Science.gov

Sample records for generalized frequency spectra

  1. Wavevector-Frequency Spectra of Nonhomogeneous Fields

    DTIC Science & Technology

    1987-01-22

    TITLE (Indud* Security Qasafication) WAVEVECTOR-FREQUENCY SPECTRA OF NONHOMOGENEOUS FIELDS 12. PERSONAL AUTHOR(S) Dr . Wayne A. Strawderman...SAME AS RPT. D DTIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL Dr . Wayne A. Strawderman 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED 22b.T...Program Element 62314N. The NUSC Project No. is B60010. Principal Investigator Dr . H. P. Bakewell, Jr., Code 2141. The Sponsoring Activity was the Office

  2. Identification of trapped electron modes in frequency fluctuation spectra

    NASA Astrophysics Data System (ADS)

    Arnichand, H.; Citrin, J.; Hacquin, S.; Sabot, R.; Krämer-Flecken, A.; Garbet, X.; Bourdelle, C.; Bottereau, C.; Clairet, F.; Giacalone, J. C.; Guimarães-Filho, Z. O.; Guirlet, R.; Hornung, G.; Lebschy, A.; Lotte, P.; Maget, P.; Medvedeva, A.; Molina, D.; Nikolaeva, V.; Prisiazhniuk, D.; Tore Supra, the; the ASDEX Upgrade Teams

    2016-01-01

    Ion temperature gradient (ITG) and trapped electron modes (TEM) are two important micro-instabilities in the plasma core region of fusion devices (r/a≤slant 0.9 ). They usually coexist in the same range of spatial scale (around 0.1<{{k}\\bot}{ρi}<1 ), which makes their discrimination difficult. To investigate them, one can perform gyrokinetic simulations, transport analysis and phase velocity estimations. In Tore Supra, the identification of trapped electron modes (TEM) is made possible due to measured frequency fluctuation spectra. Indeed, turbulent spectra generally expected to be broad-band, can become narrow in case of TEM turbulence, inducing ‘quasi-coherent’ (QC) modes named QC-TEM. Therefore the analysis of frequency fluctuation spectra becomes a possible tool to differentiate TEM from ITG. We have found indications that the TEM can have a QC signature by comparing frequency fluctuation spectra from reflectometry measurements, gyrokinetic simulations and synthetic diagnostic results. Then the scope of the analysis of QC-TEM are discussed and an application is shown, namely transitions between TEM turbulence and MHD fluctuations.

  3. GENERAL RELATIVISTIC EFFECTS ON NONLINEAR POWER SPECTRA

    SciTech Connect

    Jeong, Donghui; Gong, Jinn-Ouk; Noh, Hyerim; Hwang, Jai-chan E-mail: jgong@lorentz.leidenuniv.nl E-mail: jchan@knu.ac.kr

    2011-01-20

    The nonlinear nature of Einstein's equation introduces genuine relativistic higher order corrections to the usual Newtonian fluid equations describing the evolution of cosmological perturbations. We study the effect of such novel nonlinearities on the next-to-leading order matter and velocity power spectra for the case of a pressureless, irrotational fluid in a flat Friedmann background. We find that pure general relativistic corrections are negligibly small over all scales. Our result guarantees that, in the current paradigm of standard cosmology, one can safely use Newtonian cosmology even in nonlinear regimes.

  4. Frequency Spectra of Magnetoacoustic Emission in Meteorites

    NASA Astrophysics Data System (ADS)

    Ivanchenko, S. V.; Grokhovsky, V. I.; Kolchanov, N. N.

    2016-08-01

    We analyzed the magnetoacoustic emission spectra of iron meteorites and their industrial analogs. The revealed differences in signal amplitude, position and width of the peaks are associated with the features of structure and the magnetic texture.

  5. Signal Frequency Spectra with Audacity®

    ERIC Educational Resources Information Center

    Gailey, Alycia

    2015-01-01

    The primary objective of the activity presented here is to allow students to explore the frequency components of various simple signals, with the ultimate goal of teaching them how to remove unwanted noise from a voice signal. Analysis of the frequency components of a signal allows students to design filters that remove unwanted components of a…

  6. Signal Frequency Spectra with Audacity®

    ERIC Educational Resources Information Center

    Gailey, Alycia

    2015-01-01

    The primary objective of the activity presented here is to allow students to explore the frequency components of various simple signals, with the ultimate goal of teaching them how to remove unwanted noise from a voice signal. Analysis of the frequency components of a signal allows students to design filters that remove unwanted components of a…

  7. Frequency spectra of short-period variations of cosmic ray

    NASA Technical Reports Server (NTRS)

    Antonova, V. P.; Zusmanovich, A. G.

    1985-01-01

    Frequency spectra for different periods of solar activity were calculated by 5-minutes data of a neutron super-monitor, (altitude 3340 m, cutoff rigidity is 6, 7 GV, counting rate is about 4.5.10 per hour). It was shown that shifting of the spectrum power from low-frequency range to high-frequency range takes place from minimum to maximum of the solar activity. It was reliably distinguished the peak with 160-minutes period coincided with the period of the Sun's atmosphere oscillation and some types of geomagnetic pulsation by the method of accumulation of the frequency spectra. It was conducted the comparison of cosmic ray spectra with spectra of geomagnetic field for the same point of the registration and at the same period.

  8. Hardware Demonstration: Frequency Spectra of Transients

    NASA Technical Reports Server (NTRS)

    McCloskey, John; Dimov, Jen

    2017-01-01

    Radiated emissions measurements as specified by MIL-STD-461 are performed in the frequency domain, which is best suited to continuous wave (CW) types of signals. However, many platforms implement signals that are single event pulses or transients. Such signals can potentially generate momentary radiated emissions that can cause interference in the system, but they may be missed with traditional measurement techniques. This demonstration provides measurement and analysis techniques that effectively evaluate the potential emissions from such signals in order to evaluate their potential impacts to system performance.

  9. Frequency spectra of laminated piezoelectric cylinders

    NASA Astrophysics Data System (ADS)

    Siao, J. C.-T.; Dong, S. B.; Song, J.

    1994-07-01

    A finite-element method is presented for determining the vibrational characteristics of a circular cylinder composed of bonded piezoelectric layers. Finite-element modeling occurs in the radial direction only using quadratic polynomials and the variationally derived partial differential equations are functions of the hoop and axial coordinates (theta, z) and time t. Using solution form Q exp (i(xi(z) + n(theta) + (omega)t)), with Q as the nodal amplitudes, leads to an algebraic eigensystem where any one of the three parameters (n, xi, omega), the circumferential or axial wave number or natural frequency, can act as the eigenvalue. Integer values always are assigned to n, leaving two possible eigenvalue problems. With omega as the eigenvalue and real values assigned to xi, the solutions represent propagating waves or harmonic standing vibrations in an infinite cylinder. When xi is the eigenvalue and real values assigned to omega, this eigensystem admits both real and complex eigendata. Real xi's represent propagating waves or harmonic standing vibrations as noted before. Complex conjugate pairs of xi 's describe end vibrations, which arise when an incident wave impinges upon a free end of a cylindrical bar. They are standing waves whose amplitudes decay sinusoidally or exponentially from the free end into the interior. Two examples are given to illustrate the method of analysis, viz., a solid piezoelectric cylinder of PZT-4 ceramic material and a two-layer cylinder of PZT-4 covering an isotropic material.

  10. Automatic frequency and phase alignment of in vivo J-difference-edited MR spectra by frequency domain correlation.

    PubMed

    Wiegers, Evita C; Philips, Bart W J; Heerschap, Arend; van der Graaf, Marinette

    2017-06-01

    J-difference editing is often used to select resonances of compounds with coupled spins in (1)H-MR spectra. Accurate phase and frequency alignment prior to subtracting J-difference-edited MR spectra is important to avoid artefactual contributions to the edited resonance. In-vivo J-difference-edited MR spectra were aligned by maximizing the normalized scalar product between two spectra (i.e., the correlation over a spectral region). The performance of our correlation method was compared with alignment by spectral registration and by alignment of the highest point in two spectra. The correlation method was tested at different SNR levels and for a broad range of phase and frequency shifts. In-vivo application of the proposed correlation method showed reduced subtraction errors and increased fit reliability in difference spectra as compared with conventional peak alignment. The correlation method and the spectral registration method generally performed equally well. However, better alignment using the correlation method was obtained for spectra with a low SNR (down to ~2) and for relatively large frequency shifts. Our correlation method for simultaneously phase and frequency alignment is able to correct both small and large phase and frequency drifts and also performs well at low SNR levels.

  11. General and efficient simulation of pulse EPR spectra.

    PubMed

    Stoll, Stefan; Britt, R David

    2009-08-21

    We present a rather general and efficient method of simulating electron-spin echo spectra for spin systems where the microwave frequency does not simultaneously excite EPR transitions that share a common level. The approach can handle arbitrary pulse sequences with microwave pulses of arbitrary length and strength. The signal is computed as a sum over signals from the electron coherence transfer pathways contributing to the detected echo. For each pathway, amplitudes and frequencies of the signal components are computed and used to construct a spectral histogram from which the time-domain signal is obtained. For multinuclear spin systems, the nuclear subspace is factorized to accelerate the computation. The method is also applicable to high electron spin systems with significant zero-field splitting and to pulse electron-nuclear double resonance experiments. The method is implemented in the software package EasySpin, and several illustrative calculations are shown.

  12. Measuring Complex Sum Frequency Spectra with a Nonlinear Interferometer.

    PubMed

    Wang, Jing; Bisson, Patrick J; Marmolejos, Joam M; Shultz, Mary Jane

    2016-06-02

    Currently, the only techniques capable of delivering molecular-level data on buried or soft interfaces are the nonlinear spectroscopic methods: sum frequency generation (SFG) and second harmonic generation (SHG). Deducing molecular information from spectra requires measuring the complex components-the amplitude and the phase-of the surface response. A new interferometer has been developed to determine these components with orders-of-magnitude improvement in uncertainty compared with current methods. Both the sample and reference spectra are generated within the interferometer, hence the label nonlinear interferometer. The interferometer configuration provides experimenters with wide latitude for both the sample enclosure and reference material choice and is thus widely applicable. The instrument is described and applied to the well-studied octadecyltrichlorosilane (OTS) film. The OTS spectra support the interpretation that variation in fabrication solvent water content and substrate preparation account for differences in OTS spectra reported in the literature.

  13. Power spectra at radio frequency of lightning return stroke waveforms

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Thomson, D. J.; Maclennan, C. G.; Rinnert, K.; Krider, E. P.

    1989-01-01

    The power spectra of the wideband (10 Hz to 100 kHz) magnetic field signals in a number of lightning return strokes (primarily first return strokes) measured during a lightning storm which occurred in Lindau, West Germany in August, 1984 have been calculated. The RF magnetic field data were obtained with the engineering unit of the Galileo Jupiter Probe lightning experiment. The spectra of the magnetic field data definitely show fine structure, with two or three distinct peaks appearing in the spectra of many of the waveforms. An enhancement of power at frequencies of about 60-70 kHz is often seen in the spectra of the waveform time segments preceding and following the rise-to-peak amplitude of the return stroke.

  14. Retrieving sea-wave spectra using satellite-imagery spectra in a wide range of frequencies

    NASA Astrophysics Data System (ADS)

    Bondur, V. G.; Dulov, V. A.; Murynin, A. B.; Ignatiev, V. Yu.

    2016-11-01

    A method to register sea-wave spectra using optical aerospace imagery has been developed. The method is based on the use of retrieval operators both in areas of high and low spatial frequencies, including the areas of spectral maximum. The approach to adjust and validate the method developed using sea truth data obtained by string wave recorders has been suggested. This paper presents the results of using the suggested method to study sea-wave spectra using high-resolution satellite imagery for various water areas under different conditions of wave generation.

  15. Frequency spectra of scalar fluctuations at entraining stratified interfaces

    NASA Astrophysics Data System (ADS)

    Kit, E.; Fernando, H. J. S.

    1997-02-01

    Observations of frequency (ω) spectra of buoyancy fluctuations in entraining stratified fluids are presented. A two-fluid system, with turbulence in the dense layer, was used for this purpose and the spectra were measured at different distances ( z) from the interface. As z increases, interesting transitions were found to occur in spectral shapes. Near the interface where the buoyancy effects are still important, z < 0.2 LH ( LH is the integral length scale measured in homogeneous turbulence), the spectra were dominated by ω-3 form which gradually transitioned into the ω -5/3 shape at z ≈ 0.5 LH. At z ≈ 0.7 LH, the spectra appeared to contain both ω -5/3 and ω-1 shapes, and away from the interface at z > 0.8 LH the ω -5/3 form disappeared leaving the ω-1 form. These changes of the spectral form of scalar fluctuations evidence the fate of dense fluid particles that are entrained at the density interface and then break up into smaller scales and lose buoyancy as they are advected by large-scale eddies.

  16. Cascadia Tremor Spectra from Beamforming Fall Off as Frequency Squared

    NASA Astrophysics Data System (ADS)

    Gerstoft, P.; Zhang, J.; Shearer, P. M.; Yao, H.; Vidale, J. E.; Ghosh, A.

    2010-12-01

    The spectral decay of non-volcanic tremor (NVT) contains important information about the physical processes involved in Episodic Tremor and Slip (ETS). Using a small-aperture seismic array deployed on Big Skidder Hill, WA, we employ frequency-domain beamforming to obtain spatiotemporal spectral estimates of NVT activity in Cascadia on May 6-19, 2008. By shooting rays up from the plate boundary, potential tremor source locations are found where they best match the beamformer output. While energy from 2.5 Hz up to 25 Hz can radiate simultaneously from different patches, they often tend to come from the same region and migrate from the south to the north. An advantage of using beamforming for spectral analysis is that we can suppress noise and focus on the tremor phase by deriving the cross-power spectrum. This enables extracting tremor spectra for higher frequencies. We then compute the tremor source spectrum by using nearby small earthquakes to estimate empirical path and attenuation corrections. Our results show that displacement spectral amplitudes of the Cascadia tremor fall off roughly as the inverse of frequency squared over 5-20 Hz, agreeing with standard frequency-squared spectral models for earthquakes, but disagreeing with prior tremor analyses that have indicated a falloff proportional to frequency rather than frequency squared.

  17. Non-Equilibrium Allele Frequency Spectra Via Spectral Methods

    PubMed Central

    Hey, Jody; Chen, Kevin

    2011-01-01

    A major challenge in the analysis of population genomics data consists of isolating signatures of natural selection from background noise caused by random drift and gene flow. Analyses of massive amounts of data from many related populations require high-performance algorithms to determine the likelihood of different demographic scenarios that could have shaped the observed neutral single nucleotide polymorphism (SNP) allele frequency spectrum. In many areas of applied mathematics, Fourier Transforms and Spectral Methods are firmly established tools to analyze spectra of signals and model their dynamics as solutions of certain Partial Differential Equations (PDEs). When spectral methods are applicable, they have excellent error properties and are the fastest possible in high dimension; see [15]. In this paper we present an explicit numerical solution, using spectral methods, to the forward Kolmogorov equations for a Wright-Fisher process with migration of K populations, influx of mutations, and multiple population splitting events. PMID:21376069

  18. Continuum modes in rotating plasmas: General equations and continuous spectra for large aspect ratio tokamaks

    SciTech Connect

    Lakhin, V. P.; Ilgisonis, V. I.

    2011-09-15

    A theory for localized low-frequency ideal magnetohydrodynamical (MHD) modes in axisymmetric toroidal systems is generalized to take into account both toroidal and poloidal equilibrium plasma flows. The general set of equations describing the coupling of shear Alfven and slow (sound) modes and defining the continuous spectrum of rotating plasmas in axisymmetric toroidal systems is derived. The equations are applied to study the continuous spectra in large aspect ratio tokamaks. The unstable continuous modes in the case of predominantly poloidal plasma rotation with the angular velocity exceeding the sound frequency are found. Their stabilization by the shear Alfven coupling effect is studied.

  19. Excitation spectra of generalized antiferromagnetic Heisenberg spin chains (abstract)

    NASA Astrophysics Data System (ADS)

    Parkinson, J. B.; Bonner, J. C.

    1988-04-01

    We compare the excitation spectra in the presence of a magnetic field of a number of integrable (exactly solvable) and nonintegrable quantum spin chains of various spin value s. The archetypal Bethe-ansatz integrable model is the s= 1/2 Heisenberg antiferromagnet (HB AFM). The excitation spectra are characterized by a soft mode which tracks across the Brillouin zone as the field increases to its saturation value. A class of Bethe-ansatz integrable models with SU(2) symmetry and the general spin s display excitation spectra qualitatively similar to the spin- 1/2 model above, for all s. A second class of Bethe-ansatz integrable models has SU(n) symmetry, where n=2s+1. Like the SU(2) integrable chains, these models have gapless excitation spectra, but the basic Brillouin zone changes from k=±2π/(2s+1)a. Studies show that periodicity of the SU(3) member of the class changes (increases) as the field increases to saturation. For both classes of integrable models, there is a single type of excitation pattern which is generically similar for all s. In the case of the other models, on the other hand, numerical studies show that the excitations divide into at least two distinct classes. In the case of the s=1 HB AFM, at high fields (corresponding to SzT=N,N-1, . . .,N/2) the excitations map approximately onto the complete set of excitations for s= 1/2 , whereas at low fields (SzT=N/2,N/2-1,. . .,0) the excitations have notable classical character. In the case of the s=1 model with pure biquadratic exchange, one set of excitations, corresponding to SzT even (SzT=N,N-2,. . .,2,0), again shows an approximate mapping to the complete excitation set for s= 1/2 . The second class of excitations, corresponding to SzT odd, are very different. They are symmetric about k=±π/2a for all SzT, i.e., correspond to a basic Brillouin zone of ±π/2a.

  20. High-frequency Broadband Modulations of Electroencephalographic Spectra

    PubMed Central

    Onton, Julie; Makeig, Scott

    2009-01-01

    High-frequency cortical potentials in electroencephalographic (EEG) scalp recordings have low amplitudes and may be confounded with scalp muscle activities. EEG data from an eyes-closed emotion imagination task were linearly decomposed using independent component analysis (ICA) into maximally independent component (IC) processes. Joint decomposition of IC log spectrograms into source- and frequency-independent modulator (IM) processes revealed three distinct classes of IMs that separately modulated broadband high-frequency (∼15–200 Hz) power of brain, scalp muscle, and likely ocular motor IC processes. Multi-dimensional scaling revealed significant but spatially complex relationships between mean broadband brain IM effects and the valence of the imagined emotions. Thus, contrary to prevalent assumption, unitary modes of spectral modulation of frequencies encompassing the beta, gamma, and high gamma frequency ranges can be isolated from scalp-recorded EEG data and may be differentially associated with brain sources and cognitive activities. PMID:20076775

  1. Generalized Graphs, Methods for Obtaining Graph Spectra. Application of Graph Spectra in Chemistry

    NASA Astrophysics Data System (ADS)

    Shen, Mingzuo

    Various graphical methods in the literature for getting at some features of the MO energy level spectra of especially pi systems and some related three-dimensional molecules are studied in detail. These include the graphical methods of Sinanoglu (although its mathematical, quantum-physical foundations, e.g. Sinanoglu's structural-covariance theory, are not discussed in this thesis), the edge-deletion method of Jiang, the specialized method of Sheng for benzenoid graphs, pairing theorems, graph splitting methods of e.g. McClelland, and more general one of R. A. Davidson. Of these the Sinanoglu method is found to be the only one generally applicable to diverse types of molecules without the need to introduce additional and complicated rules for each new graph type. The Sinanoglu method however is intended to be only a qualitative tool (giving the number of bonding, nonbonding, and antibonding levels and their changes upon reaction or geometrical distortions, large or small, of the molecule). Thus the other methods, although highly specialized, could be of help in getting some further information on the spectra. In particular, the "negative graph" concept in Chapter 3 of this thesis would be found useful in ascertaining the energy gap between the lowest and highest MO levels. In case where the Sinanoglu method cannot distinguish between differing stabilities of two molecules with the same signature and number of elections, this energy gap will be particularly useful. In the thesis, many alternative and simpler derivations of the graph-theoretic methods of Jiang, Davidson and others mentioned above are given. Some methods are generalized further. In the last chapter of the thesis starting with S 5.3, the graphical method is applied extensively to various types of molecules thought to have through-space interactions. Especially the Sinanoglu method is used to obtain the signature (instead of using a computer) and qualitative stabilities of these molecules are discussed

  2. Vibrational Spectra of Molecular Crystals with the Generalized Energy-Based Fragmentation Approach.

    PubMed

    Fang, Tao; Jia, Junteng; Li, Shuhua

    2016-05-05

    The generalized energy-based fragmentation (GEBF) approach for molecular crystals with periodic boundary condition (PBC) (denoted as PBC-GEBF) is extended to allow vibrational spectra of molecular crystals to be easily computed at various theory levels. Within the PBC-GEBF approach, the vibrational frequencies of a molecular crystal can be directly evaluated from molecular quantum chemistry calculations on a series of nonperiodic molecular systems. With this approach, the vibrational spectra of molecular crystals can be calculated with much reduced computational costs at various theory levels, as compared to those required by the methods based on periodic electronic structure theory. By testing the performance of the PBC-GEBF method for two molecular crystals (CO2 and imidazole), we demonstrate that the PBC-GEBF approach can reproduce the results of the methods based on periodic electronic structure theory in predicting vibrational spectra of molecular crystals. We apply the PBC-GEBF method at second-order Møller-Plesset perturbation theory (PBC-GEBF-MP2 in short) to investigate the vibrational spectra of the urea and ammonia borane crystals. Our results show that the PBC-GEBF-MP2 method can provide quite accurate descriptions for the observed vibrational spectra of the two systems under study.

  3. Frequency spectra of nonlinear elastic pulse-mode waves

    SciTech Connect

    Kadish, A.; TenCate, J.A.; Johnson, P.A.

    1996-09-01

    The frequency spectrum of simple waves is used to derive a closed form analytical representation for the frequency spectrum of damped nonlinear pulses in elastic materials. The damping modification of simple wave theory provides an efficient numerical method for calculating propagating wave forms. The spectral representation, which is neither pulse length nor amplitude limited, is used to obtain estimates for parameters of the nonlinear state relation for a sandstone sample from published experimental data, and the results are compared with those of other theories. The method should have broad application to many solids.

  4. Generality of Deterministic Chaos, Exponential Spectra, and Lorentzian Pulses in Magnetically Confined Plasmas

    NASA Astrophysics Data System (ADS)

    Maggs, J. E.; Morales, G. J.

    2011-10-01

    The dynamics of transport at the edge of magnetized plasmas is deterministic chaos. The connection is made by a previous survey [M. A. Pedrosa , Phys. Rev. Lett. 82, 3621 (1999)PRLTAO0031-900710.1103/PhysRevLett.82.3621] of measurements of fluctuations that is shown to exhibit power spectra with exponential frequency dependence over a broad range, which is the signature of deterministic chaos. The exponential character arises from Lorentzian pulses. The results suggest that the generalization to complex times used in studies of deterministic chaos is a representation of Lorentzian pulses emerging from the chaotic dynamics.

  5. Frequency variations of solar radio zebras and their power-law spectra

    NASA Astrophysics Data System (ADS)

    Karlický, M.

    2014-01-01

    Context. During solar flares several types of radio bursts are observed. The fine striped structures of the type IV solar radio bursts are called zebras. Analyzing them provides important information about the plasma parameters of their radio sources. We present a new analysis of zebras. Aims: Power spectra of the frequency variations of zebras are computed to estimate the spectra of the plasma density variations in radio zebra sources. Methods: Frequency variations of zebra lines and the high-frequency boundary of the whole radio burst were determined with and without the frequency fitting. The computed time dependencies of these variations were analyzed with the Fourier method. Results: First, we computed the variation spectrum of the high-frequency boundary of the whole radio burst, which is composed of several zebra patterns. This power spectrum has a power-law form with a power-law index -1.65. Then, we selected three well-defined zebra-lines in three different zebra patterns and computed the spectra of their frequency variations. The power-law indices in these cases are found to be in the interval between -1.61 and -1.75. Finally, assuming that the zebra-line frequency is generated on the upper-hybrid frequency and that the plasma frequency ωpe is much higher than the electron-cyclotron frequency ωce, the Fourier power spectra are interpreted to be those of the electron plasma density in zebra radio sources.

  6. First-Principles Framework to Compute Sum-Frequency Generation Vibrational Spectra of Semiconductors and Insulators

    NASA Astrophysics Data System (ADS)

    Wan, Quan; Galli, Giulia

    2015-12-01

    We present a first-principles framework to compute sum-frequency generation (SFG) vibrational spectra of semiconductors and insulators. The method is based on density functional theory and the use of maximally localized Wannier functions to compute the response to electric fields, and it includes the effect of electric field gradients at surfaces. In addition, it includes quadrupole contributions to SFG spectra, thus enabling the verification of the dipole approximation, whose validity determines the surface specificity of SFG spectroscopy. We compute the SFG spectra of ice Ih basal surfaces and identify which spectra components are affected by bulk contributions. Our results are in good agreement with experiments at low temperature.

  7. First-principles framework to compute sum-frequency generation vibrational spectra of semiconductors and insulators.

    SciTech Connect

    Wan, Quan; Galli, Giulia

    2015-12-11

    We present a first-principles framework to compute sum-frequency generation (SFG) vibrational spectra of semiconductors and insulators. The method is based on density functional theory and the use of maximally localized Wannier functions to compute the response to electric fields, and it includes the effect of electric field gradients at surfaces. In addition, it includes quadrupole contributions to SFG spectra, thus enabling the verification of the dipole approximation, whose validity determines the surface specificity of SFG spectroscopy. We compute the SFG spectra of ice Ih basal surfaces and identify which spectra components are affected by bulk contributions. Our results are in good agreement with experiments at low temperature.

  8. Raman spectra of ammonia borane: low frequency lattice modes.

    PubMed

    Ziparo, C; Colognesi, D; Giannasi, A; Zoppi, M

    2012-09-06

    We have measured the Raman spectrum of ammonia borane at low temperature (T = 15 K) and across the orthorhombic-to-tetragonal phase transition at T = 225 K. A comprehensive study of the low frequency lattice modes using Raman spectroscopy has been carried out. Data analysis has been complemented by a density functional theory calculation of which the results have been used for a detailed assignment of the Raman active modes. The analysis of the spectroscopic measurements taken across the phase transition seems to be consistent with the increasing orientational disorder of the molecular components and seems to be compatible with the equalization of the a and b lattice constants characteristic of the tetragonal phase.

  9. Theoretical aspects and the experience of studying spectra of low-frequency microseisms

    NASA Astrophysics Data System (ADS)

    Birialtsev, E.; Vildanov, A.; Eronina, E.; Rizhov, D.; Rizhov, V.; Sharapov, I.

    2009-04-01

    The appearance of low-frequency spectral anomalies in natural microseismic noise over oil and gas deposits is observed since 1989 in different oil and gas regions (S. Arutunov, S. Dangel, G. Goloshubin). Several methods of prospecting and exploration of oil and gas deposits based on this effect (NTK ANCHAR, Spectraseis AG). There are several points of view (S. Arutunov, E. Birialtsev, Y. Podladchikov) about the physical model of effect which are based on fundamentally different geophysical mechanisms. One of them is based on the hypothesis of generation of the microseismic noise in to an oil and gas reservoir. Another point of view is based on the mechanism of the filtering microseismic noise in the geological medium where oil and gas reservoir is the contrast layer. For the first hypothesis an adequate quantity physical-mathematical model is absent. Second hypothesis has a discrepancy of distribution energy on theoretical calculated frequencies of waveguides «ground surface - oil deposit» eigenmodes. The fundamental frequency (less than 1 Hz for most cases) should have a highest amplitude as opposed to the regular observation range is 1-10 Hz. During 2005-2008 years by specialists of «Gradient» JSC were processed microsesmic signals from more 50 geological objects. The parameters of low-frequency anomalies were compared with medium properties (porosity, saturation and viscosity) defined according to drilling, allowed to carry out a statistical analysis and to establish some correlation. This paper presents results of theoretical calculation of spectra of microseisms in the zone of oil and gas deposits by mathematical modeling of propagation of seismic waves and comparing spectra of model microseisms with actually observed. Mathematical modeling of microseismic vibrations spectra showed good correlation of theoretical spectra and observed in practice. This is proof the applicability of microseismic methods of exploration for oil and gas. Correlation between

  10. General computational spectroscopic framework applied to Z-pinch dynamic hohlraum K-shell argon spectra

    SciTech Connect

    Adams, M L; Sinars, D B; Scott, H A

    2005-01-10

    We describe a general computational spectroscopic framework for interpreting observed spectra. The framework compares synthetic spectra with measured spectra, then optimizes the agreement using the Dakota toolkit to minimize a merit function that incorporates established spectroscopic techniques. We generate synthetic spectra using the self-consistent nonlocal thermodynamic equilibrium atomic kinetics and radiative transfer code Cretin, relativistic atomic structure and cross section data from Hullac, and detailed spectral line shapes from Totalb. We test the capabilities of both our synthetic spectra model and general spectroscopic framework by analyzing a K-shell argon spectrum from a Z-pinch dynamic hohlraum inertial confinement fusion capsule implosion experiment. The framework obtains close agreement between an experimental spectrum measured by a time integrated focusing spectrometer and the optimal synthetic spectrum. The synthetic spectra show that considering the spatial extent of the capsule and including the effects of optically thick resonance lines significantly affects the interpretation of measured spectra.

  11. Electrostatic frequency shifts in amide I vibrational spectra: Direct parameterization against experiment

    PubMed Central

    Reppert, Mike; Tokmakoff, Andrei

    2013-01-01

    The interpretation of protein amide I infrared spectra has been greatly assisted by the observation that the vibrational frequency of a peptide unit reports on its local electrostatic environment. However, the interpretation of spectra remains largely qualitative due to a lack of direct quantitative connections between computational models and experimental data. Here, we present an empirical parameterization of an electrostatic amide I frequency map derived from the infrared absorption spectra of 28 dipeptides. The observed frequency shifts are analyzed in terms of the local electrostatic potential, field, and field gradient, evaluated at sites near the amide bond in molecular dynamics simulations. We find that the frequency shifts observed in experiment correlate very well with the electric field in the direction of the C=O bond evaluated at the position of the amide oxygen atom. A linear best-fit mapping between observed frequencies and electric field yield sample standard deviations of 2.8 and 3.7 cm−1 for the CHARMM27 and OPLS-AA force fields, respectively, and maximum deviations (within our data set) of 9 cm−1. These results are discussed in the broader context of amide I vibrational models and the effort to produce quantitative agreement between simulated and experimental absorption spectra. PMID:23574217

  12. Electrostatic frequency shifts in amide I vibrational spectra: Direct parameterization against experiment

    NASA Astrophysics Data System (ADS)

    Reppert, Mike; Tokmakoff, Andrei

    2013-04-01

    The interpretation of protein amide I infrared spectra has been greatly assisted by the observation that the vibrational frequency of a peptide unit reports on its local electrostatic environment. However, the interpretation of spectra remains largely qualitative due to a lack of direct quantitative connections between computational models and experimental data. Here, we present an empirical parameterization of an electrostatic amide I frequency map derived from the infrared absorption spectra of 28 dipeptides. The observed frequency shifts are analyzed in terms of the local electrostatic potential, field, and field gradient, evaluated at sites near the amide bond in molecular dynamics simulations. We find that the frequency shifts observed in experiment correlate very well with the electric field in the direction of the C=O bond evaluated at the position of the amide oxygen atom. A linear best-fit mapping between observed frequencies and electric field yield sample standard deviations of 2.8 and 3.7 cm-1 for the CHARMM27 and OPLS-AA force fields, respectively, and maximum deviations (within our data set) of 9 cm-1. These results are discussed in the broader context of amide I vibrational models and the effort to produce quantitative agreement between simulated and experimental absorption spectra.

  13. Determination of the Brunt-Vaisala frequency from vertical velocity spectra

    NASA Technical Reports Server (NTRS)

    Rottger, J.

    1986-01-01

    Recent work on the spectra of vertical velocity oscillations due to gravity waves in the troposphere, stratosphere and the mesosphere has revealed a typical feature which we call the Brunt-Vaisala cutoff. Several observers noticed a spectral peak near the Brunt-Vaisala frequency. This peak often is characterized by a very steep slope at the high frequency part, but a fairly shallow slope towards lower frequencies. Some example spectra of stratosphere observations are given. This distinct spectral shape (most clear at the upper height 22.5 km) can be explained by the fact that the vertical velocity amplitudes of atmospheric gravity waves increase with frequency up to their natural cutoff at the Brunt-Vaisala frequency. The measurement of the frequency of the peak in a vertical velocity spectrum was found to yield most directly the Brunt-Vaisala-frequency profile. Knowing the Brunt-Vaisala frequency profile, one can deduce the potential temperature profile, if one has a calibration temperature at one height. However, even the uncalibrated profile will be quite useful, e.g., to determine fronts (defined by temperature inversions) and the tropopause height. This method fails for superadiabatic lapse rates when the Brunt-Viasala frequency is imaginary. The application of this method will also be difficult when the wind velocity is too high, causing the Doppler effect to smear out the total spectrum and blur the Brunt-Vaisala cutoff. A similar deficiency will also appear if the gravity-wave distribution has a maximum in wind direction.

  14. Generalized Linear Multi-Frequency Imaging in VLBI

    NASA Astrophysics Data System (ADS)

    Likhachev, S.; Ladygin, V.; Guirin, I.

    2004-07-01

    In VLBI, generalized Linear Multi-Frequency Imaging (MFI) consists of multi-frequency synthesis (MFS) and multi-frequency analysis (MFA) of the VLBI data obtained from observations on various frequencies. A set of linear deconvolution MFI algorithms is described. The algorithms make it possible to obtain high quality images interpolated on any given frequency inside any given bandwidth, and to derive reliable estimates of spectral indexes for radio sources with continuum spectrum.

  15. Influence of sex, smoking and age on human hprt mutation frequencies and spectra.

    PubMed Central

    Curry, J; Karnaoukhova, L; Guenette, G C; Glickman, B W

    1999-01-01

    Examination of the literature for hprt mutant frequencies from peripheral T cells yielded data from 1194 human subjects. Relationships between mutant frequency, age, sex, and smoking were examined, and the kinetics were described. Mutant frequency increases rapidly with age until about age 15. Afterward, the rate of increase falls such that after age 53, the hprt mutant frequency is largely stabilized. Sex had no effect on mutant frequency. Cigarette smoking increased mean mutant frequency compared to nonsmokers, but did not alter age vs. mutant frequency relationships. An hprt in vivo mutant database containing 795 human hprt mutants from 342 individuals was prepared. No difference in mutational spectra was observed comparing smokers to nonsmokers, confirming previous reports. Sex affected the frequency of deletions (>1 bp) that are recovered more than twice as frequently in females (P = 0. 008) compared to males. There is no indication of a significant shift in mutational spectra with age for individuals older than 19 yr, with the exception of A:T --> C:G transversions. These events are recovered more frequently in older individuals. PMID:10388825

  16. Frequency response characteristics and response spectra of base-isolated and un-isolated structures

    SciTech Connect

    Mok, G.C.; Namba, H.

    1995-07-06

    The transmissibility of seismic loads through a linear base-isolation system is analyzed using an impedance method. The results show that the system acts like a {open_quotes}low-pass{close_quotes} filter. It attenuates high-frequency loads but passes through low-frequency ones. The filtering effect depends on the vibration frequencies and damping of the isolated structure and the isolation system. This paper demonstrates the benefits and design principles of base isolation by comparing the transmissibilities and response spectra of isolated and un-isolated structures. Parameters of typical isolated buildings and ground motions of the 1994 Northridge earthquake are used for the demonstration.

  17. Low-frequency magnetic fluctuation spectra in the magnetosheath and plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Denton, Richard E.; Gary, S. Peter; Anderson, Brian J.; Fuselier, Stephen A.; Hudson, Mary K.

    1994-01-01

    Recent observations have delineated several different kinds of enhanced magnetic fluctuation spectra below the proton cyclotron frequency in the terrestrial magnetosheath. A model is presented that represents the variation of plasma parameters across the plasma depletion layer and into the magnetosheath proper. Using this model, we find that many of the properties of the observed spectra follow directly from the predictions of linear Vlasov instability theory. The observed progression of spectral features is a natural progression from mirror mode to merged (in frequency range) proton and He(2+) cyclotron modes to bifurcated (in frequency range) cyclotron modes as plasma convects earthward in the magnetosheath. The necessary change in dispersion surface topology from separated proton and He(2+) cyclotron surfaces at low beta to merged surfaces at high beta is described.

  18. Spatial-frequency spectra of printed characters and human visual perception.

    PubMed

    Põder, Endel

    2003-06-01

    It is well known that certain spatial frequency (SF) bands are more important than others for character recognition. Solomon and Pelli [Nature 369 (1994) 395-397] have concluded that human pattern recognition mechanism is able to use only a narrow band from available SF spectrum of letters. However, the SF spectra of letters themselves have not been studied carefully. Here I report the results of an analysis of SF spectra of printed characters and discuss their relationship to the observed band-pass nature of letter recognition.

  19. Sum frequency generation surface spectra of ice, water, and acid solution investigated by an exciton model.

    PubMed

    Buch, V; Tarbuck, T; Richmond, G L; Groenzin, H; Li, I; Shultz, M J

    2007-11-28

    A new computational scheme is presented for calculation of sum frequency generation (SFG) spectra, based on the exciton model for OH bonds. The scheme is applied to unified analysis of the SFG spectra in the OH-stretch region of the surfaces of ice, liquid water, and acid solution. A significant role of intermolecularly coupled collective modes is pointed out. SFG intensity amplification observed for acid solutions in the H-bonded OH-stretch region is reproduced qualitatively and accounted for by enhanced orientational preference "into the surface" of the H(2)O bisectors within the hydronium solvation shell.

  20. High-frequency ESR spectra of the type Ib synthetic diamond and nanodiamond at low temperatures

    NASA Astrophysics Data System (ADS)

    Khatsko, E.; Kobets, M.; Dergachev, K.; Kulbickas, A.; Rasteniene, L.; Vaisnoras, R.

    2013-12-01

    The ESR absorption spectra on paramagnetic centers in the type Ib bulk diamond and nanodiamond powder were studied before and after irradiation with high energy electrons (2 MeV) for a wide range of frequencies (70-120 GHz) and temperatures (4.2-90 K). The absorption lines related to the nickel-ion growth catalyst Ni1+ and single nitrogen paramagnetic center N0 were observed in the ESR spectrum of bulk diamond. In the nanodiamond, the absorption lines of the paramagnetic centers with dangling bonds on the surface of the nanodiamond crystallites (surface defects) and the sidelines related to the hyperfine interaction were observed in the ESR spectra.

  1. Radial evolution of the high/low frequency breakpoint in magnetic field spectra

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Ruzmaikin, A.; Smith, E. J.

    1995-01-01

    The spectra of magnetic field variations in the solar wind show different behavior in two frequency regions; a high frequency region in which the spectral exponent is about -5/3 and a low frequency region in which it is typically -1. The two types of variations must arise from different processes and a clue to the relationship between the spectral regions lies in understanding the behavior of the breakpoint between the spectral regions. Studies of the average behavior of spectra have shown that the break point occurs at about 3.5 hours at 1 AU. It is also known that, on average, the breakpoint occurs at lower frequencies with larger heliocentric distances. Ideally however, instead of the average properties of the spectra, we would like to know how the breakpoint evolves in particular samples of the solar wind as they propagate to larger heliocentric distances. In the study reported here we take advantage of the fact that, in 1974, Pioneer 10 (4.4 AU) and Pioneer 11 (5.6 AU) were close to being co-aligned and being aligned with the Earth. Solar wind observed at Earth can be closely matched with solar wind later observed at P10 and P11. We here compare the breakpoint observed at Earth with that observed at Pioneers 10 and 11 for matched samples of the wind.

  2. Frequency analyses of EMG power spectra of anterior temporal and masseter muscles in children and adults.

    PubMed

    Takarada, T; Larrinaga, G A; Nishida, F; Nishino, M

    1990-01-01

    To study the functional change of masticatory muscles during growth and development, frequency analyses of surface electromyogram (EMG) power spectra were carried out. The subjects were six children (five males and one female), aged 4.5 +/- 0.2 years, having full deciduous dentition (Hellman's dental age IIA) and six adults (four males and two females), aged 27.7 +/- 3.8 years, having full permanent dentition. EMG signals were recorded bilaterally by using bipolar silver-surface electrodes from the anterior temporal and masseter muscles while the subjects were chewing gum and while performing maximum clenching in the intercuspal position. A fast Fourier transform algorithm was used to obtain the power-spectral density function and the power spectra of the EMG signals. Since the total power value from 62.5 to 1000 Hz was 100 percent, the frequencies at 25, 50, 75, and 90 percent of the cumulative power were calculated. The results showed that the frequencies at every percent of the cumulative power were age-dependent and that the EMG power spectra patterns in adult muscles were shifted to significantly lower frequencies than those in child muscles. The shift was probably caused by differences in the proportion of fiber type and fiber size between muscles of children and adults.

  3. Band gaps and transmission spectra in generalized Fibonacci σ(p,q) one-dimensional magnonic quasicrystals.

    PubMed

    Costa, C H O; Vasconcelos, M S

    2013-07-17

    We employ a microscopic theory to investigate spin wave (magnon) propagation through their dispersion and transmission spectra in magnonic crystals arranged to display deterministic disorder. In this work the quasiperiodic arrangement investigated is the well-known generalized Fibonacci sequence, which is characterized by the σ(p,q) parameter, where p and q are non-zero integers. In order to determine the bulk modes and transmission spectra of the spin waves, the calculations are carried out for the exchange dominated regime within the framework of the Heisenberg model and taking into account the random phase approximation. We have considered magnetic materials that have a ferromagnetic order, and the transfer-matrix treatment is applied to simplify the algebra. The results reveal that spin wave spectra display a rich and interesting magnonic pass- and stop-bands structures, including an almost symmetric band gap distribution around of a mid-gap frequency, which depends on the Fibonacci sequence type.

  4. Band gaps and transmission spectra in generalized Fibonacci σ(p,q) one-dimensional magnonic quasicrystals

    NASA Astrophysics Data System (ADS)

    Costa, C. H. O.; Vasconcelos, M. S.

    2013-07-01

    We employ a microscopic theory to investigate spin wave (magnon) propagation through their dispersion and transmission spectra in magnonic crystals arranged to display deterministic disorder. In this work the quasiperiodic arrangement investigated is the well-known generalized Fibonacci sequence, which is characterized by the σ(p,q) parameter, where p and q are non-zero integers. In order to determine the bulk modes and transmission spectra of the spin waves, the calculations are carried out for the exchange dominated regime within the framework of the Heisenberg model and taking into account the random phase approximation. We have considered magnetic materials that have a ferromagnetic order, and the transfer-matrix treatment is applied to simplify the algebra. The results reveal that spin wave spectra display a rich and interesting magnonic pass- and stop-bands structures, including an almost symmetric band gap distribution around of a mid-gap frequency, which depends on the Fibonacci sequence type.

  5. Electromagnetic fluctuation spectra of collective oscillations in magnetized Maxwellian equal mass plasmas for low-frequency waves

    SciTech Connect

    Vafin, S.; Schlickeiser, R.; Yoon, P. H.

    2016-05-15

    Recently, the general electromagnetic fluctuation theory for magnetized plasmas has been used to study the steady-state fluctuation spectra and the total intensity of low-frequency collective weakly damped modes for parallel wave vectors in Maxwellian plasmas. Now, we address the same question with respect to an arbitrary direction of the wave-vector. Here, we analyze this problem for equal mass plasmas. These plasmas are a very good tool to study various plasma phenomena, as they considerably facilitate the theoretical consideration and at the same time provide with their clear physical picture. Finally, we compare our results in the limiting case of parallel wave vectors with the previous study.

  6. Enhanced frequency spectra of winds at the mesoscale based on radar profiler observations

    NASA Technical Reports Server (NTRS)

    Nastrom, G. D.; Gage, K. S.

    1990-01-01

    Frequency spectra of horizontal winds in the troposphere and stratosphere, over a range of periods and frequencies, have been studied by means of two radar profilers, located at Plattenville, Colorado, and Poker Flat, Alaska, to determine if the spectra deviations from a consistent power law behavior can be verified in a statistical sense. At Plattenville, the spectrum of both zonal and meridional winds in the troposphere is found to obey a low-frequency regime at periods longer than a few hours and a high-frequency regime at periods less than 1/2 hour. The energy levels in the high-frequency regime are enhanced over those obtained by extrapolation of the low-frequency regime by a factor of 4. At Poker Flat, a similar pattern is found in the stratosphere, and the magnitude of the enhancement factor is 1.7. It is suggested that the enhanced amplitudes reflect the effects of upward-propagating gravity waves launched by the flow over a rough terrain, and that they influence the dynamics of the large-scale circulation to a great extent.

  7. Time-Resolved Emission Spectra Of Tryptophan And Proteins From Frequency-Domain Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Szmacineki, Henryk; Lakowicz, Joseph R.; Johnson, Michael L.

    1988-06-01

    We report measurements of time-resolved emission spectra of N-acetyl-L-tryptophanamide (NATA), adrenocorticotropic hormone (ACTH, residues 1-24), and of S. Nuclease. These spectra were calculated from the frequency-response of the emission, measured at several wavelengths across the emission spectra. Measurements were performed on samples not quenched and quenched by acrylamide, the latter providing additional information on the short time events. The time-resolved center-of-gravity does not decay as a single exponential. At least two spectral relaxation times are needed to account for the present data. NATA and ACTH each display relaxation times near 50 and 800 ps, which may be characteristic of exposed tryptophan residues. S. nuclease displayed slower relaxation times near 0.5 and 10 ns, which probably reflect the dynamic protein matrix which surrounds the residue.

  8. Investigating the frequency dependence of mantle Q by stacking P and PP spectra

    NASA Astrophysics Data System (ADS)

    Warren, Linda M.; Shearer, Peter M.

    2000-11-01

    Using seismograms from globally distributed, shallow earthquakes between 1988 and 1998, we compute spectra for P arrivals from epicentral distances of 40° to 80° and PP arrivals from 80° to 160°. Selecting records with estimated signal-to-noise ratios greater than 2, we find 17,836 P and 14,721 PP spectra. We correct each spectrum for the known instrument response and for an ω-2 source model that accounts for varying event sizes. Next, we stack the logarithms of the P and PP spectra in bins of similar source-receiver range. The stacked log spectra, denoted as log(DP') and log(DPP'), appear stable between about 0.16 and 0.86 Hz, with noise and/or bias affecting the results at higher frequencies. Assuming that source spectral differences are randomly distributed, then for shallow events, when the PP range is twice the P range, the average residual source spectrum may be estimated as 2 log(DP')-log(DPP'), and the average P wave attenuation spectrum may be estimated as log(DPP') - log(DP'). The residual source spectral estimates exhibit a smooth additional falloff as ω-0.15±0.05 between 0.16 and 0.86 Hz, indicating that ω-2.15±0.05 is an appropriate average source model for shallow events. The attenuation spectra show little distance dependence over this band and have a P wave t¯* value of ˜0.5 s. We use t¯* measurements from individual P and PP spectra to invert for a frequency-independent Q model and find that the upper mantle is nearly 5 times as attenuating as the lower mantle. Frequency dependence in Qα is difficult to resolve directly in these data but, as previous researchers have noted, is required to reconcile these values with long-period Q estimates. Using Q model QL6 [Durek and Ekström, 1996] as a long-period constraint, we experiment with fitting our stacked log spectra with an absorption band model. We find that the upper corner frequency f2 in the absorption band must be depth-dependent to account for the lack of a strong distance

  9. [Study on the vibrational spectra characterization of synthetic jadeite jade made by General electric Company].

    PubMed

    Cao, Shu-Min; Qi, Li-Jian; Guo, Qing-Hong; Zhong, Zeng-Qiu; Qiu, Zhi-Li; Li, Zhi-Gang

    2008-04-01

    The object of the present study is the synthetic jadeite jade produced by American General Electric Corporation. Fourier transform infrared spectroscopy (FTIR) and Laser Raman spectroscopy were used to test its spectral properties in order to examine the feature of this kind of synthetic jadeite jade by vibrational spectroscopy and to figure out the mark for discriminate synthetic jadeite jade from natural jadeite jade. The study shows that GE synthetic jadeite jade is identical with natural jadeite jade in the main on fingerprint region in FTIR; There are clearly differences in the 2 000 -4 000 cm(-1) functional region in FTIR: a group of frequencies at 3 375, 3 471 and 3 614 cm(-1) indicate vibration absorption of O-H. GE synthetic jadeite jade has proven consistent with natural jadeite jade in the laser Raman spectra by a group of sharp scattering peaks at 376, 700, 989 and 1 039 cm(-1). In addition these scattering peaks show an intact crystal shape. The FTIR peaks and Raman spectral peaks shift to higher frequencies showing GE synthetic jadeite jade lacking isomorphism of heavy positive ions.

  10. Temperature effects in low-frequency Raman spectra of corticosteroid hormones

    NASA Astrophysics Data System (ADS)

    Minaeva, V. A.; Minaev, B. F.; Baryshnikov, G. V.; Surovtsev, N. V.; Cherkasova, O. P.; Tkachenko, L. I.; Karaush, N. N.; Stromylo, E. V.

    2015-02-01

    Experimental Raman spectra of the corticosteroid hormones corticosterone and desoxycorticosterone are recorded at different temperatures (in the range of 30-310 K) in the region of low-frequency (15-120 cm-1) vibrations using a solid-state laser at 532.1 nm. The intramolecular vibrations of both hormones are interpreted on the basis of Raman spectra calculated by the B3LYP/6-31G(d) density functional theory method. The intermolecular bonds in tetramers of hormones are studied with the help of the topological theory of Bader using data of X-ray structural analysis for crystalline samples of hormones. The total energy of intermolecular interactions in the tetramer of desoxycorticosterone (-49.1 kJ/mol) is higher than in the tetramer of corticosterone (-36.9 kJ/mol). A strong intramolecular hydrogen bond O21-H⋯O=C20 with an energy of -42.4 kJ/mol was revealed in the corticosterone molecule, which is absent in the desoxycorticosterone molecule. This fact makes the Raman spectra of both hormones somewhat different. It is shown that the low-frequency lines in the Raman spectra are associated with skeletal vibrations of molecules and bending vibrations of the substituent at the C17 atom. The calculated Raman spectrum of the desoxycorticosterone dimer allows one to explain the splitting and shift of some lines and to interpret new strong lines observed in the spectra at low temperatures, which are caused by the intermolecular interaction and mixing of normal vibrations in a crystal cell. On the whole the calculated frequencies are in a good agreement with the experimental results.

  11. First Measurements of High Frequency Cross-Spectra from a Pair of Large Michelson Interferometers

    SciTech Connect

    Chou, Aaron S.; Gustafson, Richard; Hogan, Craig; Kamai, Brittany; Kwon, Ohkyung; Lanza, Robert; McCuller, Lee; Meyer, Stephan S.; Richardson, Jonathan; Stoughton, Chris; Tomlin, Raymond; Waldman, Samuel; Weiss, Rainer

    2016-09-01

    Measurements are reported of high frequency cross-spectra of signals from the Fermilab Holometer, a pair of co-located 39 m, high power Michelson interferometers. The instrument obtains differential position sensitivity to cross-correlated signals far exceeding any previous measurement in a broad frequency band extending to the 3.8 MHz inverse light crossing time of the apparatus. A model of universal exotic spatial shear correlations that matches the Planck scale holographic information bound of space-time position states is excluded to 4.6{\\sigma} significance.

  12. First Measurements of High Frequency Cross-Spectra from a Pair of Large Michelson Interferometers

    NASA Astrophysics Data System (ADS)

    Chou, Aaron S.; Gustafson, Richard; Hogan, Craig; Kamai, Brittany; Kwon, Ohkyung; Lanza, Robert; McCuller, Lee; Meyer, Stephan S.; Richardson, Jonathan; Stoughton, Chris; Tomlin, Raymond; Waldman, Samuel; Weiss, Rainer; Holometer Collaboration

    2016-09-01

    Measurements are reported of the cross-correlation of spectra of differential position signals from the Fermilab Holometer, a pair of colocated 39 m long, high power Michelson interferometers with flat broadband frequency response in the MHz range. The instrument obtains sensitivity to high frequency correlated signals far exceeding any previous measurement in a broad frequency band extending beyond the 3.8 MHz inverse light-crossing time of the apparatus. The dominant but uncorrelated shot noise is averaged down over 2 ×1 08 independent spectral measurements with 381 Hz frequency resolution to obtain 2.1 ×10-20m /√{Hz } sensitivity to stationary signals. For signal bandwidths Δ f >11 kHz , the sensitivity to strain h or shear power spectral density of classical or exotic origin surpasses a milestone PSDδ h

  13. Inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells - A review

    NASA Astrophysics Data System (ADS)

    Pivac, Ivan; Barbir, Frano

    2016-09-01

    The results of electrochemical impedance spectroscopy of proton exchange membrane (PEM) fuel cells may exhibit inductive phenomena at low frequencies. The occurrence of inductive features at high frequencies is explained by the cables and wires of the test system. However, explanation of inductive loop at low frequencies requires a more detailed study. This review paper discusses several possible causes of such inductive behavior in PEM fuel cells, such as side reactions with intermediate species, carbon monoxide poisoning, and water transport, also as their equivalent circuit representations. It may be concluded that interpretation of impedance spectra at low frequencies is still ambiguous, and that better equivalent circuit models are needed with clearly defined physical meaning of each of the circuit elements.

  14. Biochemical Applications Of Frequency-Domain Fluorometry; Determination Of Time-Resolved Anisotropies And Emission Spectra

    NASA Astrophysics Data System (ADS)

    Lakowicz, Joseph R.; Gryczynski, Ignazy; Cherek, Henryh; Laczko, Gabor; Joshi, Nanda

    1987-01-01

    Measurements of time-resolved fluorescence are often used for studies of biological macromolecules. Such measurements are usually performed in the time-domain, by measurement of the time-dependent emission following pulsed excitation. It has recently become possible to measure the frequency-response of the emission to intensity modulated light, over a wide range of modulation frequencies. We used frequency-domain fluorometers which operates from 1 to 220 MHz, and more recently to 2000 MHz. The frequency-domain data provide excellent resolution of time-dependent spectral parameters. It is now possible to resolve closely spaced fluorescence lifetimes, to determine multi-exponential decays of anisotropy and to determine time-resolved emission spectra of samples which display time-dependent spectral shifts. In this article we show representative results on tryptophan fluorescence from proteins and for protein-bound fluorophores.

  15. Retrieval of complex χ(2) parts for quantitative analysis of sum-frequency generation intensity spectra

    PubMed Central

    Hofmann, Matthias J.; Koelsch, Patrick

    2015-01-01

    Vibrational sum-frequency generation (SFG) spectroscopy has become an established technique for in situ surface analysis. While spectral recording procedures and hardware have been optimized, unique data analysis routines have yet to be established. The SFG intensity is related to probing geometries and properties of the system under investigation such as the absolute square of the second-order susceptibility χ(2)2. A conventional SFG intensity measurement does not grant access to the complex parts of χ(2) unless further assumptions have been made. It is therefore difficult, sometimes impossible, to establish a unique fitting solution for SFG intensity spectra. Recently, interferometric phase-sensitive SFG or heterodyne detection methods have been introduced to measure real and imaginary parts of χ(2) experimentally. Here, we demonstrate that iterative phase-matching between complex spectra retrieved from maximum entropy method analysis and fitting of intensity SFG spectra (iMEMfit) leads to a unique solution for the complex parts of χ(2) and enables quantitative analysis of SFG intensity spectra. A comparison between complex parts retrieved by iMEMfit applied to intensity spectra and phase sensitive experimental data shows excellent agreement between the two methods. PMID:26450297

  16. Interference effects in the sum frequency generation spectra of thin organic films. I. Theoretical modeling and simulation.

    PubMed

    Tong, Yujin; Zhao, Yanbao; Li, Na; Osawa, Masatoshi; Davies, Paul B; Ye, Shen

    2010-07-21

    A general theoretical calculation is described for predicting the interference effect in the sum frequency generation (SFG) spectra from a model thin-film system as a function of film thickness. The calculations were carried out for a three-layer thin film consisting of an organic monolayer, a dielectric thin film of variable thickness, and a gold substrate. This system comprises two sources of SFG, namely, a resonant contribution from the monolayer/dielectric film interface and a nonresonant contribution from the dielectric film/gold interface. The calculation shows that both the spectral intensity and the shape of the SFG spectra vary significantly with the thickness of the dielectric layer due to interference effects in the thin film. The intensity changes at a particular frequency were explained in terms of the changes in the local field factors (L factors) as a function of the dielectric film thickness. The L factor for each beam changes periodically with the thickness of the dielectric film. However, the combined L factor for the three beams shows complicated thickness dependent features and no clear periodicity was found. On the other hand, if the susceptibilities of both the resonant and nonresonant terms are fixed, changes in the spectral shape will be mainly due to changes in the phase differences between the two terms with the film thickness. The interference behavior also depends strongly on the polarization combinations of the sum frequency, visible, and infrared beams. A general method is provided for predicting changes in the spectral shapes at different film thicknesses by taking into account the relative intensities and phases of the SFG signals from the two interfaces. The model calculation provides important insights for understanding the nonlinear optical responses from any thin-film system and is an essential tool for quantitatively revealing the nonlinear susceptibilities, which are directly related to the actual structure of the interfacial

  17. 15KW General Purpose Power Conditioner (Frequency Changer).

    DTIC Science & Technology

    1980-09-26

    RD-0145 523 15KW GENERAL PURPOSE POWER CONDITIONER (FREQUENCY in3 CHRNGER)(U) GENERAL MOTORS CORP GOLETA CA DELCO ELECTRONICS DIY 26 SEP 80 R80-122...Virginia L * Delco Electronics General Motors Corporation - Santa Barbara Operations Santa Barbara, California D=YtTRO? STATEMENT App eovi 1w public...ELECTROtICS OVIION. SANTA IARUARA OPERATIONS 0 GENERAL MOTORS CORPORATION TABLE OF CONTENTS Section Title Page Er. I PURPOSE OF TESTS 1-1 H DESCRIPTION OF

  18. Reconstruction of the shape of conductivity spectra using differential multi-frequency magnetic induction tomography.

    PubMed

    Brunner, Patricia; Merwa, Robert; Missner, Andreas; Rosell, Javier; Hollaus, Karl; Scharfetter, Hermann

    2006-05-01

    Magnetic induction tomography (MIT) of biological tissue is used for the reconstruction of the complex conductivity distribution kappa inside the object under investigation. It is based on the perturbation of an alternating magnetic field caused by the object and can be used in all applications of electrical impedance tomography (EIT) such as functional lung monitoring and assessment of tissue fluids. In contrast to EIT, MIT does not require electrodes and magnetic fields can also penetrate non-conducting barriers such as the skull. As in EIT, the reconstruction of absolute conductivity values is very difficult because of the method's sensitivity to numerical errors and noise. To overcome this problem, image reconstruction in EIT is often done differentially. Analogously, this concept has been adopted for MIT. Two different methods for differential imaging are applicable. The first one is state-differential, for example when the conductivity change between inspiration and expiration in the lung regions is being detected. The second one is frequency-differential, which is of high interest in motionless organs like the brain, where a state-differential method cannot be applied. An equation for frequency-differential MIT was derived taking into consideration the frequency dependence of the sensitivity matrix. This formula is valid if we can assume that only small conductivity changes occur. In this way, the non-linear inverse problem of MIT can be approximated by a linear one (depending only on the frequency), similar to in EIT. Keeping this limitation in mind, the conductivity changes between one or more reference frequencies and several measurement frequencies were reconstructed, yielding normalized conductivity spectra. Due to the differential character of the method, these spectra do not provide absolute conductivities but preserve the shape of the spectrum. The validity of the method was tested with artificial data generated with a spherical perturbation within a

  19. An improved dual-frequency technique for the remote sensing of ocean currents and wave spectra

    NASA Technical Reports Server (NTRS)

    Schuler, D. L.; Eng, W. P.

    1984-01-01

    A two frequency microwave radar technique for the remote sensing of directional ocean wave spectra and surface currents is investigated. This technique is conceptually attractive because its operational physical principle involves a spatial electromagnetic scattering resonance with a single, but selectable, long gravity wave. Multiplexing of signals having different spacing of the two transmitted frequencies allows measurements of the entire long wave ocean spectrum to be carried out. A new scatterometer is developed and experimentally tested which is capable of making measurements having much larger signal/background values than previously possible. This instrument couples the resonance technique with coherent, frequency agility radar capabilities. This scatterometer is presently configured for supporting a program of surface current measurements.

  20. Two-frequency /Delta k/ microwave scatterometer measurements of ocean wave spectra from an aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Jones, W. L.; Weissman, D. E.

    1981-01-01

    A technique for remotely sensing the large-scale gravity wave spectrum on the ocean surface using a two frequency (Delta k) microwave scatterometer has been demonstrated from stationary platforms and proposed from moving platforms. This measurement takes advantage of Bragg type resonance matching between the electromagnetic wavelength at the difference frequency and the length of the large-scale surface waves. A prominent resonance appears in the cross product power spectral density (PSD) of the two backscattered signals. Ku-Band aircraft scatterometer measurements were conducted by NASA in the North Sea during the 1979 Maritime Remote Sensing (MARSEN) experiment. Typical examples of cross product PSD's computed from the MARSEN data are presented. They demonstrate strong resonances whose frequency and bandwidth agree with the surface characteristics and the theory. Directional modulation spectra of the surface reflectivity are compared to the gravity wave spectrum derived from surface truth measurements.

  1. Two-frequency /Delta k/ microwave scatterometer measurements of ocean wave spectra from an aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Jones, W. L.; Weissman, D. E.

    1981-01-01

    A technique for remotely sensing the large-scale gravity wave spectrum on the ocean surface using a two frequency (Delta k) microwave scatterometer has been demonstrated from stationary platforms and proposed from moving platforms. This measurement takes advantage of Bragg type resonance matching between the electromagnetic wavelength at the difference frequency and the length of the large-scale surface waves. A prominent resonance appears in the cross product power spectral density (PSD) of the two backscattered signals. Ku-Band aircraft scatterometer measurements were conducted by NASA in the North Sea during the 1979 Maritime Remote Sensing (MARSEN) experiment. Typical examples of cross product PSD's computed from the MARSEN data are presented. They demonstrate strong resonances whose frequency and bandwidth agree with the surface characteristics and the theory. Directional modulation spectra of the surface reflectivity are compared to the gravity wave spectrum derived from surface truth measurements.

  2. Revealing structural properties of the marine nanolayer from vibrational sum frequency generation spectra

    NASA Astrophysics Data System (ADS)

    Laß, K.; Friedrichs, G.

    2011-08-01

    Natural nanolayers originating from sea surface and subsurface water samples collected in the Baltic Sea have been investigated using surface-sensitive vibrational sum frequency generation (VSFG) spectroscopy. Distinct spectral signatures of CH and OH bond stretch vibrations have been detected at wavenumbers ranging from 2700 to 3900 cm-1. Measured water-air interface spectra as well as observed signal intensity trends are discussed in terms of composition and structure of the natural organic nanolayer. Reasoning was based on the comparison with reference spectra, spectral trends inferred from previous VSFG studies, reported average composition of dissolved organic matter in seawater, and simplified assumption that surfactants can be classified as soluble (wet) and insoluble (dry) surfactants. Wet surfactants have been found to be dominant, and often lipid-like compounds form a very dense surfactant nanolayer. Supported by comparison spectra of xanthan gum solutions, the observed VSFG spectral signatures were tentatively assigned to lipopolysaccharides or other lipid-like compounds embedded in colloidal matrices of polymeric material. In addition, VSFG spectra of a polluted harbor water sample and a water sample covered with diesel oil are reported.

  3. Singularity Spectra and Generalized Extreme Value Distributions of Decimetric Radio Bursts Associated with Flares

    NASA Astrophysics Data System (ADS)

    Rosa, Reinaldo; Veronese, Thalita; José Alves Bolzan, Maurício; Fernandes, Francisco; Cecatto, José; Karlicky, Marian; Sawant, Hanumant

    The search for turbulent-like patterns and extreme dynamics from time series of solar radio burts has recently advanced due to high-resolution and high-sensitivity observations. Such so-lar radio emissions in the decimetric frequency range (above 1 GHz) are very rich in temporal and spectral fine structures due to nonlinear processes occurring in the magnetic structures on the corresponding active regions. In this paper we analize the decimetric fine structures of 8 X-Class Flares events observed from Brazilian Solar Spectroscope (1-2.5 GHz) and On-drejov radiospectrograph (3 GHz). The Singularity Spectra [1] and Generalized Extreme Value (GEV) distribution [2] are obtained and we interpret our findings as evidence of inhomogeneous lagrangian-like MHD turbulence driving the underlying non-gaussian plasma emission process. Once GEV statistical behavior was found for 75% of the events, the flare ocurrence is discussed into the context of solar extreme events. [1] Bolzan et al., Ann. Geophys., 27, 569-576, 2009. [2] S. Coles, An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, (2001) 228 pp., Springer-Verlag, Berlin, Germany.

  4. Frequency spectra of cosmic ray air shower radio emission measured with LOPES

    NASA Astrophysics Data System (ADS)

    Nigl, A.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Auffenberg, J.; Badea, F.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Buitink, S.; Butcher, H.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kickelbick, D.; Kolotaev, Y.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Łuczak, P.; Manewald, M.; Mathes, H. J.; Mayer, H. J.; Meurer, C.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F.; Sima, O.; Singh, K.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.

    2008-09-01

    Aims: We wish to study the spectral dependence of the radio emission from cosmic-ray air showers around 100 PeV (1017 eV). Methods: We observe short radio pulses in a broad frequency band with the dipole-interferometer LOPES (LOFAR Prototype Station), which is triggered by a particle detector array named Karlsruhe Shower Core and Array Detector (KASCADE). LOFAR is the Low Frequency Array. For this analysis, 23 strong air shower events are selected using parameters from KASCADE. The radio data are digitally beam-formed before the spectra are determined by sub-band filtering and fast Fourier transformation. Results: The resulting electric field spectra fall off to higher frequencies. An average electric field spectrum is fitted with an exponential Eν=K\\cdotexp (ν/MHz/β) and β=-0.017±0.004, or alternatively, with a power law ɛν=K\\cdotνα and a spectral index of α=-1±0.2. The spectral slope obtained is not consistent within uncertainties and it is slightly steeper than the slope obtained from Monte Carlo simulations based on air showers simulated with CORSIKA (Cosmic Ray Simulations for KASCADE). For the analyzed sample of LOPES events, we do not find any significant dependence of the spectral slope on the electric field amplitude, the azimuth angle, the zenith angle, the curvature radius, nor on the average distance of the antennae from the shower core position. But one of the strongest events was measured during thunderstorm activity in the vicinity of LOPES and shows the longest pulse length measured of 110 ns and a spectral slope of α=-3.6. Conclusions: We show with two different methods that frequency spectra from air shower radio emission can be reconstructed on event-by-event basis, with only two dozen dipole antennae simultaneously over a broad range of frequencies. According to the obtained spectral slopes, the maximum power is emitted below 40 MHz. Furthermore, the decrease in power to higher frequencies indicates a loss in coherence determined

  5. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs

    PubMed Central

    Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon

    2017-01-01

    Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10−9 fs2/Hz (equivalent to −174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources. PMID:28102352

  6. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs

    NASA Astrophysics Data System (ADS)

    Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon

    2017-01-01

    Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10‑9 fs2/Hz (equivalent to ‑174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources.

  7. The effect of sampling rate and anti-aliasing filters on high-frequency response spectra

    USGS Publications Warehouse

    Boore, David M.; Goulet, Christine

    2013-01-01

    The most commonly used intensity measure in ground-motion prediction equations is the pseudo-absolute response spectral acceleration (PSA), for response periods from 0.01 to 10 s (or frequencies from 0.1 to 100 Hz). PSAs are often derived from recorded ground motions, and these motions are usually filtered to remove high and low frequencies before the PSAs are computed. In this article we are only concerned with the removal of high frequencies. In modern digital recordings, this filtering corresponds at least to an anti-aliasing filter applied before conversion to digital values. Additional high-cut filtering is sometimes applied both to digital and to analog records to reduce high-frequency noise. Potential errors on the short-period (high-frequency) response spectral values are expected if the true ground motion has significant energy at frequencies above that of the anti-aliasing filter. This is especially important for areas where the instrumental sample rate and the associated anti-aliasing filter corner frequency (above which significant energy in the time series is removed) are low relative to the frequencies contained in the true ground motions. A ground-motion simulation study was conducted to investigate these effects and to develop guidance for defining the usable bandwidth for high-frequency PSA. The primary conclusion is that if the ratio of the maximum Fourier acceleration spectrum (FAS) to the FAS at a frequency fsaa corresponding to the start of the anti-aliasing filter is more than about 10, then PSA for frequencies above fsaa should be little affected by the recording process, because the ground-motion frequencies that control the response spectra will be less than fsaa . A second topic of this article concerns the resampling of the digital acceleration time series to a higher sample rate often used in the computation of short-period PSA. We confirm previous findings that sinc-function interpolation is preferred to the standard practice of using

  8. A synchronization technique for generalized frequency division multiplexing

    NASA Astrophysics Data System (ADS)

    Gaspar, Ivan S.; Mendes, Luciano L.; Michailow, Nicola; Fettweis, Gerhard

    2014-12-01

    Generalized frequency division multiplexing (GFDM) is a block filtered multicarrier modulation scheme recently proposed for future wireless communication systems. It generalizes the concept of orthogonal frequency division multiplexing (OFDM), featuring multiple circularly pulse-shaped subsymbols per subcarrier. This paper presents an algorithm for GFDM synchronization and investigates the use of a preamble that consists of two identical parts combined with a windowing process in order to satisfy low out of band radiation requirements. The performance of time and frequency estimation, with and without windowing, is evaluated in terms of the statistical properties of residual offsets and the impact on symbol error rate over frequency-selective channels. A flexible metric that quantifies the penalty of misalignments is derived. The results show that this approach performs practically as state-of-the-art OFDM schemes known in the literature, while it additionally can reduce the sidelobes of the spectrum emission.

  9. Communications: On artificial frequency shifts in infrared spectra obtained from centroid molecular dynamics: Quantum liquid water.

    PubMed

    Ivanov, Sergei D; Witt, Alexander; Shiga, Motoyuki; Marx, Dominik

    2010-01-21

    Centroid molecular dynamics (CMD) is a popular method to extract approximate quantum dynamics from path integral simulations. Very recently we have shown that CMD gas phase infrared spectra exhibit significant artificial redshifts of stretching peaks, due to the so-called "curvature problem" imprinted by the effective centroid potential. Here we provide evidence that for condensed phases, and in particular for liquid water, CMD produces pronounced artificial redshifts for high-frequency vibrations such as the OH stretching band. This peculiar behavior intrinsic to the CMD method explains part of the unexpectedly large quantum redshifts of the stretching band of liquid water compared to classical frequencies, which is improved after applying a simple and rough "harmonic curvature correction."

  10. [On peculiarities of temperature dependences of water spectra in the terahertz frequency domain].

    PubMed

    Penkov, N V; Yashin, V A; Shvirst, N E; Fesenko, E E; Fesenko, E E

    2014-01-01

    We analyzed spectra of light and heavy water at temperatures from 4 up to 50 degrees C in a frequency range of 0.15 to 6.5 THz. It was shown that the amplitude of high-frequency relaxation absorption band with its maximum at 0.5 THz extends with increasing, temperature and this temperature dependence for light water has a marked feature at 35-40 degrees C as a sharp growth. This fact is noteworthy because this range corresponds to physiological values of a body temperature of the warm-blooded organisms. At the same time, the analogous temperature dependence for heavy water in the considered temperature range lacks this particular feature. Thus, the water with its properties differs significantly not only from other fluids, but also from its own isotopologues.

  11. Role of geometry on the frequency spectra of U-shaped atomic force microscope probes

    NASA Astrophysics Data System (ADS)

    Rezaei, E.; Turner, J. A.

    2017-02-01

    Contact resonance atomic force microscopy (CR-AFM) is a specific technique that is used to determine elastic or viscoelastic properties of materials. The success of this technique is highly dependent on the accuracy of frequency spectra that must be measured for both noncontact and the case in which the tip is in contact with the sample of interest. Thus, choosing the right probe is crucial for accurate experiments. U-shaped probes also offer new opportunities for CR-AFM measurements because of certain specific modes that have tip motion parallel to the sample surface such that these resonances can access in-plane sample properties. However, analysis of the spectra from U-shaped probes is much more challenging due to these modes. The geometry of these probes is the main driver for the spectral response. Here, this influence on the resonance frequencies of the commercially fabricated U-shaped probe AN2-300 is evaluated with respect to geometry in terms of leg width, crossbeam width, and crossbeam length. Both noncontact and contact cases are examined with respect to variations of the nominal geometry. An energy distribution approach is also presented to assist with the identification of modes that have close resonances. Finally, this analysis allows recommendations to be made in order to minimize the convergence of multiple resonances for a specific range of measurement parameters.

  12. First measurements of high frequency cross-spectra from a pair of large Michelson interferometers

    SciTech Connect

    Chou, Aaron S.; Gustafson, Richard; Hogan, Craig; Kamai, Brittany; Kwon, Ohkyung; Lanza, Robert; McCuller, Lee; Meyer, Stephan S.; Richardson, Jonathan; Stoughton, Chris; Tomlin, Raymond; Waldman, Samuel; Weiss, Rainer

    2016-09-09

    Here, measurements are reported of the cross-correlation of spectra of differential position signals from the Fermilab Holometer, a pair of colocated 39 m long, high power Michelson interferometers with flat broadband frequency response in the MHz range. The instrument obtains sensitivity to high frequency correlated signals far exceeding any previous measurement in a broad frequency band extending beyond the 3.8 MHz inverse light-crossing time of the apparatus. The dominant but uncorrelated shot noise is averaged down over 2 × 108 independent spectral measurements with 381 Hz frequency resolution to obtain 2.1 × 10-20m/ √Hz sensitivity to stationary signals. For signal bandwidths Δf > 11 kHz, the sensitivity to strain h or shear power spectral density of classical or exotic origin surpasses a milestone PSDδh < tp where tp = 5.39 × 10-44/ Hz is the Planck time.

  13. First Measurements of High Frequency Cross-Spectra from a Pair of Large Michelson Interferometers.

    PubMed

    Chou, Aaron S; Gustafson, Richard; Hogan, Craig; Kamai, Brittany; Kwon, Ohkyung; Lanza, Robert; McCuller, Lee; Meyer, Stephan S; Richardson, Jonathan; Stoughton, Chris; Tomlin, Raymond; Waldman, Samuel; Weiss, Rainer

    2016-09-09

    Measurements are reported of the cross-correlation of spectra of differential position signals from the Fermilab Holometer, a pair of colocated 39 m long, high power Michelson interferometers with flat broadband frequency response in the MHz range. The instrument obtains sensitivity to high frequency correlated signals far exceeding any previous measurement in a broad frequency band extending beyond the 3.8 MHz inverse light-crossing time of the apparatus. The dominant but uncorrelated shot noise is averaged down over 2×10^{8} independent spectral measurements with 381 Hz frequency resolution to obtain 2.1×10^{-20}m/sqrt[Hz] sensitivity to stationary signals. For signal bandwidths Δf>11  kHz, the sensitivity to strain h or shear power spectral density of classical or exotic origin surpasses a milestone PSD_{δh}

  14. First measurements of high frequency cross-spectra from a pair of large Michelson interferometers

    DOE PAGES

    Chou, Aaron S.; Gustafson, Richard; Hogan, Craig; ...

    2016-09-09

    Here, measurements are reported of the cross-correlation of spectra of differential position signals from the Fermilab Holometer, a pair of colocated 39 m long, high power Michelson interferometers with flat broadband frequency response in the MHz range. The instrument obtains sensitivity to high frequency correlated signals far exceeding any previous measurement in a broad frequency band extending beyond the 3.8 MHz inverse light-crossing time of the apparatus. The dominant but uncorrelated shot noise is averaged down over 2 × 108 independent spectral measurements with 381 Hz frequency resolution to obtain 2.1 × 10-20m/ √Hz sensitivity to stationary signals. For signal bandwidths Δf >more » 11 kHz, the sensitivity to strain h or shear power spectral density of classical or exotic origin surpasses a milestone PSDδh < tp where tp = 5.39 × 10-44/ Hz is the Planck time.« less

  15. First measurements of high frequency cross-spectra from a pair of large Michelson interferometers

    SciTech Connect

    Chou, Aaron S.; Gustafson, Richard; Hogan, Craig; Kamai, Brittany; Kwon, Ohkyung; Lanza, Robert; McCuller, Lee; Meyer, Stephan S.; Richardson, Jonathan; Stoughton, Chris; Tomlin, Raymond; Waldman, Samuel; Weiss, Rainer

    2016-09-09

    Here, measurements are reported of the cross-correlation of spectra of differential position signals from the Fermilab Holometer, a pair of colocated 39 m long, high power Michelson interferometers with flat broadband frequency response in the MHz range. The instrument obtains sensitivity to high frequency correlated signals far exceeding any previous measurement in a broad frequency band extending beyond the 3.8 MHz inverse light-crossing time of the apparatus. The dominant but uncorrelated shot noise is averaged down over 2 × 108 independent spectral measurements with 381 Hz frequency resolution to obtain 2.1 × 10-20m/ √Hz sensitivity to stationary signals. For signal bandwidths Δf > 11 kHz, the sensitivity to strain h or shear power spectral density of classical or exotic origin surpasses a milestone PSDδh < tp where tp = 5.39 × 10-44/ Hz is the Planck time.

  16. General properties of the radiation spectra from relativistic electrons moving in Langmuir turbulence

    SciTech Connect

    Teraki, Yuto; Takahara, Fumio

    2014-05-20

    Using a numerical method, we examine the radiation spectra from relativistic electrons moving in Langmuir turbulence, which are expected to exist in high energy astrophysical objects. The spectral shape is characterized by the spatial scale λ, field strength σ, and frequency of the Langmuir waves, and in terms of frequency they are represented by ω{sub 0} = 2πc/λ, ω{sub st} = eσ/mc, and ω{sub p}, respectively. We normalize ω{sub st} and ω {sub p} by ω{sub 0} as a ≡ ω{sub st}/ω{sub 0} and b ≡ ω{sub p}/ω{sub 0}, and examine the spectral shape in the a–b plane. An earlier study based on the diffusive radiation in Langmuir turbulence (DRL) theory by Fleishman and Toptygin showed that the typical frequency is γ{sup 2}ω{sub p} and that the low frequency spectrum behaves as F {sub ω}∝ω{sup 1} for b > 1 irrespective of a. Here, we adopt the first principle numerical approach to obtain the radiation spectra in more detail. We generate Langmuir turbulence by superposing Fourier modes, injecting monoenergetic electrons, solving the equation of motion, and calculating the radiation spectra using a Lienard-Wiechert potential. We find different features from the DRL theory for a > b > 1. The peak frequency turns out to be γ{sup 2}ω{sub st}, which is higher than the γ{sup 2}ω{sub p} predicted by the DRL theory, and the spectral index of the low frequency region is not 1 but 1/3. This is because the typical deflection angle of electrons is larger than the angle of the beaming cone ∼1/γ. We call the radiation for this case 'wiggler radiation in Langmuir turbulence'.

  17. Frequency-wavenumber velocity spectra, Taylor's hypothesis, and length scales in a natural gravel bed river

    NASA Astrophysics Data System (ADS)

    Macmahan, Jamie; Reniers, Ad; Ashley, Will; Thornton, Ed

    2012-09-01

    Macroscale turbulent coherent flow structures in a natural fast-flowing river were examined with a combination of a novel 2 MHz Acoustic Doppler Beam (ADB) and a Maximum Likelihood Estimator (MLE) to characterize the streamwise horizontal length scales and persistence of coherent flow structures by measuring the frequency (f)-streamwise-wavenumber (ks) energy density velocity spectrum, E(f, ks), for the first time in natural rivers. The ADB was deployed under a range of Froude numbers (0.1-0.6) at high Reynolds numbers (˜106) based on depth and velocity conditions within a gravel bed reach of the Kootenai River, Idaho. The MLE employed on the ADB data increased our ability to describe river motions with relatively long (>10 m) length scales in ˜1 m water depths. The E(f, ks) spectra fell along a ridge described by V = f/ks, where Vis the mean velocity over depth, consistent with Taylor's hypothesis. New, consistent length scale measures are defined based on averaged wavelengths of the low-frequencyE(f, ks) and coherence spectra. Energetic (˜50% of the total spectral energy), low-frequency (f < 0.05 Hz) streamwise motions were found. Mean length scales,Lm, compared with the depth, h, are significantly larger than previously suggested for macroturbulence with Lm/h˜ 28-118. Although the energy appears as low-pass white noise, it is streamwise coherent along the length of the array. In fast flows with velocities > 1 m/s,Lmwere found to be significantly longer than their corresponding coherence lengths, suggesting that the turbulent structures evolve rapidly under these conditions. This is attributed to the stretching and concomitant deformation of preexisting macroturbulent motions by the ubiquitous bathymetry-induced spatial flow accelerations present in a natural gravel bed river.

  18. Wave fields and spectra of Rayleigh waves in poroelastic media in the exploration seismic frequency band

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xu, Yixian; Xia, Jianghai

    2012-12-01

    A better understanding of the influences of different surface fluid drainage conditions on the propagation and attenuation of surface waves as the stipulated frequency is varied is a key issue to apply surface wave method to detect subsurface hydrological properties. Our study develops three-dimensional dynamical Green's functions in poroelastic media for Rayleigh waves of possible free surface conditions: permeable - "open pore," impermeable - "closed pore," and partially permeable boundaries. The full transient response of wave fields and spectra due to a stress impulse wavelet on the surface are investigated in the exploration seismic frequency band for typical surface drainage conditions, viscous coupling-damping, solid frame properties and porous fluid flowing configuration. Our numerical results show that, due to the slow dilatational wave - P2 wave, two types of Rayleigh waves, designated as R1 and R2 waves, exist along the surface. R1 wave possesses high energy as classic Rayleigh waves in pure elastic media for each porous materials. A surface fluid drainage condition is a significant factor to influence dispersion and attenuation, especially attenuation of R1 waves. R2 wave for closed pore and partially permeable surfaces is only observed for a low coupling-damping coefficient. The non-physical wave for partially surface conditions causes the R1 wave radiates into the R2 wave in the negative attenuation frequency range. It makes weaker R1 wave and stronger R2 wave to closed pore surface. Moreover, it is observed that wave fields and spectra of R1 wave are sensitive to frame elastic moduli change for an open pore surface, and to pore fluid flow condition change for closed pore and partially permeable surface.

  19. Unexpected, high-Q, low-frequency peaks in seismic spectra

    NASA Astrophysics Data System (ADS)

    Thomson, David J.; Vernon, Frank L.

    2015-09-01

    It was established over a decade ago that the normal modes of the Earth are continuously excited at times without large earthquakes, but the sources of the `seismic hum' have remained unresolved. In addition to the normal modes of the Earth, we show spectral lines in seismic data with frequencies which correspond closely to normal modes of the Sun. Moreover, the widths of the low-frequency lines in the seismic spectra are similar to those of solar modes and much narrower than those of the Earth's normal mode peaks. These seismic lines are highly coherent with magnetic fields measured on both the Geostationary Operations Environmental Satellite (GOES)-10 satellite and the Advanced Composition Explorer (ACE) spacecraft located at L1, 1.5 million km sunward of Earth suggesting that the solar modes are transmitted to the Earth by the interplanetary magnetic field and solar wind. The solar modes are split by multiples of a cycle/day and, surprisingly, by the `quasi two-day' mode and other frequencies. Both the phase of the coherences and slight frequency offsets between seismic and geomagnetic data at observatories exclude the possibility that these effects are simply spurious responses of the seismometers to the geomagnetic field. We emphasize data from low-noise seismic observatories: Black Forest (BFO), Piñon Flat (PFO), Eskdalemuir (ESK) and Obninsk (OBN). Horizontal components of seismic velocity show higher coherences with the external (ACE) magnetic field than do the vertical components. This effect appears to be larger near the seismic torsional, or T-mode, frequencies.

  20. Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes

    NASA Astrophysics Data System (ADS)

    Citrin, J.; Arnichand, H.; Bernardo, J.; Bourdelle, C.; Garbet, X.; Jenko, F.; Hacquin, S.; Pueschel, M. J.; Sabot, R.

    2017-06-01

    The observation of distinct peaks in tokamak core reflectometry measurements—named quasi-coherent-modes (QCMs)—are identified as a signature of trapped-electron-mode (TEM) turbulence (Arnichand et al 2016 Plasma Phys. Control. Fusion 58 014037). This phenomenon is investigated with detailed linear and nonlinear gyrokinetic simulations using the Gene code. A Tore-Supra density scan is studied, which traverses through a linear (LOC) to saturated (SOC) ohmic confinement transition. The LOC and SOC phases are both simulated separately. In the LOC phase, where QCMs are observed, TEMs are robustly predicted unstable in linear studies. In the later SOC phase, where QCMs are no longer observed, ion-temperature-gradient (ITG) modes are identified. In nonlinear simulations, in the ITG (SOC) phase, a broadband spectrum is seen. In the TEM (LOC) phase, a clear emergence of a peak at the TEM frequencies is seen. This is due to reduced nonlinear frequency broadening of the underlying linear modes in the TEM regime compared with the ITG regime. A synthetic diagnostic of the nonlinearly simulated frequency spectra reproduces the features observed in the reflectometry measurements. These results support the identification of core QCMs as an experimental marker for TEM turbulence.

  1. The new chirp-Wigner higher order spectra for transient signals with any known nonlinear frequency variation

    NASA Astrophysics Data System (ADS)

    Gelman, L.; Petrunin, I.; Komoda, J.

    2010-02-01

    The new chirp-Wigner higher order spectra (CWHOS) are proposed for transient signals with any known nonlinear polynomial variation of instantaneous frequency. The proposed technique is effective for nonlinearity detection for transient signals with nonlinear polynomial time variation of the instantaneous frequency.

  2. Molecular dynamics study of two-dimensional sum frequency generation spectra at vapor/water interface

    SciTech Connect

    Ishiyama, Tatsuya; Morita, Akihiro; Tahara, Tahei

    2015-06-07

    Two-dimensional heterodyne-detected vibrational sum frequency generation (2D HD-VSFG) spectra at vapor/water interface were studied by molecular dynamics (MD) simulation with a classical flexible and nonpolarizable model. The present model well describes the spectral diffusion of 2D infrared spectrum of bulk water as well as 2D HD-VSFG at the interface. The effect of isotopic dilution on the 2D HD-VSFG was elucidated by comparing the normal (H{sub 2}O) water and HOD water. We further performed decomposition analysis of 2D HD-VSFG into the hydrogen-bonding and the dangling (or free) OH vibrations, and thereby disentangled the different spectral responses and spectral diffusion in the 2D HD-VSFG. The present MD simulation demonstrated the role of anharmonic coupling between these modes on the cross peak in the 2D HD-VSFG spectrum.

  3. Broadband cavity-enhanced molecular spectra from Vernier filtering of a complete frequency comb.

    PubMed

    Rutkowski, Lucile; Morville, Jérôme

    2014-12-01

    We present a new approach to cavity enhanced-direct frequency comb spectroscopy where the full emission bandwidth of a titanium:sapphire laser is exploited, currently at gigahertz resolution. The technique is based on low-resolution Vernier filtering obtained with an appreciable actively stabilized mismatch between the cavity-free spectral range and the laser repetition rate, using a diffraction grating and a split-photodiode. Spectra covering 1300  cm⁻¹ (40 THz) are acquired in less than 100 ms, and a baseline noise of 1.7×10⁻⁸ cm⁻¹ is reached with a cavity finesse of only 300, providing an absorption figure of merit M=6×10⁻¹¹ cm⁻¹·Hz(-1/2).

  4. Low-frequency isotropic and anisotropic Raman spectra of aromatic liquids.

    PubMed

    Heisler, Ismael A; Meech, Stephen R

    2010-05-07

    The Raman spectra below 300 wavenumbers of six different aromatic molecular liquids have been measured with a time and polarization resolved optical Kerr effect technique. The isotropic and anisotropic contributions were determined to yield the complete third order response, and thus a more detailed description of the microscopic liquid dynamics. The anisotropic contributions accurately reproduced previously published results. Both the isotropic and anisotropic Raman spectral densities shift toward lower frequencies with decreasing molecular weights. The first moment of the isotropic spectral densities scales linearly with the inverse square root of the molecular weight, which is consistent with interaction-induced dynamics in these liquids being driven mainly by motions with a translational character. Also, the isotropic spectral densities could be fit to a single Bucaro-Litovitz function. The exponent delta of this function increases monotonically with the inverse square root of the molecular weight. A possible physical origin of this behavior is discussed.

  5. Assessing Polarizability Models for the Simulation of Low-Frequency Raman Spectra of Benzene.

    PubMed

    Bender, John S; Coasne, Benoit; Fourkas, John T

    2015-07-23

    Optical Kerr effect (OKE) spectroscopy is a widely used technique for probing the low-frequency, Raman-active dynamics of liquids. Although molecular simulations are an attractive tool for assigning liquid degrees of freedom to OKE spectra, the accurate modeling of the OKE and the motions that contribute to it relies on the use of a realistic and computationally tractable molecular polarizability model. Here we explore how the OKE spectrum of liquid benzene, and the underlying dynamics that determines its shape, are affected by the polarizability model employed. We test a molecular polarizability model that uses a point anisotropic molecular polarizability and three other models that distribute the polarizability over the molecule. The simplest and most computationally efficient distributed polarizability model tested is found to be sufficient for the accurate simulation of the many-body polarizability dynamics of this liquid. We further find that the atomic-to-molecular polarizability transformation approximation [Hu et al. J. Phys. Chem. B 2008, 112, 7837-7849], used in conjunction with this distributed polarizability model, yields OKE spectra whose shapes differ negligibly from those calculated without this approximation, providing a substantial increase in computational efficiency.

  6. [Analyzing moiré pattern spectra based on the mutual transform between signals' waveform in time domain and their spectra in frequency space].

    PubMed

    Sun, Tao; Song, Yi-Zhong

    2013-11-01

    The mutual evolving processes of signals' waveforms and their spectra were numerically analyzed in time and frequency domains. The purpose was to research the essential relation between the signals' waveforms and their spectra. Then, the mutual transform principle was applied to analyze moiré pattern spectra, acquiring phase distribution information of the pattern. The rectangular window function was used to simulate the mutual transform between the impulse signal and direct-current waveform. Many rectangular window signals with deferent widths were obtained by changing the window width The unit impulse signal was obtained by changing the width down to zero, and the direct-current waveform obtained by changing the width up to +infinity. For smart, quick, and easy implementation of discrete Fourier transforms to rectangular pulses and obtain signals' spectra, a simple FFT system was worked out. With its calculating, the mutual evolving processes of signals' waveforms and their spectra were tracked deeply. All signals here were transformed with it. As the result, first, the spectra of rectangular window signals were in the form of sampling function [Sa(x) = sin(x)/x]. Second, with the change in the window's width, the waveform of Sa(x) changed. Third, when the width decreased, the waveform of Sa(x) extended, and vibrated more slowly. It changed into direct-current waveform when the width decreased to zero. Last, when the width increased, the waveform of Sa(x) shranked, and vibrated faster. It changed into impulse waveform when the width increased to +infinity. Signals' waveforms were in mutual transforms between the time and frequency domain. The transforming essence was considered as that the frequency component principle in Fourier series theory is reflected in the frequency domain. According to the principle of mutual transforms between signals' waveforms and their spectra, the first order spectrum of the moiré pattern was extracted out and normalized to a

  7. Doppler frequency in interplanetary radar and general relativity

    NASA Technical Reports Server (NTRS)

    Mcvittie, G. C.

    1972-01-01

    The change of frequency of an interplanetary radar signal sent from the earth to another planet or to a space probe is worked out according to general relativity. The Schwarzschild spacetime is employed and its null geodesics control the motion of the signals. Exact Doppler frequency formulas are derived for one-way and two-way radar in terms of an arbitrary Schwarzschild radial coordinate. A reduction to the special relativity case is used to interpret the formulas in terms of the relative radial velocity of emitter and target. The general relativity corrections are worked out approximately for each of three possible Schwarzschild radial coordinates, and a numerical example is given. The amount of the correction is different according as one or the other of the Schwarzschild coordinates is identified with the radius vector deduced from classical celestial mechanics. The identification problem is discussed.

  8. Time-dependent wave packet averaged vibrational frequencies from femtosecond stimulated Raman spectra

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Chao; Zhao, Bin; Lee, Soo-Y.

    2016-02-01

    Femtosecond stimulated Raman spectroscopy (FSRS) on the Stokes side arises from a third order polarization, P(3)(t), which is given by an overlap of a first order wave packet, |" separators=" Ψ2 ( 1 ) ( p u , t ) > , prepared by a narrow band (ps) Raman pump pulse, Epu(t), on the upper electronic e2 potential energy surface (PES), with a second order wave packet, <" separators=" Ψ1 ( 2 ) ( p r ∗ , p u , t ) | , that is prepared on the lower electronic e1 PES by a broadband (fs) probe pulse, Epr(t), acting on the first-order wave packet. In off-resonant FSRS, |" separators=" Ψ2 ( 1 ) ( p u , t ) > resembles the zeroth order wave packet |" separators=" Ψ1 ( 0 ) ( t ) > on the lower PES spatially, but with a force on |" separators=" Ψ2 ( 1 ) ( p u , t ) > along the coordinates of the reporter modes due to displacements in the equilibrium position, so that <" separators=" Ψ1 ( 2 ) ( p r ∗ , p u , t ) | will oscillate along those coordinates thus giving rise to similar oscillations in P(3)(t) with the frequencies of the reporter modes. So, by recovering P(3)(t) from the FSRS spectrum, we are able to deduce information on the time-dependent quantum-mechanical wave packet averaged frequencies, ω ¯ j ( t ) , of the reporter modes j along the trajectory of |" separators=" Ψ1 ( 0 ) ( t ) > . The observable FSRS Raman gain is related to the imaginary part of P(3)(ω). The imaginary and real parts of P(3)(ω) are related by the Kramers-Kronig relation. Hence, from the FSRS Raman gain, we can obtain the complex P(3)(ω), whose Fourier transform then gives us the complex P(3)(t) to analyze for ω ¯ j ( t ) . We apply the theory, first, to a two-dimensional model system with one conformational mode of low frequency and one reporter vibrational mode of higher frequency with good results, and then we apply it to the time-resolved FSRS spectra of the cis-trans isomerization of retinal in rhodopsin [P. Kukura et al., Science 310, 1006 (2005)]. We obtain the vibrational

  9. Time-dependent wave packet averaged vibrational frequencies from femtosecond stimulated Raman spectra.

    PubMed

    Wu, Yue-Chao; Zhao, Bin; Lee, Soo-Y

    2016-02-07

    Femtosecond stimulated Raman spectroscopy (FSRS) on the Stokes side arises from a third order polarization, P(3)(t), which is given by an overlap of a first order wave packet, |Ψ2(1)(pu,t)>, prepared by a narrow band (ps) Raman pump pulse, Epu(t), on the upper electronic e2 potential energy surface (PES), with a second order wave packet, <Ψ1(2)(pr(∗),pu,t)|, that is prepared on the lower electronic e1 PES by a broadband (fs) probe pulse, Epr(t), acting on the first-order wave packet. In off-resonant |FSRS, Ψ2(1)(pu,t)> resembles the zeroth order wave packet |Ψ1(0)(t)> on the lower PES spatially, but with a force on |Ψ2(1)(pu,t)> along the coordinates of the reporter modes due to displacements in the equilibrium position, so that <Ψ1(2)(pr(∗),pu,t)| will oscillate along those coordinates thus giving rise to similar oscillations in P(3)(t) with the frequencies of the reporter modes. So, by recovering P(3)(t) from the FSRS spectrum, we are able to deduce information on the time-dependent quantum-mechanical wave packet averaged frequencies, ω̄j(t), of the reporter modes j along the trajectory of |Ψ1 (0)(t)>. The observable FSRS Raman gain is related to the imaginary part of P(3)(ω). The imaginary and real parts of P(3)(ω) are related by the Kramers-Kronig relation. Hence, from the FSRS Raman gain, we can obtain the complex P(3)(ω), whose Fourier transform then gives us the complex P(3)(t) to analyze for ω̄j(t). We apply the theory, first, to a two-dimensional model system with one conformational mode of low frequency and one reporter vibrational mode of higher frequency with good results, and then we apply it to the time-resolved FSRS spectra of the cis-trans isomerization of retinal in rhodopsin [P. Kukura et al., Science 310, 1006 (2005)]. We obtain the vibrational frequency up-shift time constants for the C12-H wagging mode at 216 fs and for the C10-H wagging mode at 161 fs which are larger than for the C11-H wagging mode at 127 fs, i.e., the C11-H

  10. Implementation of the Frequency Separation Technique in general lineshape codes

    NASA Astrophysics Data System (ADS)

    Alexiou, S.

    2013-06-01

    The Frequency Separation Technique (FST) has been proposed and theoretically documented. It is a technique capable of unifying and improving lineshape calculations, for both accuracy and speed. In this work, we briefly recall its key features and advantages and present a practical way of implementing it in lineshape codes. We note that the FST is a general technique, capable of working with practically any modern lineshape framework that can either employ or go beyond the standard framework.

  11. Wavenumber-frequency Spectra of Pressure Fluctuations Measured via Fast Response Pressure Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Panda, J.; Roozeboom, N. H.; Ross, J. C.

    2016-01-01

    The recent advancement in fast-response Pressure-Sensitive Paint (PSP) allows time-resolved measurements of unsteady pressure fluctuations from a dense grid of spatial points on a wind tunnel model. This capability allows for direct calculations of the wavenumber-frequency (k-?) spectrum of pressure fluctuations. Such data, useful for the vibro-acoustics analysis of aerospace vehicles, are difficult to obtain otherwise. For the present work, time histories of pressure fluctuations on a flat plate subjected to vortex shedding from a rectangular bluff-body were measured using PSP. The light intensity levels in the photographic images were then converted to instantaneous pressure histories by applying calibration constants, which were calculated from a few dynamic pressure sensors placed at selective points on the plate. Fourier transform of the time-histories from a large number of spatial points provided k-? spectra for pressure fluctuations. The data provides first glimpse into the possibility of creating detailed forcing functions for vibro-acoustics analysis of aerospace vehicles, albeit for a limited frequency range.

  12. Reference-free quantification of EEG spectra: combining current source density (CSD) and frequency principal components analysis (fPCA).

    PubMed

    Tenke, Craig E; Kayser, Jürgen

    2005-12-01

    Definition of appropriate frequency bands and choice of recording reference limit the interpretability of quantitative EEG, which may be further compromised by distorted topographies or inverted hemispheric asymmetries when employing conventional (non-linear) power spectra. In contrast, fPCA factors conform to the spectral structure of empirical data, and a surface Laplacian (2-dimensional CSD) simplifies topographies by minimizing volume-conducted activity. Conciseness and interpretability of EEG and CSD fPCA solutions were compared for three common scaling methods. Resting EEG and CSD (30 channels, nose reference, eyes open/closed) from 51 healthy and 93 clinically-depressed adults were simplified as power, log power, and amplitude spectra, and summarized using unrestricted, Varimax-rotated, covariance-based fPCA. Multiple alpha factors were separable from artifact and reproducible across subgroups. Power spectra produced numerous, sharply-defined factors emphasizing low frequencies. Log power spectra produced fewer, broader factors emphasizing high frequencies. Solutions for amplitude spectra showed optimal intermediate tuning, particularly when derived from CSD rather than EEG spectra. These solutions were topographically distinct, detecting multiple posterior alpha generators but excluding the dorsal surface of the frontal lobes. Instead a low alpha/theta factor showed a secondary topography along the frontal midline. CSD amplitude spectrum fPCA solutions provide simpler, reference-independent measures that more directly reflect neuronal activity. A new quantitative EEG approach affording spectral components is developed that closely parallels the concept of an ERP component in the temporal domain.

  13. Dynamics of phase oscillators with generalized frequency-weighted coupling

    NASA Astrophysics Data System (ADS)

    Xu, Can; Gao, Jian; Xiang, Hairong; Jia, Wenjing; Guan, Shuguang; Zheng, Zhigang

    2016-12-01

    Heterogeneous coupling patterns among interacting elements are ubiquitous in real systems ranging from physics, chemistry to biology communities, which have attracted much attention during recent years. In this paper, we extend the Kuramoto model by considering a particular heterogeneous coupling scheme in an ensemble of phase oscillators, where each oscillator pair interacts with different coupling strength that is weighted by a general function of the natural frequency. The Kuramoto theory for the transition to synchronization can be explicitly generalized, such as the expression for the critical coupling strength. Also, a self-consistency approach is developed to predict the stationary states in the thermodynamic limit. Moreover, Landau damping effects are further revealed by means of linear stability analysis and resonance poles theory below the critical threshold, which turns to be far more generic. Our theoretical analysis and numerical results are consistent with each other, which can help us understand the synchronization transition in general networks with heterogenous couplings.

  14. Reconstruction of bremsstrahlung spectra from attenuation data using generalized simulated annealing.

    PubMed

    Menin, O H; Martinez, A S; Costa, A M

    2016-05-01

    A generalized simulated annealing algorithm, combined with a suitable smoothing regularization function is used to solve the inverse problem of X-ray spectrum reconstruction from attenuation data. The approach is to set the initial acceptance and visitation temperatures and to standardize the terms of objective function to automate the algorithm to accommodate different spectra ranges. Experiments with both numerical and measured attenuation data are presented. Results show that the algorithm reconstructs spectra shapes accurately. It should be noted that in this algorithm, the regularization function was formulated to guarantee a smooth spectrum, thus, the presented technique does not apply to X-ray spectrum where characteristic radiation are present. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Dielectric spectra of ionic water-in-oil microemulsions below percolation: frequency dependence behavior.

    PubMed

    Cametti, C

    2010-03-01

    We have investigated the dielectric properties of water-in-oil microemulsions composed of sodium bis(2-ethyl-hexyl)sulfosuccinate, water, and decane, using radiofrequency impedance spectroscopy, below the percolation threshold, where the system behaves as surfactant-coated individual water droplets dispersed in a continuous oil phase. The analysis of the dielectric spectra has evidenced that the whole dielectric response below percolation is due to two different contributions, which give rise to two partially overlapping dielectric relaxations, approximately in the frequency range from 10 to 500 MHz. The first of these mechanisms is originated by the bulk polarization of counterions distributed in the electrical double layer of the droplet interior. The second mechanism is associated with a correlated motion of the anionic head groups SO3- at the surfactant-water interface. The introduction of this latter contribution allows us to justify the experimentally observed increase in the low-frequency permittivity as a function of temperature up to temperatures very close to percolation. The present study shows that deviations from the expected values on the basis of dielectric theories of heterogeneous systems (Maxwell-Wagner effect) observed when percolation is approaching can be accounted for, in a reasonable way, by the introduction of a further polarization mechanism, which involves the anionic surfactant groups. Only very close to percolation, when microemulsions undergo a scaling behavior, deviations of the permittivity (and electrical conductivity as well) are a print of the structural rearrangement of the whole system and models based on colloidal particle suspension theories fail. Even if the whole picture of the dielectric properties of microemulsion systems does not change in deep, nevertheless, the refinement introduced in this paper demonstrates how different polarization mechanisms could be simultaneously present in these rather complex systems and, above

  16. Far infrared and low frequency gas phase Raman spectra and conformational stability of the 1-halopropanes

    NASA Astrophysics Data System (ADS)

    Durig, J. R.; Godbey, S. E.; Sullivan, J. F.

    1984-06-01

    The far infrared (375-50 cm-1) and low frequency Raman (400-70 cm-1) spectra of the gaseous 1-halopropanes CH3CH2CH2F, CH3CH2CH2Cl, and CH3CH2CH2Br have been recorded and both the methyl and asymmetric torsional modes have been observed and assigned for both the gauche and trans conformers for all of these molecules. The asymmetric torsions for each molecule have several observed excited states which fall on the low frequency side of the fundamental. The asymmetric torsional potential functions have been calculated and, from these potential functions, the enthalpy differences between the high energy trans and low energy gauche conformers have been determined to be 122±10 cm-1 for the fluoride, 127±10 cm-1 for the chloride, and 37±10 cm-1 for the bromide. The trans and gauche methyl torsions have also been observed and assigned for the three 1-halopropanes. The resulting barriers in cm-1 are: 936±4 (trans), 986±9 (gauche) for 1-fluoropropane; 929±2 (trans), 1080±3 (gauche) for 1-chloropropane; and 841 (trans), 1016±8 (gauche) for 1-bromopropane. A complete vibrational assignment has also been made for the 1-fluoropropane molecule and, from the spectral data for the solid, it appears that there are two or more molecules per primitive cell. Attempts to obtain experimental values for the enthalpy differences in the gas phase were made and these results, as well as the determined potential functions, are discussed in relation to previous studies.

  17. General Applicable Frequency Map for the Amide-I Mode in β-Peptides.

    PubMed

    Cai, Kaicong; Du, Fenfen; Zheng, Xuan; Liu, Jia; Zheng, Renhui; Zhao, Juan; Wang, Jianping

    2016-02-18

    In this work, a general applicable amide-I vibrational frequency map (GA map) for β-peptides in a number of common solvents was constructed, based on a peptide derivative, N-ethylpropionamide (NEPA). The map utilizes force fields at the ab initio computational level to accurately describe molecular structure and solute-solvent interactions, and also force fields at the molecular mechanics level to take into account long-range solute-solvent interactions. The results indicate that the GA map works reasonably for mapping the vibrational frequencies of the amide-I local-modes for β-peptides, holding promises for understanding the complicated infrared spectra of the amide-I mode in β-polypeptides.

  18. Generalized regular singular-point description of low-frequency dielectric responses

    NASA Astrophysics Data System (ADS)

    Frenning, Göran; Nilsson, Martin; Strømme, Maria

    2004-07-01

    This paper presents a generalized regular singular-point (GRSP) model developed to account for dielectric spectra of the wide range of materials having a frequency response containing more than two power-law regions. In fact, the model is valid for an unlimited number of such regions, and is shown to provide a good description of the entire dielectric spectrum of tablets made of microcrystalline cellulose, including two relaxation peaks and power-law responses at low and high frequencies. This finding puts the GRSP model in a unique position, since no model existing in the literature is able to describe the totality of features present in the spectrum, without resorting to a superposition of more elementary responses.

  19. Detection of collective motions in dielectric spectra and the meaning of the generalized Vogel-Fulcher-Tamman equation

    NASA Astrophysics Data System (ADS)

    Nigmatullin, Raoul R.

    2009-02-01

    Based on the reduction property of dielectric spectra associated with the power-law function [∼( jωτ) ± ν] that appears in the frequency domain, one can develop an effective procedure for detection of different reduced motions (described by the corresponding power-law exponents) in temperature domain. If the power-law exponent ν is related to characteristic relaxation time τ by the relationship ν= ν0 ln( τ/ τ s)/ln( τ/ τ0) (here τ s, τ0 are the characteristic times characterizing a movement over fractal cluster that is defined in Ref. [Ya.E. Ryabov, Yu. Feldman, J. Chem. Phys. 116 (2002) 8610]) and the simple temperature dependence of τ( T)= τ A exp( E/ T) obeys the traditional Arrhenius relationship, then one can prove that any extreme point figuring in the complex permittivity ε( jω) spectra (characterized by the values [ ω m, y( ω m)]) obeys the generalized Vogel-Fulcher-Tamman (VFT) equation. This important statement confirms the existence of the ‘universal’ response (UR) (discovered and classified by Jonscher in frequency domain) and opens new possibilities in the detection of the ‘hidden’ collective motions in temperature region for self-similar (heterogeneous) systems. It gives also the extended interpretation of the VFT equation and allows one to differentiate collective motions passing through an extreme point. This differentiation, in turn, allows one to select the proper fitting function containing one or two (at least) relaxation times for the fitting of the complex permittivity function ε( jω) in the limited frequency domain. This conclusion can allow for the classification of dielectric spectroscopy as the spectroscopy of the reduced ( collective) motions, which are described by different power-law exponents on the mesoscale region. The verification of this approach on available DS data (poly(ethylene glycol)-based-single-ion conductors) completely confirms the basic statements of this theory and opens new possibilities

  20. The widest frequency radio relic spectra: observations from 150 MHz to 30 GHz

    NASA Astrophysics Data System (ADS)

    Stroe, Andra; Shimwell, Timothy; Rumsey, Clare; van Weeren, Reinout; Kierdorf, Maja; Donnert, Julius; Jones, Thomas W.; Röttgering, Huub J. A.; Hoeft, Matthias; Rodríguez-Gonzálvez, Carmen; Harwood, Jeremy J.; Saunders, Richard D. E.

    2016-01-01

    Radio relics are patches of diffuse synchrotron radio emission that trace shock waves. Relics are thought to form when intracluster medium electrons are accelerated by cluster merger-induced shock waves through the diffusive shock acceleration mechanism. In this paper, we present observations spanning 150 MHz to 30 GHz of the `Sausage' and `Toothbrush' relics from the Giant Metrewave and Westerbork telescopes, the Karl G. Jansky Very Large Array, the Effelsberg telescope, the Arcminute Microkelvin Imager and Combined Array for Research in Millimeter-wave Astronomy. We detect both relics at 30 GHz, where the previous highest frequency detection was at 16 GHz. The integrated radio spectra of both sources clearly steepen above 2 GHz, at the ≳6σ significance level, supporting the spectral steepening previously found in the `Sausage' and the Abell 2256 relic. Our results challenge the widely adopted simple formation mechanism of radio relics and suggest more complicated models have to be developed that, for example, involve re-acceleration of aged seed electrons.

  1. Filter Design for Generalized Frequency-Division Multiplexing

    NASA Astrophysics Data System (ADS)

    Han, Seungyul; Sung, Youngchul; Lee, Yong H.

    2017-04-01

    In this paper, optimal filter design for generalized frequency-division multiplexing (GFDM) is considered under two design criteria: rate maximization and out-of-band (OOB) emission minimization. First, the problem of GFDM filter optimization for rate maximization is formulated by expressing the transmission rate of GFDM as a function of GFDM filter coefficients. It is shown that Dirichlet filters are rate-optimal in additive white Gaussian noise (AWGN) channels with no carrier frequency offset (CFO) under linear zero-forcing (ZF) or minimum mean-square error (MMSE) receivers, but in general channels perturbed by CFO a properly designed nontrivial GFDM filter can yield better performance than Dirichlet filters by adjusting the subcarrier waveform to cope with the channel-induced CFO. Next, the problem of GFDM filter design for OOB emission minimization is formulated by expressing the power spectral density (PSD) of the GFDM transmit signal as a function of GFDM filter coefficients, and it is shown that the OOB emission can be reduced significantly by designing the GFDM filter properly. Finally, joint design of GFDM filter and window for the two design criteria is considered.

  2. Wetting effect on optical sum frequency generation (SFG) spectra of D-glucose, D-fructose, and sucrose

    NASA Astrophysics Data System (ADS)

    Hieu, Hoang Chi; Li, Hongyan; Miyauchi, Yoshihiro; Mizutani, Goro; Fujita, Naoko; Nakamura, Yasunori

    2015-03-01

    We report a sum frequency generation (SFG) spectroscopy study of D-glucose, D-fructose and sucrose in the Csbnd H stretching vibration regime. Wetting effect on the SFG spectra was investigated. The SFG spectrum of D-glucose changed from that of α-D-glucose into those of α-D-glucose monohydrate by wetting. The SFG spectra showed evidence of a small change of β-D-fructopyranose into other anomers by wetting. SFG spectra of sucrose did not change by wetting. Assignments of the vibrational peaks in the SFG spectra of the three sugars in the dry and wet states were performed in the Csbnd H stretching vibration region near 3000 cm-1.

  3. Wetting effect on optical sum frequency generation (SFG) spectra of d-glucose, d-fructose, and sucrose.

    PubMed

    Hieu, Hoang Chi; Li, Hongyan; Miyauchi, Yoshihiro; Mizutani, Goro; Fujita, Naoko; Nakamura, Yasunori

    2015-03-05

    We report a sum frequency generation (SFG) spectroscopy study of d-glucose, d-fructose and sucrose in the CH stretching vibration regime. Wetting effect on the SFG spectra was investigated. The SFG spectrum of d-glucose changed from that of α-d-glucose into those of α-d-glucose monohydrate by wetting. The SFG spectra showed evidence of a small change of β-d-fructopyranose into other anomers by wetting. SFG spectra of sucrose did not change by wetting. Assignments of the vibrational peaks in the SFG spectra of the three sugars in the dry and wet states were performed in the CH stretching vibration region near 3000cm(-1).

  4. Frequency spectra and vertical profiles of wind fluctuations in the summer Antarctic mesosphere revealed by MST radar observations

    NASA Astrophysics Data System (ADS)

    Sato, Kaoru; Kohma, Masashi; Tsutsumi, Masaki; Sato, Toru

    2017-01-01

    Continuous observations of polar mesosphere summer echoes at heights from 81-93 km were performed using the first Mesosphere-Stratosphere-Troposphere/Incoherent Scatter radar in the Antarctic over the three summer periods of 2013/2014, 2014/2015, and 2015/2016. Power spectra of horizontal and vertical wind fluctuations, and momentum flux spectra in a wide-frequency range from (8 min)-1 to (20 days) -1 were first estimated for the Antarctic summer mesosphere. The horizontal (vertical) wind power spectra obey a power law with an exponent of approximately -2 (-1) at frequencies higher than the inertial frequency of (13 h)-1 and have isolated peaks at about 1 day and a half day. In addition, an isolated peak of a quasi-2 day period is observed in the horizontal wind spectra but is absent from the vertical wind spectra, which is consistent with the characteristics of a normal-mode Rossby-gravity wave. Zonal (meridional) momentum flux spectra are mainly positive (negative), and large fluxes are observed in a relatively low-frequency range from (1 day)-1 to (1 h)-1. A case study was performed to investigate vertical profiles of momentum fluxes associated with gravity waves and time mean winds on and around 3 January 2015 when a minor stratospheric warming occurred in the Northern Hemisphere. A significant momentum flux convergence corresponding to an eastward acceleration of 200 m s-1 d-1 was observed before the warming and became stronger after the warming when mean zonal wind weakened. The strong wave forcing roughly accorded with the Coriolis force of mean meridional winds.

  5. Source Spectra of Near Kamchatka Earthquakes: Recovering them from S-Wave Spectra, and Determination of Scaling for Three Corner Frequencies

    NASA Astrophysics Data System (ADS)

    Gusev, A. A.; Guseva, E. M.

    2016-05-01

    We describe a procedure for mass determination of the "source-controlled f max"—an important though not conventional parameter of earthquake source spectrum, relabeled here as "the third corner frequency," f c3, and discuss the results of its application. f max is the upper cutoff frequency of Fourier acceleration spectrum of a record of a local earthquake; both source and path attenuation contribute to f max. Most researchers believe the role of attenuation (" κ" parameter) to be dominating or exclusive. Still, source effect on f max is sometimes revealed. If real, it may be important for source physics. To understand better the f max phenomena, the constituents of f max must be accurately separated. With this goal, we process seismograms of moderate earthquakes from Kamchatka subduction zone. First, we need reliable estimates of attenuation to recover source spectra. To this goal, an iterative processing procedure is constructed, that adjusts the attenuation model until the recovered source acceleration spectra become, on the average, flat up either to f c3, or up to the high-frequency limit of the frequency range analyzed. The latter case occurs when f c3 is non-existent or unobservable. Below f c3, the double-corner source spectral model is thought to be valid, and the lower bound of acceleration spectral plateau is considered as the second corner frequency of earthquake source spectrum, fc2. The common corner frequency, f c1, is also estimated. Following this approach, more than 500 S-wave spectra of M = 4-6.5 Kamchatka earthquakes with hypocentral distances 80-220 km were analyzed. In about 80 % of the cases, f c3 is clearly manifested; the remaining cases show, at high frequency, flat source acceleration spectra. In addition, in about 2/3 of cases, f c2 is clearly above f c1, showing that double-corner spectra may dominate even at moderate magnitudes. Scaling behavior was examined for each of the corners. The f c1 vs. M 0 trend is common and close to

  6. Far infrared and low frequency Raman spectra and conformational stability of gaseous chloromethylcyclopropane and bromomethylcyclopropane

    NASA Astrophysics Data System (ADS)

    Durig, J. R.; Godbey, S. E.; Faust, S. A.

    1988-05-01

    The far-IR (350-50 cm -1) and low frequency Raman spectra (200-70 cm -1) of gaseous chloro- and bromomethylcyclopropane have been recorded. The asymmetric torsion arising from the gauche conformer of the bromide has been observed at 91.8 cm -1 but the corresponding transition for the cis conformer was not observed. However, IR bands for all the skeletal bending modes indicate the presence of a second conformer at ambient temperature. For chloromethylcyclopropane, the asymmetric torsions of both the cis and the gauche conformers have been observed at 99.54 and 96.84 cm -1, respectively, along with two excited state transitions for each conformer. From these data a potential function for the chloromethylcyclopropane molecule has been calculated and the determined potential constants have the following values: V1=200±65, V2=-34±16, and V3=1138±6 cm -1 with the gauche conformer calculated to be more stable by 178±87 cm -1 (510±25 cal mol -1) than the cis conformer. The gauche to cis barrier is 1239 cm -1 (3.54 kcal mol -1) and the gauche to gauche barrier is 1114 cm -1 (3.19 kcal mol -1). A variable temperature Raman study of the gaseous chloride was carried out and the enthalpy difference was found to be Δ H=273±108 cm -1 (782±309 cal mol -1) with the gauche conformer being more stable. The results of this study are compared with previous studies of these and similar molecules.

  7. Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold

    NASA Astrophysics Data System (ADS)

    Tsutaoka, Takanori; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi

    2013-05-01

    We have studied the relative complex permittivity (ɛr = ɛr'- iɛr″) of copper granular composite materials containing coagulated Cu particles in the microwave range as well as the electrical conductivity. The insulator to metal transition was observed at the percolation threshold φc = 16.0 vol. %. The enhancement of permittivity in the insulating state can be described by the Effective Cluster Model. Above the percolation threshold φc, it was found that the Cu granular composites show negative permittivity spectra below a characteristic frequency f0 indicating the low frequency plasmonic state. Characteristic frequency tends to increase with particle content.

  8. Longitudinal correlation properties of an optical field with broad angular and frequency spectra and their manifestation in interference microscopy

    SciTech Connect

    Lyakin, D V; Ryabukho, V P

    2013-10-31

    The results of theoretical and experimental studies of the longitudinal correlation properties of an optical field with broad angular and frequency spectra and manifestations of these properties in interference microscopy are presented. The joint and competitive influence of the angular and frequency spectra of the object-probing field on the longitudinal resolution and on the amplitude of the interference microscope signals from the interfaces between the media inside a multilayer object is demonstrated. The method of compensating the so-called defocusing effect that arises in the interference microscopy using objectives with a large numerical aperture is experimentally demonstrated, which consists in using as a light source in the interference microscope an illuminating interferometer with a frequency-broadband light source. This method of compensation may be used as the basis of simultaneous determination of geometric thickness and refractive index of media forming a multilayer object. (optical fields)

  9. A generalized BC for radio-frequency sheaths

    NASA Astrophysics Data System (ADS)

    D'Ippolito, D. A.; Myra, J. R.

    2015-12-01

    A new radio-frequency (rf) sheath boundary condition (BC) is described and applied to the problem of far field sheaths. The new BC generalizes the one presently used in rf codes to include: (1) an arbitrary magnetic field angle, (2) the full complex impedance, (3) mobile ions, (4) unmagnetized ions, and (5) the magnetic pre-sheath. For a given wave-propagation (macro) problem, root-finding is used to match the impedance of the rf wave with that of the micro-sheath problem. For a model far-field sheath problem, it is shown that the structure of the (multiple) roots with the new BC is similar to that with the capacitive BC, but the location of the resonance changes when the full impedance is used.

  10. [Frequency-domain quantification based on the singular value decomposition and frequency-selection for magnetic resonance spectra].

    PubMed

    Men, Kuo; Quan, Hong; Yang, Peipei; Cao, Ting; Li, Weihao

    2010-04-01

    The frequency-domain magnetic resonance spectroscopy (MRS) is achieved by the Fast Fourier Transform (FFT) of the time-domain signals. Usually we are only interested in the portion lying in a frequency band of the whole spectrum. A method based on the singular value decomposition (SVD) and frequency-selection is presented in this article. The method quantifies the spectrum lying in the interested frequency band and reduces the interference of the parts lying out of the band in a computationally efficient way. Comparative experiments with the standard time-domain SVD method indicate that the method introduced in this article is accurate and timesaving in practical situations.

  11. Multivariate cross-frequency coupling via generalized eigendecomposition

    PubMed Central

    Cohen, Michael X

    2017-01-01

    This paper presents a new framework for analyzing cross-frequency coupling in multichannel electrophysiological recordings. The generalized eigendecomposition-based cross-frequency coupling framework (gedCFC) is inspired by source-separation algorithms combined with dynamics of mesoscopic neurophysiological processes. It is unaffected by factors that confound traditional CFC methods—such as non-stationarities, non-sinusoidality, and non-uniform phase angle distributions—attractive properties considering that brain activity is neither stationary nor perfectly sinusoidal. The gedCFC framework opens new opportunities for conceptualizing CFC as network interactions with diverse spatial/topographical distributions. Five specific methods within the gedCFC framework are detailed, these are validated in simulated data and applied in several empirical datasets. gedCFC accurately recovers physiologically plausible CFC patterns embedded in noise that causes traditional CFC methods to perform poorly. The paper also demonstrates that spike-field coherence in multichannel local field potential data can be analyzed using the gedCFC framework, which provides significant advantages over traditional spike-field coherence analyses. Null-hypothesis testing is also discussed. DOI: http://dx.doi.org/10.7554/eLife.21792.001 PMID:28117662

  12. A development of a generalized frequency - domain transient program - FTP

    SciTech Connect

    Nagaoka, N.; Ametani, A. )

    1988-10-01

    A generalized frequency-domain transient program (FTP) is developed in the paper. The FTP is based on a frequency-time transform method adopting nodal analysis, admittance parameter and modal theories. Discontinuous and nonlinear elements are solved as initial condition problems using a piece-wise linear approximation of the nonlinear characteristics. The FTP is used to solve the transient and steady states of a network composed of an arbitrary interconnection of basic circuit elements. The FTP is structured to be compatible with the EMTP so that the same input data and output formats are those of the EMTP can be used. The present version of the FTP can deal with a network with over a hundred of nodes and branches. Comparisons of calculated results by the FTP with field test results and calculated results by the EMTP confirm a high accuracy and a satisfactory efficiency of the FTP. The FTP is of great advantage to offer the most accurate or theoretically exact solutions of transients on distributed-parameter lines.

  13. Diaper dermatitis: frequency and severity among a general infant population.

    PubMed

    Jordan, W E; Lawson, K D; Berg, R W; Franxman, J J; Marrer, A M

    1986-06-01

    The frequency and severity of diaper dermatitis was measured among a midwestern suburban population of 1089 infants ranging in age from 1 to 20 months. No diagnosis of specific etiology was made. Fecal samples were collected and analyzed for Candida albicans, and information on family characteristics, infant diet, general health, history of rash, and diapering habits and practices was collected by questionnaire. The distribution of the severity of observed diaper rash can be described as a logarithmic-normal function, implying several multiplicative causative factors. Within the total severity range, there appear to be three subcategories of diaper rash, differing in some manner, perhaps reflecting different etiologies. The frequency of observed diaper rash was a function of the maturity of the infant, reaching a maximum around 9 to 12 months of age. The prevalence of severe rash correlated with the presence and level of fecal C. albicans. Infants diapered exclusively in disposable diapers showed less rash (P less than 0.001) than those diapered exclusively or sometimes in cloth diapers.

  14. The variation in frequency locations in Doppler ultrasound spectra for maximum blood flow velocities in narrowed vessels.

    PubMed

    Zhang, Yingyun; Zhang, Yufeng; Gao, Lian; Deng, Li; Hu, Xiao; Zhang, Kexin; Li, Haiyan

    2017-07-28

    This study assessed the variation in the frequency locations in the Doppler ultrasound spectra for the maximum blood flow velocities of in vessels with different degrees of bilaterally axisymmetric stenosis. This was done by comparing the relationship between the velocity distributions and corresponding Doppler power spectra. First, a geometric vessel model with axisymmetric stenosis was established. This made it possible to obtain the blood flow velocity distributions for different degrees of stenosis from the solutions of the Navier-Stokes equations. Then, the Doppler spectra were calculated for the entire segment of the vessel that was covered by the sound field. Finally, the maximum frequency locations for the spectra were determined based on the intersections of the maximum values chosen from the calculated blood flow velocity distributions and their corresponding spectra. The computational analysis showed that the maximum frequencies, which corresponded to the maximum blood flow velocities for different degrees of stenosis, were located at different positions along the spectral falling edges. The location for a normal (stenosis free) vessel was in the middle of the falling edge. For vessels with increasing degrees of stenosis, this location shifted approximately linearly downward along the falling edge. For 40% stenosis, the location reached a position at the falling edge of 0.32. Results obtained using the Field II simulation tool demonstrated the validity of the theoretical analysis and calculations, and may help to improve the maximum velocity estimation accuracy for Doppler blood flow spectra in stenosed vessels. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range

    SciTech Connect

    Tsutaoka, Takanori Fukuyama, Koki; Kinoshita, Hideaki; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi

    2013-12-23

    The relative complex permittivity and permeability spectra of the coagulated copper and yttrium iron garnet (Cu/YIG) hybrid granular composite materials have been studied in the microwave range. The insulator to metal transition was observed at the percolation threshold of Cu particle content (φ{sub Cu} = 16.0 vol. %) in the electrical conductivity. In the percolation threshold, the low frequency plasmonic state caused by the metallic Cu particle networks was observed. The percolated Cu/YIG granular composites show simultaneous negative permittivity and permeability spectra under external magnetic fields.

  16. X-ray Spectra and Pulse Frequency Changes in SAX J2103.5+4545

    NASA Technical Reports Server (NTRS)

    Baykal, A.; Stark, M. J.; Swank, J. H.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The November 1999 outburst of the transient pulsar SAX J2103.5+4545 was monitored with the large area detectors of the Rossi X-Ray Timing Explorer until the pulsar faded after a year. The 358 s pulsar was spun up for 150 days, at which point the flux dropped quickly by a factor of approximately 7, the frequency saturated and, as the flux continued to decline, a weak spin-down began. The pulses remained strong during the decay and the spin-up/flux correlation can be fit to the Ghosh and Lamb derivations for the spin-up caused by accretion from a thin, pressure-dominated disk, for a distance approximately 3.2 kpc and a surface magnetic field approximately 1.2 x 10(exp 13) Gauss. During the bright spin-up part of the outburst, the flux was subject to strong orbital modulation, peaking approximately 3 days after periastron of the eccentric 12.68 day orbit, while during the faint part, there was little orbital modulation. The X-ray spectra were typical of accreting pulsars, describable by a cut-off power-law, with an emission line near the 6.4 keV of Kappa(sub alpha) fluorescence from cool iron. The equivalent width of this emission did not share the orbital modulation, but nearly doubled during the faint phase, despite little change in the column density. The outburst could have been caused by an episode of increased wind from a Be star, such that a small accretion disk is formed during each periastron passage. A change in the wind and disk structure apparently occurred after 5 months such that the accretion rate was no longer modulated or the diffusion time was longer. The distance estimate implies the X-ray luminosity observed was between 1 X 10(exp 36) ergs s(exp -1) and 6 x 10(exp 34) ergs s(exp -1), with a small but definite correlation of the intrinsic power-law spectral index.

  17. Generalized Exponential Distribution in Flood Frequency Analysis for Polish Rivers

    PubMed Central

    Markiewicz, Iwona; Strupczewski, Witold G.; Bogdanowicz, Ewa; Kochanek, Krzysztof

    2015-01-01

    Many distributions have been used in flood frequency analysis (FFA) for fitting the flood extremes data. However, as shown in the paper, the scatter of Polish data plotted on the moment ratio diagram shows that there is still room for a new model. In the paper, we study the usefulness of the generalized exponential (GE) distribution in flood frequency analysis for Polish Rivers. We investigate the fit of GE distribution to the Polish data of the maximum flows in comparison with the inverse Gaussian (IG) distribution, which in our previous studies showed the best fitting among several models commonly used in FFA. Since the use of a discrimination procedure without the knowledge of its performance for the considered probability density functions may lead to erroneous conclusions, we compare the probability of correct selection for the GE and IG distributions along with the analysis of the asymptotic model error in respect to the upper quantile values. As an application, both GE and IG distributions are alternatively assumed for describing the annual peak flows for several gauging stations of Polish Rivers. To find the best fitting model, four discrimination procedures are used. In turn, they are based on the maximized logarithm of the likelihood function (K procedure), on the density function of the scale transformation maximal invariant (QK procedure), on the Kolmogorov-Smirnov statistics (KS procedure) and the fourth procedure based on the differences between the ML estimate of 1% quantile and its value assessed by the method of moments and linear moments, in sequence (R procedure). Due to the uncertainty of choosing the best model, the method of aggregation is applied to estimate of the maximum flow quantiles. PMID:26657239

  18. Generalized Exponential Distribution in Flood Frequency Analysis for Polish Rivers.

    PubMed

    Markiewicz, Iwona; Strupczewski, Witold G; Bogdanowicz, Ewa; Kochanek, Krzysztof

    2015-01-01

    Many distributions have been used in flood frequency analysis (FFA) for fitting the flood extremes data. However, as shown in the paper, the scatter of Polish data plotted on the moment ratio diagram shows that there is still room for a new model. In the paper, we study the usefulness of the generalized exponential (GE) distribution in flood frequency analysis for Polish Rivers. We investigate the fit of GE distribution to the Polish data of the maximum flows in comparison with the inverse Gaussian (IG) distribution, which in our previous studies showed the best fitting among several models commonly used in FFA. Since the use of a discrimination procedure without the knowledge of its performance for the considered probability density functions may lead to erroneous conclusions, we compare the probability of correct selection for the GE and IG distributions along with the analysis of the asymptotic model error in respect to the upper quantile values. As an application, both GE and IG distributions are alternatively assumed for describing the annual peak flows for several gauging stations of Polish Rivers. To find the best fitting model, four discrimination procedures are used. In turn, they are based on the maximized logarithm of the likelihood function (K procedure), on the density function of the scale transformation maximal invariant (QK procedure), on the Kolmogorov-Smirnov statistics (KS procedure) and the fourth procedure based on the differences between the ML estimate of 1% quantile and its value assessed by the method of moments and linear moments, in sequence (R procedure). Due to the uncertainty of choosing the best model, the method of aggregation is applied to estimate of the maximum flow quantiles.

  19. Masking of short stimuli by noises with spiked spectra: I. Compressive nonlinearity of cochlea and evaluation of frequency resolution

    NASA Astrophysics Data System (ADS)

    Rimskaya-Korsakova, L. K.; Lalayants, M. R.; Supin, A. Ya.; Tavartkiladze, G. A.

    2011-01-01

    A psychoacoustic method for measuring masking thresholds based on the application of single-type stimuli and maskers intended for revealing compressive nonlinearity of displacements of the cochlea basila membrane and evaluation of the frequency resolution of hearing in a narrow frequency range near the central frequency of the stimulus is considered. High-frequency pulses with an envelope in the form of a Gaussian function with a sinusoidal filling with the frequency band corresponding to the width of the critical hearing band have been used as stimuli (referred to as compact). Noises with a spike structure of the amplitude spectrum with a limited frequency band width served as maskers. With the central frequencies of stimuli and maskers being equal, a band noise with the central frequency corresponding with a spike of an indented spectrum was called an on(rip)-frequency masker, while that with the central frequency corresponding to a dip in an indented spectrum was called an off(rip)-frequency masker. The central frequencies and frequency bands of the stimuli and maskers were 4 kHz and 1000 Hz, respectively. The spike (dip) frequencies of an indented amplitude spectrum of a masker were 1000 Hz. In the case of successive and simultaneous masking, the dependences of the thresholds of off(rip)-frequency masking of compact stimuli on the masker level revealed compressive nonlinearity of basila membrane displacements. However, threshold on(rip)/off(rip)-frequency masking differences visualized it much better. The estimates of the frequency resolution obtained under conditions of simultaneous masking of compact stimuli during variations in the frequency of spikes of indented masker spectra of low and medium levels corresponded to the width of the critical hearing band measured using a classical method of tone masking by a pair of narrow-band noise maskers. Within the spike frequency range of 500-2000 Hz, the steepness of the dependence of off(rip)-masking of compact

  20. Revisiting the Generalization of Entropy for Non-positive Distribution: Application for Exponent Spectra Analysis

    NASA Astrophysics Data System (ADS)

    Kalaidzidis, Yannis L.; Gopta, Oxana; Kalaidzidis, Inna V.

    2009-12-01

    Originally the maximum entropy method for exponent deconvolution was restricted to the positive exponent's amplitudes by the entropy S(f, m) definition. It limits application of the method, since many experimental kinetics show both the rise and the decay, which manifest themselves as positive and negative amplitudes in the exponent spectrum. The generalization of entropy formulation for non-negative distribution (S. F. Gull and J. Skilling) overcomes this limitation. The drawback of the approach was, that m lost the meaning of the prior distribution, since that maximum of generalized S(f, m) is independent on m and achieved at f ≡ 0. It is significant problem when there are apriori information about possible spectrum behaviour. In the present work some assumptions of the entropy generalization was relaxed and alternative entropy formulation, with non-uniform prior was used for analysis of simulated and experimental data. The new approach was applied to spectra analysis of the absorption kinetics of the bacteriorhodopsin (bR—light driven proton pump from archea Halobacterium salinarium) photocycle. It was shown that the process of the intermediate M formation is non-exponential in the wild type bR. The non-exponential process could be interpreted as result of the protein conformational changes during proton transfer from the Shiff-base of bR.

  1. A high-frequency Doppler feature in the power spectra of simulated GRMHD black hole accretion disks

    SciTech Connect

    Wellons, Sarah; Zhu, Yucong; Narayan, Ramesh; McClintock, Jeffrey E.; Psaltis, Dimitrios

    2014-04-20

    Black hole binaries exhibit a wide range of variability phenomena, from large-scale state changes to broadband noise and quasi-periodic oscillations, but the physical nature of much of this variability is poorly understood. We examine the variability properties of three GRMHD simulations of thin accretion disks around black holes of varying spin, producing light curves and power spectra as would be seen by observers. We find that the simulated power spectra show a broad feature at high frequency, which increases in amplitude with the inclination of the observer. We show that this high-frequency feature is a product of the Doppler effect and that its location is a function of the mass and spin of the black hole. This Doppler feature demonstrates that power spectral properties of the accretion disk can be tied to, and potentially used to determine, physical properties of the black hole.

  2. Classificaiton and Discrimination of Sources with Time-Varying Frequency and Spatial Spectra

    DTIC Science & Technology

    2007-04-01

    Summary i 1. Concurrent Operation of Two Over-the-Horizon Radars i 2. Spatial Polarimetric Time-Frequency Distribution for Moving Target Tracking i 3...Spatial Polarimetric Time-Frequency Distributions for Moving Target Tracking , 3) Imaging Through Unknown Walls Using Different Standoff Distances, 4...2. Spatial Polarimetric Time-Frequency Distributions for Moving Target Tracking We have introduced the spatial polarimetric time-frequency

  3. Index and Bulk Parameters for Frequency-Direction Spectra Measured at CERC Field Research Facility, September 1991 to August 1992

    DTIC Science & Technology

    1994-05-01

    Index and Bulk Parameters for Frequency- Direction Spectra Measured at CERC Field Research Facility, September 1991 to August 1992 Accion For by...Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000 Under Civil Works Research Work Unit 32484 M US Army Corps of Engineers Waterways...that affect coastal engineering pro- jects. This effort was authorized by Headquarters, U.S. Army Corps o.’ Engi- neers (HQUSACE), under Civil Works

  4. Time-frequency demodulation analysis based on iterative generalized demodulation for fault diagnosis of planetary gearbox under nonstationary conditions

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Chen, Xiaowang; Liang, Ming; Ma, Fei

    2015-10-01

    The vibration signal of planetary gearboxes exhibits the characteristics of both amplitude modulation (AM) and frequency modulation (FM), and thus has a complex sideband structure. Time-varying speed and/or load will result in time variant characteristic frequency components. Since the modulating frequency is related to the gear fault characteristic frequency, the AM and FM parts each alone contains the information of the gear fault. We propose a time-frequency amplitude and frequency demodulation analysis metbhod to avoid the complex time-variant sideband analysis, and thereby identify the time-variant gear fault characteristic frequency. We enhance the time-frequency analysis via iterative generalized demodulation (IGD). The time-varying amplitude and frequency demodulated spectra have fine time-frequency resolution and are free of cross term interferences. They do not involve complex time-variant sidebands, thus considerably facilitating fault diagnosis of planetary gearboxes under nonstationary conditions. The method is validated using both numerically simulated data and experimental signals.

  5. On a general concept of multifractality: Multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity.

    PubMed

    Barreira, Luis; Pesin, Yakov; Schmeling, Jorg

    1997-03-01

    We introduce the mathematical concept of multifractality and describe various multifractal spectra for dynamical systems, including spectra for dimensions and spectra for entropies. We support the study by providing some physical motivation and describing several nontrivial examples. Among them are subshifts of finite type and one-dimensional Markov maps. An essential part of the article is devoted to the concept of multifractal rigidity. In particular, we use the multifractal spectra to obtain a "physical" classification of dynamical systems. For a class of Markov maps, we show that, if the multifractal spectra for dimensions of two maps coincide, then the maps are differentiably equivalent. (c) 1997 American Institute of Physics.

  6. Generalized focus point and mass spectra comparison of highly natural SUGRA GUT models

    NASA Astrophysics Data System (ADS)

    Baer, Howard; Barger, Vernon; Savoy, Michael

    2016-04-01

    Supergravity grand unified models (SUGRA GUTs) are highly motivated and allow for a high degree of electroweak naturalness when the superpotential parameter μ ˜100 - 300 GeV (preferring values closer to 100 GeV). We first illustrate that models with radiatively driven naturalness enjoy a generalized focus-point behavior wherein all soft terms are correlated instead of just scalar masses. Next, we generate spectra from four SUGRA GUT archetypes: 1. S O (10 ) models where the Higgs doublets live in different ten-dimensional irreducible representations (irreps), 2. models based on S O (10 ) where the Higgs multiplets live in a single ten-dimensional irrep but with D -term scalar mass splitting, 3. models based on S U (5 ), and 4. a more general SUGRA model with 12 independent parameters. Electroweak naturalness implies for all models a spectrum of light Higgsinos with mW˜1,Z˜ 1 ,2≲300 GeV and gluinos with mg ˜≲ 2 - 4 TeV . However, masses and mixing in the third generation sfermion sector differ distinctly between the models. These latter differences would be most easily tested at a linear e+e- collider with √{s }˜ multi-TeV scale but measurements at a 50-100 TeV hadron collider are also possible.

  7. Exploring the use of Generalized Indirect Covariance to reconstruct pure shift NMR spectra: Current Pros and Cons

    NASA Astrophysics Data System (ADS)

    Fredi, André; Nolis, Pau; Cobas, Carlos; Martin, Gary E.; Parella, Teodor

    2016-05-01

    The current Pros and Cons of a processing protocol to generate pure chemical shift NMR spectra using Generalized Indirect Covariance are presented and discussed. The transformation of any standard 2D homonuclear and heteronuclear spectrum to its pure shift counterpart by using a reference DIAG spectrum is described. Reconstructed pure shift NMR spectra of NOESY, HSQC, HSQC-TOCSY and HSQMBC experiments are reported for the target molecule strychnine.

  8. Exploring the use of Generalized Indirect Covariance to reconstruct pure shift NMR spectra: Current Pros and Cons.

    PubMed

    Fredi, André; Nolis, Pau; Cobas, Carlos; Martin, Gary E; Parella, Teodor

    2016-05-01

    The current Pros and Cons of a processing protocol to generate pure chemical shift NMR spectra using Generalized Indirect Covariance are presented and discussed. The transformation of any standard 2D homonuclear and heteronuclear spectrum to its pure shift counterpart by using a reference DIAG spectrum is described. Reconstructed pure shift NMR spectra of NOESY, HSQC, HSQC-TOCSY and HSQMBC experiments are reported for the target molecule strychnine.

  9. Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: Characteristic frequencies and scaling laws.

    PubMed

    Samet, M; Levchenko, V; Boiteux, G; Seytre, G; Kallel, A; Serghei, A

    2015-05-21

    The characteristic frequencies of electrode polarization and of interfacial polarization effects in dielectric spectra of ionic liquids and of polymer bi-layers are determined and systematically analyzed, based on dielectric measurements by means of broadband dielectric spectroscopy, numerical simulations, and analytical calculations. It is shown that, to a large extent, identical scaling laws can be derived for these two dielectric phenomena taking place at external and internal interfaces. Surprisingly, a fundamentally different behavior concerning the interrelation between the characteristic frequencies is found. This brings direct evidence that different manifestations of the phenomenon of electrical polarization can be discriminated by examining the inter-relation governing their characteristic frequencies, which can be of significant importance in disseminating the nature of different contributions appearing in the dielectric spectra of complex materials. Based on our analysis, we derive a new formula, valid for both electrode polarization and interfacial polarization effects, that allows one to determine the conductivity value from the frequency position of the Maxwell-Wagner-Sillars peak. An excellent agreement between experiment and calculations is obtained. The formula can be used, furthermore, to estimate the thickness of the interfacial layers formed due to electrode polarization effects. Values in the order of several nanometers, increasing with decreasing temperature, are reported.

  10. Pseudo-real-time low-pass filter in ECG, self-adjustable to the frequency spectra of the waves.

    PubMed

    Christov, Ivaylo; Neycheva, Tatyana; Schmid, Ramun; Stoyanov, Todor; Abächerli, Roger

    2017-02-04

    The electrocardiogram (ECG) acquisition is often accompanied by high-frequency electromyographic (EMG) noise. The noise is difficult to be filtered, due to considerable overlapping of its frequency spectrum to the frequency spectrum of the ECG. Today, filters must conform to the new guidelines (2007) for low-pass filtering in ECG with cutoffs of 150 Hz for adolescents and adults, and to 250 Hz for children. We are suggesting a pseudo-real-time low-pass filter, self-adjustable to the frequency spectra of the ECG waves. The filter is based on the approximation procedure of Savitzky-Golay with dynamic change in the cutoff frequency. The filter is implemented pseudo-real-time (real-time with a certain delay). An additional option is the automatic on/off triggering, depending on the presence/absence of EMG noise. The analysis of the proposed filter shows that the low-frequency components of the ECG (low-power P- and T-waves, PQ-, ST- and TP-segments) are filtered with a cutoff of 14 Hz, the high-power P- and T-waves are filtered with a cutoff frequency in the range of 20-30 Hz, and the high-frequency QRS complexes are filtered with cutoff frequency of higher than 100 Hz. The suggested dynamic filter satisfies the conflicting requirements for a strong suppression of EMG noise and at the same time a maximal preservation of the ECG high-frequency components.

  11. Energy Spectra and High Frequency Oscillations in 4U 0614+091

    NASA Technical Reports Server (NTRS)

    Ford, E. C.; Kaaret, P.; Chen, K.; Tavani, M.; Barret, D.; Bloser, P.; Grindlay, J.; Harmon, B. A.; Paciesas, W. S.; Zhang, S. N.

    1997-01-01

    We investigate the behavior of the high frequency quasi-periodic oscillations (QPOs) in 4U 0614+091, combining timing and spectral analysis of RXTE (Rossi X-ray Timing Explorer) observations. The energy spectrum of the source can be described by a power law plus a blackbody component. The blackbody has a variable temperature (kT approximately 0.8 to 1.4 keV) and accounts for 10 to 25% of the total energy flux. The power law flux and photon index also vary (F approximately 0.8 to 1.6 x 10(exp -9) erg/sq cm.s and alpha approximately 2.0 to 2.8 respectively). We find a robust correlation of the frequency of the higher frequency QPO with the flux of the blackbody. The source follows the same relation even in observations separated by several months. The QPO frequency does not have a similarly unique correlation with the total flux or the flux of the power law component. The RMS amplitudes of the higher frequency QPO rise with energy but are consistent with a constant for the lower frequency QPO. These results may be interpreted in terms of a beat frequency model for the production of the high frequency QPOs.

  12. Photonic-Chip Supercontinuum with Tailored Spectra for Counting Optical Frequencies

    NASA Astrophysics Data System (ADS)

    Carlson, David R.; Hickstein, Daniel D.; Lind, Alex; Olson, Judith B.; Fox, Richard W.; Brown, Roger C.; Ludlow, Andrew D.; Li, Qing; Westly, Daron; Leopardi, Holly; Fortier, Tara M.; Srinivasan, Kartik; Diddams, Scott A.; Papp, Scott B.

    2017-07-01

    We explore a photonic-integrated-circuit platform that implements optical-frequency measurements and timekeeping with a perspective towards next-generation portable and spaceborne frequency references and optical-clock networks. The stoichiometric-silicon-nitride waveguides we create provide an efficient and low-noise medium for nonlinear spectral broadening and supercontinuum generation with fiber-based optical-frequency combs. In particular, we demonstrate detailed control over supercontinuum emission to target specific atomic-transition wavelengths and perform an optical-clock comparison using on-chip supercontinuum sources. We report a clock-limited relative frequency instability of 3.8 ×10-15 at τ =2 s between a 1550-nm cavity-stabilized reference laser and NIST's calcium atomic-clock laser at 657 nm using a two-octave waveguide-supercontinuum frequency comb.

  13. An analysis of short pulse and dual frequency radar techniques for measuring ocean wave spectra from satellites

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1980-01-01

    Scanning beam microwave radars were used to measure ocean wave directional spectra from satellites. In principle, surface wave spectral resolution in wave number can be obtained using either short pulse (SP) or dual frequency (DF) techniques; in either case, directional resolution obtains naturally as a consequence of a Bragg-like wave front matching. A four frequency moment characterization of backscatter from the near vertical using physical optics in the high frequency limit was applied to an analysis of the SP and DF measurement techniques. The intrinsic electromagnetic modulation spectrum was to the first order in wave steepness proportional to the large wave directional slope spectrum. Harmonic distortion was small and was a minimum near 10 deg incidence. NonGaussian wave statistics can have an effect comparable to that in the second order of scattering from a normally distributed sea surface. The SP technique is superior to the DF technique in terms of measurement signal to noise ratio and contrast ratio.

  14. Comparison of the RF frequency spectra of HEMP and lightning. Technical report, 22 Sep 87-10 Jul 90

    SciTech Connect

    Uman, M.A.

    1991-03-01

    Cloud pulses are much more common than these earlier studies indicate. Our spectra of the largest overhead cloud pulses are nearly parallel to but significantly below the HEMP spectrum from 1 MHz to 50 MHz, while obtained from lighting tens of kilometer offshore over salt water show faster relative decay with increasing frequency, are significantly below ours between 10 and 50 MHz, and are about equal to ours between 3 and 10 MHz. The shortest rise time to initial peak value of overhead lighting pulses are of the order of 0.3 micro sec. A broader bandwidth system than that used would allow measurement of the rapid field variation occurring throughout the cloud pulses associated with frequencies above abut 50 MHz but would observe essentially the same risetime to initial peak. That is, the higher frequency content of the cloud pulses is contained in the rapid field variation throughout the overall waveforms and not in the initial rise to peak value.

  15. Generalized clearness index frequency curves for the Russian Federation

    NASA Astrophysics Data System (ADS)

    Frid, S. E.; Popel, O. S.; Lisitskaya, N. V.; Kiseleva, S. V.

    2017-05-01

    Actinometric data of World Radiation Data Center and NASA POWER were used to get daily clearness index frequencies for Russia. The results obtained provide the opportunity to estimate more accurately the output of various types of solar power plants. Frequencies determined using the data sources indicated correlate well and differ from universal dependences that were recommended earlier for the entire globe.

  16. Low-frequency Raman spectra and fragility of imidazolium ionic liquids.

    PubMed

    Ribeiro, Mauro C C

    2010-07-14

    Raman spectra within the 5-200 cm(-1) range have been recorded as a function of temperature for different ionic liquids based on imidazolium cations. A correlation has been found between fragility and the temperature dependence of the strength of fast relaxational motions. Understanding quasielastic scattering as the relaxational contribution to ionic mean-squared displacement elucidates some effects on ionic liquids' fragility resulting from modifications in the chemical structure.

  17. Low-frequency Raman spectra and fragility of imidazolium ionic liquids

    SciTech Connect

    Ribeiro, Mauro C. C.

    2010-07-14

    Raman spectra within the 5-200 cm{sup -1} range have been recorded as a function of temperature for different ionic liquids based on imidazolium cations. A correlation has been found between fragility and the temperature dependence of the strength of fast relaxational motions. Understanding quasielastic scattering as the relaxational contribution to ionic mean-squared displacement elucidates some effects on ionic liquids' fragility resulting from modifications in the chemical structure.

  18. Stability and noise spectra of relative Loran-C frequency comparisons

    NASA Technical Reports Server (NTRS)

    Proverbio, E.; Quesada, V.; Simoncini, A.

    1973-01-01

    Relative comparisons of Loran-C frequency transmissions between the master station of Catanzaro (Simeri Crichi) and the X, Z slave stations of Estartit (Spain) and Lampedusa (Italy) are carrying out by the GG LORSTA monitor station of the Mediterranean Sea Loran-C chain. These comparisons are able to emphasize the relative and, under certain conditions, the absolute rate of the emitting standard frequencies of the slave stations and some relevant statistical properties of the Loran-C Method for frequency transmission and time synchronization. The stability of each Loran-C frequency standard transmission is subject to perturbations, more or less known, due to the propagation medium and other causes. Following the Allan (1966) method for data processing, the performance of the relative rate of frequency of the transmissions of the X, Z slave stations are described calculating the standard deviation of a set of N frequency measurements from its mean averaged during sampling times. This standard deviation is designated as the measure of the stability of the Loran-C frequency transmission.

  19. High-frequency wind-driven ambient noise in shallow brackish water: measurements and spectra.

    PubMed

    Poikonen, Ari Antti

    2010-11-01

    Ambient noise measurements were carried out in shallow brackish water within a frequency range extending up to 70 kHz. The high-frequency spectral slopes become steeper above 10 kHz at intermediate and high wind speeds. This is because the start of the wind speed dependence shifts rapidly to higher wind speeds at frequencies above 13 kHz. A physical explanation for this observation may be the low proportion of bubbles in brackish water that are small enough to radiate sound above 10 kHz. Such bubbles apparently do not begin to develop in brackish water until high wind speeds are attained.

  20. Measurements of ocean wave spectra and modulation transfer function with the airborne two-frequency scatterometer

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Johnson, J. W.

    1986-01-01

    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  1. Measurements of ocean wave spectra and modulation transfer function with the airborne two frequency scatterometer

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Johnson, J. W.

    1984-01-01

    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  2. Fine structure of the low-frequency spectra of heart rate and blood pressure

    PubMed Central

    Kuusela, Tom A; Kaila, Timo J; Kähönen, Mika

    2003-01-01

    Background The aim of this study was to explore the principal frequency components of the heart rate and blood pressure variability in the low frequency (LF) and very low frequency (VLF) band. The spectral composition of the R–R interval (RRI) and systolic arterial blood pressure (SAP) in the frequency range below 0.15 Hz were carefully analyzed using three different spectral methods: Fast Fourier transform (FFT), Wigner-Ville distribution (WVD), and autoregression (AR). All spectral methods were used to create time–frequency plots to uncover the principal spectral components that are least dependent on time. The accurate frequencies of these components were calculated from the pole decomposition of the AR spectral density after determining the optimal model order – the most crucial factor when using this method – with the help of FFT and WVD methods. Results Spectral analysis of the RRI and SAP of 12 healthy subjects revealed that there are always at least three spectral components below 0.15 Hz. The three principal frequency components are 0.026 ± 0.003 (mean ± SD) Hz, 0.076 ± 0.012 Hz, and 0.117 ± 0.016 Hz. These principal components vary only slightly over time. FFT-based coherence and phase-function analysis suggests that the second and third components are related to the baroreflex control of blood pressure, since the phase difference between SAP and RRI was negative and almost constant, whereas the origin of the first component is different since no clear SAP–RRI phase relationship was found. Conclusion The above data indicate that spontaneous fluctuations in heart rate and blood pressure within the standard low-frequency range of 0.04–0.15 Hz typically occur at two frequency components rather than only at one as widely believed, and these components are not harmonically related. This new observation in humans can help explain divergent results in the literature concerning spontaneous low-frequency oscillations. It also raises methodological

  3. Frequency spectra of magnetostrictive and Lorentz forces generated in ferromagnetic materials by a CW excited EMAT

    NASA Astrophysics Data System (ADS)

    Rouge, C.; Lhémery, A.; Aristégui, C.

    2014-04-01

    Magnetostriction arises in ferromagnetic materials subjected to magnetization, e.g., when an EMAT (Electro-Magnetic Acoustic Transducer) is used to generate ultrasonic waves. In such a case, the magnetostriction force must be taken into account as a transduction process that adds up to the Lorentz force. When the static magnetic field is high compared to the dynamic field, both forces are driven by the excitation frequency. For lower static relative values of the magnetic fields, the Lorentz force comprises both the excitation frequency and its first harmonic. In this work, a model is derived to predict the frequency content of the magnetostrictive force that comprises several harmonics. The discrete frequency spectrum strongly depends on both the static field and the relative amplitude of the dynamic field. The only material input data needed to predict it is the curve of macroscopic magnetostrictive strain that can be measured in the direction of an imposed magnetic field. Then, the various frequency-dependent distributions of Lorentz and magnetostriction body forces can be transformed into equivalent surface stresses. Examples of computation are given for different static and dynamic magnetic fields to study their influence on the frequency content of waves generated in ferromagnetic materials.

  4. A generalization of the double-corner-frequency source spectral model and its use in the SCEC BBP validation exercise

    USGS Publications Warehouse

    Boore, David M.; Di Alessandro, Carola; Abrahamson, Norman A.

    2014-01-01

    The stochastic method of simulating ground motions requires the specification of the shape and scaling with magnitude of the source spectrum. The spectral models commonly used are either single-corner-frequency or double-corner-frequency models, but the latter have no flexibility to vary the high-frequency spectral levels for a specified seismic moment. Two generalized double-corner-frequency ω2 source spectral models are introduced, one in which two spectra are multiplied together, and another where they are added. Both models have a low-frequency dependence controlled by the seismic moment, and a high-frequency spectral level controlled by the seismic moment and a stress parameter. A wide range of spectral shapes can be obtained from these generalized spectral models, which makes them suitable for inversions of data to obtain spectral models that can be used in ground-motion simulations in situations where adequate data are not available for purely empirical determinations of ground motions, as in stable continental regions. As an example of the use of the generalized source spectral models, data from up to 40 stations from seven events, plus response spectra at two distances and two magnitudes from recent ground-motion prediction equations, were inverted to obtain the parameters controlling the spectral shapes, as well as a finite-fault factor that is used in point-source, stochastic-method simulations of ground motion. The fits to the data are comparable to or even better than those from finite-fault simulations, even for sites close to large earthquakes.

  5. Dielectric constant and low-frequency infrared spectra for liquid water and ice Ih within the E3B model

    SciTech Connect

    Shi, L.; Ni, Y.; Drews, S. E. P.; Skinner, J. L.

    2014-08-28

    Two intrinsic difficulties in modeling condensed-phase water with conventional rigid non-polarizable water models are: reproducing the static dielectric constants for liquid water and ice Ih, and generating the peak at about 200 cm{sup −1} in the low-frequency infrared spectrum for liquid water. The primary physical reason for these failures is believed to be the missing polarization effect in these models, and consequently various sophisticated polarizable water models have been developed. However, in this work we pursue a different strategy and propose a simple empirical scheme to include the polarization effect only on the dipole surface (without modifying a model's intermolecular interaction potential). We implement this strategy for our explicit three-body (E3B) model. Our calculated static dielectric constants and low-frequency infrared spectra are in good agreement with experiment for both liquid water and ice Ih over wide temperature ranges, albeit with one fitting parameter for each phase. The success of our modeling also suggests that thermal fluctuations about local minima and the energy differences between different proton-disordered configurations play minor roles in the static dielectric constant of ice Ih. Our analysis shows that the polarization effect is important in resolving the two difficulties mentioned above and sheds some light on the origin of several features in the low-frequency infrared spectra for liquid water and ice Ih.

  6. Interference effects in the sum frequency generation spectra of thin organic films. II: Applications to different thin-film systems.

    PubMed

    Tong, Yujin; Zhao, Yanbao; Li, Na; Ma, Yunsheng; Osawa, Masatoshi; Davies, Paul B; Ye, Shen

    2010-07-21

    In this paper, the results of the modeling calculations carried out for predicting the interference effects expected in the sum frequency generation (SFG) spectra of a specific thin-layer system, described in the accompanying paper, are tested by comparing them with the experimental spectra obtained for a real thin-layer film comprising an organic monolayer/variable thickness dielectric layer/gold substrate. In this system, two contributions to the SFG spectra arise, a resonant contribution from the organic film and a nonresonant contribution from the gold substrate. The modeling calculations are in excellent agreement with the experimental spectra over a wide range of thicknesses and for different polarization combinations. The introduction of another resonant monolayer adjacent to the gold substrate and with the molecules having a reverse orientation has a significant affect on the spectral shapes which is predicted. If a dielectric substrate such as CaF(2) is used instead of a gold substrate, only the spectral intensities vary with the film thickness but not the spectral shapes. The counterpropagating beam geometry will change both the thickness dependent spectral shapes and the intensity of different vibrational modes in comparison with a copropagating geometry. The influences of these experimental factors, i.e., the molecular orientational structure in the thin film, the nature of the substrate, and the selected incident beam geometry, on the experimental SFG spectra are quantitatively predicted by the calculations. The thickness effects on the signals from a SFG active monolayer contained in a thin liquid-layer cell of the type frequently used for in situ electrochemical measurements is also discussed. The modeling calculation is also valid for application to other thin-film systems comprising more than two resonant SFG active interfaces by appropriate choice of optical geometries and relevant optical properties.

  7. Atomistic modeling of the low-frequency mechanical modes and Raman spectra of icosahedral virus capsids

    NASA Astrophysics Data System (ADS)

    Dykeman, Eric C.; Sankey, Otto F.

    2010-02-01

    We describe a technique for calculating the low-frequency mechanical modes and frequencies of a large symmetric biological molecule where the eigenvectors of the Hessian matrix are determined with full atomic detail. The method, which follows order N methods used in electronic structure theory, determines the subset of lowest-frequency modes while using group theory to reduce the complexity of the problem. We apply the method to three icosahedral viruses of various T numbers and sizes; the human viruses polio and hepatitis B, and the cowpea chlorotic mottle virus, a plant virus. From the normal-mode eigenvectors, we use a bond polarizability model to predict a low-frequency Raman scattering profile for the viruses. The full atomic detail in the displacement patterns combined with an empirical potential-energy model allows a comparison of the fully atomic normal modes with elastic network models and normal-mode analysis with only dihedral degrees of freedom. We find that coarse-graining normal-mode analysis (particularly the elastic network model) can predict the displacement patterns for the first few (˜10) low-frequency modes that are global and cooperative.

  8. Modulation structures in the dynamic spectra of Jovian radio emission obtained with high time-frequency resolution

    NASA Astrophysics Data System (ADS)

    Litvinenko, G. V.; Lecacheux, A.; Rucker, H. O.; Konovalenko, A. A.; Ryabov, B. P.; Taubenschuss, U.; Vinogradov, V. V.; Shaposhnikov, V. E.

    2009-01-01

    Aims: The wide-band dynamic spectra of Jovian decameter emission obtained over the last decade with high-frequency and high time resolution equipment on the largest decameter band antenna array, the Ukrainian T-shape Radio telescope (UTR-2), are presented. Methods: We analyzed the data obtained with the Digital SpectroPolarimiter (DSP) and WaveForm Reciever (WFR) installed at UTR-2. The combination of the large antenna and high performance equipment gives the best sensitivity and widest band of analysis, dynamic range, time and frequency resolutions. The wavelet transform method and the Fourier technique was used for further data processing. Results: The main characteristics of already known and newly detected modulation events were investigated and specified. The new receiving-recording facilities, methodology and program of observations are described in detail.

  9. Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb.

    PubMed

    Ycas, Gabriel G; Quinlan, Franklyn; Diddams, Scott A; Osterman, Steve; Mahadevan, Suvrath; Redman, Stephen; Terrien, Ryan; Ramsey, Lawrence; Bender, Chad F; Botzer, Brandon; Sigurdsson, Steinn

    2012-03-12

    We describe and characterize a 25 GHz laser frequency comb based on a cavity-filtered erbium fiber mode-locked laser. The comb provides a uniform array of optical frequencies spanning 1450 nm to 1700 nm, and is stabilized by use of a global positioning system referenced atomic clock. This comb was deployed at the 9.2 m Hobby-Eberly telescope at the McDonald Observatory where it was used as a radial velocity calibration source for the fiber-fed Pathfinder near-infrared spectrograph. Stellar targets were observed in three echelle orders over four nights, and radial velocity precision of ∼10 m/s (∼6 MHz) was achieved from the comb-calibrated spectra.

  10. Vibrational Spectra and Adsorption of Trisiloxane Superspreading Surfactant at Air/Water Interface Studied with Sum Frequency Generation Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Wu, Dan; Wen, Jia; Liu, Shi-lin; Wang, Hong-fei

    2008-08-01

    The C-H stretch vibrational spectra of the trisiloxane superspreading surfactant Silwet L-77 ((CH3)3Si-O-Si(CH3)(C3H6)(OCH2CH2)7-8OCH3)-O-Si(CH3)3) at the air/water interface are measured with the surface Sum Frequency Generation Vibrational Spectroscopy (SFG-VS). The spectra are dominated with the features from the -Si-CH3 groups around 2905 cm-1 (symmetric stretch or SS mode) and 2957 cm-1 (mostly the asymmetric stretch or AS mode), and with the weak but apparent contribution from the -O-CH2- groups around 2880 cm-1 (symmetric stretch or SS mode). Comparison of the polarization dependent SFG spectra below and above the critical aggregate or micelle concentration (CAC) indicates that the molecular orientation of the C-H related molecular groups remained unchanged at different surface densities of the Silwet L-77 surfactant. The SFG-VS adsorption isotherm suggested that there was no sign of Silwet L-77 bilayer structure formation at the air/water interface. The Gibbs adsorption free energy of the Silwet surfactant to the air/water interface is -42.2±0.8kcal/mol, indicating the unusually strong adsorption ability of the Silwet L-77 superspreading surfactant.

  11. Low-frequency dynamics of DNA in Brillouin light scattering spectra

    NASA Astrophysics Data System (ADS)

    Lushnikov, S. G.; Dmitriev, A. V.; Fedoseev, A. I.; Zakharov, G. A.; Zhuravlev, A. V.; Medvedeva, A. V.; Schegolev, B. F.; Savvateeva-Popova, E. V.

    2014-02-01

    Brillouin light scattering studies of deoxyribonucleic acid (DNA) in the temperature interval 297-375 K are presented. The DNA fragment (119 bp) from the first intron of D melanogaster limk1 gene with AT-rich insertion (28 bp, mutant agn ts3) was used as an experimental sample. The temperature dependence of the hypersonic velocity was found to exhibit anomalies in the vicinity of 347 and 335 K. Computer modeling of possible conformational states which might be attained by the DNA fragment under study has shown the existence of local structures that evolve with varying temperature. Combined analysis of experimental data and results of the modeling reveals a close relation between the anomalous behavior of Brillouin light scattering spectra and conformational DNA dynamics. The results are discussed in the framework of modern models of conformational DNA transformations.

  12. [Integrated and frequency spectra of the electromyograms in patients with temporomandibular symptoms].

    PubMed

    Schmidt, R; Jonas, I; Schulte-Mönting, J; Kappert, H F; Rakosi, T

    1991-12-01

    With the aid of bipolar surface electrodes, the electromyographic activity of the anterior temporal and the superficial masseter muscles were recorded bilaterally and evaluated by counting the integrated potentials and mean power frequency using Fourier's analysis. A comparison between 17 patients with myofacial pain dysfunction (average age 21.3 years) and a group of 20 controls (average age 20.5 years) revealed a significantly greater activity in patients with pain syndrome, while no significant inter-group difference in mean power frequency was seen. The differences in the level of activity between the right and left sides in the control group were significantly smaller than in patients with pain dysfunction. An investigation of measures aimed at reducing the right/left asymmetry in a further 14 patients with pain dysfunction revealed the practice of "maximum occlusion with feedback" to be the most effective measure.

  13. Frequency Width in Predictions of Windsea Spectra and the Role of the Nonlinear Solver

    DTIC Science & Technology

    2012-12-20

    which many readers will be familiar with.2 JON - SWAP y - 1 corresponds to fully developed seas, which tend to be relatively broad in frequency space...Phys. Oceanogr. 15. 1369-1377. Hasselmann. S.. Hasselmann. K.. Allender. J.H.. Barnett . T.P.. 1985. Computations and parameterizations of the...Oceanogr. 15. 1378-1391. Hasselmann. K., Barnett , T.P., Bouws, E.. Carlson. H.. Cartwright. D.E.. Enke, K.. Ewing. J.A., Cienapp, H., Hasselman, D.E

  14. Energy spectra of 2D gravity and capillary waves with narrow frequency band excitation

    NASA Astrophysics Data System (ADS)

    Kartashova, E.

    2012-02-01

    In this letter we present a new method, called increment chain equation method (ICEM), for computing a cascade of distinct modes in a two-dimensional weakly nonlinear wave system generated by narrow frequency band excitation. The ICEM is a means for computing the quantized energy spectrum as an explicit function of frequency ω0 and stationary amplitude A0 of excitation. The physical mechanism behind the generation of the quantized cascade is modulation instability. The ICEM can be used in numerous 2D weakly nonlinear wave systems with narrow frequency band excitation appearing in hydrodynamics, nonlinear optics, electrodynamics, convection theory etc. In this letter the ICEM is demonstrated with examples of gravity and capillary waves with dispersion functions ω(k)~k1/2 and ω(k)~k3/2, respectively, and for two different levels of nonlinearity ɛ=A0k0: small (ɛ~0.1 to 0.25) and moderate (ɛ~0.25 to 0.4).

  15. Frequency tuning of hearing in the beluga whale: discrimination of rippled spectra.

    PubMed

    Sysueva, Evgenia V; Nechaev, Dmitry I; Popov, Vladimir V; Supin, Alexander Ya

    2014-02-01

    Frequency tuning was measured in the beluga whale (Delphinapterus leucas) using rippled-noise test stimuli in conjunction with an auditory evoked potential (AEP) technique. The test stimulus was a 2-octave-wide rippled noise with frequency-proportional ripple spacing. The rippled-noise signal contained either a single reversal or rhythmic (1-kHz rate) reversals of the ripple phase. Single or rhythmic phase reversals evoked, respectively, a single auditory brainstem response (ABR) or a rhythmic AEP sequence-the envelope following response (EFR). The response was considered as an indication of resolvability of the ripple pattern. The rhythmic phase-reversal test with EFR recording revealed higher resolution than the single phase-reversal test with single ABR recording. The limit of ripple-pattern resolution with the single phase-reversal test ranged from 17 ripples per octave (rpo) at 32 kHz to 24 rpo at 45 to 64 kHz; for the rhythmic phase-reversal test, the limit ranged from 20 to 32 rpo. An interaction model of a ripple spectrum with frequency-tuned filters suggests that the ripple-pattern resolution limit of 20 to 32 rpo requires a filter quality Q of 29 to 46. Possible causes of disagreement of these estimates with several previously published data are discussed.

  16. Phonon Mean Free Path Spectra Measured by Broadband Frequency Domain Thermoreflectance

    NASA Astrophysics Data System (ADS)

    Malen, Jonathan

    2014-03-01

    Nonmetallic crystalline materials conduct heat by the transport of quantized atomic lattice vibrations called phonons. Thermal conductivity depends on how far phonons travel between scattering events -- their mean free paths (MFPs). Due to the breadth of the phonon MFP spectrum, nanostructuring of materials and devices can reduce thermal conductivity from bulk by scattering long MFP phonons, while short MFP phonons are unaffected. We have developed a novel approach called Broadband Frequency Domain Thermoreflectance (BB-FDTR) that uses high-frequency laser heating to generate non-Fourier heat conduction that can sort phonons based on their MFPs. BB-FDTR outputs thermal conductivity as a function of heating frequency. Through non-equilibrium Boltzmann Transport Equation models this data can be converted to thermal conductivity accumulation, which describes how thermal conductivity is summed from phonons with different MFPs. Relative to alternative approaches, BB-FDTR yields order-of-magnitude improvements in the resolution and breadth of the thermal conductivity accumulation function. We will present data for GaAs, GaN, AlN, Si, and SiC that show interesting commonalities near their respective Debye temperatures and suggest that there may be a universal phonon MFP spectrum for small unit cell non-metals in the high temperature limit. At the time of this abstract submission we are also working on measurements of semiconductor alloys and select metals that will be presented if completed by the conference.

  17. An analysis of perceptual errors in reading mammograms using quasi-local spatial frequency spectra.

    PubMed

    Mello-Thoms, C; Dunn, S M; Nodine, C F; Kundel, H L

    2001-09-01

    In this pilot study the authors examined areas on a mammogram that attracted the visual attention of experienced mammographers and mammography fellows, as well as areas that were reported to contain a malignant lesion, and, based on their spatial frequency spectrum, they characterized these areas by the type of decision outcome that they yielded: true-positives (TP), false-positives (FP), true-negatives (TN), and false-negatives (FN). Five 2-view (craniocaudal and medial-lateral oblique) mammogram cases were examined by 8 experienced observers, and the eye position of the observers was tracked. The observers were asked to report the location and nature of any malignant lesions present in the case. The authors analyzed each area in which either the observer made a decision or in which the observer had prolonged (>1,000 ms) visual dwell using wavelet packets, and characterized these areas in terms of the energy contents of each spatial frequency band. It was shown that each decision outcome is characterized by a specific profile in the spatial frequency domain, and that these profiles are significantly different from one another. As a consequence of these differences, the profiles can be used to determine which type of decision a given observer will make when examining the area. Computer-assisted perception correctly predicted up to 64% of the TPs made by the observers, 77% of the FPs, and 70% of the TNs.

  18. Rayleigh lidar measurements of the temporal frequency and vertical wavenumber spectra in the mesosphere over the Rocky Mountain region

    NASA Astrophysics Data System (ADS)

    Gao, X.; Meriwether, J. W.; Wickwar, V. B.; Wilkerson, T. D.; Collins, S.

    1998-03-01

    Temporal and spatial spectral analysis techniques were applied to lidar data collected over a period of 18 months above the Rocky Mountain region at an altitude range from 45 to 70 km by a Rayleigh lidar system located in Logan, Utah (41.7°N, 111.8°W). Examination of the averaged temporal frequency F(ω) and vertical wavenumber F(m) spectra showed spectral slope values of -1.49±0.03 and -2.3±0.1, respectively. The observed slope for the overall averaged F(m) spectrum is considerably more positive than the value of -3 predicted by the linear instability theory but close to the value of ˜-2 that is predicted by the scale independent diffusive filtering theory using the measured F(ω) slope parameter. However, examination of the monthly averaged F(m) spectra for the transition from winter to summer showed the spectra became flatter suggesting that Doppler shift effects caused by the seasonal change in the magnitude and direction of the background wind field are significant. The characteristic vertical wavelength λ* was found to be ˜12 km for the altitude region of 45-70 km. Comparison of this value with the characteristic wavelengths from other lidar observations at lower and higher altitude ranges showed an overall increase of λ* with height. The observed enhancement of the F(m) spectral magnitude in winter is believed to be caused in part by the low-frequency wave activity observed in the temperature profiles.

  19. Doublet structure of bands of low-frequency IR absorption spectra of some aromatic compounds

    NASA Astrophysics Data System (ADS)

    Demchuk, Yu. S.; Vandyukov, A. E.; Vandyukov, E. A.

    2000-12-01

    To increase the efficiency of identifying the complex aromatic compounds, the present paper gives the results of investigating the low-frequency region of the IR absorption and recorded doublet structure of absorption bands of the deformation(al) vibrations of naphtalene-, anthracene-, phenantrene-, pyrene- and coronene molecules in a fine- disperse state in matrices of KBr, polyethylene and in a vaseline oil. Parameters of changing the position of the centers of doublet components and the relationship of their intensities in changing the temperature are determined. Parameters of doublet components in dependence on the concentration of aromatic molecules in KBr tablets are investigated.

  20. Frequency Width in Predictions of Windsea Spectra and the Role of the Nonlinear Solver

    DTIC Science & Technology

    2013-01-01

    parameter c, which many readers will be familiar with.2 JON - SWAP c = 1 corresponds to fully developed seas, which tend to be relatively broad in frequency...nonlinear transfer integral. J. Phys. Oceanogr. 15, 1369–1377. Hasselmann, S., Hasselmann, K., Allender, J.H., Barnett , T.P., 1985. Computations and...wave models. J. Phys. Oceanogr. 15, 1378–1391. Hasselmann, K., Barnett , T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp

  1. DFT calculation of vibrational frequencies of clusters in GaAs and the Raman spectra

    NASA Astrophysics Data System (ADS)

    Radhika Devi, V.; Shrivastava, Keshav N.

    2012-09-01

    We have calculated the vibrational frequencies of clusters of Ga and As atoms from the first principles using the density-functional theory (DFT) method and the local-density approximation (LDA). We find that the calculated value of 286.2 cm-1 for a linear cluster of Ga2As2 is very near the experimental value of 292 ± 4 cm-1. The calculated value of 289.4 cm-1 for Ga2As6 (dumb bell) cluster is indeed very near the experimental value. There are strong phonon correlations so that the cluster frequency is within the dispersion relation of the crystal LO value. There is a weak line in the experimental Raman spectrum at 268 cm-1 which is very near the value of 267.3 cm-1 calculated for the Ga2As (triangular) cluster. The weak lines corresponding to the linear bonds provide the strength to the amorphous samples. There are clusters of atoms in the glassy state of GaAs.

  2. Representation of high frequency Space Shuttle data by ARMA algorithms and random response spectra

    NASA Technical Reports Server (NTRS)

    Spanos, P. D.; Mushung, L. J.

    1990-01-01

    High frequency Space Shuttle lift-off data are treated by autoregressive (AR) and autoregressive-moving-average (ARMA) digital algorithms. These algorithms provide useful information on the spectral densities of the data. Further, they yield spectral models which lend themselves to incorporation to the concept of the random response spectrum. This concept yields a reasonably smooth power spectrum for the design of structural and mechanical systems when the available data bank is limited. Due to the non-stationarity of the lift-off event, the pertinent data are split into three slices. Each of the slices is associated with a rather distinguishable phase of the lift-off event, where stationarity can be expected. The presented results are rather preliminary in nature; it is aimed to call attention to the availability of the discussed digital algorithms and to the need to augment the Space Shuttle data bank as more flights are completed.

  3. Mixed Polarization Vibrational Sum Frequency Generation Spectra of Organic Semiconducting Thin Films

    NASA Astrophysics Data System (ADS)

    Kearns, Patrick; Sohrabpour, Zahara; Massari, Aaron M.

    2014-06-01

    The buried interface of an organic semiconductor at the dielectric has a large on influence on the function of organic field effect transistors (OFETs). The use of vibrational sum frequency generation (VSFG) to obtain structural and orientational information on the buried interfaces of organic thin films has historically been complicated by the signals from other interfaces in the system. A thin film of N,N'-Dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) was deposited on a SiO2 dielectric to simulate the interfaces found in OFETs. We will show how probing the sample with a varying mixture of linear polarizations in the experimental setup can deconvolute contributions to the overall signal from multiple interfaces.

  4. Experimental diagnostics and modeling of inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Pivac, Ivan; Šimić, Boris; Barbir, Frano

    2017-10-01

    Representation of fuel cell processes by equivalent circuit models, involving resistance and capacitance elements representing activation losses on both anode and cathode in series with resistance representing ohmic losses, cannot capture and explain the inductive loop that may show up at low frequencies in Nyquist diagram representation of the electrochemical impedance spectra. In an attempt to explain the cause of the low-frequency inductive loop and correlate it with the processes within the fuel cell electrodes, a novel equivalent circuit model of a Proton Exchange Membrane (PEM) fuel cell has been proposed and experimentally verified here in detail. The model takes into account both the anode and the cathode, and has an additional resonant loop on each side, comprising of a resistance, capacitance and inductance in parallel representing the processes within the catalyst layer. Using these additional circuit elements, more accurate and better fits to experimental impedance data in the wide frequency range at different current densities, cell temperatures, humidity of gases, air flow stoichiometries and backpressures were obtained.

  5. Rolling element bearing defect detection using the generalized synchrosqueezing transform guided by time-frequency ridge enhancement.

    PubMed

    Li, Chuan; Sanchez, Vinicio; Zurita, Grover; Cerrada Lozada, Mariela; Cabrera, Diego

    2016-01-01

    Healthy rolling element bearings are vital guarantees for safe operation of the rotating machinery. Time-frequency (TF) signal analysis is an effective tool to detect bearing defects under time-varying shaft speed condition. However, it is a challenging work dealing with defective characteristic frequency and rotation frequency simultaneously without a tachometer. For this reason, a technique using the generalized synchrosqueezing transform (GST) guided by enhanced TF ridge extraction is suggested to detect the existence of the bearing defects. The low frequency band and the resonance band are first chopped from the Fourier spectrum of the bearing vibration measurements. The TF information of the lower band component and the resonance band envelope are represented using short-time Fourier transform, where the TF ridge are extracted by harmonic summation search and ridge candidate fusion operations. The inverse of the extracted TF ridge is subsequently used to guide the GST mapping the chirped TF representation to the constant one. The rectified TF pictures are then synchrosqueezed as sharper spectra where the rotation frequency and the defective characteristic frequency can be identified, respectively. Both simulated and experimental signals were used to evaluate the present technique. The results validate the effectiveness of the suggested technique for the bearing defect detection. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Efficient computation of the joint sample frequency spectra for multiple populations.

    PubMed

    Kamm, John A; Terhorst, Jonathan; Song, Yun S

    2017-01-01

    A wide range of studies in population genetics have employed the sample frequency spectrum (SFS), a summary statistic which describes the distribution of mutant alleles at a polymorphic site in a sample of DNA sequences and provides a highly efficient dimensional reduction of large-scale population genomic variation data. Recently, there has been much interest in analyzing the joint SFS data from multiple populations to infer parameters of complex demographic histories, including variable population sizes, population split times, migration rates, admixture proportions, and so on. SFS-based inference methods require accurate computation of the expected SFS under a given demographic model. Although much methodological progress has been made, existing methods suffer from numerical instability and high computational complexity when multiple populations are involved and the sample size is large. In this paper, we present new analytic formulas and algorithms that enable accurate, efficient computation of the expected joint SFS for thousands of individuals sampled from hundreds of populations related by a complex demographic model with arbitrary population size histories (including piecewise-exponential growth). Our results are implemented in a new software package called momi (MOran Models for Inference). Through an empirical study we demonstrate our improvements to numerical stability and computational complexity.

  7. UV-excited transient raman spectra and the co stretching frequencies of the lowest excited triplet state of benzophenone

    NASA Astrophysics Data System (ADS)

    Tahara, Tahei; Hamaguchi, Hiro-o.; Tasumi, Mitsuo

    1988-11-01

    Transient resonance Raman spectra of T 1 benzophenone (BP) and its carbonyl- 18O-substituted analogue were measured with 355 nm excitation which is in resonance with a triplet-triplet (T n←T 1) transition in the ultraviolet. The intensity of the CO stretch band was greatly enhanced under this resonance condition. Reliable values of the T 1 CO stretching frequency were obtained including the solvent shifts. It is concluded that the solvent dependence of the photochemical reactivity of BP is not primarily due to the solvent-induced structural changes in the T 1 state. The character of the two different T-T transitions (T n←T 1 and T n←T 1) is discussed in relation to the observed Raman spectral changes with different resonance conditions.

  8. A general low frequency acoustic radiation capability for NASTRAN

    NASA Technical Reports Server (NTRS)

    Everstine, G. C.; Henderson, F. M.; Schroeder, E. A.; Lipman, R. R.

    1986-01-01

    A new capability called NASHUA is described for calculating the radiated acoustic sound pressure field exterior to a harmonically-excited arbitrary submerged 3-D elastic structure. The surface fluid pressures and velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior fluid. After the fluid impedance is calculated, most of the required matrix operations are performed using the general matrix manipulation package (DMAP) available in NASTRAN. Far field radiated pressures are then calculated from the surface solution using the Helmholtz exterior integral equation. Other output quantities include the maximum sound pressure levels in each of the three coordinate planes, the rms and average surface pressures and normal velocities, the total radiated power and the radiation efficiency. The overall approach is illustrated and validated using known analytic solutions for submerged spherical shells subjected to both uniform and nonuniform applied loads.

  9. A general low frequency acoustic radiation capability for NASTRAN

    NASA Astrophysics Data System (ADS)

    Everstine, G. C.; Henderson, F. M.; Schroeder, E. A.; Lipman, R. R.

    A new capability called NASHUA is described for calculating the radiated acoustic sound pressure field exterior to a harmonically-excited arbitrary submerged 3-D elastic structure. The surface fluid pressures and velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior fluid. After the fluid impedance is calculated, most of the required matrix operations are performed using the general matrix manipulation package (DMAP) available in NASTRAN. Far field radiated pressures are then calculated from the surface solution using the Helmholtz exterior integral equation. Other output quantities include the maximum sound pressure levels in each of the three coordinate planes, the rms and average surface pressures and normal velocities, the total radiated power and the radiation efficiency. The overall approach is illustrated and validated using known analytic solutions for submerged spherical shells subjected to both uniform and nonuniform applied loads.

  10. Radiation transfer with partial frequency redistribution and generalized redistribution functions.

    NASA Astrophysics Data System (ADS)

    Hubeny, I.

    The author attempted to analyse the available astrophysical partial redistribution studies. He introduced the term quasi-Markovian, classical view, where the basic physical concepts of the current astrophysical approach are summarized. Its physical uncertainties, and even inconsistencies, are discussed in detail. The quasi-Markovian, classical treatment has been used to generalize the Oxenius (1965) approach. The reformulation of the Oxenius' approach, in the two-level-atom case, to a form similar to that of Milkey and Mihalas (1973) and Heasley and Kneer (1976) showed, that both formulations yield almost identical results. Using the same approach as in reformulating the two-level-atom case, the author derived a suitable form of the emission coefficient in the case of the multilevel atom. Comparing its form to that following from a heuristic derivation, two points appeared to be different.

  11. A Comparison of the Lower Stratospheric Age-Spectra Derived from a General Circulation Model and Two Data Assimilation Systems

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Douglass, Anne R.; Zhu, Zhengxin; Pawson, Steven

    2002-01-01

    We use kinematic and diabatic back trajectory calculations, driven by winds from a general circulation model (GCM) and two different data assimilation systems (DAS), to compute the age spectrum at three latitudes in the lower stratosphere. The age-spectra are compared to chemical transport model (CTM) calculations, and the mean ages from all of these studies are compared to observations. The age spectra computed using the GCM winds show a reasonably isolated tropics in good agreement with observations; however, the age spectra determined from the DAS differ from the GCM spectra. For the DAS diabatic trajectory calculations there is too much exchange between the tropics and mid-latitudes. The age spectrum is thus too broad and the tropical mean age is too old as a result of mixing older mid latitude air with tropical air. Likewise the mid latitude mean age is too young due to the in mixing of tropical air. The DAS kinematic trajectory calculations show excessive vertical dispersion of parcels in addition to excessive exchange between the tropics and mid latitudes. Because air is moved rapidly to the troposphere from the vertical dispersion, the age spectrum is shifted toward the young side. The excessive vertical and meridional dispersion compensate in the kinematic case giving a reasonable tropical mean age. The CTM calculation of the age spectrum using the DAS winds shows the same vertical and meridional dispersive characteristics of the kinematic trajectory calculation. These results suggest that the current DAS products will not give realistic trace gas distributions for long integrations; they also help explain why the extra tropical mean ages determined in a number of previous DAS driven CTM s are too young compared with observations. Finally, we note trajectory-generated age spectra . show significant age anomalies correlated with the seasonal cycles. These anomalies can be linked to year-to-year variations in the tropical heating rate. The anomalies are

  12. GENERAL: A diode laser spectrometer at 634 nm and absolute frequency measurements using optical frequency comb

    NASA Astrophysics Data System (ADS)

    Yi, Lin; Yuan, Jie; Qi, Xiang-Hui; Chen, Wen-Lan; Zhou, Da-Wei; Zhou, Tong; Zhou, Xiao-Ji; Chen, Xu-Zong

    2009-04-01

    This paper reports that two identical external-cavity-diode-laser (ECDL) based spectrometers are constructed at 634 nm referencing on the hyperfine B-X transition R(80)8-4 of 127I2. The lasers are stabilized on the Doppler-free absorption signals using the third-harmonic detection technique. The instability of the stabilized laser is measured to be 2.8 × 10-12 (after 1000 s) by counting the beat note between the two lasers. The absolute optical frequency of the transition is, for the first time, determined to be 472851936189.5 kHz by using an optical frequency comb referenced on the microwave caesium atomic clock. The uncertainty of the measurement is less than 4.9 kHz.

  13. Temperature Dependence of Low-Frequency Spectra in Molten Bis(trifluoromethylsulfonyl)amide Salts of Imidazolium Cations Studied by Femtosecond Raman-Induced Kerr Effect Spectroscopy.

    PubMed

    Shirota, Hideaki; Kakinuma, Shohei

    2015-07-30

    In this study, the temperature dependence of the low-frequency spectra of liquid bis(trifluoromethylsulfonyl)amide salts of the monocations 1-methyl-3-propylimidazolium and 1-hexyl-3-methylimidazolium and the dications 1,6-bis(3-methylimidazolium-1-yl)hexane and 1,12-bis(3-methylimidazolium-1-yl)dodecane has been investigated by means of femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy. The intensity in the low-frequency region below 20 cm(-1) in the spectra of the four ionic liquids increases with rising temperature. From a line-shape analysis of the broadened low-frequency spectra of the ionic liquids, it is clear that the lowest-frequency component, which peaks at approximately 5 cm(-1), contributes to the temperature dependence of the spectra. This implies that the activity of the intermolecular translational vibrational motion is increasing with rising temperature. It is also possible that decoupling in the crossover process between intermolecular vibrational motion and structural relaxation occurs as a result of a deterioration of the non-Markovian feature or the loss of memory caused by the higher temperature. The peak of the highest-frequency component, which is due mainly to the imidazolium ring libration, shifts to lower frequency with increasing temperature. This is attributed to weaker interactions of the ionic liquids at higher temperatures. Temperature-dependent viscosities from 293 to 353 K of the four ionic liquids have also been characterized.

  14. - and Frequency-Domain Signatures of Velocity Changing Collisions in Sub-Doppler Saturation Spectra and Pressure Broadening

    NASA Astrophysics Data System (ADS)

    Hall, Gregory; Xu, Hong; Forthomme, Damien; Dagdigian, Paul; Sears, Trevor

    2017-06-01

    We have combined experimental and theoretical approaches to the competition between elastic and inelastic collisions of CN radicals with Ar, and how this competition influences time-resolved saturation spectra. Experimentally, we have measured transient, two-color sub-Doppler saturation spectra of CN radicals with an amplitude chopped saturation laser tuned to selected Doppler offsets within rotational lines of the A-X (2-0) band, while scanning a frequency modulated probe laser across the hyperfine-resolved saturation features of corresponding rotational lines of the A-X (1-0) band. A steady-state depletion spectrum includes off-resonant contributions ascribed to velocity diffusion, and the saturation recovery rates depend on the sub-Doppler detuning. The experimental results are compared with Monte Carlo solutions to the Boltzmann equation for the collisional evolution of the velocity distributions of CN radicals, combined with a pressure-dependent and speed-dependent lifetime broadening. Velocity changing collisions are included by appropriately sampling the energy resolved differential cross sections for elastic scattering of selected rotational states of CN (X). The velocity space diffusion of Doppler tagged molecules proceeds through a series of small-angle scattering events, eventually terminating in an inelastic collision that removes the molecule from the coherently driven ensemble of interest. Collision energy-dependent total cross sections and differential cross sections for elastic scattering of selected CN rotational states with Ar were computed with Hibridon quantum scattering calculations, and used for sampling in the Monte Carlo modeling. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences.

  15. A new Lanczos-based algorithm for simulating high-frequency two-dimensional electron spin resonance spectra

    PubMed Central

    Chiang, Yun-Wei; Freed, Jack H.

    2011-01-01

    The Lanczos algorithm (LA) is a useful iterative method for the reduction of a large matrix to tridiagonal form. It is a storage efficient procedure requiring only the preceding two Lanczos vectors to compute the next. The quasi-minimal residual (QMR) method is a powerful method for the solution of linear equation systems, Ax = b. In this report we provide another application of the QMR method: we incorporate QMR into the LA to monitor the convergence of the Lanczos projections in the reduction of large sparse matrices. We demonstrate that the combined approach of the LA and QMR can be utilized efficiently for the orthogonal transformation of large, but sparse, complex, symmetric matrices, such as are encountered in the simulation of slow-motional 1D- and 2D-electron spin resonance (ESR) spectra. Especially in the 2D-ESR simulations, it is essential that we store all of the Lanczos vectors obtained in the course of the LA recursions and maintain their orthogonality. In the LA-QMR application, the QMR weight matrix mitigates the problem that the Lanczos vectors lose orthogonality after many LA projections. This enables substantially more Lanczos projections, as required to achieve convergence for the more challenging ESR simulations. It, therefore, provides better accuracy for the eigenvectors and the eigenvalues of the large sparse matrices originating in 2D-ESR simulations than does the previously employed method, which is a combined approach of the LA and the conjugate-gradient (CG) methods, as evidenced by the quality and convergence of the 2D-ESR simulations. Our results show that very slow-motional 2D-ESR spectra at W-band (95 GHz) can be reliably simulated using the LA-QMR method, whereas the LA-CG consistently fails. The improvements due to the LA-QMR are of critical importance in enabling the simulation of high-frequency 2D-ESR spectra, which are characterized by their very high resolution to molecular orientation. PMID:21261335

  16. A new Lanczos-based algorithm for simulating high-frequency two-dimensional electron spin resonance spectra.

    PubMed

    Chiang, Yun-Wei; Freed, Jack H

    2011-01-21

    The Lanczos algorithm (LA) is a useful iterative method for the reduction of a large matrix to tridiagonal form. It is a storage efficient procedure requiring only the preceding two Lanczos vectors to compute the next. The quasi-minimal residual (QMR) method is a powerful method for the solution of linear equation systems, Ax = b. In this report we provide another application of the QMR method: we incorporate QMR into the LA to monitor the convergence of the Lanczos projections in the reduction of large sparse matrices. We demonstrate that the combined approach of the LA and QMR can be utilized efficiently for the orthogonal transformation of large, but sparse, complex, symmetric matrices, such as are encountered in the simulation of slow-motional 1D- and 2D-electron spin resonance (ESR) spectra. Especially in the 2D-ESR simulations, it is essential that we store all of the Lanczos vectors obtained in the course of the LA recursions and maintain their orthogonality. In the LA-QMR application, the QMR weight matrix mitigates the problem that the Lanczos vectors lose orthogonality after many LA projections. This enables substantially more Lanczos projections, as required to achieve convergence for the more challenging ESR simulations. It, therefore, provides better accuracy for the eigenvectors and the eigenvalues of the large sparse matrices originating in 2D-ESR simulations than does the previously employed method, which is a combined approach of the LA and the conjugate-gradient (CG) methods, as evidenced by the quality and convergence of the 2D-ESR simulations. Our results show that very slow-motional 2D-ESR spectra at W-band (95 GHz) can be reliably simulated using the LA-QMR method, whereas the LA-CG consistently fails. The improvements due to the LA-QMR are of critical importance in enabling the simulation of high-frequency 2D-ESR spectra, which are characterized by their very high resolution to molecular orientation.

  17. A new Lanczos-based algorithm for simulating high-frequency two-dimensional electron spin resonance spectra

    NASA Astrophysics Data System (ADS)

    Chiang, Yun-Wei; Freed, Jack H.

    2011-01-01

    The Lanczos algorithm (LA) is a useful iterative method for the reduction of a large matrix to tridiagonal form. It is a storage efficient procedure requiring only the preceding two Lanczos vectors to compute the next. The quasi-minimal residual (QMR) method is a powerful method for the solution of linear equation systems, Ax = b. In this report we provide another application of the QMR method: we incorporate QMR into the LA to monitor the convergence of the Lanczos projections in the reduction of large sparse matrices. We demonstrate that the combined approach of the LA and QMR can be utilized efficiently for the orthogonal transformation of large, but sparse, complex, symmetric matrices, such as are encountered in the simulation of slow-motional 1D- and 2D-electron spin resonance (ESR) spectra. Especially in the 2D-ESR simulations, it is essential that we store all of the Lanczos vectors obtained in the course of the LA recursions and maintain their orthogonality. In the LA-QMR application, the QMR weight matrix mitigates the problem that the Lanczos vectors lose orthogonality after many LA projections. This enables substantially more Lanczos projections, as required to achieve convergence for the more challenging ESR simulations. It, therefore, provides better accuracy for the eigenvectors and the eigenvalues of the large sparse matrices originating in 2D-ESR simulations than does the previously employed method, which is a combined approach of the LA and the conjugate-gradient (CG) methods, as evidenced by the quality and convergence of the 2D-ESR simulations. Our results show that very slow-motional 2D-ESR spectra at W-band (95 GHz) can be reliably simulated using the LA-QMR method, whereas the LA-CG consistently fails. The improvements due to the LA-QMR are of critical importance in enabling the simulation of high-frequency 2D-ESR spectra, which are characterized by their very high resolution to molecular orientation.

  18. Iterative generalized time-frequency reassignment for planetary gearbox fault diagnosis under nonstationary conditions

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowang; Feng, Zhipeng

    2016-12-01

    Planetary gearboxes are widely used in many sorts of machinery, for its large transmission ratio and high load bearing capacity in a compact structure. Their fault diagnosis relies on effective identification of fault characteristic frequencies. However, in addition to the vibration complexity caused by intricate mechanical kinematics, volatile external conditions result in time-varying running speed and/or load, and therefore nonstationary vibration signals. This usually leads to time-varying complex fault characteristics, and adds difficulty to planetary gearbox fault diagnosis. Time-frequency analysis is an effective approach to extracting the frequency components and their time variation of nonstationary signals. Nevertheless, the commonly used time-frequency analysis methods suffer from poor time-frequency resolution as well as outer and inner interferences, which hinder accurate identification of time-varying fault characteristic frequencies. Although time-frequency reassignment improves the time-frequency readability, it is essentially subject to the constraints of mono-component and symmetric time-frequency distribution about true instantaneous frequency. Hence, it is still susceptible to erroneous energy reallocation or even generates pseudo interferences, particularly for multi-component signals of highly nonlinear instantaneous frequency. In this paper, to overcome the limitations of time-frequency reassignment, we propose an improvement with fine time-frequency resolution and free from interferences for highly nonstationary multi-component signals, by exploiting the merits of iterative generalized demodulation. The signal is firstly decomposed into mono-components of constant frequency by iterative generalized demodulation. Time-frequency reassignment is then applied to each generalized demodulated mono-component, obtaining a fine time-frequency distribution. Finally, the time-frequency distribution of each signal component is restored and superposed to

  19. Generalized Blonder-Tinkham-Klapwijk theory and conductance spectra with particle-hole mixing interface potential

    NASA Astrophysics Data System (ADS)

    Catapano, Marilena; Romeo, Francesco; Citro, Roberta; Giubileo, Filippo

    2015-12-01

    We extend the Blonder-Tinkham-Klapwijk treatment including particle-hole mixing boundary conditions in the Bogoliubov-de Gennes scattering problem to describe anomalous conductance features often reported in normal-metal/superconductor junctions. We calculate the differential conductance spectra and show that conductance dips, not expected in the standard formulation, can be explained in terms of a phase π-shift between the bulk and the interface order parameter. A tight-binding model is also introduced to give a quantitative description of the phase-shift in terms of the transparency and polarization of the interface. We characterize the physics arising from particle-hole mixing boundary conditions at the interface and its effects on the conductance anomalies in superconductor-normal heterostructures.

  20. Doppler-shifting effects on frequency spectra of gravity waves observed near the summer mesopause at high latitude

    NASA Technical Reports Server (NTRS)

    Fritts, David C.; Wang, Ding-Yi

    1991-01-01

    Results are presented of radar observations of horizontal and vertical velocities near the summer mesopause at Poker Flat (Alaska), showing that the observed vertical velocity spectra were influenced strongly by Doppler-shifting effects. The horizontal velocity spectra, however, were relatively insensitive to horizontal wind speed. The observed spectra are compared with predicted spectra for various models of the intrinsic motion spectrum and degrees of Doppler shifting.

  1. 15KW General Purpose Power Conditioner (Frequency Changer). Inverter/Converter Integration.

    DTIC Science & Technology

    1980-10-01

    34AD-A097 165 GENERAL MOTORS CORP GOLETA CA DELCO ELECTRONICS DIV F/6 10/2 150K GENERAL PURPOSE POWER CONDITIONER (FREQUENCY CHANGER). INV--ETCIU...COMMAND B Fort Belvoir, Virginia Delco Electronics General Motors Corporation - Santa Barbara Operations DRI UTION STATEMENT A Santa Barbara...release; . Distribution Unlimited . DLCO ELECTRONICS DIVISION * SANTA EARUARA OPERATIONS * GENERAL MOTORS CORPORATION TABLE OF CONTENTS’. Section Page

  2. Analysis of high-frequency energy in long-term average spectra of singing, speech, and voiceless fricatives

    PubMed Central

    Monson, Brian B.; Lotto, Andrew J.; Story, Brad H.

    2012-01-01

    The human singing and speech spectrum includes energy above 5 kHz. To begin an in-depth exploration of this high-frequency energy (HFE), a database of anechoic high-fidelity recordings of singers and talkers was created and analyzed. Third-octave band analysis from the long-term average spectra showed that production level (soft vs normal vs loud), production mode (singing vs speech), and phoneme (for voiceless fricatives) all significantly affected HFE characteristics. Specifically, increased production level caused an increase in absolute HFE level, but a decrease in relative HFE level. Singing exhibited higher levels of HFE than speech in the soft and normal conditions, but not in the loud condition. Third-octave band levels distinguished phoneme class of voiceless fricatives. Female HFE levels were significantly greater than male levels only above 11 kHz. This information is pertinent to various areas of acoustics, including vocal tract modeling, voice synthesis, augmentative hearing technology (hearing aids and cochlear implants), and training/therapy for singing and speech. PMID:22978902

  3. Analysis of high-frequency energy in long-term average spectra of singing, speech, and voiceless fricatives.

    PubMed

    Monson, Brian B; Lotto, Andrew J; Story, Brad H

    2012-09-01

    The human singing and speech spectrum includes energy above 5 kHz. To begin an in-depth exploration of this high-frequency energy (HFE), a database of anechoic high-fidelity recordings of singers and talkers was created and analyzed. Third-octave band analysis from the long-term average spectra showed that production level (soft vs normal vs loud), production mode (singing vs speech), and phoneme (for voiceless fricatives) all significantly affected HFE characteristics. Specifically, increased production level caused an increase in absolute HFE level, but a decrease in relative HFE level. Singing exhibited higher levels of HFE than speech in the soft and normal conditions, but not in the loud condition. Third-octave band levels distinguished phoneme class of voiceless fricatives. Female HFE levels were significantly greater than male levels only above 11 kHz. This information is pertinent to various areas of acoustics, including vocal tract modeling, voice synthesis, augmentative hearing technology (hearing aids and cochlear implants), and training/therapy for singing and speech.

  4. Study of transmittance and reflectance spectra of the cornea and the sclera in the THz frequency range

    NASA Astrophysics Data System (ADS)

    Iomdina, Elena N.; Goltsman, Gregory N.; Seliverstov, Sergey V.; Sianosyan, Alisa A.; Teplyakova, Kseniya O.; Rusova, Anastasia A.

    2016-09-01

    An adequate water balance (hydration extent) is one of the basic factors of normal eye function, including its external shells: the cornea and the sclera. Adequate control of corneal and scleral hydration is very important for early diagnosis of a variety of eye diseases, stating indications for and contraindications against keratorefractive surgeries and the choice of contact lens correction solutions. THz systems of creating images in reflected beams are likely to become ideal instruments of noninvasive control of corneal and scleral hydration degrees. This paper reports on the results of a study involving transmittance and reflectance spectra for the cornea and the sclera of rabbit and human eyes, as well as those of the rabbit eye, in the frequency range of 0.13 to 0.32 THz. The dependence of the reflectance coefficient of these tissues on water mass percentage content was determined. The experiments were performed on three corneas, three rabbit scleras, two rabbit eyes, and three human scleras. The preliminary results demonstrate that the proposed technique, based on the use of a continuous THz radiation, may be utilized to create a device for noninvasive control of corneal and scleral hydration, which has clear potential of broad practical application.

  5. General Conditions for Proximity-Induced Odd-Frequency Superconductivity in Two-Dimensional Electronic Systems.

    PubMed

    Triola, Christopher; Badiane, Driss M; Balatsky, Alexander V; Rossi, E

    2016-06-24

    We obtain the general conditions for the emergence of odd-frequency superconducting pairing in a two-dimensional (2D) electronic system proximity coupled to a superconductor, making minimal assumptions about both the 2D system and the superconductor. Using our general results we show that a simple heterostructure formed by a monolayer of a group VI transition metal dichalcogenide, such as molybdenum disulfide, and an s-wave superconductor with Rashba spin-orbit coupling exhibits odd-frequency superconducting pairing. Our results allow the identification of a new class of systems among van der Waals heterostructures in which odd-frequency superconductivity should be present.

  6. Frequency-Wavenumber Velocity Spectra, Taylor's Hypothesis and Length-Scales in a Natural Gravel-Bed River

    NASA Astrophysics Data System (ADS)

    Thornton, E. B.; MacMahan, J. H.; Reniers, A. J.; Ashley, W.

    2012-12-01

    Macro-scale turbulent coherent flow structures in a natural fast-flowing river were examined with a combination of a novel 2 MHz Acoustic Doppler Beam (ADB) and a Maximum Likelihood Estimator (MLE) to characterize the stream-wise horizontal length scales and persistence of coherent flow structures by measuring the frequency (f)- streamwise-wavenumber (k) energy density velocity spectrum, E(f,k ), for the first time in natural rivers. The ADB was deployed under a range of Froude numbers (0.1-0.6) at high Reynolds Numbers based on depth and velocity conditions within a gravel-bed reach of the Kootenai River, ID. The MLE employed on the ADB data increased our ability to describe river motions with relatively long (>10 m) length scales in ~1 m water depths. The E(f,k) fall along a ridge described by V=f/k, where V is the mean velocity over depth, verifying Taylor's hypothesis. New, consistent length scale measures are defined based on averaged wave lengths of the low frequency E(f,k) and coherence spectra. Energetic (~50% of the total spectral energy), low-frequency (f<0.05Hz) stream-wise motions were found. Mean length scales, L, compared with the depth, h, are significantly larger than previously suggested for macro-turbulence with L/h ~ 28 - 118. Although the energy appears as low-pass white noise, it is stream-wise coherent along the length of the array. In fast flows with velocities >1 m/s, L were found to be significantly longer than their corresponding coherence lengths suggesting that the turbulent structures evolve rapidly under these conditions. This is attributed to the stretching and concomitant deformation of pre-existing macro-turbulent motions by the ubiquitous bathymetry-induced spatial flow accelerations present in a natural gravel-bed river.Mean motion lengths, Lm, (circles) and coherence lengths, Lc, (squares) as a function of the mean streamwise velocity at locations in Zones 1-4.

  7. Analysis of torsional spectra of molecules with two internal C3v rotors. II - Far infrared and low frequency Raman spectra of dimethylether isotopes

    NASA Technical Reports Server (NTRS)

    Groner, P.; Durig, J. R.

    1977-01-01

    The torsional far infrared and Raman spectra of gaseous CH3OCH3, CD3OCH3, and CD3OCD3 are presented. They are analyzed using a computer program which is based on the results of an extensive investigation of the isometric groups and of the symmetry groups of the rotation-internal rotation Hamiltonians of a series of semirigid two-top models. Four or more Fourier coefficients of the potential functions in two variables could be determined for each isotope. Strong evidence was found for Fermi-resonance-type interactions with the COC bending mode.

  8. Precessional frequency of a gyroscope in the quaterionic formulation of general relativity

    SciTech Connect

    Sachs, M.

    1989-01-01

    The precessional frequency of a gyroscope in a reference frame that orbits about a gravitational body is compared between Einstein's tensor formulation of general relativity and the author's quaternion generalization - obtained from a factorization of the tensor form. The difference in predictions then suggests an experiment that could choose which of these formulations of general relativity is more valid in the analysis of gyroscopic motion.

  9. NEUTRINO SPECTRA FROM ACCRETION DISKS: NEUTRINO GENERAL RELATIVISTIC EFFECTS AND THE CONSEQUENCES FOR NUCLEOSYNTHESIS

    SciTech Connect

    Caballero, O. L.; McLaughlin, G. C.; Surman, R. E-mail: olcaball@ncsu.edu E-mail: surmanr@union.edu

    2012-02-01

    Black hole (BH) accretion disks have been proposed as good candidates for a range of interesting nucleosynthesis, including the r-process. The presence of the BH influences the neutrino fluxes and affects the nucleosynthesis resulting from the interaction of the emitted neutrinos and hot outflowing material ejected from the disk. We study the impact of general relativistic effects on the neutrinos emitted from BH accretion disks. We present abundances obtained by considering null geodesics and energy shifts for two different disk models. We find that both the bending of the neutrino trajectories and the energy shifts have important consequences for the nucleosynthetic outcome.

  10. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Effects of Thickness Deviation of Elastic Plates in Multi-Layered Resonance Systems on Frequency Spectra

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zhang, Shu-Yi; Fan, Li

    2009-08-01

    A model of high-overtone bulk acoustic resonators is used to study the effects of thickness deviation of elastic plates on resonance frequency spectra in planar multi-layered systems. The resonance frequency shifts induced by the thickness deviations of the elastic plates periodically vary with the resonance order, which depends on the acoustic impedance ratios of the elastic plates to piezoelectric patches. Additionally, the center lines of the frequency shift oscillations linearly change with the orders of the resonance modes, and their slopes are sensitive to the thickness deviations of the plates, which can be used to quantitatively evaluate the thickness deviations.

  11. Vibronic Boson Sampling: Generalized Gaussian Boson Sampling for Molecular Vibronic Spectra at Finite Temperature.

    PubMed

    Huh, Joonsuk; Yung, Man-Hong

    2017-08-07

    Molecular vibroic spectroscopy, where the transitions involve non-trivial Bosonic correlation due to the Duschinsky Rotation, is strongly believed to be in a similar complexity class as Boson Sampling. At finite temperature, the problem is represented as a Boson Sampling experiment with correlated Gaussian input states. This molecular problem with temperature effect is intimately related to the various versions of Boson Sampling sharing the similar computational complexity. Here we provide a full description to this relation in the context of Gaussian Boson Sampling. We find a hierarchical structure, which illustrates the relationship among various Boson Sampling schemes. Specifically, we show that every instance of Gaussian Boson Sampling with an initial correlation can be simulated by an instance of Gaussian Boson Sampling without initial correlation, with only a polynomial overhead. Since every Gaussian state is associated with a thermal state, our result implies that every sampling problem in molecular vibronic transitions, at any temperature, can be simulated by Gaussian Boson Sampling associated with a product of vacuum modes. We refer such a generalized Gaussian Boson Sampling motivated by the molecular sampling problem as Vibronic Boson Sampling.

  12. A Generalized Fast Frequency Sweep Algorithm for Coupled Circuit-EM Simulations

    SciTech Connect

    Rockway, J D; Champagne, N J; Sharpe, R M; Fasenfest, B

    2004-01-14

    Frequency domain techniques are popular for analyzing electromagnetics (EM) and coupled circuit-EM problems. These techniques, such as the method of moments (MoM) and the finite element method (FEM), are used to determine the response of the EM portion of the problem at a single frequency. Since only one frequency is solved at a time, it may take a long time to calculate the parameters for wideband devices. In this paper, a fast frequency sweep based on the Asymptotic Wave Expansion (AWE) method is developed and applied to generalized mixed circuit-EM problems. The AWE method, which was originally developed for lumped-load circuit simulations, has recently been shown to be effective at quasi-static and low frequency full-wave simulations. Here it is applied to a full-wave MoM solver, capable of solving for metals, dielectrics, and coupled circuit-EM problems.

  13. Quantum mechanical interpretation of intermolecular vibrational modes of crystalline poly-(R)-3-hydroxybutyrate observed in low-frequency Raman and terahertz spectra.

    PubMed

    Yamamoto, Shigeki; Morisawa, Yusuke; Sato, Harumi; Hoshina, Hiromichi; Ozaki, Yukihiro

    2013-02-21

    Low-frequency vibrational bands observed in the Raman and terahertz (THz) spectra in the region of 50-150 cm(-1) of crystalline powder poly-(R)-3-hydroxybutyrate (PHB) were assigned based on comparisons of the Raman and THz spectra, polarization directions of THz absorption spectra, and their congruities to quantum mechanically (QM) calculated spectra. This combination, Raman and THz spectroscopies and the QM simulations, has been rarely adopted in spite of its potential of reliable assignments of the vibrational bands. The QM simulation of a spectrum has already been popular in vibrational spectroscopies, but for low-frequency bands of polymers it is still a difficult task due to its large scales of systems and a fact that interactions among polymer chains should be considered in the calculation. In this study, the spectral calculations with the aid of the Cartesian-coordinate tensor transfer (CCT) method were applied successfully to the crystalline PHB, which include the explicit consideration of an intermolecular interaction among helical polymer chains. The agreements between the calculations and the experiments are good in both the Raman and THz spectra in terms of spectral shapes, frequencies, and intensities. A Raman active band at 79 cm(-1) was assigned to the intermolecular vibrational mode of the out-of-plane C═O + CH(3) vibration. A polarization state of the corresponding far-infrared absorption band at ∼82 cm(-1), perpendicular to the helix-elongation direction of PHB, was reproduced only under the explicit correction, which indicates that this polarized band originates from the interaction among the polymer chains. The calculation explored that the polarization direction of this band was along the a axis, which is consistent with the direction in which weak intermolecular hydrogen bonds are suggested between the C═O and CH(3) groups of two parallel polymer chains. The results obtained here have confirmed sensitivity of the low-frequency

  14. Parametrizing Epoch of Reionization foregrounds: a deep survey of low-frequency point-source spectra with the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Offringa, A. R.; Trott, C. M.; Hurley-Walker, N.; Johnston-Hollitt, M.; McKinley, B.; Barry, N.; Beardsley, A. P.; Bowman, J. D.; Briggs, F.; Carroll, P.; Dillon, J. S.; Ewall-Wice, A.; Feng, L.; Gaensler, B. M.; Greenhill, L. J.; Hazelton, B. J.; Hewitt, J. N.; Jacobs, D. C.; Kim, H.-S.; Kittiwisit, P.; Lenc, E.; Line, J.; Loeb, A.; Mitchell, D. A.; Morales, M. F.; Neben, A. R.; Paul, S.; Pindor, B.; Pober, J. C.; Procopio, P.; Riding, J.; Sethi, S. K.; Shankar, N. U.; Subrahmanyan, R.; Sullivan, I. S.; Tegmark, M.; Thyagarajan, N.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Wyithe, J. S. B.

    2016-05-01

    Experiments that pursue detection of signals from the Epoch of Reionization (EoR) are relying on spectral smoothness of source spectra at low frequencies. This article empirically explores the effect of foreground spectra on EoR experiments by measuring high-resolution full-polarization spectra for the 586 brightest unresolved sources in one of the Murchison Widefield Array (MWA) EoR fields using 45 h of observation. A novel peeling scheme is used to subtract 2500 sources from the visibilities with ionospheric and beam corrections, resulting in the deepest, confusion-limited MWA image so far. The resulting spectra are found to be affected by instrumental effects, which limit the constraints that can be set on source-intrinsic spectral structure. The sensitivity and power-spectrum of the spectra are analysed, and it is found that the spectra of residuals are dominated by point spread function sidelobes from nearby undeconvolved sources. We release a catalogue describing the spectral parameters for each measured source.

  15. Difference optimization: Automatic correction of relative frequency and phase for mean non-edited and edited GABA (1)H MEGA-PRESS spectra.

    PubMed

    Cleve, Marianne; Krämer, Martin; Gussew, Alexander; Reichenbach, Jürgen R

    2017-06-01

    Phase and frequency corrections of magnetic resonance spectroscopic data are of major importance to obtain reliable and unambiguous metabolite estimates as validated in recent research for single-shot scans with the same spectral fingerprint. However, when using the J-difference editing technique (1)H MEGA-PRESS, misalignment between mean edited (ON‾) and non-edited (OFF‾) spectra that may remain even after correction of the corresponding individual single-shot scans results in subtraction artefacts compromising reliable GABA quantitation. We present a fully automatic routine that iteratively optimizes simultaneously relative frequencies and phases between the mean ON‾ and OFF‾(1)H MEGA-PRESS spectra while minimizing the sum of the magnitude of the difference spectrum (L(1) norm). The proposed method was applied to simulated spectra at different SNR levels with deliberately preset frequency and phase errors. Difference optimization proved to be more sensitive to small signal fluctuations, as e.g. arising from subtraction artefacts, and outperformed the alternative spectral registration approach, that, in contrast to our proposed linear approach, uses a nonlinear least squares minimization (L(2) norm), at all investigated levels of SNR. Moreover, the proposed method was applied to 47 MEGA-PRESS datasets acquired in vivo at 3T. The results of the alignment between the mean OFF‾ and ON‾ spectra were compared by applying (a) no correction, (b) difference optimization or (c) spectral registration. Since the true frequency and phase errors are not known for in vivo data, manually corrected spectra were used as the gold standard reference (d). Automatically corrected data applying both, method (b) or method (c), showed distinct improvements of spectra quality as revealed by the mean Pearson correlation coefficient between corresponding real part mean DIFF‾ spectra of Rbd=0.997±0.003 (method (b) vs. (d)), compared to Rad=0.764±0.220 (method (a) vs. (d

  16. Difference optimization: Automatic correction of relative frequency and phase for mean non-edited and edited GABA 1H MEGA-PRESS spectra

    NASA Astrophysics Data System (ADS)

    Cleve, Marianne; Krämer, Martin; Gussew, Alexander; Reichenbach, Jürgen R.

    2017-06-01

    Phase and frequency corrections of magnetic resonance spectroscopic data are of major importance to obtain reliable and unambiguous metabolite estimates as validated in recent research for single-shot scans with the same spectral fingerprint. However, when using the J-difference editing technique 1H MEGA-PRESS, misalignment between mean edited (ON ‾) and non-edited (OFF ‾) spectra that may remain even after correction of the corresponding individual single-shot scans results in subtraction artefacts compromising reliable GABA quantitation. We present a fully automatic routine that iteratively optimizes simultaneously relative frequencies and phases between the mean ON ‾ and OFF ‾ 1H MEGA-PRESS spectra while minimizing the sum of the magnitude of the difference spectrum (L1 norm). The proposed method was applied to simulated spectra at different SNR levels with deliberately preset frequency and phase errors. Difference optimization proved to be more sensitive to small signal fluctuations, as e.g. arising from subtraction artefacts, and outperformed the alternative spectral registration approach, that, in contrast to our proposed linear approach, uses a nonlinear least squares minimization (L2 norm), at all investigated levels of SNR. Moreover, the proposed method was applied to 47 MEGA-PRESS datasets acquired in vivo at 3 T. The results of the alignment between the mean OFF ‾ and ON ‾ spectra were compared by applying (a) no correction, (b) difference optimization or (c) spectral registration. Since the true frequency and phase errors are not known for in vivo data, manually corrected spectra were used as the gold standard reference (d). Automatically corrected data applying both, method (b) or method (c), showed distinct improvements of spectra quality as revealed by the mean Pearson correlation coefficient between corresponding real part mean DIFF ‾ spectra of Rbd = 0.997 ± 0.003 (method (b) vs. (d)), compared to Rad = 0.764 ± 0.220 (method (a) vs

  17. General conditions for proximity induced odd-frequency superconductivity in two-dimensional electronic systems

    NASA Astrophysics Data System (ADS)

    Rossi, Enrico; Triola, Christopher; Badiane, Driss; Balatsky, Alexander V.

    We obtain the general conditions for the emergence of odd-frequency superconducting pairing in a two-dimensional (2D) electronic system proximity-coupled to a superconductor, making minimal assumptions about both the 2D system and the superconductor. Using our general results we show that a simple heterostructure formed by a monolayer of a group VI transition metal dichalcogenide, such as molybdenum disulfide, and an s-wave superconductor with Rashba spin-orbit coupling will exhibit odd-frequency superconducting pairing. Work supported by US DOE BES E304, KAW, ACS-PRF-53581-DNI5, and NSF-DMR-1455233.

  18. Frequency-Specific Alterations of Local Synchronization in Idiopathic Generalized Epilepsy.

    PubMed

    Wang, Jue; Zhang, Zhiqiang; Ji, Gong-Jun; Xu, Qiang; Huang, Yubin; Wang, Zhengge; Jiao, Qing; Yang, Fang; Zang, Yu-Feng; Liao, Wei; Lu, Guangming

    2015-08-01

    Recurrently and abnormally hypersynchronous discharge is a striking feature of idiopathic generalized epilepsy (IGE). Resting-state functional magnetic resonance imaging has revealed aberrant spontaneous brain synchronization, predominately in low-frequency range (<0.1 Hz), in individuals with IGE. Little is known, however, about these changes in local synchronization across different frequency bands. We examined alterations to frequency-specific local synchronization in terms of spontaneous blood oxygen level-dependent (BOLD) fluctuations across 5 bands, spanning 0 to 0.25 Hz. Specifically, we compared brain activity in a large cohort of IGE patients (n = 86) to age- and sex-matched normal controls (n = 86). IGE patients showed decreased local synchronization in low frequency (<0.073 Hz), primarily in the default mode network (DMN). IGE patients also exhibited increased local synchronization in high-frequency (>0.073 Hz) in a "conscious perception network," which is anchored by the pregenual and dorsal anterior cingulate cortex, as well as the bilateral insular cortices, possibly contributing to impaired consciousness. Furthermore, we found frequency-specific alternating local synchronization in the posterior portion of the DMN relative to the anterior part, suggesting an interaction between the disease and frequency bands. Importantly, the aberrant high-frequency local synchronization in the middle cingulate cortex was associated with disease duration, thus linking BOLD frequency changes to disease severity. These findings provide an overview of frequency-specific local synchronization of BOLD fluctuations, and may be helpful in uncovering abnormal synchronous neuronal activity in patients with IGE at specific frequency bands.

  19. Frequency-Specific Alterations of Local Synchronization in Idiopathic Generalized Epilepsy

    PubMed Central

    Wang, Jue; Zhang, Zhiqiang; Ji, Gong-Jun; Xu, Qiang; Huang, Yubin; Wang, Zhengge; Jiao, Qing; Yang, Fang; Zang, Yu-Feng; Liao, Wei; Lu, Guangming

    2015-01-01

    Abstract Recurrently and abnormally hypersynchronous discharge is a striking feature of idiopathic generalized epilepsy (IGE). Resting-state functional magnetic resonance imaging has revealed aberrant spontaneous brain synchronization, predominately in low-frequency range (<0.1 Hz), in individuals with IGE. Little is known, however, about these changes in local synchronization across different frequency bands. We examined alterations to frequency-specific local synchronization in terms of spontaneous blood oxygen level-dependent (BOLD) fluctuations across 5 bands, spanning 0 to 0.25 Hz. Specifically, we compared brain activity in a large cohort of IGE patients (n = 86) to age- and sex-matched normal controls (n = 86). IGE patients showed decreased local synchronization in low frequency (<0.073 Hz), primarily in the default mode network (DMN). IGE patients also exhibited increased local synchronization in high-frequency (>0.073 Hz) in a “conscious perception network,” which is anchored by the pregenual and dorsal anterior cingulate cortex, as well as the bilateral insular cortices, possibly contributing to impaired consciousness. Furthermore, we found frequency-specific alternating local synchronization in the posterior portion of the DMN relative to the anterior part, suggesting an interaction between the disease and frequency bands. Importantly, the aberrant high-frequency local synchronization in the middle cingulate cortex was associated with disease duration, thus linking BOLD frequency changes to disease severity. These findings provide an overview of frequency-specific local synchronization of BOLD fluctuations, and may be helpful in uncovering abnormal synchronous neuronal activity in patients with IGE at specific frequency bands. PMID:26266394

  20. The IR Absorption Spectra of Aqueous Solutions of Dimethylsulfoxide over the Frequency Range 50-300 cm-1 and the Mobility of Water Molecules

    NASA Astrophysics Data System (ADS)

    Klemenkova, Z. S.; Novskova, T. A.; Lyashchenko, A. K.

    2008-04-01

    The IR absorption spectra of aqueous solutions of dimethylsulfoxide (DMSO) with concentrations from 100% H2O to 100% DMSO were recorded over the frequency range 50-500 cm-1. The absorption spectra were described using the theoretical scheme of hindered rotators. A model was developed according to which orientation relaxation in solution was related to separate rotations of H2O and DMSO molecules through fixed small and (or) large angles in a unified network of H-bonds consisting of several subsystems ordered to various degrees. The calculated absorption spectra were in agreement with the experimental data in the far IR region. Elementary motions of molecules were found to slow down in the passage from pure dimethylsulfoxide to its aqueous solutions. The special features of the hydrophilic and hydrophobic hydration of DMSO polar and nonpolar groups were considered.

  1. Theoretical Investigation of C-H Vibrational Spectroscopy. 2. Unified Assignment Method of IR, Raman, and Sum Frequency Generation Spectra of Ethanol.

    PubMed

    Wang, Lin; Ishiyama, Tatsuya; Morita, Akihiro

    2017-09-14

    Using the flexible and polarizable model in the preceding paper, we performed comprehensive analysis of C-H stretching vibrations of ethanol and partially deuterated ones by molecular dynamics (MD) simulation. The overlapping band structures of the C-H stretching region including (i) methyl and methylene, (ii) the number of modes with Fermi resonances, and (iii) different trans/gauche conformers are disentangled by various analysis methods, such as isotope exchange, empirical potential parameter shift analysis, and separate calculations of conformers. The present analysis with MD simulation revealed unified assignment of infrared, Raman, and sum frequency generation (SFG) spectra. The analysis confirmed that the different conformers have significant influence on the assignment of CH2 vibrations. Band components and their signs in the imaginary χ((2)) spectra of SFG under various polarizations are also understood from the common assignment with the infrared and Raman spectra.

  2. Inequality spectra

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2017-03-01

    Inequality indices are widely applied in economics and in the social sciences as quantitative measures of the socioeconomic inequality of human societies. The application of inequality indices extends to size-distributions at large, where these indices can be used as general gauges of statistical heterogeneity. Moreover, as inequality indices are plentiful, arrays of such indices facilitate high-detail quantification of statistical heterogeneity. In this paper we elevate from arrays of inequality indices to inequality spectra: continuums of inequality indices that are parameterized by a single control parameter. We present a general methodology of constructing Lorenz-based inequality spectra, apply the general methodology to establish four sets of inequality spectra, investigate the properties of these sets, and show how these sets generalize known inequality gauges such as: the Gini index, the extended Gini index, the Rényi index, and hill curves.

  3. A Neural Network Model Can Explain Ventriloquism Aftereffect and Its Generalization across Sound Frequencies

    PubMed Central

    2013-01-01

    Exposure to synchronous but spatially disparate auditory and visual stimuli produces a perceptual shift of sound location towards the visual stimulus (ventriloquism effect). After adaptation to a ventriloquism situation, enduring sound shift is observed in the absence of the visual stimulus (ventriloquism aftereffect). Experimental studies report opposing results as to aftereffect generalization across sound frequencies varying from aftereffect being confined to the frequency used during adaptation to aftereffect generalizing across some octaves. Here, we present an extension of a model of visual-auditory interaction we previously developed. The new model is able to simulate the ventriloquism effect and, via Hebbian learning rules, the ventriloquism aftereffect and can be used to investigate aftereffect generalization across frequencies. The model includes auditory neurons coding both for the spatial and spectral features of the auditory stimuli and mimicking properties of biological auditory neurons. The model suggests that different extent of aftereffect generalization across frequencies can be obtained by changing the intensity of the auditory stimulus that induces different amounts of activation in the auditory layer. The model provides a coherent theoretical framework to explain the apparently contradictory results found in the literature. Model mechanisms and hypotheses are discussed in relation to neurophysiological and psychophysical data. PMID:24228250

  4. A neural network model can explain ventriloquism aftereffect and its generalization across sound frequencies.

    PubMed

    Magosso, Elisa; Cona, Filippo; Ursino, Mauro

    2013-01-01

    Exposure to synchronous but spatially disparate auditory and visual stimuli produces a perceptual shift of sound location towards the visual stimulus (ventriloquism effect). After adaptation to a ventriloquism situation, enduring sound shift is observed in the absence of the visual stimulus (ventriloquism aftereffect). Experimental studies report opposing results as to aftereffect generalization across sound frequencies varying from aftereffect being confined to the frequency used during adaptation to aftereffect generalizing across some octaves. Here, we present an extension of a model of visual-auditory interaction we previously developed. The new model is able to simulate the ventriloquism effect and, via Hebbian learning rules, the ventriloquism aftereffect and can be used to investigate aftereffect generalization across frequencies. The model includes auditory neurons coding both for the spatial and spectral features of the auditory stimuli and mimicking properties of biological auditory neurons. The model suggests that different extent of aftereffect generalization across frequencies can be obtained by changing the intensity of the auditory stimulus that induces different amounts of activation in the auditory layer. The model provides a coherent theoretical framework to explain the apparently contradictory results found in the literature. Model mechanisms and hypotheses are discussed in relation to neurophysiological and psychophysical data.

  5. Frequencies of Nonaxisymmetric F-Modes in Rapidly Rotating Polytropes in Full General Relativity

    NASA Astrophysics Data System (ADS)

    Zink, Burkhard; Stergioulas, Nikolaos; Korobkin, Oleg; Schnetter, Erik; Diener, Peter; Tiglio, Manuel

    The computation of frequencies of nonaxisymmetric f-modes in rapidly rotating stars in full general relativity is a long-standing problem that has not been solved, to date, without resorting to some approximation, such as the slow-rotation approximation or the Cowling approximation. We present the first computation of such frequencies in full general relativity and rapid rotation, without any such approximation. We achieve this by using long-term simulations of oscillating polytropic models with a nonlinear numerical code, where spacetime is evolved in the harmonic formulation. We compare our results to previous results for zero-frequency (neutral modes) that were obtained with a perturbative method, and comment on the relevance of our work to the gravitational-radiation-driven (CFS) secular instability of nonaxisymmetric f-modes.

  6. A simple and general strategy for generating frequency-anticorrelated photon pairs

    PubMed Central

    Zhang, Xin; Xu, Chang; Ren, Zhongzhou

    2016-01-01

    Currently, two-photon excitation microscopy is the method of choice for imaging living cells within thick specimen. A remaining problem for this technique is the damage caused by the high photon flux in the excitation region. To reduce the required flux, a promising solution is to use highly frequency-anticorrelated photon pairs, which are known to induce two-photon transitions much more efficiently. It is still an open question what the best scheme is for generating such photon pairs. Here we propose one simple general strategy for this task. As an example, we show explicitly that this general strategy can be realized faithfully within the widely applicable coherently pumped Jaynes-Cummings model. It is shown quantitatively that this strategy can generate highly frequency-anticorrelated photon pairs which can dramatically enhance two-photon excitation efficiency. We believe the proposed strategy can guide new designs for generating frequency-anticorrelated photon pairs. PMID:27087255

  7. Time-frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Liang, Ming

    2012-01-01

    The vibration data, especially those collected during the system run-up and run-down periods, contain rich information for gearbox condition monitoring. Time-frequency (TF) signal analysis is an effective tool to detect gearbox faults under varying shaft speed. However, the feature of the amplitude modulated-frequency modulated (AM-FM) gearbox fault signal usually cannot be directly extracted from the blurred time-frequency representation (TFR) caused by the time-varying frequency and noisy multicomponent measurement. As such, we propose to use a generalized synchrosqueezing transform (GST)-based TF method to detect and diagnose gearbox faults. With this method, the original vibration signal is first mapped into another analytical signal to facilitate synchrosqueezing of the TF picture. A time-scale domain restoration process is then applied to recover the instantaneous frequency profile with concentrated TFR. The gearbox fault, if any, can then be detected by observing the presence of the meshing frequency and sideband components in the TFR. The faulty gear can be identified via frequency relation analysis of AM-FM components. The proposed method is evaluated using both simulated and experimental gearbox vibration signals. The results show that the proposed approach is effective for gearbox condition monitoring.

  8. Effect of frequency tuning on bremsstrahlung spectra, beam intensity, and shape in the 10 GHz NANOGAN electron cyclotron resonance ion source

    SciTech Connect

    Rodrigues, G. Mal, Kedar; Kumar, Narender; Lakshmy, P. S.; Mathur, Y.; Kumar, P.; Kanjilal, D.; Roy, A.; Baskaran, R.

    2014-02-15

    Studies on the effect of the frequency tuning on the bremsstrahlung spectra, beam intensities, and beam shape of various ions have been carried out in the 10 GHz NANOGAN ECR ion source. The warm and cold components of the electrons were found to be directly correlated with beam intensity enhancement in case of Ar{sup 9+} but not so for O{sup 5+}. The warm electron component was, however, much smaller compared to the cold component. The effect of the fine tuning of the frequency on the bremsstrahlung spectrum, beam intensities and beam shape is presented.

  9. Non-Gaussian statistics of amide I mode frequency fluctuation of N-methylacetamide in methanol solution: linear and nonlinear vibrational spectra.

    PubMed

    Kwac, Kijeong; Lee, Hochan; Cho, Minhaeng

    2004-01-15

    By carrying out molecular dynamics simulations of an N-methylacetamide (NMA) in methanol solution, the amide I mode frequency fluctuation and hydrogen bonding dynamics were theoretically investigated. Combining an extrapolation formula developed from systematic ab initio calculation studies of NMA-(CH3OH)n clusters with a classical molecular dynamics simulation method, we were able to quantitatively describe the solvatochromic vibrational frequency shift induced by the hydrogen-bonding interaction between NMA and solvent methanol. It was found that the fluctuating amide I mode frequency distribution is notably non-Gaussian and it can be decomposed into two Gaussian peaks that are associated with two distinctively different solvation structures. The ensemble-average-calculated linear response function associated with the IR absorption is found to be oscillating, which is in turn related to the doublet amide I band shape. Numerically calculated infrared absorption spectra are directly compared with experiment and the agreement was found to be excellent. By using the Onsager's regression hypothesis, the rate constants of the interconversion process between the two solvation structures were obtained. Then, the nonlinear response functions associated with two-dimensional infrared pump-probe spectroscopy were simulated. The physics behind the two-dimensional line shape and origin of the cross peaks in the time-resolved pump-probe spectra is explained and the result is compared with 2D spectra experimentally measured recently by Woutersen et al.

  10. Application of the sublattice method to the investigation of phonon spectra and frequency density of fluorite-structure crystals

    NASA Astrophysics Data System (ADS)

    Kirienko, T. P.; Poplavnoy, A. S.

    2010-09-01

    Phonon spectra and state densities of MeF2 (Me = Ca, Sr, Cd, Ba, or Pb) crystals are calculated in the basis of sublattice state vectors using the Born-Mayer model. The phonon spectra and the sublattice state densities are calculated in the field of the second frozen sublattice. It is demonstrated that optical crystal branches are mainly due to oscillations of fluorine ions; moreover, the topology of optical branches in the spectrum and the crystal state densities are close to the topology of the spectra and state densities of the fluorine sublattice in the frozen metal sublattice. Exception is CaF2 whose ion and cation masses are close in values.

  11. Second order elasticity at hypersonic frequencies of reactive polyurethanes as seen by generalized Cauchy relations.

    PubMed

    Philipp, M; Vergnat, C; Müller, U; Sanctuary, R; Baller, J; Possart, W; Alnot, P; Krüger, J K

    2009-01-21

    The non-equilibrium process of polymerization of reactive polymers can be accompanied by transition phenomena like gelation or the chemical glass transition. The sensitivity of the mechanical properties at hypersonic frequencies-including the generalized Cauchy relation-to these transition phenomena is studied for three different polyurethanes using Brillouin spectroscopy. As for epoxies, the generalized Cauchy relation surprisingly holds true for the non-equilibrium polymerization process and for the temperature dependence of polyurethanes. Neither the sol-gel transition nor the chemical and thermal glass transitions are visible in the representation of the generalized Cauchy relation. Taking into account the new results and combining them with general considerations about the elastic properties of the isotropic state, an improved physical foundation of the generalized Cauchy relation is proposed.

  12. Changes in Alpha Frequency and Power of the Electroencephalogram during Volatile-Based General Anesthesia.

    PubMed

    Hight, Darren; Voss, Logan J; Garcia, Paul S; Sleigh, Jamie

    2017-01-01

    Oscillations in the electroencephalogram (EEG) at the alpha frequency (8-12 Hz) are thought to be ubiquitous during surgical anesthesia, but the details of how this oscillation responds to ongoing changes in volatile anesthetic concentration have not been well characterized. It is not known how often alpha oscillations are absent in the clinical context, how sensitively alpha frequency and power respond to changes in anesthetic concentration, and what effect increased age has on alpha frequency. Bipolar EEG was recorded frontally from 305 patients undergoing surgery with sevoflurane or desflurane providing general anesthesia. A new method of detecting the presence of alpha oscillations based on the stability of the rate of change of the peak frequency in the alpha range was developed. Linear concentration-response curves were fitted to assess the sensitivity of alpha power and frequency measures to changing levels of anesthesia. Alpha oscillations were seen to be inexplicably absent in around 4% of patients. Maximal alpha power increased with increasing volatile anesthetic concentrations in half of the patients, and decreased in the remaining patients. Alpha frequency decreased with increasing anesthetic concentrations in near to 90% of patients. Increasing age was associated with decreased sensitivity to volatile anesthesia concentrations, and with decreased alpha frequency, which sometimes transitioned into the theta range (5-7 Hz). While peak alpha frequency shows a consistent slowing to increasing volatile concentrations, the peak power of the oscillation does not, suggesting that frequency might be more informative of depth of anesthesia than traditional power based measures during volatile-based anesthesia. The alpha oscillation becomes slower with increasing age, even when the decreased anesthetic needs of older patients were taken into account.

  13. General-form 3-3-3 interpolation kernel and its simplified frequency-response derivation

    NASA Astrophysics Data System (ADS)

    Deng, Tian-Bo

    2016-11-01

    An interpolation kernel is required in a wide variety of signal processing applications such as image interpolation and timing adjustment in digital communications. This article presents a general-form interpolation kernel called 3-3-3 interpolation kernel and derives its frequency response in a closed-form by using a simple derivation method. This closed-form formula is preliminary to designing various 3-3-3 interpolation kernels subject to a set of design constraints. The 3-3-3 interpolation kernel is formed through utilising the third-degree piecewise polynomials, and it is an even-symmetric function. Thus, it will suffice to consider only its right-hand side when deriving its frequency response. Since the right-hand side of the interpolation kernel contains three piecewise polynomials of the third degree, i.e. the degrees of the three piecewise polynomials are (3,3,3), we call it the 3-3-3 interpolation kernel. Once the general-form frequency-response formula is derived, we can systematically formulate the design of various 3-3-3 interpolation kernels subject to a set of design constraints, which are targeted for different interpolation applications. Therefore, the closed-form frequency-response expression is preliminary to the optimal design of various 3-3-3 interpolation kernels. We will use an example to show the optimal design of a 3-3-3 interpolation kernel based on the closed-form frequency-response expression.

  14. Frequency standards based on ultracold atoms in tests of general relativity, navigation and gravimetry

    NASA Astrophysics Data System (ADS)

    Khabarova, K. Yu.; Kudeyarov, K. S.; Kolachevsky, N. N.

    2017-06-01

    Research and development in the field of optical clocks based on ultracold atoms and ions have enabled the relative uncertainty in frequency to be reduced down to a few parts in 1018. The use of novel, precise frequency comparison methods opens up new possibilities for basic research (sensitive tests of general relativity, a search for a drift of fundamental constants and a search for ‘dark matter’) as well as for state-of-the-art navigation and gravimetry. We discuss the key methods that are used in creating precision clocks (including transportable clocks) based on ultracold atoms and ions and the feasibility of using them in resolving current relativistic gravimetry issues.

  15. Assessment of cross-frequency coupling with confidence using generalized linear models

    PubMed Central

    Kramer, M. A.; Eden, U. T.

    2013-01-01

    Background Brain voltage activity displays distinct neuronal rhythms spanning a wide frequency range. How rhythms of different frequency interact – and the function of these interactions – remains an active area of research. Many methods have been proposed to assess the interactions between different frequency rhythms, in particular measures that characterize the relationship between the phase of a low frequency rhythm and the amplitude envelope of a high frequency rhythm. However, an optimal analysis method to assess this cross-frequency coupling (CFC) does not yet exist. New Method Here we describe a new procedure to assess CFC that utilizes the generalized linear modeling (GLM) framework. Results We illustrate the utility of this procedure in three synthetic examples. The proposed GLM-CFC procedure allows a rapid and principled assessment of CFC with confidence bounds, scales with the intensity of the CFC, and accurately detects biphasic coupling. Comparison with Existing Methods Compared to existing methods, the proposed GLM-CFC procedure is easily interpretable, possesses confidence intervals that are easy and efficient to compute, and accurately detects biphasic coupling. Conclusions The GLM-CFC statistic provides a method for accurate and statistically rigorous assessment of CFC. PMID:24012829

  16. Generalized Motor Program (GMP) Learning: Effects of Reduced Frequency of Knowledge of Results and Practice Variability.

    PubMed

    Lai, Q; Shea, C H

    1998-03-01

    The effects of reduced frequency of presentation of relative-liming knowledge of results (KR) on constant and serial practice and whether response stability is associated with increased generalized motor program (GMP) learning were examined. Participants (N = 40) were asked to sequentially depress 4 keys (2, 4, 8, and 6) on the numeric pad portion of the computer keyboard by using the index fingers of their right hands. The frequency (50% and 100%) with which relative-timing KR was presented was manipulated in constant and in serial practice conditions. The tasks used in both the constant and the serial conditions had the same relative-timing structure, but serial practice had 3 different absolute-timing requirements. The results, which indicated that reduced KR frequency enhances GMP learning in the serial practice condition, replicate the findings of Wulf, Lee, and Schmidt (1994). The reduced frequency of KR effect was not evident for the constant practice groups, however. More interesting was the finding that constant practice was significantly better than serial practice for the development and learning of the GMP. The data also showed that after either constant practice or reduced frequency of KR, response stability was enhanced in comparison with the stability of responses following serial practice and frequent KR. Those findings suggest that when response stability is improved either by reducing the frequency with which KR is presented or by reducing the number of task variations practiced, the development of the GMP is enhanced but parameter specification in transfer tasks tends to be degraded.

  17. Huntington disease reduced penetrance alleles occur at high frequency in the general population

    PubMed Central

    Kay, Chris; Collins, Jennifer A.; Miedzybrodzka, Zosia; Madore, Steven J.; Gordon, Erynn S.; Gerry, Norman; Davidson, Mark; Slama, Ramy A.

    2016-01-01

    Objective: To directly estimate the frequency and penetrance of CAG repeat alleles associated with Huntington disease (HD) in the general population. Methods: CAG repeat length was evaluated in 7,315 individuals from 3 population-based cohorts from British Columbia, the United States, and Scotland. The frequency of ≥36 CAG alleles was assessed out of a total of 14,630 alleles. The general population frequency of reduced penetrance alleles (36–39 CAG) was compared to the prevalence of patients with HD with genetically confirmed 36–39 CAG from a multisource clinical ascertainment in British Columbia, Canada. The penetrance of 36–38 CAG repeat alleles for HD was estimated for individuals ≥65 years of age and compared against previously reported clinical penetrance estimates. Results: A total of 18 of 7,315 individuals had ≥36 CAG, revealing that approximately 1 in 400 individuals from the general population have an expanded CAG repeat associated with HD (0.246%). Individuals with CAG 36–37 genotypes are the most common (36, 0.096%; 37, 0.082%; 38, 0.027%; 39, 0.000%; ≥40, 0.041%). General population CAG 36–38 penetrance rates are lower than penetrance rates extrapolated from clinical cohorts. Conclusion: HD alleles with a CAG repeat length of 36–38 occur at high frequency in the general population. The infrequent diagnosis of HD at this CAG length is likely due to low penetrance. Another important contributing factor may be reduced ascertainment of HD in those of older age. PMID:27335115

  18. Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria

    SciTech Connect

    Frieman, E.A.; Chen, L.

    1981-10-01

    A nonlinear gyrokinetic formalism for low-frequency (less than the cyclotron frequency) microscopic electromagnetic perturbations in general magnetic field configurations is developed. The nonlinear equations thus derived are valid in the strong-turbulence regime and contain effects due to finite Larmor radius, plasma inhomogeneities, and magentic field geometries. The specific case of axisymmetric tokamaks is then considered, and a model nonlinear equation is derived for electrostatic drift waves. Also, applying the formalism to the shear Alfven wave heating sceme, it is found that nonlinear ion Landau damping of kinetic shear-Alfven waves is modified, both qualitatively and quantitatively, by the diamagnetic drift effects. In particular, wave energy is found to cascade in wavenumber instead of frequency.

  19. Computing frequency by using generalized zero-crossing applied to intrinsic mode functions

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2006-01-01

    This invention presents a method for computing Instantaneous Frequency by applying Empirical Mode Decomposition to a signal and using Generalized Zero-Crossing (GZC) and Extrema Sifting. The GZC approach is the most direct, local, and also the most accurate in the mean. Furthermore, this approach will also give a statistical measure of the scattering of the frequency value. For most practical applications, this mean frequency localized down to quarter of a wave period is already a well-accepted result. As this method physically measures the period, or part of it, the values obtained can serve as the best local mean over the period to which it applies. Through Extrema Sifting, instead of the cubic spline fitting, this invention constructs the upper envelope and the lower envelope by connecting local maxima points and local minima points of the signal with straight lines, respectively, when extracting a collection of Intrinsic Mode Functions (IMFs) from a signal under consideration.

  20. General solution for the complex frequency shift in microwave measurements of thin films

    NASA Astrophysics Data System (ADS)

    Peligrad, D.-N.; Nebendahl, B.; Mehring, M.; DulčiĆ, A.; Požek, M.; Paar, D.

    2001-12-01

    Perturbation of a microwave cavity by a small sample with variable dielectric, magnetic, or conducting properties is considered. The complex frequency shift is derived in terms of a volume integral, or equivalently, in terms of a surface integral. These are used to obtain a general formula for thin films in the microwave electric field maximum. The complex frequency shift depends on the depolarization factor of the film and on its thickness in a nontrivial way. The previously known expressions for the complex frequency shift are shown to be good approximations of the present solution in the low and high conductivity limits. Our formula is applied to calculate the signal shapes in superconducting films of various geometric parameters and conductivities. It is shown that a diversity of signal shapes can result, and experimental support of those shapes is provided. The role of the dielectric substrate on which the thin film is grown is simply reduced to an asymmetry effect.

  1. Mittag-Leffler noise induced stochastic resonance in a generalized Langevin equation with random inherent frequency

    NASA Astrophysics Data System (ADS)

    He, Guitian; Guo, Dali; Tian, Yan; Li, Tiejun; Luo, Maokang

    2017-10-01

    The generalized stochastic resonance (GSR) and the bona fide stochastic resonance (SR) in a generalized Langevin equation driven by a periodic signal, multiplicative noise and Mittag-Leffler noise are extensively investigated. The expression of the frequency spectrum of the Mittag-Leffler noise is studied. Using the Shapiro-Loginov formula and Laplace transformation technique, the exact expressions of the output amplitude gain and the signal-to-noise ratio are obtained. The simulation results turn out that the output amplitude gain and the signal-to-noise ratio are non-monotonic functions of the characteristics of noise parameters and system parameters. Especially, the influence of the memory exponent and memory time of Mittag-Leffler noise could induce the GSR phenomenon. The influence of the driving frequency could induce the bona fide stochastic resonance. It is found that the system with fractional memory exponent could be more easily induced SR phenomenon than the system with integer memory exponent.

  2. General models for the spectra of surface area scaling strategies of cells and organisms: fractality, geometric dissimilitude, and internalization.

    PubMed

    Okie, Jordan G

    2013-03-01

    Surface areas and volumes of biological systems-from molecules to organelles, cells, and organisms-affect their biological rates and kinetics. Therefore, surface area-to-volume ratios and the scaling of surface area with volume profoundly influence ecology, physiology, and evolution. The zeroth-order geometric expectation is that surface area scales with body mass or volume as a power law with an exponent of two-thirds, with consequences for surface area-to-volume (SA : V) ratios and constraints on size; however, organisms have adaptations for altering the surface area scaling and SA : V ratios of their bodies and structures. The strategies fall into three groups: (1) fractal-like surface convolutions and crinkles; (2) classic geometric dissimilitude through elongating, flattening, fattening, and hollowing; and (3) internalization of surfaces. Here I develop general quantitative theory to model the spectra of effects of these strategies on SA : V ratios and surface area scaling, from exponents of less than two-thirds to superlinear scaling and mixed-power laws. Applying the theory to cells helps quantitatively evaluate the effects of membrane fractality, shape-shifting, vacuoles, vesicles, and mitochondria on surface area scaling, informing understanding of cell allometry, morphology, and evolution. Analysis of compiled data indicates that through hollowness and surface internalization, eukaryotic phytoplankton increase their effective surface area scaling, attaining near-linear scaling in larger cells. This unifying theory highlights the fundamental role of biological surfaces in metabolism and morphological evolution.

  3. Low-frequency spectra of the hexamethylbenzene/tetracyanoethylene electron donor-acceptor complexes in solution studied by terahertz time-domain spectroscopy.

    PubMed

    Yamamoto, Kohji; Kabir, Md Humayun; Hayashi, Michitoshi; Tominaga, Keisuke

    2005-05-07

    We have measured the frequency dependent extinction coefficients and refractive indices of electron donor-acceptor (EDA) complexes consisting of hexamethylbenzene (HMB; electron donor) and tetracyanoethylene (TCNE; electron acceptor) in the low-frequency region by terahertz time-domain spectroscopy (THz-TDS). A mixture of the 1:1 (DA) and 2:1 (D2A) EDA complexes exist in carbon tetrachloride solution, and we successfully obtained the spectral components of the 1:1 and 2:1 EDA complexes separately by analyzing the concentration dependence of the THz spectra. The 1:1 and 2:1 complexes show quite different THz spectra of the extinction coefficient, reflecting unique features of dynamics, fluctuations and intermolecular interactions of these complexes. Polarization-selective THz-TDS on the crystalline DA complex shows two peaks at 53 and 70 cm(-1) in the spectral component perpendicular to the crystal axis. On the other hand, the crystalline D2A complex exhibits peaks at 42 and 50 cm(-1) in the perpendicular spectral component. We compare the obtained spectra of the crystalline complex and the results of molecular orbital calculations at the HF/6-31G(d) level of theory to discuss the intermolecular vibrational modes of the complexes.

  4. Source spectra of the first four Source Physics Experiments (SPE) explosions from the frequency-domain moment-tensor inversion

    DOE PAGES

    Yang, Xiaoning

    2016-08-01

    In this study, I used seismic waveforms recorded within 2 km from the epicenter of the first four Source Physics Experiments (SPE) explosions to invert for the moment-tensor spectra of these explosions. I employed a one-dimensional (1D) Earth model for Green's function calculations. The model was developed from P- and Rg-wave travel times and amplitudes. I selected data for the inversion based on the criterion that they had consistent travel times and amplitude behavior as those predicted by the 1D model. Due to limited azimuthal coverage of the sources and the mostly vertical-component-only nature of the dataset, only long-period, volumetricmore » components of the moment-tensor spectra were well constrained.« less

  5. Source spectra of the first four Source Physics Experiments (SPE) explosions from the frequency-domain moment-tensor inversion

    SciTech Connect

    Yang, Xiaoning

    2016-08-01

    In this study, I used seismic waveforms recorded within 2 km from the epicenter of the first four Source Physics Experiments (SPE) explosions to invert for the moment-tensor spectra of these explosions. I employed a one-dimensional (1D) Earth model for Green's function calculations. The model was developed from P- and Rg-wave travel times and amplitudes. I selected data for the inversion based on the criterion that they had consistent travel times and amplitude behavior as those predicted by the 1D model. Due to limited azimuthal coverage of the sources and the mostly vertical-component-only nature of the dataset, only long-period, volumetric components of the moment-tensor spectra were well constrained.

  6. Source spectra of the first four Source Physics Experiments (SPE) explosions from the frequency-domain moment-tensor inversion

    SciTech Connect

    Yang, Xiaoning

    2016-08-01

    In this study, I used seismic waveforms recorded within 2 km from the epicenter of the first four Source Physics Experiments (SPE) explosions to invert for the moment-tensor spectra of these explosions. I employed a one-dimensional (1D) Earth model for Green's function calculations. The model was developed from P- and Rg-wave travel times and amplitudes. I selected data for the inversion based on the criterion that they had consistent travel times and amplitude behavior as those predicted by the 1D model. Due to limited azimuthal coverage of the sources and the mostly vertical-component-only nature of the dataset, only long-period, volumetric components of the moment-tensor spectra were well constrained.

  7. Application of generalized Snoek's law over a finite frequency range: A case study

    NASA Astrophysics Data System (ADS)

    Rozanov, Konstantin N.; Koledintseva, Marina Y.

    2016-02-01

    Generalized Snoek's law proposed in an integral form by Acher and coauthors is a useful tool for investigation of high-frequency properties of magnetic materials. This integral law referred to as Acher's law allows for evaluating the ultimate performance of RF and microwave devices which employ magnetic materials. It may also be helpful in obtaining useful information on the structure and morphology of the materials. The key factor in practical application of Acher's law is an opportunity to employ either measured or calculated data available over a finite frequency range. The paper uses simple calculations to check the applicability of Acher's law in cases when the frequency range is limited and the magnetic loss peak is comparatively wide and has a distorted shape. The cases of large magnetic damping, pronounced skin effect, and inhomogeneity of the material are considered. It is shown that in most cases calculation of the integral through fitting of actual magnetic frequency dispersion by the Lorentzian dispersion law results in accurate estimations of the ultimate high-frequency performance of magnetic materials.

  8. Generalized frequency-domain synthetic aperture focusing technique for ultrasonic imaging of irregularly layered objects.

    PubMed

    Qin, Kaihuai; Yang, Chun; Sun, Feng

    2014-01-01

    In ultrasonic nondestructive testing (NDT), the phase shift migration (PSM) technique, as a frequency-domain implementation of the synthetic aperture focusing technique (SAFT), can be adopted for imaging of regularly layered objects that are inhomogeneous only in depth but isotropic and homogeneous in the lateral direction. To deal with irregularly layered objects that are anisotropic and inhomogeneous in both the depth and lateral directions, a generalized frequency- domain SAFT, called generalized phase shift migration (GPSM), is proposed in this paper. Compared with PSM, the most significant innovation of GPSM is that the phase shift factor is generalized to handle anisotropic media with lateral velocity variations. The generalization is accomplished by computer programming techniques without modifying the PSM model. In addition, SRFFT (split-radix fast Fourier transform) input/output pruning algorithms are developed and employed in the GPSM algorithm to speed up the image reconstructions. The experiments show that the proposed imaging techniques are capable of reconstructing accurate shapes and interfaces of irregularly layered objects. The computing time of the GPSM algorithm is much less than the time-domain SAFT combined with the ray-tracing technique, which is, at present, the common method used in ultrasonic NDT industry for imaging layered objects. Furthermore, imaging regularly layered objects can be regarded as a special case of the presented technique.

  9. Association of excessive daytime sleepiness with migraine and headache frequency in the general population.

    PubMed

    Stavem, Knut; Kristiansen, Håvard Anton; Kristoffersen, Espen Saxhaug; Kværner, Kari Jorunn; Russell, Michael Bjørn

    2017-12-01

    Some previous studies have postulated an association between migraine and excessive daytime sleepiness (EDS). This study evaluated the association of EDS with migraine and headache frequency in a general population, after adjusting for potential confounding variables. The study was a postal survey of a random age and gender-stratified sample of 40,000 persons aged 20 to 80 years old drawn by the National Population Register in Norway. The questionnaire included questions about migraine, headache, the Epworth sleepiness scale (ESS) and various comorbidities. EDS was defined as ESS > 10. The association of EDS and migraine/headache were analysed by bivariate and multivariable logistic regression analyses. A total of 21,177 persons responded to the ESS and were included in the analyses. The odds ratio (OR) for EDS was increased for migraineurs (1.42 (95% CI 1.31─1.54), p < 0.001) compared to non-migraineurs; however, this finding was not significant after adjustment for a number of possible confounders. EDS increased with increasing headache frequency, with an OR of 2.74 (95% CI 2.05─3.65), p < 0.001) for those with headache on >179 days per year compared to those without headache in multivariable analysis. In a general population, the odds for EDS increased significantly with the headache frequency, irrespective of migraine status. EDS was not associated with reported migraine in multivariable analysis.

  10. On the information content of natural frequency spectra associated with different angular numbers. [acoustic velocity in vibrating fluid sphere model of earth structure

    NASA Technical Reports Server (NTRS)

    Barcilon, V.

    1978-01-01

    The problem of inferring the speed of sound in a contained spherically symmetric fluid solely from its natural frequencies of vibration is considered. An investigation of the case in which the data consist of the two spectra associated with the angular numbers 0 and 1, suggests the possibility that a one-parameter family of slowness profiles can be constructed. These profiles are compatible with the data, up to first order in the non-uniformity of the fluid. It is conjectured that for other angular numbers, the loss of information increases as the difference between them increases.

  11. On the information content of natural frequency spectra associated with different angular numbers. [acoustic velocity in vibrating fluid sphere model of earth structure

    NASA Technical Reports Server (NTRS)

    Barcilon, V.

    1978-01-01

    The problem of inferring the speed of sound in a contained spherically symmetric fluid solely from its natural frequencies of vibration is considered. An investigation of the case in which the data consist of the two spectra associated with the angular numbers 0 and 1, suggests the possibility that a one-parameter family of slowness profiles can be constructed. These profiles are compatible with the data, up to first order in the non-uniformity of the fluid. It is conjectured that for other angular numbers, the loss of information increases as the difference between them increases.

  12. Real-time frequency dynamics and high-resolution spectra of a semiconductor laser with delayed feedback

    PubMed Central

    Brunner, Daniel; Porte, Xavier; Soriano, Miguel C.; Fischer, Ingo

    2012-01-01

    The unstable emission of semiconductor lasers due to delayed optical feedback is characterized by combined intensity and frequency dynamics. Nevertheless, real-time experimental investigations have so far been restricted to measurements of intensity dynamics only. Detailed analysis and comparison with numerical models, therefore, have suffered from limited experimental information. Here, we report the simultaneous determination of the lasers optical emission intensity and emission frequency with high temporal resolution. The frequency dynamics is made accessible using a heterodyne detection scheme, in which a beat signal between the delayed feedback laser and a reference laser is generated. Our experiment provides insight into the overall spectral drift on nanosecond timescales, the spectral distribution of the unstable pulsations and the role of the individual external cavity modes. This opens new perspectives for the analysis, understanding and functional utilization of delayed feedback semiconductor lasers. PMID:23066501

  13. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors.

    PubMed

    Gair, Jonathan R; Vallisneri, Michele; Larson, Shane L; Baker, John G

    2013-01-01

    We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10(-5) - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  14. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Gair, Jonathan R.; Vallisneri, Michele; Larson, Shane L.; Baker, John G.

    2013-09-01

    We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ˜ 10-5 - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  15. Polarization properties, high-order Raman spectra, and frequency asymmetry between Stokes and anti-Stokes scattering of Raman modes in a graphite whisker

    NASA Astrophysics Data System (ADS)

    Tan, Pingheng; Hu, Chengyong; Dong, Jian; Shen, Wanci; Zhang, Baofa

    2001-12-01

    The Raman spectra of a new type of graphite whiskers have been measured in the range of 150-7800 cm-1. The intensity of the overtone (2D) located at ~2700 cm-1 is found to be about 10 times stronger than that of the C-C stretching mode (G) at 1582 cm-1. Because of the peculiar enhancement of the 2D mode, high-order Raman bands up to fifth order at ~7500 cm-1 have been observed. Polarized micro-Raman spectroscopy has been performed on an individual graphite whisker, and angular-dependent intensity measurements of all Raman modes in the VV and HV geometries are in agreement with the theoretical calculated results. Laser-energy-dependent dispersion effects and the frequency discrepancy of Raman modes between their Stokes and anti-Stokes lines in graphite whiskers are also carefully investigated. The energy dispersion of the D mode and G mode is very similar to that of highly oriented pyrolytic graphite (HOPG). In contrast to the Raman spectra of HOPG and other graphite materials, two laser-energy-dependent Raman lines are revealed in the low-frequency region of the Raman spectra of graphite whiskers, which are believed to be the resonantly enhanced phonons in the transverse-acoustic and longitudinal-acoustic phonon branches. Moreover, the obvious energy dispersion of the D' mode at ~1620 cm-1 is observed in graphite whiskers. The results clearly reveal how strongly the peak parameters of Raman modes of graphite materials are dependent on their structural geometry. The Stokes and anti-Stokes scattering experiments show that the frequency discrepancy between the Stokes and anti-Stokes sides of a Raman mode in graphite materials is equal to the frequency value covered by the one-phonon energy of this Raman mode in its frequency versus laser energy curve, which is the product of the one-phonon energy of this mode (Eωs) and the value of its laser-energy dispersions (∂Eωs/∂ɛL).

  16. Generalized stepwise demodulation transform and synchrosqueezing for time-frequency analysis and bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Shi, Juanjuan; Liang, Ming; Necsulescu, Dan-Sorin; Guan, Yunpeng

    2016-04-01

    The energy concentration level is an important indicator for time-frequency analysis (TFA). Weak energy concentration would result in time-frequency representation (TFR) diffusion and thus leading to ambiguous results or even misleading signal analysis results, particularly for nonstationary multicomponent signals. To improve the energy concentration level, this paper proposes a generalized stepwise demodulation transform (GSDT). The rationale of the proposed method is that (1) the generalized demodulation (GD) can map the original signal into an analytic signal with constant instantaneous frequency (IF) and improve the energy concentration level on time-frequency plane, and (2) focusing on a short window around the time instant of interest, a backward demodulation operation can recover the original frequency at the time instant without affecting the improved energy concentration level. By repeating the backward demodulation at every time instant of interest, the TFR of the entire signal can be attained with enhanced energy concentration level. With the GSDT, an iterative GSDT (IGSDT) is developed to analyze multicomponent signal that is subjected to different modulating sources for their constituent components. The IGSDT iteratively demodulates each constituent component to attain its TFR and the TFR of the whole signal is derived from superposing all the resulting TFRs of constituent components. The cross-term free and more energy concentrated TFR of the signal is, therefore, obtained, and the diffusion in the TFR can be reduced. The GSDT-based synchrosqueezing transform is also elaborated to further enhance the GSDT(IGSDT) yielded TFR. The effectiveness of the proposed method in TFA is tested using both simulated monocomponent and multicomponent signals. The application of the proposed method to bearing fault detection is explored. Bearing condition and fault pattern can be revealed by the proposed method resulting TFR. The main advantages of the proposed method

  17. Determination of thorium (IV) using isophthalaldehyde-tetrapyrrole as probe by resonance light scattering, second-order scattering and frequency-doubling scattering spectra.

    PubMed

    Wang, Jiao; Xue, Jinhua; Xiao, Xilin; Xu, Li; Jiang, Min; Peng, Pengcheng; Liao, Lifu

    2017-12-05

    The coordination reaction of thorium (IV) with a ditopic bidentate ligand to form supramolecular polymer was studied by resonance light scattering (RLS) spectra, second-order scattering (SOS) spectra and frequency-doubling scattering (FDS) spectra, respectively. The ditopic bidentate ligand is isophthalaldehyde-tetrapyrrole (IPTP). It was synthesized through a condensation reaction of isophthalaldehyde with pyrrole. The formation of supramolecular polymer results in remarkable intensity enhancements of the three light scattering signals. The maximum scattering wavelengths of RLS, FDS and SOS were 290, 568 and 340nm, respectively. The reaction was used to establish new light scattering methods for the determination of thorium (IV) by using IPTP as probe. Under optimum conditions, the intensity enhancements of RLS, SOS and FDS were directly proportional to the concentration of thorium (IV) in the ranges of 0.01 to 1.2μgmL(-1), 0.05 to 1.2μgmL(-1) and 0.05 to 1.2μgmL(-1), respectively. The detection limits were 0.003μgmL(-1), 0.012μgmL(-1) and 0.021μgmL(-1), respectively. The methods were suitable for analyzing thorium (IV) in actual samples. The results show acceptable recoveries and precision compared with a reference method. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Rain retrieval from dual-frequency radar Doppler spectra: validation and potential for a midlatitude precipitating case-study

    DOE PAGES

    Tridon, F.; Battaglia, A.; Luke, E.; ...

    2017-01-27

    A recently developed technique retrieving the binned raindrop size distributions (DSDs) and air state parameters from ground-based Ka and W-band radars Doppler spectra profiles is improved and applied to a typical midlatitude rain event. The retrievals are thoroughly validated against DSD observations of a 2D video disdrometer and independent X-band observations. Here for this case-study, profiles of rain rate, R, mean volume diameter and concentration parameter are retrieved, with low bias and standard deviations. In light rain (0.1 < R < 1 mm h-1), the radar reflectivities must be calibrated with a collocated disdrometer which introduces random errors due tomore » sampling mismatch between the two instruments. The best performances are obtained in moderate rain (1 < R < 20 mm h-1) where the retrieval is providing self-consistent estimates of the absolute calibration and of the attenuation caused by antenna or radome wetness for both radars.« less

  19. An investigation of the vertical wavenumber and frequency spectra of gravity wave motions in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Fritts, David C.; Chou, Hua-Guo

    1987-01-01

    The vertical and oblique velocities of atmospheric motions in the lower stratosphere were analyzed using data obtained on February 1-5, 1986, from the Poker Flat, Alaska, MST radar; two beams of orthogonal polarization were directed vertically, and four oblique beams at 7 deg off-vertical were directed at azimuths of 64, 154, 244, and 334 deg from north. Results indicate that the majority of the energy at gravity wave periods is associated with inertia-gravity wave motions having an upward direction of propagation and dominant vertical wavelengths near 2 km. The results of vertical wavenumber spectra support the saturation hypothesis of Dewan and Good (1986) and Smith et al. (1987), suggesting that saturation processes act to control spectral amplitudes at large wavenumbers.

  20. Pulse retrieval in frequency-resolved optical gating based on the method of generalized projections

    SciTech Connect

    DeLong, K.W.; Fittinghoff, D.N.; Trebino, R. ); Kohler, B.; Wilson, K. )

    1994-12-15

    We use the algorithmic method of generalized projections (GP's) to retrieve the intensity and phase of an ultrashort laser pulse from the experimental trace in frequency-resolved optical gating (FROG). Using simulations, we show that the use of GP's improves significantly the convergence properties of the algorithm over the basic FROG algorithm. In experimental measurements, the GP-based algorithm achieves significantly lower errors than previous algorithms. The use of GP's also permits the inclusion of an arbitrary material response function in the FROG problem.

  1. Note: Direct sensor resistance-to-frequency conversion with generalized impedance converter.

    PubMed

    Ramírez Muñoz, D; Sánchez Moreno, J; Casans Berga, S; Navarro Antón, A E

    2010-12-01

    In this note a squared output signal is generated from an astable circuit. Its frequency has a linear dependence on the resistance value of a resistive temperature sensor. The main circuit to obtain this direct relationship is the generalized impedance converter configured as a capacitor controlled by a sensor resistance. The proposed measurement method allows a direct analog-to-digital interface of information involved in resistive sensors. The converter finds applications in portable low voltage and low power design of instrumentation electronic systems.

  2. A generalized modal shock spectra method for spacecraft loads analysis. [internal loads in a spacecraft structure subjected to a dynamic launch environment

    NASA Technical Reports Server (NTRS)

    Trubert, M.; Salama, M.

    1979-01-01

    Unlike an earlier shock spectra approach, generalization permits an accurate elastic interaction between the spacecraft and launch vehicle to obtain accurate bounds on the spacecraft response and structural loads. In addition, the modal response from a previous launch vehicle transient analysis with or without a dummy spacecraft - is exploited to define a modal impulse as a simple idealization of the actual forcing function. The idealized modal forcing function is then used to derive explicit expressions for an estimate of the bound on the spacecraft structural response and forces. Greater accuracy is achieved with the present method over the earlier shock spectra, while saving much computational effort over the transient analysis.

  3. Rapid measurement of multidimensional 1H solid-state NMR spectra at ultra-fast MAS frequencies

    NASA Astrophysics Data System (ADS)

    Ye, Yue Qi; Malon, Michal; Martineau, Charlotte; Taulelle, Francis; Nishiyama, Yusuke

    2014-02-01

    A novel method to realize rapid repetition of 1H NMR experiments at ultra-fast MAS frequencies is demonstrated. The ultra-fast MAS at 110 kHz slows the 1H-1H spin diffusion, leading to variations of 1H T1 relaxation times from atom to atom within a molecule. The different relaxation behavior is averaged by applying 1H-1H recoupling during relaxation delay even at ultra-fast MAS, reducing the optimal relaxation delay to maximize the signal to noise ratio. The way to determine optimal relaxation delay for arbitrary relaxation curve is shown. The reduction of optimal relaxation delay by radio-frequency driven recoupling (RFDR) was demonstrated on powder samples of glycine and ethenzamide with one and multi-dimensional NMR measurements.

  4. Features of the Jovian DAM radiation dynamic spectra as observed by modern receivers with high frequency-temporal resolution

    NASA Astrophysics Data System (ADS)

    Litvinenko, G.; Konovalenko, A.; Zakharenko, V.; Vinogradov, V.; Shaposhnikov, V.; Zarka, Ph.

    2012-09-01

    One of the promising approaches to investigating features of the Jovian decameter radio emission (DAM) is application of novel experimental techniques with a further detailed analysis of the obtained data using both well-known and modern mathematical methods. Several observational campaigns were performed in November 2009 with the use of the UTR-2 radio telescope (Kharkov, Ukraine) and efficient registration systems with high frequency and temporal resolutions (the antenna effective area is about 105 m2, the frequency resolution is 4 kHz, the temporal resolution is 0.25 ms, and the dynamic range is 70 dB) [1]. The main goal of these campaigns was to experimentally investigate new properties of the Jovian DAM emission which could be detected using the above mentioned equipment. Also an original software package was developed for control the digital receiver and for off-line data analysis at the postprocessing stage.

  5. The ratio between corner frequencies of source spectra of P- and S-waves—a new discriminant between earthquakes and quarry blasts

    NASA Astrophysics Data System (ADS)

    Ataeva, G.; Gitterman, Y.; Shapira, A.

    2017-01-01

    This study analyzes and compares the P- and S-wave displacement spectra from local earthquakes and explosions of similar magnitudes. We propose a new approach to discrimination between low-magnitude shallow earthquakes and explosions by using ratios of P- to S-wave corner frequencies as a criterion. We have explored 2430 digital records of the Israeli Seismic Network (ISN) from 456 local events (226 earthquakes, 230 quarry blasts, and a few underwater explosions) of magnitudes Md = 1.4-3.4, which occurred at distances up to 250 km during 2001-2013 years. P-wave and S-wave displacement spectra were computed for all events following Brune's source model of earthquakes (1970, 1971) and applying the distance correction coefficients (Shapira and Hofstetter, Teconophysics 217:217-226, 1993; Ataeva G, Shapira A, Hofstetter A, J Seismol 19:389-401, 2015), The corner frequencies and moment magnitudes were determined using multiple stations for each event, and then the comparative analysis was performed.

  6. Using low-frequency IR spectra for the unambiguous identification of metal ion-ligand coordination sites in purpose-built complexes

    NASA Astrophysics Data System (ADS)

    Varga, Gábor; Csendes, Zita; Peintler, Gábor; Berkesi, Ottó; Sipos, Pál; Pálinkó, István

    2014-03-01

    One of the aims of our long-term research is the identification of metal ion-ligand coordination sites in bioinspired metal ion-C- or N-protected amino acid (histidine, tyrosine, cysteine or cystine) complexes immobilised on the surface of chloropropylated silica gel or Merrifield resin. In an attempt to reach this goal, structurally related, but much simpler complexes have been prepared and their metal ion-ligand vibrations were determined from their low-frequency IR spectra. The central ions were Mn(II), Co(II), Ni(II) or Cu(II) and the ligands (imidazole, isopropylamine, monosodium malonate) were chosen to possess only one-type of potential donor group. The low-frequency IR spectra were taken of the complexes for each ion-ligand combination and the typical metal ion-functional group vibration bands were selected and identified. The usefulness of the obtained assignments is demonstrated on exemplary immobilised metal ion-protected amino acid complexes.

  7. Generation of tunable, high repetition rate frequency combs with equalized spectra using carrier injection based silicon modulators

    NASA Astrophysics Data System (ADS)

    Nagarjun, K. P.; Selvaraja, Shankar Kumar; Supradeepa, V. R.

    2016-03-01

    High repetition-rate frequency combs with tunable repetition rate and carrier frequency are extensively used in areas like Optical communications, Microwave Photonics and Metrology. A common technique for their generation is strong phase modulation of a CW-laser. This is commonly implemented using Lithium-Niobate based modulators. With phase modulation alone, the combs have poor spectral flatness and significant number of missing lines. To overcome this, a complex cascade of multiple intensity and phase modulators are used. A comb generator on Silicon based on these principles is desirable to enable on-chip integration with other functionalities while reducing power consumption and footprint. In this work, we analyse frequency comb generation in carrier injection based Silicon modulators. We observe an interesting effect in these comb generators. Enhanced absorption accompanying carrier injection, an undesirable effect in data modulators, shapes the amplitude here to enable high quality combs from a single modulator. Thus, along with reduced power consumption to generate a specific number of lines, the complexity has also been significantly reduced. We use a drift-diffusion solver and mode solver (Silvaco TCAD) along with Soref-Bennett relations to calculate the variations in refractive indices and absorption of an optimized Silicon PIN - waveguide modulator driven by an unbiased high frequency (10 Ghz) voltage signal. Our simulations demonstrate that with a device length of 1 cm, a driving voltage of 2V and minor shaping with a passive ring-resonator filter, we obtain 37 lines with a flatness better than 5-dB across the band and power consumption an order of magnitude smaller than Lithium-Niobate modulators.

  8. Performance Study of Acoustophoretic Microfluidic Silicon-Glass Devices by Characterization of Material- and Geometry-Dependent Frequency Spectra

    NASA Astrophysics Data System (ADS)

    Garofalo, Fabio; Laurell, Thomas; Bruus, Henrik

    2017-05-01

    The mechanical and electrical response of acoustophoretic microfluidic devices attached to an ac-voltage-driven piezoelectric transducer is studied by means of numerical simulations. The governing equations are formulated in a variational framework that, introducing Lagrangian and Hamiltonian densities, is used to derive the weak form for the finite-element discretization of the equations and to characterize the device response in terms of frequency-dependent figures of merit or indicators. The effectiveness of the device in focusing microparticles is quantified by two mechanical indicators: the average direction of the pressure gradient and the amount of acoustic energy localized in the microchannel. Furthermore, we derive the relations between the Lagrangian, the Hamiltonian, and three electrical indicators: the resonance Q value, the impedance, and the electric power. The frequency response of the hard-to-measure mechanical indicators is correlated to that of the easy-to-measure electrical indicators, and, by introducing optimality criteria, it is clarified to which extent the latter suffices to identify optimal driving frequencies as the geometric configuration and the material parameters vary. The latter have been varied by considering both Pyrex and aluminium nitroxide top-lid materials.

  9. Spectroscopy by Integration of Frequency and Time Domain Information (SIFT) for Fast Acquisition of High Resolution Dark Spectra

    PubMed Central

    Matsuki, Yoh; Eddy, Matthew T.; Herzfeld, Judith

    2009-01-01

    A simple and effective method, SIFT (Spectroscopy by Integrating Frequency and Time domain information) is introduced for processing non-uniformly sampled multidimensional NMR data. Applying the computationally efficient Gerchberg-Papoulis (G-P) algorithm, used previously in picture processing and medical imaging, SIFT supplements data at non-uniform points in the time domain with the information carried by known “dark” points (i.e. empty regions) in the frequency domain. We demonstrate that this rapid integration not only removes the severe pseudo-noise characteristic of the Fourier transforms of non-uniformly sampled data, but also provides a robust procedure for using frequency information to replace time measurements. The latter can be used to avoid unnecessary sampling in sampling-limited experiments and the former can be used to take advantage of the ability of non-uniformly sampled data to minimize trade-offs between the signal-to-noise ratio and the resolution in sensitivity-limited experiments. Processing 2D and 3D datasets takes about 0.1 and 2 min, respectively, on a personal computer. With these several attractive features, SIFT offers a novel, model-independent, flexible, and user-friendly tool for efficient and accurate processing of multidimensional NMR data. PMID:19284727

  10. Spectroscopy by integration of frequency and time domain information for fast acquisition of high-resolution dark spectra.

    PubMed

    Matsuki, Yoh; Eddy, Matthew T; Herzfeld, Judith

    2009-04-08

    A simple and effective method, SIFT (spectroscopy by integration of frequency and time domain information), is introduced for processing nonuniformly sampled multidimensional NMR data. Applying the computationally efficient Gerchberg-Papoulis (G-P) algorithm, used previously in picture processing and medical imaging, SIFT supplements data at nonuniform points in the time domain with the information carried by known "dark" points (i.e., empty regions) in the frequency domain. We demonstrate that this rapid integration not only removes the severe pseudonoise characteristic of the Fourier transforms of nonuniformly sampled data, but also provides a robust procedure for using frequency information to replace time measurements. The latter can be used to avoid unnecessary sampling in sampling-limited experiments, and the former can be used to take advantage of the ability of nonuniformly sampled data to minimize trade-offs between the signal-to-noise ratio and the resolution in sensitivity-limited experiments. Processing 2D and 3D data sets takes about 0.1 and 2 min, respectively, on a personal computer. With these several attractive features, SIFT offers a novel, model-independent, flexible, and user-friendly tool for efficient and accurate processing of multidimensional NMR data.

  11. A General Model of Negative Frequency Dependent Selection Explains Global Patterns of Human ABO Polymorphism

    PubMed Central

    Villanea, Fernando A.; Safi, Kristin N.; Busch, Jeremiah W.

    2015-01-01

    The ABO locus in humans is characterized by elevated heterozygosity and very similar allele frequencies among populations scattered across the globe. Using knowledge of ABO protein function, we generated a simple model of asymmetric negative frequency dependent selection and genetic drift to explain the maintenance of ABO polymorphism and its loss in human populations. In our models, regardless of the strength of selection, models with large effective population sizes result in ABO allele frequencies that closely match those observed in most continental populations. Populations must be moderately small to fall out of equilibrium and lose either the A or B allele (Ne ≤ 50) and much smaller (Ne ≤ 25) for the complete loss of diversity, which nearly always involved the fixation of the O allele. A pattern of low heterozygosity at the ABO locus where loss of polymorphism occurs in our model is consistent with small populations, such as Native American populations. This study provides a general evolutionary model to explain the observed global patterns of polymorphism at the ABO locus and the pattern of allele loss in small populations. Moreover, these results inform the range of population sizes associated with the recent human colonization of the Americas. PMID:25946124

  12. A Horn-fed Frequency Scanning Holographic Antenna Based on Generalized Law of Reflection.

    PubMed

    Liu, Dawei; Cheng, Bo; Pan, Xiaotian; Qiao, Lifang

    2016-08-12

    A new method of designing horn-fed frequency scanning holographic antenna is proposed. The artificial surface design of holographic antenna is based on generalized law of reflection. The input admittance is utilized to construct the interference pattern of the surface which is intervened by the excitation wave and the required radiation wave. The scalar admittance unit cell which is composed of sub-wavelength metallic patch on grounded dielectric substrate is implemented to design artificial surface, and the simulation results are just as expected that the antenna can scan the beam as the frequency changes. Furthermore, a cross shaped patch printed on grounded dielectric unit cells is used to reduce the designing complexity of tensor admittance surface. At last, a frequency scanning holographic antenna with tensor admittance surface with ability of changing linear polarization excitation wave to left-hand circular polarization (LCP) radiation wave is designed and fabricated. The full-wave simulation and experimental results show well agreement and confirm the method proposed.

  13. A Horn-fed Frequency Scanning Holographic Antenna Based on Generalized Law of Reflection

    PubMed Central

    Liu, Dawei; Cheng, Bo; Pan, Xiaotian; Qiao, Lifang

    2016-01-01

    A new method of designing horn-fed frequency scanning holographic antenna is proposed. The artificial surface design of holographic antenna is based on generalized law of reflection. The input admittance is utilized to construct the interference pattern of the surface which is intervened by the excitation wave and the required radiation wave. The scalar admittance unit cell which is composed of sub-wavelength metallic patch on grounded dielectric substrate is implemented to design artificial surface, and the simulation results are just as expected that the antenna can scan the beam as the frequency changes. Furthermore, a cross shaped patch printed on grounded dielectric unit cells is used to reduce the designing complexity of tensor admittance surface. At last, a frequency scanning holographic antenna with tensor admittance surface with ability of changing linear polarization excitation wave to left-hand circular polarization (LCP) radiation wave is designed and fabricated. The full-wave simulation and experimental results show well agreement and confirm the method proposed. PMID:27515782

  14. A General Model of Negative Frequency Dependent Selection Explains Global Patterns of Human ABO Polymorphism.

    PubMed

    Villanea, Fernando A; Safi, Kristin N; Busch, Jeremiah W

    2015-01-01

    The ABO locus in humans is characterized by elevated heterozygosity and very similar allele frequencies among populations scattered across the globe. Using knowledge of ABO protein function, we generated a simple model of asymmetric negative frequency dependent selection and genetic drift to explain the maintenance of ABO polymorphism and its loss in human populations. In our models, regardless of the strength of selection, models with large effective population sizes result in ABO allele frequencies that closely match those observed in most continental populations. Populations must be moderately small to fall out of equilibrium and lose either the A or B allele (N(e) ≤ 50) and much smaller (N(e) ≤ 25) for the complete loss of diversity, which nearly always involved the fixation of the O allele. A pattern of low heterozygosity at the ABO locus where loss of polymorphism occurs in our model is consistent with small populations, such as Native American populations. This study provides a general evolutionary model to explain the observed global patterns of polymorphism at the ABO locus and the pattern of allele loss in small populations. Moreover, these results inform the range of population sizes associated with the recent human colonization of the Americas.

  15. [Use of health professional cards by general practice locums: frequency and difficulties].

    PubMed

    Godin, Audrey; Renouf, Vincent; Raginel, Thibaut

    2015-01-01

    Health professional cards are used for electronic production and transmission of medical reimbursement requests. These cards are personal and cannot be lent, including to locums. However, general practice locums often report using the cards of the practitioners they replace. The aim of this study was to assess the use of general practice locum's own professional cards for patient reimbursements in 2013. A retrospective survey by computerized questionnaire was conducted in 2014 in Lower-Normandy among general practice locums. Data were collected on their possession, knowledge,frequency and difficulties using their own cards in 2013. All locums were familiar with health professional cards, but 71.9% did not know about health professional trainee cards. 71.9% of respondents had a card in 2013 and only 26.1% of them had already used the card. 78.1% of respondents thought they could use the card of the practitioner that they replaced' The main difficulties encountered when using health professional cards were the failure of general practitioners to ask locums to use their own cards, problems with software configuration and card installation, and a poor understanding of the purpose of the card. Locums in Lower Normandy in 2013 rarely used their own cards when they have one. Better information concerning use of the cars is required for locums.

  16. Theory of the low frequency mechanical modes and Raman spectra of the M13 bacteriophage capsid with atomic detail.

    PubMed

    Dykeman, Eric C; Sankey, Otto F

    2009-01-21

    We present a theoretical study of the low frequency vibrational modes of the M13 bacteriophage using a fully atomistic model. Using ideas from electronic structure theory, the few lowest vibrational modes of the M13 bacteriophage are determined using classical harmonic analysis. The relative Raman intensity is estimated for each of the mechanical modes using a bond polarizability model. Comparison of the atomic mechanical modes calculated here with modes derived from elastic continuum theory shows that a much richer spectrum emerges from an atomistic picture.

  17. General Triallelic Frequency Spectrum Under Demographic Models with Variable Population Size

    PubMed Central

    Jenkins, Paul A.; Mueller, Jonas W.; Song, Yun S.

    2014-01-01

    It is becoming routine to obtain data sets on DNA sequence variation across several thousands of chromosomes, providing unprecedented opportunity to infer the underlying biological and demographic forces. Such data make it vital to study summary statistics that offer enough compression to be tractable, while preserving a great deal of information. One well-studied summary is the site frequency spectrum—the empirical distribution, across segregating sites, of the sample frequency of the derived allele. However, most previous theoretical work has assumed that each site has experienced at most one mutation event in its genealogical history, which becomes less tenable for very large sample sizes. In this work we obtain, in closed form, the predicted frequency spectrum of a site that has experienced at most two mutation events, under very general assumptions about the distribution of branch lengths in the underlying coalescent tree. Among other applications, we obtain the frequency spectrum of a triallelic site in a model of historically varying population size. We demonstrate the utility of our formulas in two settings: First, we show that triallelic sites are more sensitive to the parameters of a population that has experienced historical growth, suggesting that they will have use if they can be incorporated into demographic inference. Second, we investigate a recently proposed alternative mechanism of mutation in which the two derived alleles of a triallelic site are created simultaneously within a single individual, and we develop a test to determine whether it is responsible for the excess of triallelic sites in the human genome. PMID:24214345

  18. The Effect of Phosphate Buffered Saline (1x PBS) on Induced Thermal Unfolding and Low Frequency Dielectric Spectra of Lysozyme

    NASA Astrophysics Data System (ADS)

    Kashuri, Klaida; Kashuri, Hektor; Iannacchione, Germano

    2011-03-01

    It is well known that the folding / unfolding of proteins is related directly to their structure and functionality. Calorimetry (both AC and MDSC) studies as well as low-frequency (1Hz to 100 kHz) dielectric measurements have been performed on hen egg white lysozyme dissolved in PBS (pH 7.4) from 20 to 100& circ; C. From the heat capacity profile, the temperatures and related an enthalpy change of the protein denaturing is probed. The heat capacity peak broadens and new features are reveled as the temperature scan rate is lowered to +0.017 K/min for the AC calorimetric method. Significant differences are observed using the (M)DSC technique at scan rates of from 1 to 5 K/min. The temperature dependence of the permittivity, ɛ ' , and the loss factor, ɛ , at 100 kHz of the diluted protein show features associated with those seen in the heat capacity (AC and MDSC). All results are interpreted in terms of protein denaturing then subsequent gelation that depend on protein sample concentration, which is supported by the frequency dependence of the permittivity at room temperature after thermally cycling Worcester Polytechnic Institute (WPI).

  19. Ab Initio Calculation Of Vibrational Frequencies In AsxS1-x Glass And The Raman Spectra

    NASA Astrophysics Data System (ADS)

    Rosli, Ahmad Nazrul; Kassim, Hasan Abu; Shrivastava, Keshav N.

    2009-06-01

    We have made many different models for the understanding of the structure of AsS glass. In particular, we made the models of AsS3 (triangular), AsS3 (pyramid), AsS4 (3S on one side, one on the other side of As, S3-As-S), AsS4 (pyramid), AsS4 (tetrahedral), AsS7, As2S6 (dumb bell), As2S3 (bipyramid), As2S3 (zig-zag), As3S2 (bipyramid), As3S2 (linear), As4S4 (cubic), As4S4 (ring), As4S (tetrahedral), As4S (pyramid), As4S3 (linear) and As6S2 (dumb bell) by using the density functional theory which solves the Schrödinger equation for the given number of atoms in a cluster in the local density approximation. The models are optimized for the minimum energy which determines the structures, bond lengths and angles. For the optimized clusters, we calculated the vibrational frequencies in each case by calculating the gradients of the first principles potential. We compare the experimentally observed Raman frequencies with those calculated so that we can identify whether the cluster is present in the glass. In this way we find that AsS4 (S3-As-S), As4S4 (ring), As2S3 (bipyramid), As4S4 (cubic), As4S3 (linear), As2S3 (zig-zag), AsS4 (Td), As2S6 (dumb bell), AsS3 (triangle) and AsS3 (pyramid) structures are present in the actual glass.

  20. Generalized numerical pressure distribution model for smoothing polishing of irregular midspatial frequency errors.

    PubMed

    Nie, Xuqing; Li, Shengyi; Shi, Feng; Hu, Hao

    2014-02-20

    The smoothing effect of the rigid lap plays an important role in controlling midspatial frequency errors (MSFRs). At present, the pressure distribution between the polishing pad and processed surface is mainly calculated by Mehta's bridging model. However, this classic model does not work for the irregular MSFR. In this paper, a generalized numerical model based on the finite element method (FEM) is proposed to solve this problem. First, the smoothing polishing (SP) process is transformed to a 3D elastic structural FEM model, and the governing matrix equation is gained. By virtue of the boundary conditions applied to the governing matrix equation, the nodal displacement vector and nodal force vector of the pad can be attained, from which the pressure distribution can be extracted. In the partial contact condition, the iterative method is needed. The algorithmic routine is shown, and the applicability of the generalized numerical model is discussed. The detailed simulation is given when the lap is in contact with the irregular surface of different morphologies. A well-designed SP experiment is conducted in our lab to verify the model. A small difference between the experimental data and simulated result shows that the model is totally practicable. The generalized numerical model is applied on a Φ500  mm parabolic surface. The calculated result and measured data after the SP process have been compared, which indicates that the model established in this paper is an effective method to predict the SP process.

  1. Artificial neural networks for retrieving absorption and reduced scattering spectra from frequency-domain diffuse reflectance spectroscopy at short source-detector separation

    PubMed Central

    Chen, Yu-Wen; Chen, Chien-Chih; Huang, Po-Jung; Tseng, Sheng-Hao

    2016-01-01

    Diffuse reflectance spectroscopy (DRS) based on the frequency-domain (FD) technique has been employed to investigate the optical properties of deep tissues such as breast and brain using source to detector separation up to 40 mm. Due to the modeling and system limitations, efficient and precise determination of turbid sample optical properties from the FD diffuse reflectance acquired at a source-detector separation (SDS) of around 1 mm has not been demonstrated. In this study, we revealed that at SDS of 1 mm, acquiring FD diffuse reflectance at multiple frequencies is necessary for alleviating the influence of inevitable measurement uncertainty on the optical property recovery accuracy. Furthermore, we developed artificial neural networks (ANNs) trained by Monte Carlo simulation generated databases that were capable of efficiently determining FD reflectance at multiple frequencies. The ANNs could work in conjunction with a least-square optimization algorithm to rapidly (within 1 second), accurately (within 10%) quantify the sample optical properties from FD reflectance measured at SDS of 1 mm. In addition, we demonstrated that incorporating the steady-state apparatus into the FD DRS system with 1 mm SDS would enable obtaining broadband absorption and reduced scattering spectra of turbid samples in the wavelength range from 650 to 1000 nm. PMID:27446671

  2. Artificial neural networks for retrieving absorption and reduced scattering spectra from frequency-domain diffuse reflectance spectroscopy at short source-detector separation.

    PubMed

    Chen, Yu-Wen; Chen, Chien-Chih; Huang, Po-Jung; Tseng, Sheng-Hao

    2016-04-01

    Diffuse reflectance spectroscopy (DRS) based on the frequency-domain (FD) technique has been employed to investigate the optical properties of deep tissues such as breast and brain using source to detector separation up to 40 mm. Due to the modeling and system limitations, efficient and precise determination of turbid sample optical properties from the FD diffuse reflectance acquired at a source-detector separation (SDS) of around 1 mm has not been demonstrated. In this study, we revealed that at SDS of 1 mm, acquiring FD diffuse reflectance at multiple frequencies is necessary for alleviating the influence of inevitable measurement uncertainty on the optical property recovery accuracy. Furthermore, we developed artificial neural networks (ANNs) trained by Monte Carlo simulation generated databases that were capable of efficiently determining FD reflectance at multiple frequencies. The ANNs could work in conjunction with a least-square optimization algorithm to rapidly (within 1 second), accurately (within 10%) quantify the sample optical properties from FD reflectance measured at SDS of 1 mm. In addition, we demonstrated that incorporating the steady-state apparatus into the FD DRS system with 1 mm SDS would enable obtaining broadband absorption and reduced scattering spectra of turbid samples in the wavelength range from 650 to 1000 nm.

  3. Vibrational frequency analysis, FT-IR and Laser-Raman spectra, DFT studies on ethyl (2E)-2-cyano-3-(4-methoxyphenyl)-acrylate.

    PubMed

    Sert, Yusuf; Sreenivasa, S; Doğan, Hatice; Mohan, N R; Suchetan, P A; Ucun, Fatih

    2014-09-15

    The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of ethyl (2E)-2-cyano-3-(4-methoxyphenyl)-acrylate in solid phase have been recorded. Its theoretical vibrational frequencies, IR intensities, Raman activities and optimized geometric parameters (bond lengths and bond angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: the highly parameterized empirical exchange correlation function) with 6-311++G(d, p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA4 software. The optimized geometric parameters and vibrational frequencies have been seen to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated by using the same theoretical calculations.

  4. Prediction of radio frequency power generation of Neptune's magnetosphere from generalized radiometric Bode's law

    NASA Astrophysics Data System (ADS)

    Millon, M. A.; Goertz, C. K.

    1988-01-01

    Magnetospheric radio frequency emission power has been shown to vary as a function of both solar wind and planetary values such as magnetic field by Kaiser and Desch. Planetary magnetic fields have been shown to scale with planetary variables such as density and angular momentum by numerous researchers. This paper combines two magnetic scaling laws (Busse's and Curtis Ness') with the radiometric law to yield "Bode's"-type laws governing planetary radio emission. Further analysis allows the reduction of variables to planetary mass and orbital distance. These generalized laws are then used to predict the power output of Neptune to be about 1.6×107W; with the intensity peaking at about 3 MHz.

  5. Interpreting Vibrational Sum-frequency Spectra of Sulfur Dioxide at the Air/Water Interface: A Comprehensive Molecular Dynamics Study

    SciTech Connect

    Baer, Marcel; Mundy, Christopher J.; Chang, Tsun-Mei; Tao, Fu-Ming; Dang, Liem X.

    2010-06-01

    We investigated the solvation and spectroscopic properties of SO2 at the air/water interface using molecular simulation techniques. Molecular interactions from both Kohn-Sham (KS) density functional theory (DFT) and classical polarizable models were utilized to understand the properties of SO2:(H2O)x complexes in the vicinity of the air/water interface. The KS-DFT was included to allow comparisons with sum-frequency generation spectroscopy through the identification of surface SO2:(H2O)x complexes. Using our simulation results, we were able to develop a much more detailed picture for the surface structure of SO2 that is consistent with the spectroscopic data obtained Richmond and coworkers (J. Am. Chem. Soc. 127, 16806 (2005)). We also found many similarities and differences between to the two interaction potentials, including a noticeable weakness of the classical potential model in reproducing the asymmetric hydrogen bonding of water with SO2 due to its inability to account for SO2 resonance structures. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  6. High frequency permeability and permittivity spectra of BiFeO{sub 3}/(CoTi)-BaM ferrite composites

    SciTech Connect

    Peng, Yun; Wu, Xiaohan; Li, Qifan; Yu, Ting; Feng, Zekun; Chen, Zhongyan; Su, Zhijuan; Chen, Yajie; Harris, Vincent G.

    2015-05-07

    Low magnetic loss ferrite composites consisting of Ba(CoTi){sub 1.2}Fe{sub 9.6}O{sub 19} and BiFeO{sub 3} (BFO) ferrite were investigated for permeability, permittivity, and high frequency losses at 10 MHz–1 GHz. The phase fraction of BiFeO{sub 3} was quantitatively analyzed by X-ray diffraction measurements. An effective medium approach was employed to predict the effective permeability and permittivity for the ferrite composites, which was found to be in good agreement with experimental data. The experiment demonstrated low magnetic losses (<0.128), modified by BFO phase fraction, while retaining high permeability (∼10.86) at 300 MHz. More importantly, the BFO phase resulted in a reduction of magnetic loss by 32%, as BFO phase increased from 2.7 vol. % to 12.6 vol. %. The effect of BFO phase on magnetic and dielectric properties revealed great potential for use in the miniaturization of high efficiency antennas.

  7. K-spectra of low frequency fluctuations in laboratory plasma simulating conditions of equatorial spread-F

    SciTech Connect

    Prasad, G.; Bora, D.; Saxena, Y.C.

    1992-02-07

    Low frequency electrostatic fluctuations ({omega} < {Omega}{sub i}) travelling in E {times} B direction are observed in a laboratory plasma simulating conditions similar to night time equatorial F-region. The density and potential fluctuations in the region of the plasma where effective g parallel to density gradient {nabla}n has similar spectral characteristics to that of the results of the authors earlier experiment of bottom side of equatorial spread F. The k-spectrum of density in this region of plasma exhibits two marked slopes with indices n = {minus}2.5 {plus minus} 0.3 and {minus}4.6 {plus minus}0.3 where as the potential spectrum exhibits one slope with index {minus} 5.2 {plus minus} 0.2. The fluctuations are generated in the region where {nabla} is antiparallel to g and appear in the other region due E {times} B motion. Results are in agreement with in-situ measurements in F-region, theoretical predictions and numerical simulation of Rayleigh-Taylor and drift wave instabilities.

  8. Ploidy frequencies in plants with ploidy heterogeneity: fitting a general gametic model to empirical population data

    PubMed Central

    Suda, Jan; Herben, Tomáš

    2013-01-01

    Genome duplication (polyploidy) is a recurrent evolutionary process in plants, often conferring instant reproductive isolation and thus potentially leading to speciation. Outcome of the process is often seen in the field as different cytotypes co-occur in many plant populations. Failure of meiotic reduction during gametogenesis is widely acknowledged to be the main mode of polyploid formation. To get insight into its role in the dynamics of polyploidy generation under natural conditions, and coexistence of several ploidy levels, we developed a general gametic model for diploid–polyploid systems. This model predicts equilibrium ploidy frequencies as functions of several parameters, namely the unreduced gamete proportions and fertilities of higher ploidy plants. We used data on field ploidy frequencies for 39 presumably autopolyploid plant species/populations to infer numerical values of the model parameters (either analytically or using an optimization procedure). With the exception of a few species, the model fit was very high. The estimated proportions of unreduced gametes (median of 0.0089) matched published estimates well. Our results imply that conditions for cytotype coexistence in natural populations are likely to be less restrictive than previously assumed. In addition, rather simple models show sufficiently rich behaviour to explain the prevalence of polyploids among flowering plants. PMID:23193129

  9. Cellular computational generalized neuron network for frequency situational intelligence in a multi-machine power system.

    PubMed

    Wei, Yawei; Venayagamoorthy, Ganesh Kumar

    2017-09-01

    To prevent large interconnected power system from a cascading failure, brownout or even blackout, grid operators require access to faster than real-time information to make appropriate just-in-time control decisions. However, the communication and computational system limitations of currently used supervisory control and data acquisition (SCADA) system can only deliver delayed information. However, the deployment of synchrophasor measurement devices makes it possible to capture and visualize, in near-real-time, grid operational data with extra granularity. In this paper, a cellular computational network (CCN) approach for frequency situational intelligence (FSI) in a power system is presented. The distributed and scalable computing unit of the CCN framework makes it particularly flexible for customization for a particular set of prediction requirements. Two soft-computing algorithms have been implemented in the CCN framework: a cellular generalized neuron network (CCGNN) and a cellular multi-layer perceptron network (CCMLPN), for purposes of providing multi-timescale frequency predictions, ranging from 16.67 ms to 2 s. These two developed CCGNN and CCMLPN systems were then implemented on two different scales of power systems, one of which installed a large photovoltaic plant. A real-time power system simulator at weather station within the Real-Time Power and Intelligent Systems (RTPIS) laboratory at Clemson, SC, was then used to derive typical FSI results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Interior sound field control using generalized singular value decomposition in the frequency domain.

    PubMed

    Pasco, Yann; Gauthier, Philippe-Aubert; Berry, Alain; Moreau, Stéphane

    2017-01-01

    The problem of controlling a sound field inside a region surrounded by acoustic control sources is considered. Inspired by the Kirchhoff-Helmholtz integral, the use of double-layer source arrays allows such a control and avoids the modification of the external sound field by the control sources by the approximation of the sources as monopole and radial dipole transducers. However, the practical implementation of the Kirchhoff-Helmholtz integral in physical space leads to large numbers of control sources and error sensors along with excessive controller complexity in three dimensions. The present study investigates the potential of the Generalized Singular Value Decomposition (GSVD) to reduce the controller complexity and separate the effect of control sources on the interior and exterior sound fields, respectively. A proper truncation of the singular basis provided by the GSVD factorization is shown to lead to effective cancellation of the interior sound field at frequencies below the spatial Nyquist frequency of the control sources array while leaving the exterior sound field almost unchanged. Proofs of concept are provided through simulations achieved for interior problems by simulations in a free field scenario with circular arrays and in a reflective environment with square arrays.

  11. Directional spectra of ocean waves from microwave backscatter: A physical optics solution with application to the short-pulse and two-frequency measurement techniques

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1979-01-01

    Two simple microwave radar techniques that are potentially capable of providing routine satellite measurements of the directional spectrum of ocean waves were developed. One technique, the short pulse technique, makes use of very short pulses to resolve ocean surface wave contrast features in the range direction; the other technique, the two frequency correlation technique makes use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as a beat or mixing frequency in the power backscattered at two closely separated microwave frequencies. A frequency domain analysis of the short pulse and two frequency systems shows that the two measurement systems are essentially duals; they each operate on the generalized (three frequency) fourth-order statistical moment of the surface transfer function in different, but symmetrical ways, and they both measure the same directional contrast modulation spectrum. A three dimensional physical optics solution for the fourth-order moment was obtained for backscatter in the near vertical, specular regime, assuming Gaussian surface statistics.

  12. [The effect of electromagnetic waves of very high frequency of molecular spectra of radiation and absorption of nitric oxide on the functional activity of platelets].

    PubMed

    Kirichuk, V F; Maĭborodin, A V; Volin, M V; Krenitskiĭ, A P; Tupikin, V D

    2001-01-01

    A study was made of the effect of electromagnetic EMI MMD-fluctuation on the frequencies of molecular spectra of radiation, and nitric oxide absorption under in vitro conditions on the functional activity of platelets in patients with unstable angina pectoris, with the help of a specially created generator. At amplitude-modulated and continuous modes of EMI MMD-irradiation of platelet-rich plasma for 5, 15 and 30 min the platelet functional activity decreases, which was shown up in reduction of their activation and fall of aggregative ability. The degree, to which platelet functional activity was inhibited, depended on the mode of irradiation and on duration of EMI MMD effect. The most obvious changes in platelet activation and in their readiness to aggregative response were observed at a continuous mode of irradiation within a 15 min interval.

  13. Regional frequency analysis at ungauged sites using a two-stage resampling generalized ensemble framework

    NASA Astrophysics Data System (ADS)

    Alobaidi, Mohammad H.; Marpu, Prashanth R.; Ouarda, Taha B. M. J.; Chebana, Fateh

    2015-10-01

    Regional frequency analysis (RFA) deals with the estimation of hydrological characteristics at sites where little or no data is available. Recently, machine learning applications to RFA have received considerable attention in terms of their flexibility in modeling as well as superior generalization ability compared to conventional approaches. The proper application of machine learning techniques, however, requires good understanding of the available information about system's dynamics, i.e. system variables. This paper presents two contributions to the literature. First, novel ensemble architecture, using a unique two-stage resampling approach, is proposed. The objective of the proposed ensemble model is to promote diversity within the individual learners and reduce over fitting. Second, the application of the proposed model is demonstrated in RFA case study to obtain improved regional flood quantile estimates at ungauged sites. A jackknife validation procedure is used for the evaluation of the model's performance. The method is applied to data from the province of Quebec, Canada. The model showed similar performance and generalization compared to major ensemble models in the literature, which were investigated in previous studies using the same data set. The proposed model confirmed the diversity requirement in ensemble modeling and, in the same time, validated the proposed model adherence to ensemble learning theory.

  14. Infrared absorption spectra of the CO(2)/H(2)O complex in a cryogenic nitrogen matrix--detection of a new bending frequency.

    PubMed

    Zhang, Xu; Sander, Stanley P

    2011-09-08

    Infrared absorption spectra have been measured for the mixture of CO(2) and H(2)O in a cryogenic nitrogen matrix. The 1:1 CO(2)/H(2)O complex has been observed. Each structure of this complex should have two bending frequencies corresponding to the CO(2) fundamental bending mode (ν(2)). In this work, three bending frequencies corresponding to the CO(2) fundamental bending mode (ν(2)) have been detected; one of them at 660.3 cm(-1) is reported here for the first time. This finding helps confirm the existence of two structures for this complex. A new feature attributed to a CO(2) and H(2)O complex is observed at 3604.4 cm(-1) and is tentatively assigned to the CO(2)/H(2)O complex band corresponding to the CO(2) combination mode (ν(3) + 2ν(2)). In addition, a band that belongs to a CO(2) and H(2)O complex is detected at 3623.8 cm(-1) for the first time and is tentatively assigned to the (CO(2))(2)/H(2)O complex band corresponding to the symmetric stretching mode (ν(1)) of H(2)O.

  15. Observations of high-frequency P wave earthquake and explosion spectra compared with ω-3, ω-2, and sharpe source models

    NASA Astrophysics Data System (ADS)

    Walter, William R.; Brune, James N.; Priestley, Keith F.; Fletcher, Jon

    1988-06-01

    Observations of 10-, 20-, and 30-Hz P wave spectral amplitudes from earthquakes and explosions are compared with the Archambeau [1968, 1972] earthquake model featuring a P wave falloff of ω-3 beyond the corner frequency, a modified Brune [1970, 1971] earthquake model with ω-2 falloff, and the Sharpe [1942] explosion model which has a ω-2 falloff. The Archambeau and Sharpe models have been, in part, the basis of a proposal by Evernden et al. [1986] that high-frequency (≈30 Hz) seismic energy could provide an effective solution to the problem of detection and identification of low-yield coupled and fully decoupled underground nuclear explosions. The observations of earthquakes show an increase in spectral amplitude with moment approximately in agreement with the ω-2 falloff model and, for larger moments, in disagreement with the ω-3 model. Comparison of theoretical and actual seismograms narrow-band filtered at 30 Hz shows that in part the increase in spectral amplitude of earthquakes is due to the complex and long duration of the rupture process and not because of an increase in an impulsive first arrival like that characteristic of an explosion. The 30-Hz amplitudes for explosions show much scatter, and many events have a spectral falloff greater than the ω-2 predicted by the Sharpe model. Whether this is due entirely to attenuation or is the actual source spectrum is not determined. High stress drop earthquakes are predicted to have larger spectral amplitudes than the Sharpe model. Thus any discrimination technique using high-frequency P wave spectra should probably take into account differences in pulse shape and amplitude in the time domain.

  16. Spectra of Hot Cores

    NASA Astrophysics Data System (ADS)

    Chakrabarti, S.; McKee, C. F.

    2003-12-01

    The turbulent core model for massive star formation (McKee & Tan 2002) generalizes the standard isothermal collapse model for low-mass stars to include turbulent pressure support. This model predicts reasonable massive star formation times of order 105 years, which is short enough to overcome the radiation pressure of the newly formed star. We calculate the millimeter and infrared spectrum predicted by the turbulent core model and compare with observations of several hot molecular cores. We consider spherically symmetric dust envelopes and use DUSTY, a 1-D radiative transfer code (Ivezic, Nenkova, Elitzur 1997), to numerically calculate the SEDs of these hot cores. We also analytically calculate the spectra in the asymptotic regions of low and high frequency and join these asymptotic forms smoothly by a fitting function that minimizes the relative error between the analytic and numerical spectra. Thus, we are able to express the functional dependence of the spectra of hot cores in terms of the dynamical variables of any given collapse model. This approach allows us to use observed SEDs as a diagnostic tool in inferring physical conditions in these cores.

  17. Synthesizing High-Frequency (1-25 HZ) Regional Phases at Large Distances (>1000 KM) Using Generalized Screen Propagators (GSP)

    DTIC Science & Technology

    2004-09-01

    seismology and earthquake seismology . The generalized screen propagator (GSP) is based on the one-way wave equation and the one-return approximation. The...High-Frequency (1-25 HZ) Regional Phases at Large Distances O (>1000 KM) Using Generalized Screen Propagators (GSP) SApproved for public release...DTRA 01-97-1-0004 Synthesizing High-Freguency (1-25 HZ) Regional Phases at Large Distances (1 > 1000 KM) Using Generalized Screen Propagators (GSP) 5b

  18. Integration of radio-frequency transmission and radar in general software for multimodal battlefield signal modeling

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kenneth K.; Reznicek, Nathan J.; Wilson, D. Keith

    2013-05-01

    The Environmental Awareness for Sensor and Emitter Employment (EASEE) software, being developed by the U. S. Army Engineer Research and Development Center (ERDC), provides a general platform for predicting sensor performance and optimizing sensor selection and placement in complex terrain and weather conditions. It incorporates an extensive library of target signatures, signal propagation models, and sensor systems. A flexible object-oriented design supports efficient integration and simulation of diverse signal modalities. This paper describes the integration of modeling capabilities for radio-frequency (RF) transmission and radar systems from the U. S. Navy Electromagnetic Propagation Integrated Resource Environment (EMPIRE), which contains nearly twenty different realistic RF propagation models. The integration utilizes an XML-based interface between EASEE and EMPIRE to set inputs for and run propagation models. To accommodate radars, fundamental improvements to the EASEE software architecture were made to support active-sensing scenarios with forward and backward propagation of the RF signals between the radar and target. Models for reflecting targets were defined to apply a target-specific, directionally dependent reflection coefficient (i.e., scattering cross section) to the incident wavefields.

  19. Effect of X-ray Line Spectra Profile Fitting with Pearson VII, Pseudo-Voigt and Generalized Fermi Functions on Asphalt Binder Aromaticity and Crystallite Parameters

    NASA Astrophysics Data System (ADS)

    Gebresellasie, K.; Shirokoff, J.; Lewis, J. C.

    2012-12-01

    X-ray line spectra profile fitting using Pearson VII, pseudo-Voigt and generalized Fermi functions was performed on asphalt binders prior to the calculation of aromaticity and crystallite size parameters. The effects of these functions on the results are presented and discussed in terms of the peak profile fit parameters, the uncertainties in calculated values that can arise owing to peak shape, peak features in the pattern and crystallite size according to the asphalt models (Yen, modified Yen or Yen-Mullins) and theories. Interpretation of these results is important in terms of evaluating the performance of asphalt binders widely used in the application of transportation systems (roads, highways, airports).

  20. General Method for Determination of the Surface Composition in Bimetallic Nanoparticle Catalysts from the L Edge X-ray Absorption Near-Edge Spectra

    SciTech Connect

    Wu, Tiapin; Childers, David; Gomez, Carolina; Karim, Ayman M.; Schweitzer, Neil; Kropf, Arthur; Wang, Hui; Bolin, Trudy B.; Hu, Yongfeng; Kovarik, Libor; Meyer, Randall; Miller, Jeffrey T.

    2012-10-08

    Bimetallic PtPd on silica nano-particle catalysts have been synthesized and their average structure determined by Pt L3 and Pd K-edge extended X-ray absorption finestructure (EXAFS) spectroscopy. The bimetallic structure is confirmed from elemental line scans by STEM for the individual 1-2 nm sized particles. A general method is described to determine the surface composition in bimetallic nanoparticles even when both metals adsorb, for example, CO. By measuring the change in the L3 X-ray absorption near-edge structure (XANES) spectra with and without CO in bimetallic particles and comparing these changes to those in monometallic particles of known size the fraction of surface atoms can be determined. The turnover rates (TOR) and neopentane hydrogenolysis and isomerization selectivities based on the surface composition suggest that the catalytic and spectroscopic properties are different from those in monometallic nano-particle catalysts. At the same neo-pentane conversion, the isomerization selectivity is higher for the PtPd catalyst while the TOR is lower than that of both Pt and Pd. As with the catalytic performance, the infrared spectra of adsorbed CO are not a linear combination of the spectra on monometallic catalysts. Density functional theory calculations indicate that the Pt-CO adsorption enthalpy increases while the Pd-CO bond energy decreases. The ability to determine the surface composition allows for a better understanding of the spectroscopic and catalytic properties of bimetallic nanoparticle catalysts.

  1. Effect of Ku80 Deficiency on Mutation Frequencies and Spectra at a LacZ Reporter Locus in Mouse Tissues and Cells

    PubMed Central

    Busuttil, Rita A.; Muñoz, Denise P.; Garcia, Ana Maria; Rodier, Francis; Kim, Woo Ho; Suh, Yousin; Hasty, Paul; Campisi, Judith; Vijg, Jan

    2008-01-01

    Non-homologous end joining (NHEJ) is thought to be an important mechanism for preventing the adverse effects of DNA double strand breaks (DSBs) and its absence has been associated with premature aging. To investigate the effect of inactivated NHEJ on spontaneous mutation frequencies and spectra in vivo and in cultured cells, we crossed a Ku80-deficient mouse with mice harboring a lacZ-plasmid-based mutation reporter. We analyzed various organs and tissues, as well as cultured embryonic fibroblasts, for mutations at the lacZ locus. When comparing mutant with wild-type mice, we observed a significantly higher number of genome rearrangements in liver and spleen and a significantly lower number of point mutations in liver and brain. The reduced point mutation frequency was not due to a decrease in small deletion mutations thought to be a hallmark of NHEJ, but could be a consequence of increased cellular responses to unrepaired DSBs. Indeed, we found a substantial increase in persistent 53BP1 and γH2AX DNA damage foci in Ku80−/− as compared to wild-type liver. Treatment of cultured Ku80-deficient or wild-type embryonic fibroblasts, either proliferating or quiescent, with hydrogen peroxide or bleomycin showed no differences in the number or type of induced genome rearrangements. However, after such treatment, Ku80-deficient cells did show an increased number of persistent DNA damage foci. These results indicate that Ku80-dependent repair of DNA damage is predominantly error-free with the effect of alternative more error-prone pathways creating genome rearrangements only detectable after extended periods of time, i.e., in young adult animals. The observed premature aging likely results from a combination of increased cellular senescence and an increased load of stable, genome rearrangements. PMID:18941635

  2. Frequency and determinants of Hepatitis B and C virus in general population of Farash Town, Islamabad

    PubMed Central

    Asad, Munazza; Ahmed, Farah; Zafar, Humaira; Farman, Sabir

    2015-01-01

    Background and Objective: Both Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are rapidly spreading in the developing countries. Both of them are blood borne and are transmitted through un-screened blood transfusion, inadequately sterilized needles and equipment. According to WHO’s criteria of endemicity, Pakistan has high disease burden of Hepatitis B and C. The present study was planned to determine the frequency and to identify the risk factors of hepatitis B and C virus in the general community of Farash town. Methods: This descriptive study was carried out in Al Nafees Medical Hospital Lab, from January 2013 to December 2013. Both the genders and all age groups were included in the study. All the patients who fulfilled the inclusion criteria had given a written consent. Data was collected through questionnaire and was analyzed on Statistical Package for Social Sciences (SPSS) version 21. Results: Three-hundred and forty five patients were studied. Among these 92 (27%) were males and 253(73%) were female, 33% of them had hepatitis C, 9% had hepatitis B. History of injections was reported in all of the patients. Visit to community barbers was present in 58.6% and 41% cases of hepatitis B and C. History of dental procedures was obtained in 7(24%) and 15(13%) patients of hepatitis B and C. Conclusion: Major contributors for Hepatitis B and C in Farash town are use of unsterilized therapeutic injections and visit to community barbers. Education of the barbers regarding sterilization may help in reducing the burden of infection in this community. PMID:26870103

  3. Extracirculatory effects of noise of various frequency spectra in humans--effect of pink and blue noise on gastric myoelectrical activity and gastrointestinal passage of nutrients.

    PubMed

    Kasicka-Jonderko, Anna; Jonderko, Krzysztof; Dolinski, Kamil; Dolinski, Miroslaw; Kaminska, Magdalena; Szymszal, Malgorzata; Dzielicki, Marek; Blonska-Fajfrowska, Barbara

    2007-02-01

    Recent investigations in humans point out to a disturbing effect of auditory stimuli on the functional integrity of the brain-gut axis. The study was devoted to a systematic comparative evaluation of the effect of noises of different frequency spectra on the postprandial electrical and transport functions of the digestive tract in humans. Twenty six healthy subjects attended a cross-over study, which aimed at comparison of the effect of pink contrasted to blue noise within a given category (band or tonal) and a meal stimulus type (semi-liquid or solid test meal). A panel of noninvasive measurement methods was applied: heart rate variability (HRV) analysis, surface electrogastrography, (13)CO(2) breath tests for gastric emptying (GE), lactulose hydrogen breath test for orocecal transit time (OCTT). The blue tonal noise was rated the most annoying one, whereas solely the pink noises exerted discernible cardiovascular effects. No one of the four noises was capable of overriding the meal-induced preponderance of the sympathetic tone. The postprandial gastric myoelectrical activity and the GE of either the semiliquid or the solid test meal appeared to be ;resistant' to the noise exposure, irrespective of the noise type. Similar was the finding in the case of the OCTT, with the exception of a statistically significant retardation of the OCTT with the blue band noise. Ingestion of mixed caloric meals seems to elicit a protective influence against noise-elicited derangements of the functional integrity of the digestive tract proven formerly to occur during the fasting period.

  4. Effects of argon sparging rate, ultrasonic power, and frequency on multibubble sonoluminescence spectra and bubble dynamics in NaCl aqueous solutions.

    PubMed

    Cairós, Carlos; Schneider, Julia; Pflieger, Rachel; Mettin, Robert

    2014-11-01

    The sonoluminescence spectra from acoustic cavitation in aqueous NaCl solutions are systematically studied in a large range of ultrasonic frequencies under variation of electrical power and argon sparging. At the same time, bubble dynamics are analysed by high-speed imaging. Sodium line and continuum emission are evaluated for acoustic driving at 34.5, 90, 150, 365, and 945kHz in the same reactor vessel. The results show that the ratio of sodium line to continuum emission can be shifted by the experimental parameters: an increase in the argon flow increases the ratio, while an increase in power leads to a decrease. At 945kHz, the sodium line is drastically reduced, while the continuum stays at elevated level. Bubble observations reveal a remarkable effect of argon in terms of bubble distribution and stability: larger bubbles of non-spherical shapes form and eject small daughter bubbles which in turn populate the whole liquid. As a consequence, the bubble interactions (splitting, merging) appear enhanced which supports a link between non-spherical bubble dynamics and sodium line emission. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A novel cross-frequency coupling detection method using the generalized Morse wavelets.

    PubMed

    Nakhnikian, A; Ito, S; Dwiel, L L; Grasse, L M; Rebec, G V; Lauridsen, L N; Beggs, J M

    2016-08-30

    Cross-frequency coupling (CFC) occurs when non-identical frequency components entrain one another. A ubiquitous example from neuroscience is low frequency phase to high frequency amplitude coupling in electrophysiological signals. Seminal work by Canolty revealed CFC in human ECoG data. Established methods band-pass the data into component frequencies then convert the band-passed signals into the analytic representation, from which we infer the instantaneous amplitude and phase of each component. Though powerful, such methods resolve signals with respect to time and frequency without addressing the multiresolution problem. We build upon the ground-breaking work of Canolty and others and derive a wavelet-based CFC detection algorithm that efficiently searches a range of frequencies using a sequence of filters with optimal trade-off between time and frequency resolution. We validate our method using simulated data and analyze CFC within and between the primary motor cortex and dorsal striatum of rats under ketamine-xylazine anesthesia. Our method detects the correct CFC in simulated data and reveals CFC between frequency bands that were previously shown to participate in corticostriatal effective connectivity. Other CFC detection methods address the need to increase bandwidth when analyzing high frequency components but none to date permit rigorous bandwidth selection with no a priori knowledge of underlying CFC. Our method is thus particularly useful for exploratory studies. The method developed here permits rigorous and efficient exploration of a hypothesis space and is particularly useful when the frequencies participating in CFC are unknown. Published by Elsevier B.V.

  6. Comment on 'Continuum modes in rotating plasmas: General equations and continuous spectra for large aspect ratio tokamaks'[Phys. Plasmas 18, 092103 (2011)

    SciTech Connect

    Goedbloed, J. P.

    2012-06-15

    It is shown that some of the main results of the recent paper by Lakhin and Ilgisonis [Phys. Plasmas 18, 092103 (2011)], viz. the derivation of the equations for the continuous spectra of poloidally and toroidally rotating plasmas and their special solution for large aspect ratio tokamaks with large parallel flows were obtained before by Goedbloed, Belieen, van der Holst, and Keppens [Phys. Plasmas 11, 28 (2004)]. A further rearrangement of the system of equations for the coupled Alfven and slow continuous spectra clearly exhibits: (a) coupling through a single tangential derivative, which is a generalization of the geodesic curvature; (b) the 'transonic' transitions of the equilibrium, which need to be carefully examined in order to avoid entering hyperbolic flow regimes where the stability formalism breaks down. A critical discussion is devoted to the implications of this failure, which is generally missed in the tokamak literature, possibly as a result of the wide-spread use of the sonic Mach number of gas dynamics, which is an irrelevant and misleading parameter in 'transonic' magnetohydrodynamics. Once this obstacle in understanding is removed, further application of the theory of trans-slow Alfven continuum instabilities to both tokamaks, with possible implications for the L-H transition, and astrophysical objects like 'fat' accretion disks, with a possible new route to magnetohydrodynamic turbulence, becomes feasible.

  7. The envelope order spectrum based on generalized demodulation time-frequency analysis and its application to gear fault diagnosis

    NASA Astrophysics Data System (ADS)

    Cheng, Junsheng; Yang, Yu; Yu, Dejie

    2010-02-01

    The generalized demodulation time-frequency analysis is a novel signal processing method, which is particularly suitable for the processing of multi-component amplitude-modulated and frequency-modulated (AM-FM) signals as it can decompose a multi-component signal into a set of single-component signals whose instantaneous frequencies own physical meaning. While fault occurs in gear, the vibration signals measured from gearbox would exactly display AM-FM characteristics. Therefore, targeting the modulation feature of gear vibration signal in run-ups and run-downs, a fault diagnosis method in which generalized demodulation time-frequency analysis and envelope order spectrum technique are combined is put forward and applied to the transient analysis of gear vibration signal. Firstly the multi-component vibration signal of gear is decomposed into some mono-component signals using the generalized demodulation time-frequency analysis approach; secondly the envelope analysis is performed to each single-component signal; thirdly each envelope signal is re-sampled in angle domain; finally the spectrum analysis is applied to each re-sampled signal and the corresponding envelope order spectrum can be obtained. Furthermore, the gear working condition can be identified according to the envelope order spectrum. The analysis results from the simulation and experimental signals show that the proposed algorithm was effective in gear fault diagnosis.

  8. Pyranometer frequency response measurement and general correction scheme for time response error

    SciTech Connect

    Shen, B.; Robinson, A.M. )

    1992-10-01

    A simple sinusoidal function radiation generator was designed to examine the frequency response of a Kipp and Zonen CM-5 pyranometer in the frequency range 0.014-0.073 Hz. Applying the thermal model of the pyranometer and its two time constants, which were acquired from a step response measurement, the authors obtained the theoretical frequency response of the pyranometer. Analysis of the experimental results determined an unknown constant in the relationship derived between the pyranometer input and output. This relationship was then used to correct the time response error of the pyranometer subject to an arbitrary radiation signal.

  9. Bad dream frequency in older adults with generalized anxiety disorder: prevalence, correlates, and effect of cognitive behavioral treatment for anxiety.

    PubMed

    Nadorff, Michael R; Porter, Ben; Rhoades, Howard M; Greisinger, Anthony J; Kunik, Mark E; Stanley, Melinda A

    2014-01-01

    This study investigated the relation between generalized anxiety disorder (GAD) and frequency of bad dreams in older adults. A secondary analysis from a randomized clinical trial comparing cognitive behavioral therapy (CBT) for anxiety to enhanced usual care (EUC) assessed bad dream frequency at baseline, post treatment (3 months), and at 6, 9, 12, and 15 months. Of 227 participants (mean age = 67.4), 134 met GAD diagnostic criteria (CBT = 70, EUC = 64), with the remaining 93 serving as a comparison group. Patients with GAD had significantly more bad dreams than those without, and bad dream frequency was significantly associated with depression, anxiety, worry, and poor quality of life. CBT for anxiety significantly reduced bad dream frequency at post treatment and throughout follow up compared to EUC.

  10. Bad Dream Frequency in Older Adults with Generalized Anxiety Disorder: Prevalence, Correlates, and Effect of Cognitive Behavioral Treatment for Anxiety

    PubMed Central

    Nadorff, Michael R.; Porter, Ben; Rhoades, Howard M.; Greisinger, Anthony J.; Kunik, Mark E.; Stanley, Melinda A.

    2012-01-01

    This study investigated the relation between generalized anxiety disorder (GAD) and frequency of bad dreams in older adults. A secondary analysis from a randomized clinical trial comparing cognitive behavioral therapy for anxiety (CBT) to enhanced usual care (EUC), it assessed bad dream frequency at baseline, post-treatment (3 months), and 6, 9, 12 and 15 months. Of 227 participants (mean age = 67.4), 134 met GAD diagnostic criteria (CBT = 70, EUC = 64), with the remaining 93 serving as a comparison group. Patients with GAD had significantly more bad dreams than those without, and bad dream frequency was significantly associated with depression, anxiety, worry, and poor quality of life. CBT for anxiety significantly reduced bad dream frequency at post-treatment and throughout follow-up compared to EUC. PMID:23470116

  11. Intermolecular potential energy surface and spectra of He-HCl with generalization to other rare gas-hydrogen halide complexes

    NASA Astrophysics Data System (ADS)

    Murdachaew, Garold; Szalewicz, Krzysztof; Jiang, Hao; Bačić, Zlatko

    2004-12-01

    rationalized in terms of the physical components of the intermolecular forces and related to monomer properties. The accuracy of the SAPT PES was tested by performing calculations of rovibrational levels. The transition frequencies obtained were found to be in excellent agreement (to within 0.02 cm-1) with the measurements of Lovejoy and Nesbitt [J. Chem. Phys. 93, 5387 (1990)]. The SAPT PES predicts a dissociation energy for the complex of 7.74 cm-1 which is probably more accurate than the experimental value of 10.1±1.2 cm-1. Our analysis of the ground-state rovibrational wave function shows that the He-HCl configuration is favored over the He-ClH configuration despite the ordering of minima. This is due to the greater volume of the well in the former case. We have also determined positions and widths of three low-lying resonance states through scattering calculations. These predictions are expected to be more accurate than values derived from experiment.

  12. Magnetic susceptibility induced white matter MR signal frequency shifts--experimental comparison between Lorentzian sphere and generalized Lorentzian approaches.

    PubMed

    Luo, J; He, X; Yablonskiy, D A

    2014-03-01

    The nature of the remarkable phase contrast in high-field gradient echo MRI studies of human brain is a subject of intense debates. The generalized Lorentzian approach (He and Yablonskiy, Proc Natl Acad Sci USA 2009;106:13558-13563) provides an explanation for the anisotropy of phase contrast, the near absence of phase contrast between white matter and cerebrospinal fluid, and changes of phase contrast in multiple sclerosis. In this study, we experimentally validate the generalized Lorentzian approach. The Generalized Lorentzian Approach suggests that the local contribution to frequency shifts in white matter does not depend on the average tissue magnetic susceptibility (as suggested by Lorentzian sphere approximation), but on the distribution and symmetry of magnetic susceptibility inclusions at the cellular level. We use ex vivo rat optic nerve as a model system of highly organized cellular structure containing longitudinally arranged myelin and neurofilaments. The nerve's cylindrical shape allowed accurate measurement of its magnetic susceptibility and local frequency shifts. We found that the volume magnetic susceptibility difference between nerve and water is -0.116 ppm, and the magnetic susceptibilities of longitudinal components are -0.043 ppm in fresh nerve, and -0.020 ppm in fixed nerve. The frequency shift observed in the optic nerve as a representative of white matter is consistent with generalized Lorentzian approach but inconsistent with Lorentzian sphere approximation. Copyright © 2013 Wiley Periodicals, Inc.

  13. A generalized equation for the resonance frequencies of a fluid-filled crack

    NASA Astrophysics Data System (ADS)

    Maeda, Yuta; Kumagai, Hiroyuki

    2017-01-01

    Although a model of the resonance of a rectangular fluid-filled crack (crack model) is one of the most frequently used source models of long-period seismic events at volcanoes, there has been no analytical solution for the resonance frequencies. We previously proposed an empirical expression for the resonance frequencies as a mathematical function of the crack length, aperture, and properties of the fluid and the surrounding elastic medium. However, the expression contained an empirical constant that had to be investigated numerically for each crack aspect ratio and oscillation mode, a requirement that prevented widespread use of the expression. In the present study, we examined the theoretical basis for the expression. We assumed that the ratio of the crack wall displacement to the fluid pressure near each crack edge varied as the square root of the distance from the edge. Using this assumption, we showed theoretically that the previously proposed empirical analytical expression was a good approximation (difference ≤ 2%) to another more complete expression. This theoretical expression is a closed form of a mathematical function of the crack model parameters and oscillation mode number; there are no empirical constants to be determined numerically. The expression thus enabled us to analytically compute the resonance frequencies for arbitrary rectangular cracks, and the results were in good agreement (difference ≤ 5%) with numerical solutions. Resonance frequencies of cracks can be very easily predicted using this expression. This predictive ability may enhance our quantitative understanding of the processes that generate long-period events at volcanoes.

  14. An Ultrahigh Frequency Partial Discharge Signal De-Noising Method Based on a Generalized S-Transform and Module Time-Frequency Matrix

    PubMed Central

    Liu, Yushun; Zhou, Wenjun; Li, Pengfei; Yang, Shuai; Tian, Yan

    2016-01-01

    Due to electromagnetic interference in power substations, the partial discharge (PD) signals detected by ultrahigh frequency (UHF) antenna sensors often contain various background noises, which may hamper high voltage apparatus fault diagnosis and localization. This paper proposes a novel de-noising method based on the generalized S-transform and module time-frequency matrix to suppress noise in UHF PD signals. The sub-matrix maximum module value method is employed to calculate the frequencies and amplitudes of periodic narrowband noise, and suppress noise through the reverse phase cancellation technique. In addition, a singular value decomposition de-noising method is employed to suppress Gaussian white noise in UHF PD signals. Effective singular values are selected by employing the fuzzy c-means clustering method to recover the PD signals. De-noising results of simulated and field detected UHF PD signals prove the feasibility of the proposed method. Compared with four conventional de-noising methods, the results show that the proposed method can suppress background noise in the UHF PD signal effectively, with higher signal-to-noise ratio and less waveform distortion. PMID:27338409

  15. On hydrologic similarity: A dimensionless flood frequency model using a generalized geomorphologic unit hydrograph and partial area runoff generation

    NASA Technical Reports Server (NTRS)

    Sivapalan, Murugesu; Wood, Eric F.; Beven, Keith J.

    1993-01-01

    One of the shortcomings of the original theory of the geomorphologic unit hydrograph (GUH) is that it assumes that runoff is generated uniformly from the entire catchment area. It is now recognized that in many catchments much of the runoff during storm events is produced on partial areas which usually form on narrow bands along the stream network. A storm response model that includes runoff generation on partial areas by both Hortonian and Dunne mechanisms was recently developed by the authors. In this paper a methodology for integrating this partial area runoff generation model with the GUH-based runoff routing model is presented; this leads to a generalized GUH. The generalized GUH and the storm response model are then used to estimate physically based flood frequency distributions. In most previous work the initial moisture state of the catchment had been assumed to be constant for all the storms. In this paper we relax this assumption and allow the initial moisture conditions to vary between storms. The resulting flood frequency distributions are cast in a scaled dimensionless framework where issues such as catchment scale and similarity can be conveniently addressed. A number of experiments are performed to study the sensitivity of the flood frequency response to some of the 'similarity' parameters identified in this formulation. The results indicate that one of the most important components of the derived flood frequency model relates to the specification of processes within the runoff generation model; specifically the inclusion of both saturation excess and Horton infiltration excess runoff production mechanisms. The dominance of these mechanisms over different return periods of the flood frequency distribution can significantly affect the distributional shape and confidence limits about the distribution. Comparisons with observed flood distributions seem to indicate that such mixed runoff production mechanisms influence flood distribution shape. The

  16. A garden of orchids: a generalized Harper equation at quadratic irrational frequencies

    NASA Astrophysics Data System (ADS)

    Mestel, B. D.; Osbaldestin, A. H.

    2004-10-01

    We consider a generalized Harper equation at quadratic irrational flux, showing, in the strong coupling limit, the fluctuations of the exponentially decaying eigenfunctions are governed by the dynamics of a renormalization operator on a renormalization strange set. This work generalizes previous analyses which have considered only the golden mean case. Projections of the renormalization strange sets are illustrated analogous to the 'orchid' present in the golden mean case.

  17. Joint envelope and frequency order spectrum analysis based on iterative generalized demodulation for planetary gearbox fault diagnosis under nonstationary conditions

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Chen, Xiaowang; Liang, Ming

    2016-08-01

    Planetary gearbox vibration signals under nonstationary conditions are characterized by time-varying nature and complex multi-components, making it very difficult to extract features for fault diagnosis. Order spectrum analysis is one of the effective approaches for nonstationary signal analysis of rotating machinery. The main idea of order analysis is to map the time-varying frequency components into constant ones. Inspired by this idea, we propose a new order spectrum analysis method to exploit the unique property of iterative generalized demodulation in converting arbitrary instantaneous frequency trajectories of multi-component signals into constant frequency lines on the time-frequency plane. This new method is completely algorithm-based and tachometer/encoder-free, thus easy to implement. It does not involve equi-angular resampling commonly required by most order tracking methods and is hence free from the decimation and/or interpolation error. The proposed order analysis method can eliminate the time-variation effect of frequency and thus can effectively reveal the harmonic order constituents of nonstationary multi-component signals. However, the planetary gearbox vibration signals also lead to complex sideband orders. As such, we further propose to analyze the order spectrum of amplitude envelope. This will eliminate the complex sideband orders in the order spectrum of original signals, leading to a substantially simplified and more reliable gear characteristic frequency identification process. Nevertheless, the gear and/or planet carrier rotating frequency orders, which are irrelevant to gear fault, may still exist. To avoid possible misleading results due to such frequency orders, we also propose to analyze the order spectrum of instantaneous frequency. Theoretically, the peaks present in frequency order spectrum directly correspond to the gear characteristic frequency orders, which can be used to extract gear fault signature more explicitly. The proposed

  18. Nonlinear frequency shift of electrostatic waves in general collisionless plasma: Unifying theory of fluid and kinetic nonlinearities

    SciTech Connect

    Liu, Chang; Dodin, Ilya Y.

    2015-08-15

    The nonlinear frequency shift is derived in a transparent asymptotic form for intense Langmuir waves in general collisionless plasma. The formula describes both fluid and kinetic effects simultaneously. The fluid nonlinearity is expressed, for the first time, through the plasma dielectric function, and the kinetic nonlinearity accounts for both smooth distributions and trapped-particle beams. Various known limiting scalings are reproduced as special cases. The calculation avoids differential equations and can be extended straightforwardly to other nonlinear plasma waves.

  19. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model.

    PubMed

    Coen, Stéphane; Randle, Hamish G; Sylvestre, Thibaut; Erkintalo, Miro

    2013-01-01

    A generalized Lugiato-Lefever equation is numerically solved with a Newton-Raphson method to model Kerr frequency combs. We obtain excellent agreement with past experiments, even for an octave-spanning comb. Simulations are much faster than with any other technique despite including more modes than ever before. Our study reveals that Kerr combs are associated with temporal cavity solitons and dispersive waves, and opens up new avenues for the understanding of Kerr-comb formation.

  20. A generalized formulation of the protection ratio applicable to frequency coordination in digital radio relay networks

    NASA Astrophysics Data System (ADS)

    Suh, Kyoung Whoan

    2007-02-01

    This paper proposes an efficient and comprehensive algorithm for computing the protection ratio and illustrates some results applicable to the initial planning of frequency coordination for fixed wireless networks. A net filter discrimination depending upon transmitter spectrum mask and overall receiver filter characteristic is also examined to see the effect of adjacent channel interferences. Numerical simulations for cochannel and adjacent channel protection ratios are performed for the 6.2 GHz frequency band, including transmitter spectrum mask and receiver filter response. According to results for 64-QAM (quadrature amplitude modulation) and 60 km at bit error ratio 10-6, fade margin and cochannel protection ratio are 41.1 and 74.9 dB, respectively. In addition, it is shown that the net filter discrimination for 30 MHz channel bandwidth provides 26.5 dB at the first adjacent channel, which yields adjacent channel protection ratio of 48.4 dB. The proposed method gives an easy and systematic method to compute the protection ratio and can be applied to frequency coordination in fixed wireless networks up to the millimeter wave band.

  1. Comparison of the observed and calculated coherent forward scattering spectra of the 842.5 nm Ar I and 844.6 nm O I lines in a radio frequency glow discharge

    NASA Astrophysics Data System (ADS)

    Matsuta, Hideyuki

    2017-06-01

    The coherent forward scattering (CFS) spectra of O I 844.6 nm and Ar I 842.5 nm lines in a radio frequency (RF) glow discharge were measured using a CFS spectrometer that functions in the Faraday configuration with permanent double-ring magnets and a diode-laser source. A significant change in the CFS spectrum of the Ar I 842.5 nm line was observed when the partial pressures of argon in a Hesbnd Ar RF glow discharge were changed . Based on the theoretical calculations of the CFS spectra performed using Faraday functions, a comparison between the observed and calculated spectra was performed. The CFS line profile of O I 844.6 nm and changes in the Ar I 842.5 nm CFS spectrum are explained by theoretical calculations.

  2. Generalized Bloch's theorem for viscous metamaterials: Dispersion and effective properties based on frequencies and wavenumbers that are simultaneously complex

    NASA Astrophysics Data System (ADS)

    Frazier, Michael J.; Hussein, Mahmoud I.

    2016-05-01

    It is common for dispersion curves of damped periodic materials to be based on real frequencies as a function of complex wavenumbers or, conversely, real wavenumbers as a function of complex frequencies. The former condition corresponds to harmonic wave motion where a driving frequency is prescribed and where attenuation due to dissipation takes place only in space alongside spatial attenuation due to Bragg scattering. The latter condition, on the other hand, relates to free wave motion admitting attenuation due to energy loss only in time while spatial attenuation due to Bragg scattering also takes place. Here, we develop an algorithm for 1D systems that provides dispersion curves for damped free wave motion based on frequencies and wavenumbers that are permitted to be simultaneously complex. This represents a generalized application of Bloch's theorem and produces a dispersion band structure that fully describes all attenuation mechanisms, in space and in time. The algorithm is applied to a viscously damped mass-in-mass metamaterial exhibiting local resonance. A frequency-dependent effective mass for this damped infinite chain is also obtained.

  3. Site-specific estimation of peak-streamflow frequency using generalized least-squares regression for natural basins in Texas

    USGS Publications Warehouse

    Asquith, William H.; Slade, R.M.

    1999-01-01

    The U.S. Geological Survey, in cooperation with the Texas Department of Transportation, has developed a computer program to estimate peak-streamflow frequency for ungaged sites in natural basins in Texas. Peak-streamflow frequency refers to the peak streamflows for recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Peak-streamflow frequency estimates are needed by planners, managers, and design engineers for flood-plain management; for objective assessment of flood risk; for cost-effective design of roads and bridges; and also for the desin of culverts, dams, levees, and other flood-control structures. The program estimates peak-streamflow frequency using a site-specific approach and a multivariate generalized least-squares linear regression. A site-specific approach differs from a traditional regional regression approach by developing unique equations to estimate peak-streamflow frequency specifically for the ungaged site. The stations included in the regression are selected using an informal cluster analysis that compares the basin characteristics of the ungaged site to the basin characteristics of all the stations in the data base. The program provides several choices for selecting the stations. Selecting the stations using cluster analysis ensures that the stations included in the regression will have the most pertinent information about flooding characteristics of the ungaged site and therefore provide the basis for potentially improved peak-streamflow frequency estimation. An evaluation of the site-specific approach in estimating peak-streamflow frequency for gaged sites indicates that the site-specific approach is at least as accurate as a traditional regional regression approach.

  4. Sporadic Geomagnetic Pulsations at Frequencies of up to 15 HZ in the Magnetic Storm of November 7-14, 2004: Features of the Amplitude and Polarization Spectra and their Connection with Ion-Cyclotron Waves in the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Ermakova, E. N.; Yahnin, A. G.; Yahnina, T. A.; Demekhov, A. G.; Kotik, D. S.

    2016-01-01

    We study the dynamics of the geomagnetic-pulsation spectra at unusually high frequencies (including the frequencies exceeding the Schumann resonance frequency 8 Hz), which were detected for the first time at the Novaya Zhizn' midlatitude station (the McIlwain parameter L = 2.6) at the time of a strong magnetic storm on November 07-14, 2004. To interpret the observed pulsation frequencies, we used the data from the NOAA low-orbit satellites which recorded localized precipitations of energetic protons (with energies of 30 to 80 keV) and calculations of the singlepass cyclotron amplification of electromagnetic ion-cyclotron waves. Amplitude and polarization characteristics of the radiation spectra at frequencies of up to 15 Hz at the Novaya Zhizn' and Lovozero stations (L = 5.2) are compared. It is shown that the magnetic field oscillations in the frequency range 7-15 Hz correlate with proton precipitations and proton auroras at geomagnetic latitudes 50°-57° (L = 2.42-3.37). It is also shown that for a high anisotropy of the pitch-angle distribution of the ring-current protons at such low geomagnetic latitudes, the frequency spectrum of observed high-frequency radiation agrees well with the calculated location of the maximum of the single-pass cyclotron amplification of electromagnetic ion-cyclotron waves. Analysis of the data and calculation results has led to the conclusion that inherently the recorded signals are a high-frequency counterpart of the Pc1 pulsations and are due to the generation of ion-cyclotron waves in the magnetosphere at unusually low latitudes, which are probably stipulated by the shift of the plasma pause to these latitudes during a strong magnetic storm.

  5. Frequency-dependent magneto-optical conductivity in the generalized α -T3 model

    NASA Astrophysics Data System (ADS)

    Kovács, Áron Dániel; Dávid, Gyula; Dóra, Balázs; Cserti, József

    2017-01-01

    We have studied a generalized three-band crossing model in 2D, the generalized α -T3 lattice, ranging from the pseudospin-1 Dirac equation through a quadratic+flat band touching to the pseudospin-1/2 Dirac equation. A general method is presented to determine the operator form of the Green's function, being gauge and representation independent. This yields the Landau level structure in a quantizing magnetic field and the longitudinal and transversal magneto-optical conductivities of the underlying system. Although the magneto-optical selection rules allow for many transitions between Landau levels, the dominant one stems from exciting a particle from/to the flat band to/from a propagating band. The Hall conductivity from each valley is rational (not quantized at all), in agreement with Berry phase considerations, though their sum is always integer quantized.

  6. High frequency scattering by a smooth coated cylinder simulated with generalized impedance boundary conditions

    NASA Technical Reports Server (NTRS)

    Syed, Hasnain H.; Volakis, John L.

    1991-01-01

    Rigorous uniform geometrical theory of diffraction (UGTD) diffraction coefficients are presented for a coated convex cylinder simulated with generalized impedance boundary conditions. In particular, ray solutions are obtained which remain valid in the transition region and reduce uniformly to those in the deep lit and shadow regions. These involve new transition functions in place of the usual Fock-type integrals, characteristic to the impedance cylinder. A uniform asymptotic solution is also presented for observations in the close vicinity of the cylinder. As usual, the diffraction coefficients for the convex cylinder are obtained via a generalization of the corresponding ones for the circular cylinder.

  7. Generalized circuit for resonantless devices for combining of signals of different frequencies

    NASA Astrophysics Data System (ADS)

    Shkarinov, Iu. S.

    The general form of a resonantless-combining-device (RCD) circuit (used in microwave communication systems) is proposed which encompasses all particular versions and is suitable for the synthesis of multisection RCDs on the basis of specified technical characteristics. The equivalence of amplitude and phase difference circuits is considered, and a recursive formula for a multisection phase-shifter is derived.

  8. Giant subcortical high-frequency SEPs in idiopathic generalized epilepsy: a protective mechanism against seizures?

    PubMed

    Restuccia, Domenico; Valeriani, Massimiliano; Della Marca, Giacomo

    2007-01-01

    Recently, we found that high-frequency somatosensory evoked potentials (HF-SEPs), which are modulated by arousal-related structures, were abnormally enhanced during N-REM sleep in two seizure-free IGE patients [Restuccia D, Rubino M, Valeriani M, Della Marca G. Increase of brainstem high-frequency SEP subcomponents during light sleep in seizure-free epileptic patients. Clin Neurophysiol 2005; 116: 1774-1778]. Here, we aimed at verifying whether similar HF-SEP abnormalities were significantly correlated to the clinical outcome in a larger population of untreated IGE patients. Patients were classified as Juvenile Myoclonic epilepsy (JME; six patients) and Childhood or Juvenile Absence epilepsy (CAE and JAE, six patients). They were untreated because newly diagnosed, or because seizure-free. HF-SEPs from patients were compared with those obtained from 21 healthy volunteers. HF-SEPs were abnormally enhanced in all seizure-free CAE-JAE patients, whereas they were normal in all JME patients and in CAE-JAE patients with frequent seizures. Not only scalp distribution, but also dipolar source analysis suggested a subcortical origin for these enhanced subcomponents, possibly in the brainstem. The enhancement of HF-SEPs might reflect the hyperactivity of arousal-related brainstem structures; such an enhancement was found in all seizure-free CAE-JAE patients, while it was never observed in JME patients. We speculate that the hyperactivity of arousal-related brainstem structures might account for the different clinical outcome among IGE subsyndromes.

  9. Extension of a nonlinear systems theory to general-frequency unsteady transonic aerodynamic responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1993-01-01

    A methodology for modeling nonlinear unsteady aerodynamic responses, for subsequent use in aeroservoelastic analysis and design, using the Volterra-Wiener theory of nonlinear systems is presented. The methodology is extended to predict nonlinear unsteady aerodynamic responses of arbitrary frequency. The Volterra-Wiener theory uses multidimensional convolution integrals to predict the response of nonlinear systems to arbitrary inputs. The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code is used to generate linear and nonlinear unit impulse responses that correspond to each of the integrals for a rectangular wing with a NACA 0012 section with pitch and plunge degrees of freedom. The computed kernels then are used to predict linear and nonlinear unsteady aerodynamic responses via convolution and compared to responses obtained using the CAP-TSD code directly. The results indicate that the approach can be used to predict linear unsteady aerodynamic responses exactly for any input amplitude or frequency at a significant cost savings. Convolution of the nonlinear terms results in nonlinear unsteady aerodynamic responses that compare reasonably well with those computed using the CAP-TSD code directly but at significant computational cost savings.

  10. Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing.

    PubMed

    Wu, Chi-Hsun; Chang, Hsiang-Chih; Lee, Po-Lei; Li, Kuen-Shing; Sie, Jyun-Jie; Sun, Chia-Wei; Yang, Chia-Yen; Li, Po-Hung; Deng, Hua-Ting; Shyu, Kuo-Kai

    2011-03-15

    This paper presents an empirical mode decomposition (EMD) and refined generalized zero crossing (rGZC) approach to achieve frequency recognition in steady-stated visual evoked potential (SSVEP)-based brain computer interfaces (BCIs). Six light emitting diode (LED) flickers with high flickering rates (30, 31, 32, 33, 34, and 35 Hz) functioned as visual stimulators to induce the subjects' SSVEPs. EEG signals recorded in the Oz channel were segmented into data epochs (0.75 s). Each epoch was then decomposed into a series of oscillation components, representing fine-to-coarse information of the signal, called intrinsic mode functions (IMFs). The instantaneous frequencies in each IMF were calculated by refined generalized zero-crossing (rGZC). IMFs with mean instantaneous frequencies (f(GZC)) within 29.5 Hz and 35.5 Hz (i.e., 29.5≤f(GZC)≤35.5 Hz) were designated as SSVEP-related IMFs. Due to the time-locked and phase-locked characteristics of SSVEP, the induced SSVEPs had the same frequency as the gazing visual stimulator. The LED flicker that contributed the majority of the frequency content in SSVEP-related IMFs was chosen as the gaze target. This study tests the proposed system in five male subjects (mean age=25.4±2.07 y/o). Each subject attempted to activate four virtual commands by inputting a sequence of cursor commands on an LCD screen. The average information transfer rate (ITR) and accuracy were 36.99 bits/min and 84.63%. This study demonstrates that EMD is capable of extracting SSVEP data in SSVEP-based BCI system.

  11. Forward masking of faces by spatially quantized random and structured masks: on the roles of wholistic configuration, local features, and spatial-frequency spectra in perceptual identification.

    PubMed

    Bachmann, Talis; Luiga, Iiris; Põder, Endel

    2004-12-01

    The forward masking of faces by spatially quantized masking images was studied. Masks were used in order to exert different types of degrading effects on the early representations in facial information processing. Three types of source images for masks were used: Same-face images (with regard to targets), different-face images, and random Gaussian noise that was spectrally similar to facial images. They were all spatially quantized over the same range of quantization values. Same-face masks had virtually no masking effect at any of the quantization values. Different-face masks had strong masking effects only with fine-scale quantization, but led to the same efficiency of recognition as in the same-face mask condition with the coarsest quantization. Moreover, compared with the noise-mask condition, coarsely quantized different-face masks led to a relatively facilitated level of recognition efficiency. The masking effect of the noise mask did not vary significantly with the coarseness of quantization. The results supported neither a local feature processing account, nor a generalized spatial-frequency processing account, but were consistent with the microgenetic configuration-processing theory of face recognition. Also, the suitability of a spatial quantization technique for image configuration processing research has been demonstrated.

  12. Flight evaluation of advanced navigation techniques for general aviation using frequency scanning

    NASA Technical Reports Server (NTRS)

    Jackson, C. T., Jr.; Denery, D. G.; Korsak, A. J.; Conrad, B.

    1976-01-01

    Experiments on an automatic multisensor navigation concept are being conducted in a Cessna 402B. The test system consists of VOR, DME, and air data sensors controlled by a Hewlett Packard 9820A electronic calculator which processes the data and, by means of a four-state Kalman filter, outputs position and ground and wind velocities to a map display. Novel features which make such a system potentially low-cost include frequency-scanning operation of a single VOR receiver and a single DME transceiver and use of a shed-vortex true airspeed sensor. Results obtained during flight in a local area where six to eight DME NAVAIDS were receivable yielded better than 1/4-mile accuracy.

  13. General theory of frequency modulated selective reflection. Influence of atom surface interactions

    NASA Astrophysics Data System (ADS)

    Ducloy, M.; Fichet, M.

    1991-12-01

    We calculate the modulation of the reflection coefficient for a frequency-modulated (FM) light beam incident on the interface between a dielectric and an atomic vapor. The vapor is described as a gas of resonant, Doppler-broadened, two-level systems, with transition frequency and linewidth arbitrarily depending on the atom-dielectric distance. The atoms are supposed to get deexcited at collisions with the surface. The transient atomic response is calculated to first order in the incident field, for both incoming and desorbed atoms. The reflection coefficient, evaluated to first order in the vapor dipole polarization, leads to a formal expression of the reflectivity modulation, valid for arbitrary atom-surface interaction potentials. One first discusses the reflection signal in absence of wall interactions, for arbitrary modulation frequencies. At large frequencies, it allows one to monitor both vapor absorption and dispersion. Second, the formal theory is applied to the case of a Van der Waals-London surface attraction exerted on the atomic vapor. Both normal and oblique beam incidences are considered. One shows how the vapor dispersion signal is red-shifted and strongly distorted by the appearance of vapor-surface long-range interactions, and how it can be used to monitor these interactions. At non-normal incidences, the lineshapes get Doppler-broadened. On calcule le coefficient de réflexion d'un faisceau lumineux, modulé en fréquence, incident sur une interface entre un milieu diélectrique et une vapeur atomique. Cette vapeur est décrite comme un ensemble de systèmes à deux niveaux, présentant un élargissement Doppler, et dont la fréquence de transition et la largeur de raie sont supposées dépendre de la distance au milieu diélectrique. On suppose par ailleurs que les atomes sont déexcités sur la paroi. La réponse transitoire des atomes est analysée au premier ordre en fonction du champ électromagnétique incident. Du coefficient de r

  14. The effects of sampling frequency on the climate statistics of the ECMWF general circulation model

    SciTech Connect

    Phillips, T.J.; Gates, W.L.; Arpe, K.

    1992-09-01

    The effects of sampling frequency on the first- and second-moment statistics of selected EC model variables are investigated in a simulation of ``perpetual July`` with a diurnal cycle included and with surface and atmospheric fields saved at hourly intervals. The shortest characteristic time scales (as determined by the enfolding time of lagged autocorrelation functions) are those of ground heat fluxes and temperatures, precipitation and run-off, convective processes, cloud properties, and atmospheric vertical motion, while the longest time scales are exhibited by soil temperature and moisture, surface pressure, and atmospheric specific humidity, temperature and wind. The time scales of surface heat and momentum fluxes and of convective processes are substantially shorter over land than over the oceans.

  15. The effects of sampling frequency on the climate statistics of the ECMWF general circulation model

    SciTech Connect

    Phillips, T.J.; Gates, W.L. ); Arpe, K. )

    1992-09-01

    The effects of sampling frequency on the first- and second-moment statistics of selected EC model variables are investigated in a simulation of perpetual July'' with a diurnal cycle included and with surface and atmospheric fields saved at hourly intervals. The shortest characteristic time scales (as determined by the enfolding time of lagged autocorrelation functions) are those of ground heat fluxes and temperatures, precipitation and run-off, convective processes, cloud properties, and atmospheric vertical motion, while the longest time scales are exhibited by soil temperature and moisture, surface pressure, and atmospheric specific humidity, temperature and wind. The time scales of surface heat and momentum fluxes and of convective processes are substantially shorter over land than over the oceans.

  16. Comparison of Pre-and Post-Irradiation Low-Frequency Noise Spectra of Midwave Infrared nBn Detectors With Superlattice Absorbers

    NASA Astrophysics Data System (ADS)

    Garduño, Eli A.; Cowan, Vincent M.; Jenkins, Geoffrey D.; Morath, Christian P.; Steenbergen, Elizabeth H.

    2017-04-01

    Noise spectra of type-II strained layer superlattice midwave infrared photodetectors were compared preand postirradiation by a proton fluence of 7.5 × 1011 cm-2 [total ionizing dose equivalent of 100 krad (Si)] and related to the shot noise limit at biases ranging from +200 to -800 mV and temperatures of 130 and 160 K. Pre-irradiation dark current at 130 K was 7.5X Rule '07 and increased to 59X Rule '07 after irradiation. The pre-irradiation noise spectra were within one order of magnitude of the shot noise prediction, while post-irradiation noise spectra were close to two orders higher, indicating the introduction of nonshot-like noise sources.

  17. High frequency green function for aerodynamic noise in moving media. I - General theory. II - Noise from a spreading jet

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1983-01-01

    It is shown how a high frequency analysis can be made for general problems involving flow-generated noise. In the parallel shear flow problem treated by Balsa (1976) and Goldstein (1982), the equation governing sound propagation in the moving medium could be transformed into a wave equation for a stationary medium with an inhomogeneous index of refraction. It is noted that the procedure of Avila and Keller (1963) was then used to construct a high frequency Green function. This procedure involves matching a solution valid in an inner region around the point source to an outer, ray-acoustics solution. This same procedure is used here to construct the Green function for a source in an arbitrary mean flow. In view of the fact that there is no restriction to parallel flow, the governing equations cannot be transformed into a wave equation; the analysis therefore proceeds from the equations of motion themselves.

  18. Frequency-range discriminations: special and general abilities in zebra finches (Taeniopygia guttata) and humans (Homo sapiens).

    PubMed

    Weisman, R; Njegovan, M; Sturdy, C; Phillmore, L; Coyle, J; Mewhort, D

    1998-09-01

    The acoustic frequency ranges in birdsongs and human speech can provide important pitch cues for recognition. Zebra finches and humans were trained to sort contiguous frequencies into 3 or 8 ranges, based on associations between the ranges and reward. The 3-range task was conducted separately in 3 spectral regions. Zebra finches discriminated 3 ranges in the medium and high spectral regions faster than in the low region and discriminated 8 ranges with precision. Humans discriminated 3 ranges in all 3 spectral regions to the same modest standard and acquired only a crude discrimination of the lowest and highest of 8 ranges. The results indicate that songbirds have a special sensitivity to the pitches in conspecific songs and, relative to humans, have a remarkable general ability to sort pitches into ranges.

  19. Generalized acoustic energy density based active noise control in single frequency diffuse sound fields.

    PubMed

    Xu, Buye; Sommerfeldt, Scott D

    2014-09-01

    In a diffuse sound field, prior research has established that a secondary source can theoretically achieve perfect cancellation at an error microphone in the far field of the secondary source. However, the sound pressure level is generally only reduced in a small zone around the error sensor, and at a distance half of a wavelength away from the error sensor, the averaged sound pressure level will be increased by more than 10 dB. Recently an acoustic energy quantity, referred to as the generalized acoustic energy density (GED), has been introduced. The GED is obtained by using a weighting factor in the formulation of total acoustic energy density. Different values of the weighting factor can be chosen for different applications. When minimizing the GED at the error sensor, one can adjust the weighting factor to increase the spatial extent of the "quiet zone" and to achieve a desired balance between the degree of attenuation in the quiet zone and the total energy added into the sound field.

  20. The effects of general anesthetics on ESR spectra of spin labels in phosphatidylcholine vesicles containing purified Na,K-ATPase or microsomal protein

    NASA Astrophysics Data System (ADS)

    Shibuya, Makiko; Hiraoki, Toshifumi; Kimura, Kunie; Fukushima, Kazuaki; Suzuki, Kuniaki

    2012-12-01

    We investigated the effects of general anesthetics on liposome containing spin labels, 5-doxyl stearic acid (5-DSA) and 16-doxyl stearic acid (16-DSA), and purified Na,K-ATPase or membrane protein of microsome using an electron spin resonance (ESR) spectroscopy. The spectra of 16-DSA in liposomes with both proteins showed three sharp signals compared with 5-DSA. The difference in the order parameter S value of 5-DSA and 16-DSA suggested that the nitroxide radical location of 5-DSA and 16-DSA were different in the membrane bilayer. The results were almost the same as those obtained in liposomes without proteins. The addition of sevoflurane, isoflurane, halothane, ether, ethanol and propofol increased the intensity of the signals, but the clinical concentrations of anesthetics did not significantly alter the S and τ values, which are indices of the fluidity of the membrane. These results suggest that anesthetics remain on the surface of the lipid bilayer and do not act on both the inside hydrophobic area and the relatively hydrophilic area near the surface. These results and others also suggest that the existence of Na,K-ATPase and microsomal proteins did not affect the environment around the spin labels in the liposome and the effects of anesthetics on liposome as a model membrane.

  1. Order-disorder transition in conflicting dynamics leading to rank-frequency generalized beta distributions

    NASA Astrophysics Data System (ADS)

    Alvarez-Martinez, R.; Martinez-Mekler, G.; Cocho, G.

    2011-01-01

    The behavior of rank-ordered distributions of phenomena present in a variety of fields such as biology, sociology, linguistics, finance and geophysics has been a matter of intense research. Often power laws have been encountered; however, their validity tends to hold mainly for an intermediate range of rank values. In a recent publication (Martínez-Mekler et al., 2009 [7]), a generalization of the functional form of the beta distribution has been shown to give excellent fits for many systems of very diverse nature, valid for the whole range of rank values, regardless of whether or not a power law behavior has been previously suggested. Here we give some insight on the significance of the two free parameters which appear as exponents in the functional form, by looking into discrete probabilistic branching processes with conflicting dynamics. We analyze a variety of realizations of these so-called expansion-modification models first introduced by Wentian Li (1989) [10]. We focus our attention on an order-disorder transition we encounter as we vary the modification probability p. We characterize this transition by means of the fitting parameters. Our numerical studies show that one of the fitting exponents is related to the presence of long-range correlations exhibited by power spectrum scale invariance, while the other registers the effect of disordering elements leading to a breakdown of these properties. In the absence of long-range correlations, this parameter is sensitive to the occurrence of unlikely events. We also introduce an approximate calculation scheme that relates this dynamics to multinomial multiplicative processes. A better understanding through these models of the meaning of the generalized beta-fitting exponents may contribute to their potential for identifying and characterizing universality classes.

  2. Control-oriented high-frequency turbomachinery modeling: General one-dimensional model development

    SciTech Connect

    Badmus, O.O.; Eveker, K.M.; Nett, C.N.

    1995-07-01

    In this paper, an approach for control-oriented high-frequency turbomachinery modeling previously developed by the authors is applied to develop one-dimensional unsteady compressible viscous flow models for a generic turbojet engine and a generic compression system. The authors begin by developing models for various components commonly fund in turbomachinery systems. These components include: ducting without combustion, blading, ducting with combustion, heat soak, blading with heat soak, inlet, nozzle, abrupt area change with incurred total pressure lose, flow splitting, bleed, mixing, and the spool. Once the component models have been developed, they are combined to form system models for a generic turbojet engine and a generic compression system. These models are developed so that they can be easily modified and used with appropriate maps to form a model for a specific rig. It is shown that these system models are explicit (i.e., can be solved with any standard ODE solver without iteration) due to the approach used in their development. Furthermore, since the nonlinear models are explicit, explicit analytical linear models can be derived from the nonlinear models. The procedure for developing these analytical linear models is discussed. An interesting feature of the models developed here is the use of effective lengths within the models, as functions of axial Mach number and nondimensional rotational speed, for rotating components. These effective lengths account for the helical path of the flow as it moves through a rotating component. Use of these effective lengths in the unsteady conservation equations introduces a nonlinear dynamic lag consistent with experimentally observed compressor lag and replaces less accurate linear first-order empirical lags proposed to account for this phenomenon. Models of the type developed here are expected to prove useful in the design and simulation of (integrated) surge control and rotating stall avoidance schemes.

  3. Magnetic Susceptibility Induced White Matter MR Signal Frequency Shifts - Experimental Comparison between Lorentzian Sphere and Generalized Lorentzian Approaches

    PubMed Central

    Luo, J.; He, X.; Yablonskiy, D.A.

    2013-01-01

    Purpose The nature of the remarkable phase contrast in high field gradient echo MRI studies of human brain is a subject of intense debates. The Generalized Lorentzian Approach (GLA) (He & Yablonskiy, PNAS 2009;106:13558) provides an explanation for the anisotropy of phase contrast, the near absence of phase contrast between WM and CSF, and changes of phase contrast in multiple sclerosis. In this study we experimentally validate the GLA. Theory and Methods The GLA suggests that the local contribution to frequency shifts in WM does not depend on the average tissue magnetic susceptibility (as suggested by Lorentzian sphere approximation), but on the distribution and symmetry of magnetic susceptibility inclusions at the cellular level. We use ex vivo rat optic nerve as a model system of highly organized cellular structure containing longitudinally arranged myelin and neurofilaments. The nerve's cylindrical shape allowed accurate measurement of its magnetic susceptibility and local frequency shifts. Results We found that the volume magnetic susceptibility difference between nerve and water is −0.116ppm, and the magnetic susceptibilities of longitudinal components are −0.043ppm in fresh nerve, and −0.020ppm in fixed nerve. Conclusion The frequency shift observed in the optic nerve as a representative of WM is consistent with GLA but inconsistent with Lorentzian sphere approximation. PMID:23637001

  4. Differences in treatment regimes, consultation frequency and referral patterns of diabetes mellitus in general practice in five European countries.

    PubMed

    Donker, Gé A; Fleming, Douglas M; Schellevis, François G; Spreeuwenberg, Peter

    2004-08-01

    In many European countries, maturity onset diabetes mellitus (DM) is to a large extent managed in general practice. Our aim was to compare management of DM in general practice in five European countries in order to contribute to international guidelines on the management of DM by GPs. Routine monitoring of patients presenting with DM was performed during a 12 month period (1999-2000) to GPs in established sentinel practice surveillance networks in five European countries (Belgium, Croatia, England, Spain and The Netherlands). Results were stratified by age and country. The proportion of patients treated by diet only varied from 13% (The Netherlands) to 25% (Spain); diet and oral antidiabetics from 51% (England) to 62% (Belgium); a combination of diet and insulin varied from 15% (Belgium and Croatia) to 26% (The Netherlands); and a combination of diet, oral antidiabetics and insulin was <10% in all countries. In the older age groups, insulin is prescribed most frequently in The Netherlands. Spain and Croatia show high consultation rates for DM; England and The Netherlands show low rates. Referral percentages vary considerably between countries (highest in Croatia). National differences found included the use of insulin in the elderly, the consultation frequency in general practice and the referral rate to ophthalmologist and diabetic specialists. Further quantitative and qualitative studies are needed to explore the needs for support in diabetes management in general practice in Europe.

  5. Patient and practice characteristics predict the frequency of general practice multidisciplinary referrals of patients with chronic diseases: a multilevel study.

    PubMed

    Harris, Mark F; Jayasinghe, Upali W; Chan, Bibiana C; Proudfoot, Judy; Crookes, Patrick; Zwar, Nick; Powell Davies, Gawaine

    2011-07-01

    Chronic diseases require a multidisciplinary approach to provide optimal patient care in general practice. In Australian general practice, this usually involves referral to an allied health provider outside the practice. This study explored the patient and practice factors associated with referral of patients with diabetes, ischaemic heart disease (IHD) or hypertension to external allied health providers (AHPs). A multilevel analysis of data collected as part of a quasi-experimental study was conducted in 26 practices in Sydney. The frequency of patient-reported referral to AHPs 6-months post-intervention was measured against patient and practice characteristics assessed by patients and practice staff questionnaires. Seven per cent of the total variance in the referrals was due to differences between practices and 93% attributed to differences between patients. Previous referral, age over 45 years, multiple conditions, longer illness duration, poor mental and physical health were associated with the likelihood of referral to AHPs but not socio-economic status, patient self-assessment of care and the intervention. Those attending practices with over three GPs were more likely to be referred. Referral to multidisciplinary care for patients with long term conditions was appropriately linked to the complexity, duration and impact of these conditions. The lack of association between the intervention and the frequency of referral suggests that factors other than knowledge and communication such as the accessibility of the allied health services may have been more important in determining referral. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Solar flare soft-X-ray spectra from Very Low Frequency observations of ionospheric modulations: Possibility of uninterrupted observation of non-thermal electron-plasma interaction in solar atmosphere.

    NASA Astrophysics Data System (ADS)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Ray, Suman

    2016-07-01

    The hard and soft X-ray regions of a solar flare spectrum are the manifestation of interaction, namely of bremsstrahlung radiation of the non-thermal electrons moving inward in the denser part of the solar atmosphere with the plasma heated by those energetic electrons. The continuous and uninterrupted knowledge of X-ray photon spectra of flares are of great importance to derive information on the electron acceleration and hence time-evolution of energy transport and physics during solar flares. Satellite observations of solar X-ray spectrum are often limited by the restricted windows in each duty cycle to avoid the interaction of detectors and instruments with harmful energetic charge particles. In this work we have tried to tackle the problem by examining the possibility of using Earth's ionosphere and atmosphere as the detector of such transient events. Earth's lower ionosphere and upper atmosphere are the places where the X-rays and gamma-rays from such astronomical sources are absorbed. The electron-ion production rates due to the ionization of such energetic photons at different heights depend on the intensity and wavelength of the injected spectra and hence vary from one source to another. Obviously the electron and ion density vs. altitude profile has the imprint of the incident photon spectrum. As a preliminary exercise we developed a novel deconvolution method to extract the soft X-ray part of spectra of some solar flares of different classes from the electron density profiles obtained from Very Low Frequency (VLF) observation of lower ionosphere during those events. The method presented here is useful to carry out a similar exercise to infer the higher energy part of solar flare spectra and spectra of more energetic events such as the GRBs, SGRs etc. with the possibilities of probing even lower parts of the atmosphere.

  7. Far infrared and low frequency gas phase Raman spectra, vibrational assignment, and conformational stability of 1-chloro-2-methylpropane and 1-bromo-2-methylpropane

    NASA Astrophysics Data System (ADS)

    Durig, J. R.; Sullivan, J. F.; Godbey, S. E.

    1986-08-01

    The Raman (3200—10cm -1) and infrared (3200—50 cm -1) spectra of gaseous and solid 1-chloro-2-methylpropane and 1-bromo-methylpropane, as well as the Raman spectra of the liquids, have been recorded and assigned. The gauche asymmetric torsion of the 1-chloro-2-methylpropane molecules has been observed at 110 cm -1 in the Raman spectrum of the gas. For the 1-bromo-2-methylpropane molecule, both the trans and gauche asymmetric torsions have been observed at 106.70 and 103.94 cm -1, respectively, along with three additional transitions for the gauche conformer. From these data, the asymmetric potential function for the bromide molecules to V1 = —493 ±16, V2 = 595 ± 18, and V3 = 2006 ± 6 cm -1 with the trans conformer being more stable than the gauche conformer by 44 ± 20 cm -1. The trans form is found experimentally to be more stable in the liquid phase by 30 ± 14 cm -1 (83 ± 40 cal mol -1). From the relative intensities, in the Raman spectra, of the CCl stretches measured as a function of temperature, the gauche conformer of the chloride molecules to be 167 ± 71 cm -1 (479 ± 203 cal mol -1) more stable than the trans conformer in the gas phase, and 73 ± 10 cm -1 (208 ± 29 cal mol -1) more stable in the liquid phase. The methyl torsions for the gauche and trans conformers of both molecules are tentatively assigned in the gas phase and the barriers have been calculated. The results of this study are compared with previous studies on these molecules.

  8. Theory of Frequency-Dependent Polarization of General Planar Electrodes with Zeta Potentials of Arbitrary Magnitude in Ionic Media.

    PubMed

    Scott; Paul; Kaler

    2000-10-15

    Electrode polarization effects have long aggravated the efforts of low frequency analysis, particularly those investigations carried out on biological material or in highly conductive media. Beginning from elementary equations of electrostatics and hydrodynamics, a comprehensive model is devised to account for the screening of a general planar electrode by an ionic double layer. The surface geometry of the planar electrode is left unspecified to include any type of micromachined array. Building on the previous work by DeLacey and White (1982, J. Chem. Soc. Faraday Trans. 2 78, 457) using a variational theorem, we extend their numerical results with compact analytic solutions, analogous to the Debye-Hückel potential for dc systems, but applicable now to dynamic ac experiments. The variational approach generates functions that are not restricted by perturbation expansions or numerical convergence, representing optimal approximations to the exact solutions. Copyright 2000 Academic Press.

  9. Inference of Super-exponential Human Population Growth via Efficient Computation of the Site Frequency Spectrum for Generalized Models.

    PubMed

    Gao, Feng; Keinan, Alon

    2016-01-01

    The site frequency spectrum (SFS) and other genetic summary statistics are at the heart of many population genetic studies. Previous studies have shown that human populations have undergone a recent epoch of fast growth in effective population size. These studies assumed that growth is exponential, and the ensuing models leave an excess amount of extremely rare variants. This suggests that human populations might have experienced a recent growth with speed faster than exponential. Recent studies have introduced a generalized growth model where the growth speed can be faster or slower than exponential. However, only simulation approaches were available for obtaining summary statistics under such generalized models. In this study, we provide expressions to accurately and efficiently evaluate the SFS and other summary statistics under generalized models, which we further implement in a publicly available software. Investigating the power to infer deviation of growth from being exponential, we observed that adequate sample sizes facilitate accurate inference; e.g., a sample of 3000 individuals with the amount of data expected from exome sequencing allows observing and accurately estimating growth with speed deviating by ≥10% from that of exponential. Applying our inference framework to data from the NHLBI Exome Sequencing Project, we found that a model with a generalized growth epoch fits the observed SFS significantly better than the equivalent model with exponential growth (P-value [Formula: see text]). The estimated growth speed significantly deviates from exponential (P-value [Formula: see text]), with the best-fit estimate being of growth speed 12% faster than exponential.

  10. On the possibility of analytical approximation of line forms during random disorders of the resonance frequencies in molecular vibration-rotation spectra for satellite sounding

    NASA Technical Reports Server (NTRS)

    Fomin, V. V.

    1979-01-01

    The generalization spectral line contour concept and formulas for a two component mixture, as well as consequences of the general formula are discussed. The calculation procedure, initial information, calculation results and comparison of calculations with available experimental data, for radiation absorption in three CO2 bands are presented.

  11. Unravelling thermal emissivity spectra of the main minerals on Mercury's surface by comparison with ab initio calculated IR-HT vibrational frequencies

    NASA Astrophysics Data System (ADS)

    Stangarone, C.; Helbert, J.; Tribaudino, M.; Maturilli, A.; D'Amore, M.; Ferrari, S.; Prencipe, M.

    2015-12-01

    Spectral signatures of minerals are intimately related to the crystal structure; therefore they may represent a remote sensing model to determine surface composition of planetary bodies, by analysing their spectral reflectance and emission. However, one of the most critical point is data interpretation considering planetary surfaces, as Mercury, where the changes in spectral characteristics are induced by the high temperatures conditions (Helbert et al., 2013). The aim of this work is to interpret the experimental thermal emissivity spectra with an innovative approach: simulating IR spectra of the main mineral families that compose the surface of Mercury, focusing on pyroxenes (Sprague et al., 2002), both at room and high temperature, exploiting the accuracy of ab initio quantum mechanical calculations, by means of CRYSTAL14 code (Dovesi et al., 2014). The simulations will be compared with experimental emissivity measurements of planetary analogue samples at temperature up to 1000K, performed at Planetary Emissivity Laboratory (PEL) by Institute of Planetary Research (DLR, Berlin). Results will be useful to create a theoretical background to interpret HT-IR emissivity spectra that will be collected by the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS), a spectrometer developed by DLR that will be on board of the ESA BepiColombo Mercury Planetary Orbiter (MPO) scheduled for 2017. The goal is to point out the most interesting spectral features for a geological mapping of Mercury and other rocky bodies, simulating the environmental conditions of the inner planets of Solar System. Dovesi R., Saunders V. R., Roetti C., Orlando R., Zicovich-Wilson C. M., Pascale F., Civalleri B., Doll K., Harrison N. M., Bush I. J., D'Arco P., Llunell M., Causà M. & Noël Y. 2014. CRYSTAL14 User's Manual, University of Torino. Sprague, A. L., Emery, J. P., Donaldson, K. L., Russell, R. W., Lynch, D. K., & Mazuk, A. L. (2002). Mercury: Mid-infrared (3-13.5

  12. A national review of the frequency of minimally invasive surgery among general surgery residents: assessment of ACGME case logs during 2 decades of general surgery resident training.

    PubMed

    Richards, Morgan K; McAteer, Jarod P; Drake, F Thurston; Goldin, Adam B; Khandelwal, Saurabh; Gow, Kenneth W

    2015-02-01

    Minimally invasive surgery (MIS) has created a shift in how many surgical diseases are treated. Examining the effect on resident operative experience provides valuable insight into trends that may be useful for restructuring the requirements of resident training. To evaluate changes in general surgery resident operative experience regarding MIS. Retrospective review of the frequency of MIS relative to open operations among general surgery residents using the Accreditation Council for Graduate Medical Education case logs for academic years 1993-1994 through 2011-2012. General surgery residency training among accredited programs in the United States. We analyzed the difference in the mean number of MIS techniques and corresponding open procedures across training periods using 2-tailed t tests with statistical significance set at P < .05. Of 6,467,708 operations with the option of MIS, 2,393,030 (37.0%) were performed with the MIS approach. Of all MIS operations performed, the 5 most common were cholecystectomy (48.5%), appendectomy (16.2%), groin hernia repair (10.0%), abdominal exploration (nontrauma) (4.4%), and antireflux procedures (3.6%). During the study period, there was a transition from a predominantly open to MIS approach for appendectomy, antireflux procedures, thoracic wedge resection, and partial gastric resection. Cholecystectomy is the only procedure for which MIS was more common than the open technique throughout the study period (P < .001). The open approach is more common for all other procedures, including splenectomy (0.7% MIS), common bile duct exploration (24.9% MIS), gastrostomy (25.9% MIS), abdominal exploration (33.1% MIS), hernia (20.3% MIS), lung resection (22.3% MIS), partial or total colectomy (39.1%), enterolysis (19.0% MIS), ileostomy (9.0% MIS), enterectomy (5.2% MIS), vagotomy (1.8% MIS), and pediatric antireflux procedures (35.9% MIS); P < .001. Minimally invasive surgery has an increasingly prominent role in contemporary

  13. Frequency and zonal wavenumber spectra of altimetric sea level in the North Pacific as revealed by 9 years of TOPEX data

    NASA Astrophysics Data System (ADS)

    Tai, C.

    2007-12-01

    These two-dimensional spectra show the prevalence of free baroclinic Rossby waves from the equatorial region to the mid-latitudes. An innovation based on segregating the Fourier components into standing and propagating modes has helped reveal the Rossby waves more clearly where they have been obscured previously by the seal- level signatures of the seasonal heating and cooling cycle. It is found that the linear theory of Rossby waves applies well for most of the ocean (i.e., ignoring zonal and meridional density variations associated with the mean flow) with the possible exception in regions closer to the western boundary currents. That is, the Rossby wave speed is more or less uniform zonally across the North Pacific except closer to the western end in mid- latitudes. From the zonal and meridional distribution of the power of these Rossby waves, the source of these waves can be deciphered.

  14. Flood frequency analysis with systematic and historical or paleoflood data based on the two-parameter general extreme value models

    NASA Astrophysics Data System (ADS)

    Frances, Felix; Salas, Jose D.; Boes, Duane C.

    1994-06-01

    Historical and paleoflood data have become an important source of information for flood frequency analysis. A number of studies have been proposed in the literature regarding the value of historical and paleoflood information for estimating flood quantiles. These studies have been generally based on computer simulation experiments. In this paper the value of using systematic and historical/paleoflood data relative to using systematic records alone is examined analytically by comparing the asymptotic variances of flood quantiles assuming a two-parameter general extreme value marginal distribution, type 1 and type 2 censored data, and maximum likelihood estimation method. The results of this study indicate that the value of historical and paleoflood data for estimating flood quantiles can be small or large depending on only three factors: the relative magnitudes of the length of the systematic record (N) and the length of the historical period (M); the return period (T) of the flood quantile of interest; and the return period (H) of the threshold level of perception. For instance, for N = 50, M = 50 and T = 500, the statistical gain for type 2 censoring becomes significantly larger than for type 1 censoring as H becomes greater than 100 years. In addition, computer experiments have shown that the results regarding the statistical gain based on asymptotic considerations are valid for the usual sample sizes.

  15. Sleep quality and general health status of employees exposed to extremely low frequency magnetic fields in a petrochemical complex

    PubMed Central

    2014-01-01

    Background Advances in science and technology of electrical equipment, despite increasing human welfare in everyday life, have increased the number of people exposed to Electro-Magnetic Fields (EMFs). Because of possible adverse effects on the health of exposed individuals, the EMFs have being the center of attention. This study was performed to determine possible correlation between Extremely Low Frequency Electro-Magnetic Fields (ELF EMFs) and sleep quality and public health of those working in substation units of a petrochemical complex in southern Iran. Materials and method To begin with, magnetic flux density was measured at different parts of a Control Building and two substations in accordance with IEEE std 644–1994. Subsequently, the questionnaires “Pittsburgh Sleep Quality Index” (PSQI) and “General Health Quality (GHQ)” were used to investigate relationship between ELF exposure level and sleep quality and public health, respectively. Both questionnaires were placed at disposal of a total number of 40 workers at the complex. The filled out questionnaires were analyzed by T-test, Duncan and the Chi-square tests. Results The obtained results revealed that 28% of those in case group suffered from poor health status and 61% were diagnosed with a sleep disorder. However, all members in control group were in good health condition and only 4.5% of them had undesirable sleep quality. Conclusion In spite of a significant difference between the case and control groups in terms of sleep quality and general health, no significant relationship was found between the exposure level and sleep quality and general health. It is worth noting that the measured EMF values were lower than the standard limits recommended by American Conference of Industrial Hygienists (ACGIH). However, given the uncertainties about the pathogenic effects caused by exposure to ELF EMFs, further epidemiological studies and periodic testing of personnel working in high voltage substations

  16. Sleep quality and general health status of employees exposed to extremely low frequency magnetic fields in a petrochemical complex.

    PubMed

    Monazzam, Mohammad Reza; Hosseini, Monireh; Matin, Laleh Farhang; Aghaei, Habib Allah; Khosroabadi, Hossein; Hesami, Ahmad

    2014-01-01

    Advances in science and technology of electrical equipment, despite increasing human welfare in everyday life, have increased the number of people exposed to Electro-Magnetic Fields (EMFs). Because of possible adverse effects on the health of exposed individuals, the EMFs have being the center of attention. This study was performed to determine possible correlation between Extremely Low Frequency Electro-Magnetic Fields (ELF EMFs) and sleep quality and public health of those working in substation units of a petrochemical complex in southern Iran. To begin with, magnetic flux density was measured at different parts of a Control Building and two substations in accordance with IEEE std 644-1994. Subsequently, the questionnaires "Pittsburgh Sleep Quality Index" (PSQI) and "General Health Quality (GHQ)" were used to investigate relationship between ELF exposure level and sleep quality and public health, respectively. Both questionnaires were placed at disposal of a total number of 40 workers at the complex. The filled out questionnaires were analyzed by T-test, Duncan and the Chi-square tests. The obtained results revealed that 28% of those in case group suffered from poor health status and 61% were diagnosed with a sleep disorder. However, all members in control group were in good health condition and only 4.5% of them had undesirable sleep quality. In spite of a significant difference between the case and control groups in terms of sleep quality and general health, no significant relationship was found between the exposure level and sleep quality and general health. It is worth noting that the measured EMF values were lower than the standard limits recommended by American Conference of Industrial Hygienists (ACGIH). However, given the uncertainties about the pathogenic effects caused by exposure to ELF EMFs, further epidemiological studies and periodic testing of personnel working in high voltage substations are of utmost importance.

  17. Analytic calculations of anharmonic infrared and Raman vibrational spectra.

    PubMed

    Cornaton, Yann; Ringholm, Magnus; Louant, Orian; Ruud, Kenneth

    2016-02-07

    Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives-that is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is applicable to both Hartree-Fock and Kohn-Sham density functional theory. Using generalized vibrational perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic effects introduces combination and overtone bands that are observed in the experimental spectra. For the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities. Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the calculated spectra that may arise if numerical differentiation schemes are used.

  18. Analytic calculations of anharmonic infrared and Raman vibrational spectra

    PubMed Central

    Louant, Orian; Ruud, Kenneth

    2016-01-01

    Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives—that is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is applicable to both Hartree–Fock and Kohn–Sham density functional theory. Using generalized vibrational perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic effects introduces combination and overtone bands that are observed in the experimental spectra. For the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities. Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the calculated spectra that may arise if numerical differentiation schemes are used. PMID:26784673

  19. Line Coupling in Atmospheric Spectra

    NASA Technical Reports Server (NTRS)

    Tipping, R. H.

    1996-01-01

    The theoretical modeling of atmospheric spectra is important for a number of different applications: for instance, in the determination of minor atmospheric constituents such as ozone, carbon dioxide, CFC's etc.; in monitoring the temperature profile for climate studies; and in measuring the incoming and outgoing radiation to input into global climate models. In order to accomplish the above mentioned goal, one needs to know the spectral parameters characterizing the individual spectral lines (frequency, width, strength, and shape) as well as the physical parameters of the atmosphere (temperature, abundances, and pressure). When all these parameters are known, it is usually assumed that the resultant spectra and concomitant absorption coefficient can then be calculated by a superposition of individual profiles of appropriate frequency, strength and shape. However, this is not true if the lines are 'coupled'. Line coupling is a subtle effect that takes place when lines of a particular molecule overlap in frequency. In this case when the initial states and the final states of two transitions are connected by collisions, there is a quantum interference resulting in perturbed shapes. In general, this results in the narrowing of Q-branches (those in which the rotational quantum number does not change), and vibration-rotational R- and P branches (those in which the rotational quantum number changes by +/- 1), and in the spectral region beyond band heads (regions where the spectral lines pile up due to centrifugal distortion). Because these features and spectral regions are often those of interest in the determination of the abundances and pressure-temperature profiles, one must take this effect into account in atmospheric models.

  20. Line Coupling in Atmospheric Spectra

    NASA Technical Reports Server (NTRS)

    Tipping, R. H.

    1996-01-01

    The theoretical modeling of atmospheric spectra is important for a number of different applications: for instance, in the determination of minor atmospheric constituents such as ozone, carbon dioxide, CFC's etc.; in monitoring the temperature profile for climate studies; and in measuring the incoming and outgoing radiation to input into global climate models. In order to accomplish the above mentioned goal, one needs to know the spectral parameters characterizing the individual spectral lines (frequency, width, strength, and shape) as well as the physical parameters of the atmosphere (temperature, abundances, and pressure). When all these parameters are known, it is usually assumed that the resultant spectra and concomitant absorption coefficient can then be calculated by a superposition of individual profiles of appropriate frequency, strength and shape. However, this is not true if the lines are 'coupled'. Line coupling is a subtle effect that takes place when lines of a particular molecule overlap in frequency. In this case when the initial states and the final states of two transitions are connected by collisions, there is a quantum interference resulting in perturbed shapes. In general, this results in the narrowing of Q-branches (those in which the rotational quantum number does not change), and vibration-rotational R- and P branches (those in which the rotational quantum number changes by +/- 1), and in the spectral region beyond band heads (regions where the spectral lines pile up due to centrifugal distortion). Because these features and spectral regions are often those of interest in the determination of the abundances and pressure-temperature profiles, one must take this effect into account in atmospheric models.

  1. Relative energies, structures, vibrational frequencies, and electronic spectra of pyrylium cation, an oxygen-containing carbocyclic ring isoelectronic with benzene, and its isomers

    NASA Astrophysics Data System (ADS)

    Bera, Partha P.; Head-Gordon, Martin; Lee, Timothy J.

    2013-11-01

    We have studied relative energies, structures, rotational, vibrational, and electronic spectra of the pyrylium cation, an oxygen-containing six-membered carbocyclic ring, and its six isomers, using ab initio quantum chemical methods. Isoelectronic with benzene, the pyrylium cation has a benzenoid structure and is the global minimum on the singlet potential energy surface of C5H5O+. The second lowest energy isomer, the furfuryl cation, has a five membered backbone akin to a sugar, and is only 16 kcal mol-1 above the global minimum computed using coupled cluster theory with singles, doubles, and perturbative triple excitations (CCSD(T)) with the correlation consistent cc-pVTZ basis set. Other isomers are 25, 26, 37, 60, and 65 kcal mol-1 above the global minimum, respectively, at the same level of theory. Lower level methods such as density functional theory (B3LYP) and second order Møller-Plesset perturbation theory performed well when tested against the CCSD(T) results. The pyrylium and furfuryl cations, although separated by only 16 kcal mol-1, are not easily interconverted, as multiple bonds must be broken and formed, and the existence of more than one transition state is likely. Additionally, we have also investigated the asymptotes for the barrierless ion-molecule association of molecules known to exist in the interstellar medium that may lead to formation of the pyrylium cation.

  2. Use of Generalized Extreme Value Covariates to Improve Estimation of Trends and Return Frequencies for Lake Levels

    NASA Astrophysics Data System (ADS)

    Paynter, S.; Nachabe, M.

    2008-12-01

    One of the most important tools in water management is the accurate forecast of both long-term and short- term extreme values for both flood and drought conditions. Traditional methods of trend detection, such as ordinary least squares (OLS) or the Mann-Kendall test, are not aptly suited for hydrologic systems while traditional methods of predicting extreme flood and drought frequencies, such as distribution fitting without parameter covariates, may be highly inaccurate in lake-type systems, especially in the short-term. In the case of lakes, traditional frequency return estimates assume extremes are independent of trend or starting lake stages. However, due to the significant autocorrelation of lake levels, the initial stage can have a significant influence on the severity of a given event. The aim of this research was to accurately identify the direction and magnitude of trends in flood and drought stages and provide more accurate predictions of both long-term and short-term flood and drought stage return frequencies utilizing the generalized extreme value distribution with time and starting stage covariates. All of the lakes researched evidenced either no trend or very small trends unlikely to significantly alter prediction of future flood or drought return levels. However, for all of the lakes significant improvement in the prediction of extremes was obtained with the inclusion of starting lake stage as a covariate. Traditional methods of predicting flood or drought stages significantly overpredict stages when starting lake stages are low and underpredict stages when starting stages are high. The difference between these predictions can be nearly two meters, a significant amount in urbanized watersheds in areas of the world with flat topography. Differences of near two meters can mean significant alterations in evacuation or other water management decisions. In addition to improving prediction of extreme events, utilizing GEV with time or starting stage

  3. Theoretical Study of the Dynamic Spectra of the Whistler-Chorus Waves in the Ion-Electron Two-Fluid Plasma

    NASA Astrophysics Data System (ADS)

    Huang, Y. C.; Lyu, L. H.

    2016-12-01

    Dynamic spectra of the whistler-chorus waves are studied systematically based on the group-velocity distribution of the waves in the ion-electron two-fluid plasma. Six types of dynamic spectra are obtained in this study. They are (1) quasi-electromagnetic chorus waves with rising-tone dynamic spectra and with a frequency gap near half the electron cyclotron frequency, (2) quasi-electromagnetic chorus waves with rising-tone dynamic spectra but without a frequency gap across half the electron cyclotron frequency, (3) quasi-electrostatic chorus waves followed by quasi-electromagnetic chorus waves with rising-tone dynamic spectra but without a frequency gap across half the electron cyclotron frequency, (4) electromagnetic whistler waves with exponentially falling-tone dynamic spectra, (5) quasi-electrostatic chorus waves with linearly falling-tone dynamic spectra, (6) quasi-electromagnetic chorus waves followed by quasi-electrostatic chorus waves with rising-fall tone hooked dynamic spectra and with frequencies below half the electron cyclotron frequency. Our results also show that the wave normal angles of the quasi-electromagnetic whistler-chorus waves are in general less than the wave normal angles of the quasi-electrostatic chorus waves. The dynamic spectra and the corresponding wave normal angles of the whistler-chorus waves obtained in this study are in good agreement with previous satellite observations. We will also address the possible generation mechanisms of these waves and their impacts on electron accelerations in the inner magnetosphere.

  4. Capturing inhomogeneous broadening of the -CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS)

    NASA Astrophysics Data System (ADS)

    Velarde, Luis; Wang, Hong-fei

    2013-08-01

    While in principle the frequency-domain and time-domain spectroscopic measurements should generate identical information for a given molecular system, the inhomogeneous character of surface vibrations in sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with time-domain SFG-VS by mapping the decay of the vibrational polarization using ultrafast lasers, this due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough lineshape. Here, with the recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) technique, we show that the inhomogeneous lineshape can be obtained in the frequency-domain for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuir monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 ± 0.01 cm-1 with a total linewidth of 10.9 ± 0.3 cm-1 at half maximum. The Lorentzian contribution accounts only for 4.7 ± 0.4 cm-1 to this width and the Gaussian (inhomogeneous) broadening for as much as 8.1 ± 0.2 cm-1. Polarization analysis of the -CN spectra showed that the -CN group is tilted 57° ± 2° from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accommodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously.

  5. Capturing inhomogeneous broadening of the -CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS)

    SciTech Connect

    Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2013-08-28

    Even though in principle the frequency-domain and time-domain spectroscopic measurement should generate identical information for a given molecular system, inhomogeneous character of surface vibrations in the sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with the time-domain SFGVS by mapping the decay of the vibrational polarization using ultrafast lasers, due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough line shape. Here with recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) we show that the inhomogeneous line shape can be obtained in the frequency-domain, for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuir monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay (FID) results can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 + * 0.01 cm-1 with a total line width of 10.9 + - 0.3 cm-1 at half maximum. The Lorentzian contribution accounts only for 4:7 + -0:4 cm-1 to this width and the Gaussian (inhomogeneous) broadening for as much as 8:1+*0:2 cm-1. Polarization analysis of the -CN spectra showed that the -CN group is tilted 57 + - 2 degrees from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accomodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously.

  6. Lidar observations of vertical wavelengths, potential energy densities, and frequency spectra of stratospheric gravity waves from 2011 to 2015 at McMurdo (77.84° S, 166.69° E), Antarctica

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Chen, C.; Chu, X.; Lu, X.; Fong, W.; Yu, Z.; Roberts, B. R.; Dörnbrack, A.; Smith, J. A.

    2016-12-01

    Five years of atmospheric temperature data have been accumulated since the University of Colorado lidar group deployed an Fe Boltzmann lidar to Arrival Heights near McMurdo, Antarctica. Vertical wavelengths, periods, phase speeds, potential energy densities, and frequency spectra of gravity waves in the stratosphere (from 30 to 50 km) from 2011 to 2015 are investigated. Typical values for gravity wave vertical wavelength and period are 7.5 km and 5.5 h, respectively. However, they are all subjected to seasonal changes. Monthly means of vertical wavelength show a clear seasonal trend with considerably longer wavelengths in winter. Gravity wave potential energy densities (GWPEDs) obtained through temperature perturbations vary significantly from observation to observation; however, they do follow a seasonal trend with a winter maximum and a summer minimum. Efforts were made in order to reveal the mechanisms behind the observed signatures of stratospheric gravity waves. Background wind from European Centre for Medium-Range Weather Forecasts (ECMWF) model and polar vortex position information from Modern Era Retrospective-Analysis for Research and Applications (MERRA) are invoked. The increase in vertical wavelength in winter is linked to strong stratospheric westerlies due to the formation of polar vortex while the GWPED seasonal variations are connected to the changes of gravity wave sources and selective critical-level filtering. We did the first study of gravity wave frequency spectra in the Antarctica upper stratosphere. The slopes of power spectral density versus frequency range from 1.6 to 1.4 from 30 to 50 km, however, they change to 1.0 around 60 km.

  7. A new efficient method for determining weighted power spectra: detection of low-frequency solar p-modes by analysis of BiSON data

    NASA Astrophysics Data System (ADS)

    Fletcher, S. T.; Broomhall, A.-M.; Chaplin, W. J.; Elsworth, Y.; New, R.

    2011-08-01

    We present a new and highly efficient algorithm for computing a power spectrum made from evenly spaced data which combines the noise-reducing advantages of the weighted fit with the computational advantages of the fast Fourier transform. We apply this method to a 10-yr data set of the solar p-mode oscillations obtained by the Birmingham Solar Oscillations Network (BiSON) and thereby uncover three new low-frequency modes. These are the ℓ= 2, n= 5 and n= 7 modes and the ℓ= 3, n=7 mode. In the case of the ℓ= 2, n= 5 mode, this is believed to be the first such identification of this mode in the literature. The statistical weights needed for the method are derived from a combination of the real data and a sophisticated simulation of the instrument performance. Variations in the weights are due mainly to the differences in the noise characteristics of the various BiSON instruments, the change in those characteristics over time and the changing line-of-sight velocity between the stations and the Sun. It should be noted that a weighted data set will have a more time-dependent signal than an unweighted set and that, consequently, its frequency spectrum will be more susceptible to aliasing.

  8. Continuum Fitting HST QSO Spectra

    NASA Technical Reports Server (NTRS)

    Tytler, David; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The Principal Component Analysis (PCA) method which we are using to fit and describe QSO spectra relies upon the fact that QSO continuum are generally very smooth and simple except for emission and absorption lines. To see this we need high signal-to-noise (S/N) spectra of QSOs at low redshift which have relatively few absorption lines in the Lyman-a forest. We need a large number of such spectra to use as the basis set for the PCA analysis which will find the set of principal component spectra which describe the QSO family as a whole. We have found that too few HST spectra have the required S/N and hence we need to supplement them with ground based spectra of QSOs at higher redshift. We have many such spectra and we have been working to make them suitable for this analysis. We have concentrated on this topic since 12/15/01.

  9. Iminopropadienones RN=C=C=C=O and bisiminopropadienes RN=C=C=C=NR: Matrix infrared spectra and anharmonic frequency calculations

    NASA Astrophysics Data System (ADS)

    Bégué, Didier; Baraille, Isabelle; Andersen, Heidi Gade; Wentrup, Curt

    2013-10-01

    Methyliminopropadienone MeN=C=C=C=O 1a was generated by flash vacuum thermolysis from four different precursors and isolated in solid argon. The matrix-isolation infrared spectrum is dominated by unusually strong anharmonic effects resulting in complex fine structure of the absorptions due to the NCCCO moiety in the 2200 cm-1 region. Doubling and tripling of the corresponding absorption bands are observed for phenyliminopropadienone PhN=C=C=C=O 1b and bis(phenylimino)propadiene PhN=C=C=C=NPh 9, respectively. Anharmonic vibrational frequency calculations allow the identification of a number of overtones and combination bands as the cause of the splittings for each molecule. This method constitutes an important tool for the characterization of reactive intermediates and unusual molecules by matrix-isolation infrared spectroscopy.

  10. Dependence of the spin-wave resonance spectra in ferrite–garnet films on the microwave field frequency and damping parameter

    SciTech Connect

    Zyuzun, A. M. Bakulin, M. A.; Bezborodov, S. V.; Radaikin, V. V.; Sabaev, S. N.

    2016-04-15

    The factors affecting the slope of the dispersion curve of the spin-wave resonance spectrum in multilayer films are determined. It is shown that an increase in the slope of the curve for the transverse orientation of the constant magnetic field relative to the film upon an increase in frequency is due to enhancement of dynamic as well as dissipative mechanisms of spin pinning. It is found that an increase in the damping parameter increases the degree of spin pinning in the case when the pinning layer is a reactive medium for spin oscillations and can decrease the degree of pinning when it is a dispersive medium. The conditions ensuring a higher degree of accuracy in determining the exchange interaction constant from the spin-wave resonance spectrum in multilayer films are determined.

  11. Iminopropadienones RN=C=C=C=O and bisiminopropadienes RN=C=C=C=NR: matrix infrared spectra and anharmonic frequency calculations.

    PubMed

    Bégué, Didier; Baraille, Isabelle; Andersen, Heidi Gade; Wentrup, Curt

    2013-10-28

    Methyliminopropadienone MeN=C=C=C=O 1a was generated by flash vacuum thermolysis from four different precursors and isolated in solid argon. The matrix-isolation infrared spectrum is dominated by unusually strong anharmonic effects resulting in complex fine structure of the absorptions due to the NCCCO moiety in the 2200 cm(-1) region. Doubling and tripling of the corresponding absorption bands are observed for phenyliminopropadienone PhN=C=C=C=O 1b and bis(phenylimino)propadiene PhN=C=C=C=NPh 9, respectively. Anharmonic vibrational frequency calculations allow the identification of a number of overtones and combination bands as the cause of the splittings for each molecule. This method constitutes an important tool for the characterization of reactive intermediates and unusual molecules by matrix-isolation infrared spectroscopy.

  12. Generalized Hurst exponent and multifractal function of original and translated texts mapped into frequency and length time series.

    PubMed

    Ausloos, M

    2012-09-01

    A nonlinear dynamics approach can be used in order to quantify complexity in written texts. As a first step, a one-dimensional system is examined: two written texts by one author (Lewis Carroll) are considered, together with one translation into an artificial language (i.e., Esperanto) are mapped into time series. Their corresponding shuffled versions are used for obtaining a baseline. Two different one-dimensional time series are used here: one based on word lengths (LTS), the other on word frequencies (FTS). It is shown that the generalized Hurst exponent h(q) and the derived f(α) curves of the original and translated texts show marked differences. The original texts are far from giving a parabolic f(α) function, in contrast to the shuffled texts. Moreover, the Esperanto text has more extreme values. This suggests cascade model-like, with multiscale time-asymmetric features as finally written texts. A discussion of the difference and complementarity of mapping into a LTS or FTS is presented. The FTS f(α) curves are more opened than the LTS ones.

  13. Generalized regression neural network trained preprocessing of frequency domain correlation filter for improved face recognition and its optical implementation

    NASA Astrophysics Data System (ADS)

    Banerjee, Pradipta K.; Datta, Asit K.

    2013-02-01

    The paper proposes an improved strategy for face recognition using correlation filter under varying lighting conditions and occlusion where spatial domain preprocessing is carried out by two convolution kernels. The first convolution kernel is a contour kernel for emphasizing high frequency components of face image and the other kernel is a smoothing kernel used for minimization of noise those may arise due to preprocessing. The convolution kernels are obtained by training a generalized regression neural network using enhanced face features. Face features are enhanced by conventional principal component analysis. The proposed method reduces the false acceptance rate and false rejection rate in comparison to other standard correlation filtering techniques. Moreover, the processing is fast when compared to the existing illumination normalization techniques. A scheme of hardware implementation of all optical correlation technique is also suggested based on single spatial light modulator in a beam folding architecture. Two benchmark databases YaleB and PIE are used for performance verification of the proposed scheme and the improved results are obtained for both illumination variations and occlusions in test face images.

  14. Generalized Hurst exponent and multifractal function of original and translated texts mapped into frequency and length time series

    NASA Astrophysics Data System (ADS)

    Ausloos, M.

    2012-09-01

    A nonlinear dynamics approach can be used in order to quantify complexity in written texts. As a first step, a one-dimensional system is examined: two written texts by one author (Lewis Carroll) are considered, together with one translation into an artificial language (i.e., Esperanto) are mapped into time series. Their corresponding shuffled versions are used for obtaining a baseline. Two different one-dimensional time series are used here: one based on word lengths (LTS), the other on word frequencies (FTS). It is shown that the generalized Hurst exponent h(q) and the derived f(α) curves of the original and translated texts show marked differences. The original texts are far from giving a parabolic f(α) function, in contrast to the shuffled texts. Moreover, the Esperanto text has more extreme values. This suggests cascade model-like, with multiscale time-asymmetric features as finally written texts. A discussion of the difference and complementarity of mapping into a LTS or FTS is presented. The FTS f(α) curves are more opened than the LTS ones.

  15. Mapping of radio frequency electromagnetic field exposure levels in outdoor environment and comparing with reference levels for general public health.

    PubMed

    Cansiz, Mustafa; Abbasov, Teymuraz; Kurt, M Bahattin; Celik, A Recai

    2016-11-02

    In this study, radio frequency electromagnetic field exposure levels were measured on the main streets in the city center of Diyarbakır, Turkey. Measured electric field levels were plotted on satellite imagery of Diyarbakır and were compared with exposure guidelines published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Exposure measurements were performed in dense urban, urban and suburban areas each day for 7 consecutive days. The measurement system consisted of high precision and portable spectrum analyzer, three-axis electric field antenna, connection cable and a laptop which was used to record the measurement samples as a data logger. The highest exposure levels were detected for two places, which are called Diclekent and Batıkent. It was observed that the highest instantaneous electric field strength value for Batıkent was 7.18 V/m and for Diclekent was 5.81 V/m. It was statistically determined that the main contributor band to the total exposure levels was Universal Mobile Telecommunications System band. Finally, it was concluded that all measured exposure levels were lower than the reference levels recommended by ICNIRP for general public health.Journal of Exposure Science and Environmental Epidemiology advance online publication, 2 November 2016; doi:10.1038/jes.2016.64.

  16. General formalism for the efficient calculation of derivatives of EM frequency-domain responses and derivatives of the misfit

    NASA Astrophysics Data System (ADS)

    Pankratov, Oleg; Kuvshinov, Alexei

    2010-04-01

    Electromagnetic (EM) studies of the Earth have advanced significantly over the past few years. This progress was driven, in particular, by new developments in the methods of 3-D inversion of EM data. Due to the large scale of the 3-D EM inverse problems, iterative gradient-type methods have mostly been employed. In these methods one has to calculate multiple times the gradient of the penalty function-a sum of misfit and regularization terms-with respect to the model parameters. However, even with modern computational capabilities the straightforward calculation of the misfit gradients based on numerical differentiation is extremely time consuming. Much more efficient and elegant way to calculate the gradient of the misfit is provided by the so-called `adjoint' approach. This is now widely used in many 3-D numerical schemes for inverting EM data of different types and origin. It allows the calculation of the misfit gradient for the price of only a few additional forward calculations. In spite of its popularity we did not find in the literature any general description of the approach, which would allow researchers to apply this methodology in a straightforward manner to their scenario of interest. In the paper, we present formalism for the efficient calculation of the derivatives of EM frequency-domain responses and the derivatives of the misfit with respect to variations of 3-D isotropic/anisotropic conductivity. The approach is rather general; it works with single-site responses, multisite responses and responses that include spatial derivatives of EM field. The formalism also allows for various types of parametrization of the 3-D conductivity distribution. Using this methodology one can readily obtain appropriate formulae for the specific sounding methods. To illustrate the concept we provide such formulae for a number of EM techniques: geomagnetic depth sounding (GDS), conventional and generalized magnetotellurics, the magnetovariational method, horizontal

  17. Anomalous Behavior in the Rotational Spectra of the NU(8) = 2 and the NU(8) = 3 Vibrations for the Carbon -13 and NITROGEN-15 Tagged Isotopes of the Methyl Cyanide Molecule in the Frequency Range 17-95 GHZ

    NASA Astrophysics Data System (ADS)

    Al-Share, Mohammad Abdel Karim

    1990-01-01

    The rotational microwave spectra of the three isotopes (^{13}CH _3^{12}C^ {15}N, ^{12} CH_3^{13}C ^{15}N, and ^ {13}CH_3^{13 }C^{15}N) of the methyl cyanide molecule in the nu _8 = 3, nu_8 = 2, nu_7 = 1 and nu_4 = 1 vibrational energy levels for the rotational components 1 <=q J <=q 5 (for a range of frequency 17-95 GHz.) were experimentally and theoretically examined. Rotational components in each vibration were measured to determine the mutual interactions in each vibration between any of the vibrational levels investigated. The method of isotopic substitution was employed for internal tuning of each vibrational level by single and double substitution of ^{13} C in the two sites of the molecule. It was found that relative frequencies within each vibration with respect to another vibration were shifted in a systematic way. The results given in this work were interpreted on the basis of these energy shifts. Large departure between experimentally measured and theoretically predicted frequency for the quantum sets (J, K = +/-1, l = +/-1), K l = 1 in the nu_8 = 3 vibrational states for the ^{13 }C and ^{15}N tagged isotopes of CH_3CN showed anomalous behavior which was explained as being due to Fermi resonance. Accidentally strong resonances (ASR) were introduced to account for some departures were not explained by Fermi resonance.

  18. Study on the interaction between albendazole and eosin Y by fluorescence, resonance Rayleigh scattering and frequency doubling scattering spectra and their analytical applications

    NASA Astrophysics Data System (ADS)

    Tian, Fengling; Huang, Wei; Yang, Jidong; Li, Qin

    In pH 3.25-3.35 Britton-Robinson (BR) buffer solution, albendazole (ABZ) could react with eosin Y (EY) to form a 1:1 ion-association complex, which not only results in the quenching of fluorescence, but also resulted in the great enhancement of resonance Rayleigh scattering (RRS) and frequency doubling scattering (FDS). Furthermore, a new RRS spectrum will appear, and the maximum RRS wavelength was located at about 356 nm. The detection limit for ABZ were 21.51 ng mL-1 for the fluorophotometry, 6.93 ng mL-1 for the RRS method and 12.89 ng mL-1 for the FDS method. Among them, the RRS method had the highest sensitivity. The experimental conditions were optimized and effects of coexisting substances were evaluated. Meanwhile, the influences of coexisting substances were tested. The methods have been successfully applied to the determination of ABZ in capsules and human urine samples. The composition and structure of the ion-association complex and the reaction mechanism were discussed.

  19. High-frequency permeability spectra of FeCoSiN/Al{sub 2}O{sub 3} laminated films: Tuning of damping by magnetic couplings dependent on the thickness of each ferromagnetic layer

    SciTech Connect

    Xu Feng; Zhang Xiaoyu; Nguyen Nguyen Phuoc; Ma Yungui; Ong, C. K.

    2009-02-15

    In this work, we investigate the high-frequency permeability spectra of as-sputtered FeCoSiN/Al{sub 2}O{sub 3} laminated films, and discuss their dependence on the thickness of each FeCoSiN layer, based on the phenomenological Landau-Lifshitz-Gilbert equation. The damping factor and coercivity show their minima with lamination, deviating from the expectation based on the grain size confinement effect. Such dependences on the layer thickness indicate the influence of magnetic coupling. The decreases in the damping factor and the coercivities with lamination can be partially attributed to the decrease in the magnetostatic coupling induced by ripple structures. The enhanced damping and enlarged coercivity values obtained with further lamination are ascribed to the enhanced Neel couplings. The dependences show that the lamination can be effective in tuning the magnetization dynamics by changing the magnetic couplings.

  20. Quantum Mechanical Calculations of Vibrational Sum-Frequency-Generation (SFG) Spectra of Cellulose: Dependence of the CH and OH Peak Intensity on the Polarity of Cellulose Chains within the SFG Coherence Domain.

    PubMed

    Lee, Christopher M; Chen, Xing; Weiss, Philip A; Jensen, Lasse; Kim, Seong H

    2017-01-05

    Vibrational sum-frequency-generation (SFG) spectroscopy is capable of selectively detecting crystalline biopolymers interspersed in amorphous polymer matrices. However, the spectral interpretation is difficult due to the lack of knowledge on how spatial arrangements of crystalline segments influence SFG spectra features. Here we report time-dependent density functional theory (TD-DFT) calculations of cellulose crystallites in intimate contact with two different polarities: parallel versus antiparallel. TD-DFT calculations reveal that the CH/OH intensity ratio is very sensitive to the polarity of the crystallite packing. Theoretical calculations of hyperpolarizability tensors (βabc) clearly show the dependence of SFG intensities on the polarity of crystallite packing within the SFG coherence length, which provides the basis for interpretation of the empirically observed SFG features of native cellulose in biological systems.

  1. Terahertz-sideband spectra involving Kapteyn series

    NASA Astrophysics Data System (ADS)

    Lerche, Ian; Tautz, Robert C.; Citrin, D. S.

    2009-09-01

    Kapteyn series of the second kind appear in models of even- and odd-order sideband spectra in the optical regime of a quantum system modulated by a high-frequency (e.g., terahertz) electromagnetic field (Citrin D S 1999 Phys. Rev. B 60 5659) and in certain time-periodic transport problems in superlattices (Ignatov A A and Romanov Y A 1976 Phys. Status Solidi b 73 327; Feise M W and Citrin D S 1999 Appl. Phys. Lett. 75 3536). This paper shows that both the even- and the odd-order Kapteyn series that appear can be summed in closed form, thereby allowing more transparent insight into the structural dependence of the sideband spectra and also providing an analytic control for the accuracy of numerical procedures designed to evaluate the series. The general method of analysis may also be of interest for other Kapteyn series.

  2. Validation of Spectra and Phase in Sub-1 cm-1 Resolution Sum-Frequency Generation Vibrational Spectroscopy through Internal Heterodyne Phase-Resolved Measurement

    SciTech Connect

    Fu, Li; Chen, Shunli; Wang, Hongfei

    2016-03-03

    Reliably determination of the spectral features and their phases in sum-frequency generation vibrational spectroscopy (SFG-VS) for surfaces with closely overlapping peaks has been a standing issue. Here we present two approaches towards resolving such issue. The first utilizes the high resolution and accurate lineshape from the recently developed sub-wavenumber high resolution broadband SFG-VS (HR-BB-SFG-VS), from which the detail spectral parameters, including relative spectral phases, of overlapping peaks can be determined through reliable spectral fitting. These results are further validated by using the second method that utilizes the azimuthal angle phase dependence of the z-cut α-quartz crystal, a common phase standard, through the spectral interference between the SFG fields of the quartz surface, as the internal phase reference, and the adsorbed molecular layer. Even though this approach is limited to molecular layers that can be transferred or deposited onto the quartz surface, it is simple and straightforward, as it requires only an internal phase standard with a single measurement that is free of phase drifts. More importantly, it provides unambiguous SFG spectral phase information of such surfaces. Using this method, the absolute phase of the molecular susceptibility tensors of the CH3, CH2 and chiral C-H groups in different Langmuir-Blodgett (LB) molecular monolayers and drop-cast peptide films are determined. These two approaches are fully consistent with and complement to each other, making both easily applicable tools in SFG-VS studies. More importantly, as the HR-BB-SFG-VS technique can be easily applied to various surfaces and interfaces, such validation of the spectral and phase information from HR-BB-SFG-VS measurement demonstrates it as one most promising tool for interrogating the detailed structure and interactions of complex molecular interfaces.

  3. Perpendicular blade vortex interaction and its implications for helicopter noise prediction: Wave-number frequency spectra in a trailing vortex for BWI noise prediction

    NASA Technical Reports Server (NTRS)

    Devenport, William J.; Glegg, Stewart A. L.

    1993-01-01

    spectrum especially for the spectral peak at low frequencies, which previously was poorly predicted.

  4. Response to 'Comment on 'Continuum modes in rotating plasmas: General equations and continuous spectra for large aspect ratio tokamaks' '[Phys. Plasmas 19, 064701 (2012)

    SciTech Connect

    Lakhin, V. P.; Ilgisonis, V. I.

    2012-06-15

    The equations for the continuous spectra derived in our paper [V. P. Lakhin and V. I. Ilgisonis, Phys. Plasmas 18, 092103 (2011)] can be reduced to the matrix form used by Goedbloed et al.[Phys. Plasmas 11, 28 (2004)]. It is shown that the assumptions made in our paper provide the elliptic flow regime and guarantee the existence of plasma equilibrium with nested magnetic surfaces of circular cross-section. The new results on magnetohydrodynamic instabilities of such tokamak equilibria obtained in our paper but absent in the paper by Goedbloed et al. are emphasized.

  5. XTRAN2L - A PROGRAM FOR SOLVING THE GENERAL-FREQUENCY UNSTEADY TWO-DIMENSIONAL TRANSONIC SMALL-DISTURBANCE EQUATIONS

    NASA Technical Reports Server (NTRS)

    Seidel, D. A.

    1994-01-01

    The Program for Solving the General-Frequency Unsteady Two-Dimensional Transonic Small-Disturbance Equation, XTRAN2L, is used to calculate time-accurate, finite-difference solutions of the nonlinear, small-disturbance potential equation for two- dimensional transonic flow about airfoils. The code can treat forced harmonic, pulse, or aeroelastic transient type motions. XTRAN2L uses a transonic small-disturbance equation that incorporates a time accurate finite-difference scheme. Airfoil flow tangency boundary conditions are defined to include airfoil contour, chord deformation, nondimensional plunge displacement, pitch, and trailing edge control surface deflection. Forced harmonic motion can be based on: 1) coefficients of harmonics based on information from each quarter period of the last cycle of harmonic motion; or 2) Fourier analyses of the last cycle of motion. Pulse motion (an alternate to forced harmonic motion) in which the airfoil is given a small prescribed pulse in a given mode of motion, and the aerodynamic transients are calculated. An aeroelastic transient capability is available within XTRAN2L, wherein the structural equations of motion are coupled with the aerodynamic solution procedure for simultaneous time-integration. The wake is represented as a slit downstream of the airfoil trailing edge. XTRAN2L includes nonreflecting farfield boundary conditions. XTRAN2L was developed on a CDC CYBER mainframe running under NOS 2.4. It is written in FORTRAN 5 and uses overlays to minimize storage requirements. The program requires 120K of memory in overlayed form. XTRAN2L was developed in 1987.

  6. XTRAN2L - A PROGRAM FOR SOLVING THE GENERAL-FREQUENCY UNSTEADY TWO-DIMENSIONAL TRANSONIC SMALL-DISTURBANCE EQUATIONS

    NASA Technical Reports Server (NTRS)

    Seidel, D. A.

    1994-01-01

    The Program for Solving the General-Frequency Unsteady Two-Dimensional Transonic Small-Disturbance Equation, XTRAN2L, is used to calculate time-accurate, finite-difference solutions of the nonlinear, small-disturbance potential equation for two- dimensional transonic flow about airfoils. The code can treat forced harmonic, pulse, or aeroelastic transient type motions. XTRAN2L uses a transonic small-disturbance equation that incorporates a time accurate finite-difference scheme. Airfoil flow tangency boundary conditions are defined to include airfoil contour, chord deformation, nondimensional plunge displacement, pitch, and trailing edge control surface deflection. Forced harmonic motion can be based on: 1) coefficients of harmonics based on information from each quarter period of the last cycle of harmonic motion; or 2) Fourier analyses of the last cycle of motion. Pulse motion (an alternate to forced harmonic motion) in which the airfoil is given a small prescribed pulse in a given mode of motion, and the aerodynamic transients are calculated. An aeroelastic transient capability is available within XTRAN2L, wherein the structural equations of motion are coupled with the aerodynamic solution procedure for simultaneous time-integration. The wake is represented as a slit downstream of the airfoil trailing edge. XTRAN2L includes nonreflecting farfield boundary conditions. XTRAN2L was developed on a CDC CYBER mainframe running under NOS 2.4. It is written in FORTRAN 5 and uses overlays to minimize storage requirements. The program requires 120K of memory in overlayed form. XTRAN2L was developed in 1987.

  7. Effect of different frequencies of preventive maintenance treatment on periodontal conditions. 5-Year observations in general dentistry patients.

    PubMed

    Rosén, B; Olavi, G; Badersten, A; Rönström, A; Söderholm, G; Egelberg, J

    1999-04-01

    The protocol for this study was designed to evaluate the effects of supportive recall treatments provided with different frequencies, viz. at 3-, 6-, 12- and 18-month intervals. The subjects for the study were recruited from patients attending a public, general dentistry clinic. Prior to baseline, the subjects were given necessary dental treatments to provide a proper baseline for the study. Baseline, intermittent and final recordings included scores of dental plaque, bleeding on probing, probing depth and probing attachment level. Results were evaluated statistically by intergroup comparisons of changes for the various parameters from baseline to final examination after 5 years. The analyses showed some advantage to shorter recall intervals for plaque and bleeding scores. Although not statistically significant, there was a trend suggesting some rebound of sites > or =6 mm deep at the end of the study for the 18-month group, but not for the other groups. Similarly, there was a trend that the 18-month group showed a higher percentage of buccal/lingual furcation sites with attachment loss > or = 1.0 mm than the other groups. Apart from these trends, the analyses failed to demonstrate differences between the groups for either changes of probing depths or probing attachment levels. The negative observations included identification of individuals with 'disease progression' in the various groups, using a series of arbitrary definitions for this parameter. The results of this trial suggest that recall intervals extended to a year may be acceptable for the purpose of reducing periodontal disease progression in individuals with a history of limited susceptibility to the disease.

  8. Infrared spectra of substituted polycylic aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W. Jr; Hudgins, D. M.; Sandford, S. A.; Allamandola, L. J.

    1998-01-01

    Calculations are carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of 1-methylanthracene, 9-methylanthracene, 9-cyanoanthracene, 2-aminoanthracene, acridine, and their positive ions. The theoretical data are compared with matrix-isolation spectra for these species also reported in this work. The theoretical and experimental frequencies and relative intensities for the neutral species are in generally good agreement, whereas the positive ion spectra are only in qualitative agreement. Relative to anthracene, we find that substitution of a methyl or CN for a hydrogen does not significantly affect the spectrum other than to add the characteristic methyl C-H and C triple bond N stretches near 2900 and 2200 cm-1, respectively. However, addition of NH2 dramatically affects the spectrum of the neutral. Not only are the NH2 modes themselves strong, but this electron-withdrawing group induces sufficient partial charge on the ring to give the neutral molecule spectra characteristics of the anthracene cation. The sum of the absolute intensities is about four times larger for 2-aminoanthracene than those for 9-cyanoanthracene. Substituting nitrogen in the ring at the nine position (acridine) does not greatly alter the spectrum compared with anthracene.

  9. Temperature effect on optical spectra of monolayer molybdenum disulfide

    SciTech Connect

    Soklaski, Ryan; Liang, Yufeng; Yang, Li

    2014-05-12

    Recently, measured optical absorption and photoluminescence spectra reveal substantial frequency shifts of both exciton and trion peaks as monolayer molybdenum disulfide, MoS{sub 2}, is cooled from 363 K to 4 K. First-principles simulations using the GW-Bethe-Salpeter equation approach satisfactorily reproduce these frequency shifts by incorporating the thermal expansion effect. Studying these temperature effects in monolayer MoS{sub 2} is crucial for rectifying the results of available experiments with the previous predictions of zero-temperature-limit simulations. Moreover, our estimated thermal expansion coefficient of monolayer MoS{sub 2} is less than that of bulk counterpart by tracking the frequency shifts of the exciton peaks in optical spectra. This may serve as a convenient way to estimate thermal expansion coefficients of general two-dimensional chalcogenides.

  10. The Relationship between Lexical Frequency Profiling Measures and Rater Judgements of Spoken and Written General English Language Proficiency on the CELPIP-General Test

    ERIC Educational Resources Information Center

    Douglas, Scott Roy

    2015-01-01

    Independent confirmation that vocabulary in use unfolds across levels of performance as expected can contribute to a more complete understanding of validity in standardized English language tests. This study examined the relationship between Lexical Frequency Profiling (LFP) measures and rater judgements of test-takers' overall levels of…

  11. Frequency regulators for the nonperturbative renormalization group: A general study and the model A as a benchmark

    NASA Astrophysics Data System (ADS)

    Duclut, Charlie; Delamotte, Bertrand

    2017-01-01

    We derive the necessary conditions for implementing a regulator that depends on both momentum and frequency in the nonperturbative renormalization-group flow equations of out-of-equilibrium statistical systems. We consider model A as a benchmark and compute its dynamical critical exponent z . This allows us to show that frequency regulators compatible with causality and the fluctuation-dissipation theorem can be devised. We show that when the principle of minimal sensitivity (PMS) is employed to optimize the critical exponents η , ν , and z , the use of frequency regulators becomes necessary to make the PMS a self-consistent criterion.

  12. Frequency regulators for the nonperturbative renormalization group: A general study and the model A as a benchmark.

    PubMed

    Duclut, Charlie; Delamotte, Bertrand

    2017-01-01

    We derive the necessary conditions for implementing a regulator that depends on both momentum and frequency in the nonperturbative renormalization-group flow equations of out-of-equilibrium statistical systems. We consider model A as a benchmark and compute its dynamical critical exponent z. This allows us to show that frequency regulators compatible with causality and the fluctuation-dissipation theorem can be devised. We show that when the principle of minimal sensitivity (PMS) is employed to optimize the critical exponents η, ν, and z, the use of frequency regulators becomes necessary to make the PMS a self-consistent criterion.

  13. Increased training of general practitioners in Ireland may increase the frequency of exercise counselling in patients with chronic illness: a cross-sectional study.

    PubMed

    Joyce, Ciarán L; O'Tuathaigh, Colm M

    2014-12-01

    Recent systematic reviews have established that brief interventions in primary care are effective and economic at promoting physical activity. Lack of training has previously been identified as a barrier to lifestyle counselling in Ireland. This study evaluates frequency of exercise counselling (EC), in patients with six chronic illnesses (type 2 diabetes mellitus, stable coronary heart disease, hypertension, depression, obesity, osteoarthritis) and healthy adults, by general practitioners (GPs) in the mid-west of Ireland, as well as, whether training in EC influences the frequency of EC. A questionnaire survey of GPs based in the mid-west of Ireland was conducted during February and March 2012. The questionnaire was distributed to 39 GPs at two continuing medical education meetings and posted to 120 other GPs in the area. The questionnaire assessed the frequency of EC, use of written advice and frequency of recommending resistance exercise in the above patient groups. It also assessed training in EC. 64% of GPs responded (n = 102). Frequency of EC varied among the chronic illnesses evaluated. Use of written advice and advice on resistance exercise in EC was low. Only 17% of GPs had previous training in EC. If available, 94% of GPs would use guidelines to prescribe exercise in chronic illness. The association of previous training in EC with frequency of EC was variable, with significantly higher counselling rates found in T2DM, obesity and healthy adults. Improved training of GPs and development of guidelines may increase the frequency of EC in Ireland.

  14. [Quality of life and perceived general health state related to seizure type and frequency, electroencephalographic findings, cognitive impairment, therapeutic response and secondary effects in persons with epilepsy].

    PubMed

    Rossinol, Antoni; Molina, Irene; Rossinol, Tomeu; Garcia-Mas, Alexandre

    2013-07-01

    INTRODUCTION. The perceived quality of life (QoL) in persons with epilepsy has demonstrated to be a relevant factor for the continuity of treatment and for the patients' own general health perception. Currently, the positive concept of QoL is used to assess the psychosocial factors of the epilepsy, replacing the concept of stigma. AIM. To analyze the relationship between QoL and general health perception, with several relevant clinical parameters in a sample of persons with epilepsy, in order to draw conclusions that help to suggest a more global approach to the disease. PATIENTS AND METHODS. We applied the Spanish versions of the QOLIE-10, the GHQ-12, and MMSE, and registered the clinical parameters (diagnostic, years of illness, electroencephalographic patterns, seizure type and frequency, response to medication, and side effects) in a sample of 29 persons with epilepsy. RESULTS. QoL and perceived general health are two unrelated factors respect to the clinical features. QoL is closely related to the frequency and type of crisis, whilst the years of illness and the level of neurocognitive impairment are not related with QoL. CONCLUSIONS. From the clinical point of view, it must be taken into account the relationship between the persons with epilepsy perceived QoL with factors such as the seizure frequency, side effects of the medication, and the general health perception, in order to obtain the best response and treatment adherence.

  15. Shift in low-frequency vibrational spectra measured in-situ at 600 °C by Raman spectroscopy of zirconia developed on pure zirconium and Zr-1%Nb alloy

    NASA Astrophysics Data System (ADS)

    Kurpaska, L.; Lesniak, M.; Jadach, R.; Sitarz, M.; Jasinski, J. J.; Grosseau-Poussard, J.-L.

    2016-12-01

    In this study displacement of monoclinic bands of zirconia were investigated in the function of oxidation time using the Raman spectroscopy technique. Oxidations were performed on pure zirconium and zirconium alloy in-situ at 600 °C for 6 h. Analysis of the absolute intensities as well as the positions of the characteristic for monoclinic and tetragonal phase Raman bands were performed. Reported results has highlighted that monoclinic phase of zirconia undergoes a continuous band displacement, individual for each Raman mode. Recorded shift of low frequency vibrational spectra of monoclinic phase was employed to study stress developed in zirconia during high temperature oxidation - herein called as growing stress. In addition, based on the Raman band intensity we discuss observed transition of the metastable tetragonal phase to stable monoclinic phase. Reported results, for the first time showed that studied metals (pure zirconium and its alloy) behave similarly in terms of band shift. However the resulting value of growing stress associated to the band displacement is slightly different in regards of individual band and studied sample.

  16. A general evaluation of the frequency distribution of clay and associated minerals in the alluvial soils of ceylon

    USGS Publications Warehouse

    Herath, J.W.; Grimshaw, R.W.

    1971-01-01

    Clay mineral analyses were made of several alluvial clay materials from Ceylon. These studies show that the soil materials can be divided into 3 clay mineral provinces on the basis of the frequency distribution of clay and associated minerals. The provinces closely follow the climatic divisions. The characteristic feature of this classification is the progressive development of gibbsite from Dry to Wet Zone areas. Gibbsite has been used as a reliable indicator mineral. ?? 1971.

  17. Opportunistic Infections in HIV-Infected Patients Differ Strongly in Frequencies and Spectra between Patients with Low CD4+ Cell Counts Examined Postmortem and Compensated Patients Examined Antemortem Irrespective of the HAART Era

    PubMed Central

    Powell, Marta K.; Benková, Kamila; Selinger, Pavel; Dogoši, Marek; Kinkorová Luňáčková, Iva; Koutníková, Hana; Laštíková, Jarmila; Roubíčková, Alena; Špůrková, Zuzana; Laclová, Lucie; Eis, Václav; Šach, Josef

    2016-01-01

    Objective AIDS-related mortality has changed dramatically with the onset of highly active antiretroviral therapy (HAART), which has even allowed compensated HIV-infected patients to withdraw from secondary therapy directed against opportunistic pathogens. However, in recently autopsied HIV-infected patients, we observed that associations with a broad spectrum of pathogens remain, although detailed analyses are lacking. Therefore, we focused on the possible frequency and spectrum shifts in pathogens associated with autopsied HIV-infected patients. Design We hypothesized that the pathogens frequency and spectrum changes found in HIV-infected patients examined postmortem did not recapitulate the changes found previously in HIV-infected patients examined antemortem in both the pre- and post-HAART eras. Because this is the first comprehensive study originating from Central and Eastern Europe, we also compared our data with those obtained in the West and Southwest Europe, USA and Latin America. Methods We performed autopsies on 124 HIV-infected patients who died from AIDS or other co-morbidities in the Czech Republic between 1985 and 2014. The pathological findings were retrieved from the full postmortem examinations and autopsy records. Results We collected a total of 502 host-pathogen records covering 82 pathogen species, a spectrum that did not change according to patients’ therapy or since the onset of the epidemics, which can probably be explained by the fact that even recently deceased patients were usually decompensated (in 95% of the cases, the last available CD4+ cell count was falling below 200 cells*μl-1) regardless of the treatment they received. The newly identified pathogen taxa in HIV-infected patients included Acinetobacter calcoaceticus, Aerococcus viridans and Escherichia hermannii. We observed a very limited overlap in both the spectra and frequencies of the pathogen species found postmortem in HIV-infected patients in Europe, the USA and Latin

  18. Frequency of CCR5 delta-32 mutation in human immunodeficiency virus (HIV)-seropositive and HIV-exposed seronegative individuals and in general population of Medellin, Colombia.

    PubMed

    Díaz, F J; Vega, J A; Patiño, P J; Bedoya, G; Nagles, J; Villegas, C; Vesga, R; Rugeles, M T

    2000-01-01

    Repeated exposure to human immunodeficiency virus (HIV) does not always result in seroconversion. Modifications in coreceptors for HIV entrance to target cells are one of the factors that block the infection. We studied the frequency of Delta-32 mutation in ccr5 gene in Medellin, Colombia. Two hundred and eighteen individuals distributed in three different groups were analyzed for Delta-32 mutation in ccr5 gene by polymerase chain reaction (PCR): 29 HIV seropositive (SP), 39 exposed seronegative (ESN) and 150 individuals as a general population sample (GPS). The frequency of the Delta-32 mutant allele was 3.8% for ESN, 2.7% for GPS and 1.7% for SP. Only one homozygous mutant genotype (Delta-32/Delta-32) was found among the ESN (2.6%). The heterozygous genotype (ccr5/Delta-32) was found in eight GPS (5.3%), in one SP (3.4%) and in one ESN (2.6%). The differences in the allelic and genotypic frequencies among the three groups were not statistically significant. A comparison between the expected and the observed genotypic frequencies showed that these frequencies were significantly different for the ESN group, which indirectly suggests a protective effect of the mutant genotype (Delta-32/Delta-32). Since this mutant genotype explained the resistance of infection in only one of our ESN persons, different mechanisms of protection must be playing a more important role in this population.

  19. Calculation of IR-spectra of structural fragments of lignins

    NASA Astrophysics Data System (ADS)

    Derkacheva, O. Yu.; Ishankhodzhaeva, M. M.

    2016-12-01

    To study structure of softwood lignins the experimental and theoretical IR-spectra in middle IR-diapason were analyzed. To interpret these data the quantum chemical calculations of IR-spectra of general dimmer fragments of softwood lignins by method of density functional theory (DFT/B3LYP) with 6-31G(d,p) as basis set were carried out. These calculations showed that frequencies of normal vibrations of fragment with β-alkyl-aryl linkage are close to the experimental values of the IR absorption bands of lignin, and infrared spectrum of this structure is similar to the experimental spectrum of lignin. The calculations with accounting for the solvent showed a strong increase in the intensity of the majority of the bands and the solvent effect on the frequencies of vibrations.

  20. Frequency of rare mutations and common genetic variations in severe hypertriglyceridemia in the general population of Spain.

    PubMed

    Lamiquiz-Moneo, Itziar; Blanco-Torrecilla, Cristian; Bea, Ana M; Mateo-Gallego, Rocío; Pérez-Calahorra, Sofía; Baila-Rueda, Lucía; Cenarro, Ana; Civeira, Fernando; de Castro-Orós, Isabel

    2016-04-23

    Hypertriglyceridemia (HTG) is a common complex metabolic trait that results of the accumulation of relatively common genetic variants in combination with other modifier genes and environmental factors resulting in increased plasma triglyceride (TG) levels. The majority of severe primary hypertriglyceridemias is diagnosed in adulthood and their molecular bases have not been fully defined yet. The prevalence of HTG is highly variable among populations, possibly caused by differences in environmental factors and genetic background. However, the prevalence of very high TG and the frequency of rare mutations causing HTG in a whole non-selected population have not been previously studied. The total of 23,310 subjects over 18 years from a primary care-district in a middle-class area of Zaragoza (Spain) with TG >500 mg/dL were selected to establish HTG prevalence. Those affected of primary HTG were considered for further genetic analysis. The promoters, coding regions and exon-intron boundaries of LPL, LMF1, APOC2, APOA5, APOE and GPIHBP1 genes were sequenced. The frequency of rare variants identified was studied in 90 controls. One hundred ninety-four subjects (1.04%) had HTG and 90 subjects (46.4%) met the inclusion criteria for primary HTG. In this subgroup, nine patients (12.3%) were carriers of 7 rare variants in LPL, LMF1, APOA5, GPIHBP1 or APOE genes. Three of these mutations are described for the first time in this work. The presence of a rare pathogenic mutation did not confer a differential phenotype or a higher family history of HTG. The prevalence of rare mutations in candidate genes in subjects with primary HTG is low. The low frequency of rare mutations, the absence of a more severe phenotype or the dominant transmission of the HTG would not suggest the use of genetic analysis in the clinical practice in this population.

  1. Infrared Spectra of Substituted Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Hudgins, Douglas M.; Sandford, Scott A.; Allamandola, Louis J.; Arnold, James O. (Technical Monitor)

    1997-01-01

    Calculations are carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of 1-methylanthracene, 9-methylanthracene, 9-cyanoanthracene, 2-aminoanthracene, acridine, and their positive ions. The theoretical data are compared with matrix-isolation spectra for these species also reported in this work. The theoretical and experimental frequencies and relative intensities for the neutral species are in generally good agreement, whereas the positive ion spectra are only in qualitative agreement. Relative to anthracene, we find that substitution of amethyl or CN for a hydrogen does not significantly affect the spectrum other than to add the characteristic methyl C-H stretch and C-N stretch (near 2200/cm), respectively. However, addition of NH2 dramatically affects the spectrum of the neutral. Not only are the NH2 modes themselves strong, but this electron withdrawing group induces sufficient partial charge on the ring to give the neutral molecule characteristics of the anthracene cation spectrum. The sum of the absolute intensities is about four times larger for 2-aminoanthracene than for 9-cyanoanthracene. Substituting nitrogen in the ring at the nine position (acridine) does not greatly alter the spectrum compared with anthracene.

  2. Frequency of attendance in general practice and symptoms before development of chronic fatigue syndrome: a case-control study.

    PubMed Central

    Hamilton, W T; Hall, G H; Round, A P

    2001-01-01

    BACKGROUND: Chronic fatigue syndrome (CFS) research has concentrated on infective, immunological, and psychological causes. Illness behaviour has received less attention, with most research studying CFS patients after diagnosis. Our previous study on the records of an insurance company showed a highly significant increase in illness reporting before development of CFS. AIM: To investigate the number and type of general practitioner (GP) consultations by patients with CFS for 15 years before they develop their condition. DESIGN OF STUDY: Case-control study in 11 general practices in Devon. SETTING: Forty-nine patients with CFS (satisfying the Centers for Disease Control criteria), 49 age, sex, and general practice matched controls, and 37 patients with multiple sclerosis (MS) were identified from the general practices' computerised databases. METHOD: The number of general practice consultations and symptoms recorded in three five-year periods (quinquennia) were counted before development of the patients' condition. RESULTS: The median number of consultations was significantly higher for CFS patients than that of matched controls in each of the quinquennia: ratios for first quinquennium = 1.88, P = 0.01; second quinquennium = 1.70, P = 0.005; last quinquennium = 2.25, P < 0.001. More CFS patients than controls attended for 13 of the 18 symptoms studied. Significant increases were found for upper respiratory tract infection (P < 0.001), lethargy (P < 0.001), and vertigo (P = 0.02). Similar results were found for CFS patients when compared with MS. CONCLUSIONS: CFS patients consulted their GP more frequently in the 15 years before development of their condition, for a wide variety of complaints. Several possibilities may explain these findings. The results support the hypothesis that behavioural factors have a role in the aetiology of CFS. PMID:11462315

  3. Estimating Shock Spectra: Extensions beyond GEVS

    NASA Technical Reports Server (NTRS)

    Igusa, Takeru; Maahs, Gordon L.

    2008-01-01

    Shock response spectra (SRS) are the standard description of some vibration environments on spacecraft for equipment qualification. For shock events produced by pyrotechnic devices, SRS can have significant frequency content as high as 10 kHz. It is difficult to construct and analyze finite element models that can resolve dynamic behavior at such high frequencies. GEVS provides simple, empirically based methods for approximating the SRS for a wide variety of shock events. It begins with a base SRS according to the type of pyrotechnic device, and then provides attenuation relations to adjust this SRS according to distance from the shock source, the type of structural frame and the properties of any structural joints between the source and equipment. In our paper we extend GEVS to include more detailed information about the spacecraft structure. To retain the general framework of GEVS, we begin with a base SRS and adjust this SRS using attenuation relations. We use modal and traveling wave concepts to derive the attenuation relations for simple canonical structures. Then we show how these concepts can be used to analyze more complex structures using finite element mode shapes to explicitly calculate the attenuation factors. Since the low- to mid-frequency finite element modal information is extrapolated to obtain the low- to high-frequency attenuation relations, the resulting attenuated SRS is formulated as an upper bound rather than as mean predicted values. We illustrate the extended GEVS approach by analyzing the impact response of composite tubes and the shock response of the STEREO spacecraft.

  4. Generalized spectra model for 1-100 keV X-ray emission from Cygnus X-3 based on EXOSAT data

    NASA Astrophysics Data System (ADS)

    Rajeev, M. R.; Chitnis, V. R.; Rao, A. R.; Singh, K. P.

    1994-03-01

    The X-ray spectrum of the highly variable X-ray source, Cyg X-3, has so far defied a consistent explanation based on simple emission models. We have extracted two of the best data sets from the EXOSAT archives and performed a detailed spectral analysis for its 'high' and 'low' states. The analysis of the less frequently occurring 'low' state is presented for the first time for the EXOSAT data. Combining data from the medium-energy argon and xenon detectors and the gas scintillation proportional counter, with a better energy resolution, and carrying out a simultaneous fit, we find that the X-ray continuum in both the 'high' and 'low' state can be explained as a sum of a blackbody emission and emission from a Comptonized plasma cloud with a common absorption. The Comptonization model is sufficient as well as preferable to many other models, in explaining the observed X-ray emission up to 100 keV. In addition, we find an emission-line feature due to ionized iron (Fe XX-Fe XXVI) and absorption features due to cold iron (Fe I) as well as highly ionized iron (Fe XXV-Fe XXXVI). The presence of absorption due to Fe I has been shown for the first time here. This is the simplest and the most generalized spectral model for the 1-100 keV X-ray emission from Cyg X-3, to date. We find that the blackbody temperature derived in the 'high ' state (1.47 keV) is much lower than that derived for the 'low' state (2.40 keV) and is associated with an increase in the blackbodly radius in the 'high' state. The ratio of blackbody flux to the total flux is approximately 0.61 in the 'high' state and approximately 0.44 in the 'low' state. The Fe line energy is significantly higher in the 'high' state (approximately 6.95 keV) compared to the 'low' state (approximately 6.56 keV). The Comptonization parameter changes from 2 to approximately 15 in going from the 'high' to the 'low' state implying a highly saturated Comptonization in the 'low' state. The Comptonized region has high electron

  5. The anharmonic quartic force field infrared spectra of three polycyclic aromatic hydrocarbons: Naphthalene, anthracene, and tetracene

    SciTech Connect

    Mackie, Cameron J. Candian, Alessandra; Tielens, Alexander G. G. M.; Huang, Xinchuan; Maltseva, Elena; Buma, Wybren Jan; Petrignani, Annemieke; Oomens, Jos; Lee, Timothy J.

    2015-12-14

    Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesian derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C–H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.

  6. Microwave spectra of some volatile organic compounds

    NASA Technical Reports Server (NTRS)

    White, W. F.

    1975-01-01

    A computer-controlled microwave (MRR) spectrometer was used to catalog reference spectra for chemical analysis. Tables of absorption frequency, peak absorption intensity, and integrated intensity are included for 26 volatile organic compounds, all but one of which contain oxygen.

  7. Spectra: Time series power spectrum calculator

    NASA Astrophysics Data System (ADS)

    Gallardo, Tabaré

    2017-01-01

    Spectra calculates the power spectrum of a time series equally spaced or not based on the Spectral Correlation Coefficient (Ferraz-Mello 1981, Astron. Journal 86 (4), 619). It is very efficient for detection of low frequencies.

  8. Non-stationary signal analysis based on general parameterized time-frequency transform and its application in the feature extraction of a rotary machine

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Peng, Zhike; Chen, Shiqian; Yang, Yang; Zhang, Wenming

    2017-07-01

    With the development of large rotary machines for faster and more integrated performance, the condition monitoring and fault diagnosis for them are becoming more challenging. Since the time-frequency (TF) pattern of the vibration signal from the rotary machine often contains condition information and fault feature, the methods based on TF analysis have been widely-used to solve these two problems in the industrial community. This article introduces an effective non-stationary signal analysis method based on the general parameterized time-frequency transform (GPTFT). The GPTFT is achieved by inserting a rotation operator and a shift operator in the short-time Fourier transform. This method can produce a high-concentrated TF pattern with a general kernel. A multi-component instantaneous frequency (IF) extraction method is proposed based on it. The estimation for the IF of every component is accomplished by defining a spectrum concentration index (SCI). Moreover, such an IF estimation process is iteratively operated until all the components are extracted. The tests on three simulation examples and a real vibration signal demonstrate the effectiveness and superiority of our method.

  9. A generalized time-frequency subtraction method for robust speech enhancement based on wavelet filter banks modeling of human auditory system.

    PubMed

    Shao, Yu; Chang, Chip-Hong

    2007-08-01

    We present a new speech enhancement scheme for a single-microphone system to meet the demand for quality noise reduction algorithms capable of operating at a very low signal-to-noise ratio. A psychoacoustic model is incorporated into the generalized perceptual wavelet denoising method to reduce the residual noise and improve the intelligibility of speech. The proposed method is a generalized time-frequency subtraction algorithm, which advantageously exploits the wavelet multirate signal representation to preserve the critical transient information. Simultaneous masking and temporal masking of the human auditory system are modeled by the perceptual wavelet packet transform via the frequency and temporal localization of speech components. The wavelet coefficients are used to calculate the Bark spreading energy and temporal spreading energy, from which a time-frequency masking threshold is deduced to adaptively adjust the subtraction parameters of the proposed method. An unvoiced speech enhancement algorithm is also integrated into the system to improve the intelligibility of speech. Through rigorous objective and subjective evaluations, it is shown that the proposed speech enhancement system is capable of reducing noise with little speech degradation in adverse noise environments and the overall performance is superior to several competitive methods.

  10. [Wavelet property analysis of near infrared spectra].

    PubMed

    Tian, Gao-You; Yuan, Hong-Fu; Liu, Hui-Ying

    2006-08-01

    Wavelet analysis (WT) was conducted on the simulated near infrared spectra (NIR) obtained by adding simulated background and simulated noise into diesel NIR Results show that the background components are mainly located in the low frequency region, while noise in the high frequency region, and useful signal in the middle frequency region. Background and noise components can be simultaneously subtracted from the spectra by WT. The WT coefficients in mid-frequency details can be selected as variables to build the multivariate calibration model, which can improve analytic accuracy and reduce the analysis time.

  11. The Transfer of Resonance Line Polarization with Partial Frequency Redistribution in the General Hanle-Zeeman Regime

    NASA Astrophysics Data System (ADS)

    Alsina Ballester, E.; Belluzzi, L.; Trujillo Bueno, J.

    2017-02-01

    The spectral line polarization encodes a wealth of information about the thermal and magnetic properties of the solar atmosphere. Modeling the Stokes profiles of strong resonance lines is, however, a complex problem both from a theoretical and computational point of view, especially when partial frequency redistribution (PRD) effects need to be taken into account. In this work, we consider a two-level atom in the presence of magnetic fields of arbitrary intensity (Hanle-Zeeman regime) and orientation, both deterministic and micro-structured. Working within the framework of a rigorous PRD theoretical approach, we have developed a numerical code that solves the full non-LTE radiative transfer problem for polarized radiation, in one-dimensional models of the solar atmosphere, accounting for the combined action of the Hanle and Zeeman effects, as well as for PRD phenomena. After briefly discussing the relevant equations, we describe the iterative method of solution of the problem and the numerical tools that we have developed and implemented. We finally present some illustrative applications to two resonance lines that form at different heights in the solar atmosphere, and provide a detailed physical interpretation of the calculated Stokes profiles. We find that magneto-optical effects have a strong impact on the linear polarization signals that PRD effects produce in the wings of strong resonance lines. We also show that the weak-field approximation has to be used with caution when PRD effects are considered.

  12. [Frequency of benign tumors at the Hospital General "Dr. Manuel Gea Gonzalez". Record review between 2000-2006].

    PubMed

    Káram-Orantes, Marcia; Fonte-Avalos, Verónica; Zuloaga-Salcedo, Soraya; Domínguez-Cherit, Judith

    2007-01-01

    Benign skin neoplasms are defined as autonomous growing tissue unrelated to normal growing of the skin, that persist even after the originating stimulus dissapears. Almost all human beings have a certain number of benign cutaneous neoplasms and many never seek medical attention. There is a dearth of information regarding the frequency of these tumors. The aim of this study was to record the number of benign tumors studied at the Dermatology Department of a medical facility. A retrospective study analyzed medical records between 2000 and 2006. We included year of admission, number of biopsies, sex, age, tumor location, histological and clinical diagnoses. We analyzed 9,436 biopsies of which 3,765 constituted benign neoplasms; 595 were not included and our total sample was 3,170 tumors. The most frequent tumors according to histopathological diagnoses in descending order were: melanocytic, cutaneous cysts, fibrous tumors, vascular tumors, epidermal tumors, fat tumors, tumors with hair differentiation, neural tumors, glandular tumors, tumors with sebaceous differentiation, cartilage and bone tumors, and smooth muscle tumors. The most common benign tumors were: Melanocytic nevi, epidermal cysts, seborrheic keratoses, pyogenic granulomas, lipomas and dermatofibromas. Melanocytes represented by melanocytic nevi (junctional, intradermic and compound) were the most frequent benign neoplasms, followed by epidermoid cysts. Our results illustrate the most common benign tumors observed in a dermatology department.

  13. [Frequency of peritoneal transport in a population of the Hospital General Regional No. 46, Instituto Mexicano del Seguro Social].

    PubMed

    Chávez Valencia, Venice; Orizaga de la Cruz, Citlalli; Pazarin Villaseñor, Héctor Leonardo; Fuentes Ramírez, Francisco; Parra Michel, Renato; Aragaki, Yuritomo; Márquez Magaña, Isela; García Cárdenas, Mario Alberto; Campos Enrique, Rojas

    2014-12-01

    The peritoneal equilibration test (PET) is a common test used in the adequacy of peritoneal dialysis (PD). To determine the frequency of presentation of different types of peritoneal transport in patients on PD ranking with Twardowski, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ) and Hospital de Especialidades del Instituto Mexicano del Seguro Social Centro Médico Nacional de Occidente (IMSS-HE, CMNO) and establish themselves. Descriptive and transversal study. Included with PET on PD patients between April 2011 to September 2012; any gender, 16 years or older, in DP minimum of 4 weeks. PEP performed standardized bags of 2.5%. Performed 235 PET. We can classify peritoneal transport with Twardowski in high (H) 34%, high average (HA) 37%, low average (LA) 25%, and low (L) 4% peritoneal transport rates. INCMNSZ percentages H was 34%, HA 32%, LA 23%, and L 11%; using the CMNO HE was H 26%, HA 31%, LA 31%, and L 12%. From our data, the percentage of patients with H was 22%, HA 33%, LA 32%, and L13%. Classifying patients according to type of transport with Twardowski will under-diagnose the low and overestimate high transport, and can alter survival forecasts.

  14. An extension of the generalized nonlocal theory for the mode analysis of plasmonic waveguides at telecommunication frequency

    NASA Astrophysics Data System (ADS)

    Teng, Da; Cao, Qing; Wang, Kai

    2017-05-01

    We present an extension of the generalized nonlocal (GNL) optical response theory for the mode analysis of several plasmonic waveguides. We show that, compared with the local description, the imaginary part of the effective mode index is enlarged using the GNL response model. We ascribe this enlargement to the ‘effective’ surface modification and the induced charge diffusion. This result is quite different from that of the hydrodynamic model, where the imaginary part becomes smaller compared with that of the local model. Further, we investigate the influence of geometry parameters on propagation properties and find that the nonlocal effects are much more remarkable for smaller gap and sharper tip. Although the introduction of diffusion has a negative impact on the propagation length, it reveals the true physical insight and should be taken care when dealing with nanoplasmonic waveguide for photonic integration applications.

  15. Measurement of high frequency waves using a wave follower

    NASA Technical Reports Server (NTRS)

    Tang, S.; Shemdin, O. H.

    1983-01-01

    High frequency waves were measured using a laser-optical sensor mounted on a wave follower. Measured down-wind wave slope spectra are shown to be wind speed dependent; the mean square wave-slopes are generally larger than those measured by Cox and Munk (1954) using the sun glitter method.

  16. Vibrational investigation on FT-IR and FT-Raman spectra, IR intensity, Raman activity, peak resemblance, ideal estimation, standard deviation of computed frequencies analyses and electronic structure on 3-methyl-1,2-butadiene using HF and DFT (LSDA/B3LYP/B3PW91) calculations

    NASA Astrophysics Data System (ADS)

    Ramalingam, S.; Jayaprakash, A.; Mohan, S.; Karabacak, M.

    2011-11-01

    FT-IR and FT-Raman (4000-100 cm -1) spectral measurements of 3-methyl-1,2-butadiene (3M12B) have been attempted in the present work. Ab-initio HF and DFT (LSDA/B3LYP/B3PW91) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, IR intensities and Raman activities. Complete vibrational assignments on the observed spectra are made with vibrational frequencies obtained by HF and DFT (LSDA/B3LYP/B3PW91) at 6-31G(d,p) and 6-311G(d,p) basis sets. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The potential energy distribution (PED) corresponding to each of the observed frequencies are calculated which confirms the reliability and precision of the assignment and analysis of the vibrational fundamentals modes. The oscillation of vibrational frequencies of butadiene due to the couple of methyl group is also discussed. A study on the electronic properties such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties of the title compound at different temperatures reveal the correlations between standard heat capacities ( C) standard entropies ( S), and standard enthalpy changes ( H).

  17. The frequency of different CGG-repeat alleles in the FMR-1 gene in the general population and special populations

    SciTech Connect

    Holden, J.J.A. |; Chalifoux, M.; Wing, M.

    1994-09-01

    The fragile X (FRAXA) syndrome is the most common inherited form of developmental disability and was the first genetic disorder in which the mechanism of mutation is triplet repeat expansion. The normal fragile X mental retardation-1 gene has 6-52 copies of the CGG-repeat; affected males have extensive amplification, coupled with methylation and gene inactivation; and carriers have between about 55 and 200 copies. There is some overlap in the 45-55 repeat range, with some alleles showing stable and othres unstable transmission. There have been several estimates of the incidence of the FRAXA syndrome, based on testing of special populations using chromosome analysis and the range is 1/750-1/2000. Because of the high burden associated with this syndrome, and in the face of discussions about population screening, it is important to know the actual incidence of mutations in this gene, as well as the distribution of unstable repeats above 45 copes. We have initiated a general population screening to examine 50,000 newborn samples using PCR, and have developed a rapid, inexpensive and reliable method for amplifying the CGG-repeat from Guthrie spots. In the first 1600 samples examined, we found 15 alleles with greater than 45 CGG-repeats, with the highest being 61 repeats.

  18. The frequency of alcohol, illicit and licit drug consumption in the general driving population in South-East Hungary.

    PubMed

    Institóris, László; Tóth, Anita Réka; Molnár, Attila; Arok, Zsófia; Kereszty, Eva; Varga, Tibor

    2013-01-10

    In the framework of the DRUID (Driving under the Influence of Drugs, Alcohol, and Medicines) EU-6 project, a roadside survey was performed in South-East Hungary to determine the incidence of alcohol and the most frequent illicit and licit drug consumption (amphetamines, THC, illicit and medical opiates, cocaine, ketamine, benzodiazepines, zopiclone and zolpidem) in the general driving population. All 3110 drivers stopped between 01 January 2008 and 31 December 2009 were checked for alcohol, and among them 2738 persons (87.7%) participated in the further examinations, on a voluntary basis. Licit and illicit drugs were determined from their oral fluid samples by GC-MS analysis. Illicit drugs were detected in 27 cases (0.99%), licit drugs in 85 cases (3.14%), and alcohol (cut off: 0.1g/l) was found in 4 (0.13%) cases. Illicit drug consumption was the highest among men of the ages 18-34, during the spring, and on the week-end nights. With respect to licit drugs, the highest incidence was found among women over the age of 50, during the summer, and on the week-days. All alcohol positive cases were men over the age of 35. In comparison to international European averages, the alcohol and illicit drug consumption was low, but the licit drug consumption was over the European average.

  19. Computer Simulation of NMR Spectra.

    ERIC Educational Resources Information Center

    Ellison, A.

    1983-01-01

    Describes a PASCAL computer program which provides interactive analysis and display of high-resolution nuclear magnetic resonance (NMR) spectra from spin one-half nuclei using a hard-copy or monitor. Includes general and theoretical program descriptions, program capability, and examples of its use. (Source for program/documentation is included.)…

  20. Assessment of Time and Frequency Domain Parameters of Heart Rate Variability and Interictal Cardiac Rhythm Abnormalities in Drug-naïve Patients with Idiopathic Generalized Epilepsy.

    PubMed

    Kilinc, Ozden; Cincin, Altug; Pehlivan, Aslihan; Midi, Ipek; Kepez, Alper; Agan, Kadriye

    2016-06-01

    Epilepsy is a disease known to occur with autonomous phenomenons. Earlier studies indicate decreased heart rate variability (HRV) during ictal and interictal periods among epilepsy patients. In this study, we aim to investigate cardiac rhythm abnormalities and HRV during interictal period between drug-naïve patients with idiopathic generalized epilepsy (IGE) and healthy control group. Twenty-six patients with IGE and 26 healthy individuals included in the study. In order to eliminate any structural cardiac pathology, transthoracic echocardiography was performed in all subjects and time and frequency domain parameters of HRV were evaluated after 24-hour rhythm holter monitoring. Between two groups, no significant difference was detected in terms of mean heart rate and maximum duration between the start of the Q waves and the end of the T waves (QT intervals). In the time domain analysis of HRV, no statically significant difference was detected for standard deviation of all R - R intervals and root-mean-square of successive differences between patient and control group (p = 0,070 and p = 0,104 respectively). In the frequency domain analysis of HRV, patients tended to display lower total power and very low frequency power than did healthy subjects, but the differences were not statistically significant. Our results suggest that there is no major effect of the epilepsy on HRV in patients with IGE. It should be emphasized that, in this study, HRV was evaluated only in patients with IGE and that the results are not proper to be generalized for patients with partial seizures.

  1. Collective Thomson scattering measurements with high frequency resolution at TEXTOR

    SciTech Connect

    Stejner, M.; Nielsen, S. K.; Korsholm, S. B.; Salewski, M.; Bindslev, H.; Furtula, V.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Buerger, A.; Kantor, M.; Baar, M. de

    2010-10-15

    We discuss the development and first results of a receiver system for the collective Thomson scattering (CTS) diagnostic at TEXTOR with frequency resolution in the megahertz range or better. The improved frequency resolution expands the diagnostic range and utility of CTS measurements in general and is a prerequisite for measurements of ion Bernstein wave signatures in CTS spectra. The first results from the new acquisition system are shown to be consistent with theory and with simultaneous measurements by the standard receiver system.

  2. Infrared Spectra of Perdeuterated Naphthalene, Phenanthrene, Chrysene, and Pyrene

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Sandford, Scott A.; Hudgins, Douglas M.; Arnold, James O. (Technical Monitor)

    1996-01-01

    Calculations are carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of perdeuterated naphthalene, phenanthrene, pyrene, and chrysene. We also report matrix- isolation spectra for these four species. The theoretical and experimental frequencies and relative intensities for the perdeuterated species are in generally good agreement. The effect of perdeuteration is to reduce the sum of the integrated intensities by a factor of about 1.75. This reduction occurs for all vibrational motions, except for the weak low frequency ring deformation modes. There is also a significant redistribution of the relative intensities between the out-of-plane C-D bands relative to those found for the out-of-plane C-H bands. The theoretical isotopic ratios provide an excellent diagnostic of the degree of C-H(C-D) involvement in the vibrational bands, allowing in most cases a clear distinction of the type of motion.

  3. Infrared Spectra of Perdeuterated Naphthalene, Phenanthrene, Chrysene, and Pyrene

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Sandford, Scott A.; Hudgins, Douglas M.; Arnold, James O. (Technical Monitor)

    1996-01-01

    Calculations are carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of perdeuterated naphthalene, phenanthrene, pyrene, and chrysene. We also report matrix- isolation spectra for these four species. The theoretical and experimental frequencies and relative intensities for the perdeuterated species are in generally good agreement. The effect of perdeuteration is to reduce the sum of the integrated intensities by a factor of about 1.75. This reduction occurs for all vibrational motions, except for the weak low frequency ring deformation modes. There is also a significant redistribution of the relative intensities between the out-of-plane C-D bands relative to those found for the out-of-plane C-H bands. The theoretical isotopic ratios provide an excellent diagnostic of the degree of C-H(C-D) involvement in the vibrational bands, allowing in most cases a clear distinction of the type of motion.

  4. Regional wave attenuation and seismic moment from the inversion of NORESS spectra

    NASA Astrophysics Data System (ADS)

    Sereno, Thomas J., Jr.; Bratt, Steven R.; Bache, Thomas C.

    1987-07-01

    Frequency-dependent regional wave attenuation along continental paths to the NORESS array in Norway is investigated. Regional Lg and Pn spectra from 190 events, at distances between 200 and 1300 km, have been inverted for seismic moment and apparent attenuation. Our method uses both the spectral and spatial decay of observed signal amplitudes to separate source and path contributions. Based on adequate signal/noise, the Lg spectra were inverted between 1 and 7 Hz and the Pn spectra between 1 and 15 Hz. The data are parameterized by an omega - sq source spectrum with cube-root corner frequency scaling and an assumed geometric spreading function. Most events considered have local magnitudes less than 3.0, so the corner frequencies are near or beyond the upper limit of the bandwidth inverted. The spectra are inverted for source moment, a constant relating corner frequency and moment, and two parameters describing a power-law frequency dependence of Q. For fixed source and spreading assumptions, the inversion defines clear trade-offs among model parameters. To resolve these trade-offs, constraints are added to the separately derived source parameters Lg and Pn that they be consistent. The inversion results for seismic moment as a function of local magnitude are generally consistent with near-field studies.

  5. Generalized multidimensional earthquake frequency distributions consistent with Non-Extensive Statistical Physics: An appraisal of the universality in the interdependence of magnitude, interevent time and interevent distance

    NASA Astrophysics Data System (ADS)

    Tzanis, Andreas; Vallianatos, Philippos; Efstathiou, Angeliki

    2013-04-01

    It is well known that earthquake frequency is related to earthquake magnitude via a simple linear relationship of the form logN = a - bM, where N is the number of earthquakes in a specified time interval; this is the famous Gutenberg - Richter (G-R) law. The generally accepted interpretation of the G-R law is that it expresses the statistical behaviour of a fractal active tectonic grain (active faulting). The relationship between the constant b and the fractal dimension of the tectonic grain has been demonstrated in various ways. The story told by the G-R law is, nevertheless, incomplete. It is now accepted that the active tectonic grain comprises a critical complex system, although it hasn't yet been established whether it is stationary (Self-Organized Critical), evolutionary (Self-Organizing Critical), or a time-varying blend of both. At any rate, critical systems are characterized by complexity and strong interactions between near and distant neighbours. This, in turn, implies that the self-organization of earthquake occurrence should be manifested by certain statistical behaviour of its temporal and spatial dependence. A strong line of evidence suggests that G-R law is a limiting case of a more general frequency-magnitude distribution, which is properly expressed in terms of Non-Extensive Statistical Physics (NESP) on the basis of the Tsallis entropy; this is a context natural and particularly suitable for the description of complex systems. A measure of temporal dependence in earthquake occurrence is the time lapsed between consecutive events above a magnitude threshold over a given area (interevent time). A corresponding measure of spatial dependence is the hypocentral distance between consecutive events above a magnitude threshold over a given area (interevent distance). The statistics of earthquake frequency vs. interevent time have been studied by several researchers and have been shown to comply with the predictions of the NESP formalism. There's also

  6. Low-frequency scaling applied to stochastic finite-fault modeling

    NASA Astrophysics Data System (ADS)

    Crane, Stephen; Motazedian, Dariush

    2014-01-01

    Stochastic finite-fault modeling is an important tool for simulating moderate to large earthquakes. It has proven to be useful in applications that require a reliable estimation of ground motions, mostly in the spectral frequency range of 1 to 10 Hz, which is the range of most interest to engineers. However, since there can be little resemblance between the low-frequency spectra of large and small earthquakes, this portion can be difficult to simulate using stochastic finite-fault techniques. This paper introduces two different methods to scale low-frequency spectra for stochastic finite-fault modeling. One method multiplies the subfault source spectrum by an empirical function. This function has three parameters to scale the low-frequency spectra: the level of scaling and the start and end frequencies of the taper. This empirical function adjusts the earthquake spectra only between the desired frequencies, conserving seismic moment in the simulated spectra. The other method is an empirical low-frequency coefficient that is added to the subfault corner frequency. This new parameter changes the ratio between high and low frequencies. For each simulation, the entire earthquake spectra is adjusted, which may result in the seismic moment not being conserved for a simulated earthquake. These low-frequency scaling methods were used to reproduce recorded earthquake spectra from several earthquakes recorded in the Pacific Earthquake Engineering Research Center (PEER) Next Generation Attenuation Models (NGA) database. There were two methods of determining the stochastic parameters of best fit for each earthquake: a general residual analysis and an earthquake-specific residual analysis. Both methods resulted in comparable values for stress drop and the low-frequency scaling parameters; however, the earthquake-specific residual analysis obtained a more accurate distribution of the averaged residuals.

  7. Reactor Neutrino Spectra

    NASA Astrophysics Data System (ADS)

    Hayes, Anna C.; Vogel, Petr

    2016-10-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these spectra and their associated uncertainties is crucial for neutrino oscillation studies. The spectra used to date have been determined either by converting measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that make up the spectra, using modern databases as input. The uncertainties in the subdominant corrections to β-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  8. The Theory of Spectra and Atomic Constitution

    NASA Astrophysics Data System (ADS)

    Bohr, Niels

    2011-06-01

    Part I. On the Spectrum of Hydrogen: 1. Empirical spectral laws; 2. Laws of temperature radiation; 3. The nuclear theory of the atom; 4. Quantum theory of spectra; 5. Hydrogen spectrum; 6. The Pickering lines; 7. Other spectra; Part II. On the Series Spectra of the Elements; Section 1. Introduction; Section 2. General Principles of the Quantum Theory of Spectra: 8. Hydrogen spectrum; 9. The correspondence principle; 10. General spectral laws; 11. Absorption and excitation of radiation; Section 3. Development of the Quantum Theory of Spectra: 12. Effect of external forces on the hydrogen spectrum; 13. The Stark effect; 14. The Zoeman effect; 15. Central pertubations; 16. Relativity effect of hydrogen lines; 17. Theory of series spectra; 18. Correspondence principle and conservation of angular momentum; 19. The spectra of helium and lithium; 20. Complex structure of series lines; Section 4. Conclusion; Part III. The Structure of the Atom and the Physical and Chemical Properties of the Elements; Section 5. Preliminary: 21. The nuclear atom; 22. The postulates of the quantum theory; 23. Hydrogen atom; 24. Hydrogen spectrum and x-ray spectra; 25. The fine structure of the hydrogen lines; 26. Periodic table; 27. Recent atomic models; Section 6. Series Spectra and the Capture of Electrons by Atoms: 28. Arc and spark spectra; 29. Series diagram; 30. Correspondence principle; Section 7. Formation of Atoms and the Periodic Table: 31. First period. Hydrogen-helium; 32. Second period. Lithium-neon; 33. Third period. Sodium-argon; 34. Fourth period. Potassium-Krypton; 35. Fifth period. Rubidium-xenon; 36. Sixth period. Caesium-niton; 37. Seventh period; 38. Survey of the periodic table; Section 8. Reorganization of Atoms and X-Ray SPectra: 39. Absorption and emission of x-rays and correspondence principle; 40. X-ray spectra and atomic structure; 41. Classification of x-ray spectra; 42. Conclusion; Appendix.

  9. General model of optical frequency conversion in homogeneous media: Application to second-harmonic generation in an ɛ -near-zero waveguide

    NASA Astrophysics Data System (ADS)

    Huang, Jin Jer; Zhang, Xin Lu; Zhang, Liu Yang; Zhang, Jian Xin

    2017-07-01

    Traditional optical frequency conversion model is well improved in this work. In terms of the dyadic Green's function method, a set of coupled-amplitude equations is reduced under a proposed transition layer assumption, accompanying the simultaneous integral equations. The model, as a generalization of the current frequency conversion theory, is aimed at any one-dimensional thin film or bulk nonlinear structure, allowing for arbitrary optical anisotropy and absorption without pumping and propagating limitations. The assumption reasonably simplifies the strict nonlinear boundary conditions and enables the equations to yield exact radiative field solutions. A field-enhanced phase-matching configuration is designed for second harmonic generation in a lossy ɛ -near-zero material. The high contrast of refractive indices between a substrate (silicon) and the material traps the harmonic wave inside and constructs a natural mirror reflection waveguide. A simulation in the lowest guided mode predicts an efficiency enhancement proportional to the relative wave impedance to the fifth power under a resonant condition.

  10. Vibrational circular dichroism and IR absorption spectra of amino acids: a density functional study.

    PubMed

    Ji, Zhi; Santamaria, Rubén; Garzón, Ignacio L

    2010-03-18

    With density functional theory, vibrational circular dichroism (VCD) and infrared absorption (IR) spectra are obtained at the B3LYP/CC-pVTZ level of theory for 20 alpha-amino acids. The contribution of different vibration modes to the IR and VCD spectra is analyzed. Overall agreement between calculated results for amino acids in gas phase with the available experimental VCD data for matrix-assisted amino acid films is found. The analysis of the calculated IR and VCD spectra indicates that the functional groups in the backbones and side chains of amino acids contribute differently to the spectra line shape. It is obtained that molecular torsions are the characteristic vibrations of the amino acids at the low-frequency regime, whereas the bending of bond angles, the out-of-plane wagging of individual atoms, and some stretching modes dominate the intermediate frequency range. Specific modes like NH(2) scissoring, CO bond stretching, and the (symmetric and asymmetric) stretching of the hydrogen atoms in the NH(2) and OH groups characterize the high-frequency regime. A general trend emerging from these calculations indicates that the rho(OH) rocking and nu(C=O) stretching modes have the highest intensity in the VCD spectra of most amino acids.

  11. Prevalence of high frequency hearing loss consistent with noise exposure among people working with sound systems and general population in Brazil: a cross-sectional study.

    PubMed

    El Dib, Regina P; Silva, Edina M K; Morais, José F; Trevisani, Virgínia F M

    2008-05-07

    Music is ever present in our daily lives, establishing a link between humans and the arts through the senses and pleasure. Sound technicians are the link between musicians and audiences or consumers. Recently, general concern has arisen regarding occurrences of hearing loss induced by noise from excessively amplified sound-producing activities within leisure and professional environments. Sound technicians' activities expose them to the risk of hearing loss, and consequently put at risk their quality of life, the quality of the musical product and consumers' hearing. The aim of this study was to measure the prevalence of high frequency hearing loss consistent with noise exposure among sound technicians in Brazil and compare this with a control group without occupational noise exposure. This was a cross-sectional study comparing 177 participants in two groups: 82 sound technicians and 95 controls (non-sound technicians). A questionnaire on music listening habits and associated complaints was applied, and data were gathered regarding the professionals' numbers of working hours per day and both groups' hearing complaint and presence of tinnitus. The participants' ear canals were visually inspected using an otoscope. Hearing assessments were performed (tonal and speech audiometry) using a portable digital AD 229 E audiometer funded by FAPESP. There was no statistically significant difference between the sound technicians and controls regarding age and gender. Thus, the study sample was homogenous and would be unlikely to lead to bias in the results. A statistically significant difference in hearing loss was observed between the groups: 50% among the sound technicians and 10.5% among the controls. The difference could be addressed to high sound levels. The sound technicians presented a higher prevalence of high frequency hearing loss consistent with noise exposure than did the general population, although the possibility of residual confounding due to unmeasured factors

  12. Altered glutamate metabolism contributes to antiepileptogenic effects in the progression from focal seizure to generalized seizure by low-frequency stimulation in the ventral hippocampus.

    PubMed

    Sun, Hong-Liu; Zhu, Wei; Zhang, Yu-Rong; Pan, Xiao-Hong; Zhang, Jun-Ru; Chen, Xiang-Ming; Liu, Yu-Xia; Li, Shu-Cui; Wang, Qiao-Yun; Deng, Da-Ping

    2017-03-01

    As a promising method for treating intractable epilepsy, the inhibitory effect of low-frequency stimulation (LFS) is well known, although its mechanisms remain unclear. Excessive levels of cerebral glutamate are considered a crucial factor for epilepsy. Therefore, we designed experiments to investigate the crucial parts of the glutamate cycle. We evaluated glutamine synthetase (GS, metabolizes glutamate), glutaminase (synthesizes glutamate), and glutamic acid decarboxylase (GAD, a γ-aminobutyric acid [GABA] synthetase) in different regions of the brain, including the dentate gyrus (DG), CA3, and CA1 subregions of the hippocampus, and the cortex, using western blots, immunohistochemistry, and enzyme activity assays. Additionally, the concentrations of glutamate, GABA, and glutamine (a product of GS) were measured using high-performance liquid chromatography (HPLC) in the same subregions. The results indicated that a transiently promoted glutamate cycle was closely involved in the progression from focal to generalized seizure. Low-frequency stimulation (LFS) delivered to the ventral hippocampus had an antiepileptogenic effect in rats exposed to amygdaloid-kindling stimulation. Simultaneously, LFS could partly reverse the effects of the promoted glutamate cycle, including increased GS function, accelerated glutamate-glutamine cycling, and an unbalanced glutamate/GABA ratio, all of which were induced by amygdaloid kindling in the DG when seizures progressed to stage 4. Moreover, glutamine treatment reversed the antiepileptic effect of LFS with regard to both epileptic severity and susceptibility. Our results suggest that the effects of LFS on the glutamate cycle may contribute to the antiepileptogenic role of LFS in the progression from focal to generalized seizure.

  13. Prevalence of high frequency hearing loss consistent with noise exposure among people working with sound systems and general population in Brazil: A cross-sectional study

    PubMed Central

    El Dib, Regina P; Silva, Edina MK; Morais, José F; Trevisani, Virgínia FM

    2008-01-01

    Background Music is ever present in our daily lives, establishing a link between humans and the arts through the senses and pleasure. Sound technicians are the link between musicians and audiences or consumers. Recently, general concern has arisen regarding occurrences of hearing loss induced by noise from excessively amplified sound-producing activities within leisure and professional environments. Sound technicians' activities expose them to the risk of hearing loss, and consequently put at risk their quality of life, the quality of the musical product and consumers' hearing. The aim of this study was to measure the prevalence of high frequency hearing loss consistent with noise exposure among sound technicians in Brazil and compare this with a control group without occupational noise exposure. Methods This was a cross-sectional study comparing 177 participants in two groups: 82 sound technicians and 95 controls (non-sound technicians). A questionnaire on music listening habits and associated complaints was applied, and data were gathered regarding the professionals' numbers of working hours per day and both groups' hearing complaint and presence of tinnitus. The participants' ear canals were visually inspected using an otoscope. Hearing assessments were performed (tonal and speech audiometry) using a portable digital AD 229 E audiometer funded by FAPESP. Results There was no statistically significant difference between the sound technicians and controls regarding age and gender. Thus, the study sample was homogenous and would be unlikely to lead to bias in the results. A statistically significant difference in hearing loss was observed between the groups: 50% among the sound technicians and 10.5% among the controls. The difference could be addressed to high sound levels. Conclusion The sound technicians presented a higher prevalence of high frequency hearing loss consistent with noise exposure than did the general population, although the possibility of residual

  14. Atlantic sea surface height and velocity spectra inferred from satellite altimetry and a hierarchy of numerical simulations

    NASA Astrophysics Data System (ADS)

    Biri, Stavroula; Serra, Nuno; Scharffenberg, Martin G.; Stammer, Detlef

    2016-06-01

    Frequency and wavenumber spectra of sea surface height (SSH) and surface geostrophic velocity are presented, as they result for the Atlantic Ocean from a 23 year long altimeter data set and from a hierarchy of ocean model simulations with spatial resolutions of 16, 8, and 4 km. SSH frequency spectra follow a spectral decay of roughly f-1 on long periods; toward higher frequencies a spectral decay close to f-2 is found. For geostrophic velocity spectra, a somewhat similar picture emerges, albeit with flatter spectral relations. In terms of geostrophic velocity wavenumber spectra, we find a general relation close to k-3 in the high-resolution model results. Outside low-energy regions all model spectra come close to observed spectra at low frequencies and wavenumbers in terms of shape and amplitude. However, the highest model resolution appears essential for reproducing the observed spectra at high frequencies and wavenumbers. This holds especially for velocity spectra in mid and high latitudes, suggesting that eddy resolving ocean models need to be run at a resolution of 1/24° or better if one were to fully resolve the observed mesoscale eddy field. Causes for remaining discrepancies between observed and simulated results can be manifold. At least partially, they can be rationalized by taking into account an aliasing effect of unresolved temporal variability in the altimetric observations occurring on periods smaller than the 20 days Nyquist period of the altimetric data, thereby leading to an overestimate of variability in the altimetric estimates, roughly on periods below 100 days.

  15. Sequencing BPS spectra

    DOE PAGES

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; ...

    2016-03-02

    In this article, we provide both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explainmore » from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincar e polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (re fined) modular S-matrix. This leads to the identi fication of modular transformations in Chern-Simons theory and 3d N = 2 theory via the 3d/3d correspondence. In conclusion, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.« less

  16. Sequencing BPS spectra

    SciTech Connect

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; Stošić, Marko; Sułkowski, Piotr

    2016-03-02

    In this article, we provide both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincar e polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (re fined) modular S-matrix. This leads to the identi fication of modular transformations in Chern-Simons theory and 3d N = 2 theory via the 3d/3d correspondence. In conclusion, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  17. Sequencing BPS spectra

    NASA Astrophysics Data System (ADS)

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; Stošić, Marko; Sułkowski, Piotr

    2016-03-01

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d {N}=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  18. Album: A Tool for the Analysis of Slitless Spectra and its Application to ESO WFI Data

    NASA Astrophysics Data System (ADS)

    Martayan, C.; Baade, D.; Hubert, A.-M.; Floquet, M.; Fabregat, J.; Bertin, E.

    ALBUM is a general-purpose tool to visualize and screen large amounts of slitless spectra∈dex slitless spectra. It was developed for a search for emission-line stars in SMC and LMC clusters. The observations were obtained with ESO's Wide Field Imager (WFI∈dexWFI) and comprise ~8 million low-resolution spectra. The tool as well as the results of its application to the SMC part of the database are presented. The inferred frequency of Be stars is compared to the one in the higher-metallicity environment of the Milky Way.

  19. PIA update: Correlation analyses of mass spectra

    NASA Technical Reports Server (NTRS)

    Mason, L. W.; Clark, B. C.

    1988-01-01

    The PIA instrument aboard the Giotto spacecraft (a time of flight spectrometer) has been presented elsewhere. The mass spectra used in this analysis were decoded and mass numbers assigned according to the presence of carbon and silver, using the global values for these elements in their spectral absence. The results presented here were obtained using a frequency of occurrence based on analysis which correlated how often mass numbers appear in the mass spectra and which mass numbers tend to occur together in the same spectra; no amplitude information is utilized. The data are presented as plots of mass vs coincident mass for different subsets of the PIA data set, with both axes having units of atomic mass. Frequency contours are plotted at approximately five percent contour intervals, relative to the maximum AMU occurrence in that plot. The plots presented are symmetrical about the matrix diagonal, i.e., every mass is coincident with itself in a given spectra.

  20. Statistical changes in lakes in urbanizing watersheds and lake return frequencies adjusted for trend and initial stage utilizing generalized extreme value theory

    NASA Astrophysics Data System (ADS)

    Paynter, Shayne

    Many water resources throughout the world are demonstrating changes in historic water levels. Potential reasons for these changes include climate shifts, anthropogenic alterations or basin urbanization. The focus of this research was threefold: (1) to determine the extent of spatio-temporal changes in regional precipitation patterns, (2) to determine the statistical changes that occur in lakes with urbanizing watersheds, and (3) to develop accurate prediction of trends and lake level return frequencies. To investigate rainfall patterns regionally, appropriate distributions, either gamma or generalized extreme value (GEV), were fitted to variables at a number of rainfall gages utilizing maximum likelihood estimation. The spatial distribution of rainfall variables was found to be quite homogenous within the region in terms of an average annual expectation. Furthermore, the temporal distribution of rainfall variables was found to be stationary with only one gage evidencing a significant trend. In order to study statistical changes of lake water surface levels in urbanizing watersheds, serial changes in time series parameters, autocorrelation and variance were evaluated and a regression model to estimate weekly lake level fluctuations was developed. The following general conclusions about lakes in urbanizing watersheds were reached: (1) The statistical structure of lake level time series is systematically altered and is related to the extent of urbanization, (2) in the absence of other forcing mechanisms, autocorrelation and baseflow appear to decrease, and (3) the presence of wetlands adjacent to lakes can offset the reduction in baseflow. In regards to the third objective, the direction and magnitude of trends in flood and drought stages were estimated and both long-term and short-term flood and drought stage return frequencies were predicted utilizing the generalized extreme value (GEV) distribution with time and starting stage covariates. All of the lakes

  1. Estimated carrier frequency of creatine transporter deficiency in females in the general population using functional characterization of novel missense variants in the SLC6A8 gene.

    PubMed

    DesRoches, Caro-Lyne; Patel, Jaina; Wang, Peixiang; Minassian, Berge; Salomons, Gajja S; Marshall, Christian R; Mercimek-Mahmutoglu, Saadet

    2015-07-10

    Creatine transporter deficiency (CRTR-D) is an X-linked inherited disorder of creatine transport. All males and about 50% of females have intellectual disability or cognitive dysfunction. Creatine deficiency on brain proton magnetic resonance spectroscopy and elevated urinary creatine to creatinine ratio are important biomarkers. Mutations in the SLC6A8 gene occur de novo in 30% of males. Despite reports of high prevalence of CRTR-D in males with intellectual disability, there are no true prevalence studies in the general population. To determine carrier frequency of CRTR-D in the general population we studied the variants in the SLC6A8 gene reported in the Exome Variant Server database and performed functional characterization of missense variants. We also analyzed synonymous and intronic variants for their predicted pathogenicity using in silico analysis tools. Nine missense variants were functionally analyzed using transient transfection by site-directed mutagenesis with In-Fusion HD Cloning in HeLa cells. Creatine uptake was measured by liquid chromatography tandem mass spectrometry for creatine measurement. The c.1654G>T (p.Val552Leu) variant showed low residual creatine uptake activity of 35% of wild type transfected HeLa cells and was classified as pathogenic. Three variants (c.808G>A; p.Val270Met, c.942C>G; p.Phe314Leu and c.952G>A; p.Ala318Thr) were predicted to be pathogenic based on in silico analysis, but proved to be non-pathogenic by our functional analysis. The estimated carrier frequency of CRTR-D was 0.024% in females in the general population. We recommend functional studies for all novel missense variants by transient transfection followed by creatine uptake measurement by liquid chromatography tandem mass spectrometry as fast and cost effective method for the functional analysis of missense variants in the SLC6A8 gene. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  2. Trigonometric Polynomials For Estimation Of Spectra

    NASA Technical Reports Server (NTRS)

    Greenhall, Charles A.

    1990-01-01

    Orthogonal sets of trigonometric polynomials used as suboptimal substitutes for discrete prolate-spheroidal "windows" of Thomson method of estimation of spectra. As used here, "windows" denotes weighting functions used in sampling time series to obtain their power spectra within specified frequency bands. Simplified windows designed to require less computation than do discrete prolate-spheroidal windows, albeit at price of some loss of accuracy.

  3. Tropical cyclone activity in a warmer climate as simulated by a high-resolution coupled general circulation model: changes in frequency and air-sea interaction.

    NASA Astrophysics Data System (ADS)

    Scoccimarro, Enrico; Gualdi, Silvio; Navarra, Antonio

    2010-05-01

    This study investigates the possible changes that the greenhouse global warming might generate in the characteristics of the tropical cyclones (TCs). The analysis has been performed using climate scenario simulations carried out with a fully coupled high-resolution global general circulation model (INGV-SXG) with a T106 atmospheric resolution. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the XX Century with observations. The model appears to be able to simulate tropical cyclone-like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link the TC occurrence with the large scale circulation. The results from the climate scenarios reveal a substantial general reduction of the TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical north west Pacific (NWP) and north Atlantic (ATL). In the NWP the weaker TC activity seems to be associated with a reduced amount of convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. Using the new fully coupled CMCC model (CMCC_MED), with a T159 atmospheric resolution, we found a significant modulation of the Ocean Heat Transport (OHT) induced by the TC activity. Thus the possible changes that greenhouse induced global warming during 21st century might generate in the characteristics of the TC-induced OHT have been analyzed.

  4. Isotope shifts in spectra of molecular liquids

    NASA Astrophysics Data System (ADS)

    Dubrovskaya, E. V.; Kolomiitsova, T. D.; Shurukhina, A. V.; Shchepkin, D. N.

    2016-02-01

    In the IR absorption spectra of low-temperature molecular liquids, we have observed anomalously large isotope shifts of frequencies of vibrational bands that are strong in the dipole absorption. The same effect has also been observed in their Raman spectra. At the same time, in the spectra of cryosolutions, the isotope shifts of the same bands coincide with a high accuracy (±(0.1-0.5) cm-1) with the shifts that are observed in the spectra of the gas phase. The difference between the spectra of examined low-temperature systems is caused by the occurrence of resonant dipole-dipole interactions between spectrally active identical molecules. The calculation of the band contour in the spectrum of liquid freon that we have performed in this work taking into account the resonant interaction between states of simultaneous transitions in isotopically substituted molecules can explain this effect.

  5. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    SciTech Connect

    Sanchez Almeida, J.; Morales-Luis, A. B.; Terlevich, R.; Terlevich, E.; Cid Fernandes, R. E-mail: abml@iac.es E-mail: eterlevi@inaoep.mx

    2012-09-10

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  6. Ir Spectra of Cold Protonated Methane

    NASA Astrophysics Data System (ADS)

    Asvany, Oskar; Yamada, Koichi MT; Brünken, Sandra; Potapov, Alexey; Schlemmer, Stephan

    2015-06-01

    High-resolution infrared spectra of mass selected protonated methane, CH_5^+, have been recorded in the C-H stretching region in a 22-pole ion trap experiment at low temperatures. The frequencies of the infrared OPO system (pump and signal) have been calibrated using a NIR frequency comb. As a result the ro-vibrational IR transition frequencies of CH_5^+ could be determined to an accuracy in the MHz regime. In this contribution we discuss different techniques of laser induced reactions which enabled recording spectra at different temperatures. The spectra simplify dramatically at a nominal trap temperature of 4~K. Nevertheless an assignment of these spectra is very difficult. We apply the idea of the Rydberg-Ritz combination principle to the complex spectra of protonated methane in order to get first hints at the energy level structure of this enigmatic molecule. O. Asvany, J. Krieg, and S. Schlemmer, Frequency comb assisted mid-infrared spectroscopy of cold molecular ions, Review of Scientific Instruments, 83 (2012), 076102. O. Asvany, S. Brünken, L. Kluge, and S. Schlemmer, COLTRAP: a 22-pole ion trapping machine for spectroscopy at 4 K, Applied Physics B: Lasers and Optics, 114 (2014), 203-211

  7. Photographic spectra of fireballs

    NASA Astrophysics Data System (ADS)

    Borovička, J.

    2016-01-01

    Two methods of spectroscopy of meteors using image intensified video cameras and classical photographic film cameras are compared. Video cameras provide large number of low resolution spectra of meteors of normal brightness, which can be used for statistical studies. Large format film cameras have been used through the history and provide high resolution spectra, which can be used to derive temperature, density and absolute abundances of various elements in the radiating plasma. The sensitivity of films is, however, low and only spectra of bright meteors (fireballs) can be studied. Examples of photographic fireball spectra are provided.

  8. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  9. Action spectra for photosynthetic inhibition

    NASA Technical Reports Server (NTRS)

    Caldwell, M. M.; Flint, S.; Camp, L. B.

    1981-01-01

    The ultraviolet action spectrum for photosynthesis inhibition was determined to fall between that of the general DNA action spectrum and the generalized plant action spectrum. The characteristics of this action spectrum suggest that a combination of pronounced increase in effectiveness with decreasing wavelength, substantial specificity for the UV-B waveband, and very diminished response in the UV-A waveband result in large radiation amplification factors when the action spectra are used as weighting functions. Attempted determination of dose/response relationships for leaf disc inhibition provided inconclusive data from which to deconvolute an action spectrum.

  10. Action spectra for photosynthetic inhibition

    NASA Technical Reports Server (NTRS)

    Caldwell, M. M.; Flint, S.; Camp, L. B.

    1981-01-01

    The ultraviolet action spectrum for photosynthesis inhibition was determined to fall between that of the general DNA action spectrum and the generalized plant action spectrum. The characteristics of this action spectrum suggest that a combination of pronounced increase in effectiveness with decreasing wavelength, substantial specificity for the UV-B waveband, and very diminished response in the UV-A waveband result in large radiation amplification factors when the action spectra are used as weighting functions. Attempted determination of dose/response relationships for leaf disc inhibition provided inconclusive data from which to deconvolute an action spectrum.

  11. Vibrational spectra study on quinolones antibiotics

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Yu, Ke; Wang, Sihuan

    2006-09-01

    In order to be able to fully understand and easily identify the quilonoles, we collected IR and Raman spectra of six quinolones, and attempted to assign the attribution of the observed frequencies and their association with specific modes of vibration. According to the structure, the compounds were divided into the groups, and the similarities and differences were further studied by comparing. The result of the study shows that the frequency and intensity are comparable to the corresponding structure. The spectra not only have the commonness but also the individualities.

  12. Attenuation estimation using the peak frequency method with high-resolution time-frequency transforms

    NASA Astrophysics Data System (ADS)

    Tary, J. B.; Van der Baan, M.; Herrera, R. H.

    2016-12-01

    Seismic waves attenuate during their propagation due to Earth anelasticity. Attenuation is usually estimated by frequency domain methods such as the spectral ratio and frequency shift methods. These methods compare large frequency bandwidths of the spectra of two waveforms to compute attenuation. Time-frequency distribution resulting from high-resolution time-frequency transforms are highly localized which prevent their use to compute attenuation with these methods.The peak frequency method only requires the estimation of peak frequencies for a pair of waveforms to estimate attenuation, which is then compatible with high-resolution transforms. We here employ three transforms, namely basis pursuit, synchrosqueezing transform, and complete ensemble empirical mode decomposition (CEEMD). We evaluate their performance regarding attenuation estimation using synthetic examples with different signal-to-noise ratios, and compare their results to those of the spectral ratio and frequency shift methods. In most cases basis pursuit and the synchrosqueezing transform provide accurate results, while CEEMD show a higher sensitivity to the presence of noise.We then apply the three high-resolution transforms and the peak frequency method to two case studies, a seismic reflection profile and a vertical seismic profile (VSP). We employ centroid frequencies instead of peak frequencies because they provide stabler frequency estimates which are then transferred to stabler attenuation estimates. In the case of the seismic reflection profile, the three time-frequency transforms show small increases in centroid frequencies superimposed on a general decreasing trend. This likely corresponds to local tuning effects due to the layering superimposed on the effect of intrinsic attenuation. For the VSP, the three time-frequency transforms show consistent patterns in centroid frequencies and quality factors. These results show the worth of high-resolution transforms for attenuation estimation.

  13. Assessment of the intensity-duration-frequency (IDF) curves for storms in Peninsular Malaysia based on the generalized extreme value distribution

    NASA Astrophysics Data System (ADS)

    Mohd Ariff, Noratiqah; Jemain, Abdul Aziz; Wan Zin, Wan Zawiah

    2013-04-01

    Rainfall characteristics can be analyzed by using storm events with storms representing actual rainfall events instead of rainfall amounts in fixed time frames. One of the most commonly used methods in rainfall analysis is the construction of intensity-duration-frequency (IDF) curves. IDF curves help in designing hydraulic structures by providing a mathematical relationship between storm intensity, duration and return period. In Peninsular Malaysia, these curves are often built using the generalized extreme value (GEV) distribution to represent annual maximum storm intensity. The mathematical formula for the curves is usually taken from either known empirical equations or from quantile functions of probability distributions. However, there is no research which compares and analyzes the differences between the curves obtained for storms in Peninsular Malaysia based on the empirical and quantile functions. Thus, the aim of this study is to build IDF curves for storms in Peninsular Malaysia using typical empirical equations and the quantile function of the GEV distribution. Then, the analysis of differences is performed on the curves obtained from both approaches. The analysis consists of the coefficient of variation of root mean square error mean percentage difference and the coefficient of determination, R2. The analysis shows small differences between the curves based on the empirical equations and those obtained using the quantile function of GEV distribution. According to these results, it can be concluded that the simple empirical equations are sufficient in constructing IDF curves based on GEV distribution for storms in Peninsular Malaysia.

  14. Estimation of Sea Surface Wave Spectra Using Acoustic Tomography.

    DTIC Science & Technology

    1987-09-01

    develops a new technique for estimating quasi- homogeneous and quasi-stationary sea surface wave frequency-direction spectra using acoustic tomog...problems for the homogeneous and quasi- homogeneous frequency-direction spectrum are introduced. The theory is ap- plied tosynthetic data which simulate...thesis introduces a technique that estimates the quasi-stationary and quasi- homogeneous sea surface wave frequency-direction spectrum from the spectra of

  15. Infrared Spectra of Polycyclic Aromatic Hydrocarbons: Nitrogen Substitution

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The B3LYP/4-31G approach is used to compute the harmonic frequencies of substituted naphthalene, anthracene, and their cations. The substitutions include cyano (CN), aminio (NH2), imino (NH), and replacement of a CH group by a nitrogen atom. All unique sites are considered, namely 1 and 2 for naphthalene and 1, 2, and 9 for an'tracene, except for the imino, where only 2-iminonaphthalene is studied. The IR spectra of these substituted species are compared with those of the unsubstituted molecules. The addition of a CN group does not significantly affect the spectra except to add the CN stretching frequency. Replacing a CH group by N has only a small effect on the IR spectra. The addition of the NH2 group dramatically affects the neutral spectra, giving it much of the character of the cation spectra. However, the neutral 2-irrinonaphthalene spectra looks more like that of naphthalene than like the 2-aminonaphthalene spectra.

  16. Infrared Spectra of Polycyclic Aromatic Hydrocarbons: Nitrogen Substitution

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The B3LYP/4-31G approach is used to compute the harmonic frequencies of substituted naphthalene, anthracene, and their cations. The substitutions include cyano (CN), aminio (NH2), imino (NH), and replacement of a CH group by a nitrogen atom. All unique sites are considered, namely 1 and 2 for naphthalene and 1, 2, and 9 for an'tracene, except for the imino, where only 2-iminonaphthalene is studied. The IR spectra of these substituted species are compared with those of the unsubstituted molecules. The addition of a CN group does not significantly affect the spectra except to add the CN stretching frequency. Replacing a CH group by N has only a small effect on the IR spectra. The addition of the NH2 group dramatically affects the neutral spectra, giving it much of the character of the cation spectra. However, the neutral 2-irrinonaphthalene spectra looks more like that of naphthalene than like the 2-aminonaphthalene spectra.

  17. Vibrational spectra of 3,5-dimethylpyrazole and deuterated derivatives.

    PubMed

    Orza, J M; García, M V; Alkorta, I; Elguero, J

    2000-07-01

    The infrared (IR) and Raman spectra of 3,5-dimethylpyrazole have been recorded in the vapor, liquid (melt and solution) and solid states. Two deuterated derivatives, C5H7N-ND and C5D7N-NH, were also studied in solid state and in solutions. Instrumental resolution was relatively low, 2.0 cm(-1) in the IR and approximately 2.7 cm(-1) in the Raman spectra. The solids are made of cyclic hydrogen-bonded trimers. These trimers, present also in chloroform and acetone solutions, give rise to characteristic high absorption IR spectra in the 3200-2500 cm(-1) region, related to Fermi resonance involving nu(NH) vibrations. Bands from trimers are not present in water solutions but these solutions show spectral features similar in several ways to those of the trimer, attributable to solvent-bonded complexes. Evidence of H-bonding interactions with the other solvents is also visible in the high-frequency region. The two very intense bands in the Raman spectra of the solids appearing at 115 and 82 cm(-1) in the parent compound are also connected with a trimer formation. To interpret the experimental data, ab initio computations of the harmonic vibrational frequencies and IR and Raman intensities were carried out using the Gaussian 94 program package after full optimization at the RHF/6-31G* level for the three monomeric compounds as well as for three models of the trimer, with C3h, C3 and C1 symmetry. The combined use of experiments and computations allow a firm assignment of most of the observed bands for all the systems. In general, the agreement between theory and experiment is very good, with the exception of the IR and Raman intensities of some transitions. Particularly noticeable is the failure of the theoretical calculation in accounting for the high intensity of the Raman bands of the solid about 115 and 82 cm(-1).

  18. Characteristics of magnetospheric radio noise spectra

    NASA Technical Reports Server (NTRS)

    Herman, J. R.

    1976-01-01

    Magnetospheric radio noise spectra (30 kHz to 10 MHz) taken by IMP-6 and RAE-2 exhibit time-varying characteristics which are related to spacecraft position and magnetospheric processes. In the mid-frequency range (100-1,000 kHz) intense noise peaks rise by a factor of 100 or more above background; 80% of the peak frequencies are within the band 125 kHz to 600 kHz, and the peak occurs most often (18% of the time) at 280 kHz. This intense mid-frequency noise has been detected at radial distances from 1.3 Re to 60 Re on all sides of the Earth during magnetically quiet as well as disturbed periods. Maximum occurrence of the mid-frequency noise is in the evening to midnight hours where splash-type energetic particle precipitation takes place. ""Magnetospheric lightning'' can be invoked to explain the spectral shape of the observed spectra.

  19. Action spectra again?

    PubMed

    Coohill, T P

    1991-11-01

    Action spectroscopy has a long history and is of central importance to photobiological studies. Action spectra were among the first assays to point to chlorophyll as the molecule most responsible for plant growth and to DNA as the genetic material. It is useful to construct action spectra early in the investigation of new areas of photobiological research in an attempt to determine the wavelength limits of the radiation region causing the studied response. But due to the severe absorption of ultraviolet (UV) radiation by biological samples, UV action spectra were first limited to small cells (bacteria and fungi). Advances in techniques (e.g. single cell culture) and analysis allowed accurate action spectra to be reported even for mammalian cells. But precise analytical action spectra are often difficult to obtain when large, pigmented, or groups of cells are investigated. Here some action spectra are limited in interpretation and merely supply a wavelength vs effect curve. When polychromatic sources are employed, the interpretation of action spectra is even more complex and formidable. But such polychromatic action spectra can be more directly related to ambient responses. Since precise action spectra usually require the completion of a relatively large number of careful experiments using somewhat sophisticated equipment over a range of at least six wavelengths, they are often not pursued. But they remain central to the elucidation of the effect being studied. The worldwide community has agreed that stratospheric ozone is depleting, with the possibility of a consequent rise in the amount of UV-B (290-320 nm) reaching the earth's surface. It is therefore essential that new action spectra be completed for UV-B effects on a large variety of responses of human, animal, and aquatic plant systems. Combining these action spectra with the known amounts of UV-B reaching the biosphere can give rise to solar UV effectiveness spectra that, in turn, can give rise to estimates

  20. Eigenvectors of optimal color spectra.

    PubMed

    Flinkman, Mika; Laamanen, Hannu; Tuomela, Jukka; Vahimaa, Pasi; Hauta-Kasari, Markku

    2013-09-01

    Principal component analysis (PCA) and weighted PCA were applied to spectra of optimal colors belonging to the outer surface of the object-color solid or to so-called MacAdam limits. The correlation matrix formed from this data is a circulant matrix whose biggest eigenvalue is simple and the corresponding eigenvector is constant. All other eigenvalues are double, and the eigenvectors can be expressed with trigonometric functions. Found trigonometric functions can be used as a general basis to reconstruct all possible smooth reflectance spectra. When the spectral data are weighted with an appropriate weight function, the essential part of the color information is compressed to the first three components and the shapes of the first three eigenvectors correspond to one achromatic response function and to two chromatic response functions, the latter corresponding approximately to Munsell opponent-hue directions 9YR-9B and 2BG-2R.

  1. Terahertz spectra of DNA nucleobase crystals: A joint experimental and computational study.

    PubMed

    Wang, Fang; Zhao, Dongbo; Dong, Hao; Jiang, Ling; Liu, Yunfei; Li, Shuhua

    2017-02-21

    Terahertz (THz) spectra of DNA nucleobase crystals were experimentally studied by terahertz time domain spectroscopy (THz-TDS), Fourier transform infrared spectroscopy (FTIR), and computationally studied by the generalized energy-based fragmentation approach under periodic boundary conditions (denoted as PBC-GEBF). We analyzed the vibrational spectra of solid-state DNA nucleobases and assigned the corresponding vibrational modes to the main peaks in the experimental spectra with the PBC-GEBF results. The computational results were verified to be in good accordance with the experimental data. Harmonic vibrational frequency results revealed that all the vibrational modes belong to collective vibrational modes, which involve complicated mixtures of inter- and intramolecular displacements, somewhere in the vicinity of 0.5-9THz.

  2. Modeling of spectral features in the dynamic spectra of neutron stars

    NASA Astrophysics Data System (ADS)

    Garasyov, M. A.; Derishev, E. V.; Kocharovsky, Vl. V.

    2011-10-01

    Modeling of atomic and cyclotron lines in the emergent spectra of rotating neutron stars with various distributions of temperature over the star surface is carried out. General and special relativity effects are taken into account in the radiation transfer calculations. A novel method of analysis based on the Fourier series expansion of the observed spectra over rotation frequencies is proposed. It is shown that the mutual influence of the gravitational bending of light rays and rotation of the star leads to the formation of strong features (sometimes several features at once) in the Fourier-harmonic spectrum, whereas these features remain almost invisible in both the integrated and dynamic spectra. Possible application of the obtained results to the interpretation of absorption features in the spectrum of the single neutron star 1E 1207.4 - 5209 is discussed.

  3. Terahertz spectra of DNA nucleobase crystals: A joint experimental and computational study

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Zhao, Dongbo; Dong, Hao; Jiang, Ling; Liu, Yunfei; Li, Shuhua

    2017-05-01

    Terahertz (THz) spectra of DNA nucleobase crystals were experimentally studied by terahertz time domain spectroscopy (THz-TDS), Fourier transform infrared spectroscopy (FTIR), and computationally studied by the generalized energy-based fragmentation approach under periodic boundary conditions (denoted as PBC-GEBF). We analyzed the vibrational spectra of solid-state DNA nucleobases and assigned the corresponding vibrational modes to the main peaks in the experimental spectra with the PBC-GEBF results. The computational results were verified to be in good accordance with the experimental data. Harmonic vibrational frequency results revealed that all the vibrational modes belong to collective vibrational modes, which involve complicated mixtures of inter- and intramolecular displacements, somewhere in the vicinity of 0.5-9 THz.

  4. Fourier smoothing of digital photographic spectra

    NASA Astrophysics Data System (ADS)

    Anupama, G. C.

    1990-03-01

    Fourier methods of smoothing one-dimensional data are discussed with particular reference to digital photographic spectra. Data smoothed using lowpass filters with different cut-off frequencies are intercompared. A method to scale densities in order to remove the dependence of grain noise on density is described. Optimal filtering technique which models signal and noise in Fourier domain is also explained.

  5. Quantum chemical calculation of electron ionization mass spectra for general organic and inorganic molecules† †Electronic supplementary information (ESI) available: GFN-xTB calculated potential energy surfaces for example coordinates. Additional calculated mass spectra. Computational timing statistics. See DOI: 10.1039/c7sc00601b Click here for additional data file.

    PubMed Central

    Ásgeirsson, Vilhjálmur; Bauer, Christoph A.

    2017-01-01

    We introduce a fully stand-alone version of the Quantum Chemistry Electron Ionization Mass Spectra (QCEIMS) program [S. Grimme, Angew. Chem. Int. Ed., 2013, 52, 6306] allowing efficient simulations for molecules composed of elements with atomic numbers up to Z = 86. The recently developed extended tight-binding semi-empirical method GFN-xTB has been combined with QCEIMS, thereby eliminating dependencies on third-party electronic structure software. Furthermore, for reasonable calculations of ionization potentials, as required by the method, a second tight-binding variant, IPEA-xTB, is introduced here. This novel combination of methods allows the automatic, fast and reasonably accurate computation of electron ionization mass spectra for structurally different molecules across the periodic table. In order to validate and inspect the transferability of the method, we perform large-scale simulations for some representative organic, organometallic, and main-group inorganic systems. Theoretical spectra for 23 molecules are compared directly to experimental data taken from standard databases. For the first time, realistic quantum chemistry based EI-MS for organometallic systems like ferrocene or copper(ii)acetylacetonate are presented. Compared to previously used semiempirical methods, GFN-xTB is faster, more robust, and yields overall higher quality spectra. The partially analysed theoretical reaction and fragmentation mechanisms are chemically reasonable and reveal in unprecedented detail the extreme complexity of high energy gas phase ion chemistry including complicated rearrangement reactions prior to dissociation. PMID:28959412

  6. INDOR spectra in AX n systems

    NASA Astrophysics Data System (ADS)

    Czekalski, M.; De Milou, M. E.; Kowalewski, V. J.

    A model previously proposed by the same authors for the INDOR spectra of twos-pin- {1}/{2} systems is generalized for the AX n systems, which present the complications arising from the degeneracy of some of the lines. The basic idea of the model is the superposition of the effects of tickling and the redistribution of populations. Explicit calculations were made for the AX 3 case, resulting a reasonable agreement with experimentally observed spectra in methyl formate.

  7. Strong scintillations in astrophysics. 4. Cross-correlation between different frequencies and finite bandwidth effects

    NASA Technical Reports Server (NTRS)

    Lee, L. C.

    1976-01-01

    The cross correlation of the intensity fluctuations between different frequencies and finite bandwidth effects on the intensity correlations based on the Markov approximation were calculated. Results may be applied to quite general turbulence spectra for an extended turbulent medium. Calculations of the cross-correlation function and of finite bandwidth effects are explicitly carried out for both Gaussian and Kolmogorov turbulence spectra. The increases of the correlation scale of intensity fluctuations are different for these two spectra and the difference can be used to determine whether the interstellar turbulent medium has a Gaussian or a Kolmogorov spectrum.

  8. Interactive spectra demonstration

    NASA Astrophysics Data System (ADS)

    Palmquist, Bruce C.

    2002-03-01

    This report describes an interactive demonstration to help students qualitatively understand emission, continuous, and absorption spectra. Students throw colored balls at a person representing an electron that can move between discrete energy levels.

  9. Stretched-exponential Doppler spectra in underwater acoustic communication channels.

    PubMed

    van Walree, P A; Jenserud, T; Otnes, R

    2010-11-01

    The theory of underwater sound interacting with the sea surface predicts a Gaussian-spread frequency spectrum in the case of a large Rayleigh parameter. However, recent channel soundings reveal more sharply peaked spectra with heavier tails. The measured Doppler spread increases with the frequency and differs between multipath arrivals. The overall Doppler spectrum of a broadband waveform is the sum of the spectra of all constituent paths and frequencies, and is phenomenologically described by a stretched or compressed exponential. The stretched exponential also fits well to the broadband spectrum of a single propagation path, and narrowband spectra summed over all paths.

  10. Broadband midinfrared frequency comb with tooth scanning

    NASA Astrophysics Data System (ADS)

    Lee, Kevin F.; Masłowski, P.; Mills, A.; Mohr, C.; Jiang, Jie; Schunemann, Peter G.; Fermann, M. E.

    2015-03-01

    Frequency combs are a massively parallel source of extremely accurate optical frequencies. Frequency combs generally operate at the visible or near-infrared wavelengths, but fundamental molecular vibrations occur at midinfrared wavelengths. We demonstrate an optically-referenced, broadband midinfrared frequency comb based on a doublyresonant optical parametric oscillator (OPO). By tuning the wavelength of the reference laser, the comb line frequencies are tuned as well. By scanning the reference wavelength, any frequency can be accessed, not just the frequencies of the base comb. Combined with our comb-resolving Fourier transform spectrometer, we can measure 200 wavenumber wide broadband absorption spectra with 200 kHz linewidth comb teeth. Our OPO is pumped by an amplified Tm fiber frequency comb, with phase-locked carrier envelope offset frequency, and repetition rate fixed by phase-locking a frequency comb line to a narrow linewidth diode laser at a telecom channel. The frequency comb is referenced to GPS by long-term stabilization of the repetition rate to a selected value using the temperature of the reference laser as the control. The resulting pump comb is about 3W of 100 fs pulses at 418 MHz repetition rate at 1950 nm. Part of the comb is used for supercontinuum generation for frequency stabilization, and the rest pumps an orientation-patterned gallium arsenide (OP-GaAs) crystal in a doubly-resonant optical parametric oscillator cavity, yielding collinear signal and idler beams from about 3 to 5.5 μm. We verify comb scanning by resolving the 200 MHz wide absorption lines of the entire fundamental CO vibrational manifold at 11 Torr pressure.

  11. Effects of axion-photon mixing on gamma-ray spectra from magnetized astrophysical sources

    SciTech Connect

    Hochmuth, Kathrin A.; Sigl, Guenter

    2007-12-15

    Astrophysical {gamma}-ray sources come in a variety of sizes and magnetizations. We deduce general conditions under which {gamma}-ray spectra from such sources would be significantly affected by axion-photon mixing. We show that, depending on strength and coherence of the magnetic field, axion couplings down to {approx}(10{sup 13}GeV){sup -1} can give rise to significant axion-photon conversions in the environment of accreting massive black holes. Resonances can occur between the axion mass term and the plasma frequency term as well as between the plasma frequency term and the vacuum Cotton-Mouton shift. Both resonances and nonresonant transitions could induce detectable features or even strong suppressions in finite energy intervals of {gamma}-ray spectra from active galactic nuclei. Such effects can occur at keV to TeV energies for couplings that are currently allowed by all experimental constraints.

  12. Prediction of electroencephalographic spectra from neurophysiology

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Rennie, C. J.; Wright, J. J.; Bahramali, H.; Gordon, E.; Rowe, D. L.

    2001-02-01

    A recent neurophysical model of propagation of electrical waves in the cortex is extended to include a physiologically motivated subcortical feedback loop via the thalamus. The electroencephalographic spectrum when the system is driven by white noise is then calculated analytically in terms of physiological parameters, including the effects of filtering of signals by the cerebrospinal fluid, skull, and scalp. The spectral power at low frequencies is found to vary as f-1 when awake and f-3 when asleep, with a breakpoint to a steeper power-law tail at frequencies above about 20 Hz in both cases; the f-1 range concurs with recent magnetoencephalographic observations of such a regime. Parameter sensitivities are explored, enabling a model with fewer free parameters to be proposed, and showing that spectra predicted for physiologically reasonable parameter values strongly resemble those observed in the laboratory. Alpha and beta peaks seen near 10 Hz and twice that frequency, respectively, in the relaxed wakeful state are generated via subcortical feedback in this model, thereby leading to predictions of their frequencies in terms of physiological parameters, and of correlations in their occurrence. Subcortical feedback is also predicted to be responsible for production of anticorrelated peaks in deep sleep states that correspond to the occurrence of theta rhythm at around half the alpha frequency and sleep spindles at 3/2 times the alpha frequency. An additional positively correlated waking peak near three times the alpha frequency is also predicted and tentatively observed, as are two new types of sleep spindle near 5/2 and 7/2 times the alpha frequency, and anticorrelated with alpha. These results provide a theoretical basis for the conventional division of EEG spectra into frequency bands, but imply that the exact bounds of these bands depend on the individual. Three types of potential instability are found: one at zero frequency, another in the theta band at around

  13. Frequency domain measurement systems

    NASA Technical Reports Server (NTRS)

    Eischer, M. C.

    1978-01-01

    Stable frequency sources and signal processing blocks were characterized by their noise spectra, both discrete and random, in the frequency domain. Conventional measures are outlined, and systems for performing the measurements are described. Broad coverage of system configurations which were found useful is given. Their functioning and areas of application are discussed briefly. Particular attention is given to some of the potential error sources in the measurement procedures, system configurations, double-balanced-mixer-phase-detectors, and application of measuring instruments.

  14. Abdominal symptoms in general practice: Frequency, cancer suspicions raised, and actions taken by GPs in six European countries. Cohort study with prospective registration of cancer.

    PubMed

    Holtedahl, Knut; Vedsted, Peter; Borgquist, Lars; Donker, Gé A; Buntinx, Frank; Weller, David; Braaten, Tonje; Hjertholm, Peter; Månsson, Jörgen; Strandberg, Eva Lena; Campbell, Christine; Ellegaard, Lisbeth; Parajuli, Ranjan

    2017-06-01

    Abdominal symptoms are diagnostically challenging to general practitioners (GPs): although common, they may indicate cancer. In a prospective cohort of patients, we examined abdominal symptom frequency, initial diagnostic suspicion, and actions of GPs in response to abdominal symptoms. Over a 10-day period, 493 GPs in Norway, Denmark, Sweden, Belgium, the Netherlands, and Scotland, recorded consecutive consultations: sex, date of birth and any specified abdominal symptoms. For patients with abdominal symptoms, additional data on non-specific symptoms, GPs' diagnostic suspicion, and features of the consultation were noted. Data on all cancer diagnoses among all included patients were requested from the GPs eight months later. Consultations with 61802 patients were recorded. Abdominal symptoms were recorded in 6264 (10.1%) patients. A subsequent malignancy was reported in 511 patients (0.8%): 441 (86.3%) had a new cancer, 70 (13.7%) a recurrent cancer. Abdominal symptoms were noted in 129 (25.2%) of cancer patients (P < 0.001), rising to 34.5% for the 89 patients with cancer located in the abdominal region. PPV for any cancer given any abdominal symptom was 2.1%. In symptomatic patients diagnosed with cancer, GPs noted a suspicion of cancer for 85 (65.9%) versus 1895 (30.9%) when there was no subsequent cancer (P < 0.001). No suspicion was noted in 32 (24.8%) cancer patients. The GP's intuitive cancer suspicion was independently associated with a subsequent new cancer diagnosis (OR 2.11, 95% CI 1.15-3.89). Laboratory tests were ordered for 45.4% of symptomatic patients, imaging for 10.4%, referral or hospitalization for 20.0%: all were more frequent in subsequent cancer patients (P < 0.001). Abdominal symptoms pointed to abdominal cancers rather than to other cancers. However, the finding of abdominal symptoms in only one third of patients with an abdominal cancer, and the lack of cancer suspicion in a quarter of symptomatic cancer patients, provide challenges for

  15. Modeling the Infrared Emission Spectra of Specific PAH Molecules in Interstellar Space

    NASA Astrophysics Data System (ADS)

    Li, Aigen

    2007-05-01

    The 3.3, 6.2, 7.7, 8.6 and 11.3 micron emission features ubiquitously seen in a wide variety of Galactic and extragalactic objects, are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. Although the PAH hypothesis is quite successful in explaining the general pattern of the observed emission spectra, so far there is no actual precise identification of a single specific PAH molecule in interstellar space. Therefore, when modeling the observed PAH emission spectra, astronomers usually take an empirical approach by constructing 'astro-PAHs' which do not represent any specific material, but approximate the actual absorption properties of the PAH mixture in astrophysical regions. We propose a Spitzer Theory Program to study the photoexcitation of specific PAH molecules and their ions in interstellar space, taking a statistical-mechanical (instead of thermal) approach. For most of the specific PAH molecules selected for this research (with a small number of vibrational degrees of freedom), thermal approximation is not valid. Using available laboratory and quantum-chemical data (e.g. vibrational frequencies, UV/visible/IR absorption cross sections), we will calculate the emission spectra of 21 representative specific PAH molecules and their ions, ranging from naphthalene to circumcoronene, illuminated by interstellar radiation fields of a wide range of intensities. This program will create a web-based 'library' of the emission spectra of 21 specific PAH molecules and their ions as a function of starlight intensities. This 'library' will be made publicly available by October 2008 on the internet at http://www.missouri.edu/~lia/. By comparing observed PAH spectra with model spectra produced by co-adding the emission spectra of different PAH molecules available in this 'library' (with different weights for different species), one will be able to estimate the total PAH mass and relative abundances of each PAH species, using real PAH properties.

  16. Cleaning HI Spectra Contaminated by GPS RFI

    NASA Astrophysics Data System (ADS)

    Sylvia, Kamin; Hallenbeck, Gregory L.; Undergraduate ALFALFA Team

    2016-01-01

    The NUDET systems aboard GPS satellites utilize radio waves to communicate information regarding surface nuclear events. The system tests appear in spectra as RFI (radio frequency interference) at 1381MHz, which contaminates observations of extragalactic HI (atomic hydrogen) signals at 50-150 Mpc. Test durations last roughly 20-120 seconds and can occur upwards of 30 times during a single night of observing. The disruption essentially renders the corresponding HI spectra useless.We present a method that automatically removes RFI in HI spectra caused by these tests. By capitalizing on the GPS system's short test durations and predictable frequency appearance we are able to devise a method of identifying times containing compromised data records. By reevaluating the remaining data, we are able to recover clean spectra while sacrificing little in terms of sensitivity to extragalactic signals. This method has been tested on 500+ spectra taken by the Undergraduate ALFALFA Team (UAT), in which it successfully identified and removed all sources of GPS RFI. It will also be used to eliminate RFI in the upcoming Arecibo Pisces-Perseus Supercluster Survey (APPSS).This work has been supported by NSF grant AST-1211005.

  17. On the analysis of photo-electron spectra

    SciTech Connect

    Gao, C.-Z.; Dinh, P.M.; Reinhard, P.-G.; Suraud, E.

    2015-09-15

    We analyze Photo-Electron Spectra (PES) for a variety of excitation mechanisms from a simple mono-frequency laser pulse to involved combination of pulses as used, e.g., in attosecond experiments. In the case of simple pulses, the peaks in PES reflect the occupied single-particle levels in combination with the given laser frequency. This usual, simple rule may badly fail in the case of excitation pulses with mixed frequencies and if resonant modes of the system are significantly excited. We thus develop an extension of the usual rule to cover all possible excitation scenarios, including mixed frequencies in the attosecond regime. We find that the spectral distributions of dipole, monopole and quadrupole power for the given excitation taken together and properly shifted by the single-particle energies provide a pertinent picture of the PES in all situations. This leads to the derivation of a generalized relation allowing to understand photo-electron yields even in complex experimental setups.

  18. Microwave spectra of some chlorine and fluorine compounds. [spectroscopic analysis

    NASA Technical Reports Server (NTRS)

    White, W. F.

    1975-01-01

    A computer-controlled microwave spectrometer was used to catalog reference spectra for chemical analysis. Tables of absorption frequencies, peak absorption intensities, and integrated intensities are shown for 21 organic compounds which contain chlorine, fluorine, or both.

  19. RM-CLEAN: RM spectra cleaner

    NASA Astrophysics Data System (ADS)

    Heald, George

    2017-08-01

    RM-CLEAN reads in dirty Q and U cubes, generates rmtf based on the frequencies given in an ASCII file, and cleans the RM spectra following the algorithm given by Brentjens (2007). The output cubes contain the clean model components and the CLEANed RM spectra. The input cubes must be reordered with mode=312, and the output cubes will have the same ordering and thus must be reordered after being written to disk. RM-CLEAN runs as a MIRIAD (ascl:1106.007) task and a Python wrapper is included with the code.

  20. Identifying Broadband Rotational Spectra with Neural Networks

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.

  1. Spectra of Surface Waves

    DTIC Science & Technology

    1989-03-22

    with a wave follower during Marsen. J. Gophysical Res. 88, 9844-9849. 11. Hughes, B.A., 1978. The effects on internal waves on surface waves : 2...Spectra of Surface Waves K. Watson March 1989 JSR-88-130 Approved for public release; distribution unlimited. DTIC SELECTE JUN0 11989 0 JASONE The...Arlington, VA 22209 8503Z 11. TITLE (hlde Secvfty Cof.kaftn) SPECTRA OF SURFACE WAVES (U) 12. PERSONAL AUTHOfRS) K. Watson 13a. TYPE OF REPORT 13b. TIME

  2. Frequency of vital signs monitoring and its association with mortality among adults with severe sepsis admitted to a general medical ward in Uganda.

    PubMed

    Asiimwe, Stephen B; Okello, Samson; Moore, Christopher C

    2014-01-01

    Optimal vital signs monitoring of patients with severe sepsis in resource-limited settings may improve outcomes. The objective of this study was to determine the frequency of vital signs monitoring of patients with severe sepsis and its association with mortality in a regional referral hospital in Uganda. We reviewed medical records of patients admitted to Mbarara Regional Referral Hospital in Southwestern Uganda with severe sepsis defined by the presence of infection plus ≥ 2 of the systemic inflammatory response syndrome criteria, and ≥ 1 organ dysfunction (altered mental state, hypotension, jaundice, or thrombocytopenia). We recorded frequency of vital signs monitoring in addition to socio-demographic, clinical, and outcome data. We analyzed the data using logistic regression. We identified 202 patients with severe sepsis. The median age was 35 years (IQR, 25-47) and 98 (48%) were female. HIV infection and anemia was present in 115 (57%) and 83 (41%) patients respectively. There were 67 (33%) in-hospital deaths. The median monitoring frequency per day was 1.1 (IQR 0.9-1.5) for blood pressure, 1.0 (IQR, 0.8-1.3) for temperature and pulse, and 0.5 (IQR, 0.3-1.0) for respiratory rate. The frequency of vital signs monitoring decreased during the course of hospitalization. Patients who died had a higher frequency of vital signs monitoring (p<0.05). The admission respiratory rate was associated with both frequency of monitoring (coefficient of linear regression 0.6, 95% CI 0.5-0.8, p<0.001) and mortality (AOR 2.5, 95% CI 1.3-5.3, p = 0.01). Other predictors of mortality included severity of illness, HIV infection, and anemia (p<0.05). More research is needed to determine the optimal frequency of vital signs monitoring for severely septic patients in resource-limited settings such as Uganda.

  3. Graviton spectra in string cosmology

    SciTech Connect

    Galluccio, Massimo; Litterio, Marco; Occhionero, Franco

    1996-08-01

    We propose to uncover the signature of a stringy era in the primordial Universe by searching for a prominent peak in the relic graviton spectrum. This feature, which in our specific model terminates an ω³ increase and initiates an ω⁻⁷ decrease, is induced during the so far overlooked bounce of the scale factor between the collapsing deflationary era (or pre-Big Bang) and the expanding inflationary era (or post-Big Bang). We evaluate both analytically and numerically the frequency and the intensity of the peak and we show that they may likely fall in the realm of the new generation of interferometric detectors. The existence of a peak is at variance with ordinarily monotonic (either increasing or decreasing) graviton spectra of canonical cosmologies; its detection would therefore offer strong support to string cosmology.

  4. Spatial evolution of ocean wave spectra

    NASA Technical Reports Server (NTRS)

    Beal, R. C.

    1981-01-01

    The spatially evolving deep water synthetic aperture radar (SAR) directional spectra of a mixed ocean wave system are compared with a comprehensive set of surface and aircraft measurements. The evolution of the SAR spectra, at least for ocean wavelengths greater than 80 m, is seen as generally consistent with the auxiliary data set in both time and space. From the spatial evolution of the angular component of the spectra, it is possible to project back to an apparent remote storm source that is also consistent with the storm location via GOES satellite imagery. The data provide compelling evidence that the spatial evolution of SAR ocean wave spectra can be a useful tool in global ocean wave monitoring and forecasting.

  5. Contribution to the study of turbulence spectra

    NASA Technical Reports Server (NTRS)

    Dumas, R.

    1979-01-01

    An apparatus suitable for turbulence measurement between ranges of 1 to 5000 cps and from 6 to 16,000 cps was developed and is described. Turbulence spectra downstream of the grills were examined with reference to their general characteristics, their LF qualities, and the effects of periodic turbulence. Medium and HF are discussed. Turbulence spectra in the boundary layers are similarly examined, with reference to their fluctuations at right angles to the wall, and to lateral fluctuations. Turbulence spectra in a boundary layer with suction to the wall is discussed. Induced turbulence, and turbulence spectra at high Reynolds numbers. Calculations are presented relating to the effect of filtering on the value of the correlations in time and space.

  6. Spatial structure of directional wave spectra in hurricanes

    NASA Astrophysics Data System (ADS)

    Esquivel-Trava, Bernardo; Ocampo-Torres, Francisco J.; Osuna, Pedro

    2015-01-01

    The spatial structure of the wave field during hurricane conditions is studied using the National Data Buoy Center directional wave buoy data set from the Caribbean Sea and the Gulf of Mexico. The buoy information, comprising the directional wave spectra during the passage of several hurricanes, was referenced to the center of the hurricane using the path of the hurricane, the propagation velocity, and the radius of the maximum winds. The directional wave spectra were partitioned into their main components to quantify the energy corresponding to the observed wave systems and to distinguish between wind-sea and swell. The findings are consistent with those found using remote sensing data (e.g., Scanning Radar Altimeter data). Based on the previous work, the highest waves are found in the right forward quadrant of the hurricane, where the spectral shape tends to become uni-modal, in the vicinity of the region of maximum winds. More complex spectral shapes are observed in distant regions at the front of and in the rear quadrants of the hurricane, where there is a tendency of the spectra to become bi- and tri-modal. The dominant waves generally propagate at significant angles to the wind direction, except in the regions next to the maximum winds of the right quadrants. Evidence of waves generated by concentric eyewalls associated with secondary maximum winds was also found. The frequency spectra display some of the characteristics of the JONSWAP spectrum adjusted by Young (J Geophys Res 111:8020, 2006); however, at the spectral peak, the similarity with the Pierson-Moskowitz spectrum is clear. These results establish the basis for the use in assessing the ability of numerical models to simulate the wave field in hurricanes.

  7. A molecular dynamics study of classical vibrational spectra in hydrostatically compressed crystalline nitromethane.

    PubMed

    Siavosh-Haghighi, Ali; Dawes, Richard; Sewell, Thomas D; Thompson, Donald L

    2010-12-30

    The effects of pressure on the vibrational spectra of crystalline nitromethane have been studied by computing normal-mode frequencies and eigenvectors and classical power spectra at several hydrostatic pressures between 0 and 27.3 GPa using the full-dimensional Sorescu-Rice-Thompson (J. Phys. Chem. B 2000, 104, 8406) (SRT) valence force field. The purpose of the study was to determine the limits within which the SRT force field, and classical mechanics more generally, captures the qualitative pressure effects observed experimentally. The current results exhibit good overall agreement between the calculated normal-mode frequencies (and especially their pressure-dependent shifts) and those obtained in published experimental and theoretical studies. Comparisons of the pressure dependencies near room temperature of classical power spectra to experimental pressure-dependent infrared (IR) spectra for particular vibrational modes yield, in the case of the CN stretch, a CH(3) deformation, and the NO(2) asymmetric stretch, intriguingly similar evolution of spectral intensity with respect to pressure, whereas for the case of the NO(2) symmetric stretch mode the classical result bears little similarity to the experimental result.

  8. Prediction of earthquake response spectra

    USGS Publications Warehouse

    Joyner, W.B.; Boore, David M.

    1982-01-01

    We have developed empirical equations for predicting earthquake response spectra in terms of magnitude, distance, and site conditions, using a two-stage regression method similar to the one we used previously for peak horizontal acceleration and velocity. We analyzed horizontal pseudo-velocity response at 5 percent damping for 64 records of 12 shallow earthquakes in Western North America, including the recent Coyote Lake and Imperial Valley, California, earthquakes. We developed predictive equations for 12 different periods between 0.1 and 4.0 s, both for the larger of two horizontal components and for the random horizontal component. The resulting spectra show amplification at soil sites compared to rock sites for periods greater than or equal to 0.3 s, with maximum amplification exceeding a factor of 2 at 2.0 s. For periods less than 0.3 s there is slight deamplification at the soil sites. These results are generally consistent with those of several earlier studies. A particularly significant aspect of the predicted spectra is the change of shape with magnitude (confirming earlier results by McGuire and by Irifunac and Anderson). This result indicates that the conventional practice of scaling a constant spectral shape by peak acceleration will not give accurate answers. The Newmark and Hall method of spectral scaling, using both peak acceleration and peak velocity, largely avoids this error. Comparison of our spectra with the Nuclear Regulatory Commission's Regulatory Guide 1.60 spectrum anchored at the same value at 0.1 s shows that the Regulatory Guide 1.60 spectrum is exceeded at soil sites for a magnitude of 7.5 at all distances for periods greater than about 0.5 s. Comparison of our spectra for soil sites with the corresponding ATC-3 curve of lateral design force coefficient for the highest seismic zone indicates that the ATC-3 curve is exceeded within about 7 km of a magnitude 6.5 earthquake and within about 15 km of a magnitude 7.5 event. The amount by

  9. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  10. Quantum spectra and dynamics

    NASA Astrophysics Data System (ADS)

    Arce, Julio Cesar

    This work focuses on time-dependent quantum theory and methods for the study of the spectra and dynamics of atomic and molecular systems. Specifically, we have addressed the following two problems: (1) Development of a time-dependent spectral method for the construction of spectra of simple quantum systems. This includes the calculation of eigenenergies, the construction of bound and continuum eigenfunctions, and the calculation of photo cross-sections. Computational applications include the quadrupole photoabsorption spectra and dissociation cross-sections of molecular hydrogen from various vibrational states in its ground electronic potential-energy curve. This method is seen to provide an advantageous alternative, both from the computational and conceptual point of view, to existing standard methods. (2) Explicit time-dependent formulation of photoabsorption processes -- Analytical solutions of the time-dependent Schrodinger equation are constructed and employed for the calculation of probability densities, momentum distributions, fluxes, transition rates, expectation values and correlation functions. These quantities are seen to establish the link between the dynamics and the calculated, or measured, spectra and cross-sections, and to clarify the dynamical nature of the excitation, transition and ejection processes. Numerical calculations on atomic and molecular hydrogen corroborate and complement the previous results, allowing the identification of different regimes during the photoabsorption process.

  11. Quantum Spectra and Dynamics

    NASA Astrophysics Data System (ADS)

    Arce, Julio Cesar

    1992-01-01

    This work focuses on time-dependent quantum theory and methods for the study of the spectra and dynamics of atomic and molecular systems. Specifically, we have addressed the following two problems: (i) Development of a time-dependent spectral method for the construction of spectra of simple quantum systems--This includes the calculation of eigenenergies, the construction of bound and continuum eigenfunctions, and the calculation of photo cross-sections. Computational applications include the quadrupole photoabsorption spectra and dissociation cross-sections of molecular hydrogen from various vibrational states in its ground electronic potential -energy curve. This method is seen to provide an advantageous alternative, both from the computational and conceptual point of view, to existing standard methods. (ii) Explicit time-dependent formulation of photoabsorption processes --Analytical solutions of the time-dependent Schrodinger equation are constructed and employed for the calculation of probability densities, momentum distributions, fluxes, transition rates, expectation values and correlation functions. These quantities are seen to establish the link between the dynamics and the calculated, or measured, spectra and cross-sections, and to clarify the dynamical nature of the excitation, transition and ejection processes. Numerical calculations on atomic and molecular hydrogen corroborate and complement the previous results, allowing the identification of different regimes during the photoabsorption process.

  12. IR SPECTRA BY DFT FOR GLUCOSE AND ITS EPIMERS: A COMPARISON BETWEEN VACUUM AND SOLVATED SPECTRA

    USDA-ARS?s Scientific Manuscript database

    Infrared spectra were calculated for the low energy geometry optimized structures of glucose and all of its epimers, at B3LYP/6-311++G** level of theory. Calculations were performed both in vacuo and using the COSMO solvation method. Frequencies, zero point energies, enthalpies, entropies, and rel...

  13. Interpretation of Nitroindolinospirobenzothiopyran Vibrational Spectra

    NASA Astrophysics Data System (ADS)

    Gladkov, L. L.; Khamchukov, Yu. D.; Lyubimov, A. V.

    2016-05-01

    The structures of four possible stereoisomers of the closed form of photochromic nitroindolinospirobenzothiopyran (NISTP) {1',3'-dihydro-1',3',3'-trimethyl-6-nitrospiro[2H-1-benzothiopyran-2,2'-(2H)-indoline]} were determined by the DFT method. The geometry of the most stable isomer was defined. Nitro-substitution changes mainly the lengths of bonds formed by S and N with spiro-atom Cs. According to the calculations, the CsS bond changes most and lengthens by 0.019 Å. It is shown that the S atom has large displacement amplitudes in normal modes assigned to Raman lines at 230, 285, 360, and 575 cm-1 and weak IR bands at 467 and 577 cm-1. Oscillations involving the nitro group are very active in Raman and IR spectra. Their frequencies are slightly lower than similar frequencies of nitrobenzene and nitroindolinospirobenzopyran, indicating a higher degree of vibrational coupling of the NO2 group with the NISTP molecular skeleton.

  14. Density functional theory-based simulations of sum frequency generation spectra involving methyl stretching vibrations: effect of the molecular model on the deduced molecular orientation and comparison with an analytical approach

    NASA Astrophysics Data System (ADS)

    Cecchet, F.; Lis, D.; Caudano, Y.; Mani, A. A.; Peremans, A.; Champagne, B.; Guthmuller, J.

    2012-03-01

    The knowledge of the first hyperpolarizability tensor elements of molecular groups is crucial for a quantitative interpretation of the sum frequency generation (SFG) activity of thin organic films at interfaces. Here, the SFG response of the terminal methyl group of a dodecanethiol (DDT) monolayer has been interpreted on the basis of calculations performed at the density functional theory (DFT) level of approximation. In particular, DFT calculations have been carried out on three classes of models for the aliphatic chains. The first class of models consists of aliphatic chains, containing from 3 to 12 carbon atoms, in which only one methyl group can freely vibrate, while the rest of the chain is frozen by a strong overweight of its C and H atoms. This enables us to localize the probed vibrational modes on the methyl group. In the second class, only one methyl group is frozen, while the entire remaining chain is allowed to vibrate. This enables us to analyse the influence of the aliphatic chain on the methyl stretching vibrations. Finally, the dodecanethiol (DDT) molecule is considered, for which the effects of two dielectrics, i.e. n-hexane and n-dodecane, are investigated. Moreover, DDT calculations are also carried out by using different exchange-correlation (XC) functionals in order to assess the DFT approximations. Using the DFT IR vectors and Raman tensors, the SFG spectrum of DDT has been simulated and the orientation of the methyl group has then been deduced and compared with that obtained using an analytical approach based on a bond additivity model. This analysis shows that when using DFT molecular properties, the predicted orientation of the terminal methyl group tends to converge as a function of the alkyl chain length and that the effects of the chain as well as of the dielectric environment are small. Instead, a more significant difference is observed when comparing the DFT-based results with those obtained from the analytical approach, thus indicating

  15. Density functional theory-based simulations of sum frequency generation spectra involving methyl stretching vibrations: effect of the molecular model on the deduced molecular orientation and comparison with an analytical approach.

    PubMed

    Cecchet, F; Lis, D; Caudano, Y; Mani, A A; Peremans, A; Champagne, B; Guthmuller, J

    2012-03-28

    The knowledge of the first hyperpolarizability tensor elements of molecular groups is crucial for a quantitative interpretation of the sum frequency generation (SFG) activity of thin organic films at interfaces. Here, the SFG response of the terminal methyl group of a dodecanethiol (DDT) monolayer has been interpreted on the basis of calculations performed at the density functional theory (DFT) level of approximation. In particular, DFT calculations have been carried out on three classes of models for the aliphatic chains. The first class of models consists of aliphatic chains, containing from 3 to 12 carbon atoms, in which only one methyl group can freely vibrate, while the rest of the chain is frozen by a strong overweight of its C and H atoms. This enables us to localize the probed vibrational modes on the methyl group. In the second class, only one methyl group is frozen, while the entire remaining chain is allowed to vibrate. This enables us to analyse the influence of the aliphatic chain on the methyl stretching vibrations. Finally, the dodecanethiol (DDT) molecule is considered, for which the effects of two dielectrics, i.e. n-hexane and n-dodecane, are investigated. Moreover, DDT calculations are also carried out by using different exchange-correlation (XC) functionals in order to assess the DFT approximations. Using the DFT IR vectors and Raman tensors, the SFG spectrum of DDT has been simulated and the orientation of the methyl group has then been deduced and compared with that obtained using an analytical approach based on a bond additivity model. This analysis shows that when using DFT molecular properties, the predicted orientation of the terminal methyl group tends to converge as a function of the alkyl chain length and that the effects of the chain as well as of the dielectric environment are small. Instead, a more significant difference is observed when comparing the DFT-based results with those obtained from the analytical approach, thus indicating

  16. Quadrupolar Echo Spectra of the Tunneling CD 3Group

    NASA Astrophysics Data System (ADS)

    Olejniczak, Z.; Detken, A.; Manz, B.; Haeberlen, U.

    Deuteron NMR spectra of both single crystal and powder samples of acetylsalicylic acid-CD 3were measured using the quadrupolar-echo technique. The experiments were done in the temperature range 17-100 K, with a special emphasis on the range 20- 30 K, in which the observable tunneling frequency decreases rapidly from its low-temperature value of 2.7 down to 1.2 MHz. In the tunneling regime, modulations of the line intensities and phases as a function of the echo time τ are observed in the single-crystal spectra. The modulation frequency is equal to the orientation-dependent displacement of the inner satellite pairs (α lines) from the Larmor frequency. These effects were confirmed in numerical simulations and fully explain the phase-modulation effects observed previously in quadrupolar-echo spectra of methyl-deuterated methanol and para-xylene guest molecules in some inclusion compounds. By measuring the temperature and orientation dependence of the quadrupolar lineshapes, it was found that the echo spectra are more sensitive to the value of the tunneling frequency than the spectra obtained from the free induction decay. It is pointed out that, because of the modulation effects, special care must be taken when structural parameters are to be extracted from quadrupolar-echo spectra, in particular from spectra of powder samples.

  17. GAMMA-RAY BURST SPECTRA AND SPECTRAL CORRELATIONS FROM SUB-PHOTOSPHERIC COMPTONIZATION

    SciTech Connect

    Chhotray, Atul; Lazzati, Davide

    2015-04-01

    One of the most important unresolved issues in gamma-ray burst (GRB) physics is the origin of the prompt gamma-ray spectrum. Its general non-thermal character and the softness in the X-ray band remain unexplained. We tackle these issues by performing Monte Carlo simulations of radiation–matter interactions in a scattering dominated photon–lepton plasma. The plasma—initially in equilibrium—is driven to non-equilibrium conditions by a sudden energy injection in the lepton population, mimicking the effect of a shock wave or the dissipation of magnetic energy. Equilibrium restoration occurs due to an energy exchange between the photons and leptons. While the initial and final equilibrium spectra are thermal, the transitional photon spectra are characterized by non-thermal features such as power-law tails, high energy bumps, and multiple components. Such non-thermal features are observed at infinity if the dissipation occurs at small to moderate optical depths, and the spectrum is released before thermalization is complete. We model the synthetic spectra with a Band function and show that the resulting spectral parameters are similar to observations for a frequency range of 2–3 orders of magnitude around the peak. In addition, our model predicts correlations between the low-frequency photon index and the peak frequency as well as between the low- and high-frequency indices. We explore baryon and pair-dominated fireballs and reach the conclusion that baryonic fireballs are a better model for explaining the observed features of GRB spectra.

  18. Evolution of Fourier spectra through interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Pitna, Alexander; Safrankova, Jana; Nemecek, Zdenek; Nemec, Frantisek; Goncharov, Oleksandr

    2014-05-01

    Well established nearly isothermic solar wind expansion requires an additional heating. A dissipation of large scale variations of the solar wind kinetic energy into the thermal energy via turbulence cascades is thought to be an important source of this heating, although the exact mechanism is yet to be found. For this reason, the turbulence in the solar wind is a subject of extensive theoretical and experimental studies on different time scales ranging from years to minutes. The frequency spectrum of magnetic field fluctuations can be divided into several domains differing by spectral indices - the lowest frequencies are controlled by the solar activity, MHD activity shapes the spectrum at higher (up to 0.1 Hz) frequencies, whereas the ion and electron kinetic effects dominate at the high frequency end of the spectra. Interplanetary shocks of various origins are a part of solar wind turbulence naturally occurring in the solar wind and the BMSW instrument onboard the Spektr-R spacecraft has detected tens of them in course of the 2011-2013 years. Based on its high-time resolution of the ion flux, density and velocity measurements reaching 31 ms, we study an evolution of the frequency spectra on MHD and kinetic scales across fast forward low Mach number shocks. We have found that the power of downstream fluctuations rises by an order of magnitude in a broad range of frequencies independently of its upstream value but the slope of the spectrum on the kinetic scale (≡3-8 Hz) has been found to be statistically steeper downstream than upstream of the shock. The time needed to a full relaxation to the pre-shock spectral shape is as long as several hours. A combination of the ion flux power spectra obtained by BMSW with fast magnetic field observations of other spacecraft enhances our understanding of dissipation mechanisms.

  19. Radial evolution of power spectra of interplanetary Alfvenic turbulence

    NASA Technical Reports Server (NTRS)

    Bavassano, B.; Dobrowolny, M.; Mariani, F.; Ness, N. F.

    1981-01-01

    The radial evolution of the power spectra of the MHD turbulence within the trailing edge of high speed streams in the solar wind was investigated with the magnetic field data of Helios 1 and 2 for heliocentric distance between 0.3 and 0.9 AU. In the analyzed frequency range (.00028 Hz to .0083 Hz) the computed spectra have, near the Earth, values of the spectral index close to that predicted for an incompressible hydromagnetic turbulence in a stationary state. Approaching the Sun the spectral slope remains unchanged for frequencies f or approximately .00 Hz, whereas at lower frequencies, a clear evolution toward a less steep fall off with frequency is found. The radial gradient of the power in Alfvenic fluctuations depends on frequency and it increases upon increasing frequency. For frequencies f or approximately .00 Hz, however, the radial gradient remains approximately the same. Possible theoretical implications of the observational features are discussed.

  20. Parmeterization of spectra

    NASA Technical Reports Server (NTRS)

    Cornish, C. R.

    1983-01-01

    Following reception and analog to digital conversion (A/D) conversion, atmospheric radar backscatter echoes need to be processed so as to obtain desired information about atmospheric processes and to eliminate or minimize contaminating contributions from other sources. Various signal processing techniques have been implemented at mesosphere-stratosphere-troposphere (MST) radar facilities to estimate parameters of interest from received spectra. Such estimation techniques need to be both accurate and sufficiently efficient to be within the capabilities of the particular data-processing system. The various techniques used to parameterize the spectra of received signals are reviewed herein. Noise estimation, electromagnetic interference, data smoothing, correlation, and the Doppler effect are among the specific points addressed.

  1. On optimization of absorption-dispersion spectra

    NASA Astrophysics Data System (ADS)

    Hawranek, J. P.; Grabska, J.; Beć, K. B.

    2016-12-01

    A modified approach to the analysis of spectra of the complex electric permittivity of liquids in the Infrared region is presented. These spectra are derived from experimental spectra of the complex refractive index. Subsequently they are used to determine important secondary quantities, e.g. spectra of complex molecular polarizabilities and an integral property - the molar vibrational polarization. The accuracy of these quantities depends essentially on the accuracy of both components of the complex electric permittivity spectrum. In the proposed procedure, the spectra of the complex electric permittivity are approximated using the Classical Damped Harmonic Oscillator (CDHO) model for the description of individual bandshapes. The CDHO model defines both the real and imaginary part of the complex permittivity. The fitting procedure includes a simultaneous optimization of both the real and imaginary parts of the complex permittivity spectrum. A comparison of absorption-only curve fitting and the novel absorption-dispersion double curve fitting is presented; advantages of the new approach in accuracy, reliability and convergence time are pointed out. Due to the complexity of the problem, the choice was restricted to non-gradient methods of optimization. The performance of several gradientless algorithms was tested. Among numerous procedures the Powell General Least Squares Method Without Derivatives was found to be the most efficient. The reliability of obtained results of the band separatiovn process was tested on several simulated spectra of increasing complexity. The applicability of the developed approach to the analysis of exemplary experimental data was evaluated and discussed.

  2. Computer simulation of backscattering spectra from paint

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Silva, T. F.

    2017-09-01

    To study the role of lateral non-homogeneity on backscattering analysis of paintings, a simplified model of paint consisting of randomly distributed spherical pigment particles embedded in oil/binder has been developed. Backscattering spectra for lead white pigment particles in linseed oil have been calculated for 3 MeV H+ at a scattering angle of 165° for pigment volume concentrations ranging from 30 vol.% to 70 vol.% using the program STRUCTNRA. For identical pigment volume concentrations the heights and shapes of the backscattering spectra depend on the diameter of the pigment particles: This is a structural ambiguity for identical mean atomic concentrations but different lateral arrangement of materials. Only for very small pigment particles the resulting spectra are close to spectra calculated supposing atomic mixing and assuming identical concentrations of all elements. Generally, a good fit can be achieved when evaluating spectra from structured materials assuming atomic mixing of all elements and laterally homogeneous depth distributions. However, the derived depth profiles are inaccurate by a factor of up to 3. The depth range affected by this structural ambiguity ranges from the surface to a depth of roughly 0.5-1 pigment particle diameters. Accurate quantitative evaluation of backscattering spectra from paintings therefore requires taking the correct microstructure of the paint layer into account.

  3. Natural broadening in the quantum emission spectra of higher-dimensional Schwarzschild black holes

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2017-01-01

    Following an intriguing heuristic argument of Bekenstein, many researches have suggested during the last four decades that quantized black holes may be characterized by discrete radiation spectra. Bekenstein and Mukhanov (BM) have further argued that the emission spectra of quantized (3 +1 )-dimensional Schwarzschild black holes are expected to be sharp in the sense that the characteristic natural broadening δ ω of the black-hole radiation lines, as deduced from the quantum time-energy uncertainty principle, is expected to be much smaller than the characteristic frequency spacing Δ ω =O (TBH/ℏ) between adjacent black-hole quantum emission lines. It is of considerable physical interest to test the general validity of the interesting conclusion reached by BM regarding the sharpness of the Schwarzschild black-hole quantum radiation spectra. To this end, in the present paper we explore the physical properties of the expected radiation spectra of quantized (D +1 )-dimensional Schwarzschild black holes. In particular, we analyze the functional dependence of the characteristic dimensionless ratio ζ (D )≡δ ω /Δ ω on the number D +1 of spacetime dimensions. Interestingly, it is proved that the dimensionless physical parameter ζ (D ), which characterizes the sharpness of the black-hole quantum emission spectra, is an increasing function of D . In particular, we prove that the quantum emission lines of (D +1 )-dimensional Schwarzschild black holes in the regime D ≳10 are characterized by the dimensionless ratio ζ (D )≳1 and are therefore effectively blended together. The results presented in this paper thus suggest that, even if the underlying energy spectra of quantized (D +1 )-dimensional Schwarzschild black holes are fundamentally discrete, as argued by many authors, the quantum phenomenon of natural broadening is expected to smear the characteristic emission spectra of these higher-dimensional black holes into a continuum.

  4. Directional Ocean Wave Spectra

    DTIC Science & Technology

    1991-01-01

    of Ocean Waves: Some Observations from R. K. Raney and LIMEX/LEWEX 󈨛 P. W, Vachon 104 Directional Spectra from the CCRS C-Band SAR during LEWEX P...11. Vachon , A. S. Bhogal, and i%’. G. Freeman I10 SAR Scattering Mechanisms as Inferred from LEWEX D. G, Tiller Spectral Intercomparisons 117...Duiring her stay. Michelle Champagne- on time scales usually recommended to define the mean. Philippe explored some of the aspects ofthe ’sind %aniahilits

  5. Barnacle Bill Spectra

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These IMP spectra show the characteristics of the rock surface measured by the Alpha Proton X-Ray Spectrometer (blue), the soil trapped in pits on the rock surface (red), and the deposit of bright drift on the top of the rock. The area measured by the APXS has the properties expected for nearly unweathered igneous rock, and the soil trapped in the pits is intermediate to the unweathered rock and the highly weathered drift material.

  6. On the consideration of scaling properties of extreme rainfall in Madrid (Spain) for developing a generalized intensity-duration-frequency equation and assessing probable maximum precipitation estimates

    NASA Astrophysics Data System (ADS)

    Casas-Castillo, M. Carmen; Rodríguez-Solà, Raúl; Navarro, Xavier; Russo, Beniamino; Lastra, Antonio; González, Paula; Redaño, Angel

    2016-11-01

    The fractal behavior of extreme rainfall intensities registered between 1940 and 2012 by the Retiro Observatory of Madrid (Spain) has been examined, and a simple scaling regime ranging from 25 min to 3 days of duration has been identified. Thus, an intensity-duration-frequency (IDF) master equation of the location has been constructed in terms of the simple scaling formulation. The scaling behavior of probable maximum precipitation (PMP) for durations between 5 min and 24 h has also been verified. For the statistical estimation of the PMP, an envelope curve of the frequency factor (k m ) based on a total of 10,194 station-years of annual maximum rainfall from 258 stations in Spain has been developed. This curve could be useful to estimate suitable values of PMP at any point of the Iberian Peninsula from basic statistical parameters (mean and standard deviation) of its rainfall series.

  7. Pattern recognition in spectra

    NASA Astrophysics Data System (ADS)

    Gebran, M.; Paletou, F.

    2017-06-01

    We present a new automated procedure that simultaneously derives the effective temperature Teff, surface gravity log g, metallicity [Fe/H], and equatorial projected rotational velocity ve sin i for stars. The procedure is inspired by the well-known PCA-based inversion of spectropolarimetric full-Stokes solar data, which was used both for Zeeman and Hanle effects. The efficiency and accuracy of this procedure have been proven for FGK, A, and late type dwarf stars of K and M spectral types. Learning databases are generated from the Elodie stellar spectra library using observed spectra for which fundamental parameters were already evaluated or with synthetic data. The synthetic spectra are calculated using ATLAS9 model atmospheres. This technique helped us to detect many peculiar stars such as Am, Ap, HgMn, SiEuCr and binaries. This fast and efficient technique could be used every time a pattern recognition is needed. One important application is the understanding of the physical properties of planetary surfaces by comparing aboard instrument data to synthetic ones.

  8. Predicting Infrared Spectra of Nerve Agents Using Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Zhang, Y.-P.; Wang, H.-T.; Zheng, W.-P.; Sun, C.; Bai, Y.; Guo, X.-D.; Sun, H.

    2016-09-01

    Vibration frequencies of four nerve agents and two simulators are calculated using B3LYP coupled with ten basis sets. To evaluate the accuracy of calculated spectra, root mean square error (RMSE) and weighted cross-correlation average (WCCA) are considered. The evaluation shows that B3LYP/6-311+g(d,p) performs best in predicting infrared spectra, and polarization functions are found to be more important than diffusion functions in spectra simulation. Moreover, B3LYP calculation underestimates frequencies related to the P atom. The WCCA metric derives 1.008 as a unique scaling factor for calculated frequencies. The results indicate that the WCCA metric can identify six agents based on calculated spectra.

  9. Raman spectra of benzophenone and benzopinacol crystals

    NASA Astrophysics Data System (ADS)

    Davydova, N. A.; Babkov, L. M.; Baran, J.; Kukielski, J. I.; Mel'nik, V. I.; Truchkachev, S. V.

    2002-09-01

    For the first time Raman spectra of benzopinacol crystals, which are a result of photochemical decomposition of benzophenone crystals, have been measured over the range 10-3600 cm -1. A tentative model of benzopinacol molecule has been proposed to calculate Raman active modes. The comparison of the calculated frequencies with those experimentally observed shows good accordance. Thus, the proposed model of benzopinacol molecule apparently is quite adequate to the real structure.

  10. THE SPITZER ATLAS OF STELLAR SPECTRA (SASS)

    SciTech Connect

    Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech; Stauffer, John; Rho, Jeonghee; Fajardo-Acosta, Sergio; Hoard, D. W.; Wachter, Stefanie; Song, Inseok

    2010-12-15

    We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 {mu}m; R {approx} 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.

  11. Jet Signatures in the Spectra of Accreting Black Holes

    NASA Astrophysics Data System (ADS)

    O' Riordan, Michael; Pe'er, Asaf; McKinney, Jonathan C.

    2016-03-01

    Jets are observed as radio emission in active galactic nuclei and during the low/hard state in X-ray binaries (XRBs), but their contribution at higher frequencies has been uncertain. We study the dynamics of jets in XRBs using the general-relativistic magnetohydrodynamic code HARM. We calculate the high-energy spectra and variability properties using a general-relativistic radiative transport code based on grmonty. We find the following signatures of jet emission: (i) a significant γ-ray peak above ˜1022 Hz, (ii) a break in the optical/UV spectrum, with a change from ν {L}ν ˜ {ν }0 to ν {L}ν ˜ ν , followed by another break at higher frequencies where the spectrum roughly returns to ν {L}ν ˜ {ν }0, and (iii) a pronounced synchrotron peak near or below ˜1014 Hz indicates that a significant fraction of any observed X-ray emission originates in the jet. We investigate the variability during a large-scale magnetic field inversion in which the Blandford-Znajek (BZ) jet is quenched and a new transient hot reconnecting plasmoid is launched by the reconnecting field. The ratio of the γ-rays to X-rays changes from {L}γ /{L}{{X}}\\gt 1 in the BZ jet to {L}γ /{L}{{X}}\\lt 1 during the launching of the transient plasmoid.

  12. Pulsars: observations of spectra.

    PubMed

    Goldstein, R M

    1968-07-05

    Dynamic spectrograms of two of the recently discovered pulsating radio sources have been obtained. The data provide the instantaneous spectrum and the time-frequency history of the signals over a bandwidth of 3 megahertz.

  13. A novel computational method for comparing vibrational circular dichroism spectra.

    PubMed

    Shen, Jian; Zhu, Chengyue; Reiling, Stephan; Vaz, Roy

    2010-08-01

    A novel method, SimIR/VCD, for comparing experimental and calculated VCD (vibrational circular dichroism) spectra is developed, based on newly defined spectra similarities. With computationally optimized frequency scaling and shifting, a calculated spectrum can be easily identified to match an observed spectrum, which leads to an unbiased molecular chirality assignment. The time-consuming manual band-fitting work is greatly reduced. With (1S)-(-)-alpha-pinene as an example, it demonstrates that the calculated VCD similarity is correlated with VCD spectra matching quality and has enough sensitivity to identify variations in the spectra. The study also compares spectra calculated using different DFT methods and basis sets. Using this method should facilitate the spectra matching, reduce human error and provide a confidence measure in the chiral assignment using VCD spectroscopy.

  14. Radial Distribution of Electron Spectra from High-Energy Ions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.

    1998-01-01

    The average track model describes the response of physical and biological systems using radial dose distribution as the key physical descriptor. We report on an extension of this model to describe the average distribution of electron spectra as a function of radial distance from an ion. We present calculations of these spectra for ions of identical linear energy transfer (LET), but dissimilar charge and velocity to evaluate the differences in electron spectra from these ions. To illustrate the usefulness of the radial electron spectra for describing effects that are not described by electron dose, we consider the evaluation of the indirect events in microdosimetric distributions for ions. We show that folding our average electron spectra model with experimentally determined frequency distributions for photons or electrons provides a good representation of radial event spectra from high-energy ions in 0.5-2 micrometer sites.

  15. Simulation of dielectric spectra of erythrocytes with various shapes

    NASA Astrophysics Data System (ADS)

    Asami, Koji

    2009-07-01

    Dielectric spectra of erythrocyte suspensions were numerically simulated over a frequency range from 1 kHz to 100 MHz to study the effects of erythrocyte shape on the dielectric spectra. First, a biconcave-discoid model for normal erythrocytes or discocytes was compared with an equivalent oblate spheroid model. The two models showed similar dielectric spectra to each other, suggesting that the oblate spheroid model can be approximately used for discocytes. Second, dielectric spectra were simulated for discocytes deformed by osmotic cell swelling. The deformation resulted in the increase in relaxation intensity and the sharpening of spectrum shape. Finally, dielectric spectra were simulated for echinocytes, stomatocytes and sickle cells that are induced by chemical agents and diseases. The dielectric spectra of echinocytes and stomatocytes were similar to each other, being distinguishable from that of discocytes and quite different from that of sickle cells.

  16. Radial Distribution of Electron Spectra from High-Energy Ions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.

    1998-01-01

    The average track model describes the response of physical and biological systems using radial dose distribution as the key physical descriptor. We report on an extension of this model to describe the average distribution of electron spectra as a function of radial distance from an ion. We present calculations of these spectra for ions of identical linear energy transfer (LET), but dissimilar charge and velocity to evaluate the differences in electron spectra from these ions. To illustrate the usefulness of the radial electron spectra for describing effects that are not described by electron dose, we consider the evaluation of the indirect events in microdosimetric distributions for ions. We show that folding our average electron spectra model with experimentally determined frequency distributions for photons or electrons provides a good representation of radial event spectra from high-energy ions in 0.5-2 micrometer sites.

  17. Background estimation in experimental spectra

    SciTech Connect

    Fischer, R.; Hanson, K. M.; Dose, V.; Linden, W. von der

    2000-02-01

    A general probabilistic technique for estimating background contributions to measured spectra is presented. A Bayesian model is used to capture the defining characteristics of the problem, namely, that the background is smoother than the signal. The signal is allowed to have positive and/or negative components. The background is represented in terms of a cubic spline basis. A variable degree of smoothness of the background is attained by allowing the number of knots and the knot positions to be adaptively chosen on the basis of the data. The fully Bayesian approach taken provides a natural way to handle knot adaptivity and allows uncertainties in the background to be estimated. Our technique is demonstrated on a particle induced x-ray emission spectrum from a geological sample and an Auger spectrum from iron, which contains signals with both positive and negative components. (c) 2000 The American Physical Society.

  18. Observation of exponential spectra and Lorentzian pulses in the TJ-K stellarator

    NASA Astrophysics Data System (ADS)

    Hornung, G.; Nold, B.; Maggs, J. E.; Morales, G. J.; Ramisch, M.; Stroth, U.

    2011-08-01

    An experimental investigation of the low-frequency density fluctuations in the plasma edge region of the TJ-K stellarator [N. Krause et al., Rev. Sci. Inst. 73, 3474 (2002)] finds that the ensemble-averaged frequency spectra exhibit a near exponential frequency dependence whose origin can be traced to individual pulses having a Lorentzian temporal shape. Similar features have been previously observed [D. C. Pace et al., Phys. Plasmas 15, 122304 (2008)] in a linear magnetized device under conditions in which cross-field pressure gradients are present. The reported observation of such features within the turbulent environment of a toroidal confinement device provides support for the conjecture that the underlying processes are a general feature of pressure gradients. Also presented is the magnetic field strength dependence of the pulse widths and the waiting time distribution between pulses.

  19. Electrical spectra of undisturbed soil from a crop rotation study

    USDA-ARS?s Scientific Manuscript database

    Soil permittivity can be determined across a range of frequencies, but little is known about how the factors derived from the frequency spectra are related to soil pore structure or crop management. The purpose of this study was to test the use of a 12-wire, quasi-coaxial probe for determining soil ...

  20. Hadron rapidity spectra within a hybrid model

    NASA Astrophysics Data System (ADS)

    Khvorostukhin, A. S.; Toneev, V. D.

    2017-01-01

    A 2-stage hybrid model is proposed that joins the fast initial state of interaction, described by the hadron string dynamics (HSD) model, to subsequent evolution of the expanding system at the second stage, treated within ideal hydrodynamics. The developed hybrid model is assigned to describe heavy-ion collisions in the energy range of the NICA collider under construction in Dubna. Generally, the model is in reasonable agreement with the available data on proton rapidity spectra. However, reproducing proton rapidity spectra, our hybrid model cannot describe the rapidity distributions of pions. The model should be improved by taking into consideration viscosity effects at the hydrodynamical stage of system evolution.