (REE) and yttrium (Y) concentrations were measured in fluids collected from deep-sea hydrothermal systems including the Mid-Atlantic Ridge (MAR), i.e., Menez Gwen, Lucky Strike, TAG, and Snakepit; the East Pacific Rise (EPR), i.e., 13°N and 17-19°S; and the Lau (Vai Lili) and Manus (Vienna Woods, PacManus, Desmos) Back-Arc Basins (BAB) in the South-West Pacific. In most fluids, Y is trivalent and behaves like Ho. Chondrite normalized Y-REE (Y-REE N) concentrations of fluids from MAR, EPR, and two BAB sites, i.e., Vai Lili and Vienna Woods, showed common patterns with LREE enrichment and positive Eu anomalies. REE analysis of plagioclase collected at Lucky Strike strengthens the idea that fluid REE contents, are controlled by plagioclase phenocrysts. Other processes, however, such as REE complexation by ligands (Cl -, F - SO 42-), secondary phase precipitation, and phase separation modify REE distributions in deep-sea hydrothermal fluids. REE speciation calculations suggest that aqueous REE are mainly complexed by Cl - ions in hot acidic fluids from deep-sea hydrothermal systems. REE concentrations in the fluid phases are, therefore, influenced by temperature, pH, and duration of rock-fluid interaction. Unusual Y-REE N patterns found in the PacManus fluids are characterized by depleted LREE and a positive Eu anomaly. The Demos fluid sample shows a flat Y-REE N pattern, which increases regularly from LREE to HREE with no Eu anomaly. These Manus Basin fluids also have an unusual major element chemistry with relatively high Mg, SO 4, H 2S, and F contents, which may be due to the incorporation of magmatic fluids into heated seawater during hydrothermal circulation. REE distribution in PacManus fluids may stem from a subseafloor barite precipitation and the REE in Demos fluids are likely influenced by the presence of sulfate ions.
A generalized fidelity amplitude for open systems.
Gorin, T; Moreno, H J; Seligman, T H
2016-06-13
We consider a central system which is coupled via dephasing to an open system, i.e. an intermediate system which in turn is coupled to another environment. Considering the intermediate and far environment as one composite system, the coherences in the central system are given in the form of fidelity amplitudes for a certain perturbed echo dynamics in the composite environment. On the basis of the Born-Markov approximation, we derive a master equation for the reduction of that dynamics to the intermediate system alone. In distinction to an earlier paper (Moreno et al 2015 Phys. Rev. A 92, 030104. (doi:10.1103/PhysRevA.92.030104)), where we discussed the stabilizing effect of the far environment on the decoherence in the central system, we focus here on the possibility of using the measurable coherences in the central system for probing the open quantum dynamics in the intermediate system. We illustrate our results for the case of chaotic dynamics in the near environment, where we compare random matrix simulations with our analytical result. © 2016 The Author(s).
Sorensen, J.O.
1982-06-08
A thermodynamic energy conversion system includes a thermodynamic working fluid made up of thousands of expandites at a given pressure to thereby change buoyancy with respect to a thermal fluid; a mass transport conduit circuit for introducing the expandites to a thermal fluid at different combinations of temperature and pressure and transporting the thermodynamic working fluid and thermal fluid in response to pressure differentials created by concomitant buoyancy volume and density changes of the expandites as the thermodynamic working fluid is exposed to thermal fluid at different combinations of pressure and temperature; and a transducer for converting the pressure of fluid transported by the circuit to a useful form of energy. Expandites are separate objects each of which includes a mass having a flexible covering encasing the mass for enabling rapid heat transfer between the mass and the thermal fluid, for enabling the encased mass to maintain its integrity as a separate object when submerged in the thermal fluid, and for enabling the volume of the encased expandite to change in accordance with the characteristic interdependent relationship between changes in the density, temperature and pressure of the mass when the encased expandite is submerged in the thermal fluid.
Building a generalized distributed system model
NASA Technical Reports Server (NTRS)
Mukkamala, R.
1992-01-01
The key elements in the second year (1991-92) of our project are: (1) implementation of the distributed system prototype; (2) successful passing of the candidacy examination and a PhD proposal acceptance by the funded student; (3) design of storage efficient schemes for replicated distributed systems; and (4) modeling of gracefully degrading reliable computing systems. In the third year of the project (1992-93), we propose to: (1) complete the testing of the prototype; (2) enhance the functionality of the modules by enabling the experimentation with more complex protocols; (3) use the prototype to verify the theoretically predicted performance of locking protocols, etc.; and (4) work on issues related to real-time distributed systems. This should result in efficient protocols for these systems.
46 CFR 28.240 - General alarm system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... noise makes a general alarm system difficult to hear, a flashing red light must also be installed. (d) Each general alarm bell and flashing red light must be identified with red lettering at least 1/2 inch...
Xu, Tianfu; Pruess, Karsten; Apps, John
2008-01-17
There is growing interest in the novel concept of operating Enhanced Geothermal Systems (EGS) with CO{sub 2} instead of water as heat transmission fluid. Initial studies have suggested that CO{sub 2} will achieve larger rates of heat extraction, and can offer geologic storage of carbon as an ancillary benefit. Fluid-rock interactions in EGS operated with CO{sub 2} are expected to be vastly different in zones with an aqueous phase present, as compared to the central reservoir zone with anhydrous supercritical CO{sub 2}. Our numerical simulations of chemically reactive transport show a combination of mineral dissolution and precipitation effects in the peripheral zone of the systems. These could impact reservoir growth and longevity, with important ramifications for sustaining energy recovery, for estimating CO{sub 2} loss rates, and for figuring tradeoffs between power generation and geologic storage of CO{sub 2}.
None, None
2017-05-05
A generalized, intuitive two-fluid picture of 2D non-driven collisionless magnetic reconnection is described using results from a full-3D numerical simulation. The relevant two-fluid equations simplify to the condition that the flux associated with canonical circulation Q=me∇×ue+qeB is perfectly frozen into the electron fluid. In the reconnection geometry, flux tubes defined by Q are convected with the central electron current, effectively stretching the tubes and increasing the magnitude of Q exponentially. This, coupled with the fact that Q is a sum of two quantities, explains how the magnetic fields in the reconnection region reconnect and give rise to strong electron acceleration.more » The Q motion provides an interpretation for other phenomena as well, such as spiked central electron current filaments. The simulated reconnection rate was found to agree with a previous analytical calculation having the same geometry. Energy analysis shows that the magnetic energy is converted and propagated mainly in the form of the Poynting flux, and helicity analysis shows that the canonical helicity ∫P·Q dV as a whole must be considered when analyzing reconnection. A mechanism for whistler wave generation and propagation is also described, with comparisons to recent spacecraft observations.« less
Mathematical aspects of quantum fluids. I. Generalized two-cycles of /sup 4/He type
Kupershmidt, B.A.
1985-11-01
It is shown that the two-cocycle involved in the Hamiltonian description of the superfluid /sup 4/He, both nonrotating and rotating, is a particular case of generalized symplectic two-cocycles on semidirect product Lie algebras.
Pickett, G. R.
2014-12-15
As a specific offering towards his festschrift, we present a review the various properties of the excitation gas in superfluid {sup 3}He, which depend on Andreev reflection. This phenomenon dominates many of the properties of the normal fluid, especially at the lowest temperatures. We outline the ideas behind this dominance and describe a sample of the many experiments in this system which the operation of Andreev reflection has made possible, from temperature measurement, particle detection, vortex imaging to cosmological analogues.
General RMP Guidance - Chapter 5: Management System
If you have at least one Program 2 or Program 3 process, you are required to develop a management system to oversee the implementation of the risk management program elements, and designate responsibility for making process safety a constant priority.
Fluid dynamics of double diffusive systems. Final report
Koseff, J.R.
1995-07-01
Over the past seven years the authors have conducted an experimental, numerical, and theoretical study of the stability of doubly diffusive systems, and of mixing processes in stratified turbulence. For the study of the stability of doubly diffusive systems continuous gradients of two diffusing components (heat and salinity in this case) were used as the initial condition, and forcing was introduced by lateral heating and surface shear. The goals of this work included (1) quantification of the effects of finite amplitude disturbances on stable, double diffusive systems, particularly with respect to lateral heating, (2) development of an improved understanding of the physical phenomena present in sheardriven flows in doubly diffusive stratified environments, (3) increasing their knowledge-base on turbulent flow in stratified environments and how to represent it, and (4) formulation of a numerical code for such flows. In particular, the overall goals of this aspect of the research were as follows: (1) develop more general stability and scaling criteria for the destabilization of doubly-stratified systems, (2) study the variation of flow structure and scales with Rayleigh ratio and lateral heating ratio, (3) delineate the mechanisms governing convective layer formation and merging, (4) study the mixing processes within the convective layers and across interfaces, and estimate the heat and mass fluxes in such a system, (5) quantify the effects of turbulence and coherent structures (due to a wind-driven surface shear) on a doubly stratified system, and (6) study the interaction between surface shear and side-wall heating destabilization mechanisms. Goals 1 through 4 have been successfully completed and the results are described in this report.
30 CFR 75.1101-6 - Water sprinkler systems; general.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Water sprinkler systems; general. 75.1101-6... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-6 Water sprinkler systems; general. Water sprinkler systems may be installed to protect main and secondary...
46 CFR 154.1300 - Liquid level gauging system: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do...
46 CFR 154.1300 - Liquid level gauging system: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do...
46 CFR 154.1300 - Liquid level gauging system: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do...
46 CFR 154.1300 - Liquid level gauging system: General.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do...
30 CFR 75.1101-6 - Water sprinkler systems; general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Water sprinkler systems; general. 75.1101-6... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-6 Water sprinkler systems; general. Water sprinkler systems may be installed to protect main and secondary belt...
30 CFR 75.1101-6 - Water sprinkler systems; general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water sprinkler systems; general. 75.1101-6... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-6 Water sprinkler systems; general. Water sprinkler systems may be installed to protect main and secondary belt...
49 CFR 659.21 - System security plan: general requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false System security plan: general requirements. 659.21... State Oversight Agency § 659.21 System security plan: general requirements. (a) The oversight agency shall require the rail transit agency to implement a system security plan that, at a minimum,...
49 CFR 659.21 - System security plan: general requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 7 2010-10-01 2010-10-01 false System security plan: general requirements. 659.21... State Oversight Agency § 659.21 System security plan: general requirements. (a) The oversight agency shall require the rail transit agency to implement a system security plan that, at a minimum,...
30 CFR 75.1101-6 - Water sprinkler systems; general.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Water sprinkler systems; general. 75.1101-6... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-6 Water sprinkler systems; general. Water sprinkler systems may be installed to protect main and secondary...
30 CFR 75.1101-6 - Water sprinkler systems; general.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Water sprinkler systems; general. 75.1101-6... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-6 Water sprinkler systems; general. Water sprinkler systems may be installed to protect main and secondary...