Sample records for generalized wake model

  1. Helicopter rotor wake geometry and its influence in forward flight. Volume 1: Generalized wake geometry and wake effect on rotor airloads and performance

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1983-01-01

    An analytic investigation to generalize wake geometry of a helicopter rotor in steady level forward flight and to demonstrate the influence of wake deformation in the prediction of rotor airloads and performance is described. Volume 1 presents a first level generalized wake model based on theoretically predicted tip vortex geometries for a selected representative blade design. The tip vortex distortions are generalized in equation form as displacements from the classical undistorted tip vortex geometry in terms of vortex age, blade azimuth, rotor advance ratio, thrust coefficient, and number of blades. These equations were programmed to provide distorted wake coordinates at very low cost for use in rotor airflow and airloads prediction analyses. The sensitivity of predicted rotor airloads, performance, and blade bending moments to the modeling of the tip vortex distortion are demonstrated for low to moderately high advance ratios for a representative rotor and the H-34 rotor. Comparisons with H-34 rotor test data demonstrate the effects of the classical, predicted distorted, and the newly developed generalized wake models on airloads and blade bending moments. Use of distorted wake models results in the occurrence of numerous blade-vortex interactions on the forward and lateral sides of the rotor disk. The significance of these interactions is related to the number and degree of proximity to the blades of the tip vortices. The correlation obtained with the distorted wake models (generalized and predicted) is encouraging.

  2. Implementation of a generalized actuator line model for wind turbine parameterization in the Weather Research and Forecasting model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marjanovic, Nikola; Mirocha, Jeffrey D.; Kosović, Branko

    A generalized actuator line (GAL) wind turbine parameterization is implemented within the Weather Research and Forecasting model to enable high-fidelity large-eddy simulations of wind turbine interactions with boundary layer flows under realistic atmospheric forcing conditions. Numerical simulations using the GAL parameterization are evaluated against both an already implemented generalized actuator disk (GAD) wind turbine parameterization and two field campaigns that measured the inflow and near-wake regions of a single turbine. The representation of wake wind speed, variance, and vorticity distributions is examined by comparing fine-resolution GAL and GAD simulations and GAD simulations at both fine and coarse-resolutions. The higher-resolution simulationsmore » show slightly larger and more persistent velocity deficits in the wake and substantially increased variance and vorticity when compared to the coarse-resolution GAD. The GAL generates distinct tip and root vortices that maintain coherence as helical tubes for approximately one rotor diameter downstream. Coarse-resolution simulations using the GAD produce similar aggregated wake characteristics to both fine-scale GAD and GAL simulations at a fraction of the computational cost. The GAL parameterization provides the capability to resolve near wake physics, including vorticity shedding and wake expansion.« less

  3. Wind flow characteristics in the wakes of large wind turbines. Volume 1: Analytical model development

    NASA Technical Reports Server (NTRS)

    Eberle, W. R.

    1981-01-01

    A computer program to calculate the wake downwind of a wind turbine was developed. Turbine wake characteristics are useful for determining optimum arrays for wind turbine farms. The analytical model is based on the characteristics of a turbulent coflowing jet with modification for the effects of atmospheric turbulence. The program calculates overall wake characteristics, wind profiles, and power recovery for a wind turbine directly in the wake of another turbine, as functions of distance downwind of the turbine. The calculation procedure is described in detail, and sample results are presented to illustrate the general behavior of the wake and the effects of principal input parameters.

  4. Vortex safety in aviation

    NASA Astrophysics Data System (ADS)

    Turchak, L. I.

    2012-10-01

    The objective is the general review of impact of aircraft wake vortices on the follower aircraft encountering the wake. Currently, the presence of wake vortices past aircraft limits the airspace capacity and flight safety level for aircraft of different purposes. However, wake vortex nature and evolution have not been studied in full measure. A mathematical model simulating the process of near wake generation past bodies of different shapes, as well as the wake evolution after rolling-up into wake vortices (far wake) is developed. The processes are suggested to be modeled by means of the Method of Discrete Vortices. Far wake evolution is determined by its complex interaction with the atmosphere and ground boundary layer. The main factors that are supposed to take into account are: wind and ambient turbulence 3Ddistributions, temperature stratification of the atmosphere, wind shear, as well as some others which effects will be manifested as considerable during the investigation. The ground boundary layer effects on wake vortex evolution are substantial at low flight altitudes and are determined through the boundary layer separation.

  5. Applying Dynamic Wake Models to Induced Power Calculations for an Optimum Rotor

    DTIC Science & Technology

    2009-08-01

    versions being special cases of the general one. Although the rotor blade may be moving at transonic speeds near the tip, the rotor wake is...The effect of a finite number of blades incurs an additional loss in wake energy due to the individual vortex sheets from each blade . In 1929... blades . Up to this point, previous developments have been able to achieve the full description of the wake in all ranges of flight regime

  6. Oscillations, neural computations and learning during wake and sleep.

    PubMed

    Penagos, Hector; Varela, Carmen; Wilson, Matthew A

    2017-06-01

    Learning and memory theories consider sleep and the reactivation of waking hippocampal neural patterns to be crucial for the long-term consolidation of memories. Here we propose that precisely coordinated representations across brain regions allow the inference and evaluation of causal relationships to train an internal generative model of the world. This training starts during wakefulness and strongly benefits from sleep because its recurring nested oscillations may reflect compositional operations that facilitate a hierarchical processing of information, potentially including behavioral policy evaluations. This suggests that an important function of sleep activity is to provide conditions conducive to general inference, prediction and insight, which contribute to a more robust internal model that underlies generalization and adaptive behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Experimental investigation of the wake behind a model of wind turbine in a water flume

    NASA Astrophysics Data System (ADS)

    Okulov, V. L.; Naumov, I. N.; Kabardin, I.; Mikkelsen, R.; Sørensen, J. N.

    2014-12-01

    The flow behind the model of wind turbine rotor is investigated experimentally in a water flume using Particle Image Velocimetry. The study carried out involves rotors of three bladed wind turbine designed using Glauert's optimization. The transitional regime, generally characterized as in between the regime governed by stable organized vortical structures and the turbulent wake, develops from disturbances of the tip and root vorticies through vortex paring and further complex behaviour towards the fully turbulent wake. Our PIV measurements pay special attention to the onset of the instabilities. The near wake characteristics (development of expansion, tip vortex position, deficit velocity and rotation in the wake) have been measured for different tip speed ratio to compare with main assumptions and conclusions of various rotor theories.

  8. Prediction of High-Lift Flows using Turbulent Closure Models

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Gatski, Thomas B.; Ying, Susan X.; Bertelrud, Arild

    1997-01-01

    The flow over two different multi-element airfoil configurations is computed using linear eddy viscosity turbulence models and a nonlinear explicit algebraic stress model. A subset of recently-measured transition locations using hot film on a McDonnell Douglas configuration is presented, and the effect of transition location on the computed solutions is explored. Deficiencies in wake profile computations are found to be attributable in large part to poor boundary layer prediction on the generating element, and not necessarily inadequate turbulence modeling in the wake. Using measured transition locations for the main element improves the prediction of its boundary layer thickness, skin friction, and wake profile shape. However, using measured transition locations on the slat still yields poor slat wake predictions. The computation of the slat flow field represents a key roadblock to successful predictions of multi-element flows. In general, the nonlinear explicit algebraic stress turbulence model gives very similar results to the linear eddy viscosity models.

  9. Wake flow control using a dynamically controlled wind turbine

    NASA Astrophysics Data System (ADS)

    Castillo, Ricardo; Wang, Yeqin; Pol, Suhas; Swift, Andy; Hussain, Fazle; Westergaard, Carsten; Texas Tech University Team

    2016-11-01

    A wind tunnel based "Hyper Accelerated Wind Farm Kinematic-Control Simulator" (HAWKS) is being built at Texas Tech University to emulate controlled wind turbine flow physics. The HAWKS model turbine has pitch, yaw and speed control which is operated in real model time, similar to that of an equivalent full scale turbine. Also, similar to that of a full scale wind turbine, the controls are developed in a Matlab Simulink environment. The current diagnostic system consists of power, rotor position, rotor speed measurements and PIV wake characterization with four cameras. The setup allows up to 7D downstream of the rotor to be mapped. The purpose of HAWKS is to simulate control strategies at turnaround times much faster than CFD and full scale testing. The fundamental building blocks of the simulator have been tested, and demonstrate wake steering for both static and dynamic turbine actuation. Parameters which have been studied are yaw, rotor speed and combinations hereof. The measured wake deflections for static yaw cases are in agreement with previously reported research implying general applicability of the HAWKS platform for the purpose of manipulating the wake. In this presentation the general results will be introduced followed by an analysis of the wake turbulence and coherent structures when comparing static and dynamic flow cases. The outcome of such studies could ultimately support effective wind farm wake flow control strategies. Texas Emerging Technology Fund (ETF).

  10. A Generalized Framework for Reduced-Order Modeling of a Wind Turbine Wake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Nicholas; Viggiano, Bianca; Calaf, Marc

    A reduced-order model for a wind turbine wake is sought from large eddy simulation data. Fluctuating velocity fields are combined in the correlation tensor to form the kernel of the proper orthogonal decomposition (POD). Proper orthogonal decomposition modes resulting from the decomposition represent the spatially coherent turbulence structures in the wind turbine wake; eigenvalues delineate the relative amount of turbulent kinetic energy associated with each mode. Back-projecting the POD modes onto the velocity snapshots produces dynamic coefficients that express the amplitude of each mode in time. A reduced-order model of the wind turbine wake (wakeROM) is defined through a seriesmore » of polynomial parameters that quantify mode interaction and the evolution of each POD mode coefficients. The resulting system of ordinary differential equations models the wind turbine wake composed only of the large-scale turbulent dynamics identified by the POD. Tikhonov regularization is used to recalibrate the dynamical system by adding additional constraints to the minimization seeking polynomial parameters, reducing error in the modeled mode coefficients. The wakeROM is periodically reinitialized with new initial conditions found by relating the incoming turbulent velocity to the POD mode coefficients through a series of open-loop transfer functions. The wakeROM reproduces mode coefficients to within 25.2%, quantified through the normalized root-mean-square error. A high-level view of the modeling approach is provided as a platform to discuss promising research directions, alternate processes that could benefit stability and efficiency, and desired extensions of the wakeROM.« less

  11. Dissipation of turbulence in the wake of a wind turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundquist, J. K.; Bariteau, L.

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-ratemore » turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.« less

  12. Dissipation of Turbulence in the Wake of a Wind Turbine

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Bariteau, L.

    2015-02-01

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-rate turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.

  13. Dissipation of turbulence in the wake of a wind turbine

    DOE PAGES

    Lundquist, J. K.; Bariteau, L.

    2014-11-06

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-ratemore » turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.« less

  14. The NASA-Langley Wake Vortex Modelling Effort in Support of an Operational Aircraft Spacing System

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    1998-01-01

    Two numerical modelling efforts, one using a large eddy simulation model and the other a numerical weather prediction model, are underway in support of NASA's Terminal Area Productivity program. The large-eddy simulation model (LES) has a meteorological framework and permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, humidity, and atmospheric turbulence. Results from the numerical simulations are being used to assist in the development of algorithms for an operational wake-vortex aircraft spacing system. A mesoscale weather forecast model is being adapted for providing operational forecast of winds, temperature, and turbulence parameters to be used in the terminal area. This paper describes the goals and modelling approach, as well as achievements obtained to date. Simulation results will be presented from the LES model for both two and three dimensions. The 2-D model is found to be generally valid for studying wake vortex transport, while the 3-D approach is necessary for realistic treatment of decay via interaction of wake vortices and atmospheric boundary layer turbulence. Meteorology is shown to have an important affect on vortex transport and decay. Presented are results showing that wake vortex transport is unaffected by uniform fog or rain, but wake vortex transport can be strongly affected by nonlinear vertical change in the ambient crosswind. Both simulation and observations show that atmospheric vortices decay from the outside with minimal expansion of the core. Vortex decay and the onset three-dimensional instabilities are found to be enhanced by the presence of ambient turbulence.

  15. How to integrate dreaming into a general theory of consciousness--a critical review of existing positions and suggestions for future research.

    PubMed

    Windt, Jennifer M; Noreika, Valdas

    2011-12-01

    In this paper, we address the different ways in which dream research can contribute to interdisciplinary consciousness research. As a second global state of consciousness aside from wakefulness, dreaming is an important contrast condition for theories of waking consciousness. However, programmatic suggestions for integrating dreaming into broader theories of consciousness, for instance by regarding dreams as a model system of standard or pathological wake states, have not yielded straightforward results. We review existing proposals for using dreaming as a model system, taking into account concerns about the concept of modeling and the adequacy and practical feasibility of dreaming as a model system. We conclude that existing modeling approaches are premature and rely on controversial background assumptions. Instead, we suggest that contrastive analysis of dreaming and wakefulness presents a more promising strategy for integrating dreaming into a broader research context and solving many of the problems involved in the modeling approach. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Experimental analysis on the dynamic wake of an actuator disc undergoing transient loads

    NASA Astrophysics Data System (ADS)

    Yu, W.; Hong, V. W.; Ferreira, C.; van Kuik, G. A. M.

    2017-10-01

    The Blade Element Momentum model, which is based on the actuator disc theory, is still the model most used for the design of open rotors. Although derived from steady cases with a fully developed wake, this approach is also applied to unsteady cases, with additional engineering corrections. This work aims to study the impact of an unsteady loading on the wake of an actuator disc. The load and flow of an actuator disc are measured in the Open Jet Facility wind tunnel of Delft University of Technology, for steady and unsteady cases. The velocity and turbulence profiles are characterized in three regions: the inner wake region, the shear layer region and the region outside the wake. For unsteady load cases, the measured velocity field shows a hysteresis effect in relation to the loading, showing differences between the cases when loading is increased and loading is decreased. The flow field also shows a transient response to the step change in loading, with either an overshoot or undershoot of the velocity in relation to the steady-state velocity. In general, a smaller reduced ramp time results in a faster velocity transient, and in turn a larger amplitude of overshoot or undershoot. Time constants analysis shows that the flow reaches the new steady-state slower for load increase than for load decrease; the time constants outside the wake are generally larger than at other radial locations for a given downstream plane; the time constants of measured velocity in the wake show radial dependence.The data are relevant for the validation of numerical models for unsteady actuator discs and wind turbines, and are made available in an open source database (see Appendix).

  17. Structure Function Scaling Exponent and Intermittency in the Wake of a Wind Turbine Array

    NASA Astrophysics Data System (ADS)

    Aseyev, Aleksandr; Ali, Naseem; Cal, Raul

    2015-11-01

    Hot-wire measurements obtained in a 3 × 3 wind turbine array boundary layer are utilized to analyze high order structure functions, intermittency effects as well as the probability density functions of velocity increments at different scales within the energy cascade. The intermittency exponent is found to be greater in the far wake region in comparison to the near wake. At hub height, the intermittency exponent is found to be null. ESS scaling exponents of the second, fourth, and fifth order structure functions remain relatively constant as a function of height in the far-wake whereas in the near-wake these highly affected by the passage of the rotor thus showing a dependence on physical location. When comparing with proposed models, these generally over predict the structure functions in the far wake region. The pdf distributions in the far wake region display wider tails compared to the near wake region, and constant skewness hypothesis based on the local isotropy is verified in the wake. CBET-1034581.

  18. On the investigation of cascade and turbomachinery rotor wake characteristics

    NASA Technical Reports Server (NTRS)

    Raj, R.; Lakshminarayana, B.

    1975-01-01

    The objective of the investigation reported in this thesis is to study the characteristics of a turbomachinery rotor wake, both analytically and experimentally. The constitutive equations for the rotor wake are developed using generalized tensors and a non-inertial frame of reference. Analytical and experimental investigation is carried out in two phases; the first phase involved the study of a cascade wake in the absence of rotation and three dimensionality. In the second phase the wake of a rotor is studied. Simplified two- and three-dimensional models are developed for the prediction of the mean velocity profile of the cascade and the rotor wake, respectively, using the principle of self-similarity. The effect of various major parameters of the rotor and the flow geometry is studied on the development of a rotor wake. Laws governing the decay of the wake velocity defect in a cascade and rotor wake as a function of downstream distance from the trailing edge, pressure gradient and other parameters are derived.

  19. Relationship Between Meditation Depth and Waking Salivary Alpha-Amylase Secretion Among Long-Term MBSR Instructors.

    PubMed

    Haslam, Alyson; Wirth, Michael D; Robb, Sara Wagner

    2017-08-01

    The purpose of this study was to characterize sympathetic activity by using waking salivary alpha-amylase (sAA) concentrations in a group of long-term meditation instructors and to examine the association between meditation (depth, dose and duration) and the waking alpha-amylase response. Salivary alpha-amylase samples were collected (immediately upon waking and at 15-min, 30-min and 45-min intervals after waking) from mindfulness-based stress reduction instructors to determine both the area under the curve and the awakening slope (difference in alpha-amylase concentrations between waking and 30-min post-waking). It was determined through general linear models that neither years of meditation nor meditation dose were associated with the awakening sAA slope, but higher scores for meditation depth (greater depth) was associated with a more negative (or steeper) awakening slope [Quartile (Q)1: -7 versus Q4: -21 U/mL; p = 0.06], in fully adjusted models. Older age (p = 0.04) and a later time of waking (p < 0.01) also were associated with less negative awakening slope values. Smoking was associated with lower area under the curve values (smokers: 1716 U/mL versus nonsmokers: 2107 U/mL; p = 0.05) in fully adjusted models. The results suggest a 'healthy' sAA waking slope among individuals who meditate more deeply. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Tip Vortex and Wake Characteristics of a Counterrotating Open Rotor

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Wernet, Mark P.

    2012-01-01

    One of the primary noise sources for Open Rotor systems is the interaction of the forward rotor tip vortex and blade wake with the aft rotor. NASA has collaborated with General Electric on the testing of a new generation of low noise, counterrotating Open Rotor systems. Three-dimensional particle image velocimetry measurements were acquired in the intra-rotor gap of the Historical Baseline blade set. The velocity measurements are of sufficient resolution to characterize the tip vortex size and trajectory as well as the rotor wake decay and turbulence character. The tip clearance vortex trajectory is compared to results from previously developed models. Forward rotor wake velocity profiles are shown. Results are presented in a form as to assist numerical modeling of Open Rotor system aerodynamics and acoustics.

  1. Airloads and Wake Geometry Calculations for an Isolated Tiltrotor Model in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2001-01-01

    Comparisons of measured and calculated aerodynamic behavior of a tiltrotor model are presented. The test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single, 0.25-scale V-22 rotor in the German-Dutch Wind Tunnel (DNW) provides an extensive set of aeroacoustic, performance, and structural loads data. The calculations were performed using the rotorcraft comprehensive analysis CAMRAD II. Presented are comparisons of measured and calculated performance for hover and helicopter mode operation, and airloads for helicopter mode. Calculated induced power, profile power, and wake geometry provide additional information about the aerodynamic behavior. An aerodynamic and wake model and calculation procedure that reflects the unique geometry and phenomena of tiltrotors has been developed. There are major differences between this model and the corresponding aerodynamic and wake model that has been established for helicopter rotors. In general, good correlation between measured and calculated performance and airloads behavior has been shown. Two aspects of the analysis that clearly need improvement are the stall delay model and the trailed vortex formation model.

  2. Applicability of a panel method, which includes nonlinear effects, to a forward-swept-wing aircraft

    NASA Technical Reports Server (NTRS)

    Ross, J. C.

    1984-01-01

    The ability of a lower order panel method VSAERO, to accurately predict the lift and pitching moment of a complete forward-swept-wing/canard configuration was investigated. The program can simulate nonlinear effects including boundary-layer displacement thickness, wake roll up, and to a limited extent, separated wakes. The predictions were compared with experimental data obtained using a small-scale model in the 7- by 10- Foot Wind Tunnel at NASA Ames Research Center. For the particular configuration under investigation, wake roll up had only a small effect on the force and moment predictions. The effect of the displacement thickness modeling was to reduce the lift curve slope slightly, thus bringing the predicted lift into good agreement with the measured value. Pitching moment predictions were also improved by the boundary-layer simulation. The separation modeling was found to be sensitive to user inputs, but appears to give a reasonable representation of a separated wake. In general, the nonlinear capabilities of the code were found to improve the agreement with experimental data. The usefullness of the code would be enhanced by improving the reliability of the separated wake modeling and by the addition of a leading edge separation model.

  3. Dissipation of turbulence in the wake of a wind turbine

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Bariteau, L.

    2013-12-01

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behavior of an individual wake as it merges with other wakes and propagates downwind is of great importance in assessing wind farm power production as well as impacts of wind energy deployment on local and regional environments. The rate of turbulence dissipation in the wake quantifies the wake behavior as it propagates. In situ field measurements of turbulence dissipation rate in the wake of wind turbines have not been previously collected although correct modeling of dissipation rate is required for accurate simulations of wake evolution. In Fall 2012, we collected in situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine, using the University of Colorado at Boulder's Tethered Lifting System (TLS). The TLS is a unique state-of-the-art tethersonde, proven in numerous boundary-layer field experiments to be able to measure turbulence kinetic energy dissipation rates. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located upwind of the turbine, from a profiling lidar upwind, and from a scanning lidar measuring both inflow to and wake from the turbine. Measurements collected within the wake indicate that dissipation rates are higher in the turbine wake than in the ambient flow. Profiles of dissipation and turbulence throughout the rotor disk suggest that dissipation peaks near the hub height of the turbine. Suggestions for incorporating this information into wind turbine modeling approaches will be provided.

  4. PAN AIR modeling studies. [higher order panel method for aircraft design

    NASA Technical Reports Server (NTRS)

    Towne, M. C.; Strande, S. M.; Erickson, L. L.; Kroo, I. M.; Enomoto, F. Y.; Carmichael, R. L.; Mcpherson, K. F.

    1983-01-01

    PAN AIR is a computer program that predicts subsonic or supersonic linear potential flow about arbitrary configurations. The code's versatility and generality afford numerous possibilities for modeling flow problems. Although this generality provides great flexibility, it also means that studies are required to establish the dos and don'ts of modeling. The purpose of this paper is to describe and evaluate a variety of methods for modeling flows with PAN AIR. The areas discussed are effects of panel density, internal flow modeling, forebody modeling in subsonic flow, propeller slipstream modeling, effect of wake length, wing-tail-wake interaction, effect of trailing-edge paneling on the Kutta condition, well- and ill-posed boundary-value problems, and induced-drag calculations. These nine topics address problems that are of practical interest to the users of PAN AIR.

  5. Medium fidelity modelling of loads in wind farms under non-neutral ABL stability conditions - a full-scale validation study

    NASA Astrophysics Data System (ADS)

    Larsen, G. C.; Larsen, T. J.; Chougule, A.

    2017-05-01

    The aim of the present paper is to demonstrate the capability of medium fidelity modelling of wind turbine component fatigue loading, when the wind turbines are subjected to wake affected non-stationary flow fields under non-neutral atmospheric stability conditions. To accomplish this we combine the classical Dynamic Wake Meandering model with a fundamental conjecture stating: Atmospheric boundary layer stability affects primary wake meandering dynamics driven by large turbulent scales, whereas wake expansion in the meandering frame of reference is hardly affected. Inclusion of stability (i.e. buoyancy) in description of both large- and small scale atmospheric boundary layer turbulence is facilitated by a generalization of the classical Mann spectral tensor, which consistently includes buoyancy effects. With non-stationary wind turbine inflow fields modelled as described above, fatigue loads are obtained using the state-of-the art aeroelastic model HAWC2. The Lillgrund offshore wind farm (WF) constitute an interesting case study for wind farm model validation, because the WT interspacing is small, which in turn means that wake effects are significant. A huge data set, comprising 5 years of blade and tower load recordings, is available for model validation. For a multitude of wake situations this data set displays a considerable scatter, which to a large degree seems to be caused by atmospheric boundary layer stability effects. Notable is also that rotating wind turbine components predominantly experience high fatigue loading for stable stratification with significant shear, whereas high fatigue loading of non-rotating wind turbine components are associated with unstable atmospheric boundary layer stratification.

  6. Wind Plant Power Optimization and Control under Uncertainty

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj; Ulker, Demet; Hutchings, Kyle; Oxley, Gregory

    2017-11-01

    The development of optimized cooperative wind plant control involves the coordinated operation of individual turbines co-located within a wind plant to improve the overall power production. This is typically achieved by manipulating the trajectory and intensity of wake interactions between nearby turbines, thereby reducing wake losses. However, there are various types of uncertainties involved, such as turbulent inflow and microscale and turbine model input parameters. In a recent NREL-Envision collaboration, a controller that performs wake steering was designed and implemented for the Longyuan Rudong offshore wind plant in Jiangsu, China. The Rudong site contains 25 Envision EN136-4 MW turbines, of which a subset was selected for the field test campaign consisting of the front two rows for the northeasterly wind direction. In the first row, a turbine was selected as the reference turbine, providing comparison power data, while another was selected as the controlled turbine. This controlled turbine wakes three different turbines in the second row depending on the wind direction. A yaw misalignment strategy was designed using Envision's GWCFD, a multi-fidelity plant-scale CFD tool based on SOWFA with a generalized actuator disc (GAD) turbine model, which, in turn, was used to tune NREL's FLORIS model used for wake steering and yaw control optimization. The presentation will account for some associated uncertainties, such as those in atmospheric turbulence and wake profile.

  7. Impact of Aspect Ratio, Incident Angle, and Surface Roughness on Windbreak Wakes

    NASA Astrophysics Data System (ADS)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2017-11-01

    Wind-tunnel results are presented on the wakes behind three-dimensional windbreaks in a simulated atmospheric boundary layer. Sheltering by upwind windbreaks, and surface-mounted obstacles (SMOs) in general, is parameterized by the wake-moment coefficient C h , which is a complex function of obstacle geometry and flow conditions. Values of C h are presented for several windbreak aspect ratios, incident angles, and windbreak-height-to-surface-roughness ratios. Lateral wake deflection is further presented for several incident angles and aspect ratios, and compared to a simple analytical formulation including a near- and far-wake solution. It is found that C h does not change with aspect ratios of 10 or greater, though C h may be lower for an aspect ratio of 5. C h is found to change roughly with the cosine of the incident angle, and to depend strongly on windbreak-height-to-surface-roughness ratio. The data broadly support the proposed wake-deflection model.

  8. An exploration of the utility of mathematical modeling predicting fatigue from sleep/wake history and circadian phase applied in accident analysis and prevention: the crash of Comair Flight 5191.

    PubMed

    Pruchnicki, Shawn A; Wu, Lora J; Belenky, Gregory

    2011-05-01

    On 27 August 2006 at 0606 eastern daylight time (EDT) at Bluegrass Airport in Lexington, KY (LEX), the flight crew of Comair Flight 5191 inadvertently attempted to take off from a general aviation runway too short for their aircraft. The aircraft crashed killing 49 of the 50 people on board. To better understand this accident and to aid in preventing similar accidents, we applied mathematical modeling predicting fatigue-related degradation in performance for the Air Traffic Controller on-duty at the time of the crash. To provide the necessary input to the model, we attempted to estimate circadian phase and sleep/wake histories for the Captain, First Officer, and Air Traffic Controller. We were able to estimate with confidence the circadian phase for each. We were able to estimate with confidence the sleep/wake history for the Air Traffic Controller, but unable to do this for the Captain and First Officer. Using the sleep/wake history estimates for the Air Traffic Controller as input, the mathematical modeling predicted moderate fatigue-related performance degradation at the time of the crash. This prediction was supported by the presence of what appeared to be fatigue-related behaviors in the Air Traffic Controller during the 30 min prior to and in the minutes after the crash. Our modeling results do not definitively establish fatigue in the Air Traffic Controller as a cause of the accident, rather they suggest that had he been less fatigued he might have detected Comair Flight 5191's lining up on the wrong runway. We were not able to perform a similar analysis for the Captain and First Officer because we were not able to estimate with confidence their sleep/wake histories. Our estimates of sleep/wake history and circadian rhythm phase for the Air Traffic Controller might generalize to other air traffic controllers and to flight crew operating in the early morning hours at LEX. Relative to other times of day, the modeling results suggest an elevated risk of fatigue-related error, incident, or accident in the early morning due to truncated sleep from the early start and adverse circadian phase from the time of day. This in turn suggests that fatigue mitigation targeted to early morning starts might reduce fatigue risk. In summary, this study suggests that mathematical models predicting performance from sleep/wake history and circadian phase are (1) useful in retrospective accident analysis provided reliable sleep/wake histories are available for the accident personnel and, (2) useful in prospective fatigue-risk identification, mitigation, and accident prevention. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. The Baldwin-Lomax model for separated and wake flows using the entropy envelope concept

    NASA Technical Reports Server (NTRS)

    Brock, J. S.; Ng, W. F.

    1992-01-01

    Implementation of the Baldwin-Lomax algebraic turbulence model is difficult and ambiguous within flows characterized by strong viscous-inviscid interactions and flow separations. A new method of implementation is proposed which uses an entropy envelope concept and is demonstrated to ensure the proper evaluation of modeling parameters. The method is simple, computationally fast, and applicable to both wake and boundary layer flows. The method is general, making it applicable to any turbulence model which requires the automated determination of the proper maxima of a vorticity-based function. The new method is evalulated within two test cases involving strong viscous-inviscid interaction.

  10. Exploiting similarity in turbulent shear flows for turbulence modeling

    NASA Technical Reports Server (NTRS)

    Robinson, David F.; Harris, Julius E.; Hassan, H. A.

    1992-01-01

    It is well known that current k-epsilon models cannot predict the flow over a flat plate and its wake. In an effort to address this issue and other issues associated with turbulence closure, a new approach for turbulence modeling is proposed which exploits similarities in the flow field. Thus, if we consider the flow over a flat plate and its wake, then in addition to taking advantage of the log-law region, we can exploit the fact that the flow becomes self-similar in the far wake. This latter behavior makes it possible to cast the governing equations as a set of total differential equations. Solutions of this set and comparison with measured shear stress and velocity profiles yields the desired set of model constants. Such a set is, in general, different from other sets of model constants. The rational for such an approach is that if we can correctly model the flow over a flat plate and its far wake, then we can have a better chance of predicting the behavior in between. It is to be noted that the approach does not appeal, in any way, to the decay of homogeneous turbulence. This is because the asymptotic behavior of the flow under consideration is not representative of the decay of homogeneous turbulence.

  11. Exploiting similarity in turbulent shear flows for turbulence modeling

    NASA Astrophysics Data System (ADS)

    Robinson, David F.; Harris, Julius E.; Hassan, H. A.

    1992-12-01

    It is well known that current k-epsilon models cannot predict the flow over a flat plate and its wake. In an effort to address this issue and other issues associated with turbulence closure, a new approach for turbulence modeling is proposed which exploits similarities in the flow field. Thus, if we consider the flow over a flat plate and its wake, then in addition to taking advantage of the log-law region, we can exploit the fact that the flow becomes self-similar in the far wake. This latter behavior makes it possible to cast the governing equations as a set of total differential equations. Solutions of this set and comparison with measured shear stress and velocity profiles yields the desired set of model constants. Such a set is, in general, different from other sets of model constants. The rational for such an approach is that if we can correctly model the flow over a flat plate and its far wake, then we can have a better chance of predicting the behavior in between. It is to be noted that the approach does not appeal, in any way, to the decay of homogeneous turbulence. This is because the asymptotic behavior of the flow under consideration is not representative of the decay of homogeneous turbulence.

  12. Streakline-based closed-loop control of a bluff body flow

    NASA Astrophysics Data System (ADS)

    Roca, Pablo; Cammilleri, Ada; Duriez, Thomas; Mathelin, Lionel; Artana, Guillermo

    2014-04-01

    A novel closed-loop control methodology is introduced to stabilize a cylinder wake flow based on images of streaklines. Passive scalar tracers are injected upstream the cylinder and their concentration is monitored downstream at certain image sectors of the wake. An AutoRegressive with eXogenous inputs mathematical model is built from these images and a Generalized Predictive Controller algorithm is used to compute the actuation required to stabilize the wake by adding momentum tangentially to the cylinder wall through plasma actuators. The methodology is new and has real-world applications. It is demonstrated on a numerical simulation and the provided results show that good performances are achieved.

  13. PIV measurements in the near wakes of hollow cylinders with holes

    NASA Astrophysics Data System (ADS)

    Firat, Erhan; Ozkan, Gokturk M.; Akilli, Huseyin

    2017-05-01

    The wake flows behind fixed, hollow, rigid circular cylinders with two rows of holes connecting the front and rear stagnation lines were investigated using particle image velocimetry (PIV) for various combinations of three hole diameters, d = 0.1 D, 0.15 D, and 0.20 D, six hole-to-hole distances, l = 2 d, 3 d, 4 d, 5 d, 6 d, and 7 d, and ten angles of incidence ( α), from 0° to 45° in steps of 5°, at a Reynolds number of Re = 6,900. Time-averaged velocity distributions, instantaneous and time-averaged vorticity patterns, time-averaged streamline topology, and hot spots of turbulent kinetic energy occurred through the interaction of shear layers from the models were presented to show how the wake flow was modified by the presence of the self-issuing jets with various momentums emanating from the downstream holes. In general, as hole diameter which is directly related to jet momentum increased, the values of time-averaged wake characteristics (length of time-averaged recirculation region, vortex formation length, length of shear layers, and gap between the shear layers) increased. Irrespective to d and l tested, the values of the vortex formation length of the models are greater than that of the cylinder without hole (reference model). That is, vortex formation process was shifted downstream by aid of jets. It was found that time-averaged wake characteristics were very sensitive to α. As α increased, the variation of these characteristics can be modeled by exponential decay functions. The effect of l on the three-dimensional vortex shedding patterns in the near wake of the models was also discussed.

  14. Investigating the Effects of Grid Resolution of WRF Model for Simulating the Atmosphere for use in the Study of Wake Turbulence

    NASA Astrophysics Data System (ADS)

    Prince, Alyssa; Trout, Joseph; di Mercurio, Alexis

    2017-01-01

    The Weather Research and Forecasting (WRF) Model is a nested-grid, mesoscale numerical weather prediction system maintained by the Developmental Testbed Center. The model simulates the atmosphere by integrating partial differential equations, which use the conservation of horizontal momentum, conservation of thermal energy, and conservation of mass along with the ideal gas law. This research investigated the possible use of WRF in investigating the effects of weather on wing tip wake turbulence. This poster shows the results of an investigation into the accuracy of WRF using different grid resolutions. Several atmospheric conditions were modeled using different grid resolutions. In general, the higher the grid resolution, the better the simulation, but the longer the model run time. This research was supported by Dr. Manuel A. Rios, Ph.D. (FAA) and the grant ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA'' (13-G-006). Dr. Manuel A. Rios, Ph.D. (FAA), and the grant ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA''

  15. Dynamics of vortices in complex wakes: Modeling, analysis, and experiments

    NASA Astrophysics Data System (ADS)

    Basu, Saikat

    The thesis develops singly-periodic mathematical models for complex laminar wakes which are formed behind vortex-shedding bluff bodies. These wake structures exhibit a variety of patterns as the bodies oscillate or are in close proximity of one another. The most well-known formation comprises two counter-rotating vortices in each shedding cycle and is popularly known as the von Karman vortex street. Of the more complex configurations, as a specific example, this thesis investigates one of the most commonly occurring wake arrangements, which consists of two pairs of vortices in each shedding period. The paired vortices are, in general, counter-rotating and belong to a more general definition of the 2P mode, which involves periodic release of four vortices into the flow. The 2P arrangement can, primarily, be sub-classed into two types: one with a symmetric orientation of the two vortex pairs about the streamwise direction in a periodic domain and the other in which the two vortex pairs per period are placed in a staggered geometry about the wake centerline. The thesis explores the governing dynamics of such wakes and characterizes the corresponding relative vortex motion. In general, for both the symmetric as well as the staggered four vortex periodic arrangements, the thesis develops two-dimensional potential flow models (consisting of an integrable Hamiltonian system of point vortices) that consider spatially periodic arrays of four vortices with their strengths being +/-Gamma1 and +/-Gamma2. Vortex formations observed in the experiments inspire the assumed spatial symmetry. The models demonstrate a number of dynamic modes that are classified using a bifurcation analysis of the phase space topology, consisting of level curves of the Hamiltonian. Despite the vortex strengths in each pair being unequal in magnitude, some initial conditions lead to relative equilibrium when the vortex configuration moves with invariant size and shape. The scaled comparisons of the model results with experiments conducted in a owing soap film with an airfoil, which was imparted with forced oscillations, are satisfactory and validate the reduced order modeling framework. The experiments have been performed by a collaborator group at the Department of Physics and Fluid Dynamics at the Technical University of Denmark (DTU), led by Dr. Anders Andersen. Similar experiments have also been run at Virginia Tech as part of this dissertation and the preliminary results are included in this treatise. The thesis also employs the same dynamical systems techniques, which have been applied to study the 2P regime dynamics, to develop a mathematical model for the P+S mode vortex wakes, with three vortices present in each shedding cycle. The model results have also been compared favorably with an experiment and the predictions regarding the vortex circulation data match well with the previous results from literature. Finally, the thesis introduces a novel concept of clean and renewable energy extraction from vortex-induced vibrations of bluff bodies. The slow-moving currents in the off-shore marine environments and riverine flows are beyond the operational capabilities of the more established hydrokinetic energy converters and the discussed technology promises to be a significant tool to generate useful power from these copiously available but previously untapped sources.

  16. Validation of the Dynamic Wake Meander model with focus on tower loads

    NASA Astrophysics Data System (ADS)

    Larsen, T. J.; Larsen, G. C.; Pedersen, M. M.; Enevoldsen, K.; Madsen, H. A.

    2017-05-01

    This paper presents a comparison between measured and simulated tower loads for the Danish offshore wind farm Nysted 2. Previously, only limited full scale experimental data containing tower load measurements have been published, and in many cases the measurements include only a limited range of wind speeds. In general, tower loads in wake conditions are very challenging to predict correctly in simulations. The Nysted project offers an improved insight to this field as six wind turbines located in the Nysted II wind farm have been instrumented to measure tower top and tower bottom moments. All recorded structural data have been organized in a database, which in addition contains relevant wind turbine SCADA data as well as relevant meteorological data - e.g. wind speed and wind direction - from an offshore mast located in the immediate vicinity of the wind farm. The database contains data from a period extending over a time span of more than 3 years. Based on the recorded data basic mechanisms driving the increased loading experienced by wind turbines operating in offshore wind farm conditions have been identified, characterized and modeled. The modeling is based on the Dynamic Wake Meandering (DWM) approach in combination with the state-of-the-art aeroelastic model HAWC2, and has previously as well as in this study shown good agreement with the measurements. The conclusions from the study have several parts. In general the tower bending and yaw loads show a good agreement between measurements and simulations. However, there are situations that are still difficult to match. One is tower loads of single-wake operation near rated ambient wind speed for single wake situations for spacing’s around 7-8D. A specific target of the study was to investigate whether the largest tower fatigue loads are associated with a certain downstream distance. This has been identified in both simulations and measurements, though a rather flat optimum is seen in the measurements.

  17. Analytical formulas for short bunch wakes in a flat dechirper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bane, Karl; Stupakov, Gennady; Zagorodnov, Igor

    2016-08-04

    We develop analytical models of the longitudinal and transverse wakes, on and off axis for a flat, corrugated beam pipe with realistic parameters, and then compare them with numerical calculations, and generally find good agreement. These analytical “first order” formulas approximate the droop at the origin of the longitudinal wake and of the slope of the transverse wakes; they represent an improvement in accuracy over earlier, “zeroth order” formulas. In example calculations for the RadiaBeam/LCLS dechirper using typical parameters, we find a 16% droop in the energy chirp at the bunch tail compared to simpler calculations. As a result, withmore » the beam moved to 200 μm from one jaw in one dechirper section, one can achieve a 3 MV transverse kick differential over a 30 μm length.« less

  18. Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; VanValkenburg, Randal L.; Bowles, Roland L.; Limon Duparcmeur, Fanny M.; Gloudesman, Thijs; van Lochem, Sander; Ras, Eelco

    2014-01-01

    This paper describes a methodology for the integration and evaluation of fast-time wake models with flight data. The National Aeronautics and Space Administration conducted detailed flight tests in 1995 and 1997 under the Aircraft Vortex Spacing System Program to characterize wake vortex decay and wake encounter dynamics. In this study, data collected during Flight 705 were used to evaluate NASA's fast-time wake transport and decay models. Deterministic and Monte-Carlo simulations were conducted to define wake hazard bounds behind the wake generator. The methodology described in this paper can be used for further validation of fast-time wake models using en-route flight data, and for determining wake turbulence constraints in the design of air traffic management concepts.

  19. Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Chowdhury, S.; Hodge, B. M.

    2014-01-01

    In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine powermore » generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.« less

  20. Coupled wake boundary layer model of windfarms

    NASA Astrophysics Data System (ADS)

    Stevens, Richard; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.

  1. Dynamic wake prediction and visualization with uncertainty analysis

    NASA Technical Reports Server (NTRS)

    Holforty, Wendy L. (Inventor); Powell, J. David (Inventor)

    2005-01-01

    A dynamic wake avoidance system utilizes aircraft and atmospheric parameters readily available in flight to model and predict airborne wake vortices in real time. A novel combination of algorithms allows for a relatively simple yet robust wake model to be constructed based on information extracted from a broadcast. The system predicts the location and movement of the wake based on the nominal wake model and correspondingly performs an uncertainty analysis on the wake model to determine a wake hazard zone (no fly zone), which comprises a plurality of wake planes, each moving independently from another. The system selectively adjusts dimensions of each wake plane to minimize spatial and temporal uncertainty, thereby ensuring that the actual wake is within the wake hazard zone. The predicted wake hazard zone is communicated in real time directly to a user via a realistic visual representation. In an example, the wake hazard zone is visualized on a 3-D flight deck display to enable a pilot to visualize or see a neighboring aircraft as well as its wake. The system substantially enhances the pilot's situational awareness and allows for a further safe decrease in spacing, which could alleviate airport and airspace congestion.

  2. A stochastic wind turbine wake model based on new metrics for wake characterization: A stochastic wind turbine wake model based on new metrics for wake characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doubrawa, Paula; Barthelmie, Rebecca J.; Wang, Hui

    Understanding the detailed dynamics of wind turbine wakes is critical to predicting the performance and maximizing the efficiency of wind farms. This knowledge requires atmospheric data at a high spatial and temporal resolution, which are not easily obtained from direct measurements. Therefore, research is often based on numerical models, which vary in fidelity and computational cost. The simplest models produce axisymmetric wakes and are only valid beyond the near wake. Higher-fidelity results can be obtained by solving the filtered Navier-Stokes equations at a resolution that is sufficient to resolve the relevant turbulence scales. This work addresses the gap between thesemore » two extremes by proposing a stochastic model that produces an unsteady asymmetric wake. The model is developed based on a large-eddy simulation (LES) of an offshore wind farm. Because there are several ways of characterizing wakes, the first part of this work explores different approaches to defining global wake characteristics. From these, a model is developed that captures essential features of a LES-generated wake at a small fraction of the cost. The synthetic wake successfully reproduces the mean characteristics of the original LES wake, including its area and stretching patterns, and statistics of the mean azimuthal radius. The mean and standard deviation of the wake width and height are also reproduced. This preliminary study focuses on reproducing the wake shape, while future work will incorporate velocity deficit and meandering, as well as different stability scenarios.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Jain, Rishabh; Hodge, Bri-Mathias

    A data-driven methodology is developed to analyze how ambient and wake turbulence affect the power generation of wind turbine(s). Using supervisory control and data acquisition (SCADA) data from a wind plant, we select two sets of wind velocity and power data for turbines on the edge of the plant that resemble (i) an out-of-wake scenario and (ii) an in-wake scenario. For each set of data, two surrogate models are developed to represent the turbine(s) power generation as a function of (i) the wind speed and (ii) the wind speed and turbulence intensity. Three types of uncertainties in turbine(s) power generationmore » are investigated: (i) the uncertainty in power generation with respect to the reported power curve; (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) the turbine(s) generally produce more power under the in-wake scenario than under the out-of-wake scenario with the same wind speed; and (ii) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.« less

  4. The effect of front-to-rear propeller spacing on the interaction noise at cruise conditions of a model counterrotation propeller having a reduced diameter aft propeller

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Gordon, Eliott B.; Jeracki, Robert J.

    1988-01-01

    The effect of forward-to-aft propeller spacing on the interaction noise of a counterrotation propeller with reduced aft diameter was measured at cruise conditions. In general, the tones at 100 percent speed decreased from close to nominal spacing as expected from a wake decay model. However, when the spacing was further increased to the far position, the noise did not decrease as expected and in some cases increased. The behavior at the far spacing was attributed to changing forward propeller performance, which produced larger wakes. The results of this experiment indicate that simple wake decay model is sufficient to describe the behavior of the interaction noise only if the aerodynamic coupling of the two propellers does not change with spacing. If significant coupling occurs such that the loading of the forward propeller is altered, the interaction noise does not necessarily decrease with larger forward-to-aft propeller spacing.

  5. Airloads, wakes, and aeroelasticity

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    1990-01-01

    Fundamental considerations regarding the theory of modeling of rotary wing airloads, wakes, and aeroelasticity are presented. The topics covered are: airloads and wakes, including lifting-line theory, wake models and nonuniform inflow, free wake geometry, and blade-vortex interaction; aerodynamic and wake models for aeroelasticity, including two-dimensional unsteady aerodynamics and dynamic inflow; and airloads and structural dynamics, including comprehensive airload prediction programs. Results of calculations and correlations are presented.

  6. How to perform measurements in a hovering animal's wake: physical modelling of the vortex wake of the hawkmoth, Manduca sexta.

    PubMed Central

    Tytell, Eric D; Ellington, Charles P

    2003-01-01

    The vortex wake structure of the hawkmoth, Manduca sexta, was investigated using a vortex ring generator. Based on existing kinematic and morphological data, a piston and tube apparatus was constructed to produce circular vortex rings with the same size and disc loading as a hovering hawkmoth. Results show that the artificial rings were initially laminar, but developed turbulence owing to azimuthal wave instability. The initial impulse and circulation were accurately estimated for laminar rings using particle image velocimetry; after the transition to turbulence, initial circulation was generally underestimated. The underestimate for turbulent rings can be corrected if the transition time and velocity profile are accurately known, but this correction will not be feasible for experiments on real animals. It is therefore crucial that the circulation and impulse be estimated while the wake vortices are still laminar. The scaling of the ring Reynolds number suggests that flying animals of about the size of hawkmoths may be the largest animals whose wakes stay laminar for long enough to perform such measurements during hovering. Thus, at low advance ratios, they may be the largest animals for which wake circulation and impulse can be accurately measured. PMID:14561347

  7. Wake meandering of a model wind turbine operating in two different regimes

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Yang, Xiaolei; Campagnolo, Filippo; Maniaci, David; Sotiropoulos, Fotis

    2018-05-01

    The flow behind a model wind turbine under two different turbine operating regimes (region 2 for turbine operating at optimal condition with the maximum power coefficient and 1.4-deg pitch angle and region 3 for turbine operating at suboptimal condition with a lower power coefficient and 7-deg pitch angle) is investigated using wind tunnel experiments and numerical experiments using large-eddy simulation (LES) with actuator surface models for turbine blades and nacelle. Measurements from the model wind turbine experiment reveal that the power coefficient and turbine wake are affected by the operating regime. Simulations with and without a nacelle model are carried out for each operating condition to study the influence of the operating regime and nacelle on the formation of the hub vortex and wake meandering. Statistics and energy spectra of the simulated wakes are in good agreement with the measurements. For simulations with a nacelle model, the mean flow field is composed of an outer wake, caused by energy extraction by turbine blades, and an inner wake directly behind the nacelle, while for the simulations without a nacelle model, the central region of the wake is occupied by a jet. The simulations with the nacelle model reveal an unstable helical hub vortex expanding outward toward the outer wake, while the simulations without a nacelle model show a stable and columnar hub vortex. Because of the different interactions of the inner region of the wake with the outer region of the wake, a region with higher turbulence intensity is observed in the tip shear layer for the simulation with a nacelle model. The hub vortex for the turbine operating in region 3 remains in a tight helical spiral and intercepts the outer wake a few diameters further downstream than for the turbine operating in region 2. Wake meandering, a low-frequency large-scale motion of the wake, commences in the region of high turbulence intensity for all simulations with and without a nacelle model, indicating that neither a nacelle model nor an unstable hub vortex is a necessary requirement for the existence of wake meandering. However, further analysis of the wake meandering and instantaneous flow field using a filtering technique and dynamic mode decomposition show that the unstable hub vortex energizes the wake meandering. The turbine operating regime affects the shape and expansion of the hub vortex, altering the location of the onset of the wake meandering and wake meander oscillating intensity. Most important, the unstable hub vortex promotes a high-amplitude energetic meandering which cannot be predicted without a nacelle model.

  8. Wind tunnel measurements for dispersion modelling of vehicle wakes

    NASA Astrophysics Data System (ADS)

    Carpentieri, Matteo; Kumar, Prashant; Robins, Alan

    2012-12-01

    Wind tunnel measurements downwind of reduced scale car models have been made to study the wake regions in detail, test the usefulness of existing vehicle wake models, and draw key information needed for dispersion modelling in vehicle wakes. The experiments simulated a car moving in still air. This is achieved by (i) the experimental characterisation of the flow, turbulence and concentration fields in both the near and far wake regions, (ii) the preliminary assessment of existing wake models using the experimental database, and (iii) the comparison of previous field measurements in the wake of a real diesel car with the wind tunnel measurements. The experiments highlighted very large gradients of velocities and concentrations existing, in particular, in the near-wake. Of course, the measured fields are strongly dependent on the geometry of the modelled vehicle and a generalisation for other vehicles may prove to be difficult. The methodology applied in the present study, although improvable, could constitute a first step towards the development of mathematical parameterisations. Experimental results were also compared with the estimates from two wake models. It was found that they can adequately describe the far-wake of a vehicle in terms of velocities, but a better characterisation in terms of turbulence and pollutant dispersion is needed. Parameterised models able to predict velocity and concentrations with fine enough details at the near-wake scale do not exist.

  9. Multi-Model Ensemble Wake Vortex Prediction

    NASA Technical Reports Server (NTRS)

    Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  10. Wind-tunnel measurements in the wakes of structures

    NASA Technical Reports Server (NTRS)

    Woo, H. G. C.; Peterka, J. A.; Cermak, J. E.

    1977-01-01

    Detailed measurements of longitudinal mean velocity, turbulence intensity, space correlations, and spectra made in the wake of two rectangular scaled models in simulated atmospheric boundary-layer winds are presented. The model buildings were 1:50 scale models of two trailers. Results of a flow visualization study of the wake geometry are analyzed with some singular point theorems. Two hypothetical flow patterns of the detailed wake geometry are proposed. Some preliminary studies of the vortex wake, effects of the model size, model aspect ratios, and boundary layer characteristics on the decay rate and extent of the wake are also presented and discussed.

  11. Sleep restores loss of generalized but not rote learning of synthetic speech.

    PubMed

    Fenn, Kimberly M; Margoliash, Daniel; Nusbaum, Howard C

    2013-09-01

    Sleep-dependent consolidation has been demonstrated for declarative and procedural memory but few theories of consolidation distinguish between rote and generalized learning, suggesting similar consolidation should occur for both. However, studies using rote and generalized learning have suggested different patterns of consolidation may occur, although different tasks have been used across studies. Here we directly compared consolidation of rote and generalized learning using a single speech identification task. Training on a large set of novel stimuli resulted in substantial generalized learning, and sleep restored performance that had degraded after 12 waking hours. Training on a small set of repeated stimuli primarily resulted in rote learning and performance also degraded after 12 waking hours but was not restored by sleep. Moreover performance was significantly worse 24-h after rote training. Our results suggest a functional dissociation between the mechanisms of consolidation for rote and generalized learning which has broad implications for memory models. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Evaluation of a Wake Vortex Upset Model Based on Simultaneous Measurements of Wake Velocities and Probe-Aircraft Accelerations

    NASA Technical Reports Server (NTRS)

    Short, B. J.; Jacobsen, R. A.

    1979-01-01

    Simultaneous measurements were made of the upset responses experienced and the wake velocities encountered by an instrumented Learjet probe aircraft behind a Boeing 747 vortex-generating aircraft. The vortex-induced angular accelerations experienced could be predicted within 30% by a mathematical upset response model when the characteristics of the wake were well represented by the vortex model. The vortex model used in the present study adequately represented the wake flow field when the vortices dissipated symmetrically and only one vortex pair existed in the wake.

  13. 32 CFR 935.2 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CODE General § 935.2 Purpose. The purpose of this part is to provide— (a) For the civil administration of Wake Island; (b) Civil laws for Wake Island not otherwise provided for; (c) Criminal laws for Wake...

  14. 32 CFR 935.2 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CODE General § 935.2 Purpose. The purpose of this part is to provide— (a) For the civil administration of Wake Island; (b) Civil laws for Wake Island not otherwise provided for; (c) Criminal laws for Wake...

  15. 32 CFR 935.2 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CODE General § 935.2 Purpose. The purpose of this part is to provide— (a) For the civil administration of Wake Island; (b) Civil laws for Wake Island not otherwise provided for; (c) Criminal laws for Wake...

  16. 32 CFR 935.2 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CODE General § 935.2 Purpose. The purpose of this part is to provide— (a) For the civil administration of Wake Island; (b) Civil laws for Wake Island not otherwise provided for; (c) Criminal laws for Wake...

  17. 32 CFR 935.2 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CODE General § 935.2 Purpose. The purpose of this part is to provide— (a) For the civil administration of Wake Island; (b) Civil laws for Wake Island not otherwise provided for; (c) Criminal laws for Wake...

  18. The flow of a power-law fluid in the near-wake of a flat plate

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Ladeinde, Foluso; Bluestein, Danny

    2006-08-01

    The analysis of the near-wake flow downstream of a flat plate is reported in this paper for the case of a non-Newtonian (power-law) constitutive model. To our knowledge, the present paper is the first to address this problem, as previous work on near-wakes has been limited to the use of a Newtonian model. The motivation for this work comes from the biomedical engineering problem of blood flow around the bileaflet of a mechanical heart valve. In the present paper, the series method has been used to calculate the flow near the centerline of the wake, while an asymptotic method has been used for larger distances from the centerline. The effects of power-law inlet conditions on the wake flow are reported for various values of the power-law index n, within the range 0.7≤n ≤1.3. The present analysis has been successfully validated by comparing the results for n =1 to the near-wake results by Goldstein [Proc. Cambridge Philos. Soc. 26, 1 (1930)]. We generalized the equations for arbitrary values of n, without any special considerations for n =1. Therefore, the accurate results observed for n =1 validate our procedure as a whole. The first major finding is that a fluid with smaller n develops faster downstream, such that decreasing n leads to monotonically increasing velocities compared to fluids with large n values. Another finding is that the non-Newtonian effects become more significant as the downstream distance increases. Finally, these effects tend to be more pronounced in the vicinity of the wake centerline compared to larger y locations.

  19. NASA AVOSS Fast-Time Models for Aircraft Wake Prediction: User's Guide (APA3.8 and TDP2.1)

    NASA Technical Reports Server (NTRS)

    Ahmad, Nash'at N.; VanValkenburg, Randal L.; Pruis, Matthew J.; Limon Duparcmeur, Fanny M.

    2016-01-01

    NASA's current distribution of fast-time wake vortex decay and transport models includes APA (Version 3.8) and TDP (Version 2.1). This User's Guide provides detailed information on the model inputs, file formats, and model outputs. A brief description of the Memphis 1995, Dallas/Fort Worth 1997, and the Denver 2003 wake vortex datasets is given along with the evaluation of models. A detailed bibliography is provided which includes publications on model development, wake field experiment descriptions, and applications of the fast-time wake vortex models.

  20. Investigating wind turbine impacts on near-wake flow using profiling Lidar data and large-eddy simulations with an actuator disk model

    DOE PAGES

    Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; ...

    2015-08-27

    In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of thesemore » changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σ u, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σ u , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.« less

  1. Modeling the effects of caffeine on the sleep/ wake cycle.

    PubMed

    Daniello, Allison; Fievisohn, Elizabeth; Gregory, T Stan

    2012-01-01

    Caffeine is present in many products consumed daily, including coffee, soda, and chocolate, and is known to delay the onset of sleepiness and cause sleep disturbances. It is an adenosine antagonist, inhibiting some hormones that promote sleep, and therefore promoting wakefulness. This paper proposes a model to incorporate the effects of caffeine on the sleep/wake cycle. The “flip-flop” model was used to model the sleep cycle, where switching between a sleep state and a wake state was nearly instantaneous. Sleep patterns were modeled based on the circadian rhythm and homeostatic drive, as was done by Rempe et al. (2010). The model demonstrated how the homeostatic drive and circadian rhythm interact to cause sleep and wakefulness. The effects of caffeine were incorporated to have a masking effect on the homeostatic drive, promoting wakefulness. Preliminary results showed that caffeine intake late in the evening caused the switch from wake to sleep to occur later than if no caffeine was present in the system. Additionally, the switch from wake to sleep was increasingly delayed with increased caffeine intake at the same time. This model is not yet validated, though potential studies for validation are proposed. This model presents an interesting method for incorporating the effects of caffeine on the sleep/wake cycle.

  2. A Biomimetic Propulsor for Active Noise Control. Part 2: Theory

    NASA Astrophysics Data System (ADS)

    Annaswamy Krol, A., Jr.; Bandyopadhyay, P. R.

    2000-11-01

    The alteration of radiated noise in underwater propulsors using biomimetic active control is considered. Wake momentum filling is carried out by introducing artificial muscles at the trailing edge of a stator blade of an upstream stator propulsor, and articulating them like a fish tail (see companion abstract Part 1). Using a systems framework, we derive a methodology for the articulation of the muscles with active control. The unsteady force produced on the rotor because of velocity perturbations due to actuator displacements, wake deficits caused by stator boundary layers, and blade rotation is modeled. Linear and adaptive nonlinear control strategies are described for articulating the tail using unsteady force measurements. This active control procedure can be viewed as the realization of “virtual” blades with different sweep and noise characteristics and can affect the noise spectrum due to direct radiation significantly. The work provides an understanding of the effect of nonuniform wakes on radiated noise and can lead to a general approach by which wakes can be altered.

  3. Documentation for Three Wake Vortex Model Data Sets from Simulation of Flight 587 Wake Vortex Encounter Accident Case

    NASA Technical Reports Server (NTRS)

    Switzer, George F.

    2008-01-01

    This document contains a general description for data sets of a wake vortex system in a turbulent environment. The turbulence and thermal stratification of the environment are representative of the conditions on November 12, 2001 near John F. Kennedy International Airport. The simulation assumes no ambient winds. The full three dimensional simulation of the wake vortex system from a Boeing 747 predicts vortex circulation levels at 80% of their initial value at the time of the proposed vortex encounter. The linked vortex oval orientation showed no twisting, and the oval elevations at the widest point were about 20 meters higher than where the vortex pair joined. Fred Proctor of NASA?s Langley Research Center presented the results from this work at the NTSB public hearing that started 29 October 2002. This document contains a description of each data set including: variables, coordinate system, data format, and sample plots. Also included are instructions on how to read the data.

  4. An Aeroelastic Perspective of Floating Offshore Wind Turbine Wake Formation and Instability

    NASA Astrophysics Data System (ADS)

    Rodriguez, Steven N.; Jaworski, Justin W.

    2015-11-01

    The wake formation and wake stability of floating offshore wind turbines are investigated from an aeroelastic perspective. The aeroelastic model is composed of the Sebastian-Lackner free-vortex wake aerodynamic model coupled to the nonlinear Hodges-Dowell beam equations, which are extended to include the effects of blade profile asymmetry, higher-order torsional effects, and kinetic energy components associated with periodic rigid-body motions of floating platforms. Rigid-body platform motions are also assigned to the aerodynamic model as varying inflow conditions to emulate operational rotor-wake interactions. Careful attention is given to the wake formation within operational states where the ratio of inflow velocity to induced velocity is over 50%. These states are most susceptible to aerodynamic instabilities, and provide a range of states about which a wake stability analysis can be performed. In addition, the stability analysis used for the numerical framework is implemented into a standalone free-vortex wake aerodynamic model. Both aeroelastic and standalone aerodynamic results are compared to evaluate the level of impact that flexible blades have on the wake formation and wake stability.

  5. Forecasting Behavior in Smart Homes Based on Sleep and Wake Patterns

    PubMed Central

    Williams, Jennifer A.; Cook, Diane J.

    2017-01-01

    Background The goal of this research is to use smart home technology to assist people who are recovering from injuries or coping with disabilities to live independently. Objective We introduce an algorithm to model and forecast wake and sleep behaviors that are exhibited by the participant. Furthermore, we propose that sleep behavior is impacted by and can be modeled from wake behavior, and vice versa. Methods This paper describes the Behavior Forecasting (BF) algorithm. BF consists of 1) defining numeric values that reflect sleep and wake behavior, 2) forecasting wake and sleep values from past behavior, 3) analyzing the effect of wake behavior on sleep and vice versa, and 4) improving prediction performance by using both wake and sleep scores. Results The BF method was evaluated with data collected from 20 smart homes. We found that regardless of the forecasting method utilized, wake behavior and sleep behavior can be modeled with a minimum accuracy of 84%. Additionally, normalizing the wake and sleep scores drastically improves the accuracy to 99%. Conclusions The results show that we can effectively model wake and sleep behaviors in a smart environment. Furthermore, wake behaviors can be predicted from sleep behaviors and vice versa. PMID:27689555

  6. Forecasting behavior in smart homes based on sleep and wake patterns.

    PubMed

    Williams, Jennifer A; Cook, Diane J

    2017-01-01

    The goal of this research is to use smart home technology to assist people who are recovering from injuries or coping with disabilities to live independently. We introduce an algorithm to model and forecast wake and sleep behaviors that are exhibited by the participant. Furthermore, we propose that sleep behavior is impacted by and can be modeled from wake behavior, and vice versa. This paper describes the Behavior Forecasting (BF) algorithm. BF consists of 1) defining numeric values that reflect sleep and wake behavior, 2) forecasting wake and sleep values from past behavior, 3) analyzing the effect of wake behavior on sleep and vice versa, and 4) improving prediction performance by using both wake and sleep scores. The BF method was evaluated with data collected from 20 smart homes. We found that regardless of the forecasting method utilized, wake behavior and sleep behavior can be modeled with a minimum accuracy of 84%. Additionally, normalizing the wake and sleep scores drastically improves the accuracy to 99%. The results show that we can effectively model wake and sleep behaviors in a smart environment. Furthermore, wake behaviors can be predicted from sleep behaviors and vice versa.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M. J.; Moriarty, P. J.; Hao, Y.

    The focus of this work is the comparison of the dynamic wake meandering model and large-eddy simulation with field data from the Egmond aan Zee offshore wind plant composed of 36 3-MW turbines. The field data includes meteorological mast measurements, SCADA information from all turbines, and strain-gauge data from two turbines. The dynamic wake meandering model and large-eddy simulation are means of computing unsteady wind plant aerodynamics, including the important unsteady meandering of wakes as they convect downstream and interact with other turbines and wakes. Both of these models are coupled to a turbine model such that power and mechanicalmore » loads of each turbine in the wind plant are computed. We are interested in how accurately different types of waking (e.g., direct versus partial waking), can be modeled, and how background turbulence level affects these loads. We show that both the dynamic wake meandering model and large-eddy simulation appear to underpredict power and overpredict fatigue loads because of wake effects, but it is unclear that they are really in error. This discrepancy may be caused by wind-direction uncertainty in the field data, which tends to make wake effects appear less pronounced.« less

  8. Gradient-Based Optimization of Wind Farms with Different Turbine Heights: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Andrew P. J.; Thomas, Jared; Ning, Andrew

    Turbine wakes reduce power production in a wind farm. Current wind farms are generally built with turbines that are all the same height, but if wind farms included turbines with different tower heights, the cost of energy (COE) may be reduced. We used gradient-based optimization to demonstrate a method to optimize wind farms with varied hub heights. Our study includes a modified version of the FLORIS wake model that accommodates three-dimensional wakes integrated with a tower structural model. Our purpose was to design a process to minimize the COE of a wind farm through layout optimization and varying turbine hubmore » heights. Results indicate that when a farm is optimized for layout and height with two separate height groups, COE can be lowered by as much as 5%-9%, compared to a similar layout and height optimization where all the towers are the same. The COE has the best improvement in farms with high turbine density and a low wind shear exponent.« less

  9. Gradient-Based Optimization of Wind Farms with Different Turbine Heights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Andrew P. J.; Thomas, Jared; Ning, Andrew

    Turbine wakes reduce power production in a wind farm. Current wind farms are generally built with turbines that are all the same height, but if wind farms included turbines with different tower heights, the cost of energy (COE) may be reduced. We used gradient-based optimization to demonstrate a method to optimize wind farms with varied hub heights. Our study includes a modified version of the FLORIS wake model that accommodates three-dimensional wakes integrated with a tower structural model. Our purpose was to design a process to minimize the COE of a wind farm through layout optimization and varying turbine hubmore » heights. Results indicate that when a farm is optimized for layout and height with two separate height groups, COE can be lowered by as much as 5%-9%, compared to a similar layout and height optimization where all the towers are the same. The COE has the best improvement in farms with high turbine density and a low wind shear exponent.« less

  10. Mesoscale Simulation Data for Initializing Fast-Time Wake Transport and Decay Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Vanvalkenburg, Randal L.; Pruis, Mathew J.; LimonDuparcmeur, Fanny M.

    2012-01-01

    The fast-time wake transport and decay models require vertical profiles of crosswinds, potential temperature and the eddy dissipation rate as initial conditions. These inputs are normally obtained from various field sensors. In case of data-denied scenarios or operational use, these initial conditions can be provided by mesoscale model simulations. In this study, the vertical profiles of potential temperature from a mesoscale model were used as initial conditions for the fast-time wake models. The mesoscale model simulations were compared against available observations and the wake model predictions were compared with the Lidar measurements from three wake vortex field experiments.

  11. Analysis of noise measured from a propeller in a wake

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1984-01-01

    In this experimental study, the acoustic characteristics of a propeller operating in a wake were studied. The propeller performance and noise were measured from two 0.25 scale propellers operating in an open jet anechoic flow environment with and without a wake. One propeller had NACA 16 series sections; the other, ARA-D. Wake thicknesses of 1 and 3 propeller chords were generated by an airfoil which spanned the full diameter of the propeller. The airfoil wake profiles were measured. Noise measurements were made in and out of the flow. The propellers were operated at 40, 83, and 100 inf of thrust. The acoustic data are analyzed, and the effects on the overall sound pressure level (OASPL) and scaled A weighted sound level L sub A with propeller thrust, wake thickness, and observer location are presented. The analysis showed that, generally, the wake increased the overall noise (OASPL) produced by the propeller; increased the harmonic content of the noise, thus the scaled L sub a; and produced an azimuthal dependence. With few exceptions, both propellers generally produced the same trends in delta OASPL and delta L sub a with thrust and wake thickness.

  12. Cross-flow turbines: physical and numerical model studies towards improved array simulations

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Bachant, P.

    2015-12-01

    Cross-flow, or vertical-axis turbines, show potential in marine hydrokinetic (MHK) and wind energy applications. As turbine designs mature, the research focus is shifting from individual devices towards improving turbine array layouts for maximizing overall power output, i.e., minimizing wake interference for axial-flow turbines, or taking advantage of constructive wake interaction for cross-flow turbines. Numerical simulations are generally better suited to explore the turbine array design parameter space, as physical model studies of large arrays at large model scale would be expensive. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries, the turbines' interaction with the energy resource needs to be parameterized, or modeled. Most models in use today, e.g. actuator disk, are not able to predict the unique wake structure generated by cross-flow turbines. Experiments were carried out using a high-resolution turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier--Stokes models. The ALM predicts turbine loading with the blade element method combined with sub-models for dynamic stall and flow curvature. The open-source software is written as an extension library for the OpenFOAM CFD package, which allows the ALM body force to be applied to their standard RANS and LES solvers. Turbine forcing is also applied to volume of fluid (VOF) models, e.g., for predicting free surface effects on submerged MHK devices. An additional sub-model is considered for injecting turbulence model scalar quantities based on actuator line element loading. Results are presented for the simulation of performance and wake dynamics of axial- and cross-flow turbines and compared with experiments and body-fitted mesh, blade-resolving CFD. Supported by NSF-CBET grant 1150797.

  13. The ontogeny of sleep-wake cycles in zebrafish: a comparison to humans

    PubMed Central

    Sorribes, Amanda; Þorsteinsson, Haraldur; Arnardóttir, Hrönn; Jóhannesdóttir, Ingibjörg Þ.; Sigurgeirsson, Benjamín; de Polavieja, Gonzalo G.; Karlsson, Karl Æ.

    2013-01-01

    Zebrafish (Danio rerio) are used extensively in sleep research; both to further understanding of sleep in general and also as a model of human sleep. To date, sleep studies have been performed in larval and adult zebrafish but no efforts have been made to document the ontogeny of zebrafish sleep–wake cycles. Because sleep differs across phylogeny and ontogeny it is important to validate the use of zebrafish in elucidating the neural substrates of sleep. Here we describe the development of sleep and wake across the zebrafish lifespan and how it compares to humans. We find power-law distributions to best fit wake bout data but demonstrate that exponential distributions, previously used to describe sleep bout distributions, fail to adequately account for the data in either species. Regardless, the data reveal remarkable similarities in the ontogeny of sleep cycles in zebrafish and humans. Moreover, as seen in other organisms, zebrafish sleep levels are highest early in ontogeny and sleep and wake bouts gradually consolidate to form the adult sleep pattern. Finally, sleep percentage, bout duration, bout number, and sleep fragmentation are shown to allow for meaningful comparisons between zebrafish and human sleep. PMID:24312015

  14. Cavitation and Wake Structure of Unsteady Tip Vortex Flows

    DTIC Science & Technology

    1992-12-10

    wake structure generated by three-dimensional lifting surfaces. No longer can the wake be modeled as a simple horseshoe vortex structure with the tip...first initiates. -13- Z Strtn vortex "~Bound vortex "’ ; b Wake 2 Figure 1.5 Far-Field Horseshoe Model of a Finite Wing This figure shows a finite wing...Figure 1.11 Simplified Illustration of Wake Structure Behind an Oscillating Wing This schematic shows a simplified model of the trailing vortex

  15. Comparative study on the wake deflection behind yawed wind turbine models

    NASA Astrophysics Data System (ADS)

    Schottler, Jannik; Mühle, Franz; Bartl, Jan; Peinke, Joachim; Adaramola, Muyiwa S.; Sætran, Lars; Hölling, Michael

    2017-05-01

    In this wind tunnel campaign, detailed wake measurements behind two different model wind turbines in yawed conditions were performed. The wake deflections were quantified by estimating the rotor-averaged available power within the wake. By using two different model wind turbines, the influence of the rotor design and turbine geometry on the wake deflection caused by a yaw misalignment of 30° could be judged. It was found that the wake deflections three rotor diameters downstream were equal while at six rotor diameters downstream insignificant differences were observed. The results compare well with previous experimental and numerical studies.

  16. Sleep state classification using pressure sensor mats.

    PubMed

    Baran Pouyan, M; Nourani, M; Pompeo, M

    2015-08-01

    Sleep state detection is valuable in assessing patient's sleep quality and in-bed general behavior. In this paper, a novel classification approach of sleep states (sleep, pre-wake, wake) is proposed that uses only surface pressure sensors. In our method, a mobility metric is defined based on successive pressure body maps. Then, suitable statistical features are computed based on the mobility metric. Finally, a customized random forest classifier is employed to identify various classes including a new class for pre-wake state. Our algorithm achieves 96.1% and 88% accuracies for two (sleep, wake) and three (sleep, pre-wake, wake) class identification, respectively.

  17. Evaluation of Fast-Time Wake Vortex Prediction Models

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.

    2009-01-01

    Current fast-time wake models are reviewed and three basic types are defined. Predictions from several of the fast-time models are compared. Previous statistical evaluations of the APA-Sarpkaya and D2P fast-time models are discussed. Root Mean Square errors between fast-time model predictions and Lidar wake measurements are examined for a 24 hr period at Denver International Airport. Shortcomings in current methodology for evaluating wake errors are also discussed.

  18. Review of Idealized Aircraft Wake Vortex Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  19. IEA-Task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 2: Wind farm wake models

    NASA Astrophysics Data System (ADS)

    Moriarty, Patrick; Sanz Rodrigo, Javier; Gancarski, Pawel; Chuchfield, Matthew; Naughton, Jonathan W.; Hansen, Kurt S.; Machefaux, Ewan; Maguire, Eoghan; Castellani, Francesco; Terzi, Ludovico; Breton, Simon-Philippe; Ueda, Yuko

    2014-06-01

    Researchers within the International Energy Agency (IEA) Task 31: Wakebench have created a framework for the evaluation of wind farm flow models operating at the microscale level. The framework consists of a model evaluation protocol integrated with a web-based portal for model benchmarking (www.windbench.net). This paper provides an overview of the building-block validation approach applied to wind farm wake models, including best practices for the benchmarking and data processing procedures for validation datasets from wind farm SCADA and meteorological databases. A hierarchy of test cases has been proposed for wake model evaluation, from similarity theory of the axisymmetric wake and idealized infinite wind farm, to single-wake wind tunnel (UMN-EPFL) and field experiments (Sexbierum), to wind farm arrays in offshore (Horns Rev, Lillgrund) and complex terrain conditions (San Gregorio). A summary of results from the axisymmetric wake, Sexbierum, Horns Rev and Lillgrund benchmarks are used to discuss the state-of-the-art of wake model validation and highlight the most relevant issues for future development.

  20. Predicting aerodynamic characteristics of vortical flows on three-dimensional configurations using a surface-singularity panel method

    NASA Technical Reports Server (NTRS)

    Maskew, B.

    1983-01-01

    A general low-order surface-singularity panel method is used to predict the aerodynamic characteristics of a problem where a wing-tip vortex from one wing closely interacts with an aft mounted wing in a low Reynolds Number flow; i.e., 125,000. Nonlinear effects due to wake roll-up and the influence of the wings on the vortex path are included in the calculation by using a coupled iterative wake relaxation scheme. The interaction also affects the wing pressures and boundary layer characteristics: these effects are also considered using coupled integral boundary layer codes and preliminary calculations using free vortex sheet separation modelling are included. Calculated results are compared with water tunnel experimental data with generally remarkably good agreement.

  1. Wakes behind surface-mounted obstacles: Impact of aspect ratio, incident angle, and surface roughness

    NASA Astrophysics Data System (ADS)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2018-03-01

    The so-called wake-moment coefficient C˜h and lateral wake deflection of three-dimensional windbreaks are explored in the near and far wake. Wind-tunnel experiments were performed to study the functional dependence of C˜h with windbreak aspect ratio, incidence angle, and the ratio of the windbreak height and surface roughness (h /z0 ). Supported with the data, we also propose basic models for the wake deflection of the windbreak in the near and far fields. The near-wake model is based on momentum conservation considering the drag on the windbreak, whereas the far-wake counterpart is based on existing models for wakes behind surface-mounted obstacles. Results show that C˜h does not change with windbreak aspect ratios of 10 or greater; however, it may be lower for an aspect ratio of 5. C˜h is found to change roughly with the cosine of the incidence angle, and to depend strongly on h /z0 . The data broadly support the proposed wake-deflection models, though better predictions could be made with improved knowledge of the windbreak drag coefficient.

  2. Contributions of the stochastic shape wake model to predictions of aerodynamic loads and power under single wake conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doubrawa, P.; Barthelmie, R. J.; Wang, H.

    The contribution of wake meandering and shape asymmetry to load and power estimates is quantified by comparing aeroelastic simulations initialized with different inflow conditions: an axisymmetric base wake, an unsteady stochastic shape wake, and a large-eddy simulation with rotating actuator-line turbine representation. Time series of blade-root and tower base bending moments are analyzed. We find that meandering has a large contribution to the fluctuation of the loads. Moreover, considering the wake edge intermittence via the stochastic shape model improves the simulation of load and power fluctuations and of the fatigue damage equivalent loads. Furthermore, these results indicate that the stochasticmore » shape wake simulator is a valuable addition to simplified wake models when seeking to obtain higher-fidelity computationally inexpensive predictions of loads and power.« less

  3. Contributions of the stochastic shape wake model to predictions of aerodynamic loads and power under single wake conditions

    DOE PAGES

    Doubrawa, P.; Barthelmie, R. J.; Wang, H.; ...

    2016-10-03

    The contribution of wake meandering and shape asymmetry to load and power estimates is quantified by comparing aeroelastic simulations initialized with different inflow conditions: an axisymmetric base wake, an unsteady stochastic shape wake, and a large-eddy simulation with rotating actuator-line turbine representation. Time series of blade-root and tower base bending moments are analyzed. We find that meandering has a large contribution to the fluctuation of the loads. Moreover, considering the wake edge intermittence via the stochastic shape model improves the simulation of load and power fluctuations and of the fatigue damage equivalent loads. Furthermore, these results indicate that the stochasticmore » shape wake simulator is a valuable addition to simplified wake models when seeking to obtain higher-fidelity computationally inexpensive predictions of loads and power.« less

  4. SAR imaging of vortex ship wakes. Volume 3: An overview of pre-ERS-1 observations and models

    NASA Astrophysics Data System (ADS)

    Skoeelv, Aage; Wahl, Terje

    1991-05-01

    The visibility of dark turbulent wakes in Synthetic Aperture Radar (SAR) imagery is focused upon. An overview of various wake observations prior to ERS-1 is given. This includes images from Seasat and airborne SAR as well as photographic observations. Different turbulent wake models and simulation, schemes are reviewed. The requirements for a complete turbulent wake model are discussed, and from results available, some conclusions are drawn with respect to possible ERS-1 applications.

  5. Direct numerical simulations and modeling of a spatially-evolving turbulent wake

    NASA Technical Reports Server (NTRS)

    Cimbala, John M.

    1994-01-01

    Understanding of turbulent free shear flows (wakes, jets, and mixing layers) is important, not only for scientific interest, but also because of their appearance in numerous practical applications. Turbulent wakes, in particular, have recently received increased attention by researchers at NASA Langley. The turbulent wake generated by a two-dimensional airfoil has been selected as the test-case for detailed high-resolution particle image velocimetry (PIV) experiments. This same wake has also been chosen to enhance NASA's turbulence modeling efforts. Over the past year, the author has completed several wake computations, while visiting NASA through the 1993 and 1994 ASEE summer programs, and also while on sabbatical leave during the 1993-94 academic year. These calculations have included two-equation (K-omega and K-epsilon) models, algebraic stress models (ASM), full Reynolds stress closure models, and direct numerical simulations (DNS). Recently, there has been mutually beneficial collaboration of the experimental and computational efforts. In fact, these projects have been chosen for joint presentation at the NASA Turbulence Peer Review, scheduled for September 1994. DNS calculations are presently underway for a turbulent wake at Re(sub theta) = 1000 and at a Mach number of 0.20. (Theta is the momentum thickness, which remains constant in the wake of a two dimensional body.) These calculations utilize a compressible DNS code written by M. M. Rai of NASA Ames, and modified for the wake by J. Cimbala. The code employs fifth-order accurate upwind-biased finite differencing for the convective terms, fourth-order accurate central differencing for the viscous terms, and an iterative-implicit time-integration scheme. The computational domain for these calculations starts at x/theta = 10, and extends to x/theta = 610. Fully developed turbulent wake profiles, obtained from experimental data from several wake generators, are supplied at the computational inlet, along with appropriate noise. After some adjustment period, the flow downstream of the inlet develops into a fully three-dimensional turbulent wake. Of particular interest in the present study is the far wake spreading rate and the self-similar mean and turbulence profiles. At the time of this writing, grid resolution studies are underway, and a code is being written to calculate turbulence statistics from these wake calculations; the statistics will be compared to those from the ongoing PIV wake measurements, those of previous experiments, and those predicted by the various turbulence models. These calculations will lead to significant long-term benefits for the turbulence modeling effort. In particular, quantities such as the pressure-strain correlation and the dissipation rate tensor can be easily calculated from the DNS results, whereas these quantities are nearly impossible to measure experimentally. Improvements to existing turbulence models (and development of new models) require knowledge about flow quantities such as these. Present turbulence models do a very good job at prediction of the shape of the mean velocity and Reynolds stress profiles in a turbulent wake, but significantly underpredict the magnitude of the stresses and the spreading rate of the wake. Thus, the turbulent wake is an ideal flow for turbulence modeling research. By careful comparison and analysis of each term in the modeled Reynolds stress equations, the DNS data can show where deficiencies in the models exist; improvements to the models can then be attempted.

  6. Analysis of Predicted Aircraft Wake Vortex Transport and Comparison with Experiment Volume I -- Wake Vortex Predictive System Study

    DOT National Transportation Integrated Search

    1974-04-01

    A unifying wake vortex transport model is developed and applied to a wake vortex predictive system concept. The fundamentals of vortex motion underlying the predictive model are discussed including vortex decay, bursting and instability phenomena. A ...

  7. Wind tunnel measurements of the dilution of tailpipe emissions downstream of a car, a light-duty truck, and a heavy-duty truck tractor head.

    PubMed

    Chang, Victor W C; Hildemann, Lynn M; Chang, Cheng-hisn

    2009-06-01

    The particle and gaseous pollutants in vehicle exhaust emissions undergo rapid dilution with ambient air after exiting the tailpipe. The rate and extent of this dilution can greatly affect both the size evolution of primary exhaust particles and the potential for formation of ultrafine particles. Dilution ratios were measured inside of a wind tunnel in the region immediately downstream of the tailpipe using model vehicles (approximately one-fifth to one-seventh scale models) representing a light-duty truck, a passenger car, and a heavy-duty tractor head (without the trailer). A tracer gas (ethene) was released at a measured flow rate from the tailpipe, and 60 sampling probes placed downstream of the vehicle simultaneously sampled gas tracer concentrations in the near-wake (first few vehicle heights) and far-wake regions (beyond 10 vehicle heights). Tests using different tunnel wind speeds show the range of dilution ratios that can be expected as a function of vehicle type and downstream distance (i.e., time). The vehicle shape quite strongly influences dilution profiles in the near-wake region but is much less important in the far-wake region. The tractor generally produces higher dilution rates than the automobile and light-duty truck under comparable conditions.

  8. Work routines moderate the association between eveningness and poor psychological well-being

    PubMed Central

    de Souza, Camila Morelatto; Hidalgo, Maria Paz Loayza

    2018-01-01

    Well-being is a useful screening method for the detection of mood disorders. Evidence associating psychological well-being with sleep-wake patterns exists, as well as associations with sleep-wake patterns, work-related parameters, and perceived self-efficacy. Despite the growing research regarding the relationship between these factors and mental health, there are few studies that analyze them together. OBJECTIVE: To investigate if the association between sleep-wake patterns and psychological well-being is mediated or moderated by perceived self-efficacy, work flexibility and work routines. MATERIAL AND METHODS: This cohort study was performed in southern Brazil. A sample of 987 individuals was analyzed (66.9% women; mean age = 43.9 years). Work routines parameters and work schedule flexibility were evaluated, most participants were farmers (46%) and most worked 7 days a week (69.1%). Munich Chronotype Questionnaire (MCTQ) was administered for evaluation of sleep-wake patterns, General Self-Efficacy Scale (GSE) for assessment the participants’ beliefs about how they coped with daily hassles, and World Health Organization Five-item Well-being Index (WHO-5) for evaluation of psychological well-being levels. Moderation and mediation models were tested. RESULTS: The moderation model showed influences of work end time on the relationship between sleep onset time and psychological well-being (R2 = 0.147; F = 24.16; p<0.001). The final regression model showed an association of psychological well-being with sex (Beta = -0.086; p = 0.004), sleep onset time (Beta = -0.086; p = 0.006), and self-efficacy (Beta = 0.316; p<0.001); the work end time showed association in the interaction with sleep onset time (Beta = -0.075; p = 0.016). CONCLUSION: The findings support the direct association of psychological well-being with sleep-wake patterns and self-efficacy, and show an interaction between work routines and sleep-wake patterns. Our results draw attention to the importance of the interplay between individual and social rhythms in relation to psychological well-being. PMID:29624593

  9. Physical and Numerical Model Studies of Cross-flow Turbines Towards Accurate Parameterization in Array Simulations

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Bachant, P.

    2014-12-01

    Cross-flow turbines, often referred to as vertical-axis turbines, show potential for success in marine hydrokinetic (MHK) and wind energy applications, ranging from small- to utility-scale installations in tidal/ocean currents and offshore wind. As turbine designs mature, the research focus is shifting from individual devices to the optimization of turbine arrays. It would be expensive and time-consuming to conduct physical model studies of large arrays at large model scales (to achieve sufficiently high Reynolds numbers), and hence numerical techniques are generally better suited to explore the array design parameter space. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries (e.g., grid resolution into the viscous sublayer on turbine blades), the turbines' interaction with the energy resource (water current or wind) needs to be parameterized, or modeled. Models used today--a common model is the actuator disk concept--are not able to predict the unique wake structure generated by cross-flow turbines. This wake structure has been shown to create "constructive" interference in some cases, improving turbine performance in array configurations, in contrast with axial-flow, or horizontal axis devices. Towards a more accurate parameterization of cross-flow turbines, an extensive experimental study was carried out using a high-resolution turbine test bed with wake measurement capability in a large cross-section tow tank. The experimental results were then "interpolated" using high-fidelity Navier--Stokes simulations, to gain insight into the turbine's near-wake. The study was designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. The end product of this work will be a cross-flow turbine actuator line model to be used as an extension to the OpenFOAM computational fluid dynamics (CFD) software framework, which will likely require modifications to commonly-used dynamic stall models, in consideration of the turbines' high angle of attack excursions during normal operation.

  10. Simulated Wake Characteristics Data for Closely Spaced Parallel Runway Operations Analysis

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Neitzke, Kurt W.

    2012-01-01

    A simulation experiment was performed to generate and compile wake characteristics data relevant to the evaluation and feasibility analysis of closely spaced parallel runway (CSPR) operational concepts. While the experiment in this work is not tailored to any particular operational concept, the generated data applies to the broader class of CSPR concepts, where a trailing aircraft on a CSPR approach is required to stay ahead of the wake vortices generated by a lead aircraft on an adjacent CSPR. Data for wake age, circulation strength, and wake altitude change, at various lateral offset distances from the wake-generating lead aircraft approach path were compiled for a set of nine aircraft spanning the full range of FAA and ICAO wake classifications. A total of 54 scenarios were simulated to generate data related to key parameters that determine wake behavior. Of particular interest are wake age characteristics that can be used to evaluate both time- and distance- based in-trail separation concepts for all aircraft wake-class combinations. A simple first-order difference model was developed to enable the computation of wake parameter estimates for aircraft models having weight, wingspan and speed characteristics similar to those of the nine aircraft modeled in this work.

  11. Maximization of the annual energy production of wind power plants by optimization of layout and yaw-based wake control: Maximization of wind plant AEP by optimization of layout and wake control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebraad, Pieter; Thomas, Jared J.; Ning, Andrew

    This paper presents a wind plant modeling and optimization tool that enables the maximization of wind plant annual energy production (AEP) using yaw-based wake steering control and layout changes. The tool is an extension of a wake engineering model describing the steady-state effects of yaw on wake velocity profiles and power productions of wind turbines in a wind plant. To make predictions of a wind plant's AEP, necessary extensions of the original wake model include coupling it with a detailed rotor model and a control policy for turbine blade pitch and rotor speed. This enables the prediction of power productionmore » with wake effects throughout a range of wind speeds. We use the tool to perform an example optimization study on a wind plant based on the Princess Amalia Wind Park. In this case study, combined optimization of layout and wake steering control increases AEP by 5%. The power gains from wake steering control are highest for region 1.5 inflow wind speeds, and they continue to be present to some extent for the above-rated inflow wind speeds. The results show that layout optimization and wake steering are complementary because significant AEP improvements can be achieved with wake steering in a wind plant layout that is already optimized to reduce wake losses.« less

  12. Modeling EEG fractal dimension changes in wake and drowsy states in humans--a preliminary study.

    PubMed

    Bojić, Tijana; Vuckovic, Aleksandra; Kalauzi, Aleksandar

    2010-01-21

    Aim of this preliminary study was to examine and compare topographic distribution of Higuchi's fractal dimension (FD, measure of signal complexity) of EEG signals between states of relaxed wakefulness and drowsiness, as well as their FD differences. The experiments were performed on 10 healthy individuals using a fourteen-channel montage. An explanation is offered on the causes of the detected FD changes. FD values of 60s records belonging to wake (Hori's stage 1) and drowsy (Hori's stages 2-4) states were calculated for each channel and each subject. In 136 out of 140 epochs an increase in FD was obtained. Relationship between signal FD and its relative alpha amplitude was mathematically modeled and we quantitatively demonstrated that the increase in FD was predominantly due to a reduction in alpha activity. The model was generalized to include other EEG oscillations. By averaging FD values for each channel across 10 subjects, four clusters (O2O1; T6P4T5P3; C3F3F4C4F8F7; T4T3) for the wake and two clusters (O2O1P3T6P4T5; C3C4F4F3F8T4T3F7) for the drowsy state were statistically verified. Topographic distribution of FD values in wakefulness showed a lateral symmetry and a partial fronto-occipital gradient. In drowsiness, a reduction in the number of clusters was detected, due to regrouping of channels T3, T4, O1 and O2. Topographic distribution of absolute FD differences revealed largest values at F7, O1 and F3. Reorganization of channel clusters showed that regionalized brain activity, specific for wakefulness, became more global by entering into drowsiness. Since the global increase in FD during wake-to-drowsy transition correlated with the decrease of alpha power, we inferred that increase of EEG complexity may not necessarily be an index of brain activation.

  13. Wakefulness (Not Sleep) Promotes Generalization of Word Learning in 2.5-Year-Old Children

    ERIC Educational Resources Information Center

    Werchan, Denise M.; Gómez, Rebecca L.

    2014-01-01

    Sleep enhances generalization in adults, but this has not been examined in toddlers. This study examined the impact of napping versus wakefulness on the generalization of word learning in toddlers when the contextual background changes during learning. Thirty 2.5-year-old children (M = 32.94, SE = 0.46) learned labels for novel categories of…

  14. Lidar-based wake tracking for closed-loop wind farm control

    NASA Astrophysics Data System (ADS)

    Raach, Steffen; Schlipf, David; Cheng, Po Wen

    2016-09-01

    This work presents two advancements towards closed-loop wake redirecting of a wind turbine. First, a model-based estimation approach is presented which uses a nacelle-based lidar system facing downwind to obtain information about the wake. A reduced order wake model is described which is then used in the estimation to track the wake. The tracking is demonstrated with lidar measurement data from an offshore campaign and with simulated lidar data from a SOWFA simulation. Second, a controller for closed-loop wake steering is presented. It uses the wake tracking information to set the yaw actuator of the wind turbine to redirect the wake to a desired position. Altogether, this paper aims to present the concept of closed-loop wake redirecting and gives a possible solution to it.

  15. Flow Control Under Low-Pressure Turbine Conditions Using Pulsed Jets

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.

    2012-01-01

    This publication is the final report of research performed under an NRA/Cooperative Interagency Agreement, and includes a supplemental CD-ROM with detailed data. It is complemented by NASA/CR-2012-217416 and NASA/CR-2012-217417 which include a Ph.D. Dissertation and an M.S. thesis respectively, performed under this contract. In this study the effects of unsteady wakes and flow control using vortex generator jets (VGJs) were studied experimentally and computationally on the flow over the L1A low pressure turbine (LPT) airfoil. The experimental facility was a six passage linear cascade in a low speed wind tunnel at the U.S. Naval Academy. In parallel, computational work using the commercial code FLUENT (ANSYS, Inc.) was performed at Cleveland State University, using Unsteady Reynolds Averaged Navier Stokes (URANS) and Large Eddy Simulations (LES) methods. In the first phase of the work, the baseline flow was documented under steady inflow conditions without flow control. URANS calculations were done using a variety of turbulence models. In the second phase of the work, flow control was added using steady and pulsed vortex generator jets. The VGJs successfully suppressed separation and reduced aerodynamic losses. Pulsed operation was more effective and mass flow requirements are very low. Numerical simulations of the VGJs cases showed that URANS failed to capture the effect of the jets. LES results were generally better. In the third phase, effects of unsteady wakes were studied. Computations with URANS and LES captured the wake effect and generally predicted separation and reattachment to match the experiments. Quantitatively the results were mixed. In the final phase of the study, wakes and VGJs were combined and synchronized using various timing schemes. The timing of the jets with respect to the wakes had some effect, but in general once the disturbance frequency was high enough to control separation, the timing was not very important.

  16. Flow Control Under Low-Pressure Turbine Conditions Using Pulsed Jets: Experimental Data Archive

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.

    2012-01-01

    This publication is the final report of research performed under an NRA/Cooperative Interagency Agreement, and includes a supplemental CD-ROM with detailed data. It is complemented by NASA/CR-2012-217416 and NASA/CR-2012-217417 which include a Ph.D. Dissertation and an M.S. thesis respectively, performed under this contract. In this study the effects of unsteady wakes and flow control using vortex generator jets (VGJs) were studied experimentally and computationally on the flow over the L1A low pressure turbine (LPT) airfoil. The experimental facility was a six passage linear cascade in a low speed wind tunnel at the U.S. Naval Academy. In parallel, computational work using the commercial code FLUENT (ANSYS, Inc.) was performed at Cleveland State University, using Unsteady Reynolds Averaged Navier Stokes (URANS) and Large Eddy Simulations (LES) methods. In the first phase of the work, the baseline flow was documented under steady inflow conditions without flow control. URANS calculations were done using a variety of turbulence models. In the second phase of the work, flow control was added using steady and pulsed vortex generator jets. The VGJs successfully suppressed separation and reduced aerodynamic losses. Pulsed operation was more effective and mass flow requirements are very low. Numerical simulations of the VGJs cases showed that URANS failed to capture the effect of the jets. LES results were generally better. In the third phase, effects of unsteady wakes were studied. Computations with URANS and LES captured the wake effect and generally predicted separation and reattachment to match the experiments. Quantitatively the results were mixed. In the final phase of the study, wakes and VGJs were combined and synchronized using various timing schemes. The timing of the jets with respect to the wakes had some effect, but in general once the disturbance frequency was high enough to control separation, the timing was not very important. This is the supplemental CD-ROM

  17. Calculation of the Aerodynamic Behavior of the Tilt Rotor Aeroacoustic Model (TRAM) in the DNW

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2001-01-01

    Comparisons of measured and calculated aerodynamic behavior of a tiltrotor model are presented. The test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single, 1/4-scale V- 22 rotor in the German-Dutch Wind Tunnel (DNW) provides an extensive set of aeroacoustic, performance, and structural loads data. The calculations were performed using the rotorcraft comprehensive analysis CAMRAD II. Presented are comparisons of measured and calculated performance and airloads for helicopter mode operation, as well as calculated induced and profile power. An aerodynamic and wake model and calculation procedure that reflects the unique geometry and phenomena of tiltrotors has been developed. There are major differences between this model and the corresponding aerodynamic and wake model that has been established for helicopter rotors. In general, good correlation between measured and calculated performance and airloads behavior has been shown. Two aspects of the analysis that clearly need improvement are the stall delay model and the trailed vortex formation model.

  18. Respiratory Sound Analysis for Flow Estimation During Wakefulness and Sleep, and its Applications for Sleep Apnea Detection and Monitoring

    NASA Astrophysics Data System (ADS)

    Yadollahi, Azadeh

    Tracheal respiratory sounds analysis has been investigated as a non--invasive method to estimate respiratory flow and upper airway obstruction. However, the flow--sound relationship is highly variable among subjects which makes it challenging to estimate flow in general applications. Therefore, a robust model for acoustical flow estimation in a large group of individuals did not exist before. On the other hand, a major application of acoustical flow estimation is to detect flow limitations in patients with obstructive sleep apnea (OSA) during sleep. However, previously the flow--sound relationship was only investigated during wakefulness among healthy individuals. Therefore, it was necessary to examine the flow--sound relationship during sleep in OSA patients. This thesis takes the above challenges and offers innovative solutions. First, a modified linear flow--sound model was proposed to estimate respiratory flow from tracheal sounds. To remove the individual based calibration process, the statistical correlation between the model parameters and anthropometric features of 93 healthy volunteers was investigated. The results show that gender, height and smoking are the most significant factors that affect the model parameters. Hence, a general acoustical flow estimation model was proposed for people with similar height and gender. Second, flow--sound relationship during sleep and wakefulness was studied among 13 OSA patients. The results show that during sleep and wakefulness, flow--sound relation- ship follows a power law, but with different parameters. Therefore, for acoustical flow estimation during sleep, the model parameters should be extracted from sleep data to have small errors. The results confirm reliability of the acoustical flow estimation for investigating flow variations during both sleep and wakefulness. Finally, a new method for sleep apnea detection and monitoring was developed, which only requires recording the tracheal sounds and the blood's oxygen saturation level (SaO2) data. It automatically classifies the sound segments into breath, snore and noise. A weighted average of features extracted from sound segments and SaO2 signal was used to detect apnea and hypopnea events. The performance of the proposed approach was evaluated on the data of 66 patients. The results show high correlation (0.96, p < 0.0001) between the outcomes of our system and those of the polysomnography. Also, sensitivity and specificity of the proposed method in differentiating simple snorers from OSA patients were found to be more than 91%. These results are superior or comparable with the existing commercialized sleep apnea portable monitors.

  19. Vortex Core Size in the Rotor Near-Wake

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2003-01-01

    Using a kinetic energy conservation approach, a number of simple analytic expressions are derived for estimating the core size of tip vortices in the near-wake of rotors in hover and axial-flow flight. The influence of thrust, induced power losses, advance ratio, and vortex structure on rotor vortex core size is assessed. Experimental data from the literature is compared to the analytical results derived in this paper. In general, three conclusions can be drawn from the work in this paper. First, the greater the rotor thrust, t h e larger the vortex core size in the rotor near-wake. Second, the more efficient a rotor is with respect to induced power losses, the smaller the resulting vortex core size. Third, and lastly, vortex core size initially decreases for low axial-flow advance ratios, but for large advance ratios core size asymptotically increases to a nominal upper limit. Insights gained from this work should enable improved modeling of rotary-wing aerodynamics, as well as provide a framework for improved experimental investigations of rotor a n d advanced propeller wakes.

  20. A comprehensive comparison of turbulence models in the far wake

    NASA Technical Reports Server (NTRS)

    Cimbala, John M.

    1993-01-01

    In the present study, the far wake was examined numerically using an implicit, upwind, finite-volume, compressible Navier-Stokes code. The numerical grid started at 500 equivalent circular cylinder diameters in the wave, and extended to 4000 equivalent diameters. By concentrating only on the far wake, the numerical difficulties and fine mesh requirements near the wake-generating body were eliminated. At the time of this writing, results for the K-epsilon and K-omega turbulence models at low Mach number have been completed and show excellent agreement with previous incompressible results and far-wake similarity solutions. The code is presently being used to compare the performance of various other turbulence models, including Reynolds stress models and the new anisotropic two-equation turbulence models being developed at NASA Langley. By increasing our physical understanding of the deficiencies and limits of these models, it is hoped that improvements to the universality of the models can be made. Future plans include examination of two-dimensional momentumless wakes as well.

  1. Incorporating atmospheric stability effects into the FLORIS engineering model of wakes in wind farms

    DOE PAGES

    Gebraad, Pieter M. O.; Churchfield, Matthew J.; Fleming, Paul A.

    2016-10-03

    Atmospheric stability conditions have an effect on wind turbine wakes. This is an important factor in wind farms in which the wake properties affect the performance of downstream turbines. In the stable atmosphere, wind direction shear has a lateral skewing effect on the wakes. In this study, we describe changes to the FLOw Redirection and Induction in Steady-state (FLORIS) wake engineering model to incorporate and parameterize this effect.

  2. Simulation of Rotary-Wing Near-Wake Vortex Structures Using Navier-Stokes CFD Methods

    NASA Technical Reports Server (NTRS)

    Kenwright, David; Strawn, Roger; Ahmad, Jasim; Duque, Earl; Warmbrodt, William (Technical Monitor)

    1997-01-01

    This paper will use high-resolution Navier-Stokes computational fluid dynamics (CFD) simulations to model the near-wake vortex roll-up behind rotor blades. The locations and strengths of the trailing vortices will be determined from newly-developed visualization and analysis software tools applied to the CFD solutions. Computational results for rotor nearwake vortices will be used to study the near-wake vortex roll up for highly-twisted tiltrotor blades. These rotor blades typically have combinations of positive and negative spanwise loading and complex vortex wake interactions. Results of the computational studies will be compared to vortex-lattice wake models that are frequently used in rotorcraft comprehensive codes. Information from these comparisons will be used to improve the rotor wake models in the Tilt-Rotor Acoustic Code (TRAC) portion of NASA's Short Haul Civil Transport program (SHCT). Accurate modeling of the rotor wake is an important part of this program and crucial to the successful design of future civil tiltrotor aircraft. The rotor wake system plays an important role in blade-vortex interaction noise, a major problem for all rotorcraft including tiltrotors.

  3. Modeling the Wake of the Marquesas Archipelago

    NASA Astrophysics Data System (ADS)

    Raapoto, H.; Martinez, E.; Petrenko, A.; Doglioli, A. M.; Maes, C.

    2018-02-01

    In this study, a high-resolution (˜2.5 km) numerical model was set up to investigate the fine-scale activity within the region of the Marquesas archipelago. This has never been performed before. The robustness of the model results is assessed by comparison with remote sensing and in situ observations. Our results highlight regions of warm waters leeward of the different islands with high eddy kinetic energy (EKE) on their sides. The analysis of energy conversion terms reveals contributions to EKE variability by wind, baroclinic, and barotropic instabilities. The use of a geometry-based eddy detection algorithm reveals the generation of cyclonic and anticyclonic eddies in the wake of the largest islands, with both an inshore and offshore effect. Maximum eddy activity occurs in austral winter following the seasonality of both wind stress and EKE intensity. Most eddies have a radius between 20 and 30 km and are generally cyclonic rather than anticyclonic. Significant vertical velocities are observed in the proximity of the islands, associated with topographically induced flow separation. Eddy trapping inshore waters are advected offshore in the wake of the islands. The overall influence of these fine-scale dynamics could explain the strong biological enhancement of the archipelago.

  4. Modelling the Wake of the Marquesas Archipelago

    NASA Astrophysics Data System (ADS)

    Raapoto, H.; Martinez, E. C.; Petrenko, A. A.; Doglioli, A. M.; Maes, C.

    2017-12-01

    In this study, a high-resolution ( 2.5 km) numerical model was set up to investigate the fine-scale activity within the region of the Marquesas archipelago where a strong biological enhancement occurs. This has never been performed before. The robustness of the model results is assessed by comparison with remote sensing and in situ observations. Our results highlight regions of warm waters leeward of the different islands with high eddy kinetic energy (EKE) on their sides. The analysis of energy conversion terms reveals contributions to EKE variability by wind, baroclinic and barotropic instabilities. The use of a geometry-based eddy detection algorithm reveals eddy generation in the wake of the largest islands, with both an inshore and offshore effect. Maximum eddy activity occurs in austral winter following the seasonality of both wind stress and EKE intensity. Most eddies have a radius between 20 and 30 km and are generally cyclonic rather than anticyclonic. Significant vertical velocities are observed in the proximity of the islands, associated with topography induced flow separation. Eddy trapping inshore waters are advected offshore in the wake of the islands. The overall influence of these fine-scale dynamics could explain the strong biological enhancement of the archipelago.

  5. A simple and complete model for wind turbine wakes over complex terrain

    NASA Astrophysics Data System (ADS)

    Rommelfanger, Nick; Rajborirug, Mai; Luzzatto-Fegiz, Paolo

    2017-11-01

    Simple models for turbine wakes have been used extensively in the wind energy community, both as independent tools, as well as to complement more refined and computationally-intensive techniques. These models typically prescribe empirical relations for how the wake radius grows with downstream distance x and obtain the wake velocity at each x through the application of either mass conservation, or of both mass and momentum conservation (e.g. Katić et al. 1986; Frandsen et al. 2006; Bastankhah & Porté-Agel 2014). Since these models assume a global behavior of the wake (for example, linear spreading with x) they cannot respond to local changes in background flow, as may occur over complex terrain. Instead of assuming a global wake shape, we develop a model by relying on a local assumption for the growth of the turbulent interface. To this end, we introduce to wind turbine wakes the use of the entrainment hypothesis, which has been used extensively in other areas of geophysical fluid dynamics. We obtain two coupled ordinary differential equations for mass and momentum conservation, which can be readily solved with a prescribed background pressure gradient. Our model is in good agreement with published data for the development of wakes over complex terrain.

  6. Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads

    DOE PAGES

    Moon, Jae; Manuel, Lance; Churchfield, Matthew; ...

    2017-12-28

    Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less

  7. Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Jae; Manuel, Lance; Churchfield, Matthew

    Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less

  8. Effect of Wind Turbine Wakes on the Performance of a Real Case WRF-LES Simulation

    NASA Astrophysics Data System (ADS)

    Doubrawa, P.; Montornès, A.; Barthelmie, R. J.; Pryor, S. C.; Giroux, G.; Casso, P.

    2017-05-01

    The main objective of this work is to estimate how much of the discrepancy between measured and modeled flow parameters can be attributed to wake effects. The real case simulations were performed for a period of 15 days with the Weather Research and Forecasting (WRF) model and nested down to a Large-Eddy Simulation (LES) scale of ∼ 100 m. Beyond the coastal escarpment, the site is flat and homogeneous and the study focuses on a meteorological mast and a northern turbine subjected to the wake of a southern turbine. The observational data set collected during the Prince Edward Island Wind Energy Experiment (PEIWEE) includes a sonic anemometer at 60 m mounted onto the mast, and measurements from the two turbines. Wake versus free stream conditions are distinguished based on measured wind direction while assuming constant expansion for the wake of the southern turbine. During the period considered the mast and northern turbine were under the southern turbine wake ∼ 16% and ∼ 11% of the time, respectively. Under these conditions, the model overestimates the wind speed and underestimates the turbulence intensity at the mast but not at the northern turbine, where the effect of wakes on the model error is unclear and other model limitations are likely more important. The wind direction difference between the southern and northern turbines is slightly underestimated by the model regardless of whether free stream or wake conditions are observed, indicating that it may be due to factors unrelated to the wake development such as surface forcings. Finally, coupling an inexpensive wake model to the high-fidelity simulation as a post-processing tool drives the simulated wind speeds at the mast significantly closer to the observed values, but the opposite is true at the coastal turbine which is in the far wake. This indicates that the application of a post-processing wake correction should be performed with caution and may increase the wind speed errors when other important sources of uncertainty in the model and data are not considered.

  9. On the Effects of Wind Turbine Wake Skew Caused by Wind Veer: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, Matthew J; Sirnivas, Senu

    Because of Coriolis forces caused by the Earth's rotation, the structure of the atmospheric boundary layer often contains wind-direction change with height, also known as wind-direction veer. Under low turbulence conditions, such as in stably stratified atmospheric conditions, this veer can be significant, even across the vertical extent of a wind turbine's rotor disk. The veer then causes the wind turbine wake to skew as it advects downstream. This wake skew has been observed both experimentally and numerically. In this work, we attempt to examine the wake skewing process in some detail, and quantify how differently a skewed wake versusmore » a non skewed wake affects a downstream turbine. We do this by performing atmospheric large-eddy simulations to create turbulent inflow winds with and without veer. In the veer case, there is a roughly 8 degree wind direction change across the turbine rotor. We then perform subsequent large-eddy simulations using these inflow data with an actuator line rotor model to create wakes. The turbine modeled is a large, modern, offshore, multimegawatt turbine. We examine the unsteady wake data in detail and show that the skewed wake recovers faster than the non skewed wake. We also show that the wake deficit does not skew to the same degree that a passive tracer would if subject to veered inflow. Last, we use the wake data to place a hypothetical turbine 9 rotor diameters downstream by running aeroelastic simulations with the simulated wake data. We see differences in power and loads if this downstream turbine is subject to a skewed or non skewed wake. We feel that the differences observed between the skewed and nonskewed wake are important enough that the skewing effect should be included in engineering wake models.« less

  10. On the Effects of Wind Turbine Wake Skew Caused by Wind Veer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, Matthew J; Sirnivas, Senu

    Because of Coriolis forces caused by the Earth's rotation, the structure of the atmospheric boundary layer often contains wind-direction change with height, also known as wind-direction veer. Under low turbulence conditions, such as in stably stratified atmospheric conditions, this veer can be significant, even across the vertical extent of a wind turbine's rotor disk. The veer then causes the wind turbine wake to skew as it advects downstream. This wake skew has been observed both experimentally and numerically. In this work, we attempt to examine the wake skewing process in some detail, and quantify how differently a skewed wake versusmore » a non skewed wake affects a downstream turbine. We do this by performing atmospheric large-eddy simulations to create turbulent inflow winds with and without veer. In the veer case, there is a roughly 8 degree wind direction change across the turbine rotor. We then perform subsequent large-eddy simulations using these inflow data with an actuator line rotor model to create wakes. The turbine modeled is a large, modern, offshore, multimegawatt turbine. We examine the unsteady wake data in detail and show that the skewed wake recovers faster than the non skewed wake. We also show that the wake deficit does not skew to the same degree that a passive tracer would if subject to veered inflow. Last, we use the wake data to place a hypothetical turbine 9 rotor diameters downstream by running aeroelastic simulations with the simulated wake data. We see differences in power and loads if this downstream turbine is subject to a skewed or non skewed wake. We feel that the differences observed between the skewed and nonskewed wake are important enough that the skewing effect should be included in engineering wake models.« less

  11. Review of a model to assess stranding of juvenile salmon by ship wakes along the Lower Columbia River, Oregon and Washington

    USGS Publications Warehouse

    Kock, Tobias J.; Plumb, John M.; Adams, Noah S.

    2013-01-01

    Long period wake waves from deep draft vessels have been shown to strand small fish, particularly juvenile Chinook salmon Oncorhynchus tschawytcha, in the lower Columbia River (LCR). The U.S. Army Corps of Engineers is responsible for maintaining the shipping channel in the LCR and recently conducted dredging operations to deepen the shipping channel from an authorized depth of 40 feet(ft) to an authorized depth of 43 ft (in areas where rapid shoaling was expected, dredging operations were used to increase the channel depth to 48 ft). A model was developed to estimate stranding probabilities for juvenile salmon under the 40- and 43-ft channel scenarios, to determine if channel deepening was going to affect wake stranding (Assessment of potential stranding of juvenile salmon by ship wakes along the Lower Columbia River under scenarios of ship traffic and channel depth: Report prepared for the Portland District U.S. Army Corps of Engineers, Portland, Oregon). The U.S. Army Corps of Engineers funded the U.S. Geological Survey to review this model. A total of 30 review questions were provided to guide the review process, and these questions are addressed in this report. In general, we determined that the analyses by Pearson (2011) were appropriate given the data available. We did identify two areas where additional information could have been provided: (1) a more thorough description of model diagnostics and model selection would have been useful for the reader to better understand the model framework; and (2) model uncertainty should have been explicitly described and reported in the document. Stranding probability estimates between the 40- and 43-ft channel depths were minimally different under most of the scenarios that were examined by Pearson (2011), and a discussion of the effects of uncertainty given these minimal differences would have been useful. Ultimately, however, a stochastic (or simulation) model would provide the best opportunity to illustrate uncertainty within a given set of model predictions, but such an approach would require a substantial amount of additional data collection. Several review questions focused on the accuracy and precision of the model estimates, but we were unable to address these questions because of the limited data that currently exists regarding wake stranding in the LCR. Additional field studies will be required to validate findings from Pearson (2011), if concerns regarding accuracy and precision remain a priority. Although the Pearson (2011) model provided a useful examination of stranding under pre-construction and post-construction conditions, future research will be required to better understand the effects of wake stranding on juvenile salmonids throughout the entire LCR. If additional information on wake stranding is desired in the future, the following topics may be of interest: (1) spatial examination of wake stranding throughout the entire LCR; (2) additional evaluation of juvenile salmonid behavior and population dynamics; (3) assessing and integrating predicted changes in ship development; and (4) assessing and integrating predicted changes in climate on environmental factors known to cause stranding.

  12. Neural Correlates of Wakefulness, Sleep, and General Anesthesia: An Experimental Study in Rat.

    PubMed

    Pal, Dinesh; Silverstein, Brian H; Lee, Heonsoo; Mashour, George A

    2016-11-01

    Significant advances have been made in our understanding of subcortical processes related to anesthetic- and sleep-induced unconsciousness, but the associated changes in cortical connectivity and cortical neurochemistry have yet to be fully clarified. Male Sprague-Dawley rats were instrumented for simultaneous measurement of cortical acetylcholine and electroencephalographic indices of corticocortical connectivity-coherence and symbolic transfer entropy-before, during, and after general anesthesia (propofol, n = 11; sevoflurane, n = 13). In another group of rats (n = 7), these electroencephalographic indices were analyzed during wakefulness, slow wave sleep (SWS), and rapid eye movement (REM) sleep. Compared to wakefulness, anesthetic-induced unconsciousness was characterized by a significant decrease in cortical acetylcholine that recovered to preanesthesia levels during recovery wakefulness. Corticocortical coherence and frontal-parietal symbolic transfer entropy in high γ band (85 to 155 Hz) were decreased during anesthetic-induced unconsciousness and returned to preanesthesia levels during recovery wakefulness. Sleep-wake states showed a state-dependent change in coherence and transfer entropy in high γ bandwidth, which correlated with behavioral arousal: high during wakefulness, low during SWS, and lowest during REM sleep. By contrast, frontal-parietal θ connectivity during sleep-wake states was not correlated with behavioral arousal but showed an association with well-established changes in cortical acetylcholine: high during wakefulness and REM sleep and low during SWS. Corticocortical coherence and frontal-parietal connectivity in high γ bandwidth correlates with behavioral arousal and is not mediated by cholinergic mechanisms, while θ connectivity correlates with cortical acetylcholine levels.

  13. HART-II: Prediction of Blade-Vortex Interaction Loading

    NASA Technical Reports Server (NTRS)

    Lim, Joon W.; Tung, Chee; Yu, Yung H.; Burley, Casey L.; Brooks, Thomas; Boyd, Doug; vanderWall, Berend; Schneider, Oliver; Richard, Hugues; Raffel, Markus

    2003-01-01

    During the HART-I data analysis, the need for comprehensive wake data was found including vortex creation and aging, and its re-development after blade-vortex interaction. In October 2001, US Army AFDD, NASA Langley, German DLR, French ONERA and Dutch DNW performed the HART-II test as an international joint effort. The main objective was to focus on rotor wake measurement using a PIV technique along with the comprehensive data of blade deflections, airloads, and acoustics. Three prediction teams made preliminary correlation efforts with HART-II data: a joint US team of US Army AFDD and NASA Langley, German DLR, and French ONERA. The predicted results showed significant improvements over the HART-I predicted results, computed about several years ago, which indicated that there has been better understanding of complicated wake modeling in the comprehensive rotorcraft analysis. All three teams demonstrated satisfactory prediction capabilities, in general, though there were slight deviations of prediction accuracies for various disciplines.

  14. Eastern Caribbean Circulation and Island Mass Effect on St. Croix, US Virgin Islands: A Mechanism for Relatively Consistent Recruitment Patterns

    PubMed Central

    Chérubin, Laurent Marcel; Garavelli, Lysel

    2016-01-01

    The northeastern Caribbean Sea is under the seasonal influence of the Trade Winds but also of the Orinoco/Amazon freshwater plume. The latter is responsible for intensification of the Caribbean Current in general and of its eddy activity in the northern part of the Caribbean Sea. More importantly, we show in this study that the front of the freshwater plume drives a northward flow that impinges directly on the island of St. Croix in the United States Virgin Islands. The angle of incidence of the incoming flow controls the nature of the wake on both sides and ends of the island, which changes from cyclonic to anticylonic wake flow, with either attached or shed eddies. Using an off-line bio-physical model, we simulated the dispersal and recruitment of an abundant Caribbean coral reef fish, the bluehead wrasse (Thalassoma bifasciatum) in the context of the wake flow variability around St. Croix. Our results revealed the role played by the consistent seasonal forcing of the wake flow on the recruitment patterns around the island at the interannual scale. The interannual variability of the timing of arrival and northward penetration of the plume instead controls the nature of the wake, hence the regional spatial recruitment patterns. PMID:26942575

  15. Eastern Caribbean Circulation and Island Mass Effect on St. Croix, US Virgin Islands: A Mechanism for Relatively Consistent Recruitment Patterns.

    PubMed

    Chérubin, Laurent Marcel; Garavelli, Lysel

    2016-01-01

    The northeastern Caribbean Sea is under the seasonal influence of the Trade Winds but also of the Orinoco/Amazon freshwater plume. The latter is responsible for intensification of the Caribbean Current in general and of its eddy activity in the northern part of the Caribbean Sea. More importantly, we show in this study that the front of the freshwater plume drives a northward flow that impinges directly on the island of St. Croix in the United States Virgin Islands. The angle of incidence of the incoming flow controls the nature of the wake on both sides and ends of the island, which changes from cyclonic to anticylonic wake flow, with either attached or shed eddies. Using an off-line bio-physical model, we simulated the dispersal and recruitment of an abundant Caribbean coral reef fish, the bluehead wrasse (Thalassoma bifasciatum) in the context of the wake flow variability around St. Croix. Our results revealed the role played by the consistent seasonal forcing of the wake flow on the recruitment patterns around the island at the interannual scale. The interannual variability of the timing of arrival and northward penetration of the plume instead controls the nature of the wake, hence the regional spatial recruitment patterns.

  16. A Physiologically Based Model of Orexinergic Stabilization of Sleep and Wake

    PubMed Central

    Fulcher, Ben D.; Phillips, Andrew J. K.; Postnova, Svetlana; Robinson, Peter A.

    2014-01-01

    The orexinergic neurons of the lateral hypothalamus (Orx) are essential for regulating sleep-wake dynamics, and their loss causes narcolepsy, a disorder characterized by severe instability of sleep and wake states. However, the mechanisms through which Orx stabilize sleep and wake are not well understood. In this work, an explanation of the stabilizing effects of Orx is presented using a quantitative model of important physiological connections between Orx and the sleep-wake switch. In addition to Orx and the sleep-wake switch, which is composed of mutually inhibitory wake-active monoaminergic neurons in brainstem and hypothalamus (MA) and the sleep-active ventrolateral preoptic neurons of the hypothalamus (VLPO), the model also includes the circadian and homeostatic sleep drives. It is shown that Orx stabilizes prolonged waking episodes via its excitatory input to MA and by relaying a circadian input to MA, thus sustaining MA firing activity during the circadian day. During sleep, both Orx and MA are inhibited by the VLPO, and the subsequent reduction in Orx input to the MA indirectly stabilizes sustained sleep episodes. Simulating a loss of Orx, the model produces dynamics resembling narcolepsy, including frequent transitions between states, reduced waking arousal levels, and a normal daily amount of total sleep. The model predicts a change in sleep timing with differences in orexin levels, with higher orexin levels delaying the normal sleep episode, suggesting that individual differences in Orx signaling may contribute to chronotype. Dynamics resembling sleep inertia also emerge from the model as a gradual sleep-to-wake transition on a timescale that varies with that of Orx dynamics. The quantitative, physiologically based model developed in this work thus provides a new explanation of how Orx stabilizes prolonged episodes of sleep and wake, and makes a range of experimentally testable predictions, including a role for Orx in chronotype and sleep inertia. PMID:24651580

  17. Helicopter rotor wake geometry and its influence in forward flight. Volume 2: Wake geometry charts

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1983-01-01

    Isometric and projection view plots, inflow ratio nomographs, undistorted axial displacement nomographs, undistorted longitudinal and lateral coordinates, generalized axial distortion nomographs, blade/vortex passage charts, blade/vortex intersection angle nomographs, and fore and aft wake boundary charts are discussed. Example condition, in flow ratio, undistorted axial location, longitudinal and lateral coordinates, axial coordinates distortions, blade/tip vortex intersections, angle of intersection, and fore and aft wake boundaries are also discussed.

  18. Effects of incoming surface wind conditions on the wake characteristics and dynamic wind loads acting on a wind turbine model

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Ozbay, Ahmet; Hu, Hui

    2014-12-01

    An experimental investigation was conducted to examine the effects of incoming surface wind conditions on the wake characteristics and dynamic wind loads acting on a wind turbine model. The experimental study was performed in a large-scale wind tunnel with a scaled three-blade Horizontal Axial Wind Turbine model placed in two different types of Atmospheric Boundary Layer (ABL) winds with distinct mean and turbulence characteristics. In addition to measuring dynamic wind loads acting on the model turbine by using a force-moment sensor, a high-resolution Particle Image Velocimetry system was used to achieve detailed flow field measurements to characterize the turbulent wake flows behind the model turbine. The measurement results reveal clearly that the discrepancies in the incoming surface winds would affect the wake characteristics and dynamic wind loads acting on the model turbine dramatically. The dynamic wind loads acting on the model turbine were found to fluctuate much more significantly, thereby, much larger fatigue loads, for the case with the wind turbine model sited in the incoming ABL wind with higher turbulence intensity levels. The turbulent kinetic energy and Reynolds stress levels in the wake behind the model turbine were also found to be significantly higher for the high turbulence inflow case, in comparison to those of the low turbulence inflow case. The flow characteristics in the turbine wake were found to be dominated by the formation, shedding, and breakdown of various unsteady wake vortices. In comparison with the case with relatively low turbulence intensities in the incoming ABL wind, much more turbulent and randomly shedding, faster dissipation, and earlier breakdown of the wake vortices were observed for the high turbulence inflow case, which would promote the vertical transport of kinetic energy by entraining more high-speed airflow from above to re-charge the wake flow and result in a much faster recovery of the velocity deficits in the turbine wake.

  19. Wake flowfields for Jovian probe

    NASA Technical Reports Server (NTRS)

    Engel, C. D.; Hair, L. M.

    1980-01-01

    The wake flow field developed by the Galileo probe as it enters the Jovian atmosphere was modeled. The wake produced by the probe is highly energetic, yielding both convective and radiative heat inputs to the base of the probe. A component mathematical model for the inviscid near and far wake, the viscous near and far wake, and near wake recirculation zone was developed. Equilibrium thermodynamics were used for both the ablation and atmospheric species. Flow fields for three entry conditions were calculated. The near viscous wave was found to exhibit a variable axial pressure distribution with the neck pressure approximately three times the base pressure. Peak wake flow field temperatures were found to be in proportion to forebody post shock temperatures.

  20. Wake Numerical Simulation Based on the Park-Gauss Model and Considering Atmospheric Stability

    NASA Astrophysics Data System (ADS)

    Yang, Xiangsheng; Zhao, Ning; Tian, Linlin; Zhu, Jun

    2016-06-01

    In this paper, a new Park-Gauss model based on the assumption of the Park model and the Eddy-viscosity model is investigated to conduct the wake numerical simulation for solving a single wind turbine problem. The initial wake radius has been modified to improve the model’s numerical accuracy. Then the impact of the atmospheric stability based on the Park-Gauss model has been studied in the wake region. By the comparisons and the analyses of the test results, it turns out that the new Park-Gauss model could achieve better effects of the wind velocity simulation in the wake region. The wind velocity in the wake region recovers quickly under the unstable atmospheric condition provided the wind velocity is closest to the test result, and recovers slowly under stable atmospheric condition in case of the wind velocity is lower than the test result. Meanwhile, the wind velocity recovery falls in between the unstable and stable neutral atmospheric conditions.

  1. Assessment of Comprehensive Analysis Calculation of Airloads on Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Yeo, Hyeonsoo; Johnson, Wayne

    2004-01-01

    Blade section normal force and pitching moment were investigated for six rotors operating at transition and high speeds: H-34 in flight and wind tunnel, SA 330 (research Puma), SA 349/2, UH-60A full-scale and BO-105 model (HART-I). The measured data from flight and wind tunnel tests were compared with calculations obtained using the comprehensive analysis CAMRAD II. The calculations were made using two free wake models: rolled-up and multiple-trailer with consolidation models. At transition speed, there is fair to good agreement for the blade section normal force between the test data and analysis for the H-34, research Puma, and SA 349/2 with the rolled-up wake. The calculated airloads differ significantly from the measurements for the UH-60A and BO-105. Better correlation is obtained for the UH-60A and BO-105 by using the multiple-trailer with consolidation wake model. In the high speed condition, the analysis shows generally good agreement with the research Puma flight data in both magnitude and phase. However, poor agreement is obtained for the other rotors examined. The analysis shows that the aerodynamic tip design (chord length and quarter chord location) of the Puma has an important influence on the phase correlation.

  2. The Role of Wakes in Modelling Tidal Current Turbines

    NASA Astrophysics Data System (ADS)

    Conley, Daniel; Roc, Thomas; Greaves, Deborah

    2010-05-01

    The eventual proper development of arrays of Tidal Current Turbines (TCT) will require a balance which maximizes power extraction while minimizing environmental impacts. Idealized analytical analogues and simple 2-D models are useful tools for investigating questions of a general nature but do not represent a practical tool for application to realistic cases. Some form of 3-D numerical simulations will be required for such applications and the current project is designed to develop a numerical decision-making tool for use in planning large scale TCT projects. The project is predicated on the use of an existing regional ocean modelling framework (the Regional Ocean Modelling System - ROMS) which is modified to enable the user to account for the effects of TCTs. In such a framework where mixing processes are highly parametrized, the fidelity of the quantitative results is critically dependent on the parameter values utilized. In light of the early stage of TCT development and the lack of field scale measurements, the calibration of such a model is problematic. In the absence of explicit calibration data sets, the device wake structure has been identified as an efficient feature for model calibration. This presentation will discuss efforts to design an appropriate calibration scheme which focuses on wake decay and the motivation for this approach, techniques applied, validation results from simple test cases and limitations shall be presented.

  3. NASA AVOSS Fast-Time Wake Prediction Models: User's Guide

    NASA Technical Reports Server (NTRS)

    Ahmad, Nash'at N.; VanValkenburg, Randal L.; Pruis, Matthew

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is developing and testing fast-time wake transport and decay models to safely enhance the capacity of the National Airspace System (NAS). The fast-time wake models are empirical algorithms used for real-time predictions of wake transport and decay based on aircraft parameters and ambient weather conditions. The aircraft dependent parameters include the initial vortex descent velocity and the vortex pair separation distance. The atmospheric initial conditions include vertical profiles of temperature or potential temperature, eddy dissipation rate, and crosswind. The current distribution includes the latest versions of the APA (3.4) and the TDP (2.1) models. This User's Guide provides detailed information on the model inputs, file formats, and the model output. An example of a model run and a brief description of the Memphis 1995 Wake Vortex Dataset is also provided.

  4. A Family of Vortices to Study Axisymmetric Vortex Breakdown and Reconnection

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    A new analytic model describing a family of vortices has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. The family of vortices incorporates a wide range of prescribed initial vorticity distributions -- including single or dual-core vorticity distributions. The result is analytical solutions for the vorticity and velocities for each member of the family of vortices. This model is of sufficient generality to further illustrate the dependence of vortex reconnection and breakdown on initial vorticity distribution as was suggested by earlier analytical work. This family of vortices, though laminar in nature, is anticipated to provide valuable insight into the vortical evolution of large-scale rotor and propeller wakes.

  5. Mach-like capillary-gravity wakes.

    PubMed

    Moisy, Frédéric; Rabaud, Marc

    2014-08-01

    We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers Bo(D)=D/λ(c) ranging between 0.1 and 4.2, where D is the cylinder diameter and λ(c) the capillary length. In all cases the wake angle is found to follow a Mach-like law at large velocity, α∼U(-1), but with different prefactors depending on the value of Bo(D). For small Bo(D) (large capillary effects), the wake angle approximately follows the law α≃c(g,min)/U, where c(g,min) is the minimum group velocity of capillary-gravity waves. For larger Bo(D) (weak capillary effects), we recover a law α∼√[gD]/U similar to that found for ship wakes at large velocity [Rabaud and Moisy, Phys. Rev. Lett. 110, 214503 (2013)]. Using the general property of dispersive waves that the characteristic wavelength of the wave packet emitted by a disturbance is of order of the disturbance size, we propose a simple model that describes the transition between these two Mach-like regimes as the Bond number is varied. We show that the new capillary law α≃c(g,min)/U originates from the presence of a capillary cusp angle (distinct from the usual gravity cusp angle), along which the energy radiated by the disturbance accumulates for Bond numbers of order of unity. This model, complemented by numerical simulations of the surface elevation induced by a moving Gaussian pressure disturbance, is in qualitative agreement with experimental measurements.

  6. Development of Predictive Wake Vortex Transport Model for Terminal Area Wake Vortex Avoidance

    DOT National Transportation Integrated Search

    1976-05-01

    The wake vortex transport program has been expanded to include viscous effects and the influence of initial roll-up, atmospheric turbulence, and wind shear on the persistence and motion of wake vortices in terminal areas. Analysis of wake characteris...

  7. Runway Scheduling Using Generalized Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Montoya, Justin; Wood, Zachary; Rathinam, Sivakumar

    2011-01-01

    A generalized dynamic programming method for finding a set of pareto optimal solutions for a runway scheduling problem is introduced. The algorithm generates a set of runway fight sequences that are optimal for both runway throughput and delay. Realistic time-based operational constraints are considered, including miles-in-trail separation, runway crossings, and wake vortex separation. The authors also model divergent runway takeoff operations to allow for reduced wake vortex separation. A modeled Dallas/Fort Worth International airport and three baseline heuristics are used to illustrate preliminary benefits of using the generalized dynamic programming method. Simulated traffic levels ranged from 10 aircraft to 30 aircraft with each test case spanning 15 minutes. The optimal solution shows a 40-70 percent decrease in the expected delay per aircraft over the baseline schedulers. Computational results suggest that the algorithm is promising for real-time application with an average computation time of 4.5 seconds. For even faster computation times, two heuristics are developed. As compared to the optimal, the heuristics are within 5% of the expected delay per aircraft and 1% of the expected number of runway operations per hour ad can be 100x faster.

  8. Study of a Wake Recovery Mechanism in a High-Speed Axial Compressor Stage

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.

    1998-01-01

    This work addresses the significant differences in compressor rotor wake mixing loss which exist in a stage environment relative to a rotor in isolation. The wake decay for a rotor in isolation is due solely to viscous dissipation which is an irreversible process and thus leads to a loss in both total pressure and efficiency. Rotor wake decay in the stage environment is due to both viscous mixing and the inviscid strain imposed on the wake fluid particles by the stator velocity field. This straining process, referred to by Smith (1993) as recovery, is reversible and for a 2D rotor wake leads to an inviscid reduction of the velocity deficit of the wake. A model for the rotor wake decay process is developed and used to quantify the viscous dissipation effects relative to those of inviscid wake stretching. The model is verified using laser anemometer measurements acquired in the wake of a transonic rotor operated in isolation and in a stage configuration at near peak efficiency and near stall operating conditions. Additional insight is provided by a time-accurate 3D Navier-Stokes simulation of the compressor stator flow field at the corresponding stage loading levels. Results from the wake decay model exhibit good agreement with the experimental data. Data from the model, laser anemometer measurements, and numerical simulations indicate that for the rotor/stator spacing used in this work, which is typical of core compressors, rotor wake straining (stretching) is the primary decay process in the stator passage with viscous mixing playing only a minor role. The implications of these results on compressor stage design are discussed.

  9. Impacts of Wake Effect and Time Delay on the Dynamic Analysis of Wind Farms Models

    ERIC Educational Resources Information Center

    El-Fouly, Tarek H. M.; El-Saadany, Ehab F.; Salama, Magdy M. A.

    2008-01-01

    This article investigates the impacts of proper modeling of the wake effects and wind speed delays, between different wind turbines' rows, on the dynamic performance accuracy of the wind farms models. Three different modeling scenarios were compared to highlight the impacts of wake effects and wind speed time-delay models. In the first scenario,…

  10. Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines.

    PubMed

    Batten, W M J; Harrison, M E; Bahaj, A S

    2013-02-28

    The actuator disc-RANS model has widely been used in wind and tidal energy to predict the wake of a horizontal axis turbine. The model is appropriate where large-scale effects of the turbine on a flow are of interest, for example, when considering environmental impacts, or arrays of devices. The accuracy of the model for modelling the wake of tidal stream turbines has not been demonstrated, and flow predictions presented in the literature for similar modelled scenarios vary significantly. This paper compares the results of the actuator disc-RANS model, where the turbine forces have been derived using a blade-element approach, to experimental data measured in the wake of a scaled turbine. It also compares the results with those of a simpler uniform actuator disc model. The comparisons show that the model is accurate and can predict up to 94 per cent of the variation in the experimental velocity data measured on the centreline of the wake, therefore demonstrating that the actuator disc-RANS model is an accurate approach for modelling a turbine wake, and a conservative approach to predict performance and loads. It can therefore be applied to similar scenarios with confidence.

  11. Turbulence Climatology at Dallas/Ft.Worth (DFW) Airport: Implications for a Departure Wake Vortex Spacing System

    NASA Technical Reports Server (NTRS)

    Perras, G. H.; Dasey, T. J.

    2000-01-01

    Potential adaptive wake vortex spacing systems may need to rely on wake vortex decay rather than wake vortex transport in reducing wake separations. A wake vortex takeoff-spacing system in particular will need to rely on wake decay. Ambient turbulence is the primary influence on wake decay away from the ground. This study evaluated 18 months of ambient turbulence measurements at Dallas/Ft. Worth (DFW) Airport. The measurements show minor variation in the turbulence levels at various times of the year or times of the day for time periods when a departure system could be used. Arrival system operation was also examined, and a slightly lower overall turbulence level was found as compared to departure system benefit periods. The Sarpkaya model, a validated model of wake vortex behavior, was applied to various turbulence levels and compared to the DFW turbulence statistics. The results show that wake vortices from heavy aircraft on takeoff should dissipate within one minute for the majority of the time and will rarely last two minutes. These results will need to be verified by wake vortex measurements on departure.

  12. Using high-fidelity computational fluid dynamics to help design a wind turbine wake measurement experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M.; Wang, Q.; Scholbrock, A.

    Here, we describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensuremore » better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a 'simulation-in-the-loop' measurement campaign.« less

  13. Using High-Fidelity Computational Fluid Dynamics to Help Design a Wind Turbine Wake Measurement Experiment

    NASA Astrophysics Data System (ADS)

    Churchfield, M.; Wang, Q.; Scholbrock, A.; Herges, T.; Mikkelsen, T.; Sjöholm, M.

    2016-09-01

    We describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensure better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a “simulation-in-the-loop” measurement campaign.

  14. Using high-fidelity computational fluid dynamics to help design a wind turbine wake measurement experiment

    DOE PAGES

    Churchfield, M.; Wang, Q.; Scholbrock, A.; ...

    2016-10-03

    Here, we describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensuremore » better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a 'simulation-in-the-loop' measurement campaign.« less

  15. Modeling the effect of exogenous melatonin on the sleep-wake switch.

    PubMed

    Johnson, Nicholas; Jain, Gauray; Sandberg, Lianne; Sheets, Kevin

    2012-01-01

    According to the Centers for Disease Control and Prevention and the Institute of Medicine of the National Academies, insufficient sleep has become a public health epidemic. Approximately 50-70 million adults (20 years or older) suffer from some disorder of sleep and wakefulness, hindering daily functioning and adversely affecting health and longevity. Melatonin, a naturally produced hormone which plays a role in sleep-wake regulation, is currently offered as an over-the-counter sleep aid. However, the effects of melatonin on the sleep-wake cycle are incompletely understood. The goal of this modeling study was to incorporate the effects of exogenous melatonin administration into a mathematical model of the human sleep-wake switch. The model developed herein adds a simple kinetic model of the MT1 melatonin receptor to an existing model which simulates the interactions of different neuronal groups thought to be involved in sleep-wake regulation. Preliminary results were obtained by simulating the effects of an exogenous melatonin dose typical of over-the-counter sleep aids. The model predicted an increase in homeostatic sleep drive and a resulting alteration in circadian rhythm consistent with experimental results. The time of melatonin administration was also observed to have a strong influence on the sleep-wake effects elicited, which is also consistent with prior experimental findings.

  16. Follow-on Low Noise Fan Aerodynamic Study

    NASA Technical Reports Server (NTRS)

    Heidegger, Nathan J.; Hall, Edward J.; Delaney, Robert A.

    1999-01-01

    The focus of the project was to investigate the effects of turbulence models on the prediction of rotor wake structures. The Advanced Ducted Propfan Analysis (ADPAC) code was modified through the incorporation of the Spalart-Allmaras one-equation turbulence model. Suitable test cases were solved numerically using ADPAC employing the Spalart-Allmaras turbulence model and another prediction code for comparison. A near-wall spacing study was also completed to determine the adequate spacing of the first computational cell off the wall. Solutions were also collected using two versions of the algebraic Baldwin-Lomax turbulence model in ADPAC. The effects of the turbulence model on the rotor wake definition was examined by obtaining ADPAC solutions for the Low Noise Fan rotor-only steady-flow case using the standard algebraic Baldwin-Lomax turbulence model, a modified version of the Baldwin-Lomax turbulence model and the one-equation Spalart-Allmaras turbulence model. The results from the three different turbulence modeling techniques were compared with each other and the available experimental data. These results include overall rotor performance, spanwise exit profiles, and contours of axial velocity taken along constant axial locations and along blade-to-blade surfaces. Wake characterizations were also performed on the experimental and ADPAC predicted results including the definition of a wake correlation function. Correlations were evaluated for wake width and wake depth. Similarity profiles of the wake shape were also compared between all numerical solutions and experimental data.

  17. Evolution of Rotor Wake in Swirling Flow

    NASA Technical Reports Server (NTRS)

    El-Haldidi, Basman; Atassi, Hafiz; Envia, Edmane; Podboy, Gary

    2000-01-01

    A theory is presented for modeling the evolution of rotor wakes as a function of axial distance in swirling mean flows. The theory, which extends an earlier work to include arbitrary radial distributions of mean swirl, indicates that swirl can significantly alter the wake structure of the rotor especially at large downstream distances (i.e., for moderate to large rotor-stator spacings). Using measured wakes of a representative scale model fan stage to define the mean swirl and initial wake perturbations, the theory is used to predict the subsequent evolution of the wakes. The results indicate the sensitivity of the wake evolution to the initial profile and the need to have complete and consistent initial definition of both velocity and pressure perturbations.

  18. A wind tunnel investigation of the wake near the trailing edge of a deflected externally blown flap. [on a jet powered STOL transport aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.; Kardas, G. E.

    1974-01-01

    The model tested was a general research model of a swept-wing, jet-powered STOL transport with externally blown flaps. The model was tested with four engine simulators mounted on pylons under the wing. Tests were conducted in the V/STOL tunnel over an angle of attack range of 0 deg to 16 deg and a thrust coefficient range from 0 to approximately 4 at a Reynolds number of 0.461 x 1 million based on the wing reference chord. The results of this investigation are presented primarily as plots of the individual velocity vectors obtained from the wake survey. These data are used to extend an earlier analysis to isolate the effects of the engine thrust on the behavior of the flow at the flap trailing edge. Results of a comparison with a jet-flap theory are also shown.

  19. An LES study of vertical-axis wind turbine wakes aerodynamics

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Dabiri, John O.

    2016-11-01

    In this study, large-eddy simulation (LES) combined with a turbine model is used to investigate the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a recently developed minimum dissipation model is used to parameterize the subgrid-scale stress tensor, while the turbine-induced forces are modeled with an actuator-line technique. The LES framework is first tested in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel, and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit is well characterized by a two-dimensional elliptical Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine.

  20. Recent Developments on Airborne Forward Looking Interferometer for the Detection of Wake Vortices

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Smith, William L.; Kirev, Stanislav

    2012-01-01

    A goal of these studies was development of the measurement methods and algorithms necessary to detect wake vortex hazards in real time from either an aircraft or ground-based hyperspectral Fourier Transform Spectrometer (FTS). This paper provides an update on research to model FTS detection of wake vortices. The Terminal Area Simulation System (TASS) was used to generate wake vortex fields of 3-D winds, temperature, and absolute humidity. These fields were input to the Line by Line Radiative Transfer Model (LBLRTM), a hyperspectral radiance model in the infrared, employed for the FTS numerical modeling. An initial set of cases has been analyzed to identify a wake vortex IR signature and signature sensitivities to various state variables. Results from the numerical modeling case studies will be presented. Preliminary results indicated that an imaging IR instrument sensitive to six narrow bands within the 670 to 3150 per centimeter spectral region would be sufficient for wake vortex detection. Noise floor estimates for a recommended instrument are a current research topic.

  1. A coupled CFD and wake model simulation of helicopter rotor in hover

    NASA Astrophysics Data System (ADS)

    Zhao, Qinghe; Li, Xiaodong

    2018-03-01

    The helicopter rotor wake plays a dominant role since it affects the flow field structure. It is very difficult to predict accurately of the flow-field. The numerical dissipation is so excessive that it eliminates the vortex structure. A hybrid method of CFD and prescribed wake model was constructed by applying the prescribed wake model as much as possible. The wake vortices were described as a single blade tip vortex in this study. The coupling model is used to simulate the flow field. Both non-lifting and lifting cases have been calculated with subcritical and supercritical tip Mach numbers. Surface pressure distributions are presented and compared with experimental data. The calculated results agree well with the experimental data.

  2. The energy allocation function of sleep: a unifying theory of sleep, torpor, and continuous wakefulness.

    PubMed

    Schmidt, Markus H

    2014-11-01

    The energy allocation (EA) model defines behavioral strategies that optimize the temporal utilization of energy to maximize reproductive success. This model proposes that all species of the animal kingdom share a universal sleep function that shunts waking energy utilization toward sleep-dependent biological investment. For endotherms, REM sleep evolved to enhance energy appropriation for somatic and CNS-related processes by eliminating thermoregulatory defenses and skeletal muscle tone. Alternating REM with NREM sleep conserves energy by decreasing the need for core body temperature defense. Three EA phenotypes are proposed: sleep-wake cycling, torpor, and continuous (or predominant) wakefulness. Each phenotype carries inherent costs and benefits. Sleep-wake cycling downregulates specific biological processes in waking and upregulates them in sleep, thereby decreasing energy demands imposed by wakefulness, reducing cellular infrastructure requirements, and resulting in overall energy conservation. Torpor achieves the greatest energy savings, but critical biological operations are compromised. Continuous wakefulness maximizes niche exploitation, but endures the greatest energy demands. The EA model advances a new construct for understanding sleep-wake organization in ontogenetic and phylogenetic domains. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Wake vortex separation standards : analysis methods

    DOT National Transportation Integrated Search

    1997-01-01

    Wake vortex separation standards are used to prevent hazardous wake vortex encounters. A "safe" separation model can be used to assess the safety of proposed changes in the standards. A safe separation model can be derived from an encounter hazard mo...

  4. Comparison of Rotor Structural Loads Calculated using Comprehensive Analysis

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Yeo, Hyeonsoo

    2005-01-01

    Blade flap and chord bending and torsion moments are investigated for six rotors operating at transition and high speed: H-34 in flight and wind tunnel, SA 330 (research Puma), SA 349/2, UH-60A full-scale, and BO- 105 model (HART-I). The measured data from flight and wind tunnel tests are compared with calculations obtained using the comprehensive analysis CAMRAD II. The calculations were made using two free wake models: rolled-up and multiple-trailer with consolidation models. At transition speed, there is fair to good agreement for the flap and chord bending moments between the test data and analysis for the H-34, research Puma, and SA 349/2. Torsion moment correlation, in general, is fair to good for all the rotors investigated. Better flap bending and torsion moment correlation is obtained for the UH-60A and BO-105 rotors by using the multiple-trailer with consolidation wake model. In the high speed condition, the analysis shows generally better correlation in magnitude than in phase for the flap bending and torsion moments. However, a significant underprediction of chord bending moment is observed for the research Puma and UH-60A. The poor chord bending moment correlation appears to be caused by the airloads model, not the structural dynamics.

  5. Rotor wake characteristics of a transonic axial flow fan

    NASA Technical Reports Server (NTRS)

    Hathaway, M. D.; Gertz, J.; Epstein, A.; Strazisar, A. J.

    1985-01-01

    State of the art turbomachinery flow analysis codes are not capable of predicting the viscous flow features within turbomachinery blade wakes. Until efficient 3D viscous flow analysis codes become a reality there is therefore a need for models which can describe the generation and transport of blade wakes and the mixing process within the wake. To address the need for experimental data to support the development of such models, high response pressure measurements and laser anemometer velocity measurements were obtained in the wake of a transonic axial flow fan rotor.

  6. Determination of real-time predictors of the wind turbine wake meandering

    NASA Astrophysics Data System (ADS)

    Muller, Yann-Aël; Aubrun, Sandrine; Masson, Christian

    2015-03-01

    The present work proposes an experimental methodology to characterize the unsteady properties of a wind turbine wake, called meandering, and particularly its ability to follow the large-scale motions induced by large turbulent eddies contained in the approach flow. The measurements were made in an atmospheric boundary layer wind tunnel. The wind turbine model is based on the actuator disc concept. One part of the work has been dedicated to the development of a methodology for horizontal wake tracking by mean of a transverse hot wire rake, whose dynamic response is adequate for spectral analysis. Spectral coherence analysis shows that the horizontal position of the wake correlates well with the upstream transverse velocity, especially for wavelength larger than three times the diameter of the disc but less so for smaller scales. Therefore, it is concluded that the wake is actually a rather passive tracer of the large surrounding turbulent structures. The influence of the rotor size and downstream distance on the wake meandering is studied. The fluctuations of the lateral force and the yawing torque affecting the wind turbine model are also measured and correlated with the wake meandering. Two approach flow configurations are then tested: an undisturbed incoming flow (modelled atmospheric boundary layer) and a disturbed incoming flow, with a wind turbine model located upstream. Results showed that the meandering process is amplified by the presence of the upstream wake. It is shown that the coherence between the lateral force fluctuations and the horizontal wake position is significant up to length scales larger than twice the wind turbine model diameter. This leads to the conclusion that the lateral force is a better candidate than the upstream transverse velocity to predict in real time the meandering process, for either undisturbed (wake free) or disturbed incoming atmospheric flows.

  7. High-Order Numerical Simulations of Wind Turbine Wakes

    NASA Astrophysics Data System (ADS)

    Kleusberg, E.; Mikkelsen, R. F.; Schlatter, P.; Ivanell, S.; Henningson, D. S.

    2017-05-01

    Previous attempts to describe the structure of wind turbine wakes and their mutual interaction were mostly limited to large-eddy and Reynolds-averaged Navier-Stokes simulations using finite-volume solvers. We employ the higher-order spectral-element code Nek5000 to study the influence of numerical aspects on the prediction of the wind turbine wake structure and the wake interaction between two turbines. The spectral-element method enables an accurate representation of the vortical structures, with lower numerical dissipation than the more commonly used finite-volume codes. The wind-turbine blades are modeled as body forces using the actuator-line method (ACL) in the incompressible Navier-Stokes equations. Both tower and nacelle are represented with appropriate body forces. An inflow boundary condition is used which emulates homogeneous isotropic turbulence of wind-tunnel flows. We validate the implementation with results from experimental campaigns undertaken at the Norwegian University of Science and Technology (NTNU Blind Tests), investigate parametric influences and compare computational aspects with existing numerical simulations. In general the results show good agreement between the experiments and the numerical simulations both for a single-turbine setup as well as a two-turbine setup where the turbines are offset in the spanwise direction. A shift in the wake center caused by the tower wake is detected similar to experiments. The additional velocity deficit caused by the tower agrees well with the experimental data. The wake is captured well by Nek5000 in comparison with experiments both for the single wind turbine and in the two-turbine setup. The blade loading however shows large discrepancies for the high-turbulence, two-turbine case. While the experiments predicted higher thrust for the downstream turbine than for the upstream turbine, the opposite case was observed in Nek5000.

  8. The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel

    PubMed Central

    BUCHHOLZ, JAMES H. J.; SMITS, ALEXANDER J.

    2009-01-01

    Thrust performance and wake structure were investigated for a rigid rectangular panel pitching about its leading edge in a free stream. For ReC = O(104), thrust coefficient was found to depend primarily on Strouhal number St and the aspect ratio of the panel AR. Propulsive efficiency was sensitive to aspect ratio only for AR less than 0.83; however, the magnitude of the peak efficiency of a given panel with variation in Strouhal number varied inversely with the amplitude to span ratio A/S, while the Strouhal number of optimum efficiency increased with increasing A/S. Peak efficiencies between 9 % and 21 % were measured. Wake structures corresponding to a subset of the thrust measurements were investigated using dye visualization and digital particle image velocimetry. In general, the wakes divided into two oblique jets; however, when operating at or near peak efficiency, the near wake in many cases represented a Kármán vortex street with the signs of the vortices reversed. The three-dimensional structure of the wakes was investigated in detail for AR = 0.54, A/S = 0.31 and ReC = 640. Three distinct wake structures were observed with variation in Strouhal number. For approximately 0.20 < St < 0.25, the main constituent of the wake was a horseshoe vortex shed by the tips and trailing edge of the panel. Streamwise variation in the circulation of the streamwise horseshoe legs was consistent with a spanwise shear layer bridging them. For St > 0.25, a reorganization of some of the spanwise vorticity yielded a bifurcating wake formed by trains of vortex rings connected to the tips of the horseshoes. For St > 0.5, an additional structure formed from a perturbation of the streamwise leg which caused a spanwise expansion. The wake model paradigm established here is robust with variation in Reynolds number and is consistent with structures observed for a wide variety of unsteady flows. Movies are available with the online version of the paper. PMID:19746195

  9. Analysis of Predicted Aircraft Wake Vortex Transport and Comparison with Experiment Volume II -- Appendixes

    DOT National Transportation Integrated Search

    1974-04-01

    A unifying wake vortex transport model is developed and applied to a wake vortex predictive system concept. The fundamentals of vortex motion underlying the predictive model are discussed including vortex decay, bursting and instability phenomena. A ...

  10. Power law versus exponential state transition dynamics: application to sleep-wake architecture.

    PubMed

    Chu-Shore, Jesse; Westover, M Brandon; Bianchi, Matt T

    2010-12-02

    Despite the common experience that interrupted sleep has a negative impact on waking function, the features of human sleep-wake architecture that best distinguish sleep continuity versus fragmentation remain elusive. In this regard, there is growing interest in characterizing sleep architecture using models of the temporal dynamics of sleep-wake stage transitions. In humans and other mammals, the state transitions defining sleep and wake bout durations have been described with exponential and power law models, respectively. However, sleep-wake stage distributions are often complex, and distinguishing between exponential and power law processes is not always straightforward. Although mono-exponential distributions are distinct from power law distributions, multi-exponential distributions may in fact resemble power laws by appearing linear on a log-log plot. To characterize the parameters that may allow these distributions to mimic one another, we systematically fitted multi-exponential-generated distributions with a power law model, and power law-generated distributions with multi-exponential models. We used the Kolmogorov-Smirnov method to investigate goodness of fit for the "incorrect" model over a range of parameters. The "zone of mimicry" of parameters that increased the risk of mistakenly accepting power law fitting resembled empiric time constants obtained in human sleep and wake bout distributions. Recognizing this uncertainty in model distinction impacts interpretation of transition dynamics (self-organizing versus probabilistic), and the generation of predictive models for clinical classification of normal and pathological sleep architecture.

  11. Recent NASA Wake-Vortex Flight Tests, Flow-Physics Database and Wake-Development Analysis

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Vijgen, Paul M.; Reimer, Heidi M.; Gallegos, Joey L.; Spalart, Philippe R.

    1998-01-01

    A series of flight tests over the ocean of a four engine turboprop airplane in the cruise configuration have provided a data set for improved understanding of wake vortex physics and atmospheric interaction. An integrated database has been compiled for wake characterization and validation of wake-vortex computational models. This paper describes the wake-vortex flight tests, the data processing, the database development and access, and results obtained from preliminary wake-characterization analysis using the data sets.

  12. AN ANALYTIC PARAMETERIZATION OF SELF-GRAVITY WAKES IN SATURN'S RINGS, WITH APPLICATION TO OCCULTATIONS AND PROPELLERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiscareno, Matthew S.; Hedman, Matthew M.; Burns, Joseph A.

    2010-02-15

    We have developed a semianalytic method of parameterizing N-body simulations of self-gravity wakes in Saturn's rings, describing their photometric properties by means of only six numbers: three optical depths and three weighting factors. These numbers are obtained by fitting a sum of three Gaussians to the results of a density-estimation procedure that finds the frequencies of various values of local density within a simulated ring patch. Application of our parameterization to a suite of N-body simulations implies that rings dominated by self-gravity wakes appear to be mostly empty space, with more than half of their surface area taken up bymore » local optical depths around 0.01. Such regions will be photometrically inactive for all viewing geometries. While this result might be affected by our use of identically sized particles, we believe the general result that the distribution of local optical depths is trimodal, rather than bimodal as previous authors have assumed, is robust. The implications of this result for the analysis of occultation data are more conceptual than practical, as we find that occultations can only distinguish between bimodal and trimodal models at very low opening angles. Thus, the only adjustment needed in existing analyses of occultation data is that the model parameter {tau}{sub gap} should be interpreted as representing the area-weighted average optical depth within the gaps (or inter-wake regions), keeping in mind the possibility that the optical depth within those inter-wake regions may vary significantly. The most significant consequence of our results applies to the question of why 'propeller' structures observed in the mid-A ring are seen as relative-bright features, even though the most prominent features of simulated propellers are regions of relatively low density. Our parameterization of self-gravity wakes lends preliminary quantitative support to the hypothesis that propellers would be bright if they involve a local and temporary disruption of self-gravity wakes. Even though the overall local density is lower within the propeller-shaped structure surrounding an embedded central moonlet, disruption of the wakes would flood these same regions with more 'photometrically active' material (i.e., material that can contribute to the rings' local optical depth), raising their apparent brightnesses in agreement with observations. We find for a wide range of input parameters that this mechanism indeed can plausibly make propellers brighter than the wake-dominated background, though it is also possible for propellers to blend in with the background or even to remain dark. We suggest that this mechanism be tested by future detailed numerical models.« less

  13. A new methodology for free wake analysis using curved vortex elements

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Teske, Milton E.; Quackenbush, Todd R.

    1987-01-01

    A method using curved vortex elements was developed for helicopter rotor free wake calculations. The Basic Curve Vortex Element (BCVE) is derived from the approximate Biot-Savart integration for a parabolic arc filament. When used in conjunction with a scheme to fit the elements along a vortex filament contour, this method has a significant advantage in overall accuracy and efficiency when compared to the traditional straight-line element approach. A theoretical and numerical analysis shows that free wake flows involving close interactions between filaments should utilize curved vortex elements in order to guarantee a consistent level of accuracy. The curved element method was implemented into a forward flight free wake analysis, featuring an adaptive far wake model that utilizes free wake information to extend the vortex filaments beyond the free wake regions. The curved vortex element free wake, coupled with this far wake model, exhibited rapid convergence, even in regions where the free wake and far wake turns are interlaced. Sample calculations are presented for tip vortex motion at various advance ratios for single and multiple blade rotors. Cross-flow plots reveal that the overall downstream wake flow resembles a trailing vortex pair. A preliminary assessment shows that the rotor downwash field is insensitive to element size, even for relatively large curved elements.

  14. Unsteady High Turbulence Effects on Turbine Blade Film Cooling Heat Transfer Performance Using a Transient Liquid Crystal Technique

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Ekkad, S. V.; Du, H.; Teng, S.

    2000-01-01

    Unsteady wake effect, with and without trailing edge ejection, on detailed heat transfer coefficient and film cooling effectiveness distributions is presented for a downstream film-cooled gas turbine blade. Tests were performed on a five-blade linear cascade at an exit Reynolds number of 5.3 x 10(exp 5). Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. Coolant blowing ratio was varied from 0.4 to 1.2; air and CO2 were used as coolants to simulate different density ratios. Surface heat transfer and film effectiveness distributions were obtained using a transient liquid crystal technique; coolant temperature profiles were determined with a cold wire technique. Results show that Nusselt numbers for a film cooled blade are much higher compared to a blade without film injection. Unsteady wake slightly enhances Nusselt numbers but significantly reduces film effectiveness versus no wake cases. Nusselt numbers increase only slic,htly but film cooling, effectiveness increases significantly with increasing, blowing ratio. Higher density coolant (CO2) provides higher effectiveness at higher blowing ratios (M = 1.2) whereas lower density coolant (Air) provides higher 0 effectiveness at lower blowing ratios (M = 0.8). Trailing edge ejection generally has more effect on film effectiveness than on the heat transfer, typically reducing film effectiveness and enhancing heat transfer. Similar data is also presented for a film cooled cylindrical leading edge model.

  15. Wake Measurement Downstream of a Hybrid Wing Body Model with Blown Flaps

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Jones, Gregory S.; Allan, Brian G.; Westra, Bryan W.; Collins, Scott W.; Zeune, Cale H.

    2010-01-01

    Flow-field measurements were obtained in the wake of a full-span Hybrid Wing Body model with internally blown flaps. The test was performed at the NASA Langley 14 x 22 Foot Subsonic Tunnel at low speeds. Off-body measurements were obtained with a 7-hole probe rake survey system. Three model configurations were investigated. At 0deg angle of attack the surveys were completed with 0deg and 60deg flap deflections. At 10deg angle of attack the wake surveys were completed with a slat and a 60deg flap deflection. The 7-hole probe results further quantified two known swirling regions (downstream of the outboard flap edge and the inboard/outboard flap juncture) for the 60deg flap cases with blowing. Flowfield results and the general trends are very similar for the two blowing cases at nozzle pressure ratios of 1.37 and 1.56. High downwash velocities correlated with the enhanced lift for the 60deg flap cases with blowing. Jet-induced effects are the largest at the most inboard station for all (three) velocity components due in part to the larger inboard slot height. The experimental data are being used to improve computational tools for high-lift wings with integrated powered-lift technologies.

  16. A theoretical approach for analyzing the restabilization of wakes

    NASA Astrophysics Data System (ADS)

    Hill, D. C.

    1992-04-01

    Recently reported experimental results demonstrate that restabilization of the low-Reynolds-number flow past a circular cylinder can be achieved by the placement of a smaller cylinder in the wake of the first at particular locations. Traditional numerical procedures for modeling such phenomena are computationally expensive. An approach is presented here in which the properties of the adjoint solutions to the linearized equations of motion are exploited to map quickly the best positions for the small cylinder's placement. Comparisons with experiment and previous computations are favorable. The approach is shown to be applicable to general flows, illustrating how strongly control mechanisms that involve sources of momentum couple to unstable (or stable) modes of the system.

  17. Wake effect on a uniform flow behind wind-turbine model

    NASA Astrophysics Data System (ADS)

    Okulov, V. L.; Naumov, I. V.; Mikkelsen, R. F.; Sørensen, J. N.

    2015-06-01

    LDA experiments were carried out to study the development of mean velocity profiles of the very far wake behind a wind turbine model in a water flume. The model of the rotor is placed in a middle of the flume. The initial flume flow is subjected to a very low turbulence level, limiting the influence of external disturbances on the development of the inherent wake instability. The rotor is three-bladed and designed using Glauert's optimum theory at a tip speed ratio λ = 5 with a constant of the lift coefficient along the span, CL= 0.8. The wake development has been studied in the range of tip speed ratios from 3 to 9, and at different cross-sections from 10 to 100 rotor radii downstream from the rotor. By using regression techniques to fit the velocity profiles it was possible to obtain accurate velocity deficits and estimate length scales of the wake attenuation. The data are compared with different analytical models for wind turbine wakes.

  18. Radar Reflectivity in Wingtip-Generated Wake Vortices

    NASA Technical Reports Server (NTRS)

    Marshall, Robert E.; Mudukutore, Ashok; Wissel, Vicki

    1997-01-01

    This report documents new predictive models of radar reflectivity, with meter-scale resolution, for aircraft wakes in clear air and fog. The models result from a radar design program to locate and quantify wake vortices from commercial aircraft in support of the NASA Aircraft Vortex Spacing System (AVOSS). The radar reflectivity model for clear air assumes: 1) turbulent eddies in the wake produce small discontinuities in radar refractive index; and 2) these turbulent eddies are in the 'inertial subrange' of turbulence. From these assumptions, the maximum radar frequency for detecting a particular aircraft wake, as well as the refractive index structure constant and radar volume reflectivity in the wake can be obtained from the NASA Terminal Area Simulation System (TASS) output. For fog conditions, an empirical relationship is used to calculate radar reflectivity factor from TASS output of bulk liquid water. Currently, two models exist: 1) Atlas-based on observations of liquid water and radar reflectivity factor in clouds; and 2) de Wolf- specifically tailored to a specific measured dataset (1992 Vandenberg Air Force Base).

  19. A method for modeling finite-core vortices in wake-flow calculations

    NASA Technical Reports Server (NTRS)

    Stremel, P. M.

    1984-01-01

    A numerical method for computing nonplanar vortex wakes represented by finite-core vortices is presented. The approach solves for the velocity on an Eulerian grid, using standard finite-difference techniques; the vortex wake is tracked by Lagrangian methods. In this method, the distribution of continuous vorticity in the wake is replaced by a group of discrete vortices. An axially symmetric distribution of vorticity about the center of each discrete vortex is used to represent the finite-core model. Two distributions of vorticity, or core models, are investigated: a finite distribution of vorticity represented by a third-order polynomial, and a continuous distribution of vorticity throughout the wake. The method provides for a vortex-core model that is insensitive to the mesh spacing. Results for a simplified case are presented. Computed results for the roll-up of a vortex wake generated by wings with different spanwise load distributions are presented; contour plots of the flow-field velocities are included; and comparisons are made of the computed flow-field velocities with experimentally measured velocities.

  20. Effects of spoilers and gear on B-747 wake vortex velocities

    NASA Technical Reports Server (NTRS)

    Luebs, A. B.; Bradfute, J. G.; Ciffone, D. L.

    1976-01-01

    Vortex velocities were measured in the wakes of four configurations of a 0.61-m span model of a B-747 aircraft. The wakes were generated by towing the model underwater in a ship model basin. Tangential and axial velocity profiles were obtained with a scanning laser velocimeter as the wakes aged to 35 span lengths behind the model. A 45 deg deflection of two outboard flight spoilers with the model in the landing configuration resulted in a 36 percent reduction in wake maximum tangential velocity, altered velocity profiles, and erratic vortex trajectories. Deployment of the landing gear with the inboard flaps in the landing position and outboard flaps retracted had little effect on the flap vortices to 35 spans, but caused the wing tip vortices to have: (1) more diffuse velocity profiles; (2) a 27 percent reduction in maximum tangential velocity; and (3) a more rapid merger with the flap vortices.

  1. Detailed field test of yaw-based wake steering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Paul; Churchfield, Matt; Scholbrock, Andrew

    This study describes a detailed field-test campaign to investigate yaw-based wake steering. In yaw-based wake steering, an upstream turbine intentionally misaligns its yaw with respect to the inflow to deflect its wake away from a downstream turbine, with the goal of increasing total power production. In the first phase, a nacelle-mounted scanning lidar was used to verify wake deflection of a misaligned turbine and calibrate wake deflection models. In the second phase, these models were used within a yaw controller to achieve a desired wake deflection. This paper details the experimental design and setup. Lastly, all data collected as partmore » of this field experiment will be archived and made available to the public via the U.S. Department of Energy's Atmosphere to Electrons Data Archive and Portal.« less

  2. Detailed field test of yaw-based wake steering

    DOE PAGES

    Fleming, Paul; Churchfield, Matt; Scholbrock, Andrew; ...

    2016-10-03

    This study describes a detailed field-test campaign to investigate yaw-based wake steering. In yaw-based wake steering, an upstream turbine intentionally misaligns its yaw with respect to the inflow to deflect its wake away from a downstream turbine, with the goal of increasing total power production. In the first phase, a nacelle-mounted scanning lidar was used to verify wake deflection of a misaligned turbine and calibrate wake deflection models. In the second phase, these models were used within a yaw controller to achieve a desired wake deflection. This paper details the experimental design and setup. Lastly, all data collected as partmore » of this field experiment will be archived and made available to the public via the U.S. Department of Energy's Atmosphere to Electrons Data Archive and Portal.« less

  3. Comparison of calculated and measured model rotor loading and wake geometry

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1980-01-01

    The calculated blade bound circulation and wake geometry are compared with measured results for a model helicopter rotor in hover and forward flight. Hover results are presented for rectangular tip and ogee tip planform blades. The correlation is quite good when the measured wake geometry characteristics are used in the analysis. Available prescribed wake geometry models are found to give fair predictions of the loading, but they do not produce a reasonable prediction of the induced power. Forward flight results are presented for twisted and untwisted blades. Fair correlation between measurements and calculations is found for the bound circulation distribution on the advancing side. The tip vortex geometry in the vicinity of the advancing blade in forward flight was predicted well by the free wake calculation used, although the wake geometry did not have a significant influence on the calculated loading and performance for the cases considered.

  4. Antisuicidal Response Following Ketamine Infusion Is Associated With Decreased Nighttime Wakefulness in Major Depressive Disorder and Bipolar Disorder.

    PubMed

    Vande Voort, Jennifer L; Ballard, Elizabeth D; Luckenbaugh, David A; Bernert, Rebecca A; Richards, Erica M; Niciu, Mark J; Park, Lawrence T; Machado-Vieira, Rodrigo; Duncan, Wallace C; Zarate, Carlos A

    Insomnia and disrupted sleep are associated with increased risk of suicide. The N-methyl-d-aspartate antagonist ketamine has been associated with reduced suicidal thoughts, but the mechanism of action is unknown. This study sought to evaluate differences in nocturnal wakefulness in depressed individuals who did and did not have an antisuicidal response to ketamine. Thirty-four participants with baseline suicidal ideation diagnosed with either DSM-IV major depressive disorder (n = 23) or bipolar depression (n = 11) between 2006 and 2013 completed nighttime electroencephalography (EEG) the night before and the night after a single ketamine infusion (0.5 mg/kg over 40 minutes). Suicidal ideation was assessed at baseline and the morning after ketamine infusion via several measures, including the Hamilton Depression Rating Scale suicide item, the suicide item of the Montgomery-Asberg Depression Rating Scale, and the first 5 items of the Scale for Suicide Ideation. A generalized linear mixed model evaluated differences in nocturnal wakefulness, as verified by EEG, between those who had an antisuicidal response to ketamine and those who did not, controlling for baseline nocturnal wakefulness. Results were also compared to the sleep of healthy controls (n = 22). After analyses adjusted for baseline sleep, participants with an antisuicidal response to ketamine showed significantly reduced nocturnal wakefulness the night after ketamine infusion compared to those without an antisuicidal response (F₁,₂₂ = 5.04, P = .04). Level of nocturnal wakefulness after antisuicidal response to ketamine did not differ significantly from nocturnal wakefulness in the control sample but did differ at a trend level (F₁,₄₀ = 3.15, P = .08). Reductions in wakefulness following ketamine may point to a biological mechanism underlying the effect of ketamine on suicidal ideation. ClinicalTrials.gov identifier: NCT00088699. © Copyright 2016 Physicians Postgraduate Press, Inc.

  5. Computation of rotor aerodynamic loads in forward flight using a full-span free wake analysis

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.; Wachspress, Daniel A.; Boschitsch, Alexander H.; Chua, Kiat

    1990-01-01

    The development of an advanced computational analysis of unsteady aerodynamic loads on isolated helicopter rotors in forward flight is described. The primary technical focus of the development was the implementation of a freely distorting filamentary wake model composed of curved vortex elements laid out along contours of constant vortex sheet strength in the wake. This model captures the wake generated by the full span of each rotor blade and makes possible a unified treatment of the shed and trailed vorticity in the wake. This wake model was coupled to a modal analysis of the rotor blade dynamics and a vortex lattice treatment of the aerodynamic loads to produce a comprehensive model for rotor performance and air loads in forward flight dubbed RotorCRAFT (Computation of Rotor Aerodynamics in Forward Flight). The technical background on the major components of this analysis are discussed and the correlation of predictions of performance, trim, and unsteady air loads with experimental data from several representative rotor configurations is examined. The primary conclusions of this study are that the RotorCRAFT analysis correlates well with measured loads on a variety of configurations and that application of the full span free wake model is required to capture several important features of the vibratory loading on rotor blades in forward flight.

  6. Flight Data Reduction of Wake Velocity Measurements Using an Instrumented OV-10 Airplane

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Stuever, Robert A.; Stewart, Eric C.; Rivers, Robert A.

    1999-01-01

    A series of flight tests to measure the wake of a Lockheed C- 130 airplane and the accompanying atmospheric state have been conducted. A specially instrumented North American Rockwell OV-10 airplane was used to measure the wake and atmospheric conditions. An integrated database has been compiled for wake characterization and validation of wake vortex computational models. This paper describes the wake- measurement flight-data reduction process.

  7. Vortex wake alleviation studies with a variable twist wing

    NASA Technical Reports Server (NTRS)

    Holbrook, G. T.; Dunham, D. M.; Greene, G. C.

    1985-01-01

    Vortex wake alleviation studies were conducted in a wind tunnel and a water towing tank using a multisegmented wing model which provided controlled and measured variations in span load. Fourteen model configurations are tested at a Reynolds number of one million and a lift coefficient of 0.6 in the Langley 4- by 7-Meter Tunnel and the Hydronautics Ship Model Basin water tank at Hydronautics, Inc., Laurel, Md. Detailed measurements of span load and wake velocities at one semispan downstream correlate well with each other, with inviscid predictions of span load and wake roll up, and with peak trailing-wing rolling moments measured in the far wake. Average trailing-wing rolling moments are found to be an unreliable indicator of vortex wake intensity because vortex meander does not scale between test facilities and free-air conditions. A tapered-span-load configuration, which exhibits little or no drag penalty, is shown to offer significant downstream wake alleviation to a small trailing wing. The greater downstream wake alleviation achieved with the addition of spoilers to a flapped-wing configuration is shown to result directly from the high incremental drag and turbulence associated with the spoilers and not from the span load alteration they cause.

  8. Vortex wakes of a flapping foil in a flowing soap film

    NASA Astrophysics Data System (ADS)

    Schnipper, Teis; Andersen, Anders; Bohr, Tomas

    2008-11-01

    We present an experimental study of an oscillating, symmetric foil in a vertically flowing soap film. By varying frequency and amplitude of the oscillation we explore and visualize a variety of wake structures, including von Kármán wake, reverse von Kármán wake, 2P wake, and 2P+2S wake. We characterize the transition from the von Kármán wake (drag) to the reverse von Kármán wake (thrust) and discuss the results in relation to fish swimming. We visualize the time evolution of the vortex shedding in detail, identify the origins of the vortices comprising the wake, and propose a simple model to account for the transition from von Kármán like wakes to more exotic wake structures.

  9. Field Test of Wake Steering at an Offshore Wind Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Paul; Annoni, Jennifer; Shah, Jigar J.

    In this paper, a field test of wake steering control is presented. The field test is the result of a collaboration between the National Renewable Energy Laboratory (NREL) and Envision Energy, a smart energy management company and turbine manufacturer. In the campaign, an array of turbines within an operating commercial offshore wind farm in China have the normal yaw controller modified to implement wake steering according to a yaw control strategy. The strategy was designed using NREL wind farm models, including a computational fluid dynamics model, SOWFA, for understanding wake dynamics and an engineering model, FLORIS, for yaw control optimization.more » Results indicate that, within the certainty afforded by the data, the wake-steering controller was successful in increasing power capture, by amounts similar to those predicted from the models.« less

  10. Field Test of Wake Steering at an Offshore Wind Farm

    DOE PAGES

    Fleming, Paul; Annoni, Jennifer; Shah, Jigar J.; ...

    2017-02-06

    In this paper, a field test of wake steering control is presented. The field test is the result of a collaboration between the National Renewable Energy Laboratory (NREL) and Envision Energy, a smart energy management company and turbine manufacturer. In the campaign, an array of turbines within an operating commercial offshore wind farm in China have the normal yaw controller modified to implement wake steering according to a yaw control strategy. The strategy was designed using NREL wind farm models, including a computational fluid dynamics model, SOWFA, for understanding wake dynamics and an engineering model, FLORIS, for yaw control optimization.more » Results indicate that, within the certainty afforded by the data, the wake-steering controller was successful in increasing power capture, by amounts similar to those predicted from the models.« less

  11. A template model of embodiment while dreaming: Proposal of a mini-me.

    PubMed

    Koppehele-Gossel, Judith; Klimke, Ansgar; Schermelleh-Engel, Karin; Voss, Ursula

    2016-11-01

    Dreams are usually centered around a dream self capable of tasks generally impossible in waking, e.g. flying or walking through walls. Moreover, the bodily dream self appears relatively stable and insensitive to changes of the embodied wake self, raising the question of whether and to what extent the dream self is embodied. To further explore its determinants, we tested whether the dream self would be affected by either pre-sleep focused attention to a body part or by its experimental alteration during the day. Choosing a repeated-measures design, we analyzed how often key words reflecting the experimental manipulations appeared in the dream reports. Results suggest that the dream self is not affected by these manipulations, strengthening the hypothesis that, in the majority of dreams, the dream self is only weakly embodied, utilizing a standard template of embodiment akin to a prototype of self operating independently from the physical waking self. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Multimodel Ensemble Methods for Prediction of Wake-Vortex Transport and Decay Originating NASA

    NASA Technical Reports Server (NTRS)

    Korner, Stephan; Ahmad, Nashat N.; Holzapfel, Frank; VanValkenburg, Randal L.

    2017-01-01

    Several multimodel ensemble methods are selected and further developed to improve the deterministic and probabilistic prediction skills of individual wake-vortex transport and decay models. The different multimodel ensemble methods are introduced, and their suitability for wake applications is demonstrated. The selected methods include direct ensemble averaging, Bayesian model averaging, and Monte Carlo simulation. The different methodologies are evaluated employing data from wake-vortex field measurement campaigns conducted in the United States and Germany.

  13. Turbulence Modelling in Wind Turbine Wakes =

    NASA Astrophysics Data System (ADS)

    Olivares Espinosa, Hugo

    With the expansion of the wind energy industry, wind parks have become a common appearance in our landscapes. Owing to restrictions of space or to economic reasons, wind turbines are located close to each other in wind farms. This causes interference problems which reduce the efficiency of the array. In particular, the wind turbine wakes increase the level of turbulence and cause a momentum defect that may lead to an increase of mechanical loads and to a reduction of power output. Thus, it is important for the wind energy industry to predict the characteristics of the turbulence field in the wakes with the purpose of increasing the efficiency of the power extraction. Since this is a phenomenon of intrinsically non-linear nature, it can only be accurately described by the full set of the Navier-Stokes equations. Furthermore, a proper characterization of turbulence cannot be made without resolving the turbulent motions, so neither linearized models nor the widely used Reynolds-Averaged Navier-Stokes model can be employed. Instead, Large-Eddy Simulations (LES) provide a feasible alternative, where the energy containing fluctuations of the velocity field are resolved and the effects of the smaller eddies are modelled through a sub-grid scale component. The objective of this work is the modelling of turbulence in wind turbine wakes in a homogeneous turbulence inflow. A methodology has been developed to fulfill this objective. Firstly, a synthetic turbulence field is introduced into a computational domain where LES are performed to simulate a decaying turbulence flow. Secondly, the Actuator Disk (AD) technique is employed to simulate the effect of a rotor in the incoming flow and produce a turbulent wake. The implementation is carried out in OpenFOAM, an open-source CFD platform, resembling a well documented procedure previously used for wake flow simulations. Results obtained with the proposed methodology are validated by comparing with values obtained from wind tunnel experiments. In addition, simulations are also carried out with EllipSys3D, a code widely used and tested for computations of wind turbine wakes, the results of which provide a useful reference. Despite a limited grid resolution with respect to the size of the inflow turbulence structures, the results show that the turbulence characteristics in both the decaying turbulence and in the wake field are aptly reproduced. These observations are accompanied by an assessment of the LES modelling, which is found to be adequate in the simulations. An analysis of the longitudinal evolution of the turbulence lengthscales shows that within the wake, they develop mostly as in the free decaying turbulence. Furthermore, both codes predict that the lengthscales of the ambience turbulence dominate across the wake, with little effect caused by the shear layer at the wake envelope. These remarks are supported by an examination of features in the energy spectra along the wake. Also in this thesis, the wake turbulence fields produced by two different AD models are compared: a uniformly loaded disk and a model that includes the effects of tangential velocities and considers airfoil blade properties. The latter includes a rotational velocity controller to simulate the real conditions of variable speed turbines. Results show that the differences observed between the models in the near wake field are reduced further downstream. Also, it is seen that these disparities decrease when a turbulent inflow is employed, in comparison with the non-turbulent case. These observations confirm the assumption that uniformly loaded disks are adequate to model the far wake. In addition, the control method is shown to adjust to the local inflow conditions, regulating the rotational speed accordingly, while the computed performance proves that the implementation represents well the modelled rotor design. The results obtained in this work show that the presented methodology can succesfuly be used in the modelling and analysis of turbulence in wake flows. None None None

  14. Wake of inertial waves of a horizontal cylinder in horizontal translation

    NASA Astrophysics Data System (ADS)

    Machicoane, Nathanaël; Labarre, Vincent; Voisin, Bruno; Moisy, Frédéric; Cortet, Pierre-Philippe

    2018-03-01

    We analyze theoretically and experimentally the wake behind a horizontal cylinder of diameter d horizontally translated at constant velocity U in a fluid rotating about the vertical axis at a rate Ω . Using particle image velocimetry measurements in the rotating frame, we show that the wake is stabilized by rotation for Reynolds number Re =U d /ν much larger than in a nonrotating fluid. Over the explored range of parameters, the limit of stability is Re ≃(275 ±25 )/Ro , with Ro =U /2 Ω d the Rossby number, indicating that the stabilizing process is governed by the Ekman pumping in the boundary layer. At low Rossby number, the wake takes the form of a stationary pattern of inertial waves, similar to the wake of surface gravity waves behind a ship. We compare this steady wake pattern to a model, originally developed by Johnson [E. R. Johnson, J. Fluid Mech. 120, 359 (1982), 10.1017/S0022112082002808], assuming a free-slip boundary condition and a weak streamwise perturbation. Our measurements show quantitative agreement with this model for Ro ≲0.3 . At larger Rossby number, the phase pattern of the wake is close to the prediction for an infinitely small line object. However, the wake amplitude and phase origin are not correctly described by the weak-streamwise-perturbation model, calling for an alternative model for the boundary condition at moderate rotation rate.

  15. Similarities and differences between dreaming and waking cognition: an exploratory study.

    PubMed

    Kahan, T L; LaBerge, S; Levitan, L; Zimbardo, P

    1997-03-01

    Thirty-eight "practiced" dreamers (Study 1) and 50 "novice" dreamers (Study 2) completed questionnaires assessing the cognitive, metacognitive, and emotional qualities of recent waking and dreaming experiences. The present findings suggest that dreaming cognition is more similar to waking cognition than previously assumed and that the differences between dreaming and waking cognition are more quantitative than qualitative. Results from the two studies were generally consistent, indicating that high-order cognition during dreaming is not restricted to individuals practiced in dream recall or self-observation. None of the measured features was absent or infrequent in reports of either dreaming or waking experiences. Recollections of dreaming and waking experiences were similar for some cognitive features (e.g., attentional processes, internal commentary, and public self-consciousness) and different for other features (e.g., choice, event-related self-reflection, and affect).

  16. Dreaming and waking: similarities and differences revisited.

    PubMed

    Kahan, Tracey L; LaBerge, Stephen P

    2011-09-01

    Dreaming is often characterized as lacking high-order cognitive (HOC) skills. In two studies, we test the alternative hypothesis that the dreaming mind is highly similar to the waking mind. Multiple experience samples were obtained from late-night REM sleep and waking, following a systematic protocol described in Kahan (2001). Results indicated that reported dreaming and waking experiences are surprisingly similar in their cognitive and sensory qualities. Concurrently, ratings of dreaming and waking experiences were markedly different on questions of general reality orientation and logical organization (e.g., the bizarreness or typicality of the events, actions, and locations). Consistent with other recent studies (e.g., Bulkeley & Kahan, 2008; Kozmová & Wolman, 2006), experiences sampled from dreaming and waking were more similar with respect to their process features than with respect to their structural features. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Wake Vortex Advisory System (WakeVAS) Evaluation of Impacts on the National Airspace System

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Dollyhigh, Samuel M.

    2005-01-01

    This report is one of a series that describes an ongoing effort in high-fidelity modeling/simulation, evaluation and analysis of the benefits and performance metrics of the Wake Vortex Advisory System (WakeVAS) Concept of Operations being developed as part of the Virtual Airspace Modeling and Simulation (VAMS) project. A previous study, determined the overall increases in runway arrival rates that could be achieved at 12 selected airports due to WakeVAS reduced aircraft spacing under Instrument Meteorological Conditions. This study builds on the previous work to evaluate the NAS wide impacts of equipping various numbers of airports with WakeVAS. A queuing network model of the National Airspace System, built by the Logistics Management Institute, Mclean, VA, for NASA (LMINET) was used to estimate the reduction in delay that could be achieved by using WakeVAS under non-visual meteorological conditions for the projected air traffic demand in 2010. The results from LMINET were used to estimate the total annual delay reduction that could be achieved and from this, an estimate of the air carrier variable operating cost saving was made.

  18. A prescribed wake rotor inflow and flow field prediction analysis, user's manual and technical approach

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1982-01-01

    A user's manual is provided which includes the technical approach for the Prescribed Wake Rotor Inflow and Flow Field Prediction Analysis. The analysis is used to provide the rotor wake induced velocities at the rotor blades for use in blade airloads and response analyses and to provide induced velocities at arbitrary field points such as at a tail surface. This analysis calculates the distribution of rotor wake induced velocities based on a prescribed wake model. Section operating conditions are prescribed from blade motion and controls determined by a separate blade response analysis. The analysis represents each blade by a segmented lifting line, and the rotor wake by discrete segmented trailing vortex filaments. Blade loading and circulation distributions are calculated based on blade element strip theory including the local induced velocity predicted by the numerical integration of the Biot-Savart Law applied to the vortex wake model.

  19. Impact of Neutral Boundary-Layer Turbulence on Wind-Turbine Wakes: A Numerical Modelling Study

    NASA Astrophysics Data System (ADS)

    Englberger, Antonia; Dörnbrack, Andreas

    2017-03-01

    The wake characteristics of a wind turbine in a turbulent boundary layer under neutral stratification are investigated systematically by means of large-eddy simulations. A methodology to maintain the turbulence of the background flow for simulations with open horizontal boundaries, without the necessity of the permanent import of turbulence data from a precursor simulation, was implemented in the geophysical flow solver EULAG. These requirements are fulfilled by applying the spectral energy distribution of a neutral boundary layer in the wind-turbine simulations. A detailed analysis of the wake response towards different turbulence levels of the background flow results in a more rapid recovery of the wake for a higher level of turbulence. A modified version of the Rankine-Froude actuator disc model and the blade element momentum method are tested as wind-turbine parametrizations resulting in a strong dependence of the near-wake wind field on the parametrization, whereas the far-wake flow is fairly insensitive to it. The wake characteristics are influenced by the two considered airfoils in the blade element momentum method up to a streamwise distance of 14 D ( D = rotor diameter). In addition, the swirl induced by the rotation has an impact on the velocity field of the wind turbine even in the far wake. Further, a wake response study reveals a considerable effect of different subgrid-scale closure models on the streamwise turbulent intensity.

  20. Meteorology and Wake Vortex Influence on American Airlines FL-587 Accident

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Rutishauser, David K.; Switzer, George F.

    2004-01-01

    The atmospheric environment surrounding the crash of American Airlines Flight 587 is investigated. Examined are evidence for any unusual atmospheric conditions and the potential for encounters with aircraft wake vortices. Computer simulations are carried out with two different vortex prediction models and a Large Eddy Simulation model. Wind models are proposed for studying aircraft and pilot response to the wake vortex encounter.

  1. 75 FR 76336 - Notice of Data Availability Regarding Two Studies of Ambient Lead Concentrations Near a General...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... Division, C304-06, Environmental Protection Agency, U.S. EPA (C304-06), AQAD/AAMG, Research Triangle Park... airport where piston-engine aircraft are operated. The study also included an assessment of the maximum 3... piston engine aircraft. Model inputs also included considerations of aircraft-induced wake turbulence...

  2. From Wake Steering to Flow Control

    DOE PAGES

    Fleming, Paul A.; Annoni, Jennifer; Churchfield, Matthew J.; ...

    2017-11-22

    In this article, we investigate the role of flow structures generated in wind farm control through yaw misalignment. A pair of counter-rotating vortices are shown to be important in deforming the shape of the wake and in explaining the asymmetry of wake steering in oppositely signed yaw angles. We motivate the development of new physics for control-oriented engineering models of wind farm control, which include the effects of these large-scale flow structures. Such a new model would improve the predictability of control-oriented models. Results presented in this paper indicate that wind farm control strategies, based on new control-oriented models withmore » new physics, that target total flow control over wake redirection may be different, and perhaps more effective, than current approaches. We propose that wind farm control and wake steering should be thought of as the generation of large-scale flow structures, which will aid in the improved performance of wind farms.« less

  3. Application of laser velocimetry to aircraft wake-vortex measurements

    NASA Technical Reports Server (NTRS)

    Ciffone, D. L.; Orloff, K. L.

    1977-01-01

    The theory and use of a laser velocimeter that makes simultaneous measurements of vertical and longitudinal velocities while rapidly scanning a flow field laterally are described, and its direct application to trailing wake-vortex research is discussed. Pertinent measurements of aircraft wake-vortex velocity distributions obtained in a wind tunnel and water towing tank are presented. The utility of the velocimeter to quantitatively assess differences in wake velocity distributions due to wake dissipating devices and span loading changes on the wake-generating model is also demonstrated.

  4. Sleep-Wake Disturbances in Sedentary Community-Dwelling Elders With Functional Limitations

    PubMed Central

    Vaz Fragoso, Carlos A.; Miller, Michael E.; Fielding, Roger A.; King, Abby C.; Kritchevsky, Stephen B.; McDermott, Mary M.; Myers, Valerie; Newman, Anne B.; Pahor, Marco; Gill, Thomas M.

    2014-01-01

    OBJECTIVES To evaluate sleep-wake disturbances in sedentary community-dwelling elders with functional limitations. DESIGN Cross-sectional. SETTING Lifestyle Interventions and Independence in Elder (LIFE) Study. PARTICIPANTS 1635 community-dwelling persons, mean age 78.9, who spent <20 minutes/week in the past month of regular physical activity and <125 minutes/week of moderate physical activity, and had a Short Physical Performance Battery (SPPB) score <10. MEASUREMENTS Mobility was evaluated by the 400-meter walk time (slow gait speed defined as <0.8 m/s) and SPPB score (≤7 defined moderate-to-severe mobility impairment). Physical inactivity was defined by sedentary time, as percent of accelerometry wear time with activity <100 counts/min); top quartile established high sedentary time. Sleep-wake disturbances were evaluated by the Insomnia Severity Index (ISI) (range 0–28; ≥8 defined insomnia), Epworth Sleepiness Scale (ESS) (range 0–24; ≥10 defined daytime drowsiness), Pittsburgh Sleep Quality Index (PSQI) (range 0–21; >5 defined poor sleep quality), and Berlin Questionnaire (high risk of sleep apnea). RESULTS Prevalence rates were 43.5% for slow gait speed and 44.7% for moderate-to-severe mobility impairment, with 77.0% of accelerometry wear time spent as sedentary time. Prevalence rates were 33.0% for insomnia, 18.1% for daytime drowsiness, 47.8% for poor sleep quality, and 32.9% for high risk of sleep apnea. Participants with insomnia, daytime drowsiness, and poor sleep quality had mean values of 12.1 for ISI, 12.5 for ESS, and 9.2 for PSQI, respectively. In adjusted models, measures of mobility and physical inactivity were generally not associated with sleep-wake disturbances, using continuous or categorical variables. CONCLUSION In a large sample of sedentary community-dwelling elders with functional limitations, sleep-wake disturbances were prevalent but only mildly severe, and were generally not associated with mobility impairment or physical inactivity. PMID:24889836

  5. A Critical Review of the Transport and Decay of Wake Vortices in Ground Effect

    NASA Technical Reports Server (NTRS)

    Sarpkaya, T.

    2004-01-01

    This slide presentation reviews the transport and decay of wake vortices in ground effect and cites a need for a physics-based parametric model. The encounter of a vortex with a solid body is always a complex event involving turbulence enhancement, unsteadiness, and very large gradients of velocity and pressure. Wake counter in ground effect is the most dangerous of them all. The interaction of diverging, area-varying, and decaying aircraft wake vortices with the ground is very complex because both the vortices and the flow field generated by them are altered to accommodate the presence of the ground (where there is very little room to maneuver) and the background turbulent flow. Previous research regarding vortex models, wake vortex decay mechanisms, time evolution within in ground effect of a wake vortex pair, laminar flow in ground effect, and the interaction of the existing boundary layer with a convected vortex are reviewed. Additionally, numerical simulations, 3-dimensional large-eddy simulations, a probabilistic 2-phase wake vortex decay and transport model and a vortex element method are discussed. The devising of physics-based, parametric models for the prediction of (operational) real-time response, mindful of the highly three-dimensional and unsteady structure of vortices, boundary layers, atmospheric thermodynamics, and weather convective phenomena is required. In creating a model, LES and field data will be the most powerful tools.

  6. Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing.

    PubMed

    Bluman, James; Kang, Chang-Kwon

    2017-06-15

    Wing-wake interaction is a characteristic nonlinear flow feature that can enhance unsteady lift in flapping flight. However, the effects of wing-wake interaction on the flight dynamics of hover are inadequately understood. We use a well-validated 2D Navier-Stokes equation solver and a quasi-steady model to investigate the role of wing-wake interaction on the hover stability of a fruit fly scale flapping flyer. The Navier-Stokes equations capture wing-wake interaction, whereas the quasi-steady models do not. Both aerodynamic models are tightly coupled to a flight dynamic model, which includes the effects of wing mass. The flapping amplitude, stroke plane angle, and flapping offset angle are adjusted in free flight for various wing rotations to achieve hover equilibrium. We present stability results for 152 simulations which consider different kinematics involving the pitch amplitude and pitch axis as well as the duration and timing of pitch rotation. The stability of all studied motions was qualitatively similar, with an unstable oscillatory mode present in each case. Wing-wake interaction has a destabilizing effect on the longitudinal stability, which cannot be predicted by a quasi-steady model. Wing-wake interaction increases the tendency of the flapping flyer to pitch up in the presence of a horizontal velocity perturbation, which further destabilizes the unstable oscillatory mode of hovering flight dynamics.

  7. Wind tunnel measurements of wake structure and wind farm power for actuator disk model wind turbines in yaw

    NASA Astrophysics Data System (ADS)

    Howland, Michael; Bossuyt, Juliaan; Kang, Justin; Meyers, Johan; Meneveau, Charles

    2016-11-01

    Reducing wake losses in wind farms by deflecting the wakes through turbine yawing has been shown to be a feasible wind farm control approach. In this work, the deflection and morphology of wakes behind a wind turbine operating in yawed conditions are studied using wind tunnel experiments of a wind turbine modeled as a porous disk in a uniform inflow. First, by measuring velocity distributions at various downstream positions and comparing with prior studies, we confirm that the nonrotating wind turbine model in yaw generates realistic wake deflections. Second, we characterize the wake shape and make observations of what is termed a "curled wake," displaying significant spanwise asymmetry. Through the use of a 100 porous disk micro-wind farm, total wind farm power output is studied for a variety of yaw configurations. Strain gages on the tower of the porous disk models are used to measure the thrust force as a substitute for turbine power. The frequency response of these measurements goes up to the natural frequency of the model and allows studying the spatiotemporal characteristics of the power output under the effects of yawing. This work has been funded by the National Science Foundation (Grants CBET-113380 and IIA-1243482, the WINDINSPIRE project). JB and JM are supported by ERC (ActiveWindFarms, Grant No. 306471).

  8. The consideration of atmospheric stability within wind farm AEP calculations

    NASA Astrophysics Data System (ADS)

    Schmidt, Jonas; Chang, Chi-Yao; Dörenkämper, Martin; Salimi, Milad; Teichmann, Tim; Stoevesandt, Bernhard

    2016-09-01

    The annual energy production of an existing wind farm including thermal stratification is calculated with two different methods and compared to the average of three years of SCADA data. The first method is based on steady state computational fluid dynamics simulations and the assumption of Reynolds-similarity at hub height. The second method is a wake modelling calculation, where a new stratification transformation model was imposed on the Jensen an Ainslie wake models. The inflow states for both approaches were obtained from one year WRF simulation data of the site. Although all models underestimate the mean wind speed and wake effects, the results from the phenomenological wake transformation are compatible with high-fidelity simulation results.

  9. Development and application of a method for predicting rotor free wake positions and resulting rotor blade air loads. Volume 1: Model and results

    NASA Technical Reports Server (NTRS)

    Sadler, S. G.

    1971-01-01

    Rotor wake geometries are predicted by a process similar to the startup of a rotor in a free stream. An array of discrete trailing and shed vortices is generated with vortex strengths corresponding to stepwise radial and azimuthal blade circulations. The array of shed and trailing vortices is limited to an arbitrary number of azimuthal steps behind each blade. The remainder of the wake model of each blade is an arbitrary number of trailing vortices. Vortex element end points were allowed to be transported by the resultant velocity of the free stream and vortex-induced velocities. Wake geometry, wake flow, and wake-induced velocity influence coefficients are generated by this program for use in the blade loads portion of the calculations. Blade loads computations include the effects of nonuniform inflow due to a free wake, nonlinear airfoil characteristics, and response of flexible blades to the applied loads. Computed wake flows and blade loads are compared with experimentally measured data. Predicted blade loads, response and shears and moments are obtained for a model rotor system having two independent rotors. The effects of advance ratio, vertical separation of rotors, different blade radius ratios, and different azimuthal spacing of the blades of one rotor with respect to the other are investigated.

  10. Wind-tunnel modelling of the tip-speed ratio influence on the wake evolution

    NASA Astrophysics Data System (ADS)

    Stein, Victor P.; Kaltenbach, Hans-Jakob

    2016-09-01

    Wind-tunnel measurements on the near-wake evolution of a three bladed horizontal axis wind turbine model (HAWT) in the scale 1:O(350) operating in uniform flow conditions and within a turbulent boundary layer at different tip speed ratios are presented. Operational conditions are chosen to exclude Reynolds number effects regarding the turbulent boundary layer as well as the rotor performance. Triple-wire anemometry is used to measure all three velocity components in the mid-vertical and mid-horizontal plane, covering the range from the near- to the far-wake region. In order to analyse wake properties systematically, power and thrust coefficients of the turbine were measured additionally. It is confirmed that realistic modelling of the wake evolution is not possible in a low-turbulence uniform approach flow. Profiles of mean velocity and turbulence intensity exhibit large deviations between the low-turbulence uniform flow and the turbulent boundary layer, especially in the far-wake region. For nearly constant thrust coefficients differences in the evolution of the near-wake can be identified for tip speed ratios in the range from 6.5 to 10.5. It is shown that with increasing downstream distances mean velocity profiles become indistinguishable whereas for turbulence statistics a subtle dependency on the tip speed ratio is still noticeable in the far-wake region.

  11. LES Investigation of Wake Development in a Transonic Fan Stage for Aeroacoustic Analysis

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Romeo, Michael

    2017-01-01

    Detailed development of the rotor wake and its interaction with the stator are investigated with a large eddy simulation (LES). Typical steady and unsteady Navier-Stokes approaches (RANS and URANS) do not calculate wake development accurately and do not provide all the necessary information for an aeroacoustic analysis. It is generally believed that higher fidelity analysis tools are required for an aeroacoustic investigation of transonic fan stages.

  12. Field measurements and modeling of dilution in the wake of a US navy frigate.

    PubMed

    Katz, C N; Chadwick, D B; Rohr, J; Hyman, M; Ondercin, D

    2003-08-01

    A field measurement and computer modeling effort was made to assess the dilution field of pulped waste materials discharged into the wake of a US Navy frigate. Pulped paper and fluorescein dye were discharged from the frigate's pulper at known rates. The subsequent particle and dye concentration field was then measured throughout the wake by a following vessel using multiple independent measures. Minimum dilution of the pulped paper reached 3.2 x 10(5) within 1900 m behind the frigate, or about 8 min after discharge. Independent measures typically agreed within 25% of one another and within 20% of model predictions. Minimum dilution of dye reached 2.3 x 10(5) at a down-wake distance of approximately 3500 m, or roughly 15 min. Comparison to model measurements were again within 20%. The field test was not only successful at characterizing wake dilution under one set of at-sea conditions, but was successful at validating the computer model used for assessing a wide range of ships and conditions.

  13. A local-circulation model for Darrieus vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Masse, B.

    1986-04-01

    A new computational model for the aerodynamics of the vertical-axis wind turbine is presented. Based on the local-circulation method generalized for curved blades, combined with a wake model for the vertical-axis wind turbine, it differs markedly from current models based on variations in the streamtube momentum and vortex models using the lifting-line theory. A computer code has been developed to calculate the loads and performance of the Darrieus vertical-axis wind turbine. The results show good agreement with experimental data and compare well with other methods.

  14. A comparative study of various inflow boundary conditions and turbulence models for wind turbine wake predictions

    NASA Astrophysics Data System (ADS)

    Tian, Lin-Lin; Zhao, Ning; Song, Yi-Lei; Zhu, Chun-Ling

    2018-05-01

    This work is devoted to perform systematic sensitivity analysis of different turbulence models and various inflow boundary conditions in predicting the wake flow behind a horizontal axis wind turbine represented by an actuator disc (AD). The tested turbulence models are the standard k-𝜀 model and the Reynolds Stress Model (RSM). A single wind turbine immersed in both uniform flows and in modeled atmospheric boundary layer (ABL) flows is studied. Simulation results are validated against the field experimental data in terms of wake velocity and turbulence intensity.

  15. Coherent Pulsed Lidar Sensing of Wake Vortex Position and Strength, Winds and Turbulence in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Brockman, Philip; Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, Dung Phu Chi; Britt, Charles L., Jr.; Petros, Mulugeta

    1999-01-01

    NASA Langley Research Center (LaRC) has field tested a 2.0 gm, 100 Hertz, pulsed coherent lidar to detect and characterize wake vortices and to measure atmospheric winds and turbulence. The quantification of aircraft wake-vortex hazards is being addressed by the Wake Vortex Lidar (WVL) Project as part of Aircraft Vortex Spacing System (AVOSS), which is under the Reduced Spacing Operations Element of the Terminal Area Productivity (TAP) Program. These hazards currently set the minimum, fixed separation distance between two aircraft and affect the number of takeoff and landing operations on a single runway under Instrument Meteorological Conditions (IMC). The AVOSS concept seeks to safely reduce aircraft separation distances, when weather conditions permit, to increase the operational capacity of major airports. The current NASA wake-vortex research efforts focus on developing and validating wake vortex encounter models, wake decay and advection models, and wake sensing technologies. These technologies will be incorporated into an automated AVOSS that can properly select safe separation distances for different weather conditions, based on the aircraft pair and predicted/measured vortex behavior. The sensor subsystem efforts focus on developing and validating wake sensing technologies. The lidar system has been field-tested to provide real-time wake vortex trajectory and strength data to AVOSS for wake prediction verification. Wake vortices, atmospheric winds, and turbulence products have been generated from processing the lidar data collected during deployments to Norfolk (ORF), John F. Kennedy (JFK), and Dallas/Fort Worth (DFW) International Airports.

  16. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    NASA Astrophysics Data System (ADS)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements and large-eddy simulation (LES) data of miniature wind turbine wakes, as well as LES data of real-scale wind-turbine wakes, but not yet with full-scale wind turbine wake measurements. [1] M. Bastankhah and F. Porté-Agel. A New Analytical Model For Wind-Turbine Wakes, in Renewable Energy, vol. 70, p. 116-123, 2014.

  17. Wake meandering statistics of a model wind turbine: Insights gained by large eddy simulations

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis

    2016-08-01

    Wind tunnel measurements in the wake of an axial flow miniature wind turbine provide evidence of large-scale motions characteristic of wake meandering [Howard et al., Phys. Fluids 27, 075103 (2015), 10.1063/1.4923334]. A numerical investigation of the wake, using immersed boundary large eddy simulations able to account for all geometrical details of the model wind turbine, is presented here to elucidate the three-dimensional structure of the wake and the mechanisms controlling near and far wake instabilities. Similar to the findings of Kang et al. [Kang et al., J. Fluid Mech. 744, 376 (2014), 10.1017/jfm.2014.82], an energetic coherent helical hub vortex is found to form behind the turbine nacelle, which expands radially outward downstream of the turbine and ultimately interacts with the turbine tip shear layer. Starting from the wake meandering filtering used by Howard et al., a three-dimensional spatiotemporal filtering process is developed to reconstruct a three-dimensional meandering profile in the wake of the turbine. The counterwinding hub vortex undergoes a spiral vortex breakdown and the rotational component of the hub vortex persists downstream, contributing to the rotational direction of the wake meandering. Statistical characteristics of the wake meandering profile, along with triple decomposition of the flow field separating the coherent and incoherent turbulent fluctuations, are used to delineate the near and far wake flow structures and their interactions. In the near wake, the nacelle leads to mostly incoherent turbulence, while in the far wake, turbulent coherent structures, especially the azimuthal velocity component, dominate the flow field.

  18. Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation (Invited)

    NASA Astrophysics Data System (ADS)

    Xie, S.; Archer, C. L.

    2013-12-01

    In this study, a new large-eddy simulation code, the Wind Turbine and Turbulence Simulator (WiTTS), is developed to study the wake generated from a single wind turbine in the neutral ABL. The WiTTS formulation is based on a scale-dependent Lagrangian dynamical model of the sub-grid shear stress and uses actuator lines to simulate the effects of the rotating blades. WiTTS is first tested against wind tunnel experiments and then used to study the commonly-used assumptions of self-similarity and axis-symmetry of the wake under neutral conditions for a variety of wind speeds and turbine properties. The mean velocity deficit shows good self-similarity properties following a normal distribution in the horizontal plane at the hub-height level. Self-similarity is a less valid approximation in the vertical near the ground, due to strong wind shear and ground effects. The mean velocity deficit is strongly dependent on the thrust coefficient or induction factor. A new relationship is proposed to model the mean velocity deficit along the centerline at the hub-height level to fit the LES results piecewise throughout the wake. A logarithmic function is used in the near and intermediate wake regions whereas a power function is used in the far-wake. These two functions provide a better fit to both simulated and observed wind velocity deficits than other functions previously used in wake models such as WAsP. The wind shear and impact with the ground cause an anisotropy in the expansion of the wake such that the wake grows faster horizontally than vertically. The wake deforms upon impact with the ground and spreads laterally. WiTTS is also used to study the turbulence characteristics in the wake. Aligning with the mean wind direction, the streamwise component of turbulence intensity is the dominant among the three components and thus it is further studied. The highest turbulence intensity occurs near the top-tip level. The added turbulence intensity increases fast in the near-wake and reaches its maximum at about x/D ~ 5, then it gradually decreases further downstream. In the far-wake, the added turbulence intensity is primarily dependent on the induction factor and the ambient turbulence: it increases with the induction factor and ambient turbulence and it decays exponentially downstream. An analysis of the added TKE budget shows that production by shear and advection by the mean flow dominate throughout the wake, whereas dissipation and turbulent transport are less important. In the near-wake, TKE is entrained from the upper regions of the annular shear layer into the center of the wake. The nacelle causes a significant increase of production, advection, and dissipation in the near-wake. Wind shear and momentum fluxes are reduced in the lower part of the wake, thus TKE production is reduced at the bottom-tip level. In summary, we find that the WiTTS model, although applied to a simplified case of neutral stability with a single wind turbine, was able to offer new insights into wake properties, including non-symmetric wake growth and reduced vertical mixing near the ground.

  19. Prediction of general mental ability based on neural oscillation measures of sleep.

    PubMed

    Bódizs, Róbert; Kis, Tamás; Lázár, Alpár Sándor; Havrán, Linda; Rigó, Péter; Clemens, Zsófia; Halász, Péter

    2005-09-01

    The usual assessment of general mental ability (or intelligence) is based on performance attained in reasoning and problem-solving tasks. Differences in general mental ability have been associated with event-related neural activity patterns of the wakeful working brain or physical, chemical and electrical brain features measured during wakeful resting conditions. Recent evidences suggest that specific sleep electroencephalogram oscillations are related to wakeful cognitive performances. Our aim is to reveal the relationship between non-rapid eye movement sleep-specific oscillations (the slow oscillation, delta activity, slow and fast sleep spindle density, the grouping of slow and fast sleep spindles) and general mental ability assessed by the Raven Progressive Matrices Test (RPMT). The grouping of fast sleep spindles by the cortical slow oscillation in the left frontopolar derivation (Fp1) as well as the density of fast sleep spindles over the right frontal area (Fp2, F4), correlated positively with general mental ability. Data from those selected electrodes that showed the high correlations with general mental ability explained almost 70% of interindividual variance in RPMT scores. Results suggest that individual differences in general mental ability are reflected in fast sleep spindle-related oscillatory activity measured over the frontal cortex.

  20. Plasma Wake Simulations and Object Charging in a Shadowed Lunar Crater During a Solar Storm

    NASA Technical Reports Server (NTRS)

    Zimmerman, Michael I.; Jackson, T. L.; Farrell, W. W.; Stubbs, T. J.

    2012-01-01

    Within a permanently shadowed lunar crater the horizontal flow of solar wind is obstructed by upstream topography, forming a plasma wake that electrostatically diverts ions toward the crater floor and generates a surface potential that can reach kilovolts. In the present work kinetic plasma simulations are employed to investigate the morphology of a lunar crater wake during passage of a solar storm. Results are cast in terms of leading dimensionless ratios including the ion Mach number, ratio of crater depth to plasma Debye length, peak secondary electron yield, and electron temperature vs. electron impact energy at peak secondary yield. This small set of ratios allows generalization to a much wider range of scenarios. The kinetic simulation results are fed forward into an equivalent-circuit model of a roving astronaut. In very low-plasma-current environments triboelectric charging of the astronaut suit becomes effectively perpetual, representing a critical engineering concern for roving within shadowed lunar regions. Finally, simulated ion fluxes are used to explore sputtering and implantation processes within an idealized crater. It is suggested that the physics of plasma mini-wakes formed in the vicinity of permanently shadowed topography may play a critical role in modulating the enigmatic spatial distribution of volatiles at the lunar poles.

  1. Three-Phased Wake Vortex Decay

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Ahmad, Nashat N.; Switzer, George S.; LimonDuparcmeur, Fanny M.

    2010-01-01

    A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification.

  2. Wake Vortex and Groundwind Meteorological Measurements

    DOT National Transportation Integrated Search

    1976-05-01

    Wake vortex groundwind and meteorological measurements obtained by DOT-TSC at John F. Kennedy (JKF) International Airport have been reduced, analyzed, and correlated with a theoretical vortex transport model. The predictive Wake Vortex Transport Mode...

  3. Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery

    NASA Astrophysics Data System (ADS)

    Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey

    2014-05-01

    1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the coast of Borkum, Germany, and consists of twelve 5-Megawatt wind power turbines. The retrieved results are validated by comparing with QuikSCAT measurements, the results of the German Weather Service (DWD) atmospheric model and in-situ measurements of wind speed and wind direction, obtained from the research platform FiNO1, installed 400 m west of Alpha Ventus. 4. Conclusion In the presented case study we quantify the wake characteristics of wake length, wake width, maximum velocity de?cit, wake merging and wake meandering. We show that SAR has the capability to map the sea surface two-dimensionally in high spatial resolution which provides a unique opportunity to observe spatial characteristics of offshore wind turbine wakes. The SAR derived information can support offshore wind farming with respect to optimal siting and design and help to estimate their effects on the environment.

  4. Quantitative physiologically based modeling of subjective fatigue during sleep deprivation.

    PubMed

    Fulcher, B D; Phillips, A J K; Robinson, P A

    2010-05-21

    A quantitative physiologically based model of the sleep-wake switch is used to predict variations in subjective fatigue-related measures during total sleep deprivation. The model includes the mutual inhibition of the sleep-active neurons in the hypothalamic ventrolateral preoptic area (VLPO) and the wake-active monoaminergic brainstem populations (MA), as well as circadian and homeostatic drives. We simulate sleep deprivation by introducing a drive to the MA, which we call wake effort, to maintain the system in a wakeful state. Physiologically this drive is proposed to be afferent from the cortex or the orexin group of the lateral hypothalamus. It is hypothesized that the need to exert this effort to maintain wakefulness at high homeostatic sleep pressure correlates with subjective fatigue levels. The model's output indeed exhibits good agreement with existing clinical time series of subjective fatigue-related measures, supporting this hypothesis. Subjective fatigue, adrenaline, and body temperature variations during two 72h sleep deprivation protocols are reproduced by the model. By distinguishing a motivation-dependent orexinergic contribution to the wake-effort drive, the model can be extended to interpret variation in performance levels during sleep deprivation in a way that is qualitatively consistent with existing, clinically derived results. The example of sleep deprivation thus demonstrates the ability of physiologically based sleep modeling to predict psychological measures from the underlying physiological interactions that produce them. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. Role of the locus coeruleus in the emergence of power law wake bouts in a model of the brainstem sleep-wake system through early infancy.

    PubMed

    Patel, Mainak; Rangan, Aaditya

    2017-08-07

    Infant rats randomly cycle between the sleeping and waking states, which are tightly correlated with the activity of mutually inhibitory brainstem sleep and wake populations. Bouts of sleep and wakefulness are random; from P2-P10, sleep and wake bout lengths are exponentially distributed with increasing means, while during P10-P21, the sleep bout distribution remains exponential while the distribution of wake bouts gradually transforms to power law. The locus coeruleus (LC), via an undeciphered interaction with sleep and wake populations, has been shown experimentally to be responsible for the exponential to power law transition. Concurrently during P10-P21, the LC undergoes striking physiological changes - the LC exhibits strong global 0.3 Hz oscillations up to P10, but the oscillation frequency gradually rises and synchrony diminishes from P10-P21, with oscillations and synchrony vanishing at P21 and beyond. In this work, we construct a biologically plausible Wilson Cowan-style model consisting of the LC along with sleep and wake populations. We show that external noise and strong reciprocal inhibition can lead to switching between sleep and wake populations and exponentially distributed sleep and wake bout durations as during P2-P10, with the parameters of inhibition between the sleep and wake populations controlling mean bout lengths. Furthermore, we show that the changing physiology of the LC from P10-P21, coupled with reciprocal excitation between the LC and wake population, can explain the shift from exponential to power law of the wake bout distribution. To our knowledge, this is the first study that proposes a plausible biological mechanism, which incorporates the known changing physiology of the LC, for tying the developing sleep-wake circuit and its interaction with the LC to the transformation of sleep and wake bout dynamics from P2-P21. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Coupled Flip-Flop Model for REM Sleep Regulation in the Rat

    PubMed Central

    Dunmyre, Justin R.; Mashour, George A.; Booth, Victoria

    2014-01-01

    Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM) sleep have identified mutually inhibitory synaptic projections among REM sleep-promoting (REM-on) and REM sleep-inhibiting (REM-off) neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of mutually inhibitory synaptic interactions mirrors the proposed flip-flop switch for sleep-wake regulation consisting of mutually inhibitory synaptic projections between wake- and sleep-promoting neuronal populations. While a number of synaptic projections have been identified between these REM-on/REM-off populations and wake/sleep-promoting populations, the specific interactions that govern behavioral state transitions have not been completely determined. Using a minimal mathematical model, we investigated behavioral state transition dynamics dictated by a system of coupled flip-flops, one to control transitions between wake and sleep states, and another to control transitions into and out of REM sleep. The model describes the neurotransmitter-mediated inhibitory interactions between a wake- and sleep-promoting population, and between a REM-on and REM-off population. We proposed interactions between the wake/sleep and REM-on/REM-off flip-flops to replicate the behavioral state statistics and probabilities of behavioral state transitions measured from experimental recordings of rat sleep under ad libitum conditions and after 24 h of REM sleep deprivation. Reliable transitions from REM sleep to wake, as dictated by the data, indicated the necessity of an excitatory projection from the REM-on population to the wake-promoting population. To replicate the increase in REM-wake-REM transitions observed after 24 h REM sleep deprivation required that this excitatory projection promote transient activation of the wake-promoting population. Obtaining the reliable wake-nonREM sleep transitions observed in the data required that activity of the wake-promoting population modulated the interaction between the REM-on and REM-off populations. This analysis suggests neuronal processes to be targeted in further experimental studies of the regulatory mechanisms of REM sleep. PMID:24722577

  7. Coupled flip-flop model for REM sleep regulation in the rat.

    PubMed

    Dunmyre, Justin R; Mashour, George A; Booth, Victoria

    2014-01-01

    Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM) sleep have identified mutually inhibitory synaptic projections among REM sleep-promoting (REM-on) and REM sleep-inhibiting (REM-off) neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of mutually inhibitory synaptic interactions mirrors the proposed flip-flop switch for sleep-wake regulation consisting of mutually inhibitory synaptic projections between wake- and sleep-promoting neuronal populations. While a number of synaptic projections have been identified between these REM-on/REM-off populations and wake/sleep-promoting populations, the specific interactions that govern behavioral state transitions have not been completely determined. Using a minimal mathematical model, we investigated behavioral state transition dynamics dictated by a system of coupled flip-flops, one to control transitions between wake and sleep states, and another to control transitions into and out of REM sleep. The model describes the neurotransmitter-mediated inhibitory interactions between a wake- and sleep-promoting population, and between a REM-on and REM-off population. We proposed interactions between the wake/sleep and REM-on/REM-off flip-flops to replicate the behavioral state statistics and probabilities of behavioral state transitions measured from experimental recordings of rat sleep under ad libitum conditions and after 24 h of REM sleep deprivation. Reliable transitions from REM sleep to wake, as dictated by the data, indicated the necessity of an excitatory projection from the REM-on population to the wake-promoting population. To replicate the increase in REM-wake-REM transitions observed after 24 h REM sleep deprivation required that this excitatory projection promote transient activation of the wake-promoting population. Obtaining the reliable wake-nonREM sleep transitions observed in the data required that activity of the wake-promoting population modulated the interaction between the REM-on and REM-off populations. This analysis suggests neuronal processes to be targeted in further experimental studies of the regulatory mechanisms of REM sleep.

  8. A Coupled Probabilistic Wake Vortex and Aircraft Response Prediction Model

    NASA Technical Reports Server (NTRS)

    Gloudemans, Thijs; Van Lochem, Sander; Ras, Eelco; Malissa, Joel; Ahmad, Nashat N.; Lewis, Timothy A.

    2016-01-01

    Wake vortex spacing standards along with weather and runway occupancy time, restrict terminal area throughput and impose major constraints on the overall capacity and efficiency of the National Airspace System (NAS). For more than two decades, the National Aeronautics and Space Administration (NASA) has been conducting research on characterizing wake vortex behavior in order to develop fast-time wake transport and decay prediction models. It is expected that the models can be used in the systems level design of advanced air traffic management (ATM) concepts that safely increase the capacity of the NAS. It is also envisioned that at a later stage of maturity, these models could potentially be used operationally, in groundbased spacing and scheduling systems as well as on the flight deck.

  9. A longitudinal study of Caenorhabditis elegans larvae reveals a novel locomotion switch, regulated by Gαs signaling

    PubMed Central

    Nagy, Stanislav; Wright, Charles; Tramm, Nora; Labello, Nicholas; Burov, Stanislav; Biron, David

    2013-01-01

    Despite their simplicity, longitudinal studies of invertebrate models are rare. We thus sought to characterize behavioral trends of Caenorhabditis elegans, from the mid fourth larval stage through the mid young adult stage. We found that, outside of lethargus, animals exhibited abrupt switching between two distinct behavioral states: active wakefulness and quiet wakefulness. The durations of epochs of active wakefulness exhibited non-Poisson statistics. Increased Gαs signaling stabilized the active wakefulness state before, during and after lethargus. In contrast, decreased Gαs signaling, decreased neuropeptide release, or decreased CREB activity destabilized active wakefulness outside of, but not during, lethargus. Taken together, our findings support a model in which protein kinase A (PKA) stabilizes active wakefulness, at least in part through two of its downstream targets: neuropeptide release and CREB. However, during lethargus, when active wakefulness is strongly suppressed, the native role of PKA signaling in modulating locomotion and quiescence may be minor. DOI: http://dx.doi.org/10.7554/eLife.00782.001 PMID:23840929

  10. WAKES: Wavelet Adaptive Kinetic Evolution Solvers

    NASA Astrophysics Data System (ADS)

    Mardirian, Marine; Afeyan, Bedros; Larson, David

    2016-10-01

    We are developing a general capability to adaptively solve phase space evolution equations mixing particle and continuum techniques in an adaptive manner. The multi-scale approach is achieved using wavelet decompositions which allow phase space density estimation to occur with scale dependent increased accuracy and variable time stepping. Possible improvements on the SFK method of Larson are discussed, including the use of multiresolution analysis based Richardson-Lucy Iteration, adaptive step size control in explicit vs implicit approaches. Examples will be shown with KEEN waves and KEEPN (Kinetic Electrostatic Electron Positron Nonlinear) waves, which are the pair plasma generalization of the former, and have a much richer span of dynamical behavior. WAKES techniques are well suited for the study of driven and released nonlinear, non-stationary, self-organized structures in phase space which have no fluid, limit nor a linear limit, and yet remain undamped and coherent well past the drive period. The work reported here is based on the Vlasov-Poisson model of plasma dynamics. Work supported by a Grant from the AFOSR.

  11. Association of Markers of Inflammation with Sleep and Physical Activity Among People Living with HIV or AIDS.

    PubMed

    Wirth, Michael D; Jaggers, Jason R; Dudgeon, Wesley D; Hébert, James R; Youngstedt, Shawn D; Blair, Steven N; Hand, Gregory A

    2015-06-01

    This study examined associations of sleep and minutes spent in moderate-vigorous physical activity (MVPA) with C-reactive protein (CRP) and interleukin (IL)-6 among persons living with HIV. Cross-sectional analyses (n = 45) focused on associations of inflammatory outcomes (i.e., CRP and IL-6) with actigraph-derived sleep duration, latency, and efficiency; sleep onset; wake time; and wake-after-sleep-onset; as well as MVPA. Least square means for CRP and IL-6 by levels of sleep and MVPA were computed from general linear models. Individuals below the median of sleep duration, above the median for sleep onset, and below the median of MVPA minutes had higher CRP or IL-6 levels. Generally, individuals with both low MVPA and poor sleep characteristics had higher inflammation levels than those with more MVPA and worse sleep. Understanding the combined impact of multiple lifestyle/behavioral factors on inflammation could inform intervention strategies to reduce inflammation and therefore, chronic disease risk.

  12. Simulating effects of a wind-turbine array using LES and RANS: Simulating turbines using LES and RANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderwende, Brian J.; Kosović, Branko; Lundquist, Julie K.

    2016-08-27

    Growth in wind power production has motivated investigation of wind-farm impacts on in situ flow fields and downstream interactions with agriculture and other wind farms. These impacts can be simulated with both large-eddy simulations (LES) and mesoscale wind-farm parameterizations (WFP). The Weather Research and Forecasting (WRF) model offers both approaches. We used the validated generalized actuator disk (GAD) parameterization in WRF-LES to assess WFP performance. A 12-turbine array was simulated using the GAD model and the WFP in WRF. We examined the performance of each scheme in both convective and stable conditions. The GAD model and WFP produced qualitatively similarmore » wind speed deficits and turbulent kinetic energy (TKE) production across the array in both stability regimes, though the magnitudes of velocity deficits and TKE production levels were underestimated and overestimated, respectively. While wake growth slowed in the latter half of the WFP array as expected, wakes did not approach steady state by the end of the array as simulated by the GAD model. A sensitivity test involving the deactivation of explicit TKE production by the WFP resulted in turbulence levels within the array well that were below those produced by the GAD in both stable and unstable conditions. Finally, the WFP overestimated downwind power production deficits in stable conditions because of the lack of wake stabilization in the latter half of the array.« less

  13. Simulation of wind turbine wakes using the actuator line technique

    PubMed Central

    Sørensen, Jens N.; Mikkelsen, Robert F.; Henningson, Dan S.; Ivanell, Stefan; Sarmast, Sasan; Andersen, Søren J.

    2015-01-01

    The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actuator line methodology and present a study in which the technique is employed to determine the near-wake properties of wind turbines. The presented results include a comparison of experimental results of the wake characteristics of the flow around a three-bladed model wind turbine, the development of a simple analytical formula for determining the near-wake length behind a wind turbine and a detailed investigation of wake structures based on proper orthogonal decomposition analysis of numerically generated snapshots of the wake. PMID:25583862

  14. Large HAWT wake measurement and analysis

    NASA Technical Reports Server (NTRS)

    Miller, A. H.; Wegley, H. L.; Buck, J. W.

    1995-01-01

    From the theoretical fluid dynamics point of view, the wake region of a large horizontal-axis wind turbine has been defined and described, and numerical models of wake behavior have been developed. Wind tunnel studies of single turbine wakes and turbine array wakes have been used to verify the theory and further refine the numerical models. However, the effects of scaling, rotor solidity, and topography on wake behavior are questions that remain unanswered. In the wind tunnel studies, turbines were represented by anything from scaled models to tea strainers or wire mesh disks whose solidity was equivalent to that of a typical wind turbine. The scale factor compensation for the difference in Reynolds number between the scale model and an actual turbine is complex, and not typically accounted for. Though it is wise to study the simpler case of wakes in flat topography, which can be easily duplicated in the wind tunnel, current indications are that wind turbine farm development is actually occurring in somewhat more complex terrain. Empirical wake studies using large horizontal-axis wind turbines have not been thoroughly composited, and, therefore, the results have not been applied to the well-developed theory of wake structure. The measurement programs have made use of both in situ sensor systems, such as instrumented towers, and remote sensors, such as kites and tethered, balloonborne anemometers. We present a concise overview of the work that has been performed, including our own, which is based on the philosophy that the MOD-2 turbines are probably their own best detector of both the momentum deficit and the induced turbulence effect downwind. Only the momentum deficit aspects of the wake/machine interactions have been addressed. Both turbine power output deficits and wind energy deficits as measured by the onsite meteorological towers have been analyzed from a composite data set. The analysis has also evidenced certain topographic influences on the operation of spatially diverse wind turbines.

  15. Large HAWT wake measurement and analysis

    NASA Astrophysics Data System (ADS)

    Miller, A. H.; Wegley, H. L.; Buck, J. W.

    1995-05-01

    From the theoretical fluid dynamics point of view, the wake region of a large horizontal-axis wind turbine has been defined and described, and numerical models of wake behavior have been developed. Wind tunnel studies of single turbine wakes and turbine array wakes have been used to verify the theory and further refine the numerical models. However, the effects of scaling, rotor solidity, and topography on wake behavior are questions that remain unanswered. In the wind tunnel studies, turbines were represented by anything from scaled models to tea strainers or wire mesh disks whose solidity was equivalent to that of a typical wind turbine. The scale factor compensation for the difference in Reynolds number between the scale model and an actual turbine is complex, and not typically accounted for. Though it is wise to study the simpler case of wakes in flat topography, which can be easily duplicated in the wind tunnel, current indications are that wind turbine farm development is actually occurring in somewhat more complex terrain. Empirical wake studies using large horizontal-axis wind turbines have not been thoroughly composited, and, therefore, the results have not been applied to the well-developed theory of wake structure. The measurement programs have made use of both in situ sensor systems, such as instrumented towers, and remote sensors, such as kites and tethered, balloonborne anemometers. We present a concise overview of the work that has been performed, including our own, which is based on the philosophy that the MOD-2 turbines are probably their own best detector of both the momentum deficit and the induced turbulence effect downwind. Only the momentum deficit aspects of the wake/machine interactions have been addressed. Both turbine power output deficits and wind energy deficits as measured by the onsite meteorological towers have been analyzed from a composite data set. The analysis has also evidenced certain topographic influences on the operation of spatially diverse wind turbines.

  16. Rotor design optimization using a free wake analysis

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Boschitsch, Alexander H.; Wachspress, Daniel A.; Chua, Kiat

    1993-01-01

    The aim of this effort was to develop a comprehensive performance optimization capability for tiltrotor and helicopter blades. The analysis incorporates the validated EHPIC (Evaluation of Hover Performance using Influence Coefficients) model of helicopter rotor aerodynamics within a general linear/quadratic programming algorithm that allows optimization using a variety of objective functions involving the performance. The resulting computer code, EHPIC/HERO (HElicopter Rotor Optimization), improves upon several features of the previous EHPIC performance model and allows optimization utilizing a wide spectrum of design variables, including twist, chord, anhedral, and sweep. The new analysis supports optimization of a variety of objective functions, including weighted measures of rotor thrust, power, and propulsive efficiency. The fundamental strength of the approach is that an efficient search for improved versions of the baseline design can be carried out while retaining the demonstrated accuracy inherent in the EHPIC free wake/vortex lattice performance analysis. Sample problems are described that demonstrate the success of this approach for several representative rotor configurations in hover and axial flight. Features that were introduced to convert earlier demonstration versions of this analysis into a generally applicable tool for researchers and designers is also discussed.

  17. Cosmic string wakes and large-scale structure

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.

    1988-01-01

    The formation of structure from infinite cosmic string wakes is modeled for a universe dominated by cold dark matter (CDM). Cross-sectional slices through the wake distribution tend to outline empty regions with diameters which are not inconsistent with the range of sizes of the voids in the CfA slice of the universe. The topology of the wake distribution is found to be spongy rather than cell-like. Correlations between CDM wakes do not extend much beyond a horizon length, so it is unlikely that CDM wakes are responsible for the correlations between clusters of galaxies. An estimate of the fraction of matter to accrete onto CDM wakes indicates that wakes could be more important in galaxy formation than previously anticipated.

  18. Supercritical Airfoil Technology Program Wake Experiments and Modeling for Fore- and Aft-Loaded Compressor Cascades.

    DTIC Science & Technology

    1980-09-01

    in the turbulent wake compared to the time in the laminar outer wake can be referred to as an intermit - tency factor. This intermittency effect...shown in Figure 33. This figure indicates that there is nearly no loading in the wake region. This pressure distribution was then used with very fast

  19. Computation of wake/exhaust mixing downstream of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Teske, Milton E.; Bilanin, Alan J.

    1993-01-01

    The mixing of engine exhaust with the vortical wake of high speed aircraft operating in the stratosphere can play an important role in the formation of chemical products that deplete atmospheric ozone. An accurate analysis of this type of interaction is therefore necessary as a part of the assessment of the impact of proposed High Speed Civil Transport (HSCT) designs on atmospheric chemistry. This paper describes modifications to the parabolic Navier-Stokes flow field analysis in the UNIWAKE unified aircraft wake model to accommodate the computation of wake/exhaust mixing and the simulation of reacting flow. The present implementation uses a passive chemistry model in which the reacting species are convected and diffused by the fluid dynamic solution but in which the evolution of the species does not affect the flow field. The resulting analysis, UNIWAKE/PCHEM (Passive CHEMistry) has been applied to the analysis of wake/exhaust flows downstream of representative HSCT configurations. The major elements of the flow field model are described, as are the results of sample calculations illustrating the behavior of the thermal exhaust plume and the production of species important to the modeling of condensation in the wake. Appropriate steps for further development of the UNIWAKE/PCHEM model are also outlined.

  20. 2B-Alert Web: An Open-Access Tool for Predicting the Effects of Sleep/Wake Schedules and Caffeine Consumption on Neurobehavioral Performance.

    PubMed

    Reifman, Jaques; Kumar, Kamal; Wesensten, Nancy J; Tountas, Nikolaos A; Balkin, Thomas J; Ramakrishnan, Sridhar

    2016-12-01

    Computational tools that predict the effects of daily sleep/wake amounts on neurobehavioral performance are critical components of fatigue management systems, allowing for the identification of periods during which individuals are at increased risk for performance errors. However, none of the existing computational tools is publicly available, and the commercially available tools do not account for the beneficial effects of caffeine on performance, limiting their practical utility. Here, we introduce 2B-Alert Web, an open-access tool for predicting neurobehavioral performance, which accounts for the effects of sleep/wake schedules, time of day, and caffeine consumption, while incorporating the latest scientific findings in sleep restriction, sleep extension, and recovery sleep. We combined our validated Unified Model of Performance and our validated caffeine model to form a single, integrated modeling framework instantiated as a Web-enabled tool. 2B-Alert Web allows users to input daily sleep/wake schedules and caffeine consumption (dosage and time) to obtain group-average predictions of neurobehavioral performance based on psychomotor vigilance tasks. 2B-Alert Web is accessible at: https://2b-alert-web.bhsai.org. The 2B-Alert Web tool allows users to obtain predictions for mean response time, mean reciprocal response time, and number of lapses. The graphing tool allows for simultaneous display of up to seven different sleep/wake and caffeine schedules. The schedules and corresponding predicted outputs can be saved as a Microsoft Excel file; the corresponding plots can be saved as an image file. The schedules and predictions are erased when the user logs off, thereby maintaining privacy and confidentiality. The publicly accessible 2B-Alert Web tool is available for operators, schedulers, and neurobehavioral scientists as well as the general public to determine the impact of any given sleep/wake schedule, caffeine consumption, and time of day on performance of a group of individuals. This evidence-based tool can be used as a decision aid to design effective work schedules, guide the design of future sleep restriction and caffeine studies, and increase public awareness of the effects of sleep amounts, time of day, and caffeine on alertness. © 2016 Associated Professional Sleep Societies, LLC.

  1. SAR observation and numerical modeling of tidal current wakes at the East China Sea offshore wind farm

    NASA Astrophysics Data System (ADS)

    Li, XiaoMing; Chi, Lequan; Chen, Xueen; Ren, YongZheng; Lehner, Susanne

    2014-08-01

    A TerraSAR-X (TS-X) Synthetic Aperture Radar (SAR) image acquired at the East China Sea offshore wind farm presents distinct wakes at a kilometer scale on the lee of the wind turbines. The presumption was that these wakes were caused by wind movement around turbine blades. However, wind analysis using spaceborne radiometer data, numerical weather prediction, and in situ measurements suggest that the prevailing wind direction did not align with the wakes. By analyzing measurement at the tidal gauge station and modeling of the tidal current field, these trailing wakes are interpreted to have formed when a strong tidal current impinged on the cylindrical monopiles of the wind turbines. A numerical simulation was further conducted to reproduce the tidal current wake under such conditions. Comparison of the simulated surface velocity in the wake region with the TS-X sea surface backscatter intensity shows a similar trend. Consequently, turbulence intensity (T.I.) of the tidal current wakes over multiple piles is studied using the TS-X observation. It is found that the T.I. has a logarithmic relation with distance. Furthermore, another case study showing wakes due to wind movement around turbine blades is presented to discuss the differences in the tidal current wakes and wind turbine wakes. The conclusion is drawn that small-scale wakes formed by interaction of the tidal current and the turbine piles could be also imaged by SAR when certain conditions are satisfied. The study is anticipated to draw more attentions to the impacts of offshore wind foundations on local hydrodynamic field.

  2. A simulation study demonstrating the importance of large-scale trailing vortices in wake steering

    DOE PAGES

    Fleming, Paul; Annoni, Jennifer; Churchfield, Matthew; ...

    2018-05-14

    In this article, we investigate the role of flow structures generated in wind farm control through yaw misalignment. A pair of counter-rotating vortices are shown to be important in deforming the shape of the wake and in explaining the asymmetry of wake steering in oppositely signed yaw angles. We motivate the development of new physics for control-oriented engineering models of wind farm control, which include the effects of these large-scale flow structures. Such a new model would improve the predictability of control-oriented models. Results presented in this paper indicate that wind farm control strategies, based on new control-oriented models withmore » new physics, that target total flow control over wake redirection may be different, and perhaps more effective, than current approaches. We propose that wind farm control and wake steering should be thought of as the generation of large-scale flow structures, which will aid in the improved performance of wind farms.« less

  3. A simulation study demonstrating the importance of large-scale trailing vortices in wake steering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Paul; Annoni, Jennifer; Churchfield, Matthew

    In this article, we investigate the role of flow structures generated in wind farm control through yaw misalignment. A pair of counter-rotating vortices are shown to be important in deforming the shape of the wake and in explaining the asymmetry of wake steering in oppositely signed yaw angles. We motivate the development of new physics for control-oriented engineering models of wind farm control, which include the effects of these large-scale flow structures. Such a new model would improve the predictability of control-oriented models. Results presented in this paper indicate that wind farm control strategies, based on new control-oriented models withmore » new physics, that target total flow control over wake redirection may be different, and perhaps more effective, than current approaches. We propose that wind farm control and wake steering should be thought of as the generation of large-scale flow structures, which will aid in the improved performance of wind farms.« less

  4. Numerical Modeling Studies of Wake Vortices: Real Case Simulations

    NASA Technical Reports Server (NTRS)

    Shen, Shao-Hua; Ding, Feng; Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Proctor, Fred H.

    1999-01-01

    A three-dimensional large-eddy simulation model, TASS, is used to simulate the behavior of aircraft wake vortices in a real atmosphere. The purpose for this study is to validate the use of TASS for simulating the decay and transport of wake vortices. Three simulations are performed and the results are compared with the observed data from the 1994-1995 Memphis field experiments. The selected cases have an atmospheric environment of weak turbulence and stable stratification. The model simulations are initialized with appropriate meteorological conditions and a post roll-up vortex system. The behavior of wake vortices as they descend within the atmospheric boundary layer and interact with the ground is discussed.

  5. Evaluation of Fast-Time Wake Models Using Denver 2006 Field Experiment Data

    NASA Technical Reports Server (NTRS)

    Ahmad, Nash’at N.; Pruis, Matthew J.

    2015-01-01

    The National Aeronautics and Space Administration conducted a series of wake vortex field experiments at Denver in 2003, 2005, and 2006. This paper describes the lidar wake vortex measurements and associated meteorological data collected during the 2006 deployment, and includes results of recent reprocessing of the lidar data using a new wake vortex algorithm and estimates of the atmospheric turbulence using a new algorithm to estimate eddy dissipation rate from the lidar data. The configuration and set-up of the 2006 field experiment allowed out-of-ground effect vortices to be tracked in lateral transport further than any previous campaign and thereby provides an opportunity to study long-lived wake vortices in moderate to low crosswinds. An evaluation of NASA's fast-time wake vortex transport and decay models using the dataset shows similar performance as previous studies using other field data.

  6. Comparing offshore wind farm wake observed from satellite SAR and wake model results

    NASA Astrophysics Data System (ADS)

    Bay Hasager, Charlotte

    2014-05-01

    Offshore winds can be observed from satellite synthetic aperture radar (SAR). In the FP7 EERA DTOC project, the European Energy Research Alliance project on Design Tools for Offshore Wind Farm Clusters, there is focus on mid- to far-field wind farm wakes. The more wind farms are constructed nearby other wind farms, the more is the potential loss in annual energy production in all neighboring wind farms due to wind farm cluster effects. It is of course dependent upon the prevailing wind directions and wind speed levels, the distance between the wind farms, the wind turbine sizes and spacing. Some knowledge is available within wind farm arrays and in the near-field from various investigations. There are 58 offshore wind farms in the Northern European seas grid connected and in operation. Several of those are spaced near each other. There are several twin wind farms in operation including Nysted-1 and Rødsand-2 in the Baltic Sea, and Horns Rev 1 and Horns Rev 2, Egmond aan Zee and Prinses Amalia, and Thompton 1 and Thompton 2 all in the North Sea. There are ambitious plans of constructing numerous wind farms - great clusters of offshore wind farms. Current investigation of offshore wind farms includes mapping from high-resolution satellite SAR of several of the offshore wind farms in operation in the North Sea. Around 20 images with wind farm wake cases have been retrieved and processed. The data are from the Canadian RADARSAT-1/-2 satellites. These observe in microwave C-band and have been used for ocean surface wind retrieval during several years. The satellite wind maps are valid at 10 m above sea level. The wakes are identified in the raw images as darker areas downwind of the wind farms. In the SAR-based wind maps the wake deficit is found as areas of lower winds downwind of the wind farms compared to parallel undisturbed flow in the flow direction. The wind direction is clearly visible from lee effects and wind streaks in the images. The wind farm wake cases are modeled by various types of wake models. In the EERA DTOC project the model suite consists of engineering models (Ainslie, DWM, GLC, PARK, WASP/NOJ), simplified CFD models (FUGA, FarmFlow), full CFD models (CRES-flowNS, RANS), mesoscale model (SKIRON, WRF) and coupled meso-scale and microscale models. The comparison analysis between the satellite wind wake and model results will be presented and discussed. It is first time a comprehensive analysis is performed on this subject. The topic gains increasing importance because there is a growing need to precisely model also mid- and far-field wind farms wakes for development and planning of offshore wind farm clusters.

  7. Beta EEG reflects sensory processing in active wakefulness and homeostatic sleep drive in quiet wakefulness.

    PubMed

    Grønli, Janne; Rempe, Michael J; Clegern, William C; Schmidt, Michelle; Wisor, Jonathan P

    2016-06-01

    Markers of sleep drive (<10 Hz; slow-wave activity and theta) have been identified in the course of slow-wave sleep and wakefulness. So far, higher frequencies in the waking electroencephalogram have not been examined thoroughly as a function of sleep drive. Here, electroencephalogram dynamics were measured in epochs of active wake (wake characterized by high muscle tone) or quiet wake (wake characterized by low muscle tone). It was hypothesized that the higher beta oscillations (15-35 Hz, measured by local field potential and electroencephalography) represent fundamentally different processes in active wake and quiet wake. In active wake, sensory stimulation elevated beta activity in parallel with gamma (80-90 Hz) activity, indicative of cognitive processing. In quiet wake, beta activity paralleled slow-wave activity (1-4 Hz) and theta (5-8 Hz) in tracking sleep need. Cerebral lactate concentration, a measure of cerebral glucose utilization, increased during active wake whereas it declined during quiet wake. Mathematical modelling of state-dependent dynamics of cortical lactate concentration was more precisely predictive when quiet wake and active wake were included as two distinct substates rather than a uniform state of wakefulness. The extent to which lactate concentration declined in quiet wake and increased in active wake was proportionate to the amount of beta activity. These data distinguish quiet wake from active wake. Quiet wake, particularly when characterized by beta activity, is permissive to metabolic and electrophysiological changes that occur in slow-wave sleep. These data urge further studies on state-dependent beta oscillations across species. © 2016 European Sleep Research Society.

  8. Impact of spinal anesthesia for open pyloromyotomy on operating room time.

    PubMed

    Kachko, Ludmyla; Simhi, Eliahu; Freud, Enrique; Dlugy, Elena; Katz, Jacob

    2009-10-01

    When pyloromyotomy for hypertrophic pyloric stenosis (HPS) is performed under general anesthesia, metabolic abnormalities and fluid deficits coupled with residual anesthetics may increase the risk of postoperative apnea, thereby, prolonging operating room time and delaying extubation. Spinal anesthesia has been found to reduce the rate of postoperative apnea in high-risk infants. The aim of the study was to evaluate the effect of spinal vs general anesthesia on operating room time in infants undergoing open pyloromyotomy. Data for 60 infants who underwent pyloromyotomy under spinal (n = 24) or general (n = 36) anesthesia at a tertiary pediatric medical center were derived from the computerized database. Primary outcome measures were total operating room time, procedure duration, anesthesia release time, wake-up time, and anesthesia control time (anesthesia release plus wake-up). Nonparametric Mann-Whitney test was used for statistical analysis, and Levene's test was used to assess the equality of variances in samples; P

  9. The Effect of Wind-Turbine Wakes on Summertime US Midwest Atmospheric Wind Profiles as Observed with Ground-Based Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Rhodes, Michael E.; Lundquist, Julie K.

    2013-07-01

    We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters (D) downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately 2D directly south of a wind turbine; the other lidar was moved approximately 3D north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43-117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind-tunnel observations, and for guiding assessments of the impacts of wakes on surface turbulent fluxes or surface temperatures downwind of turbines.

  10. Wall modeled LES of wind turbine wakes with geometrical effects

    NASA Astrophysics Data System (ADS)

    Bricteux, Laurent; Benard, Pierre; Zeoli, Stephanie; Moureau, Vincent; Lartigue, Ghislain; Vire, Axelle

    2017-11-01

    This study focuses on prediction of wind turbine wakes when geometrical effects such as nacelle, tower, and built environment, are taken into account. The aim is to demonstrate the ability of a high order unstructured solver called YALES2 to perform wall modeled LES of wind turbine wake turbulence. The wind turbine rotor is modeled using an Actuator Line Model (ALM) while the geometrical details are explicitly meshed thanks to the use of an unstructured grid. As high Reynolds number flows are considered, sub-grid scale models as well as wall modeling are required. The first test case investigated concerns a wind turbine flow located in a wind tunnel that allows to validate the proposed methodology using experimental data. The second test case concerns the simulation of a wind turbine wake in a complex environment (e.g. a Building) using realistic turbulent inflow conditions.

  11. Helicopter Rotor Wake Geometry and Its Influence in Forward Flight. Volume 1. Generalized Wake Geometry and Wake Effect on Rotor Airloads and Performance.

    DTIC Science & Technology

    1983-10-01

    performance results similar to an articulated rotor with non -zero flapping wh~ere the appropriate adjustments to blade cyclic controls were made to run at...additional experimental data are required, limited data from previous investigations tend to support these theoretical observations. The occurrence of close...through 10. The scope of this effort has included both analytical and experimental investigation programs, and the development of distorted and

  12. Simulations of the flow past a cylinder using an unsteady double wake model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos-García, N.; Sarlak, H.; Andersen, S. J.

    2016-06-08

    In the present work, the in-house UnSteady Double Wake Model (USDWM) is used to simulate flows past a cylinder at subcritical, supercritical, and transcritical Reynolds numbers. The flow model is a two-dimensional panel method which uses the unsteady double wake technique to model flow separation and its dynamics. In the present work the separation location is obtained from experimental data and fixed in time. The highly unsteady flow field behind the cylinder is analyzed in detail, comparing the vortex shedding charactericts under the different flow conditions.

  13. Optimization Under Uncertainty for Wake Steering Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quick, Julian; Annoni, Jennifer; King, Ryan N

    Offsetting turbines' yaw orientations from incoming wind is a powerful tool that may be leveraged to reduce undesirable wake effects on downstream turbines. First, we examine a simple two-turbine case to gain intuition as to how inflow direction uncertainty affects the optimal solution. The turbines are modeled with unidirectional inflow such that one turbine directly wakes the other, using ten rotor diameter spacing. We perform optimization under uncertainty (OUU) via a parameter sweep of the front turbine. The OUU solution generally prefers less steering. We then do this optimization for a 60-turbine wind farm with unidirectional inflow, varying the degreemore » of inflow uncertainty and approaching this OUU problem by nesting a polynomial chaos expansion uncertainty quantification routine within an outer optimization. We examined how different levels of uncertainty in the inflow direction effect the ratio of the expected values of deterministic and OUU solutions for steering strategies in the large wind farm, assuming the directional uncertainty used to reach said OUU solution (this ratio is defined as the value of the stochastic solution or VSS).« less

  14. Asymptotic expansions for 2D symmetrical laminar wakes

    NASA Astrophysics Data System (ADS)

    Belan, Marco; Tordella, Daniela

    1999-11-01

    An extension of the well known asymptotic representation of the 2D laminar incompressible wake past a symmetrical body is presented. Using the thin free shear layer approximation we determined solutions in terms of infinite asymptotic expansions. These are power series of the streamwise space variable with fractional negative coefficients. The general n-th order term has been analytically established. Through analysis of the behaviour of the same expansions inserted into the Navier-Stokes equations, we verified the self-consistency of the approximation showing that at the third order the correction due to pressure variations identically vanishes while the contribution of the longitudinal diffusion is still two-three order of magnitude smaller than that of the transversal diffusion, depending on Re. When the procedure is applied to the Navier-Stokes equations, we showed that further mathematical difficulties do not arise. Where opportune one may thus easily shift to the complete model. Through a spatial multiscaling approach, a brief account on the stability properties of these expansions as representing the non parallel basic flow of 2D wakes will be given.

  15. Self-similarity and flow characteristics of vertical-axis wind turbine wakes: an LES study

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Dabiri, John O.

    2017-04-01

    Large eddy simulation (LES) is coupled with a turbine model to study the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a tuning-free anisotropic minimum dissipation model is used to parameterise the subfilter stress tensor, while the turbine-induced forces are modelled with an actuator line technique. The LES framework is first validated in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit can be well characterised by a two-dimensional multivariate Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine. Also, a simple parameterisation of VAWTs for LES with very coarse grid resolutions is proposed, in which the turbine is modelled as a rectangular porous plate with the same thrust coefficient. The simulation results show that, after some downwind distance (x/D ≈ 6), both actuator line and rectangular porous plate models have similar predictions for the mean velocity deficit. These results are of particular importance in simulations of large wind farms where, due to the coarse spatial resolution, the flow around individual VAWTs is not resolved.

  16. Virtual reality and consciousness inference in dreaming

    PubMed Central

    Hobson, J. Allan; Hong, Charles C.-H.; Friston, Karl J.

    2014-01-01

    This article explores the notion that the brain is genetically endowed with an innate virtual reality generator that – through experience-dependent plasticity – becomes a generative or predictive model of the world. This model, which is most clearly revealed in rapid eye movement (REM) sleep dreaming, may provide the theater for conscious experience. Functional neuroimaging evidence for brain activations that are time-locked to rapid eye movements (REMs) endorses the view that waking consciousness emerges from REM sleep – and dreaming lays the foundations for waking perception. In this view, the brain is equipped with a virtual model of the world that generates predictions of its sensations. This model is continually updated and entrained by sensory prediction errors in wakefulness to ensure veridical perception, but not in dreaming. In contrast, dreaming plays an essential role in maintaining and enhancing the capacity to model the world by minimizing model complexity and thereby maximizing both statistical and thermodynamic efficiency. This perspective suggests that consciousness corresponds to the embodied process of inference, realized through the generation of virtual realities (in both sleep and wakefulness). In short, our premise or hypothesis is that the waking brain engages with the world to predict the causes of sensations, while in sleep the brain’s generative model is actively refined so that it generates more efficient predictions during waking. We review the evidence in support of this hypothesis – evidence that grounds consciousness in biophysical computations whose neuronal and neurochemical infrastructure has been disclosed by sleep research. PMID:25346710

  17. Virtual reality and consciousness inference in dreaming.

    PubMed

    Hobson, J Allan; Hong, Charles C-H; Friston, Karl J

    2014-01-01

    This article explores the notion that the brain is genetically endowed with an innate virtual reality generator that - through experience-dependent plasticity - becomes a generative or predictive model of the world. This model, which is most clearly revealed in rapid eye movement (REM) sleep dreaming, may provide the theater for conscious experience. Functional neuroimaging evidence for brain activations that are time-locked to rapid eye movements (REMs) endorses the view that waking consciousness emerges from REM sleep - and dreaming lays the foundations for waking perception. In this view, the brain is equipped with a virtual model of the world that generates predictions of its sensations. This model is continually updated and entrained by sensory prediction errors in wakefulness to ensure veridical perception, but not in dreaming. In contrast, dreaming plays an essential role in maintaining and enhancing the capacity to model the world by minimizing model complexity and thereby maximizing both statistical and thermodynamic efficiency. This perspective suggests that consciousness corresponds to the embodied process of inference, realized through the generation of virtual realities (in both sleep and wakefulness). In short, our premise or hypothesis is that the waking brain engages with the world to predict the causes of sensations, while in sleep the brain's generative model is actively refined so that it generates more efficient predictions during waking. We review the evidence in support of this hypothesis - evidence that grounds consciousness in biophysical computations whose neuronal and neurochemical infrastructure has been disclosed by sleep research.

  18. Models of Wake-Vortex Spreading Mechanisms and Their Estimated Uncertainties

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Hardy, Gordon H.; Meyn, Larry A.

    2006-01-01

    One of the primary constraints on the capacity of the nation's air transportation system is the landing capacity at its busiest airports. Many airports with nearly-simultaneous operations on closely-spaced parallel runways (i.e., as close as 750 ft (246m)) suffer a severe decrease in runway acceptance rate when weather conditions do not allow full utilization. The objective of a research program at NASA Ames Research Center is to develop the technologies needed for traffic management in the airport environment so that operations now allowed on closely-spaced parallel runways under Visual Meteorological Conditions can also be carried out under Instrument Meteorological Conditions. As part of this overall research objective, the study reported here has developed improved models for the various aerodynamic mechanisms that spread and transport wake vortices. The purpose of the study is to continue the development of relationships that increase the accuracy of estimates for the along-trail separation distances available before the vortex wake of a leading aircraft intrudes into the airspace of a following aircraft. Details of the models used and their uncertainties are presented in the appendices to the paper. Suggestions are made as to the theoretical and experimental research needed to increase the accuracy of and confidence level in the models presented and instrumentation required or more precise estimates of the motion and spread of vortex wakes. The improved wake models indicate that, if the following aircraft is upwind of the leading aircraft, the vortex wakes of the leading aircraft will not intrude into the airspace of the following aircraft for about 7s (based on pessimistic assumptions) for most atmospheric conditions. The wake-spreading models also indicate that longer time intervals before wake intrusion are available when atmospheric turbulence levels are mild or moderate. However, if the estimates for those time intervals are to be reliable, further study is necessary to develop the instrumentation and procedures needed to accurately define when the more benign atmospheric conditions exist.

  19. Simulation of Wake Vortex Radiometric Detection via Jet Exhaust Proxy

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.

    2015-01-01

    This paper describes an analysis of the potential of an airborne hyperspectral imaging IR instrument to infer wake vortices via turbine jet exhaust as a proxy. The goal was to determine the requirements for an imaging spectrometer or radiometer to effectively detect the exhaust plume, and by inference, the location of the wake vortices. The effort examines the gas spectroscopy of the various major constituents of turbine jet exhaust and their contributions to the modeled detectable radiance. Initially, a theoretical analysis of wake vortex proxy detection by thermal radiation was realized in a series of simulations. The first stage used the SLAB plume model to simulate turbine jet exhaust plume characteristics, including exhaust gas transport dynamics and concentrations. The second stage used these plume characteristics as input to the Line By Line Radiative Transfer Model (LBLRTM) to simulate responses from both an imaging IR hyperspectral spectrometer or radiometer. These numerical simulations generated thermal imagery that was compared with previously reported wake vortex temperature data. This research is a continuation of an effort to specify the requirements for an imaging IR spectrometer or radiometer to make wake vortex measurements. Results of the two-stage simulation will be reported, including instrument specifications for wake vortex thermal detection. These results will be compared with previously reported results for IR imaging spectrometer performance.

  20. Free Wake Techniques for Rotor Aerodynamic Analylis. Volume 2: Vortex Sheet Models

    NASA Technical Reports Server (NTRS)

    Tanuwidjaja, A.

    1982-01-01

    Results of computations are presented using vortex sheets to model the wake and test the sensitivity of the solutions to various assumptions used in the development of the models. The complete codings are included.

  1. Characterizing the wake vortex signature for an active line of sight remote sensor. M.S. Thesis Technical Report No. 19

    NASA Technical Reports Server (NTRS)

    Heil, Robert Milton

    1994-01-01

    A recurring phenomenon, described as a wake vortex, develops as an aircraft approaches the runway to land. As the aircraft moves along the runway, each of the wing tips generates a spiraling and expanding cone of air. During the lifetime of this turbulent event, conditions exist over the runway which can be hazardous to following aircraft, particularly when a small aircraft is following a large aircraft. Left to themselves, these twin vortex patterns will converge toward each other near the center of the runway, harmlessly dissipating through interaction with each other or by contact with the ground. Unfortunately, the time necessary to disperse the vortex is often not predictable, and at busy airports can severely impact terminal area productivity. Rudimentary methods of avoidance are in place. Generally, time delays between landing aircraft are based on what is required to protect a small aircraft. Existing ambient wind conditions can complicate the situation. Reliable detection and tracking of a wake vortex hazard is a major technical problem which can significantly impact runway productivity. Landing minimums could be determined on the basis of the actual hazard rather than imposed on the basis of a worst case scenario. This work focuses on using a windfield description of a wake vortex to generate line-of-sight Doppler velocity truth data appropriate to an arbitrarily located active sensor such as a high resolution radar or lidar. The goal is to isolate a range Doppler signature of the vortex phenomenon that can be used to improve detection. Results are presented based on use of a simplified model of a wake vortex pattern. However, it is important to note that the method of analysis can easily be applied to any vortex model used to generate a windfield snapshot. Results involving several scan strategies are shown for a point sensor with a range resolution of 1 to 4 meters. Vortex signatures presented appear to offer potential for detection and tracking.

  2. Noise produced by the interaction of a rotor wake with a swept stator blade

    NASA Astrophysics Data System (ADS)

    Envia, E.; Kerschen, E. J.

    1984-10-01

    An analysis is developed for the noise generated by the interaction of rotor viscous wakes and a single swept stator vane. The stator vane spans a channel with infinite parallel walls which contains a uniform subsonic mean flow. High frequency wakes, for which the noise generation is concentrated at the vane leading edge, are considered. The general wake pattern is expanded in spanwise modes and solutions for each mode are derived using the Wiener-Hopf technique applied to the equations in the nonorthogonal coordinates. Closed form expressions for the acoustic farfield are obtained. The results of the analysis are used in parametric calculations of rotor viscous wake-stator vane interactions in order to study the effectiveness of sweep as a noise reduction mechanism. For the cases studied, moderate stator sweep angles produce sizeable reductions in the level of the farfield noise. The presence of rotor wake circumferential lean actually increases the noise reduction produced by moderate stator sweep angles.

  3. A control-oriented dynamic wind farm flow model: “WFSim”

    NASA Astrophysics Data System (ADS)

    Boersma, S.; Gebraad, P. M. O.; Vali, M.; Doekemeijer, B. M.; van Wingerden, J. W.

    2016-09-01

    In this paper, we present and extend the dynamic medium fidelity control-oriented Wind Farm Simulator (WFSim) model. WFSim resolves flow fields in wind farms in a horizontal, two dimensional plane. It is based on the spatially and temporally discretised two dimensional Navier-Stokes equations and the continuity equation and solves for a predefined grid and wind farm topology. The force on the flow field generated by turbines is modelled using actuator disk theory. Sparsity in system matrices is exploited in WFSim, which enables a relatively fast flow field computation. The extensions to WFSim we present in this paper are the inclusion of a wake redirection model, a turbulence model and a linearisation of the nonlinear WFSim model equations. The first is important because it allows us to carry out wake redirection control and simulate situations with an inflow that is misaligned with the rotor plane. The wake redirection model is validated against a theoretical wake centreline known from literature. The second extension makes WFSim more realistic because it accounts for wake recovery. The amount of recovery is validated using a high fidelity simulation model Simulator fOr Wind Farm Applications (SOWFA) for a two turbine test case. Finally, a linearisation is important since it allows the application of more standard analysis, observer and control techniques.

  4. Analysis of the Radar Reflectivity of Aircraft Vortex Wakes

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Wray, Alan; Yan, Jerry (Technical Monitor)

    2000-01-01

    Radar has been proposed as a way to track wake vortices to reduce aircraft spacing and tests have revealed radar echoes from aircraft wakes in clear air. The results are always interpreted qualitatively using Tatarski's theory of weak scattering by isotropic atmospheric turbulence. The goal of the present work was to predict the value of the radar cross-section (RCS) using simpler models. This is accomplished in two steps. First, the refractive index is obtained. Since the structure of the aircraft wakes is different from atmospheric turbulence, three simple mechanisms specific to vortex wakes are considered: (1) Radial density gradient in a two-dimensional vortex, (2) three-dimensional fluctuations in the vortex cores, and (3) Adiabatic transport of the atmospheric fluid in a two-dimensional oval surrounding the pair of vortices. The index of refraction is obtained more precisely for the two-dimensional mechanisms than for the three-dimensional ones. In the second step, knowing the index of refraction, a scattering analysis is performed. Tatarski's weak scattering approximation is kept but the usual assumptions of a far-field and a uniform incident wave are dropped. Neither assumption is generally valid for a wake that is coherent across the radar beam. For analytical insight, a simpler approximation that invokes, in addition to weak scattering, the far-field and wide cylindrical beam assumptions, is also developed and compared with the more general analysis. The predicted RCS values for the oval surround the vortices (mechanism C) agree with the experiments of Bilson conducted over a wide range of frequencies. However, the predictions have a cut-off away from normal incidence which is not present in the measurements. Estimates suggest that this is due to turbulence in the baroclinic vorticity generated at the boundary of the oval. The reflectivity of a vortex itself (mechanism A) is comparable to that of the oval (mechanism C) but cuts-off at frequencies lower than those considered in all the experiments to date. The RCS of a vortex happens to peak at the frequency (about 49 MHz) where atmospheric radars (known as ST radars) operate and so the present prediction could be verified in the future. Finally , we suggest that hot engine exhaust could increase RCE by 40 db and reveal vortex circulation, provided its mixing with the surroundings is prevented in the laminarising flow of the vortices.

  5. Characteristics of wake vortex generated by a Boeing 727 jet transport during two-segment and normal ILS approach flight paths

    NASA Technical Reports Server (NTRS)

    Kurkowski, R. L.; Barber, M. R.; Garodz, L. J.

    1976-01-01

    A series of flight tests was conducted to evaluate the vortex wake characteristics of a Boeing 727 (B727-200) aircraft during conventional and two-segment ILS approaches. Twelve flights of the B727, which was equipped with smoke generators for vortex marking, were flown and its vortex wake was intentionally encountered by a Lear Jet model 23 (LR-23) and a Piper Twin Comanche (PA-30). Location of the B727 vortex during landing approach was measured using a system of photo-theodolites. The tests showed that at a given separation distance there were no readily apparent differences in the upsets resulting from deliberate vortex encounters during the two types of approaches. Timed mappings of the position of the landing configuration vortices showed that they tended to descend approximately 91 m(300 ft) below the flight path of the B727. The flaps of the B727 have a dominant effect on the character of the trailed wake vortex. The clean wing produces a strong, concentrated vortex but as the flaps are lowered, the vortex system becomes more diffuse. Pilot opinion and roll acceleration data indicate that 4.5 n.mi. would be a minimum separation distance at which roll control of light aircraft (less than 5,670 kg (12,500 lb) could be maintained during parallel encounters of the B727's landing configuration wake. This minimum separation distance is generally in scale with results determined from previous tests of other aircraft using the small roll control criteria.

  6. Spatial Linear Instability of Confluent Wake/Boundary Layers

    NASA Technical Reports Server (NTRS)

    Liou, William W.; Liu, Feng-Jun; Rumsey, C. L. (Technical Monitor)

    2001-01-01

    The spatial linear instability of incompressible confluent wake/boundary layers is analyzed. The flow model adopted is a superposition of the Blasius boundary layer and a wake located above the boundary layer. The Orr-Sommerfeld equation is solved using a global numerical method for the resulting eigenvalue problem. The numerical procedure is validated by comparing the present solutions for the instability of the Blasius boundary layer and for the instability of a wake with published results. For the confluent wake/boundary layers, modes associated with the boundary layer and the wake, respectively, are identified. The boundary layer mode is found amplified as the wake approaches the wall. On the other hand, the modes associated with the wake, including a symmetric mode and an antisymmetric mode, are stabilized by the reduced distance between the wall and the wake. An unstable mode switching at low frequency is observed where the antisymmetric mode becomes more unstable than the symmetric mode when the wake velocity defect is high.

  7. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    PubMed

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  8. Simulation of wind turbine wakes using the actuator line technique.

    PubMed

    Sørensen, Jens N; Mikkelsen, Robert F; Henningson, Dan S; Ivanell, Stefan; Sarmast, Sasan; Andersen, Søren J

    2015-02-28

    The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actuator line methodology and present a study in which the technique is employed to determine the near-wake properties of wind turbines. The presented results include a comparison of experimental results of the wake characteristics of the flow around a three-bladed model wind turbine, the development of a simple analytical formula for determining the near-wake length behind a wind turbine and a detailed investigation of wake structures based on proper orthogonal decomposition analysis of numerically generated snapshots of the wake. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Wake Management Strategies for Reduction of Turbomachinery Fan Noise

    NASA Technical Reports Server (NTRS)

    Waitz, Ian A.

    1998-01-01

    The primary objective of our work was to evaluate and test several wake management schemes for the reduction of turbomachinery fan noise. Throughout the course of this work we relied on several tools. These include 1) Two-dimensional steady boundary-layer and wake analyses using MISES (a thin-shear layer Navier-Stokes code), 2) Two-dimensional unsteady wake-stator interaction simulations using UNSFLO, 3) Three-dimensional, steady Navier-Stokes rotor simulations using NEWT, 4) Internal blade passage design using quasi-one-dimensional passage flow models developed at MIT, 5) Acoustic modeling using LINSUB, 6) Acoustic modeling using VO72, 7) Experiments in a low-speed cascade wind-tunnel, and 8) ADP fan rig tests in the MIT Blowdown Compressor.

  10. Experimental Study on the Wake Meandering Within a Scale Model Wind Farm Subject to a Wind-Tunnel Flow Simulating an Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Coudou, Nicolas; Buckingham, Sophia; Bricteux, Laurent; van Beeck, Jeroen

    2017-12-01

    The phenomenon of meandering of the wind-turbine wake comprises the motion of the wake as a whole in both horizontal and vertical directions as it is advected downstream. The oscillatory motion of the wake is a crucial factor in wind farms, because it increases the fatigue loads, and, in particular, the yaw loads on downstream turbines. To address this phenomenon, experimental investigations are carried out in a wind-tunnel flow simulating an atmospheric boundary layer with the Coriolis effect neglected. A 3 × 3 scaled wind farm composed of three-bladed rotating wind-turbine models is subject to a neutral boundary layer over a slightly-rough surface, i.e. corresponding to offshore conditions. Particle-image-velocimetry measurements are performed in a horizontal plane at hub height in the wakes of the three wind turbines occupying the wind-farm centreline. These measurements allow determination of the wake centrelines, with spectral analysis indicating the characteristic wavelength of the wake-meandering phenomenon. In addition, measurements with hot-wire anemometry are performed along a vertical line in the wakes of the same wind turbines, with both techniques revealing the presence of wake meandering behind all three turbines. The spectral analysis performed with the spatial and temporal signals obtained from these two measurement techniques indicates a Strouhal number of ≈ 0.20 - 0.22 based on the characteristic wake-meandering frequency, the rotor diameter and the flow speed at hub height.

  11. Experimental Study on the Wake Meandering Within a Scale Model Wind Farm Subject to a Wind-Tunnel Flow Simulating an Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Coudou, Nicolas; Buckingham, Sophia; Bricteux, Laurent; van Beeck, Jeroen

    2018-04-01

    The phenomenon of meandering of the wind-turbine wake comprises the motion of the wake as a whole in both horizontal and vertical directions as it is advected downstream. The oscillatory motion of the wake is a crucial factor in wind farms, because it increases the fatigue loads, and, in particular, the yaw loads on downstream turbines. To address this phenomenon, experimental investigations are carried out in a wind-tunnel flow simulating an atmospheric boundary layer with the Coriolis effect neglected. A 3 × 3 scaled wind farm composed of three-bladed rotating wind-turbine models is subject to a neutral boundary layer over a slightly-rough surface, i.e. corresponding to offshore conditions. Particle-image-velocimetry measurements are performed in a horizontal plane at hub height in the wakes of the three wind turbines occupying the wind-farm centreline. These measurements allow determination of the wake centrelines, with spectral analysis indicating the characteristic wavelength of the wake-meandering phenomenon. In addition, measurements with hot-wire anemometry are performed along a vertical line in the wakes of the same wind turbines, with both techniques revealing the presence of wake meandering behind all three turbines. The spectral analysis performed with the spatial and temporal signals obtained from these two measurement techniques indicates a Strouhal number of ≈ 0.20 - 0.22 based on the characteristic wake-meandering frequency, the rotor diameter and the flow speed at hub height.

  12. Initialization and Simulation of Three-Dimensional Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Zheng, Z. C.

    1997-01-01

    This paper studies the effects of axial velocity profiles on vortex decay, in order to properly initialize and simulate three-dimensional wake vortex flow. Analytical relationships are obtained based on a single vortex model and computational simulations are performed for a rather practical vortex wake, which show that the single vortex analytical relations can still be applicable at certain streamwise sections of three-dimensional wake vortices.

  13. Wake Island, United States Territory General Environmental Compliance Assessment and Wastewater Characterization Survey.

    DTIC Science & Technology

    1998-04-01

    Flight, 15th Civil Engineering Squadron, Hickam Air Force Base , Hawaii. The primary goals of this survey were to: 1. Provide a general environmental...2402 E Drive Brooks Air Force Base TX 78235-5114 W*C QTTALIT7 INSPECTED 4 NOTICES When Government drawings, specifications, or other data are used...time of this survey the real property assets of Wake Island were the responsibility of the US Air Force . Hickam AFB, Hawaii maintains the records for

  14. Calibration of averaging total pressure flight wake rake and natural-laminar-flow airfoil drag certification

    NASA Technical Reports Server (NTRS)

    Irani, E.; Snyder, M. H.

    1988-01-01

    An averaging total pressure wake rake used by the Cessna Aircraft Company in flight tests of a modified 210 airplane with a laminar flow wing was calibrated in wind tunnel tests against a five-tube pressure probe. The model generating the wake was a full-scale model of the Cessna airplane wing. Indications of drag trends were the same for both instruments.

  15. Modeling the effect of initial and free-stream conditions on circular wakes

    NASA Astrophysics Data System (ADS)

    Lewalle, Jacques

    A cascade-transport model is applied to study the effect of initial and free-stream conditions on circular waves. The role of the very-large-eddies (VLEs) is shown and used to derive a new understanding of wakes and their lack of universality. Computational results are reported which show that the VLEs are a determining factor in the development of self-preserving solutions for the axisymmetric wake.

  16. Analysis of Control-Oriented Wake Modeling Tools Using Lidar Field Results

    DOE PAGES

    Annoni, Jennifer; Fleming, Paul; Scholbrock, Andrew; ...

    2018-02-08

    Wind turbines in a wind farm operate individually to maximize their own performance regardless of the impact of aerodynamic interactions on neighboring turbines. Wind farm controls can be used to increase power production or reduce overall structural loads by properly coordinating turbines. One wind farm control strategy that is addressed in literature is known as wake steering, wherein upstream turbines operate in yaw misaligned conditions to redirect their wakes away from downstream turbines. The National Renewable Energy Laboratory (NREL) in Golden, CO conducted a demonstration of wake steering on a single utility-scale turbine. In this study, the turbine was operatedmore » at various yaw misalignment setpoints while a lidar mounted on the nacelle scanned five downstream distances. The lidar measurements were combined with turbine data, as well as measurements of the inflow made by a highly instrumented meteorological mast upstream. The full-scale measurements are used to validate controls-oriented tools, including wind turbine wake models, used for wind farm controls and optimization. This paper presents a quantitative comparison of the lidar data and controls-oriented wake models under different atmospheric conditions and turbine operation. The results show good agreement between the lidar data and the models under these different conditions.« less

  17. Analysis of Control-Oriented Wake Modeling Tools Using Lidar Field Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annoni, Jennifer; Fleming, Paul; Scholbrock, Andrew

    Wind turbines in a wind farm operate individually to maximize their own performance regardless of the impact of aerodynamic interactions on neighboring turbines. Wind farm controls can be used to increase power production or reduce overall structural loads by properly coordinating turbines. One wind farm control strategy that is addressed in literature is known as wake steering, wherein upstream turbines operate in yaw misaligned conditions to redirect their wakes away from downstream turbines. The National Renewable Energy Laboratory (NREL) in Golden, CO conducted a demonstration of wake steering on a single utility-scale turbine. In this study, the turbine was operatedmore » at various yaw misalignment setpoints while a lidar mounted on the nacelle scanned five downstream distances. The lidar measurements were combined with turbine data, as well as measurements of the inflow made by a highly instrumented meteorological mast upstream. The full-scale measurements are used to validate controls-oriented tools, including wind turbine wake models, used for wind farm controls and optimization. This paper presents a quantitative comparison of the lidar data and controls-oriented wake models under different atmospheric conditions and turbine operation. The results show good agreement between the lidar data and the models under these different conditions.« less

  18. Cortical region-specific sleep homeostasis in mice: effects of time of day and waking experience.

    PubMed

    Guillaumin, Mathilde C C; McKillop, Laura E; Cui, Nanyi; Fisher, Simon P; Foster, Russell G; de Vos, Maarten; Peirson, Stuart N; Achermann, Peter; Vyazovskiy, Vladyslav V

    2018-04-25

    Sleep-wake history, wake behaviours, lighting conditions and circadian time influence sleep, but neither their relative contribution, nor the underlying mechanisms are fully understood. The dynamics of EEG slow-wave activity (SWA) during sleep can be described using the two-process model, whereby the parameters of homeostatic Process S are estimated using empirical EEG SWA (0.5-4 Hz) in non-rapid eye movement sleep (NREM), and the 24-h distribution of vigilance states. We hypothesised that the influence of extrinsic factors on sleep homeostasis, such as the time of day or wake behaviour, would manifest in systematic deviations between empirical SWA and model predictions. To test this hypothesis, we performed parameter estimation and tested model predictions using NREM SWA derived from continuous EEG recordings from the frontal and occipital cortex in mice. The animals showed prolonged wake periods, followed by consolidated sleep, both during the dark and light phases, and wakefulness primarily consisted of voluntary wheel running, learning a new motor skill or novel object exploration. Simulated SWA matched empirical levels well across conditions, and neither waking experience nor time of day had a significant influence on the fit between data and simulation. However, we consistently observed that Process S declined during sleep significantly faster in the frontal than in the occipital area of the neocortex. The striking resilience of the model to specific wake behaviours, lighting conditions and time of day suggests that intrinsic factors underpinning the dynamics of Process S are robust to extrinsic influences, despite their major role in shaping the overall amount and distribution of vigilance states across 24 h.

  19. Turbulent Plane Wakes Subjected to Successive Strains

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.

    2003-01-01

    Six direct numerical simulations of turbulent time-evolving strained plane wakes have been examined to investigate the response of a wake to successive irrotational plane strains of opposite sign. The orientation of the applied strain field has been selected so that the flow is the time-developing analogue of a spatially developing wake evolving in the presence of either a favourable or an adverse streamwise pressure gradient. The magnitude of the applied strain rate a is constant in time t until the total strain e(sup at) reaches about four. At this point, a new simulation is begun with the sign of the applied strain being reversed (the original simulation is continued as well). When the total strain is reduced back to its original value of one, yet another simulation is begun with the sign of the strain being reversed again back to its original sign. This process is done for both initially "favourable" and initially "adverse" strains, providing simulations for each of these strain types from three different initial conditions. The evolution of the wake mean velocity deficit and width is found to be very similar for all the adversely strained cases, with both measures rapidly achieving exponential growth at the rate associated with the cross-stream expansive strain e(sup at). In the "favourably" strained cases, the wake widths approach a constant and the velocity deficits ultimately decay rapidly as e(sup -2at). Although all three of these cases do exhibit the same asymptotic exponential behaviour, the time required to achieve this is longer for the cases that have been previously adversely strained (by at approx. equals 1). These simulations confirm the generality of the conclusions drawn in Rogers (2002) regarding the response of plane wakes to strain. The evolution of strained wakes is not consistent with the predictions of classical self-similar analysis; a more general equilibrium similarity solution is required to describe the results. At least for the cases considered here, the wake Reynolds number and the ratio of the turbulent kinetic energy to the square of the wake mean velocity deficit are determined nearly entirely by the total strain. For these measures the order in which the strains are applied does not matter and the changes brought about by the strain are nearly reversible. The wake mean velocity deficit and width, on the other hand, differ by about a factor of three when the total strain returns to one, depending on whether the wake was first "favourably" or "adversely" strained. The strain history is important for predicting the evolution of these quantities.

  20. THE DEVELOPMENT OF SLEEP-WAKE RHYTHMS AND THE SEARCH FOR ELEMENTAL CIRCUITS IN THE INFANT BRAIN

    PubMed Central

    Blumberg, Mark S.; Gall, Andrew J.; Todd, William D.

    2014-01-01

    Despite the predominance of sleep in early infancy, developmental science has yet to play a major role in shaping concepts and theories about sleep and its associated ultradian and circadian rhythms. Here we argue that developmental analyses help us to elucidate the relative contributions of the brainstem and forebrain to sleep-wake control and to dissect the neural components of sleep-wake rhythms. Developmental analysis also makes it clear that sleep-wake processes in infants are the foundation for those of adults. For example, the infant brainstem alone contains a fundamental sleep-wake circuit that is sufficient to produce transitions among wakefulness, quiet sleep, and active sleep. Also, consistent with the requirements of a “flip-flop” model of sleep-wake processes, this brainstem circuit supports rapid transitions between states. Later in development, strengthening bidirectional interactions between the brainstem and forebrain contribute to the consolidation of sleep and wake bouts, the elaboration of sleep homeostatic processes, and the emergence of diurnal or nocturnal circadian rhythms. The developmental perspective promoted here critically constrains theories of sleep-wake control and provides a needed framework for the creation of fully realized computational models. Finally, with a better understanding of how this system is constructed developmentally, we will gain insight into the processes that govern its disintegration due to aging and disease. PMID:24708298

  1. The development of sleep-wake rhythms and the search for elemental circuits in the infant brain.

    PubMed

    Blumberg, Mark S; Gall, Andrew J; Todd, William D

    2014-06-01

    Despite the predominance of sleep in early infancy, developmental science has yet to play a major role in shaping concepts and theories about sleep and its associated ultradian and circadian rhythms. Here we argue that developmental analyses help us to elucidate the relative contributions of the brainstem and forebrain to sleep-wake control and to dissect the neural components of sleep-wake rhythms. Developmental analysis also makes it clear that sleep-wake processes in infants are the foundation for those of adults. For example, the infant brainstem alone contains a fundamental sleep-wake circuit that is sufficient to produce transitions among wakefulness, quiet sleep, and active sleep. In addition, consistent with the requirements of a "flip-flop" model of sleep-wake processes, this brainstem circuit supports rapid transitions between states. Later in development, strengthening bidirectional interactions between the brainstem and forebrain contribute to the consolidation of sleep and wake bouts, the elaboration of sleep homeostatic processes, and the emergence of diurnal or nocturnal circadian rhythms. The developmental perspective promoted here critically constrains theories of sleep-wake control and provides a needed framework for the creation of fully realized computational models. Finally, with a better understanding of how this system is constructed developmentally, we will gain insight into the processes that govern its disintegration due to aging and disease.

  2. Amygdala Lesions Reduce Cataplexy in Orexin KO mice

    PubMed Central

    Burgess, C.R.; Oishi, Y.; Mochizuki, T.; Peever, J.H.; Scammell, T.E.

    2013-01-01

    Narcolepsy is characterized by excessive sleepiness and cataplexy, sudden episodes of muscle weakness during waking that are thought to be an intrusion of REM sleep muscle atonia into wakefulness. One of the most striking aspects of cataplexy is that it is often triggered by strong, generally positive emotions, but little is known about the neural pathways through which positive emotions trigger muscle atonia. We hypothesized that the amygdala is functionally important for cataplexy because the amygdala has a role in processing emotional stimuli and it contains neurons that are active during cataplexy. Using anterograde and retrograde tracing in mice, we found that GABAergic neurons in the central nucleus of the amygdala heavily innervate neurons that maintain waking muscle tone such as those in the ventrolateral periaqueductal grey, lateral pontine tegmentum, locus coeruleus, and dorsal raphe. We then found that bilateral, excitotoxic lesions of the amygdala markedly reduced cataplexy in orexin knockout mice, a model of narcolepsy. These lesions did not alter basic sleep/wake behavior, but substantially reduced the triggering of cataplexy. Lesions also reduced the cataplexy events triggered by conditions associated with high arousal and positive emotions (i.e., wheel running and chocolate). These observations demonstrate that the amygdala is a functionally important part of the circuitry underlying cataplexy and suggest that increased amygdala activity in response to emotional stimuli could directly trigger cataplexy by inhibiting brainstem regions that suppress muscle atonia. PMID:23739970

  3. Amygdala lesions reduce cataplexy in orexin knock-out mice.

    PubMed

    Burgess, Christian R; Oishi, Yo; Mochizuki, Takatoshi; Peever, John H; Scammell, Thomas E

    2013-06-05

    Narcolepsy is characterized by excessive sleepiness and cataplexy, sudden episodes of muscle weakness during waking that are thought to be an intrusion of rapid eye movement sleep muscle atonia into wakefulness. One of the most striking aspects of cataplexy is that it is often triggered by strong, generally positive emotions, but little is known about the neural pathways through which positive emotions trigger muscle atonia. We hypothesized that the amygdala is functionally important for cataplexy because the amygdala has a role in processing emotional stimuli and it contains neurons that are active during cataplexy. Using anterograde and retrograde tracing in mice, we found that GABAergic neurons in the central nucleus of the amygdala heavily innervate neurons that maintain waking muscle tone such as those in the ventrolateral periaqueductal gray, lateral pontine tegmentum, locus ceruleus, and dorsal raphe. We then found that bilateral, excitotoxic lesions of the amygdala markedly reduced cataplexy in orexin knock-out mice, a model of narcolepsy. These lesions did not alter basic sleep-wake behavior but substantially reduced the triggering of cataplexy. Lesions also reduced the cataplexy events triggered by conditions associated with high arousal and positive emotions (i.e., wheel running and chocolate). These observations demonstrate that the amygdala is a functionally important part of the circuitry underlying cataplexy and suggest that increased amygdala activity in response to emotional stimuli could directly trigger cataplexy by inhibiting brainstem regions that suppress muscle atonia.

  4. A Study of Water Wave Wakes of Washington State Ferries

    NASA Astrophysics Data System (ADS)

    Perfect, Bradley; Riley, James; Thomson, Jim; Fay, Endicott

    2015-11-01

    Washington State Ferries (WSF) operates a ferry route that travels through a 600m-wide channel called Rich Passage. Concerns of shoreline erosion in Rich Passage have prompted this study of the generation and propagation of surface wave wakes caused by WSF vessels. The problem was addressed in three ways: analytically, using an extension of the Kelvin wake model by Darmon et al. (J. Fluid Mech., 738, 2014); computationally, employing a RANS Navier-Stokes model in the CFD code OpenFOAM which uses the Volume of Fluid method to treat the free surface; and with field data taken in Sept-Nov, 2014, using a suite of surface wave measuring buoys. This study represents one of the first times that model predictions of ferry boat-generated wakes can be tested against measurements in open waters. The results of the models and the field data are evaluated using direct comparison of predicted and measured surface wave height as well as other metrics. Furthermore, the model predictions and field measurements suggest differences in wake amplitudes for different class vessels. Finally, the relative strengths and weaknesses of each prediction method as well as of the field measurements will be discussed. Washington State Department of Transportation.

  5. Near wakes of advanced turbopropellers

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.; Patrick, W. P.

    1989-01-01

    The flow in the wake of a model single rotation Prop-Fan rotor operating in a wind tunnel was traversed with a hot-wire anemometer system designed to determine the 3 periodic velocity components. Special data acquisition and data reduction methods were required to deal with the high data frequency, narrow wakes, and large fluctuating air angles in the tip vortex region. The model tip helical Mach number was 1.17, simulating the cruise condition. Although the flow field is complex, flow features such as viscous velocity defects, vortex sheets, tip vortices, and propagating acoustic pulses are clearly identified with the aid of a simple analytical wake theory.

  6. Study of the Mutual Interaction Between a Wing Wake and an Encountering Airplane

    NASA Technical Reports Server (NTRS)

    Walden, A. B.; vanDam, C. P.

    1996-01-01

    In an effort to increase airport productivity, several wind-tunnel and flight-test programs are currently underway to determine safe reductions in separation standards between aircraft. These programs are designed to study numerous concepts from the characteristics and detection of wake vortices to the wake-vortex encounter phenomenon. As part of this latter effort, computational tools are being developed and utilized as a means of modeling and verifying wake-vortex hazard encounters. The objective of this study is to assess the ability of PMARC, a low-order potential-flow panel method, to predict the forces and moments imposed on a following business-jet configuration by a vortex interaction. Other issues addressed include the investigation of several wake models and their ability to predict wake shape and trajectory, the validity of the velocity field imposed on the following configuration, modeling techniques and the effect of the high-lift system and the empennage. Comparisons with wind-tunnel data reveal that PMARC predicts the characteristics for the clean wing-body following configuration fairly well. Non-linear effects produced by the addition of the high-lift system and empennage, however, are not so well predicted.

  7. Numerical investigation of wake-collapse internal waves generated by a submerged moving body

    NASA Astrophysics Data System (ADS)

    Liang, Jianjun; Du, Tao; Huang, Weigen; He, Mingxia

    2017-07-01

    The state-of-the-art OpenFOAM technology is used to develop a numerical model that can be devoted to numerically investigating wake-collapse internal waves generated by a submerged moving body. The model incorporates body geometry, propeller forcing, and stratification magnitude of seawater. The generation mechanism and wave properties are discussed based on model results. It was found that the generation of the wave and its properties depend greatly on the body speed. Only when that speed exceeds some critical value, between 1.5 and 4.5 m/s, can the moving body generate wake-collapse internal waves, and with increases of this speed, the time of generation advances and wave amplitude increases. The generated wake-collapse internal waves are confirmed to have characteristics of the second baroclinic mode. As the body speed increases, wave amplitude and length increase and its waveform tends to take on a regular sinusoidal shape. For three linearly temperature-stratified profiles examined, the weaker the stratification, the stronger the wake-collapse internal wave.

  8. Wake characteristics of an eight-leg tower for a MOD-0 type wind turbine

    NASA Technical Reports Server (NTRS)

    Savino, J. M.; Wagner, L. H.; Sinclair, D.

    1977-01-01

    Low speed wind tunnel tests were conducted to determine the flow characteristics of the wake downwind of a 1/25th scale, all tubular eight leg tower concept suitable for application to the DOE-NASA MOD-0 wind power turbine. Measurements were made of wind speed profiles, and from these were determined the wake local minimum velocity, average velocity, and width for several wind approach angles. These data are presented herein along with tower shadow photographs and comparisons with data from an earlier lattice type, four leg tower model constructed of tubular members. Values of average wake velocity defect ratio and average ratio of wake width to blade radius for the eight leg model were estimated to be around 0.17 and 0.30, respectively, at the plane of the rotor blade. These characteristics suggest that the tower wake of the eight leg concept is slightly less than that of the four leg design.

  9. Description of signature scales in a floating wind turbine model wake subjected to varying turbulence intensity

    NASA Astrophysics Data System (ADS)

    Kadum, Hawwa; Rockel, Stanislav; Holling, Michael; Peinke, Joachim; Cal, Raul Bayon

    2017-11-01

    The wake behind a floating model horizontal axis wind turbine during pitch motion is investigated and compared to a fixed wind turbine wake. An experiment is conducted in an acoustic wind tunnel where hot-wire data are acquired at five downstream locations. At each downstream location, a rake of 16 hot-wires was used with placement of the probes increasing radially in the vertical, horizontal, and diagonally at 45 deg. In addition, the effect of turbulence intensity on the floating wake is examined by subjecting the wind turbine to different inflow conditions controlled through three settings in the wind tunnel grid, a passive and two active protocols, thus varying in intensity. The wakes are inspected by statistics of the point measurements, where the various length/time scales are considered. The wake characteristics for a floating wind turbine are compared to a fixed turbine, and uncovering its features; relevant as the demand for exploiting deep waters in wind energy is increasing.

  10. Some wake-related operational limitations of rotorcraft

    NASA Technical Reports Server (NTRS)

    Heyson, H. H.

    1980-01-01

    Wind tunnel measurements show that the wake of a rotor, except at near hovering speeds, is not like that of a propeller. The wake is more like that of a wing except that, because of the slow speeds, the wake velocities may be much greater. The helicopter can produce a wake hazard to following light aircraft that is disproportionately great compared to an equivalent fixed wing aircraft. This hazard should be recognized by both pilots and airport controllers when operating in congested areas. Ground effect is generally counted as a blessing since it allows overloaded takeoffs; however, it also introduces additional operation problems. These problems include premature blade stall in hover, settling in forward transition, shuddering in approach to touchdown and complicatons with yaw control. Some of these problems were treated analytically in an approximate manner and reasonable experiment agreement was obtained. An awareness of these effects can prepare the user for their appearance and their consequences.

  11. Instability-driven frequency decoupling between structure dynamics and wake fluctuations

    NASA Astrophysics Data System (ADS)

    Jin, Yaqing; Kim, Jin-Tae; Chamorro, Leonardo P.

    2018-04-01

    Flow-induced dynamics of flexible structures is, in general, significantly modulated by periodic vortex shedding. Experiments and numerical simulations suggest that the frequencies associated with the dominant motions of structures are highly coupled with those of the wake under low-turbulence uniform flow. Here we present experimental evidence that demonstrates a significant decoupling between the dynamics of simple structures and wake fluctuations for various geometries, Reynolds numbers, and mass ratios. High-resolution particle tracking velocimetry and hot-wire anemometry are used to quantitatively characterize the dynamics of the structures and wake fluctuations; a complementary planar particle image velocimetry measurement is conducted to illustrate distinctive flow patterns. Results show that for structures with directional stiffness, von Kármán vortex shedding might dominate the wake of bodies governed by natural-frequency motion. This phenomenon can be a consequence of Kelvin-Helmholtz instability, where the structural characteristics of the body dominate the oscillations.

  12. Aircraft wake vortex transport model

    DOT National Transportation Integrated Search

    1974-03-31

    A wake vortex transport model has been developed which includes the effects of wind and wind : shear, buoyancy, mutual and self-induction, ground plane interaction, viscous decay, finite core : and Crow instability effects. Photographic and ground-wi...

  13. Blunt body near wake flow field at Mach 6

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; McGinley, Catherine B.; Hannemann, Klaus

    1996-01-01

    Tests were conducted in a Mach 6 flow to examine the reattachment process of an axisymmetric free shear layer associated with the near wake of a 70 deg. half angle, spherically blunted cone with a cylindrical after body. Model angle of incidence was fixed at 0 deg. and free-stream Reynolds numbers based on body diameter ranged from 0.5 x 10(exp 6) to 4 x 10(exp 6). The sensitivity of wake shear layer transition on reattachment heating was investigated. The present perfect gas study was designed to compliment results obtained previously in facilities capable of producing real gas effects. The instrumented blunted cone model was designed primarily for testing in high enthalpy hypervelocity shock tunnels in both this country and abroad but was amenable for testing in conventional hypersonic blowdown wind tunnels as well. Surface heating rates were inferred from temperature - time histories from coaxial surface thermocouples on the model forebody and thin film resistance gages along the model base and cylindrical after body. General flow feature (bow shock, wake shear layer, and recompression shock) locations were visually identified by schlieren photography. Mean shear layer position and growth were determined from intrusive pitot pressure surveys. In addition, wake surveys with a constant temperature hot-wire anemometer were utilized to qualitatively characterize the state of the shear layer prior to reattachment. Experimental results were compared to laminar perfect gas predictions provided by a 3-D Navier Stokes code (NSHYP). Shear layer impingement on the instrumented cylindrical after body resulted in a localized heating maximum that was 21 to 29 percent of the forebody stagnation point heating. Peak heating resulting from the reattaching shear layer was found to be a factor of 2 higher than laminar predictions, which suggested a transitional shear layer. Schlieren flow visualization and fluctuating voltage time histories and spectra from the hot wire surveys across the shear layer substantiate this observation. The sensitivity of surface heating to forebody roughness was characterized for a reattaching shear layer. For example, at R(sub infinity), d = 4 x 10(exp 6), when the shear layer was transitional, the magnitude of peak heating from shear layer impingement was reduced by approximately 24 percent when transition grit was applied to the forebody. The spatial location of the local peak, however, remained unchanged.

  14. Tip Vortices of Isolated Wings and Helicopter Rotor Blades.

    DTIC Science & Technology

    1987-12-01

    root to tip, as expected due to the induced downwash of the tip vor- tex and wake vortex sheet. Although the three different tip-caps produce very...the inherent limitation of not being able to model the vortex wake with these equations, although the Euler formulation has in it the necessary...physics to model vorticity transport correctly. These equations basically lack the physical mecha- nism needed to generate the vortex wake . However, in

  15. Fan Noise Source Diagnostic Test Computation of Rotor Wake Turbulence Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Envia, E.; Thorp, S. A.; Shabbir, A.

    2002-01-01

    An important source mechanism of fan broadband noise is the interaction of rotor wake turbulence with the fan outlet guide vanes. A broadband noise model that utilizes computed rotor flow turbulence from a RANS code is used to predict fan broadband noise spectra. The noise model is employed to examine the broadband noise characteristics of the 22-inch Source Diagnostic Test fan rig for which broadband noise data were obtained in wind tunnel tests at the NASA Glenn Research Center. A 9-case matrix of three outlet guide vane configurations at three representative fan tip speeds are considered. For all cases inlet and exhaust acoustic power spectra are computed and compared with the measured spectra where possible. In general, the acoustic power levels and shape of the predicted spectra are in good agreement with the measured data. The predicted spectra show the experimentally observed trends with fan tip speed, vane count, and vane sweep. The results also demonstrate the validity of using CFD-based turbulence information for fan broadband noise calculations.

  16. Experimental verification of propeller noise prediction

    NASA Technical Reports Server (NTRS)

    Succi, G. P.; Munro, D. H.; Zimmer, J. A.

    1980-01-01

    Results of experimental measurements of the sound fields of 1/4-scale general aviation propellers are presented and experimental wake surveys and pressure signatures obtained are compared with theoretical predictions. Experiments were performed primarily on a 1C160 propeller model mounted in front of a symmetric body in an anechoic wind tunnel, and measured the thrust and torque produced by propeller at different rotation speeds and tunnel velocities, wakes at three axial distances, and sound pressure at various azimuths and tip speeds with advance ratio or tunnel velocity constant. Aerodynamic calculations of blade loading were performed using airfoil section characteristics and a modified strip analysis procedure. The propeller was then modeled as an array of point sound sources with each point characterized by the force and volume of the corresponding propeller section in order to obtain the acoustic characteristics. Measurements are found to agree with predictions over a wide range of operating conditions, tip speeds and propeller nacelle combinations, without the use of adjustable constants.

  17. Wind Plant Power Optimization through Yaw Control using a Parametric Model for Wake Effects -- A CFD Simulation Study

    DOE PAGES

    Gebraad, P. M. O.; Teeuwisse, F. W.; van Wingerden, J. W.; ...

    2016-01-01

    This article presents a wind plant control strategy that optimizes the yaw settings of wind turbines for improved energy production of the whole wind plant by taking into account wake effects. The optimization controller is based on a novel internal parametric model for wake effects, called the FLOw Redirection and Induction in Steady-state (FLORIS) model. The FLORIS model predicts the steady-state wake locations and the effective flow velocities at each turbine, and the resulting turbine electrical energy production levels, as a function of the axial induction and the yaw angle of the different rotors. The FLORIS model has a limitedmore » number of parameters that are estimated based on turbine electrical power production data. In high-fidelity computational fluid dynamics simulations of a small wind plant, we demonstrate that the optimization control based on the FLORIS model increases the energy production of the wind plant, with a reduction of loads on the turbines as an additional effect.« less

  18. Three-dimensional structure of wind turbine wakes as measured by scanning lidar

    NASA Astrophysics Data System (ADS)

    Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.

    2017-08-01

    The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions. Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. These insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.

  19. Three-dimensional structure of wind turbine wakes as measured by scanning lidar

    DOE PAGES

    Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.

    2017-08-14

    The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions.more » Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. As a result, these insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.« less

  20. Three-dimensional structure of wind turbine wakes as measured by scanning lidar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.

    The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions.more » Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. As a result, these insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.« less

  1. Velocity and rolling-moment measurements in the wake of a swept-wing model in the 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Rossow, V. J.; Corsiglia, V. R.; Schwind, R. G.; Frick, J. K. D.; Lemmer, O. J.

    1975-01-01

    Measurements were made in the wake of a swept wing model to study the structure of lift generated vortex wakes shed by conventional span loadings and by several span loadings designed to reduce wake velocities. Variations in the span loading on the swept wing generator were obtained by deflecting seven flap segments on each side by amounts determined by vortex lattice theory to approximate the desired span loadings. The resulting wakes were probed with a three component, hot wire probe to measure velocity, and with a wing to measure the rolling moment that would be induced on a following aircraft. The experimental techniques are described herein, and the measured velocity and rolling moments are presented, along with some comparisons with the applicable theories.

  2. Comparing model-based predictions of a wind turbine wake to LiDAR measurements in complex terrain

    NASA Astrophysics Data System (ADS)

    Kay, Andrew; Jones, Paddy; Boyce, Dean; Bowman, Neil

    2013-04-01

    The application of remote sensing techniques to the measurement of wind characteristics offers great potential to accurately predict the atmospheric boundary layer flow (ABL) and its interactions with wind turbines. An understanding of these interactions is important for optimizing turbine siting in wind farms and improving the power performance and lifetime of individual machines. In particular, Doppler wind Light Detection and Ranging (LiDAR) can be used to remotely measure the wind characteristics (speed, direction and turbulence intensity) approaching a rotor. This information can be utilised to improve turbine lifetime (advanced detection of incoming wind shear, wind veer and extreme wind conditions, such as gusts) and optimise power production (improved yaw, pitch and speed control). LiDAR can also make detailed measurements of the disturbed wind profile in the wake, which can damage surrounding turbines and reduce efficiency. These observational techniques can help engineers better understand and model wakes to optimize turbine spacing in large wind farms, improving efficiency and reducing the cost of energy. NEL is currently undertaking research to measure the disturbed wind profile in the wake of a 950 kW wind turbine using a ZephIR Dual Mode LiDAR at its Myres Hill wind turbine test site located near Glasgow, Scotland. Myres Hill is moderately complex terrain comprising deep peat, low lying grass and heathers, localised slopes and nearby forest, approximately 2 km away. Measurements have been obtained by vertically scanning at 10 recorded heights across and above the rotor plane to determine the wind speed, wind direction and turbulence intensity profiles. Measurement stations located at various rotor diameters downstream of the turbine were selected in an attempt to capture the development of the wake and its recovery towards free stream conditions. Results of the measurement campaign will also highlight how the wake behaves as a result of sudden gusts or rapid changes in wind direction. NEL has carried out simulations to model the wake of the turbine using Computational Fluid Dynamics (CFD) software provided by ANSYS Inc. The model incorporates a simple actuator disk concept to model the turbine and its wake, typical of that used in many commercial wind farm optimization tools. The surrounding terrain, including the forestry is modelled allowing an investigation of the wake-terrain interactions occurring across the site. The overall aim is to compare the LiDAR measurements with simulated data to assess the quality of the model and its sensitivity to variables such as mesh size and turbulence/forestry modelling techniques. Knowledge acquired from the study will help to define techniques for combining LiDAR measurements with CFD modelling to improve predictions of wake losses in large wind farms and hence, energy production. In addition, the impact of transient wind conditions on the results of predictions based on idealised, steady state models has been examined.

  3. Analysis of Wake VAS Benefits Using ACES Build 3.2.1: VAMS Type 1 Assessment

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.

    2005-01-01

    The FAA and NASA are currently engaged in a Wake Turbulence Research Program to revise wake turbulence separation standards, procedures, and criteria to increase airport capacity while maintaining or increasing safety. The research program is divided into three phases: Phase I near term procedural enhancements; Phase II wind dependent Wake Vortex Advisory System (WakeVAS) Concepts of Operations (ConOps); and Phase III farther term ConOps based on wake prediction and sensing. The Phase III Wake VAS ConOps is one element of the Virtual Airspace Modelling and Simulation (VAMS) program blended concepts for enhancing the total system wide capacity of the National Airspace System (NAS). This report contains a VAMS Program Type 1 (stand-alone) assessment of the expected capacity benefits of Wake VAS at the 35 FAA Benchmark Airports and determines the consequent reduction in delay using the Airspace Concepts Evaluation System (ACES) Build 3.2.1 simulator.

  4. Cross-flow turbines: progress report on physical and numerical model studies at large laboratory scale

    NASA Astrophysics Data System (ADS)

    Wosnik, Martin; Bachant, Peter

    2016-11-01

    Cross-flow turbines show potential in marine hydrokinetic (MHK) applications. A research focus is on accurately predicting device performance and wake evolution to improve turbine array layouts for maximizing overall power output, i.e., minimizing wake interference, or taking advantage of constructive wake interaction. Experiments were carried with large laboratory-scale cross-flow turbines D O (1 m) using a turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. Several turbines of varying solidity were employed, including the UNH Reference Vertical Axis Turbine (RVAT) and a 1:6 scale model of the DOE-Sandia Reference Model 2 (RM2) turbine. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier-Stokes models. Results are presented for the simulation of performance and wake dynamics of cross-flow turbines and compared with experiments and body-fitted mesh, blade-resolving CFD. Supported by NSF-CBET Grant 1150797, Sandia National Laboratories.

  5. Another look at dreaming: disentangling Freud's primary and secondary process theories.

    PubMed

    Robbins, Michael

    2004-01-01

    The Interpretation of Dreams contains Freud's first and most complete articulation of the primary and secondary mental processes that serve as a framework for the workings of mind, conscious and unconscious. While it is generally believed that Freud proposed a single theory of dreaming, based on the primary process, a number of ambiguities, inconsistencies, and contradictions reflect an incomplete differentiation of the parts played by the two mental processes in dreaming. It is proposed that two radically different hypotheses about dreaming are embedded in Freud's work. The one implicit in classical dream interpretation is based on the assumption that dreams, like waking language, are representational, and are made up of symbols connected to latent unconscious thoughts. Whereas the symbols that constitute waking language are largely verbal and only partly unconscious, those that constitute dreams are presumably more thoroughly disguised and represented as arcane hallucinated hieroglyphs. From this perspective, both the language of the dream and that of waking life are secondary process manifestations. Interpretation of the dream using the secondary process model involves the assumption of a linear two-way "road" connecting manifest and latent aspects, which in one direction involves the work of dream construction and in the other permits the associative process of decoding and interpretation. Freud's more revolutionary hypothesis, whose implications he did not fully elaborate, is that dreams are the expression of a primary mental process that differs qualitatively from waking thought and hence are incomprehensible through a secondary process model. This seems more adequately to account for what is now known about dreaming, and is more consistent with the way dream interpretation is ordinarily conducted in clinical practice. Recognition that dreams are qualitatively distinctive expressions of mind may help to restore dreaming to its privileged position as a unique source of mental status information.

  6. Experimental study of the effect on span loading on aircraft wakes

    NASA Technical Reports Server (NTRS)

    Corsiglia, V. R.; Rossow, V. J.; Ciffone, D. L.

    1975-01-01

    Measurements were made in the NASA-Ames 40- by 80-foot wind tunnel of the rolling moment induced on a following model in the wake 13.6 spans behind a subsonic transport model for a variety of trailing edge flap settings of the generator. It was found that the rolling moment on the following model was reduced substantially, compared to the conventional landing configuration, by reshaping the span loading on the generating model to approximate a span loading, found in earlier studies, which resulted in reduced wake velocities. This was accomplished by retracting the outboard trailing edge flaps. It was concluded, based on flow visualization conducted in the wind tunnel as well as in a water tow facility, that this flap arrangement redistributes the vorticity shed by the wing along the span to form three vortex pairs that interact to disperse the wake.

  7. Wind Farm Layout Optimization through a Crossover-Elitist Evolutionary Algorithm performed over a High Performing Analytical Wake Model

    NASA Astrophysics Data System (ADS)

    Kirchner-Bossi, Nicolas; Porté-Agel, Fernando

    2017-04-01

    Wind turbine wakes can significantly disrupt the performance of further downstream turbines in a wind farm, thus seriously limiting the overall wind farm power output. Such effect makes the layout design of a wind farm to play a crucial role on the whole performance of the project. An accurate definition of the wake interactions added to a computationally compromised layout optimization strategy can result in an efficient resource when addressing the problem. This work presents a novel soft-computing approach to optimize the wind farm layout by minimizing the overall wake effects that the installed turbines exert on one another. An evolutionary algorithm with an elitist sub-optimization crossover routine and an unconstrained (continuous) turbine positioning set up is developed and tested over an 80-turbine offshore wind farm over the North Sea off Denmark (Horns Rev I). Within every generation of the evolution, the wind power output (cost function) is computed through a recently developed and validated analytical wake model with a Gaussian profile velocity deficit [1], which has shown to outperform the traditionally employed wake models through different LES simulations and wind tunnel experiments. Two schemes with slightly different perimeter constraint conditions (full or partial) are tested. Results show, compared to the baseline, gridded layout, a wind power output increase between 5.5% and 7.7%. In addition, it is observed that the electric cable length at the facilities is reduced by up to 21%. [1] Bastankhah, Majid, and Fernando Porté-Agel. "A new analytical model for wind-turbine wakes." Renewable Energy 70 (2014): 116-123.

  8. Respiratory flow-sound relationship during both wakefulness and sleep and its variation in relation to sleep apnea.

    PubMed

    Yadollahi, Azadeh; Montazeri, Aman; Azarbarzin, Ali; Moussavi, Zahra

    2013-03-01

    Tracheal respiratory sound analysis is a simple and non-invasive way to study the pathophysiology of the upper airway and has recently been used for acoustic estimation of respiratory flow and sleep apnea diagnosis. However in none of the previous studies was the respiratory flow-sound relationship studied in people with obstructive sleep apnea (OSA), nor during sleep. In this study, we recorded tracheal sound, respiratory flow, and head position from eight non-OSA and 10 OSA individuals during sleep and wakefulness. We compared the flow-sound relationship and variations in model parameters from wakefulness to sleep within and between the two groups. The results show that during both wakefulness and sleep, flow-sound relationship follows a power law but with different parameters. Furthermore, the variations in model parameters may be representative of the OSA pathology. The other objective of this study was to examine the accuracy of respiratory flow estimation algorithms during sleep: we investigated two approaches for calibrating the model parameters using the known data recorded during either wakefulness or sleep. The results show that the acoustical respiratory flow estimation parameters change from wakefulness to sleep. Therefore, if the model is calibrated using wakefulness data, although the estimated respiratory flow follows the relative variations of the real flow, the quantitative flow estimation error would be high during sleep. On the other hand, when the calibration parameters are extracted from tracheal sound and respiratory flow recordings during sleep, the respiratory flow estimation error is less than 10%.

  9. A Computational and Experimental Study of Nonlinear Aspects of Induced Drag

    NASA Technical Reports Server (NTRS)

    Smith, Stephen C.

    1996-01-01

    Despite the 80-year history of classical wing theory, considerable research has recently been directed toward planform and wake effects on induced drag. Nonlinear interactions between the trailing wake and the wing offer the possibility of reducing drag. The nonlinear effect of compressibility on induced drag characteristics may also influence wing design. This thesis deals with the prediction of these nonlinear aspects of induced drag and ways to exploit them. A potential benefit of only a few percent of the drag represents a large fuel savings for the world's commercial transport fleet. Computational methods must be applied carefully to obtain accurate induced drag predictions. Trefftz-plane drag integration is far more reliable than surface pressure integration, but is very sensitive to the accuracy of the force-free wake model. The practical use of Trefftz plane drag integration was extended to transonic flow with the Tranair full-potential code. The induced drag characteristics of a typical transport wing were studied with Tranair, a full-potential method, and A502, a high-order linear panel method to investigate changes in lift distribution and span efficiency due to compressibility. Modeling the force-free wake is a nonlinear problem, even when the flow governing equation is linear. A novel method was developed for computing the force-free wake shape. This hybrid wake-relaxation scheme couples the well-behaved nature of the discrete vortex wake with viscous-core modeling and the high-accuracy velocity prediction of the high-order panel method. The hybrid scheme produced converged wake shapes that allowed accurate Trefftz-plane integration. An unusual split-tip wing concept was studied for exploiting nonlinear wake interaction to reduced induced drag. This design exhibits significant nonlinear interactions between the wing and wake that produced a 12% reduction in induced drag compared to an equivalent elliptical wing at a lift coefficient of 0.7. The performance of the split-tip wing was also investigated by wing tunnel experiments. Induced drag was determined from force measurements by subtracting the estimated viscous drag, and from an analytical drag-decomposition method using a wake survey. The experimental results confirm the computational prediction.

  10. First in situ evidence of wakes in the far field behind offshore wind farms.

    PubMed

    Platis, Andreas; Siedersleben, Simon K; Bange, Jens; Lampert, Astrid; Bärfuss, Konrad; Hankers, Rudolf; Cañadillas, Beatriz; Foreman, Richard; Schulz-Stellenfleth, Johannes; Djath, Bughsin; Neumann, Thomas; Emeis, Stefan

    2018-02-01

    More than 12 GW of offshore wind turbines are currently in operation in European waters. To optimise the use of the marine areas, wind farms are typically clustered in units of several hundred turbines. Understanding wakes of wind farms, which is the region of momentum and energy deficit downwind, is important for optimising the wind farm layouts and operation to minimize costs. While in most weather situations (unstable atmospheric stratification), the wakes of wind turbines are only a local effect within the wind farm, satellite imagery reveals wind-farm wakes to be several tens of kilometres in length under certain conditions (stable atmospheric stratification), which is also predicted by numerical models. The first direct in situ measurements of the existence and shape of large wind farm wakes by a specially equipped research aircraft in 2016 and 2017 confirm wake lengths of more than tens of kilometres under stable atmospheric conditions, with maximum wind speed deficits of 40%, and enhanced turbulence. These measurements were the first step in a large research project to describe and understand the physics of large offshore wakes using direct measurements, together with the assessment of satellite imagery and models.

  11. Investigating the interaction between the homeostatic and circadian processes of sleep-wake regulation for the prediction of waking neurobehavioural performance

    NASA Technical Reports Server (NTRS)

    Van Dongen, Hans P A.; Dinges, David F.

    2003-01-01

    The two-process model of sleep regulation has been applied successfully to describe, predict, and understand sleep-wake regulation in a variety of experimental protocols such as sleep deprivation and forced desynchrony. A non-linear interaction between the homeostatic and circadian processes was reported when the model was applied to describe alertness and performance data obtained during forced desynchrony. This non-linear interaction could also be due to intrinsic non-linearity in the metrics used to measure alertness and performance, however. Distinguishing these possibilities would be of theoretical interest, but could also have important implications for the design and interpretation of experiments placing sleep at different circadian phases or varying the duration of sleep and/or wakefulness. Although to date no resolution to this controversy has been found, here we show that the issue can be addressed with existing data sets. The interaction between the homeostatic and circadian processes of sleep-wake regulation was investigated using neurobehavioural performance data from a laboratory experiment involving total sleep deprivation. The results provided evidence of an actual non-linear interaction between the homeostatic and circadian processes of sleep-wake regulation for the prediction of waking neurobehavioural performance.

  12. Vortex Shedding from a Vibrating Cable with Attached Spherical Bodies in a Linear Shear Flow.

    DTIC Science & Technology

    1982-10-27

    correlation and strengthened parallel vo:tex shedding. The test model used in the present study was a flexible cable. The vortex street wake behind a vibrating...pattern, different tha. the characteristic patterns associated with either the stationary or vibrating locked-on vortex street wakes was observed... vortex shedding to the vibration of a rigid or flexible cylinder has been explored by Griffin [17]. He presents a model for a universal wake Strouhal

  13. Wind tunnel investigation of helicopter-rotor wake effects on three helicopter fuselage models

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Mineck, R. E.

    1975-01-01

    The effects of rotor wake on helicopter fuselage aerodynamic characteristics were investigated in the Langley V/STOL tunnel. Force, moment, and pressure data were obtained on three fuselage models at various combinations of windspeed, sideslip angle, and pitch angle. The data show that the influence of rotor wake on the helicopter fuselage yawing moment imposes a significant additional thrust requirement on the tail rotor of a single-rotor helicopter at high sideslip angles.

  14. Low-Dimensional Model of a Cylinder Wake

    NASA Astrophysics Data System (ADS)

    Luchtenburg, Mark; Cohen, Kelly; Siegel, Stefan; McLaughlin, Tom

    2003-11-01

    In a two-dimensional cylinder wake, self-excited oscillations in the form of periodic shedding of vortices are observed above a critical Reynolds number of about 47. These flow-induced non-linear oscillations lead to some undesirable effects associated with unsteady pressures such as fluid-structure interactions. An effective way of suppressing the self-excited flow oscillations is by the incorporation of closed-loop flow control. In this effort, a low dimensional, proper orthogonal decomposition (POD) model is based on data obtained from direct numerical simulations of the Navier Stokes equations for the two dimensional circular cylinder wake at a Reynolds number of 100. Three different conditions are examined, namely, the unforced wake experiencing steady-state vortex shedding, the transient behavior of the unforced wake at the startup of the simulation, and transient response to open-loop harmonic forcing by translation. We discuss POD mode selection and the number of modes that need to be included in the low-dimensional model. It is found that the transient dynamics need to be represented by a coupled system that includes an aperiodic mean-flow mode, an aperiodic shift mode and the periodic von Karman modes. Finally, a least squares mapping method is introduced to develop the non-linear state equations. The predictive capability of the state equations demonstrates the ability of the above approach to model the transient dynamics of the wake.

  15. Canopy-wake dynamics: the failure of the constant flux layer

    NASA Astrophysics Data System (ADS)

    Stefan, H. G.; Markfort, C. D.; Porte-Agel, F.

    2013-12-01

    The atmospheric boundary layer adjustment at the abrupt transition from a canopy (forest) to a flat surface (land or water) was investigated in a wind tunnel experiment. Detailed measurements examining the effect of canopy turbulence on flow separation, reduced surface shear stress and wake recovery are compared to data for the classical case of a solid backward-facing step. Results provide new insights into the data interpretation for flux estimation by eddy-covariance and flux gradient methods and for the assessment of surface boundary conditions in turbulence models of the atmospheric boundary layer in complex landscapes and over water bodies affected by canopy wakes. The wind tunnel results indicate that the wake of a forest canopy strongly affects surface momentum flux within a distance of 35 - 100 times the step or canopy height, and mean turbulence quantities require distances of at least 100 times the canopy height to adjust to the new surface. The near-surface mixing length in the wake exhibits characteristic length scales of canopy flows at the canopy edge, of the flow separation in the near wake and adjusts to surface layer scaling in the far wake. Components of the momentum budget are examined individually to determine the impact of the wake. The results demonstrate why a constant flux layer does not form until far downwind in the wake. An empirical model for surface shear stress distribution from a forest to a clearing or lake is proposed.

  16. The Vortex Lattice Method for the Rotor-Vortex Interaction Problem

    NASA Technical Reports Server (NTRS)

    Padakannaya, R.

    1974-01-01

    The rotor blade-vortex interaction problem and the resulting impulsive airloads which generate undesirable noise levels are discussed. A numerical lifting surface method to predict unsteady aerodynamic forces induced on a finite aspect ratio rectangular wing by a straight, free vortex placed at an arbitrary angle in a subsonic incompressible free stream is developed first. Using a rigid wake assumption, the wake vortices are assumed to move downsteam with the free steam velocity. Unsteady load distributions are obtained which compare favorably with the results of planar lifting surface theory. The vortex lattice method has been extended to a single bladed rotor operating at high advance ratios and encountering a free vortex from a fixed wing upstream of the rotor. The predicted unsteady load distributions on the model rotor blade are generally in agreement with the experimental results. This method has also been extended to full scale rotor flight cases in which vortex induced loads near the tip of a rotor blade were indicated. In both the model and the full scale rotor blade airload calculations a flat planar wake was assumed which is a good approximation at large advance ratios because the downwash is small in comparison to the free stream at large advance ratios. The large fluctuations in the measured airloads near the tip of the rotor blade on the advance side is predicted closely by the vortex lattice method.

  17. The stability to two-dimensional wakes and shear layers at high Mach numbers

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.

    1991-01-01

    This study is concerned with the stability properties of laminar free-shear-layer flows, and in particular symmetric two-dimensional wakes, for the supersonic through the hypersonic regimes. Emphasis is given to the use of proper wake profiles that satisfy the equations of motion at high Reynolds numbers. In particular the inviscid stability of a developing two-dimensional wake is studied as it accelerates at the trailing edge of a splitter plate. The nonparallelism of the flow is a leading-order effect in the calculation of the basic state, which is obtained numerically. Neutral stability characteristics are computed and the hypersonic stability is obtained by increasing the Mach number. It is found that the stability characteristics are altered significantly as the wake develops. Multiple modes (secondary modes) are found in the near wake that are closely related to the corresponding Blasius ones, but as the wake develops mode multiplicity is delayed to higher and higher Mach numbers. At a distance of about one plate length from the trailing edge, there is only one mode in a Mach number range of 0-20. The dominant mode emerging at all wake stations, and for high enough Mach numbers, is the so-called vorticity mode that is centered around the generalized inflection point layer. The structure of the dominant mode is also obtained analytically for all streamwise wake locations and it is shown how the far-wake limit is approached. Asymptotic results for the hypersonic mixing layer given by a tanh and a Lock distribution are also given.

  18. Modeling Tool Advances Rotorcraft Design

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Continuum Dynamics Inc. (CDI), founded in 1979, specializes in advanced engineering services, including fluid dynamic modeling and analysis for aeronautics research. The company has completed a number of SBIR research projects with NASA, including early rotorcraft work done through Langley Research Center, but more recently, out of Ames Research Center. NASA Small Business Innovation Research (SBIR) grants on helicopter wake modeling resulted in the Comprehensive Hierarchical Aeromechanics Rotorcraft Model (CHARM), a tool for studying helicopter and tiltrotor unsteady free wake modeling, including distributed and integrated loads, and performance prediction. Application of the software code in a blade redesign program for Carson Helicopters, of Perkasie, Pennsylvania, increased the payload and cruise speeds of its S-61 helicopter. Follow-on development resulted in a $24 million revenue increase for Sikorsky Aircraft Corporation, of Stratford, Connecticut, as part of the company's rotor design efforts. Now under continuous development for more than 25 years, CHARM models the complete aerodynamics and dynamics of rotorcraft in general flight conditions. CHARM has been used to model a broad spectrum of rotorcraft attributes, including performance, blade loading, blade-vortex interaction noise, air flow fields, and hub loads. The highly accurate software is currently in use by all major rotorcraft manufacturers, NASA, the U.S. Army, and the U.S. Navy.

  19. Ecological Momentary Assessment of Pain, Fatigue, Depressive, and Cognitive Symptoms Reveals Significant Daily Variability in Multiple Sclerosis.

    PubMed

    Kratz, Anna L; Murphy, Susan L; Braley, Tiffany J

    2017-11-01

    To describe the daily variability and patterns of pain, fatigue, depressed mood, and cognitive function in persons with multiple sclerosis (MS). Repeated-measures observational study of 7 consecutive days of home monitoring, including ecological momentary assessment (EMA) of symptoms. Multilevel mixed models were used to analyze data. General community. Ambulatory adults (N=107) with MS recruited through the University of Michigan and surrounding community. Not applicable. EMA measures of pain, fatigue, depressed mood, and cognitive function rated on a 0 to 10 scale, collected 5 times a day for 7 days. Cognitive function and depressed mood exhibited more stable within-person patterns than pain and fatigue, which varied considerably within person. All symptoms increased in intensity across the day (all P<.02), with fatigue showing the most substantial increase. Notably, this diurnal increase varied by sex and age; women showed a continuous increase from wake to bedtime, whereas fatigue plateaued after 7 pm for men (wake-bed B=1.04, P=.004). For the oldest subgroup, diurnal increases were concentrated to the middle of the day compared with younger subgroups, which showed an earlier onset of fatigue increase and sustained increases until bed time (wake-3 pm B=.04, P=.01; wake-7 pm B=.03, P=.02). Diurnal patterns of cognitive function varied by education; those with advanced college degrees showed a more stable pattern across the day, with significant differences compared with those with bachelor-level degrees in the evening (wake-7 pm B=-.47, P=.02; wake-bed B=-.45, P=.04). Findings suggest that chronic symptoms in MS are not static, even over a short time frame; rather, symptoms-fatigue and pain in particular-vary dynamically across and within days. Incorporation of EMA methods should be considered in the assessment of these chronic MS symptoms to enhance assessment and treatment strategies. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Influence of Thickness and Angle of Attack on the Dynamics of Rectangular Cylinder Wakes

    NASA Astrophysics Data System (ADS)

    Mohebi, Meraj

    Stereoscopic Particle Image Velocimetry measurements were taken in the turbulent wake of two-dimensional rectangular cylinders. The influence of post-stall angles of attack and Reynolds number on the flow behind a thin at plate, and for the normal case, the effect of thickness to chord (t=d) ratio over a family of rectangular cylinders were investigated. At all cases, quasi-periodic vortex shedding is observed, the normal direction Reynolds stress becomes very large just downstream of the mean recirculation zone, and the spanwise motions were uncorrelated to the main vortex shedding process. The data were processed to obtain the mean velocities, Reynolds stresses, and forces on the body. All terms in the turbulent kinetic energy equations were measured with the exception of dissipation which was found by difference. The pressure-related terms were estimated from the numerical solution of the Poisson equation for the instantaneous velocity field. Proper Orthogonal Decomposition modes are related via mean-field theory to construct generalized phase-averaging and low-order models capturing coherent cycle-to-cycle variations. The advection, production and pressure diffusion were all significant and mostly coherent. It is shown that high, average, and low amplitude vortex shedding cycles are different in terms of vortex street dimensions, vortex topology, circulation, and decay rate. It is also shown that these flows experience irregular significant decreases in the shedding amplitude associated with shedding of disorganized vortices in a large wake. Reynolds number was found to have imperceptible effects on the wake of a normal thin plate. A reduction in the angle of attack caused the wake to decrease in size and increase in shedding frequency but the global characteristics vary non-linearly. An increase in thickness from thin plate (t=d=0.05), caused the wake to shrink, low cycles to diminish, and local turbulence increase to a peak at t=d=1.0, identified as a critical thickness. At t=d=1.9, however, turbulent quantities decrease, the wake grows larger and significant cycle-to-cycle variations in the ow reports of a new vortex formation process.

  1. An overview of experimental results and dispersion modelling of nanoparticles in the wake of moving vehicles.

    PubMed

    Carpentieri, Matteo; Kumar, Prashant; Robins, Alan

    2011-03-01

    Understanding the transformation of nanoparticles emitted from vehicles is essential for developing appropriate methods for treating fine scale particle dynamics in dispersion models. This article provides an overview of significant research work relevant to modelling the dispersion of pollutants, especially nanoparticles, in the wake of vehicles. Literature on vehicle wakes and nanoparticle dispersion is reviewed, taking into account field measurements, wind tunnel experiments and mathematical approaches. Field measurements and modelling studies highlighted the very short time scales associated with nanoparticle transformations in the first stages after the emission. These transformations strongly interact with the flow and turbulence fields immediately behind the vehicle, hence the need of characterising in detail the mixing processes in the vehicle wake. Very few studies have analysed this interaction and more research is needed to build a basis for model development. A possible approach is proposed and areas of further investigation identified. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Wind turbine wake characterization using long-range Doppler lidar

    NASA Astrophysics Data System (ADS)

    Aitken, M.; Lundquist, J. K.; Hestmark, K.; Banta, R. M.; Pichugina, Y.; Brewer, A.

    2012-12-01

    Wind turbines extract energy from the freestream flow, resulting in a waked region behind the rotor which is characterized by reduced wind speed and increased turbulence. The velocity deficit in the wake diminishes with distance, as faster-moving air outside is gradually entrained. In a concentrated group of turbines, then, downwind machines experience very different inflow conditions compared to those in the front row. As utility-scale turbines rarely exist in isolation, detailed knowledge of the mean flow and turbulence structure inside wakes is needed to correctly model both power production and turbine loading at modern wind farms. To this end, the Turbine Wake and Inflow Characterization Study (TWICS) was conducted in the spring of 2011 to determine the reduction in wind speeds downstream from a multi-MW turbine located at the National Renewable Energy Laboratory's National Wind Technology Center (NWTC) near Boulder, Colorado. Full-scale measurements of wake dynamics are hardly practical or even possible with conventional sensors, such as cup anemometers mounted on meteorological (met) masts. Accordingly, the High Resolution Doppler Lidar (HRDL) developed by the National Oceanic and Atmospheric Administration's Earth System Research Laboratory was employed to investigate the formation and propagation of wakes under varying levels of ambient wind speed, shear, atmospheric stability, and turbulence. HRDL remotely senses line-of-sight wind velocities and has been used in several previous studies of boundary layer aerodynamics. With a fully steerable beam and a maximum range up to about 5 km, depending on atmospheric conditions, HRDL performed a comprehensive survey of the wind flow in front of and behind the turbine to study the shape, meandering, and attenuation of wakes. Due in large part to limited experimental data availability, wind farm wake modeling is still subject to an unacceptable amount of uncertainty, particularly in complex terrain. Here, analytical techniques are developed to distinguish wakes from the background variability, and moreover, wakes are then classified by width, height, length, and velocity deficit based on atmospheric stability and inflow conditions. By integrating these advanced observational capabilities with innovative approaches to atmospheric modeling, this work will help to improve simulation tools used to quantify power loss and fatigue loading due to wake effects, thereby aiding the optimization of wind farm layouts.

  3. Wake Geometry Measurements and Analytical Calculations on a Small-Scale Rotor Model

    NASA Technical Reports Server (NTRS)

    Ghee, Terence A.; Berry, John D.; Zori, Laith A. J.; Elliott, Joe W.

    1996-01-01

    An experimental investigation was conducted in the Langley 14- by 22-Foot Subsonic Tunnel to quantify the rotor wake behind a scale model helicopter rotor in forward level flight at one thrust level. The rotor system in this test consisted of a four-bladed fully articulated hub with blades of rectangular planform and an NACA 0012 airfoil section. A laser light sheet, seeded with propylene glycol smoke, was used to visualize the vortex geometry in the flow in planes parallel and perpendicular to the free-stream flow. Quantitative measurements of wake geometric proper- ties, such as vortex location, vertical skew angle, and vortex particle void radius, were obtained as well as convective velocities for blade tip vortices. Comparisons were made between experimental data and four computational method predictions of experimental tip vortex locations, vortex vertical skew angles, and wake geometries. The results of these comparisons highlight difficulties of accurate wake geometry predictions.

  4. Study of the ablative effects on tektites: Atmosphere entry of a swarm of tektites. [shielding by hypersonic wake

    NASA Technical Reports Server (NTRS)

    Sepri, P.; Chen, K. K.

    1977-01-01

    The large variety of ablation markings observed on recovered tektites lead to the previously proposed swarm wake model which states that the lead peripheral tektites bore the blunt of aerodynamic heating upon entry, and that the bulk of tektites in the wake enjoyed partial shielding at the expense of the leaders. Further considerations are presented in support of this model. Quantitative assessments indicate that wake shielding might indeed have provided for substantially less heating than would have been experienced by a tektite entering an undisturbed atmosphere along a similar trajectory. For the case of strong wake shielding it is even possible that the surface temperature of a falling tektite had barely reached its melting point. In the distribution of tektites, there is a size band (near R = 0.5 cm) which is least susceptible to melting.

  5. Wind Farm LES Simulations Using an Overset Methodology

    NASA Astrophysics Data System (ADS)

    Ananthan, Shreyas; Yellapantula, Shashank

    2017-11-01

    Accurate simulation of wind farm wakes under realistic atmospheric inflow conditions and complex terrain requires modeling a wide range of length and time scales. The computational domain can span several kilometers while requiring mesh resolutions in O(10-6) to adequately resolve the boundary layer on the blade surface. Overset mesh methodology offers an attractive option to address the disparate range of length scales; it allows embedding body-confirming meshes around turbine geomtries within nested wake capturing meshes of varying resolutions necessary to accurately model the inflow turbulence and the resulting wake structures. Dynamic overset hole-cutting algorithms permit relative mesh motion that allow this nested mesh structure to track unsteady inflow direction changes, turbine control changes (yaw and pitch), and wake propagation. An LES model with overset mesh for localized mesh refinement is used to analyze wind farm wakes and performance and compared with local mesh refinements using non-conformal (hanging node) unstructured meshes. Turbine structures will be modeled using both actuator line approaches and fully-resolved structures to test the efficacy of overset methods for wind farm applications. Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a collaborative effort of two DOE organizations - the Office of Science and the National Nuclear Security Administration.

  6. Active Control of Blade Tonals in Underwater Vehicles

    DTIC Science & Technology

    2006-12-01

    Because the stator is a streamlined shape the wake deficit responsible for blade tonal noise is due mainly to surface drag, which can be thought of as a... wake deficit , the vortex rollup at this stage is not very repeatable. Therefore, this type of wake may not be the best suited for controlling blade ...sinusoidal and non-sinusoidal move profiles. This model was also able to capture the baseline wake deficit measured. 2-dimensional blade interaction was

  7. Turbulent mass flux closure modeling for variable density turbulence in the wake of an air-entraining transom stern

    NASA Astrophysics Data System (ADS)

    Hendrickson, Kelli; Yue, Dick

    2016-11-01

    This work presents the development and a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flow in the near wake region of a transom stern. This complex, three-dimensional flow includes three regions with distinctly different flow behavior: (i) the convergent corner waves that originate from the body and collide on the ship center plane; (ii) the "rooster tail" that forms from the collision; and (iii) the diverging wave train. The characteristics of these regions involve violent free-surface flows and breaking waves with significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. Utilizing datasets from high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM), we develop explicit algebraic turbulent mass flux closure models that incorporate the most relevant physical processes. Performance of these models in predicting the turbulent mass flux in all three regions of the wake will be presented. Office of Naval Research.

  8. Modeling variable density turbulence in the wake of an air-entraining transom stern

    NASA Astrophysics Data System (ADS)

    Hendrickson, Kelli; Yue, Dick

    2015-11-01

    This work presents a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flows in the near wake region of a transom stern. This three-dimensional flow is comprised of convergent corner waves that originate from the body and collide on the ship center plane forming the ``rooster tail'' that then widens to form the divergent wave train. These violent free-surface flows and breaking waves are characterized by significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) ~ 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. To whit, this work utilizes high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM) to capture the turbulence and large scale air entrainment. Analysis of the simulation results across and along the wake for the TMF budget and turbulent anisotropy provide the physical basis of the development of multiphase turbulence closure models. Performance of isotropic and anisotropic turbulent mass flux closure models will be presented. Sponsored by the Office of Naval Research.

  9. Analysis of radial and longitudinal field of plasma wakefield generated by a Laguerre-Gauss laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firouzjaei, Ali Shekari; Shokri, Babak

    In the present paper, we study the wakes known as the donut wake which is generated by Laguerre-Gauss (LG) laser pulses. Effects of the special spatial profile of a LG pulse on the radial and longitudinal wakefields are presented via an analytical model in a weakly non-linear regime in two dimensions. Different aspects of the donut-shaped wakefields have been analyzed and compared with Gaussian-driven wakes. There is also some discussion about the accelerating-focusing phase of the donut wake. Variations of longitudinal and radial wakes with laser amplitude, pulse length, and pulse spot size have been presented and discussed. Finally, wemore » present the optimum pulse duration for such wakes.« less

  10. The role of turbulent mixing in wind turbine wake recovery and wind array performance

    NASA Astrophysics Data System (ADS)

    Fruh, Wolf-Gerrit; Creech, Angus; Maguire, Eoghan

    2014-05-01

    The effect of wind turbine wakes in large offshore wind energy arrays can be a substantial factor in affecting the performance of turbines inside the array. Turbulent mixing plays a key role in the wake recovery, having a significant effect on the length over which the wake is strong enough to affect the performance other turbines significantly. We aim to highlight how turbulence affects wind turbine wakes, first by examining a high resolution CFD model of a single turbine wake validated by LIDAR measurements [1], and secondly with a much larger CFD simulation of Lillgrund offshore wind farm, validated with SCADA data [2]. By comparing the decay rates behind single turbines in environments of different surrounding surface features, ranging from ideal free-slip wind tunnels to mixed-vegetation hills, we suggest that the decay rate of turbine wakes are enhanced by free-stream turbulence, created by topography and ground features. In the context of Lillgrund wind farm, observations and computational results suggest that the wakes created by the turbines in the leading row facing the wind decay much slower than those in second row, or further into the turbine array. This observation can be explained by the diffusive action of upwind turbulence breaking up the wake generated by a turbine rotor. Angus CW Creech, Wolf-Gerrit Früh, Peter Clive (2012). Actuator volumes and hradaptive methods for threedimensional simulation of wind turbine wakes and performance. Wind Energy Vol.15, 847 - 863. Angus C.W. Creech, Wolf-Gerrit Früh, A. Eoghan Maguire (2013). High-resolution CFD modelling of Lillgrund Wind farm. Renewable Energies and Power Quality Journal, Vol. 11

  11. Maternal Depressive Symptoms, Dysfunctional Cognitions, and Infant Night Waking: The Role of Maternal Nighttime Behavior

    ERIC Educational Resources Information Center

    Teti, Douglas M.; Crosby, Brian

    2012-01-01

    Mechanisms were examined to clarify relations between maternal depressive symptoms, dysfunctional cognitions, and infant night waking among 45 infants (1-24 months) and their mothers. A mother-driven mediational model was tested in which maternal depressive symptoms and dysfunctional cognitions about infant sleep predicted infant night waking via…

  12. Comparison of two LES codes for wind turbine wake studies

    NASA Astrophysics Data System (ADS)

    Sarlak, H.; Pierella, F.; Mikkelsen, R.; Sørensen, J. N.

    2014-06-01

    For the third time a blind test comparison in Norway 2013, was conducted comparing numerical simulations for the rotor Cp and Ct and wake profiles with the experimental results. As the only large eddy simulation study among participants, results of the Technical University of Denmark (DTU) using their in-house CFD solver, EllipSys3D, proved to be more reliable among the other models for capturing the wake profiles and the turbulence intensities downstream the turbine. It was therefore remarked in the workshop to investigate other LES codes to compare their performance with EllipSys3D. The aim of this paper is to investigate on two CFD solvers, the DTU's in-house code, EllipSys3D and the open-sourse toolbox, OpenFoam, for a set of actuator line based LES computations. Two types of simulations are performed: the wake behind a signle rotor and the wake behind a cluster of three inline rotors. Results are compared in terms of velocity deficit, turbulence kinetic energy and eddy viscosity. It is seen that both codes predict similar near-wake flow structures with the exception of OpenFoam's simulations without the subgrid-scale model. The differences begin to increase with increasing the distance from the upstream rotor. From the single rotor simulations, EllipSys3D is found to predict a slower wake recovery in the case of uniform laminar flow. From the 3-rotor computations, it is seen that the difference between the codes is smaller as the disturbance created by the downstream rotors causes break down of the wake structures and more homogenuous flow structures. It is finally observed that OpenFoam computations are more sensitive to the SGS models.

  13. A flight investigation of the wake turbulence alleviation resulting from a flap configuration change on a B-747 aircraft

    NASA Technical Reports Server (NTRS)

    Jacobsen, R. A.; Short, B. J.

    1977-01-01

    A flight test investigation was conducted to evaluate the effects of a flap configuration change on the vortex wake characteristics of a Boeing 747 (B-747) aircraft as measured by differences in upset response resulting from deliberate vortex encounters by a following Learjet aircraft and by direct measurement of the velocities in the wake. The flaps of the B-747 have a predominant effect on the wake. The normal landing flap configuration produces a strong vortex that is attenuated when the outboard flap segments are raised; however, extension of the landing gear at that point increases the vortex induced upsets. These effects are in general agreement with existing wind tunnel and flight data for the modified flap configuration.

  14. Single bunch transverse instability in a circular accelerator with chromaticity and space charge

    DOE PAGES

    Balbekov, V.

    2015-10-21

    The transverse instability of a bunch in a circular accelerator is elaborated in this paper. A new tree-modes model is proposed and developed to describe the most unstable modes of the bunch. This simple and flexible model includes chromaticity and space charge, and can be used with any bunch and wake forms. The dispersion equation for the bunch eigentunes is obtained in form of a third-order algebraic equation. The known head-tail and TMCI modes appear as the limiting cases which are distinctly bounded at zero chromaticity only. It is shown that the instability parameters depend only slightly on the bunchmore » model but they are rather sensitive to the wake shape. In particular, space charge effects are investigated in the paper and it is shown that their influence depends on sign of wake field enhancing the bunch stability if the wake is negative. In addition, the resistive wall wake is considered in detail including a comparison of single and collective effects. A comparison of the results with earlier publications is carried out.« less

  15. A study of the rotor wake of a small-scale rotor model in forward flight using laser light sheet flow visualization with comparisons to analytical models

    NASA Technical Reports Server (NTRS)

    Ghee, Terence A.; Elliott, Joe W.

    1992-01-01

    An experimental investigation was conducted in the 14 by 22 ft subsonic tunnel at NASA Langley Research Center to quantify the rotor wake behind a scale model helicopter rotor in forward flight (mu = 0.15 and 0.23) at one thrust level (C sub T = 0.0064). The rotor system used in the present test consisted of a four-bladed, fully articulated hub and utilized blades of rectangular planform with a NACA-0012 airfoil section. A laser light sheet, seeded with propylene glycol smoke, was used to visualize the flow in planes parallel and perpendicular to the freestream flow. Quantitative measurements of vortex location, vertical skew angle, and vortex particle void radius were obtained for vortices in the flow; convective velocities were obtained for blade tip vortices. Comparisons were made between the experimental results and the wake geometry generated by computational predictions. The results of these comparisons show that the interaction between wake vortex structures is an important consideration for correctly predicting the wake geometry.

  16. A wind-tunnel investigation of wind-turbine wakes in yawed conditions

    NASA Astrophysics Data System (ADS)

    Bastankhah, Majid; Porté-Agel, Fernando

    2015-06-01

    Wind-tunnel experiments were performed to study the performance of a model wind turbine and its wake characteristics in a boundary layer under different operating conditions, including different yaw angles and tip speed ratios. High-resolution particle image- velocimetry (PIV) was used to measure the three velocity components in a horizontal plane at hub height covering a broad streamwise range from upstream of the turbine to the far- wake region. Additionally, thrust and power coefficients of the turbine were measured under different conditions. These power and thrust measurements, together with the highly-resolved flow measurements, enabled us to systematically study different wake properties. The near-wake region is found to have a highly complex structure influenced by different factors such as tip speed ratio and wake rotation. In particular, for higher tip speed ratios, a noticeable speed-up region is observed in the central part of near wake, which greatly affects the flow distribution in this region. In this regard, the behavior of the near wake for turbines with similar thrust coefficients but different tip speed ratios can vary widely. In contrast, it is shown that the mean streamwise velocity in the far wake of the turbine with zero yaw angle has a self-similar Gaussian distribution, and the strength of wake in this region is consistent with the magnitude of the thrust coefficient. With increasing yaw angle, as expected, the power and thrust coefficients decrease, and the wake deflection increases. The measurements also reveal that, in addition to turbulent momentum flux, lateral mean momentum flux boosts the flow entrainment in only one side of the wake, which results in a faster wake recovery in that side. It is also found that the induced velocity upstream of a yawed turbine has a non-symmetric distribution, and its distribution is in agreement with the available model in the literature. Moreover, the results suggest that in order to accurately predict the load distribution in yawed conditions, both normal and tangential (with respect to the rotor plane) components of the induced velocity upstream of the turbine should be taken into account.

  17. Rotor Wake/Stator Interaction Noise Prediction Code Technical Documentation and User's Manual

    NASA Technical Reports Server (NTRS)

    Topol, David A.; Mathews, Douglas C.

    2010-01-01

    This report documents the improvements and enhancements made by Pratt & Whitney to two NASA programs which together will calculate noise from a rotor wake/stator interaction. The code is a combination of subroutines from two NASA programs with many new features added by Pratt & Whitney. To do a calculation V072 first uses a semi-empirical wake prediction to calculate the rotor wake characteristics at the stator leading edge. Results from the wake model are then automatically input into a rotor wake/stator interaction analytical noise prediction routine which calculates inlet aft sound power levels for the blade-passage-frequency tones and their harmonics, along with the complex radial mode amplitudes. The code allows for a noise calculation to be performed for a compressor rotor wake/stator interaction, a fan wake/FEGV interaction, or a fan wake/core stator interaction. This report is split into two parts, the first part discusses the technical documentation of the program as improved by Pratt & Whitney. The second part is a user's manual which describes how input files are created and how the code is run.

  18. A Well-Posed, Objective and Dynamic Two-Fluid Model

    NASA Astrophysics Data System (ADS)

    Chetty, Krishna; Vaidheeswaran, Avinash; Sharma, Subash; Clausse, Alejandro; Lopez de Bertodano, Martin

    The transition from dispersed to clustered bubbly flows due to wake entrainment is analyzed with a well-posed and objective one-dimensional (1-D) Two-Fluid Model, derived from variational principles. Modeling the wake entrainment force using the variational technique requires formulation of the inertial coupling coefficient, which defines the kinetic coupling between the phases. The kinetic coupling between a pair of bubbles and the liquid is obtained from potential flow over two-spheres and the results are validated by comparing the virtual mass coefficients with existing literature. The two-body interaction kinetic coupling is then extended to a lumped parameter model for viscous flow over two cylindrical bubbles, to get the Two-Fluid Model for wake entrainment. Linear stability analyses comprising the characteristics and the dispersion relation and non-linear numerical simulations are performed with the 1-D variational Two-Fluid Model to demonstrate the wake entrainment instability leading to clustering of bubbles. Finally, the wavelengths, amplitudes and propagation velocities of the void waves from non-linear simulations are compared with the experimental data.

  19. Effect of atmospheric turbulence on wind turbine wakes: An LES study

    NASA Astrophysics Data System (ADS)

    Wu, Y. T.; Porté-Agel, F.

    2012-04-01

    A comprehensive numerical study of atmospheric turbulence effect on wind-turbine wakes is presented. Large-eddy simulations of neutrally-stratified boundary layers developed over different flat surfaces (forest, farmland, grass, and snow) are performed to investigate the structure of turbine wakes in cases where the incident flows to the wind turbine have the same mean velocity at the hub height but different mean wind shears and turbulence intensity levels. The simulation results show that the different wind shears and turbulence intensity levels of the incoming flow lead to considerable influence on the spatial distribution of the mean velocity deficit, turbulence intensity, and turbulent shear stress in the wake region downstream of the turbine. In general, the recovery of the turbine-induced wake (velocity deficit) is faster and the turbulence intensity level is higher and has its maximum closer to the turbine for wakes of turbines over rougher terrain. In order to isolate the effect of turbulence intensity from that of wind shear, simulations have also been performed with synthetic inflow velocity fields that have the same mean wind shear but different turbulence intensity levels. We find that the effect of the inflow turbulence intensity on the wake recovery and turbulence levels is stronger than that of the mean shear.

  20. Sleep-wake disturbances in sporadic Creutzfeldt-Jakob disease.

    PubMed

    Landolt, H-P; Glatzel, M; Blättler, T; Achermann, P; Roth, C; Mathis, J; Weis, J; Tobler, I; Aguzzi, A; Bassetti, C L

    2006-05-09

    The prevalence and characteristics of sleep-wake disturbances in sporadic Creutzfeldt-Jakob disease (sCJD) are poorly understood. Seven consecutive patients with definite sCJD underwent a systematic assessment of sleep-wake disturbances, including clinical history, video-polysomnography, and actigraphy. Extent and distribution of neurodegeneration was estimated by brain autopsy in six patients. Western blot analyses enabling classification and quantification of the protease-resistant isoform of the prion protein, PrPSc, in thalamus and occipital cortex was available in four patients. Sleep-wake symptoms were observed in all patients, and were prominent in four of them. All patients had severe sleep EEG abnormalities with loss of sleep spindles, very low sleep efficiency, and virtual absence of REM sleep. The correlation between different methods to assess sleep-wake functions (history, polysomnography, actigraphy, videography) was generally poor. Brain autopsy revealed prominent changes in cortical areas, but only mild changes in the thalamus. No mutation of the PRNP gene was found. This study demonstrates in sporadic Creutzfeldt-Jakob disease, first, the existence of sleep-wake disturbances similar to those reported in fatal familial insomnia in the absence of prominent and isolated thalamic neuronal loss, and second, the need of a multimodal approach for the unambiguous assessment of sleep-wake functions in these patients.

  1. EEG power during waking and NREM sleep in primary insomnia.

    PubMed

    Wu, You Meme; Pietrone, Regina; Cashmere, J David; Begley, Amy; Miewald, Jean M; Germain, Anne; Buysse, Daniel J

    2013-10-15

    Pathophysiological models of insomnia invoke the concept of 24-hour hyperarousal, which could lead to symptoms and physiological findings during waking and sleep. We hypothesized that this arousal could be seen in the waking electroencephalogram (EEG) of individuals with primary insomnia (PI), and that waking EEG power would correlate with non-REM (NREM) EEG. Subjects included 50 PI and 32 good sleeper controls (GSC). Five minutes of eyes closed waking EEG were collected at subjects' usual bedtimes, followed by polysomnography (PSG) at habitual sleep times. An automated algorithm and visual editing were used to remove artifacts from waking and sleep EEGs, followed by power spectral analysis to estimate power from 0.5-32 Hz. We did not find significant differences in waking or NREM EEG spectral power of PI and GSC. Significant correlations between waking and NREM sleep power were observed across all frequency bands in the PI group and in most frequency bands in the GSC group. The absence of significant differences between groups in waking or NREM EEG power suggests that our sample was not characterized by a high degree of cortical arousal. The consistent correlations between waking and NREM EEG power suggest that, in samples with elevated NREM EEG beta activity, waking EEG power may show a similar pattern.

  2. Free Wake Analysis of Helicopter Rotor Blades in Hover Using a Finite Volume Technique

    DTIC Science & Technology

    1988-10-01

    inboard, and root) which were replaced by a far wake model after four revolutions. Murman and Stremel 1121 calculated j two-dimensional unsteady wake...distributed to a fixed mesh, on which the velocities were calculated by a finite difference solution of Laplace’s equation. Stremel [131 applied this two...Analysis of a Hovering Rotor," Vertica, Vol. 6, No. 2, 1982. 12. Murman, E.M., and Stremel , P.M., "A Vortex Wake Capturing Method Po- tential Flow

  3. Experimental study on the wind-turbine wake meandering inside a scale model wind farm placed in an atmospheric-boundary-layer wind tunnel

    NASA Astrophysics Data System (ADS)

    Coudou, N.; Buckingham, S.; van Beeck, J.

    2017-05-01

    Increasing use of wind energy over the years results in more and larger clustered wind farms. It is therefore fundamental to have an in-depth knowledge of wind-turbine wakes, and especially a better understanding of the well-known but less understood wake-meandering phenomenon which causes the wake to move as a whole in both horizontal and vertical directions as it is convected downstream. This oscillatory motion of the wake is crucial for loading on downstream turbines because it increases fatigue loads and in particular yaw loads. In order to address this phenomenon, experimental investigations were carried out in an atmospheric-boundary-layer wind tunnel using a 3 × 3 scaled wind farm composed of three-bladed rotating wind-turbine models subject to a neutral atmospheric boundary layer (ABL) corresponding to a slightly rough terrain, i.e. to offshore conditions. Particle Image Velocimetry (PIV) measurements were performed in a horizontal plane, at hub height, in the wake of the three wind turbines in the wind-farm centreline. From the PIV velocity fields obtained, the wake-centrelines were determined and a spectral analysis was performed to obtain the characteristics of the wake-meandering phenomenon. In addition, Hot-Wire Anemometry (HWA) measurements were performed in the wakes of the same wind turbines to validate the PIV results. The spectral analysis performed with the spatial and temporal signals obtained from PIV and HWA measurements respectively, led to Strouhal numbers St = fD/Uhub ≃ 0.20 - 0.22.

  4. Full-Scale Field Test of Wake Steering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Paul; Annoni, Jennifer; Scholbrock, Andrew

    Wind farm control, in which turbine controllers are coordinated to improve farmwide performance, is an active field of research. One form of wind farm control is wake steering, in which a turbine is yawed to the inflow to redirect its wake away from downstream turbines. Wake steering has been studied in depth in simulations as well as in wind tunnels and scaled test facilities. This work performs a field test of wake steering on a full-scale turbine. In the campaign, the yaw controller of the turbine has been set to track different yaw misalignment set points while a nacelle-mounted lidarmore » scans the wake at several ranges downwind. The lidar measurements are combined with turbine data, as well as measurements of the inflow made by a highly instrumented meteorological mast. In conclusion, these measurements are then compared to the predictions of a wind farm control-oriented model of wakes.« less

  5. Wake characteristics of wind turbines in utility-scale wind farms

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolei; Foti, Daniel; Sotiropoulos, Fotis

    2017-11-01

    The dynamics of turbine wakes is affected by turbine operating conditions, ambient atmospheric turbulent flows, and wakes from upwind turbines. Investigations of the wake from a single turbine have been extensively carried out in the literature. Studies on the wake dynamics in utility-scale wind farms are relatively limited. In this work, we employ large-eddy simulation with an actuator surface or actuator line model for turbine blades to investigate the wake dynamics in utility-scale wind farms. Simulations of three wind farms, i.e., the Horns Rev wind farm in Denmark, Pleasant Valley wind farm in Minnesota, and the Vantage wind farm in Washington are carried out. The computed power shows a good agreement with measurements. Analysis of the wake dynamics in the three wind farms is underway and will be presented in the conference. This work was support by Xcel Energy (RD4-13). The computational resources were provided by National Renewable Energy Laboratory.

  6. Full-Scale Field Test of Wake Steering

    DOE PAGES

    Fleming, Paul; Annoni, Jennifer; Scholbrock, Andrew; ...

    2017-06-13

    Wind farm control, in which turbine controllers are coordinated to improve farmwide performance, is an active field of research. One form of wind farm control is wake steering, in which a turbine is yawed to the inflow to redirect its wake away from downstream turbines. Wake steering has been studied in depth in simulations as well as in wind tunnels and scaled test facilities. This work performs a field test of wake steering on a full-scale turbine. In the campaign, the yaw controller of the turbine has been set to track different yaw misalignment set points while a nacelle-mounted lidarmore » scans the wake at several ranges downwind. The lidar measurements are combined with turbine data, as well as measurements of the inflow made by a highly instrumented meteorological mast. In conclusion, these measurements are then compared to the predictions of a wind farm control-oriented model of wakes.« less

  7. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe

    DOE PAGES

    Zhang, C. J.; Hua, J. F.; Xu, X. L.; ...

    2016-07-11

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of themore » wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. As a result, the capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method.« less

  8. Aircraft Wake Vortex Measurements at Denver International Airport

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert P.; Wang, Frank Y.; Booth, Earl R.; Watts, Michael E.; Fenichel, Neil; D'Errico, Robert E.

    2004-01-01

    Airport capacity is constrained, in part, by spacing requirements associated with the wake vortex hazard. NASA's Wake Vortex Avoidance Project has a goal to establish the feasibility of reducing this spacing while maintaining safety. Passive acoustic phased array sensors, if shown to have operational potential, may aid in this effort by detecting and tracking the vortices. During August/September 2003, NASA and the USDOT sponsored a wake acoustics test at the Denver International Airport. The central instrument of the test was a large microphone phased array. This paper describes the test in general terms and gives an overview of the array hardware. It outlines one of the analysis techniques that is being applied to the data and gives sample results. The technique is able to clearly resolve the wake vortices of landing aircraft and measure their separation, height, and sinking rate. These observations permit an indirect estimate of the vortex circulation. The array also provides visualization of the vortex evolution, including the Crow instability.

  9. Factors Associated With Preterm Infants' Circadian Sleep/Wake Patterns at the Hospital.

    PubMed

    Lan, Hsiang-Yun; Yin, Ti; Chen, Jyu-Lin; Chang, Yue-Cune; Liaw, Jen-Jiuan

    2017-08-01

    This prospective repeated-measures study explored potential factors (postmenstrual age, body weight, gender, chronological age, illness severity, and circadian rhythm) related to preterm infants' circadian sleep/wake patterns. Circadian sleep/wake patterns were measured using an Actiwatch for 3 continuous days in preterm infants (gestational age of 28-36.4 weeks) in a neonatal intensive care unit and hospital nursery. Potential factors associated with circadian sleep/wake patterns were analyzed using the generalized estimating equation. For our sample of 30 preterm infants, better sleep/wake patterns were associated with male gender, younger postmenstrual and chronological age, lower body weight, and less illness severity. Preterm infants' total sleep time ( B = 41.828, p < .01) and percentage of sleep time ( B = 3.711, p < .01) were significantly longer at night than during the day. These findings can help clinicians recognize preterm infants' sleep problems, signaling the need to provide individualized support to maintain these infants' sleep quality during their early life.

  10. Nocturnal Wakefulness is Associated with Next-Day Suicidal Ideation in Major Depression and Bipolar Disorder

    PubMed Central

    Ballard, Elizabeth D.; Vande Voort, Jennifer L.; Bernert, Rebecca A.; Luckenbaugh, David A.; Richards, Erica M.; Niciu, Mark J.; Furey, Maura L.; Duncan, Wallace C.; Zarate, Carlos A.

    2016-01-01

    Objective Self-reported sleep disturbances may confer elevated risk for suicidal ideation, suicide attempts, and death. However, limited research has evaluated polysomnography (PSG)-determined sleep disturbance as an acute physiological risk factor for suicidal thoughts. This study sought to investigate the relationship between nocturnal wakefulness in association with next-day suicidal ideation using overnight PSG assessment from data collected between 2006 and 2013. Method Participants with DSM-IV-diagnosed major depressive disorder (MDD) or bipolar depression underwent overnight PSG monitoring in a sleep laboratory. The Hamilton Depression Rating Scale (HAM-D) was administered the morning after PSG recording to assess next-day suicidal ideation, severity of depressive symptoms, and subjective sleep disturbances. Results Using a generalized linear mixed model, a significant time-by-ideation interaction was found indicating greater nocturnal wakefulness at 4:00 AM among participants with suicidal ideation (F(4,136) = 3.65, p = .007). Increased time awake during the 4:00 AM hour (4:00 to 4:59) was significantly associated with elevated suicidal thoughts the next day (standardized β = .31, p = .008). This relationship persisted after controlling for age, gender, diagnosis, and severity of depressive symptoms. Conclusion Greater nocturnal wakefulness, particularly in the early morning hours, was significantly associated with next-day suicidal thoughts. PSG-documented sleep disruption at specific times of night may represent an acute risk factor of suicidal ideation that warrants additional research. Clinical Trials Identifier NCT00024635 PMID:27337418

  11. Nocturnal Wakefulness Is Associated With Next-Day Suicidal Ideation in Major Depressive Disorder and Bipolar Disorder.

    PubMed

    Ballard, Elizabeth D; Vande Voort, Jennifer L; Bernert, Rebecca A; Luckenbaugh, David A; Richards, Erica M; Niciu, Mark J; Furey, Maura L; Duncan, Wallace C; Zarate, Carlos A

    2016-06-01

    Self-reported sleep disturbances may confer elevated risk for suicidal ideation, suicide attempts, and death. However, limited research has evaluated polysomnographically determined sleep disturbance as an acute physiologic risk factor for suicidal thoughts. This study sought to investigate the relationship between nocturnal wakefulness in association with next-day suicidal ideation using overnight polysomnography assessment from data collected between 2006 and 2013. Sixty-five participants with DSM-IV-diagnosed major depressive disorder or bipolar depression underwent overnight polysomnography monitoring in a sleep laboratory. The Hamilton Depression Rating Scale (HDRS) was administered the morning after polysomnography recording to assess next-day suicidal ideation, severity of depressive symptoms, and subjective sleep disturbances. Using a generalized linear mixed model, a significant time-by-ideation interaction was found indicating greater nocturnal wakefulness at 4:00 am among participants with suicidal ideation (F4,136 = 3.65, P = .007). Increased time awake during the 4:00 am hour (4:00 to 4:59) was significantly associated with elevated suicidal thoughts the next day (standardized β = 0.31, P = .008). This relationship persisted after controlling for age, gender, diagnosis, and severity of depressive symptoms. Greater nocturnal wakefulness, particularly in the early morning hours, was significantly associated with next-day suicidal thoughts. Polysomnographically documented sleep disruption at specific times of night may represent an acute risk factor of suicidal ideation that warrants additional research. ClinicalTrials.gov identifier: NCT00024635. © Copyright 2016 Physicians Postgraduate Press, Inc.

  12. Dynamics of the aircraft in a vortex wake

    NASA Astrophysics Data System (ADS)

    Gaifullin, A. M.; Sviridenko, Yu N.

    2018-03-01

    This paper considers the aerodynamics and the dynamics of an aircraft on various modes when the aircraft enters a strongly swirling flow. This is the case when an aircraft purposefully enters the jet-vortex wake of another aircraft in the course of in-flight refuelling, when an aircraft is flying in the trail of an aircraft carrier during landing, or when an aircraft accidentally enters other aircrafts’ vortex wakes. These situations, according to pilots’ evaluation, are the most dangerous and the most difficult modes for piloting. That is why their real time modelling on flight simulators has taken on particular importance. This article provides the algorithms and methodology of mathematical modelling of aerodynamic forces and moments which act upon an aircraft in vortex wakes.

  13. Characterizing cycle-to-cycle variations of the shedding cycle in the turbulent wake of a normal flat plate using generalized phase averages

    NASA Astrophysics Data System (ADS)

    Martinuzzi, Robert

    2016-11-01

    Quasi-periodic vortex shedding in the turbulent wake of a thin-flat plate placed normal to a uniform stream at Reynolds number of 6700 is investigated based on Particle Image Velocimetry experiments. The wake structure and vortex formation are characterized using a generalized phase average (GPA), a refinement of the triple decomposition of Reynolds and Hussain (1970) incorporating elements of mean-field theory (Stuart, 1958). The resulting analysis highlights the importance of cycle-to-cycle variations in characterizing vortex formation, wake topology and the residual turbulent Reynolds Stresses. For example, it is shown that during high-amplitude cycles vorticity is strongly concentrated within the well-organized shed vortices, whereas during low-amplitude cycles the shed vortices are highly distorted resulting in significant modulation of the shedding frequency. It is found that high-amplitude cycles contribute more to the coherent Reynolds stress field while the low-amplitude cycles contribute to the residual stress field. It is further shown that traditional phase-averaging techniques lead to an over-estimation of the residual stress field. Natural Sciences and Engineering Research Council of Canada.

  14. Computation of Turbulent Wake Flows in Variable Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Duquesne, N.; Carlson, J. R.; Rumsey, C. L.; Gatski, T. B.

    1999-01-01

    Transport aircraft performance is strongly influenced by the effectiveness of high-lift systems. Developing wakes generated by the airfoil elements are subjected to strong pressure gradients and can thicken very rapidly, limiting maximum lift. This paper focuses on the effects of various pressure gradients on developing symmetric wakes and on the ability of a linear eddy viscosity model and a non-linear explicit algebraic stress model to accurately predict their downstream evolution. In order to reduce the uncertainties arising from numerical issues when assessing the performance of turbulence models, three different numerical codes with the same turbulence models are used. Results are compared to available experimental data to assess the accuracy of the computational results.

  15. Effect of nacelle on wake meandering in a laboratory scale wind turbine using LES

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis

    2015-11-01

    Wake meandering, large scale motion in the wind turbine wakes, has considerable effects on the velocity deficit and turbulence intensity in the turbine wake from the laboratory scale to utility scale wind turbines. In the dynamic wake meandering model, the wake meandering is assumed to be caused by large-scale atmospheric turbulence. On the other hand, Kang et al. (J. Fluid Mech., 2014) demonstrated that the nacelle geometry has a significant effect on the wake meandering of a hydrokinetic turbine, through the interaction of the inner wake of the nacelle vortex with the outer wake of the tip vortices. In this work, the significance of the nacelle on the wake meandering of a miniature wind turbine previously used in experiments (Howard et al., Phys. Fluid, 2015) is demonstrated with large eddy simulations (LES) using immersed boundary method with fine enough grids to resolve the turbine geometric characteristics. The three dimensionality of the wake meandering is analyzed in detail through turbulent spectra and meander reconstruction. The computed flow fields exhibit wake dynamics similar to those observed in the wind tunnel experiments and are analyzed to shed new light into the role of the energetic nacelle vortex on wake meandering. This work was supported by Department of Energy DOE (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), and Sandia National Laboratories. Computational resources were provided by Sandia National Laboratories and the University of Minnesota Supercomputing.

  16. What I make up when I wake up: anti-experience views and narrative fabrication of dreams.

    PubMed

    Rosen, Melanie G

    2013-01-01

    I propose a narrative fabrication thesis of dream reports, according to which dream reports are often not accurate representations of experiences that occur during sleep. I begin with an overview of anti-experience theses of Norman Malcolm and Daniel Dennett who reject the received view of dreams, that dreams are experiences we have during sleep which are reported upon waking. Although rejection of the first claim of the received view, that dreams are experiences that occur during sleep, is implausible, I evaluate in more detail the second assumption of the received view, that dream reports are generally accurate. I then propose a "narrative fabrication" view of dreams as an alternative to the received view. Dream reports are often confabulated or fabricated because of poor memory, bizarre dream content, and cognitive deficits. It is well documented that narratives can be altered between initial rapid eye movement sleep awakenings and subsequent reports. I argue that we have reason to suspect that initial reports are prone to inaccuracy. Experiments demonstrate that subjects rationalize strange elements in narratives, leaving out supernatural or bizarre components when reporting waking memories of stories. Inaccuracies in dream reports are exacerbated by rapid memory loss and bizarre dream content. Waking memory is a process of reconstruction and blending of elements, but unlike waking memory, we cannot reality-test for dream memories. Dream experiences involve imaginative elements, and dream content cannot be verified with external evidence. Some dreams may involve wake-like higher cognitive functions, such as lucid dreams. Such dreams are more likely to elicit accurate reports than cognitively deficient dreams. However, dream reports are generally less accurate than waking reports. I then propose methods which could verify the narrative fabrication view, and argue that although the theory cannot be tested with current methods, new techniques and technologies may be able to do so in the future.

  17. What I make up when I wake up: anti-experience views and narrative fabrication of dreams

    PubMed Central

    Rosen, Melanie G.

    2013-01-01

    I propose a narrative fabrication thesis of dream reports, according to which dream reports are often not accurate representations of experiences that occur during sleep. I begin with an overview of anti-experience theses of Norman Malcolm and Daniel Dennett who reject the received view of dreams, that dreams are experiences we have during sleep which are reported upon waking. Although rejection of the first claim of the received view, that dreams are experiences that occur during sleep, is implausible, I evaluate in more detail the second assumption of the received view, that dream reports are generally accurate. I then propose a “narrative fabrication” view of dreams as an alternative to the received view. Dream reports are often confabulated or fabricated because of poor memory, bizarre dream content, and cognitive deficits. It is well documented that narratives can be altered between initial rapid eye movement sleep awakenings and subsequent reports. I argue that we have reason to suspect that initial reports are prone to inaccuracy. Experiments demonstrate that subjects rationalize strange elements in narratives, leaving out supernatural or bizarre components when reporting waking memories of stories. Inaccuracies in dream reports are exacerbated by rapid memory loss and bizarre dream content. Waking memory is a process of reconstruction and blending of elements, but unlike waking memory, we cannot reality-test for dream memories. Dream experiences involve imaginative elements, and dream content cannot be verified with external evidence. Some dreams may involve wake-like higher cognitive functions, such as lucid dreams. Such dreams are more likely to elicit accurate reports than cognitively deficient dreams. However, dream reports are generally less accurate than waking reports. I then propose methods which could verify the narrative fabrication view, and argue that although the theory cannot be tested with current methods, new techniques and technologies may be able to do so in the future. PMID:23964260

  18. Maternal depressive symptoms, dysfunctional cognitions, and infant night waking: the role of maternal nighttime behavior.

    PubMed

    Teti, Douglas M; Crosby, Brian

    2012-01-01

    Mechanisms were examined to clarify relations between maternal depressive symptoms, dysfunctional cognitions, and infant night waking among 45 infants (1-24 months) and their mothers. A mother-driven mediational model was tested in which maternal depressive symptoms and dysfunctional cognitions about infant sleep predicted infant night waking via their impact on mothers' bedtime and nighttime behavior with infants (from video). Two infant-driven mediational models were also examined, in which infant night waking predicted maternal depressive symptoms, or dysfunctional cognitions, via their impact on nighttime maternal behavior. Stronger support for the mother-driven model was obtained, which was further supported by qualitative observations from video-recordings. This study provides important insights about maternal depression's effects on nighttime parenting, and how such parenting affects infant sleep. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.

  19. Use of simple models to determine wake vortex categories for new aircraft.

    DOT National Transportation Integrated Search

    2015-06-22

    The paper describes how to use simple models and, if needed, sensitivity analyses to determine the wake vortex categories for new aircraft. The methodology provides a tool for the regulators to assess the relative risk of introducing new aircraft int...

  20. Computer program documentation for a subcritical wing design code using higher order far-field drag minimization

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.; Shu, J. Y.

    1981-01-01

    A subsonic, linearized aerodynamic theory, wing design program for one or two planforms was developed which uses a vortex lattice near field model and a higher order panel method in the far field. The theoretical development of the wake model and its implementation in the vortex lattice design code are summarized and sample results are given. Detailed program usage instructions, sample input and output data, and a program listing are presented in the Appendixes. The far field wake model assumes a wake vortex sheet whose strength varies piecewise linearly in the spanwise direction. From this model analytical expressions for lift coefficient, induced drag coefficient, pitching moment coefficient, and bending moment coefficient were developed. From these relationships a direct optimization scheme is used to determine the optimum wake vorticity distribution for minimum induced drag, subject to constraints on lift, and pitching or bending moment. Integration spanwise yields the bound circulation, which is interpolated in the near field vortex lattice to obtain the design camber surface(s).

  1. Nonlinear Kinetic Instabilities in Plasma Wakes

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.; Haakonsen, C. B.

    2015-12-01

    Relative motion of a plasma and an embedded perturbing solid objectproduces a plasma wake, which is kinetically unstable. For moons,asteroids, spacecraft, probes, and planets without a magnetosphere theresponse is dominantly electrostatic, although generally with abackground magnetic field. Using high-fidelity particle-in-cellsimulations, we have observed the development of kinetic instabilitiesand their non-linear consequences in representative wakes. We havealso explained the observations with semi-analytical non-lineartheory. The ion and electron distribution function shapes are stronglyperturbed in the wake region. The ions form two opposite beamsdirected inward along the guiding magnetic field, in part because ofthe attraction of the wake's electric potential well. The electrondistribution forms a notch or dimple (of reduced phase space density)localized in velocity to orbits that dwell near the wake axis (becauseof repulsion). Those orbits are de-energized by cross-field drift downthe potential-energy ridge. The resulting Langmuir instability spawnselectron holes. The holes that move faster than the ion beams areaccelerated out of the wake by its electrostatic field without growingsubstantially. Some holes, however, remain in the wake at essentiallyzero parallel velocity. They grow, as a result of the same mechanismthat formed the notch: cross-field drift from a lower to a higherdensity. When the density rises by a factor of order two or three,they grow large enough to perturb the ions, tap their free energy, anddisrupt the ion streams well before they would become ion-ionunstable. Crucially, these processes depend strongly on theion/electron mass ratio and require close to physical ratio (1836) insimulations, to reveal their characteristics. Electron holes arisingfrom these processes may be widely present and observable in spaceplasma wakes.

  2. GABA(A) receptors in the pontine reticular formation of C57BL/6J mouse modulate neurochemical, electrographic, and behavioral phenotypes of wakefulness.

    PubMed

    Flint, RaShonda R; Chang, Theresa; Lydic, Ralph; Baghdoyan, Helen A

    2010-09-15

    Drugs that potentiate transmission at GABA(A) receptors are widely used to enhance sleep and to cause general anesthesia. The mechanisms underlying these effects are unknown. This study tested the hypothesis that GABA(A) receptors in the pontine reticular nucleus, oral part (PnO) of mouse modulate five phenotypes of arousal: sleep and wakefulness, cortical electroencephalogram (EEG) activity, acetylcholine (ACh) release in the PnO, breathing, and recovery time from general anesthesia. Microinjections into the PnO of saline (vehicle control), the GABA(A) receptor agonist muscimol, muscimol with the GABA(A) receptor antagonist bicuculline, and bicuculline alone were performed in male C57BL/6J mice (n = 33) implanted with EEG recording electrodes. Muscimol caused a significant increase in wakefulness and decrease in rapid eye movement (REM) and non-REM (NREM) sleep. These effects were reversed by coadministration of bicuculline. Bicuculline administered alone caused a significant decrease in wakefulness and increase in NREM sleep and REM sleep. Muscimol significantly increased EEG power in the delta range (0.5-4 Hz) during wakefulness and in the theta range (4-9 Hz) during REM sleep. Dialysis delivery of bicuculline to the PnO of male mice (n = 18) anesthetized with isoflurane significantly increased ACh release in the PnO, decreased breathing rate, and increased anesthesia recovery time. All drug effects were concentration dependent. The effects on phenotypes of arousal support the conclusion that GABA(A) receptors in the PnO promote wakefulness and suggest that increasing GABAergic transmission in the PnO may be one mechanism underlying the phenomenon of paradoxical behavioral activation by some benzodiazepines.

  3. An Operational Wake Vortex Sensor Using Pulsed Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, D. Chi

    1998-01-01

    NASA and FAA initiated a program in 1994 to develop methods of setting spacings for landing aircraft by incorporating information on the real-time behavior of aircraft wake vortices. The current wake separation standards were developed in the 1970's when there was relatively light airport traffic and a logical break point by which to categorize aircraft. Today's continuum of aircraft sizes and increased airport packing densities have created a need for re-evaluation of wake separation standards. The goals of this effort are to ensure that separation standards are adequate for safety and to reduce aircraft spacing for higher airport capacity. Of particular interest are the different requirements for landing under visual flight conditions and instrument flight conditions. Over the years, greater spacings have been established for instrument flight than are allowed for visual flight conditions. Preliminary studies indicate that the airline industry would save considerable money and incur fewer passenger delays if a dynamic spacing system could reduce separations at major hubs during inclement weather to the levels routinely achieved under visual flight conditions. The sensor described herein may become part of this dynamic spacing system known as the "Aircraft VOrtex Spacing System" (AVOSS) that will interface with a future air traffic control system. AVOSS will use vortex behavioral models and short-term weather prediction models in order to predict vortex behavior sufficiently into the future to allow dynamic separation standards to be generated. The wake vortex sensor will periodically provide data to validate AVOSS predictions. Feasibility of measuring wake vortices using a lidar was first demonstrated using a continuous wave (CW) system from NASA Marshall Space Flight Sensor and tested at the Volpe National Transportation Systems Center's wake vortex test site at JFK International Airport. Other applications of CW lidar for wake vortex measurement have been made more recently, including a system developed by the MIT Lincoln Laboratory. This lidar has been used for detailed measurements of wake vortex velocities in support of wake vortex model validation. The first measurements of wake vortices using a pulsed, lidar were made by Coherent Technologies, Inc. (CTI) using a 2 micron solid-state, flashlamp-pumped system operating at 5 Hz. This system was first deployed at Denver's Stapleton Airport. Pulsed lidar has been selected as the baseline technology for an operational sensor due to its longer range capability.

  4. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Porté-Agel, Fernando

    2014-05-01

    In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, subgrid-scale turbulent fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces are parameterized with an actuator-disk model with rotation. In this technique, blade-element theory is used to calculate the lift and drag forces acting on the blades. Emphasis is placed on the structure and characteristics of wind-turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different stability conditions. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, the magnitude of the velocity deficit increases with increasing stability in the atmosphere. In addition, the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine in convective boundary layer compared with neutral and stable ones. Detailed analysis of the resolved turbulent kinetic energy (TKE) budget inside the wake reveals also that the thermal stratification of the incoming wind considerably affects the magnitude and spatial distribution of the turbulent production, transport term and dissipation rate (transfer of energy to the subgrid scales). It is also shown that the near-wake region can be extended to a farther distance downstream in stable condition compared with neutral and unstable counterparts. In order to isolate the effect of atmospheric stability, additional simulations of neutrally-stratified atmospheric boundary layers are performed with the same turbulence intensity at hub height as convective and stable ones. The results show that the turbulence intensity alone is not sufficient to describe the impact of atmospheric stability on the wind-turbine wakes.

  5. An integrated Navier-Stokes - full potential - free wake method for rotor flows

    NASA Astrophysics Data System (ADS)

    Berkman, Mert Enis

    1998-12-01

    The strong wake shed from rotary wings interacts with almost all components of the aircraft, and alters the flow field thus causing performance and noise problems. Understanding and modeling the behavior of this wake, and its effect on the aerodynamics and acoustics of helicopters have remained as challenges. This vortex wake and its effect should be accurately accounted for in any technique that aims to predict rotor flow field and performance. In this study, an advanced and efficient computational technique for predicting three-dimensional unsteady viscous flows over isolated helicopter rotors in hover and in forward flight is developed. In this hybrid technique, the advantages of various existing methods have been combined to accurately and efficiently study rotor flows with a single numerical method. The flow field is viewed in three parts: (i) an inner zone surrounding each blade where the wake and viscous effects are numerically captured, (ii) an outer zone away from the blades where wake is modeled, and (iii) a Lagrangean wake which induces wake effects in the outer zone. This technique was coded in a flow solver and compared with experimental data for hovering and advancing rotors including a two-bladed rotor, the UH-60A rotor and a tapered tip rotor. Detailed surface pressure, integrated thrust and torque, sectional thrust, and tip vortex position predictions compared favorably against experimental data. Results indicated that the hybrid solver provided accurate flow details and performance information typically in one-half to one-eighth cost of complete Navier-Stokes methods.

  6. Euler equation computations for the flow over a hovering helicopter rotor

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas Wesley

    1988-01-01

    A numerical solution technique is developed for computing the flow field around an isolated helicopter rotor in hover. The flow is governed by the compressible Euler equations which are integrated using a finite volume approach. The Euler equations are coupled to a free wake model of the rotary wing vortical wake. This wake model is incorporated into the finite volume solver using a prescribed flow, or perturbation, technique which eliminates the numerical diffusion of vorticity due to the artificial viscosity of the scheme. The work is divided into three major parts: (1) comparisons of Euler solutions to experimental data for the flow around isolated wings show good agreement with the surface pressures, but poor agreement with the vortical wake structure; (2) the perturbation method is developed and used to compute the interaction of a streamwise vortex with a semispan wing. The rapid diffusion of the vortex when only the basic Euler solver is used is illustrated, and excellent agreement with experimental section lift coefficients is demonstrated when using the perturbation approach; and (3) the free wake solution technique is described and the coupling of the wake to the Euler solver for an isolated rotor is presented. Comparisons with experimental blade load data for several cases show good agreement, with discrepancies largely attributable to the neglect of viscous effects. The computed wake geometries agree less well with experiment, the primary difference being that too rapid a wake contraction is predicted for all the cases.

  7. Wind tunnel simulations of wind turbine wake interactions in neutral and stratified wind flow.

    NASA Astrophysics Data System (ADS)

    Hancock, P. E.; Pascheke, F.

    2010-09-01

    A second programme of work is about to commence as part of a further four years of funding for the UK-EPSRC SUPERGEN-Wind large-wind-farm consortium. The first part of the initial programme at Surrey was to establish and set up appropriate techniques for both on- and off-shore boundary layers (though with an emphasis on the latter) at a suitable scale, and to build suitable rotating model wind turbines. The EnFlo wind tunnel, a UK-NCAS special facility, is capable of creating scaled neutral, stable and unstable boundary layers in its 20m long working section. The model turbines are 1/300-scale of 5MW-size, speed controlled with phase-lock measurement capability, and the blade design takes into account low Reynolds-number effects. Velocity measurements are primarily made using two-component LDA, combined with a ‘cold-wire' probe in order to measure the local turbulent heat flux. Simulation of off-shore wakes is particularly constrained because i) at wind tunnel scale the inherently low surface roughness can be below that for fully rough conditions, ii) the power required to stratify the flow varies as the square of the flow speed, and could easily be impractically large, iii) low blade Reynolds number. The boundary layer simulations, set up to give near-equilibrium conditions in terms of streamwise development, and the model turbines have been designed against these constraints, but not all constraints can be always met simultaneously in practice. Most measurements so far have been made behind just one or two turbines in neutral off- and on-shore boundary layers, at stations up to 12 disk diameters downstream. These show how, for example, the wake of a turbine affects the development of the wake of a downwind turbine that is laterally off-set by say half or one diameter, and how the unaffected part from the first turbine merges with the affected wake of the second. As expected a lower level of atmospheric turbulence causes the wakes to develop and fill-in more slowly compared with the on-shore case. A turbine can also suppress the level of atmospheric turbulence below hub height. In neutral flow, the wakes grow in width and height. However, even in mild stable stratification the vertical development of the wake deficit can be completely inhibited; at least some reduction would be expected arising from the stabilizing influence on vertical fluctuations. The width in contrast develops at about the same rate. As anticipated, the wake development is slower still in the stable case because of the lower level ambient turbulence. The maximum deficit is at a lower height than it is for neutral flow. Various aspects of the turbulence in the wake have been investigated. Second-phase work will examine a larger number of wake-turbine and wake-wake interactions, make a more detailed study of how turbines alter the atmospheric turbulence, and examine more cases of stratification. Work is also in hand related to turbines in or near forested regions, and it is expected that aspects of the physics will have links with the effect a large wind farm will have on the ABL and on the wind resource for a downwind farm. The work will produce a series of test cases to assist in the development of better wake and wind resource prediction models as well as a better understanding of wake physics.

  8. The effects of the canopy created velocity inflection in the wake development

    NASA Astrophysics Data System (ADS)

    Agafonova, O.; Avramenko, A.; Chaudhari, A.; Hellsten, A.

    2016-06-01

    The aim of this paper is to study the effects of forest on the turbine wakes. Initially, the ACL (actuator line) model as well as a Canopy model are validated with the experiments separately. The models are further applied to simulate the flow over two wind turbines in a row located within the forest.

  9. Development of a rotor wake-vortex model, volume 1

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Gliebe, P. R.

    1984-01-01

    Certain empirical rotor wake and turbulence relationships were developed using existing low speed rotor wave data. A tip vortex model was developed by replacing the annulus wall with a row of image vortices. An axisymmetric turbulence spectrum model, developed in the context of rotor inflow turbulence, was adapted to predicting the turbulence spectrum of the stator gust upwash.

  10. U.S. Navy Surface Ship Fleet: Propulsion Energy Evaluation, and Identification of Cost Effective Energy Enhancement Devices

    DTIC Science & Technology

    2006-12-01

    T T Thrust V V Speed (Velocity) in general VA VA Speed of Advance of propeller wQ WQ Taylor Wake Fraction (torque identity) wl- WT Taylor Wake...Wasp, LHD 1 6 $45 M Tarawa, LHA 1 5 $18 M Whidbey Island / Harpers Ferry, 12 $ 24 M LSD 41 /LSD 49 (C) Fleet Auxiliary Force Henry J Kaiser, TAO 187 16...savings are associated with the TAO 187 class. Table 2 shows some general characteristics of these selected U.S. Navy ship classes. The type of prime

  11. The effect of unsteady blade loading on the aeroacoustics of a pusher propeller

    NASA Astrophysics Data System (ADS)

    Mauk, Clay S.; Farokhi, Saeed

    1993-06-01

    A theoretical/computational approach is developed to predict the change in near-field noise due to a momentum-deficit upstream of a propeller plane, specifically for a pylon wake in a pusher configuration. The acoustic pressure is computed using blade geometry and unsteady blade surface pressure history. The steady blade surface pressure is predicted using blade-momentum theory and two-dimensional airfoil characteristics. Unsteady blade pressures are derived from in-flight measurements. In-flight acoustic measurements are used for code validation purposes. Overall sound pressure levels (OSPL) are computed for an array of observer locations parallel to the propeller axis of rotation. In order to clearly realize the effect of the wake encounter on the radiated sound, the wake signature is eliminated from the unsteady blade pressures. By subtracting the OSPL computed with the smoothed data from that computed with the original unsteady data, the change in noise resulting from the wake encounter is deduced. In general, the noise was increased due to the propeller-wake chopping activity. For all flight conditions, the largest increase in radiated noise occurred for a highly loaded propeller. The results indicate that the propeller noise due to periodic wake encounter may possess a unique directivity pattern.

  12. Kinetic electron and ion instability of the lunar wake simulated at physical mass ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haakonsen, Christian Bernt, E-mail: chaako@mit.edu; Hutchinson, Ian H., E-mail: ihutch@mit.edu; Zhou, Chuteng, E-mail: ctzhou@mit.edu

    2015-03-15

    The solar wind wake behind the moon is studied with 1D electrostatic particle-in-cell (PIC) simulations using a physical ion to electron mass ratio (unlike prior investigations); the simulations also apply more generally to supersonic flow of dense magnetized plasma past non-magnetic objects. A hybrid electrostatic Boltzmann electron treatment is first used to investigate the ion stability in the absence of kinetic electron effects, showing that the ions are two-stream unstable for downstream wake distances (in lunar radii) greater than about three times the solar wind Mach number. Simulations with PIC electrons are then used to show that kinetic electron effectsmore » can lead to disruption of the ion beams at least three times closer to the moon than in the hybrid simulations. This disruption occurs as the result of a novel wake phenomenon: the non-linear growth of electron holes spawned from a narrow dimple in the electron velocity distribution. Most of the holes arising from the dimple are small and quickly leave the wake, approximately following the unperturbed electron phase-space trajectories, but some holes originating near the center of the wake remain and grow large enough to trigger disruption of the ion beams. Non-linear kinetic-electron effects are therefore essential to a comprehensive understanding of the 1D electrostatic stability of such wakes, and possible observational signatures in ARTEMIS data from the lunar wake are discussed.« less

  13. Exploratory investigation of sound pressure level in the wake of an oscillating airfoil in the vicinity of stall

    NASA Technical Reports Server (NTRS)

    Gray, R. B.; Pierce, G. A.

    1972-01-01

    Wind tunnel tests were performed on two oscillating two-dimensional lifting surfaces. The first of these models had an NACA 0012 airfoil section while the second simulated the classical flat plate. Both of these models had a mean angle of attack of 12 degrees while being oscillated in pitch about their midchord with a double amplitude of 6 degrees. Wake surveys of sound pressure level were made over a frequency range from 16 to 32 Hz and at various free stream velocities up to 100 ft/sec. The sound pressure level spectrum indicated significant peaks in sound intensity at the oscillation frequency and its first harmonic near the wake of both models. From a comparison of these data with that of a sound level meter, it is concluded that most of the sound intensity is contained within these peaks and no appreciable peaks occur at higher harmonics. It is concluded that within the wake the sound intensity is largely pseudosound while at one chord length outside the wake, it is largely true vortex sound. For both the airfoil and flat plate the peaks appear to be more strongly dependent upon the airspeed than on the oscillation frequency. Therefore reduced frequency does not appear to be a significant parameter in the generation of wake sound intensity.

  14. An Investigation into the Aerodynamics Surrounding Vertical-Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.

    The flow surrounding a scaled model vertical-axis wind turbine (VAWT) at realistic operating conditions was studied. The model closely matches geometric and dynamic properties--tip-speed ratio and Reynolds number--of a full-size turbine. The flowfield is measured using particle imaging velocimetry (PIV) in the mid-plane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Ensemble-averaged results revealed an asymmetric wake behind the turbine, regardless of tip-speed ratio, with a larger velocity deficit for a higher tip-speed ratio. For the higher tip-speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04Uinfinity. Phase-averaged vorticity fields--achieved by syncing the PIV system with the rotation of the turbine--show distinct structures form from each turbine blade. There are distinct differences in the structures that are shed into the wake for tip-speed ratios of 0.9, 1.3 and 2.2--switching from two pairs to a single pair of shed vortices--and how they convect into the wake--the middle tip-speed ratio vortices convect downstream inside the wake, while the high tip-speed ratio pair is shed into the shear layer of the wake. The wake structure is found to be much more sensitive to changes in tip-speed ratio than to changes in Reynolds number. The geometry of a turbine can influence tip-speed ratio, but the precise relationship among VAWT geometric parameters and VAWT wake characteristics remains unknown. Next, we characterize the wakes of three VAWTs that are geometrically similar except for the ratio of the turbine diameter (D), to blade chord (c), which was chosen to be D/c = 3, 6, and 9, for a fixed freestream Reynolds number based on the blade chord of Rec =16,000. In addition to two-component PIV and single-component constant temperature anemometer measurements are made at the horizontal mid-plane in the wake of each turbine. Hot-wire measurement locations are selected to coincide with the edge of the shear layer of each turbine wake, as deduced from the PIV data, which allows for an analysis of the frequency content of the wake due to vortex shedding by the turbine. Changing the tip-speed ratio leads to substantial wake variation possibly because changing the tip-speed ratio changes the dynamic solidity. In this work, we achieve a similar change in dynamic solidity by varying the D/c ratio and holding the tip-speed ratio constant. This change leads to very similar characteristic shifts in the wake, such as a greater blockage effect, including averaged flow reversal in the case of high dynamic solidity (D/c = 3). The phase-averaged vortex identification shows that both the blockage effect and the wake structures are similarly affected by a change in dynamic solidity. At lower dynamic solidity, pairs of vortices are shed into the wake directly downstream of the turbine. For all three models, a vortex chain is shed into the shear layer at the edge of the wake where the blade is processing into the freestream.

  15. Evidence of circular Rydberg states in beam-foil experiments: Role of the surface wake field

    NASA Astrophysics Data System (ADS)

    Sharma, Gaurav; Puri, Nitin K.; Kumar, Pravin; Nandi, T.

    2017-12-01

    We have employed the concept of the surface wake field to model the formation of the circular Rydberg states in the beam-foil experiments. The experimental studies of atomic excitation processes show the formation of circular Rydberg states either in the bulk of the foil or at the exit surface, and the mechanism is explained by several controversial theories. The present model is based on the interesting fact that the charge state fraction as well as the surface wake field depend on the foil thickness and it resolves a long-standing discrepancy on the mechanism of the formation of circular Rydberg states. The influence of exit layers is twofold. Initially, the high angular momentum Rydberg states are produced in the last layers of the foil by the Stark switching due to the bulk wake field and finally, they are transferred to the circular Rydberg states as a single multiphoton process due to the influence of the surface wake field.

  16. 3D Volumetric Analysis of Wind Turbine Wake Properties in the Atmosphere Using High-Resolution Doppler Lidar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banta, Robert M.; Pichugina, Yelena L.; Brewer, W. Alan

    Wind turbine wakes in the atmosphere are three-dimensional (3D) and time dependent. An important question is how best to measure atmospheric wake properties, both for characterizing these properties observationally and for verification of numerical, conceptual, and physical (e.g., wind tunnel) models of wakes. Here a scanning, pulsed, coherent Doppler lidar is used to sample a turbine wake using 3D volume scan patterns that envelop the wake and simultaneously measure the inflow profile. The volume data are analyzed for quantities of interest, such as peak velocity deficit, downwind variability of the deficit, and downwind extent of the wake, in a mannermore » that preserves the measured data. For the case study presented here, in which the wake was well defined in the lidar data, peak deficits of up to 80% were measured 0.6-2 rotor diameters (D) downwind of the turbine, and the wakes extended more than 11D downwind. Temporal wake variability over periods of minutes and the effects of atmospheric gusts and lulls in the inflow are demonstrated in the analysis. Lidar scanning trade-offs important to ensuring that the wake quantities of interest are adequately sampled by the scan pattern, including scan coverage, number of scans per volume, data resolution, and scan-cycle repeat interval, are discussed.« less

  17. PIV and LDA measurements of the wake behind a wind turbine model

    NASA Astrophysics Data System (ADS)

    Naumov, I. V.; Mikkelsen, R. F.; Okulov, V. L.; Sørensen, J. N.

    2014-06-01

    In the present work we review the results of a series of measurements of the flow behind a model scale of a horizontal axis wind turbine rotor carried out at the water flume at Technical University of Denmark (DTU). The rotor is three-bladed and designed using Glauert theory for tip speed ratio λ =5 with a constant design lift coefficient along the span, CLdesign= 0.8. The measurements include dye visualization, Particle Image Velocimetry and Laser Doppler Anemometry. The wake instability has been studied in the range λ =3 - 9 at different cross-sections from the very near wake up to 10 rotor diameters downstream from the rotor. The initial flume flow was subject to a very low turbulence level with a uniform velocity profile, limiting the influence of external disturbances on the development of the inherent vortex instability. Using PIV measurements and visualizations, special attention was paid to detect and categorize different types of wake instabilities and the development of the flow in the near and the far wake. In parallel to PIV, LDA measurements provided data for various rotor regimes, revealing the existence of three main regular frequencies governing the development of different processes and instabilities in the rotor wake. In the far wake a constant frequency corresponding to the Strouhal number was found for the long-scale instabilities. This Strouhal number is in good agreement with the well-known constant that usually characterizes the oscillation in wakes behind bluff bodies. From associated visualizations and reconstructions of the flow field, it was found that the dynamics of the far wake is associated with the precession (rotation) of a helical vortex core. The data indicate that Strouhal number of this precession is independent of the rotor angular speed.

  18. Pressure fluctuations on the surface of a cylinder in uniform flow

    NASA Technical Reports Server (NTRS)

    Ayoub, A.; Karamcheti, K.

    1976-01-01

    The problem of determining the pressure fluctuations induced on the surface of a cylinder by the fluctuating wake behind it is formulated. A formal solution relating the unsteady surface pressure field to the velocity field in the wake is derived and used to obtain general results independent of cylinder shape and Reynolds number. The case of the circular cylinder is then examined in detail.

  19. Adaptive sleep-wake discrimination for wearable devices.

    PubMed

    Karlen, Walter; Floreano, Dario

    2011-04-01

    Sleep/wake classification systems that rely on physiological signals suffer from intersubject differences that make accurate classification with a single, subject-independent model difficult. To overcome the limitations of intersubject variability, we suggest a novel online adaptation technique that updates the sleep/wake classifier in real time. The objective of the present study was to evaluate the performance of a newly developed adaptive classification algorithm that was embedded on a wearable sleep/wake classification system called SleePic. The algorithm processed ECG and respiratory effort signals for the classification task and applied behavioral measurements (obtained from accelerometer and press-button data) for the automatic adaptation task. When trained as a subject-independent classifier algorithm, the SleePic device was only able to correctly classify 74.94 ± 6.76% of the human-rated sleep/wake data. By using the suggested automatic adaptation method, the mean classification accuracy could be significantly improved to 92.98 ± 3.19%. A subject-independent classifier based on activity data only showed a comparable accuracy of 90.44 ± 3.57%. We demonstrated that subject-independent models used for online sleep-wake classification can successfully be adapted to previously unseen subjects without the intervention of human experts or off-line calibration.

  20. Detailed stress tensor measurements in a centrifugal compressor vaneless diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinarbasi, A.; Johnson, M.W.

    1996-04-01

    Detailed flow measurements have been made in the vaneless diffuser of a large low-speed centrifugal compressor using hot-wire anemometry. The three time mean velocity components and full stress tensor distributions have been determined on eight measurement plans within the diffuser. High levels of Reynolds stress result in the rapid mixing out of the blade wake. Although high levels of turbulent kinetic energy are found in the passage wake, they are not associated with strong Reynolds stresses and hence the passage wake mixes out only slowly. Low-frequency meandering of the wake position is therefore likely to be responsible for the highmore » kinetic energy levels. The anisotropic nature of the turbulence suggests that Reynolds stress turbulence models are required for CFD modeling of diffuser flows.« less

  1. Wake characteristics of buildings in disturbed boundary layers

    NASA Technical Reports Server (NTRS)

    Logan, E., Jr.; Chang, J.

    1980-01-01

    Measurements relevant to the effect of buildings on the low level atmospheric boundary layer are presented. Field measurements of velocity and turbulence in the wake of a block building 3.2 m high and 26.8 m long are presented which show an apparent increase in momentum flow above the upwind value. Velocity-deficit and turbulence-excess decay characteristics of the disturbed or nonequilibrium layer are correlated with power law exponents and apparent roughness length at various distances downstream of the disturbance. Model wake profiles from the simulated building are compared at various stations for equilibrium and nonequilibrium upstream profiles. Empirical correlations relating building wake profiles to upstream nonequilibrium parameters are presented. The relationship of the data to the smooth-rough transition is discussed, and a flow model is presented.

  2. EEG slow-wave coherence changes in propofol-induced general anesthesia: experiment and theory

    PubMed Central

    Wang, Kaier; Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Wilson, Marcus T.; Sleigh, Jamie W.

    2014-01-01

    The electroencephalogram (EEG) patterns recorded during general anesthetic-induced coma are closely similar to those seen during slow-wave sleep, the deepest stage of natural sleep; both states show patterns dominated by large amplitude slow waves. Slow oscillations are believed to be important for memory consolidation during natural sleep. Tracking the emergence of slow-wave oscillations during transition to unconsciousness may help us to identify drug-induced alterations of the underlying brain state, and provide insight into the mechanisms of general anesthesia. Although cellular-based mechanisms have been proposed, the origin of the slow oscillation has not yet been unambiguously established. A recent theoretical study by Steyn-Ross et al. (2013) proposes that the slow oscillation is a network, rather than cellular phenomenon. Modeling anesthesia as a moderate reduction in gap-junction interneuronal coupling, they predict an unconscious state signposted by emergent low-frequency oscillations with chaotic dynamics in space and time. They suggest that anesthetic slow-waves arise from a competitive interaction between symmetry-breaking instabilities in space (Turing) and time (Hopf), modulated by gap-junction coupling strength. A significant prediction of their model is that EEG phase coherence will decrease as the cortex transits from Turing–Hopf balance (wake) to Hopf-dominated chaotic slow-waves (unconsciousness). Here, we investigate changes in phase coherence during induction of general anesthesia. After examining 128-channel EEG traces recorded from five volunteers undergoing propofol anesthesia, we report a significant drop in sub-delta band (0.05–1.5 Hz) slow-wave coherence between frontal, occipital, and frontal–occipital electrode pairs, with the most pronounced wake-vs.-unconscious coherence changes occurring at the frontal cortex. PMID:25400558

  3. Noise generated by a propeller in a wake

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1984-01-01

    Propeller performance and noise were measured on two model scale propellers operating in an anechoic flow environment with and without a wake. Wake thickness of one and three propeller chords were generated by an airfoil which spanned the full diameter of the propeller. Noise measurements were made in the relative near field of the propeller at three streamwise and three azimuthal positions. The data show that as much as 10 dB increase in the OASPL results when a wake is introduced into an operating propeller. Performance data are also presented for completeness.

  4. A Numerical Model of Unsteady, Subsonic Aeroelastic Behavior. Ph.D Thesis

    NASA Technical Reports Server (NTRS)

    Strganac, Thomas W.

    1987-01-01

    A method for predicting unsteady, subsonic aeroelastic responses was developed. The technique accounts for aerodynamic nonlinearities associated with angles of attack, vortex-dominated flow, static deformations, and unsteady behavior. The fluid and the wing together are treated as a single dynamical system, and the equations of motion for the structure and flow field are integrated simultaneously and interactively in the time domain. The method employs an iterative scheme based on a predictor-corrector technique. The aerodynamic loads are computed by the general unsteady vortex-lattice method and are determined simultaneously with the motion of the wing. Because the unsteady vortex-lattice method predicts the wake as part of the solution, the history of the motion is taken into account; hysteresis is predicted. Two models are used to demonstrate the technique: a rigid wing on an elastic support experiencing plunge and pitch about the elastic axis, and an elastic wing rigidly supported at the root chord experiencing spanwise bending and twisting. The method can be readily extended to account for structural nonlinearities and/or substitute aerodynamic load models. The time domain solution coupled with the unsteady vortex-lattice method provides the capability of graphically depicting wing and wake motion.

  5. Disruption of frontal-parietal connectivity during conscious sedation by propofol administration.

    PubMed

    Kim, Pil-Jong; Kim, Hong-Gee; Noh, Gyu-Jeong; Koo, Yong-Seo; Shin, Teo Jeon

    2017-09-27

    The sedative state is a transitional state from wakefulness to general anesthesia. However, little is understood regarding the mechanism of conscious sedation, different from general anesthesia while maintaining wakefulness. In this study, we aimed to investigate changes in functional connectivity of the parietal-frontal network, implicated in wakefulness during conscious sedation induced by propofol infusion. The electroencephalography was obtained at the frontal and parietal areas of adult volunteers who maintain wakefulness during low-dose propofol infusion (1.5 mg/kg/h) over 1 h. Spectral Granger causality (GC) (δ, θ, α, β, and γ frequency bands) and time-domain GC were calculated during each stage of awake (before propofol administration), sedation, and recovery (after discontinuation of propofol). We also calculated the phase-locking index and compared it with GC during each stage. A decrease in GC from the frontal to parietal areas was observed particularly in the low-frequency bands during propofol administration. Contrary to the GC changes in the frontoparietal direction, GC from the parietal to frontal areas was increased in the high-frequency bands during propofol administration and significantly decreased after discontinuation of propofol. In summary, we showed that frontal-parietal neural networks were significantly changed differently by the frequency of the brain rhythm and the directions of connections during sedation by propofol administration. Our result suggests that the alteration of brain interaction may induce sedative state lying between awake and general anesthesia.

  6. Estimating lift from unsteady wakes by using the Kutta-Joukowski theorem with vorticity-weighted wake width

    NASA Astrophysics Data System (ADS)

    Wang, Shizhao; He, Guowei; Liu, Tianshu

    2017-11-01

    The Kutta-Joukowski (KJ) theorem usually leads to puzzling results when it is applied to estimating the lift from the unsteady wakes generated by flapping wings. We investigate this problem by using a prevalent flapping rectangular wing model, where the unsteady wakes are obtained by numerically solving the Navier-Stokes equations at a low Reynolds number. It is found that neither the unsteady nor the time-averaged lift coefficient is correctly predicted when the parameters for the KJ theorem are selected according to the widely accepted ways in the literature. We propose a vorticity-weighted wake width model based on the vortex impulse theory to improve the prediction of the time-averaged lift. Furthermore, we investigate the phase difference of unsteady lift caused by the quasi-steady assumption of the application of the KJ theorem to the flapping flight and quantitatively link the phase difference to the local fluid acceleration. We show the phase difference can be corrected by using an added mass lift model. This work is helpful to clarify the error in estimating the lift of animal flight. Supported by the National Natural Science Foundation of China (No. 11672305).

  7. Non-normal perturbation growth in idealised island and headland wakes

    NASA Astrophysics Data System (ADS)

    Aiken, C. M.; Moore, A. M.; Middleton, J. H.

    2003-12-01

    Generalised linear stability theory is used to calculate the linear perturbations that furnish most rapid growth in energy in a model of a steady recirculating island wake. This optimal peturbation is found to be antisymmetric and to evolve into a von Kármán vortex street. Eigenanalysis of the linearised system reveals that the eigenmodes corresponding to vortex sheet formation are damped, so the growth of the perturbation is understood through the non-normality of the linearised system. Qualitatively similar perturbation growth is shown to occur in a non-linear model of stochastically-forced subcritical flow, resulting in transition to an unsteady wake. Free-stream variability with amplitude 8% of the mean inflow speed sustains vortex street structures in the non-linear model with perturbation velocities the order of the inflow speed, suggesting that environmental stochastic forcing may similarly be capable of exciting growing disturbances in real island wakes. To support this, qualitatively similar perturbation growth is demonstrated in the straining wake of a realistic island obstacle. It is shown that for the case of an idealised headland, where the vortex street eigenmodes are lacking, vortex sheets are produced through a similar non-normal process.

  8. Theoretical study of hull-rotor aerodynamic interference on semibuoyant vehicles

    NASA Technical Reports Server (NTRS)

    Spangler, S. B.; Smith, C. A.; Mendenhall, M. R.

    1977-01-01

    Theoretical methods are being developed to predict the mutual interference between rotor wakes and the hull for semibuoyant vehicles. The objective of the investigation is to predict the pressure distribution and overall loads on the hull in the presence of rotors whose locations, tilt angles, and disk loading are arbitrarily specified. The methods involve development of potential flow models for the hull alone in a nonuniform onset flow, a rotor wake which has the proper features to predict induced flow outside the wake, and a wake centerline specification technique which accounts for the reactions of the wake to a nonuniform crossflow. The flow models are used in sequence to solve for the mutual influence of the hull and rotor(s) on each other and the resulting loads. A flow separation model is included to estimate the influence of separation on hull loads at high sideslip angles. Only limited results have been obtained to date. These were obtained on a configuration which was tested in the Ames Research Center 7- by 10-Foot Low Speed Tunnel under Goodyear Aircraft Corporation sponsorship and indicate the nature of the interference pressure distribution on a configuration in hover.

  9. Ship wakes and their manifestations on the sea surface

    NASA Astrophysics Data System (ADS)

    Ermakov, Stanislav; Kapustin, Ivan; Kalimulin, Rashid

    2013-04-01

    Spatial/temporal evolution of turbulence generated by surface ships and the effect of the wake on short wind waves has been studied on the Black Sea and on the Gorky Water Reservoir. Measurements of currents in ship wakes were conducted using an Acoustic Doppler Current Profiler deployed from a motor boat. It was obtained that the temporal/spatial evolution of the wake width could be described approximately by a 0.4-power dependence, and the wake depth remained nearly constant at its initial stage. This allowed one to consider the wake widening as a one-dimensional process. We have developed a simple one-dimensional model of ship wake evolution using a semi-empirical theory of turbulence, and the initial stage of the wake widening (when neglecting dissipation) was described by the equation of turbulent energy balance with the pulse initial condition. Mean circulating currents in the wake zone resulting in the wind wave intensification ("suloi" areas) at the boundaries of the wake were detected in experiment. The asymmetry of the "suloi" bands was observed when the wind was blowing nearly perpendicular to the wake axis. It was shown that the later stage of the wake evolution is characterized by the formation of slick bands at the edges of the wake. The slick bands is a result of the transport of surfactants to the water surface by air bubbles in the wake and their compression due to the mean circulating currents. The work was supported by RFBR (projects 12-05-31237, 11-05-00295), the Program RAN Radiophysics, and by the Russian Government (Grants No. 11.G34.31.0048 and 11.G34.31.0078).

  10. Experimental Investigation of Vortex Structures in Wake of Hyperboloid-Shaped Model by Means of 2D Particle Image Velocimetry Measurement

    NASA Astrophysics Data System (ADS)

    Barraclough, V.; Novotný, J.; Šafařík, P.

    2018-06-01

    This paper deals with flow around a bluff body of hyperboloid shape. It consists of results gathered in the course of research by means of Particle Image Velocimetry (PIV). The experiments were carried out by means of low-frequency 2D PIV in a range of Reynolds numbers from 40000 to 50000. A hyperboloid-shaped model was measured in a wind tunnel with a modelled atmospheric boundary layer (and additionally, in a low-speed wind tunnel with low turbulence). The model was tested in a subcritical range of Reynolds numbers and various planes in a wake of the model were captured with the intention of getting an estimation of 3D flow structures. The tunnel with the modelled atmospheric boundary layer has a high rate of turbulence, so the influence of the turbulence of incoming flow on the wake could be outlined. The ratio of the height of the model to a thickness of the modelled boundary layer in the tunnel was 1/3, meaning the turbulence in the boundary layer strongly influenced the flow around the model; it suppresses the wake which leads to a lot shorter area of recirculation than low turbulence incoming flow would cause.

  11. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    NASA Astrophysics Data System (ADS)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben; José Trujillo, Juan

    2016-09-01

    The wind energy community is in need of detailed full-field measurements in the wake of wind turbines. Here, three dimensional(3D) wind vector field measurements obtained in the near-wake region behind a full-scale test turbine are presented. Specifically, the wake of a NEG Nordtank turbine, installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean values of the three wind components reveal detailed information regarding the wake properties while propagating downwind over flat terrain. Furthermore, the wake centre is tracked from the measurements and its meander is investigated as function of yaw misalignment of the turbine. The centre-line wake deficit is calculated both in a Nacelle and Moving Frame of Reference. The results can be used in quantitative validation of numerical wake models.

  12. Cessna-172R Airplane in Cruise and Landing Configurations: A Numerical Study of the Wing Loads and Wake

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj

    2013-11-01

    The present work deals with the analysis of flight test data on a Cessna 172R airplane near University Park airport in Pennsylvania. Several tests pertaining to rate-of-climb, cruise, stall and landing were performed. Those of aerodynamic nature will be discussed. The wing loads for the cruise as well as landing configurations with various flap angles were computed using a vortex method considering horse-shoe and bound vortices. The stall speed and maximum lift coefficient of the airplane for these flap settings at a particular altitude were determined. The comparison against the processed flight data was generally very good. A detailed study will be presented. A CFD approach inspired by the author's work (Jha et al., 2013) to model wind turbine blades and wakes and classical aerodynamics problems was taken to model the airplane wings. The simulation results were also compared against the flight data. In addition, these simulations facilitated visualization and analysis of flow features of interest, like wing tip trailing vortices and their turbulence characterization. Graduate Research Assistant, Aerospace Engineering.

  13. Modeling of Wake-vortex Aircraft Encounters. Appendix B

    NASA Technical Reports Server (NTRS)

    Smith, Sonya T.

    1999-01-01

    There are more people passing through the world's airports today than at any other time in history. With this increase in civil transport, airports are becoming capacity limited. In order to increase capacity and thus meet the demands of the flying public, the number of runways and number of flights per runway must be increased. In response to the demand, the National Aeronautics and Space Administration (NASA), in conjunction with the Federal Aviation Administration (FAA), airport operators, and the airline industry are taking steps to increase airport capacity without jeopardizing safety. Increasing the production per runway increases the likelihood that an aircraft will encounter the trailing wake-vortex of another aircraft. The hazard of a wake-vortex encounter is that heavy load aircraft can produce high intensity wake turbulence, through the development of its wing-tip vortices. A smaller aircraft following in the wake of the heavy load aircraft will experience redistribution of its aerodynamic load. This creates a safety hazard for the smaller aircraft. Understanding this load redistribution is of great importance, particularly during landing and take-off. In this research wake-vortex effects on an encountering 10% scale model of the B737-100 aircraft are modeled using both strip theory and vortex-lattice modeling methods. The models are then compared to wind tunnel data that was taken in the 30ft x 60ft wind tunnel at NASA Langley Research Center (LaRC). Comparisons are made to determine if the models will have acceptable accuracy when parts of the geometry are removed, such as the horizontal stabilizer and the vertical tail. A sensitivity analysis was also performed to observe how accurately the models could match the experimental data if there was a 10% error in the circulation strength. It was determined that both models show accurate results when the wing, horizontal stabilizer, and vertical tail were a part of the geometry. When the horizontal stabilizer and vertical tail were removed there were difficulties modeling the sideforce coefficient and pitching moment. With the removal of only the vertical tail unacceptable errors occurred when modeling the sideforce coefficient and yawing moment. Lift could not be modeled with either the full geometry or the reduced geometry attempts.

  14. Ship Air Wake Detection Using a Small Fixed Wing Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Phelps, David M.

    A ship's air wake is dynamically detected using an airborne inertial measurement unit (IMU) and global positioning system (GPS) attached to a fixed wing unmanned aerial system. A fixed wing unmanned aerial system (UAS) was flown through the air wake created by an underway 108 ft (32.9m) long research vessel in pre designated flight paths. The instrumented aircraft was used to validate computational fluid dynamic (CFD) simulations of naval ship air wakes. Computer models of the research ship and the fixed wing UAS were generated and gridded using NASA's TetrUSS software. Simulations were run using Kestrel, a Department of Defense CFD software to validate the physical experimental data collection method. Air wake simulations were run at various relative wind angles and speeds. The fixed wing UAS was subjected to extensive wind tunnel testing to generate a table of aerodynamic coefficients as a function of control surface deflections, angle of attack and sideslip. The wind tunnel experimental data was compared against similarly structured CFD experiments to validate the grid and model of fixed wing UAS. Finally, a CFD simulation of the fixed wing UAV flying through the generated wake was completed. Forces on the instrumented aircraft were calculated from the data collected by the IMU. Comparison of experimental and simulation data showed that the fixed wing UAS could detect interactions with the ship air wake.

  15. Global implications of ozone loss in a space shuttle wake

    NASA Astrophysics Data System (ADS)

    Danilin, Michael Y.; Ko, Malcolm K. W.; Weisenstein, Debra K.

    2001-02-01

    Existing global model calculations of ozone depletion due to solid-fueled rocket motor (SRM) launches [Prather et al., 1990; Jackman et al., 1998] take into account the effect of globally dispersed chlorine emissions and ignore the ozone loss in the rocket wake. This ozone depletion in the wake could be substantial (up to 100% in the lower stratosphere during the first hour after exhaust [Ross et al., 1997a, 2000]). In this paper, we provide an estimate of whether wake ozone loss could accumulate after each SRM launch, leading to a larger ozone depletion on the global scale. To address this issue, we estimate an upper bound of the ozone loss in a space shuttle wake and use the Atmospheric and Environmental Research, Inc. two-dimensional model to simulate the global effect. For the scenarios considered, the global impact of the localized ozone loss in the wakes is at least an order of magnitude less than the effects from global dispersion of the SRM chlorine emissions alone (on the order of 10-3-10-4% versus 10-2% in the ozone column near 30°N). Additional sensitivity studies performed for different wake dilution rates, seasons, locations, and local times of the shuttle launches and accounting for chlorine activation via ClONO2 + HCl → Cl2 + HNO3 on alumina particles did not change this conclusion.

  16. Updated Results for the Wake Vortex Inverse Model

    NASA Technical Reports Server (NTRS)

    Robins, Robert E.; Lai, David Y.; Delisi, Donald P.; Mellman, George R.

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an Inverse Model for inverting aircraft wake vortex data. The objective of the inverse modeling is to obtain estimates of the vortex circulation decay and crosswind vertical profiles, using time history measurements of the lateral and vertical position of aircraft vortices. The Inverse Model performs iterative forward model runs using estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Iterations are performed until a user-defined criterion is satisfied. Outputs from an Inverse Model run are the best estimates of the time history of the vortex circulation derived from the observed data, the vertical crosswind profile, and several vortex parameters. The forward model, named SHRAPA, used in this inverse modeling is a modified version of the Shear-APA model, and it is described in Section 2 of this document. Details of the Inverse Model are presented in Section 3. The Inverse Model was applied to lidar-observed vortex data at three airports: FAA acquired data from San Francisco International Airport (SFO) and Denver International Airport (DEN), and NASA acquired data from Memphis International Airport (MEM). The results are compared with observed data. This Inverse Model validation is documented in Section 4. A summary is given in Section 5. A user's guide for the inverse wake vortex model is presented in a separate NorthWest Research Associates technical report (Lai and Delisi, 2007a).

  17. Simulation of Turbulent Flow Inside and Above Wind Farms: Model Validation and Layout Effects

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Porté-Agel, Fernando

    2013-02-01

    A recently-developed large-eddy simulation framework is validated and used to investigate turbulent flow within and above wind farms under neutral conditions. Two different layouts are considered, consisting of thirty wind turbines occupying the same total area and arranged in aligned and staggered configurations, respectively. The subgrid-scale (SGS) turbulent stress is parametrized using a tuning-free Lagrangian scale-dependent dynamic SGS model. The turbine-induced forces are modelled using two types of actuator-disk models: (a) the `standard' actuator-disk model (ADM-NR), which calculates only the thrust force based on one-dimensional momentum theory and distributes it uniformly over the rotor area; and (b) the actuator-disk model with rotation (ADM-R), which uses blade-element momentum theory to calculate the lift and drag forces (that produce both thrust and rotation), and distributes them over the rotor disk based on the local blade and flow characteristics. Validation is performed by comparing simulation results with turbulence measurements collected with hot-wire anemometry inside and above an aligned model wind farm placed in a boundary-layer wind tunnel. In general, the ADM-R model yields improved predictions compared with the ADM-NR in the wakes of all the wind turbines, where including turbine-induced flow rotation and accounting for the non-uniformity of the turbine-induced forces in the ADM-R appear to be important. Another advantage of the ADM-R model is that, unlike the ADM-NR, it does not require a priori specification of the thrust coefficient (which varies within a wind farm). Finally, comparison of simulations of flow through both aligned and staggered wind farms shows important effects of farm layout on the flow structure and wind-turbine performance. For the limited-size wind farms considered in this study, the lateral interaction between cumulated wakes is stronger in the staggered case, which results in a farm wake that is more homogeneous in the spanwise direction, thus resembling more an internal boundary layer. Inside the staggered farm, the relatively longer separation between consecutive downwind turbines allows the wakes to recover more, exposing the turbines to higher local wind speeds (leading to higher turbine efficiency) and lower turbulence intensity levels (leading to lower fatigue loads), compared with the aligned farm. Above the wind farms, the area-averaged velocity profile is found to be logarithmic, with an effective wind-farm aerodynamic roughness that is larger for the staggered case.

  18. A Daytime Nap Facilitates Generalization of Word Meanings in Young Toddlers

    PubMed Central

    Horváth, Klára; Liu, Siying; Plunkett, Kim

    2016-01-01

    Study Objectives: One of the key processes in language development is generalization—the selection and extension of relevant features and information to similar objects and concepts. Little is known about how sleep influences generalization, and studies on the topic are inconclusive. Our aim was to investigate how a nap affects generalization in 16-mo-olds. We hypothesized that a nap is necessary for successful generalization of word meanings. Methods: Twenty-eight 16-mo-old, typically developing toddlers were randomly assigned to nap and wake groups. We trained toddlers with two novel object-word pairs and tested their initial ability to generalize. Toddlers took part in an intermodal preferential looking task, in which they were shown different colored versions of the original objects and heard one of the trained labels. If toddlers understand the label, they are expected to increase their looking time to the target. Looking behavior was measured with an automated eye tracker. Afterward, the nap group went to sleep, while the wake group stayed awake for approximately 2 h. We then repeated the test of their performance on the generalization task. Results: A significant interaction of group and session was found in preferential looking. The performance of the nap group increased after the nap, whereas that of the wake group did not change. Conclusions: Our results suggest that napping improves generalization in toddlers. Citation: Horváth K, Liu S, Plunkett K. A daytime nap facilitates generalization of word meanings in young toddlers. SLEEP 2016;39(1):203–207. PMID:26237777

  19. Large Structure in the Far Wakes of Two-Dimensional Bluff Bodies,

    DTIC Science & Technology

    1984-01-01

    triggered along with a strobe flash to record the streakline pattern on film . The electronic synchronizing controller for the smoke-wire operation was built...Super 35 mm camera with motor drive was used, along with a General Radio Model 1540 Stroboscope. We had the best success with Kodak Tri-x film pushed one...location being considered, its entire history is contained in the streakline pattern, and may confuse the intepretation . The conclusion from this

  20. Measurements of the vortex wakes of a subsonic and supersonic transport model in the 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Rossow, V. J.; Corsiglia, V. R.; Phillippe, J. J.

    1974-01-01

    The rolling moment induced on aircraft models in the wake of a model of a subsonic transport and of a supersonic transport was measured as a function of angle of attack for several configurations. The tests are described and an analysis of the data is given in this memorandum.

  1. A fast wind-farm boundary-layer model to investigate gravity wave effects and upstream flow deceleration

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2017-11-01

    Wind farm design and control often relies on fast analytical wake models to predict turbine wake interactions and associated power losses. Essential input to these models are the inflow velocity and turbulent intensity at hub height, which come from prior measurement campaigns or wind-atlas data. Recent LES studies showed that in some situations large wind farms excite atmospheric gravity waves, which in turn affect the upstream wind conditions. In the current study, we develop a fast boundary-layer model that computes the excitation of gravity waves and the perturbation of the boundary-layer flow in response to an applied force. The core of the model is constituted by height-averaged, linearised Navier-Stokes equations for the inner and outer layer, and the effect of atmospheric gravity waves (excited by the boundary-layer displacement) is included via the pressure gradient. Coupling with analytical wake models allows us to study wind-farm wakes and upstream flow deceleration in various atmospheric conditions. Comparison with wind-farm LES results shows excellent agreement in terms of pressure and boundary-layer displacement levels. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  2. Noise generated by convected gusts interacting with swept airfoil cascades

    NASA Astrophysics Data System (ADS)

    Envia, E.; Kerschen, E. J.

    1986-07-01

    An analysis is developed for the noise generated by the interaction of a rotor viscous wake with a cascade of swept stator vanes. The stator vanes span a channel formed by infinite parallel walls and containing a subsonic mean flow. High frequency interactions, for which the noise generation is concentrated at the vane leading edge, are considered. The analysis utilizes a superposition of the solution to the isolated stator vane problem, presented in an earlier paper, to develop an approximate solution to the cascade problem. The rotor wake model includes the features of wake circumferential lean and a linear spanwise variation of the magnitude of the wake deficit velocity. Calculations are presented which show that, for rotor wakes with moderate circumferential lean, stator sweep produces substantial reductions in noise level. The vane sweep must be oriented to enhance the phase lags along the vane leading edge produced by wake lean. The noise levels are found to be fairly insensitive to spanwise variations in the wake deficit.

  3. Multiple Near Wake Patterns Behind Annular Rings

    NASA Astrophysics Data System (ADS)

    Zhang, Jinzhong; Higuchi, Hiroshi; Muzas, Brian K.; Furuya, Shojiro

    1996-11-01

    Wake interactions behind concentric annular rings at different spacing ratios were experimentally investigated. The flow visualization, laser Doppler velocimetry data and results from the particle tracking velocimetry are presented and discussed. Jets through individual slots merged in multiply-stable, axisymmetric manners. Most flow patterns were persistent unless the flow was strongly disturbed. The vortex interactions from individual annular elements were also axisymmetric in the near wake. This is in contrast to the asymmetric flows observed earlier behind two-dimensional slotted plates (Higuchi et al. J. Aircraft 26 1989, Phys. Fluids 6(1), 1994). The intermediate wake, however, was dominated by large scale, three-dimensional wake motions even at moderate porosity. Onset of the specific flow patterns was associated with the interactions among start-up vortices. Given model geometry, different turbulent structures and mean velocity profiles were observed in the intermediate wake depending on the near wake pattern. *BKM was a NSF-REU Program undergrad. from Princeton U. and SF was from Mitsubishi Heavy Industries. This work was suppoted in part by the Naval Air Warfare Center.

  4. Arvicanthis ansorgei, a Novel Model for the Study of Sleep and Waking in Diurnal Rodents

    PubMed Central

    Hubbard, Jeffrey; Ruppert, Elisabeth; Calvel, Laurent; Robin-Choteau, Ludivine; Gropp, Claire-Marie; Allemann, Caroline; Reibel, Sophie; Sage-Ciocca, Dominique; Bourgin, Patrice

    2015-01-01

    Study Objectives: Sleep neurobiology studies use nocturnal species, mainly rats and mice. However, because their daily sleep/wake organization is inverted as compared to humans, a diurnal model for sleep studies is needed. To fill this gap, we phenotyped sleep and waking in Arvicanthis ansorgei, a diurnal rodent widely used for the study of circadian rhythms. Design: Video-electroencephalogram (EEG), electromyogram (EMG), and electrooculogram (EOG) recordings. Setting: Rodent sleep laboratory. Participants: Fourteen male Arvicanthis ansorgei, aged 3 mo. Interventions: 12 h light (L):12 h dark (D) baseline condition, 24-h constant darkness, 6-h sleep deprivation. Measurements and Results: Wake and rapid eye movement (REM) sleep showed similar electrophysiological characteristics as nocturnal rodents. On average, animals spent 12.9 h ± 0.4 awake per 24-h cycle, of which 6.88 h ± 0.3 was during the light period. NREM sleep accounted for 9.63 h ± 0.4, which of 5.13 h ± 0.2 during dark period, and REM sleep for 89.9 min ± 6.7, which of 52.8 min ± 4.4 during dark period. The time-course of sleep and waking across the 12 h light:12 h dark was overall inverted to that observed in rats or mice, though with larger amounts of crepuscular activity at light and dark transitions. A dominant crepuscular regulation of sleep and waking persisted under constant darkness, showing the lack of a strong circadian drive in the absence of clock reinforcement by external cues, such as a running wheel. Conservation of the homeostatic regulation was confirmed with the observation of higher delta power following sustained waking periods and a 6-h sleep deprivation, with subsequent decrease during recovery sleep. Conclusions: Arvicanthis ansorgei is a valid diurnal rodent model for studying the regulatory mechanisms of sleep and so represents a valuable tool for further understanding the nocturnality/diurnality switch. Citation: Hubbard J, Ruppert E, Calvel L, Robin-Choteau L, Gropp CM, Allemann C, Reibel S, Sage-Ciocca D, Bourgin P. Arvicanthis ansorgei, a novel model for the study of sleep and waking in diurnal rodents. SLEEP 2015;38(6):979–988. PMID:25409107

  5. Synergistic Effects of Turbine Wakes and Atmospheric Stability on Power Production at an Onshore Wind Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wharton, S; Lundquist, J K; Marjanovic, N

    This report examines the complex interactions between atmospheric stability and turbine-induced wakes on downwind turbine wind speed and power production at a West Coast North American multi-MW wind farm. Wakes are generated when the upwind flow field is distorted by the mechanical movement of the wind turbine blades. This has two consequences for downwind turbines: (1) the downwind turbine encounters wind flows with reduced velocity and (2) the downwind turbine encounters increased turbulence across multiple length scales via mechanical turbulence production by the upwind turbine. This increase in turbulence on top of ambient levels may increase aerodynamic fatigue loads onmore » the blades and reduce the lifetime of turbine component parts. Furthermore, ambient atmospheric conditions, including atmospheric stability, i.e., thermal stratification in the lower boundary layer, play an important role in wake dissipation. Higher levels of ambient turbulence (i.e., a convective or unstable boundary layer) lead to higher turbulent mixing in the wake and a faster recovery in the velocity flow field downwind of a turbine. Lower levels of ambient turbulence, as in a stable boundary layer, will lead to more persistent wakes. The wake of a wind turbine can be divided into two regions: the near wake and far wake, as illustrated in Figure 1. The near wake is formed when the turbine structure alters the shape of the flow field and usually persists one rotor diameter (D) downstream. The difference between the air inside and outside of the near wake results in a shear layer. This shear layer thickens as it moves downstream and forms turbulent eddies of multiple length scales. As the wake travels downstream, it expands depending on the level of ambient turbulence and meanders (i.e., travels in non-uniform path). Schepers estimates that the wake is fully expanded at a distance of 2.25 D and the far wake region begins at 2-5 D downstream. The actual distance traveled before the wake recovers to its inflow velocity is dependent on the amount ambient turbulence, the amount of wind shear, and topographical and structural effects. The maximum velocity deficit is estimated to occur at 1-2 D but can be longer under low levels of ambient turbulence. Our understanding of turbine wakes comes from wind tunnel experiments, field experiments, numerical simulations, and from studies utilizing both experimental and modeling methods. It is well documented that downwind turbines in multi-Megawatt wind farms often produce less power than upwind turbine rows. These wake-induced power losses have been estimated from 5% to up to 40% depending on the turbine operating settings (e.g., thrust coefficient), number of turbine rows, turbine size (e.g., rotor diameter and hub-height), wind farm terrain, and atmospheric flow conditions (e.g., ambient wind speed, turbulence, and atmospheric stability). Early work by Elliott and Cadogan suggested that power data for different turbulent conditions be segregated to distinguish the effects of turbulence on wind farm power production. This may be especially important for downwind turbines within wind farms, as chaotic and turbulent wake flows increase stress on downstream turbines. Impacts of stability on turbine wakes and power production have been examined for a flat terrain, moderate size (43 turbines) wind farm in Minnesota and for an offshore, 80 turbine wind farm off the coast of Denmark. Conzemius found it difficult to distinguish wakes (i.e., downwind velocity deficits) when the atmosphere was convective as large amounts of scatter were present in the turbine nacelle wind speed data. This suggested that high levels of turbulence broke-up the wake via large buoyancy effects, which are generally on the order of 1 km in size. On the other hand, they found pronounced wake effects when the atmosphere was very stable and turbulence was either suppressed or the length scale was reduced as turbulence in this case was mechanically produced (i.e., friction forces). This led to larger reductions at downwind turbines and maximum velocity (power) deficits reached up to 50% (70%) during strongly stable conditions. At an offshore Danish wind farm, Hansen et al. found a strong negative correlation between power deficit and ambient turbulence intensity (i.e., atmospheric stability). Under convective conditions, when turbulence levels were relatively high, smallest power deficits were observed. Power deficits approaching 35 to 40% were found inside the wind farm during stable conditions.« less

  6. Performance and wake conditions of a rotor located in the wake of an obstacle

    NASA Astrophysics Data System (ADS)

    Naumov, I. V.; Kabardin, I. K.; Mikkelsen, R. F.; Okulov, V. L.; Sørensen, J. N.

    2016-09-01

    Obstacles like forests, ridges and hills can strongly affect the velocity profile in front of a wind turbine rotor. The present work aims at quantifying the influence of nearby located obstacles on the performance and wake characteristics of a downstream located wind turbine. Here the influence of an obstacle in the form of a cylindrical disk was investigated experimentally in a water flume. A model of a three-bladed rotor, designed using Glauert's optimum theory at a tip speed ratio λ = 5, was placed in the wake of a disk with a diameter close to the one of the rotor. The distance from the disk to the rotor was changed from 4 to 8 rotor diameters, with the vertical distance from the rotor axis varied 0.5 and 1 rotor diameters. The associated turbulent intensity of the incoming flow to the rotor changed 3 to '6% due to the influence of the disk wake. In the experiment, thrust characteristics and associated pulsations as a function of the incoming flow structures were measured by strain gauges. The flow condition in front of the rotor was measured with high temporal accuracy using LDA and power coefficients were determine as function of tip speed ratio for different obstacle positions. Furthermore, PIV measurements were carried out to study the development of the mean velocity deficit profiles of the wake behind the wind turbine model under the influence of the wake generated by the obstacle. By use of regression techniques to fit the velocity profiles it was possible to determine velocity deficits and estimate length scales of the wake attenuation.

  7. Increased Sleep Need and Reduction of Tuberomammillary Histamine Neurons after Rodent Traumatic Brain Injury.

    PubMed

    Noain, Daniela; Büchele, Fabian; Schreglmann, Sebastian R; Valko, Philipp O; Gavrilov, Yuri V; Morawska, Marta M; Imbach, Lukas L; Baumann, Christian R

    2018-01-01

    Although sleep-wake disturbances are prevalent and well described after traumatic brain injury, their pathophysiology remains unclear, most likely because human traumatic brain injury is a highly heterogeneous entity that makes the systematic study of sleep-wake disturbances in relation to trauma-induced histological changes a challenging task. Despite increasing interest, specific and effective treatment strategies for post-traumatic sleep-wake disturbances are still missing. With the present work, therefore, we aimed at studying acute and chronic sleep-wake disturbances by electrophysiological means, and at assessing their histological correlates after closed diffuse traumatic brain injury in rats with the ultimate goal of generating a model of post-traumatic sleep-wake disturbances and associated histopathological findings that accurately represents the human condition. We assessed sleep-wake behavior by means of standard electrophysiological recordings before and 1, 7, and 28 days after sham or traumatic brain injury procedures. Sleep-wake findings were then correlated to immunohistochemically labeled and stereologically quantified neuronal arousal systems. Compared with control animals, we found that closed diffuse traumatic brain injury caused increased sleep need one month after trauma, and sleep was more consolidated. As histological correlate, we found a reduced number of histamine immunoreactive cells in the tuberomammillary nucleus, potentially related to increased neuroinflammation. Monoaminergic and hypocretinergic neurotransmitter systems in the hypothalamus and rostral brainstem were not affected, however. These results suggest that our rat traumatic brain injury model reflects human post-traumatic sleep-wake disturbances and associated histopathological findings very accurately, thus providing a study platform for novel treatment strategies for affected patients.

  8. A comparison of wake characteristics of model and prototype buildings in transverse winds

    NASA Technical Reports Server (NTRS)

    Logan, E., Jr.; Phataraphruk, P.; Chang, J.

    1978-01-01

    Previously measured mean velocity and turbulence intensity profiles in the wake of a 26.8-m long building 3.2 m high and transverse to the wind direction in an atmospheric boundary layer several hundred meters thick were compared with profiles at corresponding stations downstream of a 1/50-scale model on the floor of a large meteorological wind tunnel in a boundary layer 0.61 m in thickness. The validity of using model wake data to predict full scale data was determined. Preliminary results are presented which indicate that disparities result from differences in relative depth of logarithmic layers, surface roughness, and the proximity of upstream obstacles.

  9. Gravitational Wakes Sizes from Multiple Cassini Radio Occultations of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Marouf, E. A.; Wong, K. K.; French, R. G.; Rappaport, N. J.; McGhee, C. A.; Anabtawi, A.

    2016-12-01

    Voyager and Cassini radio occultation extinction and forward scattering observations of Saturn's C-Ring and Cassini Division imply power law particle size distributions extending from few millimeters to several meters with power law index in the 2.8 to 3.2 range, depending on the specific ring feature. We extend size determination to the elongated and canted particle clusters (gravitational wakes) known to permeate Saturn's A- and B-Rings. We use multiple Cassini radio occultation observations over a range of ring opening angle B and wake viewing angle α to constrain the mean wake width W and thickness/height H, and average ring area coverage fraction. The rings are modeled as randomly blocked diffraction screen in the plane normal to the incidence direction. Collective particle shadows define the blocked area. The screen's transmittance is binary: blocked or unblocked. Wakes are modeled as thin layer of elliptical cylinders populated by random but uniformly distributed spherical particles. The cylinders can be immersed in a "classical" layer of spatially uniformly distributed particles. Numerical simulations of model diffraction patterns reveal two distinct components: cylindrical and spherical. The first dominates at small scattering angles and originates from specific locations within the footprint of the spacecraft antenna on the rings. The second dominates at large scattering angles and originates from the full footprint. We interpret Cassini extinction and scattering observations in the light of the simulation results. We compute and remove contribution of the spherical component to observed scattered signal spectra assuming known particle size distribution. A large residual spectral component is interpreted as contribution of cylindrical (wake) diffraction. Its angular width determines a cylindrical shadow width that depends on the wake parameters (W,H) and the viewing geometry (α,B). Its strength constrains the mean fractional area covered (optical depth), hence constrains the mean wakes spacing. Self-consistent (W,H) are estimated using least-square fit to results from multiple occultations. Example results for observed scattering by several inner A-Ring features suggest particle clusters (wakes) that are few tens of meters wide and several meters thick.

  10. The computation of induced drag with nonplanar and deformed wakes

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Smith, Stephen

    1991-01-01

    The classical calculation of inviscid drag, based on far field flow properties, is reexamined with particular attention to the nonlinear effects of wake roll-up. Based on a detailed look at nonlinear, inviscid flow theory, it is concluded that many of the classical, linear results are more general than might have been expected. Departures from the linear theory are identified and design implications are discussed. Results include the following: Wake deformation has little effect on the induced drag of a single element wing, but introduces first order corrections to the induced drag of a multi-element lifting system. Far field Trefftz-plane analysis may be used to estimate the induced drag of lifting systems, even when wake roll-up is considered, but numerical difficulties arise. The implications of several other approximations made in lifting line theory are evaluated by comparison with more refined analyses.

  11. A boundary integral approach in primitive variables for free surface flows

    NASA Astrophysics Data System (ADS)

    Casciola, C.; Piva, R.

    The boundary integral formulation, very efficient for free surface potential flows, was considered for its possible extension to rotational flows either inviscid or viscous. We first analyze a general formulation for unsteady Navier-Stokes equations in primitive variables, which reduces to a representation for the Euler equations in the limiting case of Reynolds infinity. A first simplified model for rotational flows, obtained by decoupling kinematics and dynamics, reduces the integral equations to a known kinematical form whose mathematical and numerical properties have been studied. The dynamics equations to complete the model are obtained for the free surface and the wake. A simple and efficient scheme for the study of the non linear evolution of the wave system and its interaction with the body wake is presented. A steady state version for the calculation of the wave resistance is also reported. A second model was proposed for the simulation of rotational separated regions, by coupling the integral equations in velocity with an integral equation for the vorticity at the body boundary. The same procedure may be extended to include the diffusion of the vorticity in the flowfield. The vortex shedding from a cylindrical body in unsteady motion is discussed, as a first application of the model.

  12. Terminal Area Simulation System User's Guide - Version 10.0

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Proctor, Fred H.

    2014-01-01

    The Terminal Area Simulation System (TASS) is a three-dimensional, time-dependent, large eddy simulation model that has been developed for studies of wake vortex and weather hazards to aviation, along with other atmospheric turbulence, and cloud-scale weather phenomenology. This document describes the source code for TASS version 10.0 and provides users with needed documentation to run the model. The source code is programed in Fortran language and is formulated to take advantage of vector and efficient multi-processor scaling for execution on massively-parallel supercomputer clusters. The code contains different initialization modules allowing the study of aircraft wake vortex interaction with the atmosphere and ground, atmospheric turbulence, atmospheric boundary layers, precipitating convective clouds, hail storms, gust fronts, microburst windshear, supercell and mesoscale convective systems, tornadic storms, and ring vortices. The model is able to operate in either two- or three-dimensions with equations numerically formulated on a Cartesian grid. The primary output from the TASS is time-dependent domain fields generated by the prognostic equations and diagnosed variables. This document will enable a user to understand the general logic of TASS, and will show how to configure and initialize the model domain. Also described are the formats of the input and output files, as well as the parameters that control the input and output.

  13. RNAV (GPS) total system error models for use in wake encounter risk analysis of candidate CSPR pairs for inclusion in FAA Order 7110.308

    DOT National Transportation Integrated Search

    2013-08-01

    The purpose of this memorandum is to provide recommended Total System Error (TSE) models for : aircraft using RNAV (GPS) guidance when analyzing the wake encounter risk of proposed simultaneous : dependent (paired) approaches, with 1.5 Nautical...

  14. RNAV (GPS) total system error models for use in wake encounter risk analysis of dependent paired approaches to closely-spaced parallel runways : Project memorandum - February 2014

    DOT National Transportation Integrated Search

    2014-02-01

    The purpose of this memorandum is to provide recommended Total System Error (TSE) models : for aircraft using RNAV (GPS) guidance when analyzing the wake encounter risk of proposed : simultaneous dependent (paired) approach operations to Closel...

  15. Progressive Loss of the Orexin Neurons Reveals Dual Effects on Wakefulness

    PubMed Central

    Branch, Abigail F.; Navidi, William; Tabuchi, Sawako; Terao, Akira; Yamanaka, Akihiro; Scammell, Thomas E.; Diniz Behn, Cecilia

    2016-01-01

    Study Objectives: Narcolepsy is caused by loss of the orexin (also known as hypocretin) neurons. In addition to the orexin peptides, these neurons release additional neurotransmitters, which may produce complex effects on sleep/wake behavior. Currently, it remains unknown whether the orexin neurons promote the initiation as well as the maintenance of wakefulness, and whether the orexin neurons influence initiation or maintenance of sleep. To determine the effects of the orexin neurons on the dynamics of sleep/wake behavior, we analyzed sleep/wake architecture in a novel mouse model of acute orexin neuron loss. Methods: We used survival analysis and other statistical methods to analyze sleep/wake architecture in orexin-tTA ; TetO diphtheria toxin A mice at different stages of orexin neuron degeneration. Results: Progressive loss of the orexin neurons dramatically reduced survival of long wake bouts, but it also improved survival of brief wake bouts. In addition, with loss of the orexin neurons, mice were more likely to wake during the first 30 sec of nonrapid eye movement sleep and then less likely to return to sleep during the first 60 sec of wakefulness. Conclusions: These findings help explain the sleepiness and fragmented sleep that are characteristic of narcolepsy. Orexin neuron loss impairs survival of long wake bouts resulting in poor maintenance of wakefulness, but this neuronal loss also fragments sleep by increasing the risk of awakening at the beginning of sleep and then reducing the likelihood of quickly returning to sleep. Citation: Branch AF, Navidi W, Tabuchi S, Terao A, Yamanaka A, Scammell TE, Diniz Behn C. Progressive loss of the orexin neurons reveals dual effects on wakefulness. SLEEP 2016;39(2):369–377. PMID:26446125

  16. Wakes and differential charging of large bodies in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Parker, L. W.

    1985-01-01

    Highlights of earlier results using the Inside-Out WAKE code on wake structures of LEO spacecraft are reviewed. For conducting bodies of radius large compared with the Debye length, a high Mach number wake develops a negative potential well. Quasineutrality is violated in the very near wake region, and the wake is relatively empty for a distance downstream of about one half of a Mach number of radii. There is also a suggestion of a core of high density along the axis. A comparison of rigorous numerical solutions with in situ wake data from the AE-C satellite suggests that the so called neutral approximation for ions (straight line trajectories, independent of fields) may be a reasonable approximation except near the center of the near wake. This approximation is adopted for very large bodies. Work concerned with the wake point potential of very large nonconducting bodies such as the shuttle orbiter is described. Using a cylindrical model for bodies of this size or larger in LEO (body radius up to 10 to the 5th power Debye lengths), approximate solutions are presented based on the neutral approximation (but with rigorous trajectory calculations for surface current balance). There is a negative potential well if the body is conducting, and no well if the body is nonconducting. In the latter case the wake surface itself becomes highly negative. The wake point potential is governed by the ion drift energy.

  17. Wake modeling in complex terrain using a hybrid Eulerian-Lagrangian Split Solver

    NASA Astrophysics Data System (ADS)

    Fuchs, Franz G.; Rasheed, Adil; Tabib, Mandar; Fonn, Eivind

    2016-09-01

    Wake vortices (WVs) generated by aircraft are a source of risk to the following aircraft. The probability of WV related accidents increases in the vicinity of airport runways due to the shorter time of recovery after a WV encounter. Hence, solutions that can reduce the risk of WV encounters are needed to ensure increased flight safety. In this work we propose an interesting approach to model such wake vortices in real time using a hybrid Eulerian- Lagrangian approach. We derive an appropriate mathematical model, and show a comparison of the different types of solvers. We will conclude with a real life application of the methodology by simulating how wake vortices left behind by an aircraft at the Vffirnes airport in Norway get transported and decay under the influence of a background wind and turbulence field. Although the work demonstrates the application in an aviation context the same approach can be used in a wind energy context.

  18. The aerodynamic cost of flight in bats--comparing theory with measurement

    NASA Astrophysics Data System (ADS)

    von Busse, Rhea; Waldman, Rye M.; Swartz, Sharon M.; Breuer, Kenneth S.

    2012-11-01

    Aerodynamic theory has long been used to predict the aerodynamic power required for animal flight. However, even though the actuator disk model does not account for the flapping motion of a wing, it is used for lack of any better model. The question remains: how close are these predictions to reality? We designed a study to compare predicted aerodynamic power to measured power from the kinetic energy contained in the wake shed behind a bat flying in a wind tunnel. A high-accuracy displaced light-sheet stereo PIV system was used in the Trefftz plane to capture the wake behind four bats flown over a range of flight speeds (1-6m/s). The total power in the wake was computed from the wake vorticity and these estimates were compared with the power predicted using Pennycuick's model for bird flight as well as estimates derived from measurements of the metabolic cost of flight, previously acquired from the same individuals.

  19. Vortex wakes generated by robins Erithacus rubecula during free flight in a wind tunnel.

    PubMed

    Hedenström, A; Rosén, M; Spedding, G R

    2006-04-22

    The wakes of two individual robins were measured in digital particle image velocimetry (DPIV) experiments conducted in the Lund wind tunnel. Wake measurements were compared with each other, and with previous studies in the same facility. There was no significant individual variation in any of the measured quantities. Qualitatively, the wake structure and its gradual variation with flight speed were exactly as previously measured for the thrush nightingale. A procedure that accounts for the disparate sources of circulation spread over the complex wake structure nevertheless can account for the vertical momentum flux required to support the weight, and an example calculation is given for estimating drag from the components of horizontal momentum flux (whose net value is zero). The measured circulations of the largest structures in the wake can be predicted quite well by simple models, and expressions are given to predict these and other measurable quantities in future bird flight experiments.

  20. The sleep–wake cycle and Alzheimer’s disease: what do we know?

    PubMed Central

    Lim, Miranda M.; Gerstner, Jason R.; Holtzman, David M.

    2014-01-01

    SUMMARY Sleep–wake disturbances are a highly prevalent and often disabling feature of Alzheimer’s disease (AD). A cardinal feature of AD includes the formation of amyloid plaques, associated with the extracellular accumulation of the amyloid-β (Aβ) peptide. Evidence from animal and human studies suggests that Aβ pathology may disrupt the sleep–wake cycle, in that as Aβ accumulates, more sleep–wake fragmentation develops. Furthermore, recent research in animal and human studies suggests that the sleep–wake cycle itself may influence Alzheimer’s disease onset and progression. Chronic sleep deprivation increases amyloid plaque deposition, and sleep extension results in fewer plaques in experimental models. In this review geared towards the practicing clinician, we discuss possible mechanisms underlying the reciprocal relationship between the sleep–wake cycle and AD pathology and behavior, and present current approaches to therapy for sleep disorders in AD. PMID:25405649

  1. Wake Response to an Ocean-Feedback Mechanism: Madeira Island Case Study

    NASA Astrophysics Data System (ADS)

    Caldeira, Rui M. A.; Tomé, Ricardo

    2013-08-01

    We focus on an island wake episode that occurred in the Madeira Archipelago region of the north-east Atlantic at 32.5° N, 17° W. The Weather Research and Forecasting numerical model was used in a (one-way) downscaling mode, considering initial and boundary conditions from the European Centre for Medium-range Weather Forecasts system. The current literature emphasizes adiabatic effects on the dynamical aspects of atmospheric wakes. Changes in mountain height and consequently its relation to the atmospheric inversion layer should explain the shift in wake regimes, from a `strong-wake' to `weak-wake' scenario. Nevertheless, changes in sea-surface temperature variability in the lee of an island can induce similar regime shifts because of exposure to stronger solar radiation. Increase in evaporation contributes to the enhancement of convection and thus to the uplift of the stratified atmospheric layer above the critical height, with subsequent internal gravity wave activity.

  2. A Novel Wake Oscillator Model for Vortex-Induced Vibrations Prediction of A Cylinder Considering the Influence of Reynolds Number

    NASA Astrophysics Data System (ADS)

    Gao, Xi-feng; Xie, Wu-de; Xu, Wan-hai; Bai, Yu-chuan; Zhu, Hai-tao

    2018-04-01

    It is well known that the Reynolds number has a significant effect on the vortex-induced vibrations (VIV) of cylinders. In this paper, a novel in-line (IL) and cross-flow (CF) coupling VIV prediction model for circular cylinders has been proposed, in which the influence of the Reynolds number was comprehensively considered. The Strouhal number linked with the vortex shedding frequency was calculated through a function of the Reynolds number. The coefficient of the mean drag force was fitted as a new piecewise function of the Reynolds number, and its amplification resulted from the CF VIV was also taken into account. The oscillating drag and lift forces were modelled with classical van der Pol wake oscillators and their empirical parameters were determined based on the lock-in boundaries and the peak-amplitude formulas. A new peak-amplitude formula for the IL VIV was developed under the resonance condition with respect to the mass-damping ratio and the Reynolds number. When compared with the results from the experiments and some other prediction models, the present model could give good estimations on the vibration amplitudes and frequencies of the VIV both for elastically-mounted rigid and long flexible cylinders. The present model considering the influence of the Reynolds number could generally provide better results than that neglecting the effect of the Reynolds number.

  3. Wave breaking induced surface wakes and jets observed during a bora event

    NASA Astrophysics Data System (ADS)

    Jiang, Qingfang; Doyle, James D.

    2005-09-01

    An observational and modeling study of a bora event that occurred during the field phase of the Mesoscale Alpine Programme is presented. Research aircraft in-situ measurements and airborne remote-sensing observations indicate the presence of strong low-level wave breaking and alternating surface wakes and jets along the Croatian coastline over the Adriatic Sea. The observed features are well captured by a high-resolution COAMPS simulation. Analysis of the observations and modeling results indicate that the long-extending wakes above the boundary layer are induced by dissipation associated with the low-level wave breaking, which locally tends to accelerate the boundary layer flow beneath the breaking. Farther downstream of the high peaks, a hydraulic jump occurs in the boundary layer, which creates surface wakes. Downstream of lower-terrain (passes), the boundary layer flow stays strong, resembling supercritical flow.

  4. Sleep-Wake Concordance in Couples Is Inversely Associated With Cardiovascular Disease Risk Markers.

    PubMed

    Gunn, Heather E; Buysse, Daniel J; Matthews, Karen A; Kline, Christopher E; Cribbet, Matthew R; Troxel, Wendy M

    2017-01-01

    To determine whether interdependence in couples' sleep (sleep-wake concordance i.e., whether couples are awake or asleep at the same time throughout the night) is associated with two markers of cardiovascular disease (CVD) risk, ambulatory blood pressure (BP) and systemic inflammation. This community-based study is a cross-sectional analysis of 46 adult couples, aged 18-45 years, without known sleep disorders. Percent sleep-wake concordance, the independent variable, was calculated for each individual using actigraphy. Ambulatory BP monitors measured BP across 48 h. Dependent variables included mean sleep systolic BP (SBP) and diastolic BP (DBP), mean wake SBP and DBP, sleep-wake SBP and DBP ratios, and C-reactive protein (CRP). Mixed models were used and were adjusted for age, sex, education, race, and body mass index. Higher sleep-wake concordance was associated with lower sleep SBP (b = -.35, SE = .01) and DBP (b = -.22, SE = .10) and lower wake SBP (b = -.26, SE = .12; all p values < .05). Results were moderated by sex; for women, high concordance was associated with lower BP. Men and women with higher sleep-wake concordance also had lower CRP values (b = -.15, SE = .03, p < .05). Sleep-wake concordance was not associated with wake DBP or sleep/wake BP ratios. Significant findings remained after controlling for individual sleep quality, duration, and wake after sleep onset. Sleep-wake concordance was associated with sleep BP, and this association was stronger for women. Higher sleep-wake concordance was associated with lower systemic inflammation for men and women. Sleep-wake concordance may be a novel mechanism by which marital relationships are associated with long-term CVD outcomes. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  5. Plasma wake simulations and object charging in a shadowed lunar crater during a solar storm

    NASA Astrophysics Data System (ADS)

    Zimmerman, M. I.; Jackson, T. L.; Farrell, W. M.; Stubbs, T. J.

    2012-08-01

    Within a permanently shadowed lunar crater the horizontal flow of solar wind is obstructed by upstream topography, forming a plasma wake that electrostatically diverts ions toward the crater floor and generates a surface potential that can reach kilovolts. In the present work kinetic plasma simulations are employed to investigate the morphology of a lunar crater wake during passage of a solar storm. Results are cast in terms of leading dimensionless ratios including the ion Mach number, ratio of crater depth to plasma Debye length, peak secondary electron yield, and electron temperature versus electron impact energy at peak secondary yield. This small set of ratios allows generalization to a much wider range of scenarios. The kinetic simulation results are fed forward into an equivalent-circuit model of a roving astronaut. In very low-plasma-current environments triboelectric charging of the astronaut suit becomes effectively perpetual, representing a critical engineering concern for roving within shadowed lunar regions. Finally, simulated ion fluxes are used to explore sputtering and implantation processes within an idealized crater. It is suggested that the physics of plasma miniwakes formed in the vicinity of permanently shadowed topography may play a critical role in modulating the enigmatic spatial distribution of volatiles at the lunar poles.

  6. Daily Affective Experiences Predict Objective Sleep Outcomes among Adolescents

    PubMed Central

    Tavernier, Royette; Choo, Sungsub B; Grant, Kathryn; Adam, Emma K

    2015-01-01

    Summary Adolescence is a sensitive period for changes in both sleep and affect. Although past research has assessed the association between affect and sleep among adolescents, few studies have examined both trait (typical) and day-to-day changes in affect, and fewer still have specifically examined negative social evaluative emotions (NSEE; e.g., embarrassment) in relation to sleep. We examined both between- and within-person variations in daily affect in relation to four objectively-measured sleep outcomes (sleep hours, sleep latency, sleep efficiency, and length of wake bouts) among adolescents. Participants (N = 77 high school students, 42.9% female; M = 14.37 years) wore an actiwatch and completed daily diaries for 3 days. Results of hierarchical linear models (controlling for age, gender, race, ethnicity, parental employment status, income, puberty, and caffeine) indicated that NSEE and high arousal affective experiences generally predicted poor sleep outcomes, whereas low arousal affective experiences were associated with good sleep outcomes. Specifically, at the person level, adolescents reporting higher NSEE had shorter average sleep hours, and those experiencing higher anxiety-nervousness had longer wake bouts. In addition, individuals experiencing more dysphoria (sad, depressed, lonely) had longer average sleep hours and shorter wake bouts, while those experiencing more calmness had shorter sleep latencies. At the within person level, individuals had longer sleep latencies following days that they had experienced high arousal positive affect (e.g., excitement) and had longer wake bouts following days they had experienced more NSEE. Results highlight the detrimental effects of NSEE and high arousal affective states for adolescent sleep. PMID:26365539

  7. Dynamic Circadian Modulation in a Biomathematical Model for the Effects of Sleep and Sleep Loss on Waking Neurobehavioral Performance

    PubMed Central

    McCauley, Peter; Kalachev, Leonid V.; Mollicone, Daniel J.; Banks, Siobhan; Dinges, David F.; Van Dongen, Hans P. A.

    2013-01-01

    Recent experimental observations and theoretical advances have indicated that the homeostatic equilibrium for sleep/wake regulation—and thereby sensitivity to neurobehavioral impairment from sleep loss—is modulated by prior sleep/wake history. This phenomenon was predicted by a biomathematical model developed to explain changes in neurobehavioral performance across days in laboratory studies of total sleep deprivation and sustained sleep restriction. The present paper focuses on the dynamics of neurobehavioral performance within days in this biomathematical model of fatigue. Without increasing the number of model parameters, the model was updated by incorporating time-dependence in the amplitude of the circadian modulation of performance. The updated model was calibrated using a large dataset from three laboratory experiments on psychomotor vigilance test (PVT) performance, under conditions of sleep loss and circadian misalignment; and validated using another large dataset from three different laboratory experiments. The time-dependence of circadian amplitude resulted in improved goodness-of-fit in night shift schedules, nap sleep scenarios, and recovery from prior sleep loss. The updated model predicts that the homeostatic equilibrium for sleep/wake regulation—and thus sensitivity to sleep loss—depends not only on the duration but also on the circadian timing of prior sleep. This novel theoretical insight has important implications for predicting operator alertness during work schedules involving circadian misalignment such as night shift work. Citation: McCauley P; Kalachev LV; Mollicone DJ; Banks S; Dinges DF; Van Dongen HPA. Dynamic circadian modulation in a biomathematical model for the effects of sleep and sleep loss on waking neurobehavioral performance. SLEEP 2013;36(12):1987-1997. PMID:24293775

  8. Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition

    NASA Astrophysics Data System (ADS)

    Siegel, Stefan G.; Seidel, J.?Rgen; Fagley, Casey; Luchtenburg, D. M.; Cohen, Kelly; McLaughlin, Thomas

    For the systematic development of feedback flow controllers, a numerical model that captures the dynamic behaviour of the flow field to be controlled is required. This poses a particular challenge for flow fields where the dynamic behaviour is nonlinear, and the governing equations cannot easily be solved in closed form. This has led to many versions of low-dimensional modelling techniques, which we extend in this work to represent better the impact of actuation on the flow. For the benchmark problem of a circular cylinder wake in the laminar regime, we introduce a novel extension to the proper orthogonal decomposition (POD) procedure that facilitates mode construction from transient data sets. We demonstrate the performance of this new decomposition by applying it to a data set from the development of the limit cycle oscillation of a circular cylinder wake simulation as well as an ensemble of transient forced simulation results. The modes obtained from this decomposition, which we refer to as the double POD (DPOD) method, correctly track the changes of the spatial modes both during the evolution of the limit cycle and when forcing is applied by transverse translation of the cylinder. The mode amplitudes, which are obtained by projecting the original data sets onto the truncated DPOD modes, can be used to construct a dynamic mathematical model of the wake that accurately predicts the wake flow dynamics within the lock-in region at low forcing amplitudes. This low-dimensional model, derived using nonlinear artificial neural network based system identification methods, is robust and accurate and can be used to simulate the dynamic behaviour of the wake flow. We demonstrate this ability not just for unforced and open-loop forced data, but also for a feedback-controlled simulation that leads to a 90% reduction in lift fluctuations. This indicates the possibility of constructing accurate dynamic low-dimensional models for feedback control by using unforced and transient forced data only.

  9. Vertical dispersion of an aircraft wake: Aerosol-lidar analysis of entrainment and detrainment in the vortex regime

    NASA Astrophysics Data System (ADS)

    Sussmann, Ralf

    1999-01-01

    Vertical dispersion of contrails in the vortex regime is investigated by focusing on the role of entrainment and detrainment of exhaust with respect to the pair of trailing vortices. A ground-based backscatter-depolarization lidar with an integrated CCD camera provides information on optical and geometrical parameters of the contrail in the time span between 5.7 and 50.3 s behind a B747-400 aircraft. This is combined with coincident airborne in situ measurements of turbulence and the vertical profiles of temperature and wind speed in a case study. The two wingtip vortices, separated by 47 m, are descending with an increasing speed (2.5-3.1 m/s for 10.8-47.8 s behind aircraft) in the weakly non-stably-stratified atmosphere. The turbulent vertical dissipation rate on the day of the study above southern Germany is a factor of 1000 higher than found typically above oceans at cruising altitude. At 4.2 s behind the aircraft, a diffuse secondary wake starts to evolve above the two wingtip vortices. After ≈ 50 s the secondary wake encloses a cross-sectional area (4410 m2) comparable to that of the primary wake (4620 m2) and a relative ice surface area of 1:5. The observed early onset of the secondary wake is conjectured to be due to turbulent detrainment of fluid out of the primary wake which can be enhanced by detrainment due to baroclinic forces later in the vortex regime evolution. By exclusion of other mechanisms of secondary wake formation, detrainment of fluid from the primary wake is concluded to be the precondition for secondary wake formation. Detrainment due to baroclinic forces, shear or turbulence is, in general, unlikely to be absent for typical atmospheric conditions. It is suggested that the ambient humidity level may determine when a secondary wake is visible above a vortex pair and when it is not.

  10. Numerical modeling studies of wake vortex transport and evolution within the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.

    1994-01-01

    The proposed research involves four tasks. The first of these is to simulate accurately the turbulent processes in the atmospheric boundary layer. TASS was originally developed to study meso-gamma scale phenomena, such as tornadic storms, microbursts and windshear effects in terminal areas. Simulation of wake vortex evolution, however, will rely on appropriate representation of the physical processes in the surface layer and mixed layer. This involves two parts. First, a specified heat flux boundary condition must be implemented at the surface. Using this boundary condition, simulation results will be compared to experimental data and to other model results for validation. At this point, any necessary changes to the model will be implemented. Next, a surface energy budget parameterization will be added to the model. This will enable calculation of the surface fluxes by accounting for the radiative heat transfer to and from the ground and heat loss to the soil rather than simple specification of the fluxes. The second task involves running TASS with prescribed wake vortices in the initial condition. The vortex models will be supplied by NASA Langley Research Center. Sensitivity tests will be performed on different meteorological environments in the atmospheric boundary layer, which include stable, neutral, and unstable stratifications, calm and severe wind conditions, and dry and wet conditions. Vortex strength may be varied as well. Relevant non-dimensional parameters will include the following: Richardson number or Froude number, Bowen ratio, and height to length scale ratios. The model output will be analyzed and visualized to better understand the transport, decay, and growth rates of the wake vortices. The third task involves running simulations using observed data. MIT Lincoln Labs is currently planning field experiments at the Memphis airport to measure both meteorological conditions and wake vortex characteristics. Once this data becomes available, it can be used to validate the model for vortex behavior under different atmospheric conditions. The fourth task will be to simulate the wake in a more realistic environment covering a wider area. This will involve grid nesting, since high resolution will be required in the wake region but a larger total domain will be used. During the first allocation year, most of the first task will be accomplished.

  11. Simulation of the Atmospheric Boundary Layer for Wind Energy Applications

    NASA Astrophysics Data System (ADS)

    Marjanovic, Nikola

    Energy production from wind is an increasingly important component of overall global power generation, and will likely continue to gain an even greater share of electricity production as world governments attempt to mitigate climate change and wind energy production costs decrease. Wind energy generation depends on wind speed, which is greatly influenced by local and synoptic environmental forcings. Synoptic forcing, such as a cold frontal passage, exists on a large spatial scale while local forcing manifests itself on a much smaller scale and could result from topographic effects or land-surface heat fluxes. Synoptic forcing, if strong enough, may suppress the effects of generally weaker local forcing. At the even smaller scale of a wind farm, upstream turbines generate wakes that decrease the wind speed and increase the atmospheric turbulence at the downwind turbines, thereby reducing power production and increasing fatigue loading that may damage turbine components, respectively. Simulation of atmospheric processes that span a considerable range of spatial and temporal scales is essential to improve wind energy forecasting, wind turbine siting, turbine maintenance scheduling, and wind turbine design. Mesoscale atmospheric models predict atmospheric conditions using observed data, for a wide range of meteorological applications across scales from thousands of kilometers to hundreds of meters. Mesoscale models include parameterizations for the major atmospheric physical processes that modulate wind speed and turbulence dynamics, such as cloud evolution and surface-atmosphere interactions. The Weather Research and Forecasting (WRF) model is used in this dissertation to investigate the effects of model parameters on wind energy forecasting. WRF is used for case study simulations at two West Coast North American wind farms, one with simple and one with complex terrain, during both synoptically and locally-driven weather events. The model's performance with different grid nesting configurations, turbulence closures, and grid resolutions is evaluated by comparison to observation data. Improvement to simulation results from the use of more computationally expensive high resolution simulations is only found for the complex terrain simulation during the locally-driven event. Physical parameters, such as soil moisture, have a large effect on locally-forced events, and prognostic turbulence kinetic energy (TKE) schemes are found to perform better than non-local eddy viscosity turbulence closure schemes. Mesoscale models, however, do not resolve turbulence directly, which is important at finer grid resolutions capable of resolving wind turbine components and their interactions with atmospheric turbulence. Large-eddy simulation (LES) is a numerical approach that resolves the largest scales of turbulence directly by separating large-scale, energetically important eddies from smaller scales with the application of a spatial filter. LES allows higher fidelity representation of the wind speed and turbulence intensity at the scale of a wind turbine which parameterizations have difficulty representing. Use of high-resolution LES enables the implementation of more sophisticated wind turbine parameterizations to create a robust model for wind energy applications using grid spacing small enough to resolve individual elements of a turbine such as its rotor blades or rotation area. Generalized actuator disk (GAD) and line (GAL) parameterizations are integrated into WRF to complement its real-world weather modeling capabilities and better represent wind turbine airflow interactions, including wake effects. The GAD parameterization represents the wind turbine as a two-dimensional disk resulting from the rotation of the turbine blades. Forces on the atmosphere are computed along each blade and distributed over rotating, annular rings intersecting the disk. While typical LES resolution (10-20 m) is normally sufficient to resolve the GAD, the GAL parameterization requires significantly higher resolution (1-3 m) as it does not distribute the forces from the blades over annular elements, but applies them along lines representing individual blades. In this dissertation, the GAL is implemented into WRF and evaluated against the GAD parameterization from two field campaigns that measured the inflow and near-wake regions of a single turbine. The data-sets are chosen to allow validation under the weakly convective and weakly stable conditions characterizing most turbine operations. The parameterizations are evaluated with respect to their ability to represent wake wind speed, variance, and vorticity by comparing fine-resolution GAD and GAL simulations along with coarse-resolution GAD simulations. Coarse-resolution GAD simulations produce aggregated wake characteristics similar to both GAD and GAL simulations (saving on computational cost), while the GAL parameterization enables resolution of near wake physics (such as vorticity shedding and wake expansion) for high fidelity applications. (Abstract shortened by ProQuest.).

  12. Why we forget our dreams: Acetylcholine and norepinephrine in wakefulness and REM sleep.

    PubMed

    Becchetti, Andrea; Amadeo, Alida

    2016-01-01

    The ascending fibers releasing norepinephrine and acetylcholine are highly active during wakefulness. In contrast, during rapid-eye-movement sleep, the neocortical tone is sustained mainly by acetylcholine. By comparing the different physiological features of the norepinephrine and acetylcholine systems in the light of the GANE (glutamate amplifies noradrenergic effects) model, we suggest how to interpret some functional differences between waking and rapid-eye-movement sleep.

  13. Brain reactivity differentiates subjects with high and low dream recall frequencies during both sleep and wakefulness.

    PubMed

    Eichenlaub, Jean-Baptiste; Bertrand, Olivier; Morlet, Dominique; Ruby, Perrine

    2014-05-01

    The neurophysiological correlates of dreaming remain unclear. According to the "arousal-retrieval" model, dream encoding depends on intrasleep wakefulness. Consistent with this model, subjects with high and low dream recall frequency (DRF) report differences in intrasleep awakenings. This suggests a possible neurophysiological trait difference between the 2 groups. To test this hypothesis, we compared the brain reactivity (evoked potentials) of subjects with high (HR, N = 18) and low (LR, N = 18) DRF during wakefulness and sleep. During data acquisition, the subjects were presented with sounds to be ignored (first names randomly presented among pure tones) while they were watching a silent movie or sleeping. Brain responses to first names dramatically differed between the 2 groups during both sleep and wakefulness. During wakefulness, the attention-orienting brain response (P3a) and a late parietal response were larger in HR than in LR. During sleep, we also observed between-group differences at the latency of the P3a during N2 and at later latencies during all sleep stages. Our results demonstrate differences in the brain reactivity of HR and LR during both sleep and wakefulness. These results suggest that the ability to recall dreaming is associated with a particular cerebral functional organization, regardless of the state of vigilance.

  14. Comparison study between wind turbine and power kite wakes

    NASA Astrophysics Data System (ADS)

    Haas, T.; Meyers, J.

    2017-05-01

    Airborne Wind Energy (AWE) is an emerging technology in the field of renewable energy that uses kites to harvest wind energy. However, unlike for conventional wind turbines, the wind environment in AWE systems has not yet been studied in much detail. We propose a simulation framework using Large Eddy Simulation to model the wakes of such kite systems and offer a comparison with turbine-like wakes. In order to model the kite effects on the flow, a lifting line technique is used. We investigate different wake configurations related to the operation modes of wind turbines and airborne systems in drag mode. In the turbine mode, the aerodynamic torque of the blades is directly added to the flow. In the kite drag mode, the aerodynamic torque of the wings is directly balanced by an opposite torque induced by on-board generators; this results in a total torque on the flow that is zero. We present the main differences in wake characteristics, especially flow induction and vorticity fields, for the depicted operation modes both with laminar and turbulent inflows.

  15. On the large-scale structures formed by wakes of open cosmic strings

    NASA Technical Reports Server (NTRS)

    Hara, Tetsuya; Morioka, Shoji; Miyoshi, Shigeru

    1990-01-01

    Large-scale structures of the universe have been variously described as sheetlike, filamentary, cellular, bubbles or spongelike. Recently cosmic strings became one of viable candidates for a galaxy formation scenario, and some of the large-scale structures seem to be simply explained by the open cosmic strings. According to this scenario, sheets are wakes which are traces of moving open cosmic strings where dark matter and baryonic matter have accumulated. Filaments are intersections of such wakes and high density regions are places where three wakes intersect almost orthogonally. The wakes formed at t sub eq become the largest surface density among all wakes, where t sub eq is the epoch when matter density equals to radiation density. If we assume that there is one open cosmic string per each horizon, then it can be explained that the typical distances among wakes, filaments and clusters are also approx. 10(exp 2) Mpc. This model does not exclude a much more large scale structure. Open cosmic string may move even now and accumulate cold dark matter after its traces. However, the surface density is much smaller than the ones formed at t sub eq. From this model, it is expected that the typical high density region will have extended features such as six filaments and three sheets and be surrounded by eight empty regions (voids). Here, the authors are mainly concerned with such structures and have made numerical simulations for the formation of such large scale structures.

  16. Computational analysis of high resolution unsteady airloads for rotor aeroacoustics

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Lam, C.-M. Gordon; Wachspress, Daniel A.; Bliss, Donald B.

    1994-01-01

    The study of helicopter aerodynamic loading for acoustics applications requires the application of efficient yet accurate simulations of the velocity field induced by the rotor's vortex wake. This report summarizes work to date on the development of such an analysis, which builds on the Constant Vorticity Contour (CVC) free wake model, previously implemented for the study of vibratory loading in the RotorCRAFT computer code. The present effort has focused on implementation of an airload reconstruction approach that computes high resolution airload solutions of rotor/rotor-wake interactions required for acoustics computations. Supplementary efforts on the development of improved vortex core modeling, unsteady aerodynamic effects, higher spatial resolution of rotor loading, and fast vortex wake implementations have substantially enhanced the capabilities of the resulting software, denoted RotorCRAFT/AA (AeroAcoustics). Results of validation calculations using recently acquired model rotor data show that by employing airload reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to that required by direct calculations. Promising correlation with this body of airload and noise data has been obtained for a variety of rotor configurations and operating conditions.

  17. Design of an Aircraft Vortex Spacing System for Airport Capacity Improvement

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Charnock, James K.; Bagwell, Donald R.

    2000-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations element at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to produce weather dependent, dynamic wake vortex spacing criteria. These systems provide current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, and real-time feedback of wake vortex behavior from sensors. The goal of the NASA program is to provide the research and development to demonstrate an engineering model AVOSS, in real-time operation, at a major airport. A wake vortex system test facility was established at the Dallas-Fort Worth International Airport (DFW) in 1997 and tested in 1998. Results from operation of the initial AVOSS system, plus advances in wake vortex prediction and near-term weather forecast models, "nowcast", have been integrated into a second-generation system. This AVOSS version is undergoing final checkout in preparation for a system demonstration in 2000. This paper describes the revised AVOSS system architecture, subsystem enhancements, and initial results with AVOSS version 2 from a deployment at DFW in the fall of 1999.

  18. Appraisal of ALM predictions of turbulent wake features

    NASA Astrophysics Data System (ADS)

    Rocchio, Benedetto; Cilurzo, Lorenzo; Ciri, Umberto; Salvetti, Maria Vittoria; Leonardi, Stefano

    2017-11-01

    Wind turbine blades create a turbulent wake that may persist far downstream, with significant implications on wind farm design and on its power production. The numerical representation of the real blade geometry would lead to simulations beyond the present computational resources. We focus our attention on the Actuator Line Model (ALM), in which the blade is replaced by a rotating line divided into finite segments with representative aerodynamic coefficients. The total aerodynamic force is projected along the computational axis and, to avoid numerical instabilities, it is distributed among the nearest grid points by using a Gaussian regularization kernel. The standard deviation of this kernel is a fundamental parameter that strongly affects the characteristics of the wake. We compare here the wake features obtained in direct numerical simulations of the flow around 2D bodies (a flat plate and an airfoil) modeled using the Immersed Boundary Method with the results of simulations in which the body is modeled by ALM. In particular, we investigate whether the ALM is able to reproduce the mean velocity field and the turbulent kinetic energy in the wake for the considered bodies at low and high angles of attack and how this depends on the choice of the ALM kernel. S. Leonardi was supported by the National Science Foundation, Grant No. 1243482 (the WINDINSPIRE project).

  19. Data-driven RANS for simulations of large wind farms

    NASA Astrophysics Data System (ADS)

    Iungo, G. V.; Viola, F.; Ciri, U.; Rotea, M. A.; Leonardi, S.

    2015-06-01

    In the wind energy industry there is a growing need for real-time predictions of wind turbine wake flows in order to optimize power plant control and inhibit detrimental wake interactions. To this aim, a data-driven RANS approach is proposed in order to achieve very low computational costs and adequate accuracy through the data assimilation procedure. The RANS simulations are implemented with a classical Boussinesq hypothesis and a mixing length turbulence closure model, which is calibrated through the available data. High-fidelity LES simulations of a utility-scale wind turbine operating with different tip speed ratios are used as database. It is shown that the mixing length model for the RANS simulations can be calibrated accurately through the Reynolds stress of the axial and radial velocity components, and the gradient of the axial velocity in the radial direction. It is found that the mixing length is roughly invariant in the very near wake, then it increases linearly with the downstream distance in the diffusive region. The variation rate of the mixing length in the downstream direction is proposed as a criterion to detect the transition between near wake and transition region of a wind turbine wake. Finally, RANS simulations were performed with the calibrated mixing length model, and a good agreement with the LES simulations is observed.

  20. Stability and Interaction of Coherent Structure in Supersonic Reactive Wakes

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1983-01-01

    A theoretical formulation and analysis is presented for a study of the stability and interaction of coherent structure in reacting free shear layers. The physical problem under investigation is a premixed hydrogen-oxygen reacting shear layer in the wake of a thin flat plate. The coherent structure is modeled as a periodic disturbance and its stability is determined by the application of linearized hydrodynamic stability theory which results in a generalized eigenvalue problem for reactive flows. Detailed stability analysis of the reactive wake for neutral, symmetrical and antisymmetrical disturbance is presented. Reactive stability criteria is shown to be quite different from classical non-reactive stability. The interaction between the mean flow, coherent structure and fine-scale turbulence is theoretically formulated using the von-Kaman integral technique. Both time-averaging and conditional phase averaging are necessary to separate the three types of motion. The resulting integro-differential equations can then be solved subject to initial conditions with appropriate shape functions. In the laminar flow transition region of interest, the spatial interaction between the mean motion and coherent structure is calculated for both non-reactive and reactive conditions and compared with experimental data wherever available. The fine-scale turbulent motion determined by the application of integral analysis to the fluctuation equations. Since at present this turbulence model is still untested, turbulence is modeled in the interaction problem by a simple algebraic eddy viscosity model. The applicability of the integral turbulence model formulated here is studied parametrically by integrating these equations for the simple case of self-similar mean motion with assumed shape functions. The effect of the motion of the coherent structure is studied and very good agreement is obtained with previous experimental and theoretical works for non-reactive flow. For the reactive case, lack of experimental data made direct comparison difficult. It was determined that the growth rate of the disturbance amplitude is lower for reactive case. The results indicate that the reactive flow stability is in qualitative agreement with experimental observation.

  1. The development and preliminary application of an invariant coupled diffusion and chemistry model

    NASA Technical Reports Server (NTRS)

    Hilst, G. R.; Donaldson, C. DUP.; Teske, M.; Contiliano, R.; Freiberg, J.

    1973-01-01

    In many real-world pollution chemical reaction problems, the rate of reaction problems, the rate of reaction may be greatly affected by unmixedness. An approximate closure scheme for a chemical kinetic submodel which conforms to the principles of invariant modeling and which accounts for the effects of inhomogeneous mixing over a wide range of conditions has been developed. This submodel has been coupled successfully with invariant turbulence and diffusion models, permitting calculation of two-dimensional diffusion of two reacting (isothermally) chemical species. The initial calculations indicate the ozone reactions in the wake of stratospheric aircraft will be substantially affected by the rate of diffusion of ozone into the wake, and in the early wake, by unmixedness.

  2. Out-of-plane aerodynamic forces on slender ogive-nosed cylinders

    NASA Astrophysics Data System (ADS)

    Lacey, M. R.

    An ogive-nosed cylinder with a nose fineness of 3 and a body length equal to 12 diameters, has been tested at a constant crossflow Reynolds' number of 85000 and constant crossflow Mach number of 0.1 in the angle of incidence range 0° - 90°, A method of force measurement has been devised to determine the magnitude of the aerodynamic forces on the ogive cylinder and a statistical analysis was developed to predict its accuracy for any model configuration. It was found generally that the results of static loading tests lay well within the stipulated accuracy limits. The out-of-plane forest and moments measured generally agreed well with published data and predictions based on experimental results. Similar agreement was obtained for in-plane forces and moments. The results for the effect of model roll-orientation on the out-of-plane force indicated the existence of two distinct states of asymmetry in the wake, with an absence of any intermediate states. The out-of-plane forces showed no correlation with the position of model nose imperfections, supporting the findings of previous experimenters. Reducing the length of the cylindrical body section of the model served first to reduce the out-of-plane force but subsequently produced a recovery in its magnitude with further shortening. These results agreed well with the prediction method selected. Increased free stream turbulence tended to have less effect on the distribution of the out-of-plane force than previously reported; no flow unsteadiness was observed and no change in direction of roce was recorded. Increased nose tip radius generally reduced the out- of plane force and considerable directional instability was observed. This reduction was, however, not true for all incidence angles. The directional instability was due probably to the removal of the nose tip imperfections, resulting in an inability of the wake to establish a preferred direction of asymmetry throughout the range of incidence.

  3. How stable are diurnal cortisol activity indices in healthy individuals? Evidence from three multi-wave studies

    PubMed Central

    Ross, Kharah M.; Murphy, Michael L.M.; Adam, Emma K.; Chen, Edith; Miller, Gregory E.

    2013-01-01

    Summary Background Indices of cortisol activity, including the cortisol awakening response (CAR), diurnal slope, and cortisol output across the day (total daily output), are often studied as mechanistic indicators that could link stress with health. Yet there is a paucity of data speaking to their temporal features, particularly whether they behave in a more state- or trait-like manner across time. Methods To address this issue, data from 3 studies were used to assess CAR, diurnal slope and total daily output stability over different age groups and time spans: 130 healthy children and adolescents collected salivary cortisol samples 5 times/day (1, 4, 9 and 11 h after wake) over 2 days at 5 visits spaced 6 months apart (Study 1); 147 adolescent girls collected saliva 6 times/day (wake, 1, 4, 9 and 14 h after wake) for 2 days at 3 visits, each a year apart (Study 2); and 47 healthy, primarily middle age adults collected saliva 6 times/day (wake, 1, 4, 9 and 14 h after wake) for 3 days at 4 visits spaced 2–3 months apart (Study 3). Stability was estimated by multilevel model-derived intraclass correlation coefficients (ICCs). Results Across studies, approximately 50% of the variance in cortisol indices was attributable to day-to-day fluctuations, suggesting state-like properties. Of the indices, total daily output emerged as the most stable over time, followed by diurnal slope and CAR, but stability estimates were generally quite modest regardless of index and sample. Over time spans of >1 year, ICCs were ≤.13. Conclusions Most of the variance in CAR, diurnal slope and total daily output reflects day-to-day fluctuation; there was little evidence for more stable trait-like influences. These findings suggest that future research should focus on short-term fluctuations in stress, cortisol and health, as opposed to lengthy disease processes. PMID:24119668

  4. Measuring sleep: accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography.

    PubMed

    Marino, Miguel; Li, Yi; Rueschman, Michael N; Winkelman, J W; Ellenbogen, J M; Solet, J M; Dulin, Hilary; Berkman, Lisa F; Buxton, Orfeu M

    2013-11-01

    We validated actigraphy for detecting sleep and wakefulness versus polysomnography (PSG). Actigraphy and polysomnography were simultaneously collected during sleep laboratory admissions. All studies involved 8.5 h time in bed, except for sleep restriction studies. Epochs (30-sec; n = 232,849) were characterized for sensitivity (actigraphy = sleep when PSG = sleep), specificity (actigraphy = wake when PSG = wake), and accuracy (total proportion correct); the amount of wakefulness after sleep onset (WASO) was also assessed. A generalized estimating equation (GEE) model included age, gender, insomnia diagnosis, and daytime/nighttime sleep timing factors. Controlled sleep laboratory conditions. Young and older adults, healthy or chronic primary insomniac (PI) patients, and daytime sleep of 23 night-workers (n = 77, age 35.0 ± 12.5, 30F, mean nights = 3.2). N/A. Overall, sensitivity (0.965) and accuracy (0.863) were high, whereas specificity (0.329) was low; each was only slightly modified by gender, insomnia, day/night sleep timing (magnitude of change < 0.04). Increasing age slightly reduced specificity. Mean WASO/night was 49.1 min by PSG compared to 36.8 min/night by actigraphy (β = 0.81; CI = 0.42, 1.21), unbiased when WASO < 30 min/night, and overestimated when WASO > 30 min/night. This validation quantifies strengths and weaknesses of actigraphy as a tool measuring sleep in clinical and population studies. Overall, the participant-specific accuracy is relatively high, and for most participants, above 80%. We validate this finding across multiple nights and a variety of adults across much of the young to midlife years, in both men and women, in those with and without insomnia, and in 77 participants. We conclude that actigraphy is overall a useful and valid means for estimating total sleep time and wakefulness after sleep onset in field and workplace studies, with some limitations in specificity.

  5. Statistical physics approaches to quantifying sleep-stage transitions

    NASA Astrophysics Data System (ADS)

    Lo, Chung-Chuan

    Sleep can be viewed as a sequence of transitions in a very complex neuronal system. Traditionally, studies of the dynamics of sleep control have focused on the circadian rhythm of sleep-wake transitions or on the ultradian rhythm of the sleep cycle. However, very little is known about the mechanisms responsible for the time structure or even the statistics of the rapid sleep-stage transitions that appear without periodicity. I study the time dynamics of sleep-wake transitions for different species, including humans, rats, and mice, and find that the wake and sleep episodes exhibit completely different behaviors: the durations of wake episodes are characterized by a scale-free power-law distribution, while the durations of sleep episodes have an exponential distribution with a characteristic time scale. The functional forms of the distributions of the sleep and wake durations hold for human subjects of different ages and for subjects with sleep apnea. They also hold for all the species I investigate. Surprisingly, all species have the same power-law exponent for the distribution of wake durations, but the exponential characteristic time of the distribution of sleep durations changes across species. I develop a stochastic model which accurately reproduces our empirical findings. The model suggests that the difference between the dynamics of the sleep and wake states arises from the constraints on the number of microstates in the sleep-wake system. I develop a measure of asymmetry in sleep-stage transitions using a transition probability matrix. I find that both normal and sleep apnea subjects are characterized by two types of asymmetric sleep-stage transition paths, and that the sleep apnea group exhibits less asymmetry in the sleep-stage transitions.

  6. Magnitude of the impact of hot flashes on sleep in perimenopausal women

    PubMed Central

    de Zambotti, Massimiliano; Colrain, Ian M.; Javitz, Harold S.; Baker, Fiona C.

    2014-01-01

    Objective To quantify the impact of objectively-recorded hot flashes on objective sleep in perimenopausal women. Design Cross-sectional study. Participants underwent 1–5 laboratory-based polysomnographic recordings for a total of 63 nights, including sternal skin conductance measures, from which 222 hot flashes were identified according to established criteria. Data were analyzed with hierarchical mixed-effect models and Spearman correlations. Setting Sleep laboratory. Patients 34 perimenopausal women (Age±SD:50.4±2.7y). Intervention None. Main Outcome Measures Perceived and polysomnographic sleep measures (sleep quality, amount of wake after sleep onset and number of awakenings). Subjective (frequency and bother) and objective (frequency and amount of hot flash-associated wake time) hot flash measures. Results Women had an average of 3.5 (95%CI:2.8–4.2, range=1– 9) objective hot flashes per night. 69.4% of hot flashes were associated with an awakening. Hot flash-associated wake time per night was, on average, 16.6 min (95%CI:10.8–22.4), which accounted for 27.2% (SD 27.1) of total wakefulness per night. Hot flash-associated wake, but not frequency, was negatively associated with sleep efficiency and positively associated with wake after sleep onset. Also, self-reported wakefulness correlated with hot flash-associated wake, suggesting that women’s estimates of wakefulness are influenced by the amount of time spent awake in association with hot flashes during the night. More perceived and bothersome hot flashes correlated with more perceived wakefulness and awakenings and more objective hot flash-associated wake time and hot flash frequency. Conclusions The presence of physiological hot flashes accounts for a significant proportion of total objective wakefulness during the night in perimenopausal women. PMID:25256933

  7. High resolution wind turbine wake measurements with a scanning lidar

    NASA Astrophysics Data System (ADS)

    Herges, T. G.; Maniaci, D. C.; Naughton, B. T.; Mikkelsen, T.; Sjöholm, M.

    2017-05-01

    High-resolution lidar wake measurements are part of an ongoing field campaign being conducted at the Scaled Wind Farm Technology facility by Sandia National Laboratories and the National Renewable Energy Laboratory using a customized scanning lidar from the Technical University of Denmark. One of the primary objectives is to collect experimental data to improve the predictive capability of wind plant computational models to represent the response of the turbine wake to varying inflow conditions and turbine operating states. The present work summarizes the experimental setup and illustrates several wake measurement example cases. The cases focus on demonstrating the impact of the atmospheric conditions on the wake shape and position, and exhibit a sample of the data that has been made public through the Department of Energy Atmosphere to Electrons Data Archive and Portal.

  8. On the wake of a Darrieus turbine

    NASA Technical Reports Server (NTRS)

    Base, T. E.; Phillips, P.; Robertson, G.; Nowak, E. S.

    1981-01-01

    The theory and experimental measurements on the aerodynamic decay of a wake from high performance vertical axis wind turbine are discussed. In the initial experimental study, the wake downstream of a model Darrieus rotor, 28 cm diameter and a height of 45.5 cm, was measured in a Boundary Layer Wind Tunnel. The wind turbine was run at the design tip speed ratio of 5.5. It was found that the wake decayed at a slower rate with distance downstream of the turbine, than a wake from a screen with similar troposkein shape and drag force characteristics as the Darrieus rotor. The initial wind tunnel results indicated that the vertical axis wind turbines should be spaced at least forty diameters apart to avoid mutual power depreciation greater than ten per cent.

  9. Analysis of WakeVAS Benefits Using ACES Build 3.2.1

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.

    2005-01-01

    The FAA and NASA are currently engaged in a Wake Turbulence Research Program to revise wake turbulence separation standards, procedures, and criteria to increase airport capacity while maintaining or increasing safety. The research program is divided into three phases: Phase I near term procedural enhancements; Phase II wind dependent Wake Vortex Advisory System (WakeVAS) Concepts of Operations (ConOps); and Phase III farther term ConOps based on wake prediction and sensing. This report contains an analysis that evaluates the benefits of a closely spaced parallel runway (CSPR) Phase I ConOps, a single runway and CSPR Phase II ConOps and a single runway Phase III ConOps. A series of simulation runs were performed using the Airspace Concepts Evaluation System (ACES) Build 3.21 air traffic simulator to provide an initial assessment of the reduction in delay and cost savings obtained by the use of a WakeVAS at selected U.S. airports. The ACES simulator is being developed by NASA Ames Research Center as part of the Virtual Airspace Modelling and Simulation (VAMS) program.

  10. Flow-field Survey of an Empennage Wake Interacting with a Pusher Propeller

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Soderman, Paul T.

    1988-01-01

    The flow field between a model empennage and a 591-mm-diameter pusher propeller was studied in the Ames 7- by 10-Foot Wind Tunnel with directional pressure probes and hot-wire anemometers. The region probed was bounded by the empennage trailing edge and downstream propeller. The wake properties, including effects of propeller operation on the empennage wake, were investigated for two empennage geometries: one, a vertical tail fin, the other, a Y-tail with a 34 deg dihedral. Results showed that the effect of the propeller on the empennage wake upstream of the propeller was not strong. The flow upstream of the propeller was accelerated in the streamwise direction by the propeller, but the empennage wake width and velocity defect were relatively unaffected by the presence of the propeller. The peak turbulence in the wake near the propeller tip station, 0.66 diameter behind the vertical tail fin, was approximately 3 percent of the free-stream velocity. The velocity field data can be used in predictions of the acoustic field due to propeller-wake interaction.

  11. An Experimental Investigation of the Confluent Boundary Layer on a High-Lift System

    NASA Technical Reports Server (NTRS)

    Thomas, F. O.; Nelson, R. C.

    1997-01-01

    This paper describes a fundamental experimental investigation of the confluent boundary layer generated by the interaction of a leading-edge slat wake with the boundary layer on the main element of a multi-element airfoil model. The slat and airfoil model geometry are both fully two-dimensional. The research reported in this paper is performed in an attempt to investigate the flow physics of confluent boundary layers and to build an archival data base on the interaction of the slat wake and the main element wall layer. In addition, an attempt is made to clearly identify the role that slat wake / airfoil boundary layer confluence has on lift production and how this occurs. Although complete LDV flow surveys were performed for a variety of slat gap and overhang settings, in this report the focus is on two cases representing both strong and weak wake boundary layer confluence.

  12. A Neuron-Based Model of Sleep-Wake Cycles

    NASA Astrophysics Data System (ADS)

    Postnova, Svetlana; Peters, Achim; Braun, Hans

    2008-03-01

    In recent years it was discovered that a neuropeptide orexin/hypocretin plays a main role in sleep processes. This peptide is produced by the neurons in the lateral hypothalamus, which project to almost all brain areas. We present a computational model of sleep-wake cycles, which is based on the Hodgkin-Huxley type neurons and considers reciprocal glutaminergic projections between the lateral hypothalamus and the prefrontal cortex. Orexin is released as a neuromodulator and is required to keep the neurons firing, which corresponds to the wake state. When orexin is depleted the neurons are getting silent as observed in the sleep state. They can be reactivated by the circadian signal from the suprachiasmatic nucleus and/or external stimuli (alarm clock). Orexin projections to the thalamocortical neurons also can account for their transition from tonic firing activity during wakefulness to synchronized burst discharges during sleep.

  13. 20 CFR 71.1 - General administrative provisions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HIDING FROM THE IMPERIAL JAPANESE GOVERNMENT GENERAL PROVISIONS § 71.1 General administrative provisions... Imperial Japanese Government to the same extent as if such civilian American citizen were an employee... Japanese Government on or after December 7, 1941, at Midway, Guam, Wake Island, the Philippine Islands, or...

  14. RANS Simulation (Virtual Blade Model [VBM]) of Single Full Scale DOE RM1 MHK Turbine

    DOE Data Explorer

    Javaherchi, Teymour; Aliseda, Alberto

    2013-04-10

    Attached are the .cas and .dat files along with the required User Defined Functions (UDFs) and look-up table of lift and drag coefficients for Reynolds Averaged Navier-Stokes (RANS) simulation of a single full scale DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. In this case study the flow field around and in the wake of the full scale DOE RM1 turbine is simulated using Blade Element Model (a.k.a Virtual Blade Model) by solving RANS equations coupled with k-\\omega turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Blade Element Theory. This simulation provides an accurate estimate for the performance of device and structure of it's turbulent far wake. Due to the simplifications implemented for modeling the rotating blades in this model, VBM is limited to capture details of the flow field in near wake region of the device.

  15. Large Eddy Simulation of wind turbine wakes: detailed comparisons of two codes focusing on effects of numerics and subgrid modeling

    NASA Astrophysics Data System (ADS)

    Martínez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2015-06-01

    In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to be unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.

  16. Large Eddy Simulation of Wind Turbine Wakes. Detailed Comparisons of Two Codes Focusing on Effects of Numerics and Subgrid Modeling

    DOE PAGES

    Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2015-06-18

    In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to bemore » unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.« less

  17. Array Effects in Large Wind Farms. Cooperative Research and Development Final Report, CRADA Number CRD-09-343

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, Patrick

    2016-02-23

    The effects of wind turbine wakes within operating wind farms have a substantial impact on the overall energy production from the farm. The current generation of models drastically underpredicts the impact of these wakes leading to non-conservative estimates of energy capture and financial losses to wind farm operators and developers. To improve these models, detailed research of operating wind farms is necessary. Rebecca Barthelmie of Indiana University is a world leader of wind farm wakes effects and would like to partner with NREL to help improve wind farm modeling by gathering additional wind farm data, develop better models and increasemore » collaboration with European researchers working in the same area. This is currently an active area of research at NREL and the capabilities of both parties should mesh nicely.« less

  18. Synaptic plasticity modulates autonomous transitions between waking and sleep states: Insights from a Morris-Lecar model

    NASA Astrophysics Data System (ADS)

    Ciszak, Marzena; Bellesi, Michele

    2011-12-01

    The transitions between waking and sleep states are characterized by considerable changes in neuronal firing. During waking, neurons fire tonically at irregular intervals and a desynchronized activity is observed at the electroencephalogram. This activity becomes synchronized with slow wave sleep onset when neurons start to oscillate between periods of firing (up-states) and periods of silence (down-states). Recently, it has been proposed that the connections between neurons undergo potentiation during waking, whereas they weaken during slow wave sleep. Here, we propose a dynamical model to describe basic features of the autonomous transitions between such states. We consider a network of coupled neurons in which the strength of the interactions is modulated by synaptic long term potentiation and depression, according to the spike time-dependent plasticity rule (STDP). The model shows that the enhancement of synaptic strength between neurons occurring in waking increases the propensity of the network to synchronize and, conversely, desynchronization appears when the strength of the connections become weaker. Both transitions appear spontaneously, but the transition from sleep to waking required a slight modification of the STDP rule with the introduction of a mechanism which becomes active during sleep and changes the proportion between potentiation and depression in accordance with biological data. At the neuron level, transitions from desynchronization to synchronization and vice versa can be described as a bifurcation between two different states, whose dynamical regime is modulated by synaptic strengths, thus suggesting that transition from a state to an another can be determined by quantitative differences between potentiation and depression.

  19. Numerical investigations of wake interactions of two wind turbines in tandem

    NASA Astrophysics Data System (ADS)

    Qian, Yaoru; Wang, Tongguang

    2018-05-01

    Aerodynamic performance and wake interactions between two wind turbine models under different layouts are investigated numerically using large eddy simulation in conjunction with actuator line method based on the “Blind Test” series wind tunnel experiments from Norwegian University of Science and Technology. Numerical results of the power and thrust coefficients of the two rotors and wake characteristics are in good agreement with the experimental measurements. Extended investigations emphasizing the influence of different layout arrangements on the downstream rotor performance and wake development are conducted. Results show that layout arrangements have great influence on the power and thrust prediction of the downstream turbine.

  20. Study on steady state wind and turbulence environments. [structure of wakes near buildings

    NASA Technical Reports Server (NTRS)

    Brundidge, K. C.

    1977-01-01

    The structure of wakes and how this structure is related to the size and shape of buildings and other obstacles, and to ambient winds, was investigated. Mean values of natural atmospheric flow were obtained and used in conjunction with theoretical relationships developed by dimensional analysis to establish a model of the flow in the wake. Results indicate that conventional and V/STOL aircraft passing through the wake during takeoff and landing would experience not only a change in turbulence level, but also a change in mean wind speed of a magnitude roughly equivalent to that of the eddy components.

  1. Towards enhancing and delaying disturbances in free shear flows

    NASA Technical Reports Server (NTRS)

    Criminale, W. O.; Jackson, T. L.; Lasseigne, D. G.

    1994-01-01

    The family of shear flows comprising the jet, wake, and the mixing layer are subjected to perturbations in an inviscid incompressible fluid. By modeling the basic mean flows as parallel with piecewise linear variations for the velocities, complete and general solutions to the linearized equations of motion can be obtained in closed form as functions of all space variables and time when posed as an initial value problem. The results show that there is a continuous as well as the discrete spectrum that is more familiar in stability theory and therefore there can be both algebraic and exponential growth of disturbances in time. These bases make it feasible to consider control of such flows. To this end, the possibility of enhancing the disturbances in the mixing layer and delaying the onset in the jet and wake is investigated. It is found that growth of perturbations can be delayed to a considerable degree for the jet and the wake but, by comparison, cannot be enhanced in the mixing layer. By using moving coordinates, a method for demonstrating the predominant early and long time behavior of disturbances in these flows is given for continuous velocity profiles. It is shown that the early time transients are always algebraic whereas the asymptotic limit is that of an exponential normal mode. Numerical treatment of the new governing equations confirm the conclusions reached by use of the piecewise linear basic models. Although not pursued here, feedback mechanisms designed for control of the flow could be devised using the results of this work.

  2. Dynamics of the vortex wakes of flying and swimming vertebrates.

    PubMed

    Rayner, J M

    1995-01-01

    The vortex wakes of flying and swimming animals provide evidence of the history of aero- and hydrodynamic force generation during the locomotor cycle. Vortex-induced momentum flux in the wake is the reaction of forces the animal imposes on its environment, which must be in equilibrium with inertial and external forces. In flying birds and bats, the flapping wings generate lift both to provide thrust and to support the weight. Distinct wingbeat and wake movement patterns can be identified as gaits. In flow visualization experiments, only two wake patterns have been identified: a vortex ring gait with inactive upstroke, and a continuous vortex gait with active upstroke. These gaits may be modelled theoretically by free vortex and lifting line theory to predict mechanical energy consumption, aerodynamic forces and muscle activity. Longer-winged birds undergo a distinct gait change with speed, but shorter-winged species use the vortex ring gait at all speeds. In swimming fish, the situation is more complex: the wake vortices form a reversed von Kármán vortex street, but little is known about the mechanism of generation of the wake, or about how it varies with speed and acceleration or with body form and swimming mode. An unresolved complicating factor is the interaction between the drag wake of the flapping fish body and the thrusting wake from the tail.

  3. Experimental investigations on the aerodynamics and aeromechanics of wind turbines for floating offshore applications

    NASA Astrophysics Data System (ADS)

    Khosravi, Morteza

    There are many advantages in floating wind turbines in deep waters, however, there are also significant technological challenges associated with it too. The dynamic excitation of wind and waves can induce excessive motions along each of the 6 degrees of freedom (6-DOF) of the floating platforms. These motions will then be transferred to the turbine, and directly impact the wake characteristics of the floating wind turbines, and consequently the resultant wind loadings and performances of the wind turbines sited in offshore wind farms. In the present study, a comprehensive experimental study was performed to analyze the performance, loading, and the near wake characteristics of a rigid wind turbine model subjected to surge, heave, and pitch motions. The experimental study was performed in a large-scale atmospheric boundary layer wind tunnel with a scaled three-blade Horizontal Axial Wind Turbine model placed in a turbulent boundary layer airflow with similar mean and turbulence characteristics as those over a typical offshore wind farm. The base of the 1:300 scaled model wind turbine was mounted on translation and rotation stages. These stages can be controlled to generate surge, pitch and heave motions to simulate the dynamic motions experienced by floating offshore wind turbines. During the experiments, the velocity scaling method was chosen to maintain the similar velocity ratios (i.e., the ratios of the incoming airflow flow to that of turbine base motion) between the model and the prototype. During the experiments, a high resolution digital particle image velocimetry (PIV) system was used to achieve flow field measurements to quantify the characteristics of the turbulent vortex flow in the near wake of the wind turbine model. Besides conducting ''free run'' PIV measurements to determine the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions in the wake flow, ''phase-locked'' PIV measurements were also performed to elucidate further details about evolution of the unsteady vortex structures in the wake flow in relation to the position of the rotating turbine blades. The effects of the surge, heave, and pitch motions of the wind turbine base on the wake flow characteristics were examined in great details based on the PIV measurements. The findings derived from the present study can be used to improve the understanding of the underlying physics for optimal mechanical design of floating offshore wind turbines, as well as the layout optimization of floating offshore wind farms. Although, the mean power measurement results show little difference between the oscillating turbine and the bottom fixed turbine, but the excessive fluctuations in the power output of the oscillating turbine is anticipated to greatly reduce the power quality of such floating turbines. The load measurements also show substantial amount of difference both in terms of mean and the fluctuating components. The results of the wake study reveal that the wake of a wind turbine subjected to base motions, is highly dependent on which direction the turbine is oscillating. In the case of the moving turbine, the wake accelerates as the turbine is moving with the flow, hence, reducing the power extraction by the turbine. A decrease in Reynolds shear stress and the turbulent kinetic energy production was noted as the turbine was oscillating with the flow. However, as the turbine was moving into the flow, these effects reverse, and causes a deceleration in the wake of the moving turbine, hence increases the power production by the turbine, and increase the Reynolds shear stress and the turbulent kinetic energy. Finally, The wake flow field (x/D < 2.5) measurements behind a two-bladed Darrieus type VAWT were also carried out by using a high-resolution PIV system, and the results obtained at two different horizontal (x-y) planes, at the equator height (H/2) and above the equator height (3H/4), for four different tip speed ratios (lambda = 2, 2.5, 3 and 3.5) of the VAWT were then evaluated and compared. The wake of the VAWT is found to be significantly different to that of the HAWT's. At lower tip-speed-ratio (i.e. TSR 2) the wake tends to be very asymmetric and skewed with relatively higher amount of momentum in the wake in comparison to higher tip-speed ratios (i.e. 3 or 3.5). As tip-speed ratio increases, there is a tendency in flow stagnation in the wake and eventually flow reversal would occur at higher tip-speed-ratios. The wake dynamics (i.e., the instabilities inherent in VAWT) behind the VAWTs would lead to a much faster wake recovery in comparison to the HAWTs.

  4. Wind Turbine Wake Variability in a Large Wind Farm, Observed by Scanning Lidar

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Xiaoxia, G.; Aitken, M.; Quelet, P. T.; Rana, J.; Rhodes, M. E.; St Martin, C. M.; Tay, K.; Worsnop, R.; Irvin, S.; Rajewski, D. A.; Takle, E. S.

    2014-12-01

    Although wind turbine wake modeling is critical for accurate wind resource assessment, operational forecasting, and wind plant optimization, verification of such simulations is currently constrained by sparse datasets taken in limited atmospheric conditions, often of single turbines in isolation. To address this knowledge gap, our team deployed a WINDCUBE 200S scanning lidar in a 300-MW operating wind farm as part of the CWEX-13 field experiment. The lidar was deployed ~2000 m from a row of four turbines, such that wakes from multiple turbines could be sampled with horizontal scans. Twenty minutes of every hour were devoted to horizontal scans at ½ degree resolution at six different elevation angles. Twenty-five days of data were collected, with wind speeds at hub height ranging from quiescent to 14 m/s, and atmospheric stability varying from unstable to strongly stable. The example scan in Fig. 1a shows wakes from a row of four turbines propagating to the northwest. This extensive wake dataset is analyzed based on the quantitative approach of Aitken et al. (J. Atmos. Ocean. Technol. 2014), who developed an automated wake detection algorithm to characterize wind turbine wakes from scanning lidar data. We have extended the Aitken et al. (2014) method to consider multiple turbines in a single scan in order to classify the large numbers of wakes observed in the CWEX-13 dataset (Fig. 1b) during southerly flow conditions. The presentation will explore the variability of wake characteristics such as the velocity deficit and the wake width. These characteristics vary with atmospheric stability, atmospheric turbulence, and inflow wind speed. We find that the strongest and most persistent wakes occur at low to moderate wind speeds (region 2 of the turbine power curve) in stable conditions. We also present evidence that, in stable conditions with strong changes of wind direction with height, wakes propagate in different directions at different elevations above the surface. Finally, we compare characteristics of wakes at the outside of the row of turbines to wakes from turbines in the interior of the row, quantifying how wakes from outer turbines erode faster than those from interior.

  5. A Unified Model of Performance: Validation of its Predictions across Different Sleep/Wake Schedules

    PubMed Central

    Ramakrishnan, Sridhar; Wesensten, Nancy J.; Balkin, Thomas J.; Reifman, Jaques

    2016-01-01

    Study Objectives: Historically, mathematical models of human neurobehavioral performance developed on data from one sleep study were limited to predicting performance in similar studies, restricting their practical utility. We recently developed a unified model of performance (UMP) to predict the effects of the continuum of sleep loss—from chronic sleep restriction (CSR) to total sleep deprivation (TSD) challenges—and validated it using data from two studies of one laboratory. Here, we significantly extended this effort by validating the UMP predictions across a wide range of sleep/wake schedules from different studies and laboratories. Methods: We developed the UMP on psychomotor vigilance task (PVT) lapse data from one study encompassing four different CSR conditions (7 d of 3, 5, 7, and 9 h of sleep/night), and predicted performance in five other studies (from four laboratories), including different combinations of TSD (40 to 88 h), CSR (2 to 6 h of sleep/night), control (8 to 10 h of sleep/night), and nap (nocturnal and diurnal) schedules. Results: The UMP accurately predicted PVT performance trends across 14 different sleep/wake conditions, yielding average prediction errors between 7% and 36%, with the predictions lying within 2 standard errors of the measured data 87% of the time. In addition, the UMP accurately predicted performance impairment (average error of 15%) for schedules (TSD and naps) not used in model development. Conclusions: The unified model of performance can be used as a tool to help design sleep/wake schedules to optimize the extent and duration of neurobehavioral performance and to accelerate recovery after sleep loss. Citation: Ramakrishnan S, Wesensten NJ, Balkin TJ, Reifman J. A unified model of performance: validation of its predictions across different sleep/wake schedules. SLEEP 2016;39(1):249–262. PMID:26518594

  6. Far-Field Simulation of the Hawaiian Wake: Sea Surface Temperature and Orographic Effects(.

    NASA Astrophysics Data System (ADS)

    Hafner, Jan; Xie, Shang-Ping

    2003-12-01

    Recent satellite observations reveal far-reaching effects of the Hawaiian Islands on surface wind, cloud, ocean current, and sea surface temperature (SST) that extend leeward over an unusually long distance (>1000 km). A three-dimensional regional atmospheric model with full physics is used to investigate the cause of this long wake. While previous wind wake studies tend to focus on regions near the islands, the emphasis here is the far-field effects of SST and orography well away from the Hawaiian Islands. In response to an island-induced SST pattern, the model produces surface wind and cloud anomaly patterns that resemble those observed by satellites. In particular, anomalous surface winds are found to converge onto a zonal band of warmer water, with cloud liquid water content enhanced over it but reduced on the northern and southern sides. In the vertical, a two-cell meridional circulation develops of a baroclinic structure with the rising motion and thicker clouds over the warm water band. The model response in the wind and cloud fields supports the hypothesis that ocean atmosphere interaction is crucial for sustaining the island effects over a few thousand kilometers.Near Hawaii, mountains generate separate wind wakes in the model lee of individual islands as observed by satellites. Under orographic forcing, the model simulates the windward cloud line and the southwest-tilted cloud band leeward of the Big Island. In the far field, orographically induced wind perturbations are found to be in geostrophic balance with pressure anomalies, indicative of quasigeostrophic Rossby wave propagation. A shallow-water model is developed for disturbances trapped in the inversion-capped planetary boundary layer. The westward propagation of Rossby waves is found to increase the wake length significantly, consistent with the three-dimensional simulation.

  7. Dynamic circadian modulation in a biomathematical model for the effects of sleep and sleep loss on waking neurobehavioral performance.

    PubMed

    McCauley, Peter; Kalachev, Leonid V; Mollicone, Daniel J; Banks, Siobhan; Dinges, David F; Van Dongen, Hans P A

    2013-12-01

    Recent experimental observations and theoretical advances have indicated that the homeostatic equilibrium for sleep/wake regulation--and thereby sensitivity to neurobehavioral impairment from sleep loss--is modulated by prior sleep/wake history. This phenomenon was predicted by a biomathematical model developed to explain changes in neurobehavioral performance across days in laboratory studies of total sleep deprivation and sustained sleep restriction. The present paper focuses on the dynamics of neurobehavioral performance within days in this biomathematical model of fatigue. Without increasing the number of model parameters, the model was updated by incorporating time-dependence in the amplitude of the circadian modulation of performance. The updated model was calibrated using a large dataset from three laboratory experiments on psychomotor vigilance test (PVT) performance, under conditions of sleep loss and circadian misalignment; and validated using another large dataset from three different laboratory experiments. The time-dependence of circadian amplitude resulted in improved goodness-of-fit in night shift schedules, nap sleep scenarios, and recovery from prior sleep loss. The updated model predicts that the homeostatic equilibrium for sleep/wake regulation--and thus sensitivity to sleep loss--depends not only on the duration but also on the circadian timing of prior sleep. This novel theoretical insight has important implications for predicting operator alertness during work schedules involving circadian misalignment such as night shift work.

  8. Experimental Investigation of Transition to Turbulence as Affected By Passing Wakes

    NASA Technical Reports Server (NTRS)

    Kaszeta, Richard W.; Ashpis, David E.; Simon, Terrence W.

    2001-01-01

    This paper presents experimental results from a study of the effects of periodically passing wakes upon laminar-to-turbulent transition and separation in a low-pressure turbine passage. The test section geometry is designed to simulate unsteady wakes in turbine engines for studying their effects on boundary layers and separated flow regions over the suction surface by using a single suction surface and a single pressure surface to simulate a single turbine blade passage. Single-wire, thermal anemometry techniques are used to measure time-resolved and phase averaged, wall-normal profiles of velocity, turbulence intensity and intermittency at multiple streamwise locations over the turbine airfoil suction surface. These data are compared to steady-state wake-free data collected in the same geometry to identify the effects of wakes upon laminar-to-turbulent transition. Results are presented for flows with a Reynolds number based on suction surface length and stage exit velocity of 50,000 and an approach flow turbulence intensity of 2.5%. While both existing design and experimental data are primarily concerned with higher Reynolds number flows (Re greater than 100,000), recent advances in gas turbine engines, and the accompanying increase in laminar and transitional flow effects, have made low-Re research increasingly important. From the presented data, the effects of passing wakes on transition and separation in the boundary layer, due to both increased turbulence levels and varying streamwise pressure gradients are presented. The results show how the wakes affect transition. The wakes affect the flow by virtue of their difference in turbulence levels and scales from those of the free-stream and by virtue of their ensemble- averaged velocity deficits, relative to the free-stream velocity, and the concomitant changes in angle of attack and temporal pressure gradients. The relationships between the velocity oscillations in the freestream and the unsteady velocity profile shapes in the near-wall flow are described. In this discussion is support for the theory that bypass transition is a response of the near-wall viscous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.cous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.cous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.

  9. Full Capability Formation Flight Control

    DTIC Science & Technology

    2005-02-01

    and ≤ 5 feet during thunderstorm level turbulence. Next, the 4 vortex wake of the lead aircraft will be modeled and the controller will be...be used to simulate the random effects of wind turbulence on the system. This model allows for the input of wind turbulence at three different ...Formation Vortex Interactions The other significant disturbance to be included in the two aircraft dynamic model is the effect of lead’s vortex wake on

  10. Vortex Flow Correlation

    DTIC Science & Technology

    1981-01-01

    vorticity model used on the wing as well as on the leading-edge vortex sheet. Since the trailing-edge wake vorti- city does not have the close...z SECTION B-B ( WAKE ) FIGURE 11. FLOW PAST A SLENDER WING WITH LEADING-EDGE VORTEX FLOW 49 * -- A water tunnel is useful in visualizing the reversed...on fighter aircraft which generate strong vortical flows. The differences in apparent mass between a model in air and a model in water require analysis

  11. Vortex wakes generated by robins Erithacus rubecula during free flight in a wind tunnel

    PubMed Central

    Hedenström, A; Rosén, M; Spedding, G.R

    2005-01-01

    The wakes of two individual robins were measured in digital particle image velocimetry (DPIV) experiments conducted in the Lund wind tunnel. Wake measurements were compared with each other, and with previous studies in the same facility. There was no significant individual variation in any of the measured quantities. Qualitatively, the wake structure and its gradual variation with flight speed were exactly as previously measured for the thrush nightingale. A procedure that accounts for the disparate sources of circulation spread over the complex wake structure nevertheless can account for the vertical momentum flux required to support the weight, and an example calculation is given for estimating drag from the components of horizontal momentum flux (whose net value is zero). The measured circulations of the largest structures in the wake can be predicted quite well by simple models, and expressions are given to predict these and other measurable quantities in future bird flight experiments. PMID:16849236

  12. Factors Influencing the Accuracy of Aerodynamic Hinge-Moment Prediction

    DTIC Science & Technology

    1978-08-01

    condition on the aft lifting surfaces and flaps. A new modeling technique for trailing-edge wake analysis using a potential- flow program based on the...control surface as depicLed in figure 21.. Three different models are used to simulate the flow on the wing, the flap, and the gaps. In the first two panel...ized sense, similar to that implemented in the FLEXSTAB program. The modeling of the wake on the side-edge gaps differs in the first two panel models

  13. Numerical Modeling Studies of Wake Vortex Transport and Evolution Within the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.; Han, Jongil

    2000-01-01

    The fundamental objective of this research is study behavior of aircraft wake vortices within atmospheric boundary layer (ABL) in support of developing the system, Aircraft VOrtex Spacing System (AVOSS), under NASA's Terminal Area Productivity (TAR) program that will control aircraft spacing within the narrow approach corridors of airports. The purpose of the AVOSS system is to increase airport capacity by providing a safe reduction in separation of aircraft compared to the now-existing flight rules. In our first funding period (7 January 19994 - 6 April 1997), we have accomplished extensive model development and validation of ABL simulations. Using the validated model, in our second funding period (7 April 1997 - 6 April 2000) we have investigated the effects of ambient atmospheric turbulence on vortex decay and descent, Crow instability, and wake vortex interaction with the ground. Recognizing the crucial influence of ABL turbulence on wake vortex behavior, we have also developed a software generating vertical profiles of turbulent kinetic energy (TKE) or energy dissipation rate (EDR), which are, in turn, used as input data in the AVOSS prediction algorithms.

  14. A wind-tunnel investigation of wind-turbine wakes in different yawed and loading conditions

    NASA Astrophysics Data System (ADS)

    Bastankhah, Majid; Porté-Agel, Fernando

    2015-04-01

    Wind-turbine wakes have negative effects on wind-farm performance. They are associated with: (a) the velocity deficit, which reduces the generated power of downwind turbines; and (b) the turbulence level, which increases the fatigue loads on downwind turbines. Controlling the yaw angle of turbines can potentially improve the performance of wind farms by deflecting the wake away from downwind turbines. However, except for few studies, wakes of yawed turbines still suffer from the lack of systematic research. To fill this research gap, we performed wind-tunnel experiments in the recirculating boundary-layer wind tunnel at the WIRE Laboratory of EPFL to better understand the wakes of yawed turbines. High-resolution stereoscopic particle image-velocimetry (S-PIV) was used to measure three velocity components in a horizontal plane located downwind of a horizontal-axis, three-blade model turbine. A servo-controller was connected to the DC generator of the turbine, which allowed us to apply different loadings. The power and thrust coefficients of the turbine were also measured for each case. These power and thrust measurements together with the highly-resolved flow measurements enabled us to study different wake characteristics such as the energy entrainment from the outer flow into the wake, the wake deflection and the helicoidal tip vortices for yawed turbines.

  15. Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1989-01-01

    Unsteady rotor wake interactions with the empennage, tail boom, and other aerodynamic surfaces of a helicopter have a significant influence on its aerodynamic performance, the ride quality, and vibration. A numerical method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary two-dimensional bodies was developed to address this helicopter problem. The method solves for the flow field velocities on a body-fitted computational mesh using finite-difference techniques. The interacting vortex wake is represented by an array of discrete vortices which, in turn, are represented by a finite-core model. The evolution of the interacting vortex wake is calculated by Lagrangian techniques. The viscous flow field of the two-dimensional body is calculated on an Eulerian grid. The flow around circular and elliptic cylinders in the absence of an interacting vortex wake was calculated. These results compare very well with other numerical results and with results obtained from experiment and thereby demonstrate the accuracy of the viscous solution. The interaction of a rotor wake with the flow about a 4 to 1 elliptic cylinder at 45 degree incidence was calculated for a Reynolds number of 3000. The results demonstrate the significant variations in the lift and drag on the elliptic cylinder in the presence of the interacting rotor wake.

  16. CFD simulations of a wind turbine for analysis of tip vortex breakdown

    NASA Astrophysics Data System (ADS)

    Kimura, K.; Tanabe, Y.; Aoyama, T.; Matsuo, Y.; Arakawa, C.; Iida, M.

    2016-09-01

    This paper discusses about the wake structure of wind turbine via the use of URANS and Quasi-DNS, focussing on the tip vortex breakdown. The moving overlapped structured grids CFD Solver based on a fourth-order reconstruction and an all-speed scheme, rFlow3D is used for capturing the characteristics of tip vortices. The results from the Model Experiments in Controlled Conditions project (MEXICO) was accordingly selected for executing wake simulations through the variation of tip speed ratio (TSR); in an operational wind turbine, TSR often changes in value. Therefore, it is important to assess the potential effects of TSR on wake characteristics. The results obtained by changing TSR show the variations of the position of wake breakdown and wake expansion. The correspondence between vortices and radial/rotational flow is also confirmed.

  17. Transverse mode coupling instability threshold with space charge and different wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbekov, V.

    Transverse mode coupling instability of a bunch with space charge and wake field is considered in frameworks of the boxcar model. Eigenfunctions of the bunch without wake are used as the basis for solution of the equations with the wake field included. Dispersion equation for the bunch eigentunes is obtained in the form of an infinite continued fraction. It is shown that influence of space charge on the instability essentially depends on the wake sign. In particular, threshold of the negative wake increases in absolute value until the space charge tune shift is rather small, and goes to zero atmore » higher space charge. The explanation of this behavior is developed by analysis of the bunch spectrum. As a result, a comparison of the results with published articles is represented.« less

  18. Transverse mode coupling instability threshold with space charge and different wakefields

    DOE PAGES

    Balbekov, V.

    2017-03-10

    Transverse mode coupling instability of a bunch with space charge and wake field is considered in frameworks of the boxcar model. Eigenfunctions of the bunch without wake are used as the basis for solution of the equations with the wake field included. Dispersion equation for the bunch eigentunes is obtained in the form of an infinite continued fraction. It is shown that influence of space charge on the instability essentially depends on the wake sign. In particular, threshold of the negative wake increases in absolute value until the space charge tune shift is rather small, and goes to zero atmore » higher space charge. The explanation of this behavior is developed by analysis of the bunch spectrum. As a result, a comparison of the results with published articles is represented.« less

  19. Analytical model of rotor wake aerodynamics in ground effect

    NASA Technical Reports Server (NTRS)

    Saberi, H. A.

    1983-01-01

    The model and the computer program developed provides the velocity, location, and circulation of the tip vortices of a two-blade helicopter in and out of the ground effect. Comparison of the theoretical results with some experimental measurements for the location of the wake indicate that there is excellent accuracy in the vicinity of the rotor and fair amount of accuracy far from it. Having the location of the wake at all times enables us to compute the history of the velocity and the location of any point in the flow. The main goal of out study, induced velocity at the rotor, can also be calculated in addition to stream lines and streak lines. Since the wake location close to the rotor is known more accurately than at other places, the calculated induced velocity over the disc should be a good estimate of the real induced velocity, with the exception of the blade location, because each blade was replaced only by a vortex line. Because no experimental measurements of the wake close to the ground were available to us, quantitative evaluation of the theoretical wake was not possible. But qualitatively we have been able to show excellent agreement. Comparison of flow visualization with out results has indicated the location of the ground vortex is estimated excellently. Also the flow field in hover is well represented.

  20. The wake of hovering flight in bats

    PubMed Central

    Håkansson, Jonas; Hedenström, Anders; Winter, York; Johansson, L. Christoffer

    2015-01-01

    Hovering means stationary flight at zero net forward speed, which can be achieved by animals through muscle powered flapping flight. Small bats capable of hovering typically do so with a downstroke in an inclined stroke plane, and with an aerodynamically active outer wing during the upstroke. The magnitude and time history of aerodynamic forces should be reflected by vorticity shed into the wake. We thus expect hovering bats to generate a characteristic wake, but this has until now never been studied. Here we trained nectar-feeding bats, Leptonycteris yerbabuenae, to hover at a feeder and using time-resolved stereoscopic particle image velocimetry in conjunction with high-speed kinematic analysis we show that hovering nectar-feeding bats produce a series of bilateral stacked vortex loops. Vortex visualizations suggest that the downstroke produces the majority of the weight support, but that the upstroke contributes positively to the lift production. However, the relative contributions from downstroke and upstroke could not be determined on the basis of the wake, because wake elements from down- and upstroke mix and interact. We also use a modified actuator disc model to estimate lift force, power and flap efficiency. Based on our quantitative wake-induced velocities, the model accounts for weight support well (108%). Estimates of aerodynamic efficiency suggest hovering flight is less efficient than forward flapping flight, while the overall energy conversion efficiency (mechanical power output/metabolic power) was estimated at 13%. PMID:26179990

  1. Accurate discrimination of the wake-sleep states of mice using non-invasive whole-body plethysmography.

    PubMed

    Bastianini, Stefano; Alvente, Sara; Berteotti, Chiara; Lo Martire, Viviana; Silvani, Alessandro; Swoap, Steven J; Valli, Alice; Zoccoli, Giovanna; Cohen, Gary

    2017-01-31

    A major limitation in the study of sleep breathing disorders in mouse models of pathology is the need to combine whole-body plethysmography (WBP) to measure respiration with electroencephalography/electromyography (EEG/EMG) to discriminate wake-sleep states. However, murine wake-sleep states may be discriminated from breathing and body movements registered by the WBP signal alone. Our goal was to compare the EEG/EMG-based and the WBP-based scoring of wake-sleep states of mice, and provide formal guidelines for the latter. EEG, EMG, blood pressure and WBP signals were simultaneously recorded from 20 mice. Wake-sleep states were scored based either on EEG/EMG or on WBP signals and sleep-dependent respiratory and cardiovascular estimates were calculated. We found that the overall agreement between the 2 methods was 90%, with a high Cohen's Kappa index (0.82). The inter-rater agreement between 2 experts and between 1 expert and 1 naïve sleep investigators gave similar results. Sleep-dependent respiratory and cardiovascular estimates did not depend on the scoring method. We show that non-invasive discrimination of the wake-sleep states of mice based on visual inspection of the WBP signal is accurate, reliable and reproducible. This work may set the stage for non-invasive high-throughput experiments evaluating sleep and breathing patterns on mouse models of pathophysiology.

  2. The effects of self-selected light-dark cycles and social constraints on human sleep and circadian timing: a modeling approach.

    PubMed

    Skeldon, Anne C; Phillips, Andrew J K; Dijk, Derk-Jan

    2017-03-27

    Why do we go to sleep late and struggle to wake up on time? Historically, light-dark cycles were dictated by the solar day, but now humans can extend light exposure by switching on artificial lights. We use a mathematical model incorporating effects of light, circadian rhythmicity and sleep homeostasis to provide a quantitative theoretical framework to understand effects of modern patterns of light consumption on the human circadian system. The model shows that without artificial light humans wakeup at dawn. Artificial light delays circadian rhythmicity and preferred sleep timing and compromises synchronisation to the solar day when wake-times are not enforced. When wake-times are enforced by social constraints, such as work or school, artificial light induces a mismatch between sleep timing and circadian rhythmicity ('social jet-lag'). The model implies that developmental changes in sleep homeostasis and circadian amplitude make adolescents particularly sensitive to effects of light consumption. The model predicts that ameliorating social jet-lag is more effectively achieved by reducing evening light consumption than by delaying social constraints, particularly in individuals with slow circadian clocks or when imposed wake-times occur after sunrise. These theory-informed predictions may aid design of interventions to prevent and treat circadian rhythm-sleep disorders and social jet-lag.

  3. Arvicanthis ansorgei, a Novel Model for the Study of Sleep and Waking in Diurnal Rodents.

    PubMed

    Hubbard, Jeffrey; Ruppert, Elisabeth; Calvel, Laurent; Robin-Choteau, Ludivine; Gropp, Claire-Marie; Allemann, Caroline; Reibel, Sophie; Sage-Ciocca, Dominique; Bourgin, Patrice

    2015-06-01

    Sleep neurobiology studies use nocturnal species, mainly rats and mice. However, because their daily sleep/wake organization is inverted as compared to humans, a diurnal model for sleep studies is needed. To fill this gap, we phenotyped sleep and waking in Arvicanthis ansorgei, a diurnal rodent widely used for the study of circadian rhythms. Video-electroencephalogram (EEG), electromyogram (EMG), and electrooculogram (EOG) recordings. Rodent sleep laboratory. Fourteen male Arvicanthis ansorgei, aged 3 mo. 12 h light (L):12 h dark (D) baseline condition, 24-h constant darkness, 6-h sleep deprivation. Wake and rapid eye movement (REM) sleep showed similar electrophysiological characteristics as nocturnal rodents. On average, animals spent 12.9 h ± 0.4 awake per 24-h cycle, of which 6.88 h ± 0.3 was during the light period. NREM sleep accounted for 9.63 h ± 0.4, which of 5.13 h ± 0.2 during dark period, and REM sleep for 89.9 min ± 6.7, which of 52.8 min ± 4.4 during dark period. The time-course of sleep and waking across the 12 h light:12 h dark was overall inverted to that observed in rats or mice, though with larger amounts of crepuscular activity at light and dark transitions. A dominant crepuscular regulation of sleep and waking persisted under constant darkness, showing the lack of a strong circadian drive in the absence of clock reinforcement by external cues, such as a running wheel. Conservation of the homeostatic regulation was confirmed with the observation of higher delta power following sustained waking periods and a 6-h sleep deprivation, with subsequent decrease during recovery sleep. Arvicanthis ansorgei is a valid diurnal rodent model for studying the regulatory mechanisms of sleep and so represents a valuable tool for further understanding the nocturnality/diurnality switch. © 2015 Associated Professional Sleep Societies, LLC.

  4. Analysis of Tip Vortices Identified in the Instantaneous Wake of a Horizontal-Axis Model Wind Turbine Placed in a Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Jain, Akash; Mehdi, Faraz; Sheng, Jian

    2014-11-01

    The near-wake field, a short region characterized by the physical specifications of a turbine, is of particular interest for flow-structure interactions responsible for asymmetric loadings, premature structural breakdown, noise generation etc. Helical tip vortices constitute a distinctive feature of this region and are dependent not only on the turbine geometry but also on the incoming flow profile. High-spatial resolution PIV measurements are made in the wake of a horizontal-axis model wind turbine embedded in a neutrally stratified turbulent boundary layer. The data is acquired over consecutive locations up to 10 diameters downstream of the turbine but the focus here is on the tip vortices identified in the instantaneous fields. Contrary to previous studies, both top and bottom tip vortices are clearly distinguishable in either ensemble fields or instantaneous realizations. The streamwise extent of these vortices stretches from the turbine till they merge into the expanding mid-span wake. The similarities and differences in the top and bottom tip vortices are explored through the evolution of their statistics. In particular, the distributions of the loci of vortex cores and their circulations are compared. The information will improve our understanding of near wake vortical dynamics, provide data for model validation, and aid in the devise of flow control strategies.

  5. Influence of polymer additive on flow past a hydrofoil: A numerical study

    NASA Astrophysics Data System (ADS)

    Xiong, Yongliang; Peng, Sai; Yang, Dan; Duan, Juan; Wang, Limin

    2018-01-01

    Flows of dilute polymer solutions past a hydrofoil (NACA0012) are examined by direct numerical simulation to investigate the modification of the wake pattern due to the addition of polymer. The influence of polymer additive is modeled by the FENE-P model in order to simulate a non-linear modulus of elasticity and a finite extendibility of the polymer macromolecules. Simulations were carried out at a Reynolds number of 1000 with the angle of attack varying from 0° to 20°. The results show that the influence of polymer on the flow behavior of the flow past a hydrofoil exhibits different flow regimes. In general, the addition of polymer modifies the wake patterns for all angles of attack in this study. Consequently, both drag and lift forces are changed as the Weissenberg number increases while the drag of the hydrofoil is enhanced at small angles of attack and reduced at large angles of attack. As the Weissenberg number increases, two attached recirculation bubbles or two columns of shedding vortices downstream tend to be symmetric, and the polymer tends to make the flow less sensitive to the variation of the angle of attack.

  6. Sleep-dependent directional coupling between human neocortex and hippocampus.

    PubMed

    Wagner, Tobias; Axmacher, Nikolai; Lehnertz, Klaus; Elger, Christian E; Fell, Jürgen

    2010-02-01

    Complex interactions between neocortex and hippocampus are the neural basis of memory formation. Two-step theories of memory formation suggest that initial encoding of novel information depends on the induction of rapid plasticity within the hippocampus, and is followed by a second sleep-dependent step of memory consolidation. These theories predict information flow from the neocortex into the hippocampus during waking state and in the reverse direction during sleep. However, experimental evidence that interactions between hippocampus and neocortex have a predominant direction which reverses during sleep rely on cross-correlation analysis of data from animal experiments and yielded inconsistent results. Here, we investigated directional coupling in intracranial EEG data from human subjects using a phase-modeling approach which is well suited to reveal functional interdependencies in oscillatory data. In general, we observed that the anterior hippocampus predominantly drives nearby and remote brain regions. Surprisingly, however, the influence of neocortical regions on the hippocampus significantly increased during sleep as compared to waking state. These results question the standard model of hippocampal-neocortical interactions and suggest that sleep-dependent consolidation is accomplished by an active retrieval of hippocampal information by the neocortex. Copyright 2009 Elsevier Srl. All rights reserved.

  7. Acoustic and aerodynamic study of a pusher-propeller aircraft model

    NASA Astrophysics Data System (ADS)

    Soderman, Paul T.; Horne, W. Clifton

    1990-09-01

    An aerodynamic and acoustic study was made of a pusher-propeller aircraft model in the NASA-Ames 7 x 10 ft Wind Tunnel. The test section was changed to operate as an open jet. The 591 mm diameter unswept propeller was operated alone and in the wake of three empennages: an I tail, Y tail, and a V tail. The radiated noise and detailed wake properties were measured. Results indicate that the unsteady blade loading caused by the blade interactions with the wake mean velocity distribution had a strong effect on the harmonics of blade passage noise. The blade passage harmonics above the first were substantially increased in all horizontal directions by the empennage/propeller interaction. Directivity in the plane of the propeller was maximum perpendicular to the blade surface. Increasing the tail loading caused the propeller harmonics to increase 3 to 5 dB for an empennage/propeller spacing of 0.38 mean empennage chords. The interaction noise became weak as empennage propeller spacing was increased beyond 1.0 mean empennage chord lengths. Unlike the mean wake deficit, the wake turbulence had only a small effect on the propeller noise, that effect being a small increase in the broadband noise.

  8. A Large-eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2016-04-01

    Vertical axis wind turbines (VAWTs) offer some advantages over their horizontal axis counterparts, and are being considered as a viable alternative to conventional horizontal axis wind turbines (HAWTs). Nevertheless, a relative shortage of scientific, academic and technical investigations of VAWTs is observed in the wind energy community with respect to HAWTs. Having this in mind, in this work, we aim to study the wake of a single VAWT, placed in the atmospheric boundary layer, using large-eddy simulation (LES) coupled with actuator line model (ALM). It is noteworthy that this is the first time that such a study is being performed. To do this, for a typical 1 MW VAWT design, first, the variation of power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed using LES-ALM, and an optimum combination of chord length and tip-speed ratio is obtained. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulent wake flow statistics. Keywords: vertical axis wind turbine (VAWT); VAWT wake; Atmospheric Boundary Layer (ABL); large eddy simulation (LES); actuator line model (ALM); turbulence.

  9. Characterization of a wind turbine model for wake aerodynamics studies

    NASA Astrophysics Data System (ADS)

    Cuzzola, Francesco; Aubrun, Sandrine; Leitl, Bernd

    2014-12-01

    A model wind turbine has been designed at the University of Hamburg within the scope of the FP7 fundend project WAUDIT. The purpose of the experiment described in this paper is to characterize the performances of two rotors by means of measuring the thrust coefficient Ct. Ct is a similarity parameter for the wake and is thought to be the most effective one. Its value has been directly measured using a force balance and indirectly calculated from the velocity profiles measured three diameters downstream of the rotor with hot wire anemometry. Results show that, in order to reproduce the wake behaviour, the matching of the Ct, which is a quantitative achievement, has to be integrated with measurements such as velocity profiles in the wake. In fact the velocity deficit illustrates the mechanism of transforming the axial momentum into torque assuring qualitatively the proper reproduction of the wake. This latter information assures that the achievement of a certain thrust force acting on the rotor is due to its performances in transforming the axial momentum into torque and not an effect of other phenomena such as a stall at the blades.

  10. Acoustic and aerodynamic study of a pusher-propeller aircraft model

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Horne, W. Clifton

    1990-01-01

    An aerodynamic and acoustic study was made of a pusher-propeller aircraft model in the NASA-Ames 7 x 10 ft Wind Tunnel. The test section was changed to operate as an open jet. The 591 mm diameter unswept propeller was operated alone and in the wake of three empennages: an I tail, Y tail, and a V tail. The radiated noise and detailed wake properties were measured. Results indicate that the unsteady blade loading caused by the blade interactions with the wake mean velocity distribution had a strong effect on the harmonics of blade passage noise. The blade passage harmonics above the first were substantially increased in all horizontal directions by the empennage/propeller interaction. Directivity in the plane of the propeller was maximum perpendicular to the blade surface. Increasing the tail loading caused the propeller harmonics to increase 3 to 5 dB for an empennage/propeller spacing of 0.38 mean empennage chords. The interaction noise became weak as empennage propeller spacing was increased beyond 1.0 mean empennage chord lengths. Unlike the mean wake deficit, the wake turbulence had only a small effect on the propeller noise, that effect being a small increase in the broadband noise.

  11. High resolution flow field prediction for tail rotor aeroacoustics

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.

    1989-01-01

    The prediction of tail rotor noise due to the impingement of the main rotor wake poses a significant challenge to current analysis methods in rotorcraft aeroacoustics. This paper describes the development of a new treatment of the tail rotor aerodynamic environment that permits highly accurate resolution of the incident flow field with modest computational effort relative to alternative models. The new approach incorporates an advanced full-span free wake model of the main rotor in a scheme which reconstructs high-resolution flow solutions from preliminary, computationally inexpensive simulations with coarse resolution. The heart of the approach is a novel method for using local velocity correction terms to capture the steep velocity gradients characteristic of the vortex-dominated incident flow. Sample calculations have been undertaken to examine the principal types of interactions between the tail rotor and the main rotor wake and to examine the performance of the new method. The results of these sample problems confirm the success of this approach in capturing the high-resolution flows necessary for analysis of rotor-wake/rotor interactions with dramatically reduced computational cost. Computations of radiated sound are also carried out that explore the role of various portions of the main rotor wake in generating tail rotor noise.

  12. Effect of rotor wake on aerodynamic characteristics of a 1/6 scale model of the rotor systems research aircraft. [in the Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Mineck, R. E.

    1977-01-01

    Tests were conducted in the Langley V/STOL tunnel to determine the effect of the main-rotor wake on the aerodynamic characteristics of the rotor systems research aircraft. A 1/6-scale model with a 4-blade articulated rotor was used to determine the effect of the rotor wake for the compound configuration. Data were obtained over a range of angles of attack, angles of sideslip, auxiliary engine thrusts, rotor collective pitch angles, and rotor tip-path plane angles for several main-rotor advance ratios. Separate results are presented for the forces and moments on the airframe, the wing, and the tail. An analysis of the test data indicates significant changes in the aerodynamic characteristics. The rotor wake increases the longitudinal static stability, the effective dihedral, and the lateral static stability of the airframe. The rotor induces a downwash on the wing. This downwash decreases the wing lift and increases the drag. The asymmetrical rotor wake induces a differential lift across the wing and a subsequent rolling moment. These rotor induced effects on the wing become smaller with increasing forward speed.

  13. A Model Rotor in Axial Flight

    NASA Technical Reports Server (NTRS)

    McAlister, K. W.; Huang, S. S.; Abrego, A. I.

    2001-01-01

    A model rotor was mounted horizontally in the settling chamber of a wind tunnel to obtain performance and wake structure data under low climb conditions. The immediate wake of the rotor was carefully surveyed using 3-component particle image velocimetry to define the velocity and vortical content of the flow, and used in a subsequent study to validate a theory for the separate determination of induced and profile drag. Measurements were obtained for two collective pitch angles intended to render a predominately induced drag state and another with a marked increase in profile drag. A majority of the azimuthally directed vorticity in the wake was found to be concentrated in the tip vortices. However, adjacent layers of inboard vorticity with opposite sense were clearly present. At low collective, the close proximity of the tip vortex from the previous blade caused the wake from the most recent blade passage to be distorted. The deficit velocity component that was directed along the azimuth of the rotor blade was never more that 15 percent of the rotor tip speed, and except for the region of the tip vortex, appeared to have totally disappeared form the wake left by the previous blade.

  14. Salivary cortisol among American Indians with and without posttraumatic stress disorder (PTSD): gender and alcohol influences.

    PubMed

    Laudenslager, Mark L; Noonan, Carolyn; Jacobsen, Clemma; Goldberg, Jack; Buchwald, Dedra; Bremner, J Douglas; Vaccarino, Viola; Manson, Spero M

    2009-07-01

    Disruptions in hypothalamic-pituitary-adrenal regulation and immunity have been associated with posttraumatic stress disorder (PTSD). We examined the association of PTSD with diurnal rhythms in salivary cortisol in a convenience sample from a population-based study of male and female American Indians. Subjects with and without PTSD were identified from American Indians living on/near a Northern Plains reservation as part of a larger study. Over two days diurnal saliva samples were collected by staff at the University of Colorado Denver Clinical Research Center at waking, 30min after waking, before lunch, and before dinner. Generalized estimating equations linear regression models investigated the influence of PTSD on cortisol over time. The association of a lifetime diagnosis of PTSD with salivary cortisol level was assessed in subjects with complete data (PTSD: n=27; no PTSD n=32) for age, gender, and alcohol consumption in the past month. Subject mean age was 44 years, and 71% were women. When stratified by gender, women with a lifetime diagnosis of PTSD had significantly higher mean cortisol levels throughout the day than women without PTSD (p=0.01); but there was no significant association between PTSD and cortisol levels in men (p=0.36). The cortisol awakening response - the difference in cortisol levels from waking to 30min after waking - was not associated with PTSD in men or women. A lifetime diagnosis of PTSD may influence diurnal cortisol among American Indian women. These effects were independent of influences of current alcohol use/abuse. The unexpected elevation in cortisol in American Indian women with a lifetime diagnosis of PTSD may reflect acute anxiety associated with experiencing a number of novel tests in a strange location (e.g., cardiac imaging, medical, dental exams, etc.), or concurrent depression.

  15. Daily affective experiences predict objective sleep outcomes among adolescents.

    PubMed

    Tavernier, Royette; Choo, Sungsub B; Grant, Kathryn; Adam, Emma K

    2016-02-01

    Adolescence is a sensitive period for changes in both sleep and affect. Although past research has assessed the association between affect and sleep among adolescents, few studies have examined both trait (typical) and day-to-day changes in affect, and fewer still have specifically examined negative social evaluative emotions (e.g. embarrassment) in relation to sleep. Both between- and within-person variations in daily affect were examined in relation to four objectively-measured sleep outcomes (sleep hours; sleep latency; sleep efficiency; and length of wake bouts) among adolescents. Participants (N = 77 high-school students; 42.9% female; M = 14.37 years) wore an actiwatch and completed daily-diaries for 3 days. The results of hierarchical linear models (controlling for age, gender, race, ethnicity, parental employment status, income, puberty and caffeine) indicated that negative social evaluative emotions and high-arousal affective experiences generally predicted poor sleep outcomes, whereas low-arousal affective experiences were associated with good sleep outcomes. Specifically, at the person level, adolescents reporting higher negative social evaluative emotions had shorter average sleep hours, and those experiencing higher anxiety–nervousness had longer wake bouts. In addition, individuals experiencing more dysphoria (sad, depressed, lonely) had longer average sleep hours and shorter wake bouts, while those experiencing more calmness had shorter sleep latencies. At the within-person level, individuals had longer sleep latencies following days that they had experienced high-arousal positive affect (e.g. excitement), and had longer wake bouts following days they had experienced more negative social evaluative emotions. The results highlight the detrimental effects of negative social evaluative emotions and high-arousal affective states for adolescent sleep. © 2015 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  16. Determination of Wind Turbine Near-Wake Length Based on Stability Analysis

    NASA Astrophysics Data System (ADS)

    Sørensen, Jens N.; Mikkelsen, Robert; Sarmast, Sasan; Ivanell, Stefan; Henningson, Dan

    2014-06-01

    A numerical study on the wake behind a wind turbine is carried out focusing on determining the length of the near-wake based on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier-Stokes equations using the actuator line (ACL) method. The wake is perturbed by applying stochastic or harmonic excitations in the neighborhood of the tips of the blades. The flow field is then analyzed to obtain the stability properties of the tip vortices in the wake of the wind turbine. As a main outcome of the study it is found that the amplification of specific waves (traveling structures) along the tip vortex spirals is responsible for triggering the instability leading to wake breakdown. The presence of unstable modes in the wake is related to the mutual inductance (vortex pairing) instability where there is an out-of-phase displacement of successive helix turns. Furthermore, using the non-dimensional growth rate, it is found that the pairing instability has a universal growth rate equal to π/2. Using this relationship, and the assumption that breakdown to turbulence occurs once a vortex has experienced sufficient growth, we provide an analytical relationship between the turbulence intensity and the stable wake length. The analysis leads to a simple expression for determining the length of the near wake. This expression shows that the near wake length is inversely proportional to thrust, tip speed ratio and the logarithmic of the turbulence intensity.

  17. Counter-rotating vortex pairs in the wake of a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2017-04-01

    Despite the rising popularity of vertical axis wind turbines, or VAWTs, the wakes behind these machines is much less well understood than those behind horizontal axis wind turbines, or HAWTs. A thorough understanding of wakes is important as they can cause turbines in wind farms to produce less power than anticipated and increase the fatigue loading on turbines due to vibrations. In order to gain a deeper understanding of the wake behind a vertical axis wind turbine in atmospheric flow stereo-PIV is implemented in a boundary-layer wind tunnel to produce snapshots of the 3-component velocity field in the wake at various downstream positions. The boundaries of the wake are readily observed due to the high velocity gradients and turbulence present here. Two pairs of counter-rotating vortices similar to those in the wake of yawed HAWTs are also observed. An examination of the momentum fluxes behind the turbine demonstrates that the mean flow induced by these vortices entrains a large quantity of momentum from the unperturbed boundary layer flow above the wake. This effect proves to play an even more significant role than turbulence in reintroducing momentum into the wake. In order to comprehend why the VAWT produces these vortices we modify the double-multiple stream-tube model typically used to predict VAWT performance to incorporate crosswind forces. The similarity between VAWT and yawed HAWT wakes is found not to be coincidental as both cases feature rotors which exert a lateral thrust on the incoming wind which leads to the creation of counter-rotating vortex pairs.

  18. Night-waking trajectories and associated factors in French preschoolers from the EDEN birth-cohort.

    PubMed

    Reynaud, Eve; Forhan, Anne; Heude, Barbara; de Lauzon-Guillain, Blandine; Charles, Marie-Aline; Plancoulaine, Sabine

    Night waking in preschoolers has been associated with adverse health outcomes in cross-sectional studies, but has rarely been analyzed in a longitudinal setting. Therefore, little is known about the evolution of night waking in early childhood. The objectives of the present study were: to identify night-waking trajectories in preschoolers, and to examine the risk factors associated with those trajectories. Analyses were based on the French birth-cohort study EDEN, which recruited 2002 pregnant women between 2003 and 2006. Data on a child's night waking at the ages of two, three, and five, six years, and potential confounders, were collected through parental self-reported questionnaires. Night-waking trajectories were computerized using group-based trajectory modeling on 1346 children. Two distinct developmental patterns were identified: the "2-5 rare night-waking" (77% of the children) and the "2-5 common night-waking" pattern. Logistic regressions were performed to identify the factors associated with the trajectories. Risk factors for belonging to the "2-5 common night-waking" trajectory were: exposure to passive smoking at home, daycare in a collective setting, watching television for extended periods, bottle feeding at night, high emotionality, and low shyness. This approach allowed identification of risk factors associated with night waking during a critical age window, and laid the groundwork for identifying children at higher risk of deleterious sleep patterns. Those risk factors were mainly living habits, which indicated that prevention and intervention programs could be highly beneficial in this population. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Attenuation of empennage buffet response through active control of damping using piezoelectric material

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Miller, Jonathan M.; Doggett, Robert V., Jr.

    1993-01-01

    Dynamic response and damping data obtained from buffet studies conducted in a low-speed wind tunnel by using a simple, rigid model attached to spring supports are presented. The two parallel leaf spring supports provided a means for the model to respond in a vertical translation mode, thus simulating response in an elastic first bending mode. Wake-induced buffeting flow was created by placing an airfoil upstream of the model of that the wake of the airfoil impinged on the model. Model response was sensed by a strain gage mounted on one of the springs. The output signal from the strain gage was fed back through a control law implemented on a desktop computer. The processed signals were used to 'actuate' a piezoelectric bending actuator bonded to the other spring in such a way as to add damping as the model responded. The results of this 'proof-of-concept' study show that the piezoelectric actuator was effective in attenuating the wake-induced buffet response over the range of parameters investigated.

  20. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    NASA Astrophysics Data System (ADS)

    Stupakov, Gennady; Zhou, Demin

    2016-04-01

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.

  1. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupakov, Gennady; Zhou, Demin

    2016-04-21

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.

  2. Validation of the actuator line and disc techniques using the New MEXICO measurements

    NASA Astrophysics Data System (ADS)

    Sarmast, S.; Shen, W. Z.; Zhu, W. J.; Mikkelsen, R. F.; Breton, S. P.; Ivanell, S.

    2016-09-01

    Actuator line and disc techniques are employed to analyse the wake obtained in the New MEXICO wind turbine experiment. The New MEXICO measurement campaign done in 2014 is a follow-up to the MEXICO campaign, which was completed in 2006. Three flow configurations in axial flow condition are simulated and both computed loads and velocity fields around the rotor are compared with detailed PIV measurements. The comparisons show that the computed loadings are generally in agreement with the measurements under the rotor's design condition. Both actuator approaches under-predicted the loading in the inboard part of blade in stall condition as only 2D airfoil data were used in the simulations. The predicted wake velocities generally agree well with the PIV measurements. In the experiment, PIV measurements are also provided close to the hub and nacelle. To study the effect of hub and nacelle, numerical simulations are performed both in the presence and absence of the hub geometry. This study shows that the large hub used in the experiment has only small effects on overall wake behaviour.

  3. A full potential flow analysis with realistic wake influence for helicopter rotor airload prediction

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Sparks, S. Patrick

    1987-01-01

    A 3-D, quasi-steady, full potential flow solver was adapted to include realistic wake influence for the aerodynamic analysis of helicopter rotors. The method is based on a finite difference solution of the full potential equation, using an inner and outer domain procedure for the blade flowfield to accommodate wake effects. The nonlinear flow is computed in the inner domain region using a finite difference solution method. The wake is modeled by a vortex lattice using prescribed geometry techniques to allow for the inclusion of realistic rotor wakes. The key feature of the analysis is that vortices contained within the finite difference mesh (inner domain) were treated with a vortex embedding technique while the influence of the remaining portion of the wake (in the outer domain) is impressed as a boundary condition on the outer surface of the finite difference mesh. The solution procedure couples the wake influence with the inner domain solution in a consistent and efficient solution process. The method has been applied to both hover and forward flight conditions. Correlation with subsonic and transonic hover airload data is shown which demonstrates the merits of the approach.

  4. Crosswind Shear Gradient Affect on Wake Vortices

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  5. Cortical–Subcortical Interactions in Hypersomnia Disorders: Mechanisms Underlying Cognitive and Behavioral Aspects of the Sleep–Wake Cycle

    PubMed Central

    Larson-Prior, Linda J.; Ju, Yo-El; Galvin, James E.

    2014-01-01

    Subcortical circuits mediating sleep–wake functions have been well characterized in animal models, and corroborated by more recent human studies. Disruptions in these circuits have been identified in hypersomnia disorders (HDs) such as narcolepsy and Kleine–Levin Syndrome, as well as in neurodegenerative disorders expressing excessive daytime sleepiness. However, the behavioral expression of sleep–wake functions is not a simple on-or-off state determined by subcortical circuits, but encompasses a complex range of behaviors determined by the interaction between cortical networks and subcortical circuits. While conceived as disorders of sleep, HDs are equally disorders of wake, representing a fundamental instability in neural state characterized by lapses of alertness during wake. These episodic lapses in alertness and wakefulness are also frequently seen in neurodegenerative disorders where electroencephalogram demonstrates abnormal function in cortical regions associated with cognitive fluctuations (CFs). Moreover, functional connectivity MRI shows instability of cortical networks in individuals with CFs. We propose that the inability to stabilize neural state due to disruptions in the sleep–wake control networks is common to the sleep and cognitive dysfunctions seen in hypersomnia and neurodegenerative disorders. PMID:25309500

  6. Viscous and Interacting Flow Field Effects.

    DTIC Science & Technology

    1980-06-01

    in the inviscid flow analysis using free vortex sheets whose shapes are determined by iteration. The outer iteration employs boundary layer...Methods, Inc. which replaces the source distribution in the separation zone by a vortex wake model . This model is described in some detail in (2), but...in the potential flow is obtained using linearly varying vortex singularities distributed on planar panels. The wake is represented by sheets of

  7. A Heuristic Model of Media Conflict Systems in the Wake of Expose of Cover-Ups.

    ERIC Educational Resources Information Center

    Nager, Norman R.

    The purpose of this study was to stimulate scholarly investigation of a conflict systems model for news media and the interaction of sources in the wake of an expose. A search of the literature led to nine tentative axioms that focus attention on systemic conflict of media and sources related to cover-ups and suggested additional theory…

  8. Oscillatory wake potential with exchange-correlation in plasmas

    NASA Astrophysics Data System (ADS)

    Khan, Arroj A.; Zeba, I.; Jamil, M.; Asif, M.

    2017-12-01

    The oscillatory wake potential of a moving test charge is studied in quantum dusty plasmas. The plasma system consisting of electrons, ions and negatively charged dust species is embedded in an ambient magnetic field. The modified equation of dispersion is derived using a Quantum Hydrodynamic Model for magnetized plasmas. The quantum effects are inculcated through Fermi degenerate pressure, the tunneling effect and exchange-correlation effects. The study of oscillatory wake is important to know the existence of silence zones in space and astrophysical objects as well as for crystal formation. The graphical description of the potential depicts the significance of the exchange and correlation effects arising through spin and other variables on the wake potential.

  9. Thrust Production and Wake Structure of a Batoid-Inspired Oscillating Fin

    NASA Astrophysics Data System (ADS)

    Clark, Richard

    2005-11-01

    Experiments are reported on the hydrodynamic performance of a flexible fin. The fin replicates some features of the pectoral fin of a batoid fish (such as a ray or skate) in that it is actuated in a traveling wave motion, with the amplitude of the motion increasing linearly along the span from root to tip. Thrust is found to increase with non-dimensional frequency, and an optimal oscillatory gait is identified. Power consumption measurements lead to the computation of Froude efficiency, and an optimal efficiency condition is evaluated. Wake visualizations are presented, and a vortex model of the wake near zero net thrust is suggested. Strouhal number effects on the wake topology are also illustrated.

  10. Thrust production and wake structure of a batoid-inspired oscillating fin

    NASA Astrophysics Data System (ADS)

    Clark, R. P.; Smits, A. J.

    2006-09-01

    Experiments are reported on the hydrodynamic performance of a flexible fin. The fin replicates some features of the pectoral fin of a batoid fish (such as a ray or skate) in that it is actuated in a travelling wave motion, with the amplitude of the motion increasing linearly along the span from root to tip. Thrust is found to increase with non-dimensional frequency, and an optimal oscillatory gait is identified. Power consumption measurements lead to the computation of propulsive efficiency, and an optimal efficiency condition is evaluated. Wake visualizations are presented, and a vortex model of the wake near zero net thrust is suggested. Strouhal number effects on the wake topology are also illustrated.

  11. Hover and Wind-Tunnel Testing of Shrouded Rotors for Improved Micro Air Vehicle Design

    DTIC Science & Technology

    2008-01-01

    and the shroud surface pressure distributions. The uniformity of the wake was improved by the presence of the shrouds and by decreasing the blade tip...213 3.35 Effect of blade tip clearance on shrouded-rotor exit-plane wake profiles215 3.36 Effects of changing blade tip clearance on induced...Wright [139] developed a vortex wake model for heavily loaded ducted fans, in which the “inner vortex sheets [shed from the blades ] move at a different

  12. Design and Modeling of Turbine Airfoils with Active Flow Control in Realistic Engine Conditions

    DTIC Science & Technology

    2008-07-16

    deficit and turbulence parameters in the wake of a passing blade . An additional objective was to determine the proper cylinder diameter and...we see that in terms of velocity deficit only, the 4mm cylinder at x/D=8 approximates very well the blade wake . However, we see that the problem...Results Blade Wake The computational domain consisted of a single blade with periodic conditions imposed at approximately the mid-passage, as seen in

  13. Self-gravity wake structures in Saturn's a ring revealed by Cassini vims

    USGS Publications Warehouse

    Hedman, M.M.; Nicholson, P.D.; Salo, H.; Wallis, B.D.; Buratti, B.J.; Baines, K.H.; Brown, R.H.; Clark, R.N.

    2007-01-01

    During the summer of 2005, the Visual and Infrared Mapping Spectrometer onboard the Cassini spacecraft observed a series of occultations of the star o Ceti (Mira) by Saturn's rings. These observations revealed pronounced variations in the optical depth of the A ring with longitude, which can be attributed to oriented structures in the rings known as self-gravity wakes. While the wakes themselves are only tens of meters across and below the resolution of the measurements, we are able to obtain information about the orientation and shapes of these structures by comparing the observed transmission at different longitudes with predictions from a simple model. Our findings include the following: (1) The orientation of the wakes varies systematically with radius, trailing by between 64?? and 72?? relative to the local radial direction. (2) The maximum transmission peaks at roughly 8% for B = 3.45?? in the middle A ring (???129,000 km). (3) Both the wake orientation and maximum transmission vary anomalously in the vicinity of two strong density waves (Janus 5:4 and Mimas 5:3). (4) The ratio of the wake vertical thickness H to the wake pattern wavelength ?? (assuming infinite, straight, regularly-spaced wake structures) varies from 0.12 to 0.09 across the A ring. Gravitational instability theory predicts ?? ??? 60 m, which suggests that the wake structures in the A ring are only ???6 m thick. ?? 2007. The American Astronomical Society. All rights reserved.

  14. Assessment of the ecological impacts of macroroughness elements in stream flows

    NASA Astrophysics Data System (ADS)

    Niayifar, Amin; Oldroyd, Holly J.; Perona, Paolo

    2017-04-01

    The environmental suitability of flow release rules is often assessed for different fish species by modeling (e.g., CASiMir and PHABSIM) Weighted Usable Area (WUA) curves. However, these models are not able to resolve the hydrodynamic at small scales, e.g. that induced by the presence of macroroughness (e.g., single stones), which yet determine relatively large wakes that may contribute significantly in terms of habitat suitability. The presence of stones generates sheltered zones (i.e., the wake), which are typically temporary stationary points for many fish species. By resting in these low velocity regions, fishes minimize energy expenditure, and can quickly move to nearby fast water to feed (Hayes and Jowett, 1994). Following the analytical model proposed by Negretti et al., (2006), we developed an analytical solution for the wake area behind the macroroughness elements. The total wake area in the river reach being monitored is a function of the streamflow, Q, and it is an actual Usable Area for fishes that can be used to correct the one computed by classic software such as PHABSIM or CASIMIR at each flow rate. By quantifying these wake areas we can therefore assess how the physical properties and number of such zones change in response to the changing hydrologic regime. In order to validate the concept, we selected a 400 meter reach from the Aare river in the center of Switzerland. The statistical distribution of macroroughness elements is obtained by taking orthorectified aerial photographs by drone surveys during low flow conditions. Then, the distribution of the wakes is obtained analytically as a derived distribution. This methodology allows to save computational costs and the time for detailed field surveys.

  15. Evolution of the bi-stable wake of a square-back automotive shape

    NASA Astrophysics Data System (ADS)

    Pavia, Giancarlo; Passmore, Martin; Sardu, Costantino

    2018-01-01

    Square-back shapes are popular in the automotive market for their high level of practicality. These geometries, however, are usually characterised by high drag and their wake dynamics present aspects, such as the coexistence of a long-time bi-stable behaviour and short-time global fluctuating modes that are not fully understood. In the present paper, the unsteady behaviour of the wake of a generic square-back car geometry is characterised with an emphasis on identifying the causal relationship between the different dynamic modes in the wake. The study is experimental, consisting of balance, pressure, and stereoscopic PIV measurements. Applying wavelet and cross-wavelet transforms to the balance data, a quasi-steady correlation is demonstrated between the forces and bi-stable modes. This is investigated by applying proper orthogonal decomposition to the pressure and velocity data sets and a new structure is proposed for each bi-stable state, consisting of a hairpin vortex that originates from one of the two model's vertical trailing edges and bends towards the opposite side as it merges into a single streamwise vortex downstream. The wake pumping motion is also identified and for the first time linked with the motion of the bi-stable vortical structure in the streamwise direction, resulting in out-of-phase pressure variations between the two vertical halves of the model base. A phase-averaged low-order model is also proposed that provides a comprehensive description of the mechanisms of the switch between the bi-stable states. It is demonstrated that, during the switch, the wake becomes laterally symmetric and, at this point, the level of interaction between the recirculating structures and the base reaches a minimum, yielding, for this geometry, a 7% reduction of the base drag compared to the time-averaged result.

  16. Proceedings of the General Meeting of the American Towing Tank Conference (20th) Held at Hoboken, New Jersey on 2-4 August 1983. Volume 1.

    DTIC Science & Technology

    1983-08-01

    because of Inadequate treatment of cir- cumferentially nonuniform flow. The Committee concludes that this topic would be important for some years to come. S...2. Propeller Induced Vibrations: Vibration due to propeller operation in a nonuniform wake field may arise from excitatirn transmitted both through...to allowable 0 267 _ levels of hull pressure values, surface forces, shaft bearing forces, and wake nonuniformity . These criteria are based on replies

  17. Stereo particle image velocimetry set up for measurements in the wake of scaled wind turbines

    NASA Astrophysics Data System (ADS)

    Campanardi, Gabriele; Grassi, Donato; Zanotti, Alex; Nanos, Emmanouil M.; Campagnolo, Filippo; Croce, Alessandro; Bottasso, Carlo L.

    2017-08-01

    Stereo particle image velocimetry measurements were carried out in the boundary layer test section of Politecnico di Milano large wind tunnel to survey the wake of a scaled wind turbine model designed and developed by Technische Universität München. The stereo PIV instrumentation was set up to survey the three velocity components on cross-flow planes at different longitudinal locations. The area of investigation covered the entire extent of the wind turbines wake that was scanned by the use of two separate traversing systems for both the laser and the cameras. Such instrumentation set up enabled to gain rapidly high quality results suitable to characterise the behaviour of the flow field in the wake of the scaled wind turbine. This would be very useful for the evaluation of the performance of wind farm control methodologies based on wake redirection and for the validation of CFD tools.

  18. Droplet depinning in a wake

    NASA Astrophysics Data System (ADS)

    Hooshanginejad, Alireza; Lee, Sungyon

    2017-03-01

    Pinning and depinning of a windswept droplet on a surface is familiar yet deceptively complex for it depends on the interaction of the contact line with the microscopic features of the solid substrate. This physical picture is further compounded when wind of the Reynolds number greater than 100 blows over pinned drops, leading to the boundary layer separation and wake generation. In this Rapid Communication, we incorporate the well-developed ideas of the classical boundary layer to study partially wetting droplets in a wake created by a leader object. Depending on its distance from the leader, the droplet is observed to exhibit drafting, upstream motion, and splitting, due to the wake-induced hydrodynamic coupling that is analogous to drafting of moving bodies. We successfully rationalize the onset of the upstream motion regime using a reduced model that computes the droplet shape governed by the pressure field inside the wake.

  19. Flow Structures within a Helicopter Rotor Hub Wake

    NASA Astrophysics Data System (ADS)

    Elbing, Brian; Reich, David; Schmitz, Sven

    2015-11-01

    A scaled model of a notional helicopter rotor hub was tested in the 48'' Garfield Thomas Water Tunnel at the Applied Research Laboratory Penn State. The measurement suite included total hub drag and wake velocity measurements (LDV, PIV, stereo-PIV) at three downstream locations. The main objective was to understand the spatiotemporal evolution of the unsteady wake between the rotor hub and the nominal location of the empennage (tail). Initial analysis of the data revealed prominent two- and four-per-revolution fluid structures linked to geometric hub features persisting into the wake far-field. In addition, a six-per-revolution fluid structure was observed in the far-field, which is unexpected due to the lack of any hub feature with the corresponding symmetry. This suggests a nonlinear interaction is occurring within the wake to generate these structures. This presentation will provide an overview of the experimental data and analysis with particular emphasis on these six-per-revolution structures.

  20. Rotorcraft acoustic radiation prediction based on a refined blade-vortex interaction model

    NASA Astrophysics Data System (ADS)

    Rule, John Allen

    1997-08-01

    The analysis of rotorcraft aerodynamics and acoustics is a challenging problem, primarily due to the fact that a rotorcraft continually flies through its own wake. The generation mechanism for a rotorcraft wake, which is dominated by strong, concentrated blade-tip trailing vortices, is similar to that in fixed wing aerodynamics. However, following blades encounter shed vortices from previous blades before they are swept downstream, resulting in sharp, impulsive loading on the blades. The blade/wake encounter, known as Blade-Vortex Interaction, or BVI, is responsible for a significant amount of vibratory loading and the characteristic rotorcraft acoustic signature in certain flight regimes. The present work addressed three different aspects of this interaction at a fundamental level. First, an analytical model for the prediction of trailing vortex structure is discussed. The model as presented is the culmination of a lengthy research effort to isolate the key physical mechanisms which govern vortex sheet rollup. Based on the Betz model, properties of the flow such as mass flux, axial momentum flux, and axial flux of angular momentum are conserved on either a differential or integral basis during the rollup process. The formation of a viscous central core was facilitated by the assumption of a turbulent mixing process with final vortex velocity profiles chosen to be consistent with a rotational flow mixing model and experimental observation. A general derivation of the method is outlined, followed by a comparison of model predictions with experimental vortex measurements, and finally a viscous blade drag model to account for additional effects of aerodynamic drag on vortex structure. The second phase of this program involved the development of a new formulation of lifting surface theory with the ultimate goal of an accurate, reduced order hybrid analytical/numerical model for fast rotorcraft load calculations. Currently, accurate rotorcraft airload analyses are limited by the massive computational power required to capture the small time scale events associated with BVI. This problem has two primary facets: accurate knowledge of the wake geometry, and accurate resolution of the impulsive loading imposed by a tip vortex on a blade. The present work addressed the second facet, providing a mathematical framework for solving the impulsive loading problem analytically, then asymptotically matching this solution to a low-resolution numerical calculation. A method was developed which uses continuous sheets of integrated boundary elements to model the lifting surface and wake. Special elements were developed to capture local behavior in high-gradient regions of the flow, thereby reducing the burden placed on the surrounding numerical method. Unsteady calculations for several classical cases were made in both frequency and time domain to demonstrate the performance of the method. Finally, a new unsteady, compressible boundary element method was applied to the problem of BVI acoustic radiation prediction. This numerical method, combined with the viscous core trailing vortex model, was used to duplicate the geometry and flight configuration of a detailed experimental BVI study carried out at NASA Ames Research Center. Blade surface pressure and near- and far-field acoustic radiation calculations were made. All calculations were shown to compare favorably with experimentally measured values. The linear boundary element method with non-linear corrections proved sufficient over most of the rotor azimuth, and particular in the region of the blade vortex interaction, suggesting that full non-linear CFD schemes are not necessary for rotorcraft noise prediction.

Top