Sample records for generalized-gradient approximation gga

  1. Characterization of Thin Film Materials using SCAN meta-GGA, an Accurate Nonempirical Density Functional

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buda, I. G.; Lane, C.; Barbiellini, B.

    We discuss self-consistently obtained ground-state electronic properties of monolayers of graphene and a number of ’beyond graphene’ compounds, including films of transition-metal dichalcogenides (TMDs), using the recently proposed strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) to the density functional theory. The SCAN meta-GGA results are compared with those based on the local density approximation (LDA) as well as the generalized gradient approximation (GGA). As expected, the GGA yields expanded lattices and softened bonds in relation to the LDA, but the SCAN meta-GGA systematically improves the agreement with experiment. Our study suggests the efficacy of the SCAN functionalmore » for accurate modeling of electronic structures of layered materials in high-throughput calculations more generally.« less

  2. Characterization of Thin Film Materials using SCAN meta-GGA, an Accurate Nonempirical Density Functional

    DOE PAGES

    Buda, I. G.; Lane, C.; Barbiellini, B.; ...

    2017-03-23

    We discuss self-consistently obtained ground-state electronic properties of monolayers of graphene and a number of ’beyond graphene’ compounds, including films of transition-metal dichalcogenides (TMDs), using the recently proposed strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) to the density functional theory. The SCAN meta-GGA results are compared with those based on the local density approximation (LDA) as well as the generalized gradient approximation (GGA). As expected, the GGA yields expanded lattices and softened bonds in relation to the LDA, but the SCAN meta-GGA systematically improves the agreement with experiment. Our study suggests the efficacy of the SCAN functionalmore » for accurate modeling of electronic structures of layered materials in high-throughput calculations more generally.« less

  3. Subsystem density functional theory with meta-generalized gradient approximation exchange-correlation functionals.

    PubMed

    Śmiga, Szymon; Fabiano, Eduardo; Laricchia, Savio; Constantin, Lucian A; Della Sala, Fabio

    2015-04-21

    We analyze the methodology and the performance of subsystem density functional theory (DFT) with meta-generalized gradient approximation (meta-GGA) exchange-correlation functionals for non-bonded molecular systems. Meta-GGA functionals depend on the Kohn-Sham kinetic energy density (KED), which is not known as an explicit functional of the density. Therefore, they cannot be directly applied in subsystem DFT calculations. We propose a Laplacian-level approximation to the KED which overcomes this limitation and provides a simple and accurate way to apply meta-GGA exchange-correlation functionals in subsystem DFT calculations. The so obtained density and energy errors, with respect to the corresponding supermolecular calculations, are comparable with conventional approaches, depending almost exclusively on the approximations in the non-additive kinetic embedding term. An embedding energy error decomposition explains the accuracy of our method.

  4. First-principles study of structural, electronic, linear and nonlinear optical properties of Ga{2}PSb ternary chalcopyrite

    NASA Astrophysics Data System (ADS)

    Ouahrani, T.; Reshak, A. H.; de La Roza, A. Otero; Mebrouki, M.; Luaña, V.; Khenata, R.; Amrani, B.

    2009-12-01

    We report results from first-principles density functional calculations using the full-potential linear augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) and the Engel-Vosko-generalized gradient approximation (EV-GGA) were used for the exchange-correlation energy of the structural, electronic, linear and nonlinear optical properties of the chalcopyrite Ga2PSb compound. The valence band maximum (VBM) is located at the Γv point, and the conduction band minimum (CBM) is located at the Γc point, resulting in a direct band gap of about 0.365 eV for GGA and 0.83 eV for EV-GGA. In comparison with the experimental one (1.2 eV) we found that EV-GGA calculation gives energy gap in reasonable agreement with the experiment. The spin orbit coupling has marginal influence on the optical properties. The ground state quantities such as lattice parameters (a, c and u), bulk modules B and its pressure derivative B^primeare evaluated.

  5. The investigation of topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Saeidi, Parviz; Nourbakhsh, Zahra

    2018-04-01

    Topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys have been studied utilizing density function theory by WIEN2k code. The generalized gradient approximation (GGA), generalized gradient approximation plus Hubbard parameter (GGA + U), Modified Becke and Johnson (MBJ) and GGA Engel-vosko in the presence of spin orbit coupling have been used to investigate the topological band structure of Gd1-xYxAuPb alloys at zero pressure. The topological phase and band order of these alloys within GGA and GGA + U approaches under hydrostatic pressure are also investigated. We find that under hydrostatic pressure in some percentages of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys in both GGA and GGA + U approaches, the trivial topological phase is converted into nontrivial topological phase. In addition, the band inversion strength versus lattice constant of these alloys is studied. Moreover, the schematic plan is represented in order to show the trivial and nontrivial topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys in both GGA and GGA + U approaches.

  6. Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme.

    PubMed

    Li, Shaohong L; Truhlar, Donald G

    2015-07-14

    Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations and atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.

  7. Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaohong L.; Truhlar, Donald G.

    Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations andmore » atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.« less

  8. Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme

    DOE PAGES

    Li, Shaohong L.; Truhlar, Donald G.

    2015-05-22

    Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations andmore » atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.« less

  9. Double-hybrid density-functional theory with meta-generalized-gradient approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souvi, Sidi M. O., E-mail: sidi.souvi@irsn.fr; Sharkas, Kamal; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr

    2014-02-28

    We extend the previously proposed one-parameter double-hybrid density-functional theory [K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134, 064113 (2011)] to meta-generalized-gradient-approximation (meta-GGA) exchange-correlation density functionals. We construct several variants of one-parameter double-hybrid approximations using the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA functional and test them on test sets of atomization energies and reaction barrier heights. The most accurate variant uses the uniform coordinate scaling of the density and of the kinetic energy density in the correlation functional, and improves over both standard Kohn-Sham TPSS and second-order Møller-Plesset calculations.

  10. DFT calculations of electronic and optical properties of SrS with LDA, GGA and mGGA functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Shatendra, E-mail: shatendra@gmai.com; Sharma, Jyotsna; Sharma, Yogita

    2016-05-06

    The theoretical investigations of electronic and optical properties of SrS are made using the first principle DFT calculations. The calculations are performed for the local-density approximation (LDA), generalized gradient approximation (GGA) and for an alternative form of GGA i.e. metaGGA for both rock salt type (B1, Fm3m) and cesium chloride (B2, Pm3m) structures. The band structure, density of states and optical spectra are calculated under various available functional. The calculations with LDA and GGA functional underestimate the values of band gaps with all functional, however the values with mGGA show reasonably good agreement with experimental and those calculated by usingmore » other methods.« less

  11. Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.

    PubMed

    Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M

    2015-09-08

    We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.

  12. Gedanken densities and exact constraints in density functional theory.

    PubMed

    Perdew, John P; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron

    2014-05-14

    Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA's. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.

  13. Course 4: Density Functional Theory, Methods, Techniques, and Applications

    NASA Astrophysics Data System (ADS)

    Chrétien, S.; Salahub, D. R.

    Contents 1 Introduction 2 Density functional theory 2.1 Hohenberg and Kohn theorems 2.2 Levy's constrained search 2.3 Kohn-Sham method 3 Density matrices and pair correlation functions 4 Adiabatic connection or coupling strength integration 5 Comparing and constrasting KS-DFT and HF-CI 6 Preparing new functionals 7 Approximate exchange and correlation functionals 7.1 The Local Spin Density Approximation (LSDA) 7.2 Gradient Expansion Approximation (GEA) 7.3 Generalized Gradient Approximation (GGA) 7.4 meta-Generalized Gradient Approximation (meta-GGA) 7.5 Hybrid functionals 7.6 The Optimized Effective Potential method (OEP) 7.7 Comparison between various approximate functionals 8 LAP correlation functional 9 Solving the Kohn-Sham equations 9.1 The Kohn-Sham orbitals 9.2 Coulomb potential 9.3 Exchange-correlation potential 9.4 Core potential 9.5 Other choices and sources of error 9.6 Functionality 10 Applications 10.1 Ab initio molecular dynamics for an alanine dipeptide model 10.2 Transition metal clusters: The ecstasy, and the agony... 10.3 The conversion of acetylene to benzene on Fe clusters 11 Conclusions

  14. Deorbitalization strategies for meta-generalized-gradient-approximation exchange-correlation functionals

    NASA Astrophysics Data System (ADS)

    Mejia-Rodriguez, Daniel; Trickey, S. B.

    2017-11-01

    We explore the simplification of widely used meta-generalized-gradient approximation (mGGA) exchange-correlation functionals to the Laplacian level of refinement by use of approximate kinetic-energy density functionals (KEDFs). Such deorbitalization is motivated by the prospect of reducing computational cost while recovering a strictly Kohn-Sham local potential framework (rather than the usual generalized Kohn-Sham treatment of mGGAs). A KEDF that has been rather successful in solid simulations proves to be inadequate for deorbitalization, but we produce other forms which, with parametrization to Kohn-Sham results (not experimental data) on a small training set, yield rather good results on standard molecular test sets when used to deorbitalize the meta-GGA made very simple, Tao-Perdew-Staroverov-Scuseria, and strongly constrained and appropriately normed functionals. We also study the difference between high-fidelity and best-performing deorbitalizations and discuss possible implications for use in ab initio molecular dynamics simulations of complicated condensed phase systems.

  15. Interconfigurational energies in transition-metal atoms using gradient-corrected density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutzler, F.W.; Painter, G.S.

    1991-03-15

    The rapid variation of charge and spin densities in atoms and molecules provides a severe test for local-density-functional theory and for the use of gradient corrections. In the study reported in this paper, we use the Langreth, Mehl, and Hu (LMH) functional and the generalized gradient approximation (GGA) of Perdew and Yue to calculate {ital s}-{ital d} transition energies, 4{ital s} ionization energies, and 3{ital d} ionization energies for the 3{ital d} transition-metal atoms. These calculations are compared with results from the local-density functional of Vosko, Wilk, and Nusair. By comparison with experimental energies, we find that the gradient functionalsmore » are only marginally more successful than the local-density approximation in calculating energy differences between states in transition-metal atoms. The GGA approximation is somewhat better than the LMH functional for most of the atoms studied, although there are several exceptions.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, Lucian A.; Fabiano, Eduardo; Della Sala, Fabio

    We introduce a novel non-local ingredient for the construction of exchange density functionals: the reduced Hartree parameter, which is invariant under the uniform scaling of the density and represents the exact exchange enhancement factor for one- and two-electron systems. The reduced Hartree parameter is used together with the conventional meta-generalized gradient approximation (meta-GGA) semilocal ingredients (i.e., the electron density, its gradient, and the kinetic energy density) to construct a new generation exchange functional, termed u-meta-GGA. This u-meta-GGA functional is exact for the exchange of any one- and two-electron systems, is size-consistent and non-empirical, satisfies the uniform density scaling relation, andmore » recovers the modified gradient expansion derived from the semiclassical atom theory. For atoms, ions, jellium spheres, and molecules, it shows a good accuracy, being often better than meta-GGA exchange functionals. Our construction validates the use of the reduced Hartree ingredient in exchange-correlation functional development, opening the way to an additional rung in the Jacob’s ladder classification of non-empirical density functionals.« less

  17. Electronic structure of ferromagnetic semiconductor material on the monoclinic and rhombohedral ordered double perovskites La{sub 2}FeCoO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuh, Huei-Ru; Chang, Ching-Ray; Graduate Institute of Applied Physics, National Taiwan University, Taipei 106, Taiwan

    2015-05-07

    Double perovskite La{sub 2}FeCoO{sub 6} with monoclinic structure and rhombohedra structure show as ferromagnetic semiconductor based on density functional theory calculation. The ferromagnetic semiconductor state can be well explained by the superexchange interaction. Moreover, the ferromagnetic semiconductor state remains under the generalized gradient approximation (GGA) and GGA plus onsite Coulomb interaction calculation.

  18. Communication: A new class of non-empirical explicit density functionals on the third rung of Jacob's ladder

    NASA Astrophysics Data System (ADS)

    de Silva, Piotr; Corminboeuf, Clémence

    2015-09-01

    We construct an orbital-free non-empirical meta-generalized gradient approximation (GGA) functional, which depends explicitly on density through the density overlap regions indicator [P. de Silva and C. Corminboeuf, J. Chem. Theory Comput. 10, 3745 (2014)]. The functional does not depend on either the kinetic energy density or the density Laplacian; therefore, it opens a new class of meta-GGA functionals. By construction, our meta-GGA yields exact exchange and correlation energy for the hydrogen atom and recovers the second order gradient expansion for exchange in the slowly varying limit. We show that for molecular systems, overall performance is better than non-empirical GGAs. For atomization energies, performance is on par with revTPSS, without any dependence on Kohn-Sham orbitals.

  19. Adsorption and Electronic Structure of Sr and Ag Atoms on Graphite Surfaces: a First-Principles Study

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Feng; Fang, Chao; Li, Xin; Lai, Wen-Sheng; Sun, Li-Feng; Liang, Tong-Xiang

    2013-06-01

    The adsorption behaviors of radioactive strontium and silver nuclides on the graphite surface in a high-temperature gas-cooled reactor are studied by first-principles theory using generalized gradient approximation (GGA) and local density approximation (LDA) pseudo-potentials. It turns out that Sr prefers to be absorbed at the hollow of the carbon hexagonal cell by 0.54 eV (GGA), while Ag likes to sit right above the carbon atom with an adsorption energy of almost zero (GGA) and 0.45 eV (LDA). Electronic structure analysis reveals that Sr donates its partial electrons of the 4p and 5s states to the graphite substrate, while Ag on graphite is a physical adsorption without any electron transfer.

  20. First principles LDA + U and GGA + U study of protactinium and protactinium oxides: dependence on the effective U parameter

    NASA Astrophysics Data System (ADS)

    Obodo, K. O.; Chetty, N.

    2013-04-01

    The electronic structure and properties of protactinium and its oxides (PaO and PaO2) have been studied within the framework of the local density approximation (LDA), the Perdew-Burke-Ernzerhof generalized gradient approximation [GGA(PBE)], LDA + U and GGA(PBE) + U implementations of density functional theory. The dependence of selected observables of these materials on the effective U parameter has been investigated in detail. The examined properties include lattice constants, bulk moduli, the effect of charge density distributions, the hybridization of the 5f orbital and the energy of formation for PaO and PaO2. The LDA gives better agreement with experiment for the bulk modulus than the GGA for Pa but the GGA gives better structural properties. We found that PaO is metallic and PaO2 is a Mott-Hubbard insulator. This is consistent with observations for the other actinide oxides. We discover that GGA and LDA incorrectly give metallic behavior for PaO2. The GGA(PBE) + U calculated indirect band gap of 3.48 eV reported for PaO2 is a prediction and should stimulate further studies of this material.

  1. Electronic and Magnetic Structures, Magnetic Hyperfine Fields and Electric Field Gradients in UX3 (X = In, Tl, Pb) Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Yazdani-Kachoei, Majid; Jalali-Asadabadi, Saeid; Farooq, Muhammad Bilal; Ahmad, Iftikhar

    2018-02-01

    Cubic uranium compounds such as UX3 (X is a non-transition element of groups IIIA or IVA) exhibit highly diverse magnetic properties, including Pauli paramagnetism, spin fluctuation and anti-ferromagnetism. In the present paper, we explore the structural, electronic and magnetic properties as well as the hyperfine fields (HFFs) and electric field gradients (EFGs) with quadrupole coupling constant of UX3 (X = In, Tl, Pb) compounds using local density approximation, Perdew-Burke-Ernzerhof parametrization of generalized gradient approximation (PBE-GGA) including the Hubbard U parameter (GGA + U), a revised version of PBE-GGA that improves equilibrium properties of densely packed solids and their surfaces (PBEsol-GGA), and a hybrid functional (HF-PBEsol). The spin orbit-coupling calculations have been added to investigate the relativistic effect of electrons in these materials. The comparison between the experimental parameters and our calculated structural parameters we confirm the consistency and effectiveness of our theoretical tools. The computed magnetic moments show that magnetic moment increases from indium to lead in the UX3 family, and all these compounds are antiferromagnetic in nature. The EFGs and HFFs, as well as the quadrupole coupling constant of UX3 (X = In, Tl, Pb), are discussed in detail. These properties primarily originate from f and p states of uranium and post-transition sites.

  2. First-principles calculations of electronic, magnetic and optical properties of HoN doped with TM (Ti, V, Cr, Mn, Co and Ni)

    NASA Astrophysics Data System (ADS)

    Rouchdi, M.; Salmani, E.; Dehmani, M.; Ez-Zahraouy, H.; Hassanain, N.; Benyoussef, A.; Mzerd, A.

    2018-02-01

    Using the first-principles calculations within the Korringa-Kohn-Rostoker (KKR) method combined with the coherent potential approximation (CPA), the structural, optical and magnetic properties of rare-earth nitride Ho0.95TM0.05N doped with transition metal (TM) atoms (Ti, V, Cr, Mn, Co and Ni) are investigated as a function the generalized gradient approximation and self-interaction correction (GGA-SIC) approximation. The optical properties are studied in detail by using ab-initio calculations. Using GGA-SIC we have showed that the bandgap value is in good agreement with the experimental value. Using GGA-SIC approximation for HoN, we have obtained a bandgap of 0.9 eV. Some of the dilute magnetic semiconductors (DMS) like Ho0.95TM0.05N under study exhibit a half-metallic behavior, which makes them suitable for spintronic applications. Moreover, the optical absorption spectra confirm the ferromagnetic stability based on the charge state of magnetic impurities.

  3. First principle investigations of the physical properties of hydrogen-rich MgH2

    NASA Astrophysics Data System (ADS)

    Zarshenas, Mohammed; Ahmed, R.; Benali Kanoun, Mohammed; Haq, Bakhtiar ul; Radzi Mat Isa, Ahmad; Goumri-Said, Souraya

    2013-12-01

    Hydrogen being a cleaner energy carrier has increased the importance of hydrogen-containing light metal hydrides, in particular those with large gravimetric hydrogen density like magnesium hydride (MgH2). In this study, density functional and density functional perturbation theories are combined to investigate the structural, elastic, thermodynamic, electronic and optical properties of MgH2. Our structural parameters calculated with those proposed by Perdew, Burke and Ernzerof generalized gradient approximation (PBE-GGA) and Wu-Cohen GGA (WC-GGA) are in agreement with experimental measurements, however the underestimated band gap values calculated using PBE-GGA and WC-GGA were greatly improved with the GGA suggested by Engle and Vosko and the modified Becke-Johnson exchange correlation potential by Trans and Blaha. As for the thermodynamic properties the specific heat values at low temperatures were found to obey the T3 rule and at higher temperatures Dulong and Petit's law. Our analysis of the optical properties of MgH2 also points to its potential application in optoelectronics.

  4. Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package.

    PubMed

    Womack, James C; Mardirossian, Narbe; Head-Gordon, Martin; Skylaris, Chris-Kriton

    2016-11-28

    Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.

  5. Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package

    NASA Astrophysics Data System (ADS)

    Womack, James C.; Mardirossian, Narbe; Head-Gordon, Martin; Skylaris, Chris-Kriton

    2016-11-01

    Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.

  6. Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics

    PubMed Central

    Jakse, Noel; Pasturel, Alain

    2013-01-01

    We present a study of dynamic properties of liquid aluminum using density-functional theory within the local-density (LDA) and generalized gradient (GGA) approximations. We determine the temperature dependence of the self-diffusion coefficient as well the viscosity using direct methods. Comparisons with experimental data favor the LDA approximation to compute dynamic properties of liquid aluminum. We show that the GGA approximation induce more important backscattering effects due to an enhancement of the icosahedral short range order (ISRO) that impact directly dynamic properties like the self-diffusion coefficient. All these results are then used to test the Stokes-Einstein relation and the universal scaling law relating the diffusion coefficient and the excess entropy of a liquid. PMID:24190311

  7. Electronic-structure calculations of praseodymium metal by means of modified density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svane, A.; Trygg, J.; Johansson, B.

    1997-09-01

    Electronic-structure calculations of elemental praseodymium are presented. Several approximations are used to describe the Pr f electrons. It is found that the low-pressure, trivalent phase is well described using either the self-interaction corrected (SIC) local-spin-density (LSD) approximation or the generalized-gradient approximation (GGA) with spin and orbital polarization (OP). In the SIC-LSD approach the Pr f electrons are treated explicitly as localized with a localization energy given by the self-interaction of the f orbital. In the GGA+OP scheme the f-electron localization is described by the onset of spin and orbital polarization, the energetics of which is described by spin-moment formation energymore » and a term proportional to the total orbital moment, L{sub z}{sup 2}. The high-pressure phase is well described with the f electrons treated as band electrons, in either the LSD or the GGA approximations, of which the latter describes more accurately the experimental equation of state. The calculated pressure of the transition from localized to delocalized behavior is 280 kbar in the SIC-LSD approximation and 156 kbar in the GGA+OP approach, both comparing favorably with the experimentally observed transition pressure of 210 kbar. {copyright} {ital 1997} {ital The American Physical Society}« less

  8. Electronic and magnetic properties of NiS2, NiSSe and NiSe2 by a combination of theoretical methods

    NASA Astrophysics Data System (ADS)

    Schuster, Cosima; Gatti, Matteo; Rubio, Angel

    2012-09-01

    We investigate the electronic and magnetic properties of NiS2, which, by varying the chemical composition substituting S by Se atoms or applying pressure, can be driven across various electronic and magnetic phase transitions. By combining several theoretical methods, we highlight the different role played by the chalcogen dimers and the volume compression in determining the phase transitions, through variations of the chalcogen p bonding-antibonding gap, the crystal-field splitting and the broadening of the bandwidths. While the generalized gradient approximation (GGA) of density-functional theory fails to reproduce the insulating nature of NiS2, it describes well the magnetic boundaries of the phase diagram. The large GGA delocalization error is corrected to a large extent by the use of GGA + U, hybrid functionals or the self-consistent COHSEX + GW approximation. We also discuss the advantages and the shortcomings of the different approximations in the various regions of the phase diagram of this prototypical correlated compound.

  9. Vibrational and thermodynamic properties of β-HMX: a first-principles investigation.

    PubMed

    Wu, Zhongqing; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya

    2011-05-28

    Thermodynamic properties of β-HMX crystal are investigated using the quasi-harmonic approximation and density functional theory within the local density approximation (LDA), generalized gradient approximation (GGA), and GGA + empirical van der Waals (vdW) correction. It is found that GGA well describes the thermal expansion coefficient and heat capacity but fails to produce correct bulk modulus and equilibrium volume. The vdW correction improves the bulk modulus and volume, but worsens the thermal expansion coefficient and heat capacity. In contrast, LDA describes all thermodynamic properties with reasonable accuracy, and overall is a good exchange-correlation functional for β-HMX molecular crystal. The results also demonstrate significant contributions of phonons to the equation of state. The static calculation of equilibrium volume for β-HMX differs from the room-temperature value incorporating lattice vibrations by over 5%. Therefore, for molecular crystals, it is essential to include phonon contributions when calculated equation of state is compared with experimental data at ambient condition. © 2011 American Institute of Physics

  10. Ab-initio calculation of EuO doped with 5% of (Ti, V, Cr and Fe): GGA and SIC approximation

    NASA Astrophysics Data System (ADS)

    Rouchdi, M.; Salmani, E.; Bekkioui, N.; Ez-Zahraouy, H.; Hassanain, N.; Benyoussef, A.; Mzerd, A.

    2017-12-01

    In this research, a simple theoretical method is proposed to investigate the electronic, magnetic and optical properties of Europium oxide (EuO) doped with 5% of (Ti, V, Cr and Fe). For a basic understanding of these properties, we employed Density-Functional Theory (DFT) based calculations with the Korringa-Kohn-Rostoker code (KKR) combined with the Coherent Potential Approximation (CPA). Also we investigated the half-metallic ferromagnetic behavior of EuO doped with 5% of (Ti, V, Cr and Fe) within the self-interaction-corrected Generalized Gradient Approximation (GGA-SIC). Our calculated results revealed that the Eu0.95TM0.05O is ferromagnetic with a high transition temperature. Moreover, the optical absorption spectra revealed that the half metallicity has been also predicted.

  11. Orbital-occupancy versus charge ordering and the strength of electron correlations in electron-doped CaMnO3.

    PubMed

    Luo, Weidong; Franceschetti, Alberto; Varela, Maria; Tao, Jing; Pennycook, Stephen J; Pantelides, Sokrates T

    2007-07-20

    The structural, electronic, and magnetic properties of mixed-valence compounds are believed to be governed by strong electron correlations. Here we report benchmark density-functional calculations in the spin-polarized generalized-gradient approximation (GGA) for the ground-state properties of doped CaMnO(3). We find excellent agreement with all available data, while inclusion of strong correlations in the GGA+U scheme impairs this agreement. We demonstrate that formal oxidation states reflect only orbital occupancies, not charge transfer, and resolve outstanding controversies about charge ordering.

  12. Orbital-Occupancy versus Charge Ordering and the Strength of Electron Correlations in Electron-Doped CaMnO3

    NASA Astrophysics Data System (ADS)

    Luo, Weidong; Franceschetti, Alberto; Varela, Maria; Tao, Jing; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2007-07-01

    The structural, electronic, and magnetic properties of mixed-valence compounds are believed to be governed by strong electron correlations. Here we report benchmark density-functional calculations in the spin-polarized generalized-gradient approximation (GGA) for the ground-state properties of doped CaMnO3. We find excellent agreement with all available data, while inclusion of strong correlations in the GGA+U scheme impairs this agreement. We demonstrate that formal oxidation states reflect only orbital occupancies, not charge transfer, and resolve outstanding controversies about charge ordering.

  13. Density functional theory calculations of III-N based semiconductors with mBJLDA

    NASA Astrophysics Data System (ADS)

    Gürel, Hikmet Hakan; Akıncı, Özden; Ünlü, Hilmi

    2017-02-01

    In this work, we present first principles calculations based on a full potential linear augmented plane-wave method (FP-LAPW) to calculate structural and electronic properties of III-V based nitrides such as GaN, AlN, InN in a zinc-blende cubic structure. First principles calculation using the local density approximation (LDA) and generalized gradient approximation (GGA) underestimate the band gap. We proposed a new potential called modified Becke-Johnson local density approximation (MBJLDA) that combines modified Becke-Johnson exchange potential and the LDA correlation potential to get better band gap results compared to experiment. We compared various exchange-correlation potentials (LSDA, GGA, HSE, and MBJLDA) to determine band gaps and structural properties of semiconductors. We show that using MBJLDA density potential gives a better agreement with experimental data for band gaps III-V nitrides based semiconductors.

  14. Quantum Monte Carlo Simulations of the Quartz to Stishovite Transition in SiO2

    NASA Astrophysics Data System (ADS)

    Cohen, R. E.; Towler, Mike; Lopez Rios, Pablo; Drummond, Neil; Needs, Richard

    2007-03-01

    The quartz-stishovite transition has been a long standing problem for density functional theory (DFT). Although conventional DFT computations within the local density approximation (LDA) give reasonably good properties of silica phases individually, they do not give the energy difference between quartz and stishovite accurately. The LDA gives stishovite as a lower energy structure than quartz at zero pressure, which is incorrect. The generalized gradient approximation (GGA) has been shown to give the correct energy difference between quartz and stishovite (about 0.5 eV/formula unit) (Hamann, PRL 76, 660, 1996; Zupan et al., PRB 58, 11266, 1998), and it was generally thought that the GGA was simply a better approximation than the LDA. However, closer inspection shows that other properties are not better for the GGA than the LDA, so there is room for improvement. A new density functional that is an improvement for most materials unfortunately does not improve the quartz-stishovite transition (Wu and Cohen, PRB 73, 235116, 2006). We are performing QMC computations using the CASINO code to obtain the accurate energy difference between quartz and stishovite to obtain more accurate high pressure properties, and to better understand the errors on DFT and how DFT can be improved.

  15. Magnetic properties and stability of Cu3V2O8 compound in the different phases

    NASA Astrophysics Data System (ADS)

    Jezierski, Andrzej

    2016-11-01

    The magnetic and thermodynamic properties of Cu3V2O8 compound in four structures (P-1, P21/c, P21/m and Cmca) are reported. The calculations are performed by using the Full-Potential Local Orbital Minimum Basis (FPLO) and Vienna ab initio Simulation Package (VASP) methods. We have applied the local density approximation (LDA) with the generalized gradient corrections (GGA). The effect of electron correlations was also included in GGA+U approximation. The thermodynamic properties were obtained in the quasi-harmonic Debye-Grüneisen model using the equation of states (EOS) in the form of Poirier-Tarantola. Our ab-intio results indicate that α (P-1) phase is stable below 1.87 GPa, β (P21/c) exists in the region 1.87

  16. Comparative Study of Exchange-Correlation Functional and Potential for Evaluating Thermoelectric Transport Properties in d0 Perovskite Oxides

    NASA Astrophysics Data System (ADS)

    Ohkubo, Isao; Mori, Takao

    2017-07-01

    The influence of two different types of exchange-correlation functional/potential, namely, the generalized gradient approximation Perdew-Burke-Ernzerhof (GGA-PBE) functional and the modified Becke-Johnson (mBJ) potential, on the thermoelectric transport properties of d0 perovskite oxides (SrTiO3 and KTaO3) was investigated. The reduction of band dispersion induced by the mBJ scheme allows the improved prediction of band gap values by thelocal density approximation (LDA) and GGA, which increases the resolution of the increases in the density of states (DOS), carrier concentration, and effective mass near the conduction band edge. A comparison of the experimental effective mass values of d0 perovskite oxides shows that the effective mass values provided by the mBJ potential are similar to those provided by the GGA-PBE functional. Comparative analysis of the data obtained from Boltzmann theory calculations using the electronic structures determined with the GGA-PBE functional and the mBJ potential shows a difference in the transport coefficients owing to the increases in the DOS, carrier concentration, and effective mass induced by the mBJ scheme.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castaño-González, E.-E.; Seña, N.; Mendoza-Estrada, V.

    In this paper, we carried out first-principles calculations in order to investigate the structural and electronic properties of the binary compound gallium antimonide (GaSb). This theoretical study was carried out using the Density Functional Theory within the plane-wave pseudopotential method. The effects of exchange and correlation (XC) were treated using the functional Local Density Approximation (LDA), generalized gradient approximation (GGA): Perdew–Burke–Ernzerhof (PBE), Perdew-Burke-Ernzerhof revised for solids (PBEsol), Perdew-Wang91 (PW91), revised Perdew–Burke–Ernzerhof (rPBE), Armiento–Mattson 2005 (AM05) and meta-generalized gradient approximation (meta-GGA): Tao–Perdew–Staroverov–Scuseria (TPSS) and revised Tao–Perdew–Staroverov–Scuseria (RTPSS) and modified Becke-Johnson (MBJ). We calculated the densities of state (DOS) and band structuremore » with different XC potentials identified and compared them with the theoretical and experimental results reported in the literature. It was discovered that functional: LDA, PBEsol, AM05 and RTPSS provide the best results to calculate the lattice parameters (a) and bulk modulus (B{sub 0}); while for the cohesive energy (E{sub coh}), functional: AM05, RTPSS and PW91 are closer to the values obtained experimentally. The MBJ, Rtpss and AM05 values found for the band gap energy is slightly underestimated with those values reported experimentally.« less

  18. Hyperfine field, electric field gradient, quadrupole coupling constant and magnetic properties of challenging actinide digallide

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Yazdani-Kachoei, M.; Jalali-Asadabadi, S.; Ahmad, Iftikhar

    2017-12-01

    In this paper, we explore the structural and magnetic properties as well as electric field gradient (EFG), hyperfine field (HFF) and quadrupole coupling constant in actinide digallide AcGa2 (Ac = U, Np, Pu) using LDA, GGA, LDA+U, GGA+U and hybrid functional with Wu-Cohen Generalized Gradient approximation HF-WC. Relativistic effects of the electrons are considered by including spin-orbit coupling. The comparison of the calculated structural parameters and magnetic properties with the available experimental results confirms the consistency and hence effectiveness of our theoretical tools. The calculated magnetic moments demonstrate that UGa2 and NpGa2 are ferromagnetic while PuGa2 is antiferromagnetic in nature. The EFG of AcGa2 is reported for the first time. The HFF, EFG and quadrupole coupling constant in AcGa2 (Ac = U, Np, Pu) are mainly originated from f-f and p-p contributions of Ac atom and p-p contribution of Ga atom.

  19. X-ray photoelectron spectrum and electronic properties of a noncentrosymmetric chalcopyrite compound HgGa(2)S(4): LDA, GGA, and EV-GGA.

    PubMed

    Reshak, Ali Hussain; Khenata, R; Kityk, I V; Plucinski, K J; Auluck, S

    2009-04-30

    An all electron full potential linearized augmented plane wave method has been applied for a theoretical study of the band structure, density of states, and electron charge density of a noncentrosymmetric chalcopyrite compound HgGa(2)S(4) using three different approximations for the exchange correlation potential. Our calculations show that the valence band maximum (VBM) and conduction band minimum (CBM) are located at Gamma resulting in a direct energy gap of about 2.0, 2.2, and 2.8 eV for local density approximation (LDA), generalized gradient approximation (GGA), and Engel-Vosko (EVGGA) compared to the experimental value of 2.84 eV. We notice that EVGGA shows excellent agreement with the experimental data. This agreement is attributed to the fact that the Engel-Vosko GGA formalism optimizes the corresponding potential for band structure calculations. We make a detailed comparison of the density of states deduced from the X-ray photoelectron spectra with our calculations. We find that there is a strong covalent bond between the Hg and S atoms and Ga and S atoms. The Hg-Hg, Ga-Ga, and S-S bonds are found to be weaker than the Hg-S and Ga-S bonds showing that a covalent bond exists between Hg and S atoms and Ga and S atoms.

  20. DFT study on the crystal, electronic and magnetic structures of tantalum based double perovskite oxides Ba2MTaO6 (M = Cr, Mn, Fe) via GGA and GGA + U

    NASA Astrophysics Data System (ADS)

    Saad, H.-E.; Musa, M.; Elhag, Ahmed

    2018-06-01

    In this paper, we study the crystal, electronic and magnetic structures of three tantalum based double perovskite oxides Ba2MTaO6 (M = Cr, Mn, Fe). All calculations were performed using the full-potential linear augmented plane-wave (PF-LAPW) method based on the first-principles density functional theory (DFT). For the exchange correlation potential, the generalized gradient approximation (GGA) and GGA plus on-site Coulomb parameter (GGA + U) were employed. The structural optimization reveals that the three compounds are stable in cubic structure (space group Fm-3m; tilt system a0a0a0). The band structure, density of states (DOS), charge density and spin magnetic moments were calculated and analyzed in details. By analysis the band structure and DOS, Ba2MTaO6 exhibits an insulating behavior (M = Cr, Fe) and a half-metallic (HM) nature (M = Mn). GGA + U method yields quite accurate results for the band-gap (Eg) as compared with GGA. We found that all three compounds have stable ferromagnetic (FM) ground state within GGA and GGA + U calculations. The M3+ (3d) ions contribute the majority in the total spin magnetic-moments, while, the empty T5+ (5d) ions carry very small induced magnetic moment via the M (3d)-O (2p)-Ta (5d) hybridization.

  1. Ultra-sensitive pressure dependence of bandgap of rutile-GeO2 revealed by many body perturbation theory.

    PubMed

    Samanta, Atanu; Jain, Manish; Singh, Abhishek K

    2015-08-14

    The reported values of bandgap of rutile GeO2 calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (∼2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO2 using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Γ-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p) orbitals. Furthermore, the parabolic nature of first conduction band along X-Γ-M direction changes towards a linear dispersion with volume expansion.

  2. A study of accurate exchange-correlation functionals through adiabatic connection

    NASA Astrophysics Data System (ADS)

    Singh, Rabeet; Harbola, Manoj K.

    2017-10-01

    A systematic way of improving exchange-correlation energy functionals of density functional theory has been to make them satisfy more and more exact relations. Starting from the initial generalized gradient approximation (GGA) functionals, this has culminated into the recently proposed SCAN (strongly constrained and appropriately normed) functional that satisfies several known constraints and is appropriately normed. The ultimate test for the functionals developed is the accuracy of energy calculated by employing them. In this paper, we test these exchange-correlation functionals—the GGA hybrid functionals B3LYP and PBE0 and the meta-GGA functional SCAN—from a different perspective. We study how accurately these functionals reproduce the exchange-correlation energy when electron-electron interaction is scaled as αVee with α varying between 0 and 1. Our study reveals interesting comparison between these functionals and the associated difference Tc between the interacting and the non-interacting kinetic energy for the same density.

  3. Effect of on-site Coulomb interaction on electronic and transport properties of 100% spin polarized CoMnVAs

    NASA Astrophysics Data System (ADS)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2017-08-01

    The structural, electronic, magnetic and transport properties of a new quaternary Heusler alloy CoMnVAs have been investigated by employing generalized gradient approximation (GGA), modified Becke-Johnson (mBJ) and GGA with Hubbard U correction (GGA + U). The alloy is energetically more stable in ferromagnetic Y1 type structure. Elastic parameters reveal high anisotropy and ductile nature of the material. CoMnVAs shows half-metallic ferromagnet character with 100% spin polarization at Fermi level with band gap of 0.55 eV in the minority spin state. The alloy also possesses high electrical conductivity and Seebeck coefficients with 15 μVK-1 at room temperature, achieving a figure of merit of 0.65 at high temperatures. The high degree of ductility, 100% spin polarization and large Seebeck coefficient, makes it an attractive candidate to be used in spin voltage generators and thermoelectric materials.

  4. The half-metallicity of Co2FeGe full Heusler alloy in (001) thin film: First principles study

    NASA Astrophysics Data System (ADS)

    Hyun, Jung-Min; Kim, Miyoung

    2018-01-01

    The electronic and magnetic properties of the Co2FeGe full Heusler alloy in (001) thin film are investigated using the first-principles electronic structure calculations within the density functional theory. We employ various exchange correlation functionals including the local density approximation (LDA), the generalized gradient approximation (GGA), and the additional + U corrections for strong on-site Coulomb interaction of transition metal 3d states, aiming to examine the correlation effect on the electronic structures which determine the spin gap and thus the half-metallicity. Our results reveal that the Co2FeGe thin film is metallic in both LDA and GGA, while the + U correction opens up the spin gap for spin minority channel in GGA+ U but not in LDA+U in contrast to its bulk alloy which is predicted to be half-metallic in both LDA+ U and GGA+ U approaches with total spin magnetic moment of 6 μ B . It is found that the surface states developed around the Fermi level and the enhanced 3d e g - t 2 g band splitting for the spin minority channel due to the correlation effect play critical roles to determine the emergence of the half-metallicity.

  5. Spin-polarized structural, elastic, electronic and magnetic properties of half-metallic ferromagnetism in V-doped ZnSe

    NASA Astrophysics Data System (ADS)

    Monir, M. El Amine.; Baltache, H.; Murtaza, G.; Khenata, R.; Ahmed, Waleed K.; Bouhemadou, A.; Omran, S. Bin; Seddik, T.

    2015-01-01

    Based on first principles spin-polarized density functional theory, the structural, elastic electronic and magnetic properties of Zn1-xVxSe (for x=0.25, 0.50, 0.75) in zinc blende structure have been studied. The investigation was done using the full-potential augmented plane wave method as implemented in WIEN2k code. The exchange-correlation potential was treated with the generalized gradient approximation PBE-GGA for the structural and elastic properties. Moreover, the PBE-GGA+U approximation (where U is the Hubbard correlation terms) is employed to treat the "d" electrons properly. A comparative study between the band structures, electronic structures, total and partial densities of states and local moments calculated within both GGA and GGA+U schemes is presented. The analysis of spin-polarized band structure and density of states shows the half-metallic ferromagnetic character and are also used to determine s(p)-d exchange constants N0α (conduction band) and N0β (valence band) due to Se(4p)-V(3d) hybridization. It has been clearly evidence that the magnetic moment of V is reduced from its free space change value of 3 μB and the minor atomic magnetic moment on Zn and Se are generated.

  6. First principle study of structural, electronic and fermi surface properties of aluminum praseodymium

    NASA Astrophysics Data System (ADS)

    Shugani, Mani; Aynyas, Mahendra; Sanyal, S. P.

    2018-05-01

    We present a structural, Electronic and Fermi surface properties of Aluminum Praseodymium (AlPr) using First-principles density functional calculation by using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The ground state properties along with electronic and Fermi surface properties are studied. It is found that AlPr is metallic and the bonding between Al and Pr is covalent.

  7. Thermodynamic properties of OsB under high temperature and high pressure

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Hua; Li, Zuo; Cheng, Yan; Bi, Yan; Cai, Ling-Cang

    2011-09-01

    The energy-volume curves of OsB have been obtained using the first-principles plane-wave ultrasoft-pseudopotential density functional theory (DFT) within the generalized gradient approximation (GGA) and local density approximation (LDA). Using the quasi-harmonic Debye model we first analyze the specific heat, the coefficients of thermal expansion as well as the thermodynamic Grüneisen parameter of OsB in a wide temperature range at high pressure. At temperature 300 K, the coefficients of thermal expansion αV by LDA and GGA calculations are 1.67×10 -5 1/K and 2.01×10 -5 1/K, respectively. The specific heat of OsB at constant pressure (volume) is also calculated. Meanwhile, we find that the Debye temperature of OsB increases monotonically with increasing pressure. The present study leads to a better understanding of how the OsB materials respond to pressure and temperature.

  8. Ultra-sensitive pressure dependence of bandgap of rutile-GeO{sub 2} revealed by many body perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samanta, Atanu; Singh, Abhishek K.; Jain, Manish

    2015-08-14

    The reported values of bandgap of rutile GeO{sub 2} calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (∼2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO{sub 2} using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Γ-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p)more » orbitals. Furthermore, the parabolic nature of first conduction band along X-Γ-M direction changes towards a linear dispersion with volume expansion.« less

  9. Electronic structure and properties of lanthanum

    NASA Astrophysics Data System (ADS)

    Nixon, Lane; Papaconstantopoulos, Dimitrios

    2008-03-01

    The total energy and electronic structure of lanthanum have been calculated in the bcc, fcc, hcp and dhcp structures for pressures up to 50 GPa. The full potential linearized-augmented-planewave method was used with both the local-density and general-gradient approximations. The correct phase ordering has been found, with lattice parameters and bulk moduli in good agreement with experimental data. The GGA method shows excellent agreement overall while the LDA results show larger discrepancies. The calculated strain energies for the fcc and bcc structures demonstrate the respective stable and unstable configurations at ambient conditions. The calculated superconductivity properties under pressure for the fcc structure are also found to agree well with measurements. Both LDA and GGA, with minor differences, reproduce well the experimental results for Tc.

  10. Stacking dependence of carrier transport properties in multilayered black phosphorous

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.

    2016-02-01

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  11. Density of states, optical and thermoelectric properties of perovskite vanadium fluorides Na3VF6

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.; Azam, Sikander

    2014-05-01

    The electronic structure, charge density and Fermi surface of Na3VF6 compound have been examined with the support of density functional theory (DFT). Using the full potential linear augmented plane wave method, we employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engel-Vosko GGA (EVGGA) to treat the exchange correlation potential to solve Kohn-Sham equations. The calculation show that Na3VF6 compound has metallic nature and the Fermi energy (EF) is assessed by overlapping of V-d state. The calculated density of states at the EF are about 18.655, 51.932 and 13.235 states/eV, and the bare linear low-temperature electronic specific heat coefficient (γ) is found to be 3.236 mJ/mol-K2, 9.008 mJ/mol-K2 and 2.295 mJ/mol-K2 for LDA, GGA and EVGGA, respectively. The Fermi surface is composed of two sheets. The chemical bonding of Na3VF6 compound is analyzed through the electronic charge density in the (1 1 0) crystallographic plane. The optical constants and thermal properties were also calculated and discussed.

  12. Ab initio study on rare-earth iron-pnictides RFeAsO (R = Pr, Nd, Sm, Gd) in low-temperature Cmma phase

    NASA Astrophysics Data System (ADS)

    Eryigit, Resul; Gurel, Tanju; Erturk, Esra; Lukoyanov, A. V.; Akcay, Guven; Anisimov, V. I.

    2014-03-01

    We present density functional theory calculations on iron-based pnictides RFeAsO (R = Pr, Nd, Sm, Gd). The calculations have been carried out using plane-waves and projector augmented wave (PAW) pseudopotential approach. Structural, magnetic and electronic properties are studied within generalized gradient approximation (GGA) and also within GGA+U in order to investigate the influence of electron correlation effects. Low-temperature Cmma structure is fully optimized by GGA considering both non-magnetic and magnetic cells. We have found that spin-polarized structure improves the agreement with experiments on equilibrium lattice parameters, particularly c lattice parameter and Fe-As bond-lengths. Electronic band structure, total density of states, and spin-dependent orbital-resolved density of states are also analyzed in the frameworks of GGA and GGA+U and discussed. For all materials, by including on-site Coulomb correction, rare earth 4f states move away from the Fermi level and the Fermi level features of the systems are found to be mostly defined by the 3d electron-electron correlations in Fe. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK Project No. TBAG-111T796) and the Russian Foundation for Basic Research (Project No. 12-02-91371-CT_a).

  13. Structural, electronic, and dynamical properties of liquid water by ab initio molecular dynamics based on SCAN functional within the canonical ensemble

    NASA Astrophysics Data System (ADS)

    Zheng, Lixin; Chen, Mohan; Sun, Zhaoru; Ko, Hsin-Yu; Santra, Biswajit; Dhuvad, Pratikkumar; Wu, Xifan

    2018-04-01

    We perform ab initio molecular dynamics (AIMD) simulation of liquid water in the canonical ensemble at ambient conditions using the strongly constrained and appropriately normed (SCAN) meta-generalized-gradient approximation (GGA) functional approximation and carry out systematic comparisons with the results obtained from the GGA-level Perdew-Burke-Ernzerhof (PBE) functional and Tkatchenko-Scheffler van der Waals (vdW) dispersion correction inclusive PBE functional. We analyze various properties of liquid water including radial distribution functions, oxygen-oxygen-oxygen triplet angular distribution, tetrahedrality, hydrogen bonds, diffusion coefficients, ring statistics, density of states, band gaps, and dipole moments. We find that the SCAN functional is generally more accurate than the other two functionals for liquid water by not only capturing the intermediate-range vdW interactions but also mitigating the overly strong hydrogen bonds prescribed in PBE simulations. We also compare the results of SCAN-based AIMD simulations in the canonical and isothermal-isobaric ensembles. Our results suggest that SCAN provides a reliable description for most structural, electronic, and dynamical properties in liquid water.

  14. Electronic properties of Fe3O4: LCAO calculations and Compton spectroscopy

    NASA Astrophysics Data System (ADS)

    Panwar, Kalpana; Tiwari, Shailja; Heda, N. L.

    2018-04-01

    We report the Compton profile (CP) measurements of Fe3O4 using 100 mCi241Am Compton spectrometer at momentum resolution of 0.55 a.u. The experimental CP has been compared with the linear combination of atomic orbitals (LCAO) data within density functional theory (DFT). The local density and generalized gradient approximation (LDA and GGA, respectively) have been used under the framework of DFT scheme. It is found that the DFT-GGA scheme gives the better agreement than to DFT-LDA. In addition, we have also computed the M ulliken's population (M P) and density of states (DOS) using the DFT scheme. M P data predicts the charge transfer from Fe to O atoms while DOS have confirmed the half metallic character of the compound.

  15. Structural, elastic and electronic properties of transition metal carbides ZnC, NbC and their ternary alloys ZnxNb1-xC

    NASA Astrophysics Data System (ADS)

    Zidi, Y.; Méçabih, S.; Abbar, B.; Amari, S.

    2018-02-01

    We have investigated the structural, electronic and elastic properties of transition-metal carbides ZnxNb1-xC alloys in the range of 0 ≤ x ≤ 1 using the density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) and GGA + U (where U is the Hubbard correlation terms) approach is used to perform the calculations presented here. The lattice parameters, the bulk modulus, its pressure derivative and the elastic constants were determined. We have obtained Young's modulus, shear modulus, Poisson's ratio, anisotropy factor by the aid of the calculated elastic constants. We discuss the total and partial densities of states and charge densities.

  16. Growth of carbon structured over Pd, Pt and Ni: A comparative DFT study

    NASA Astrophysics Data System (ADS)

    Quiroga, Matías Abel

    2013-03-01

    To elucidate the graphene-like structures mechanisms growth over the M(1 1 1) surface (M = Pd, Pt and Ni) we performed ab initio calculus in the frame of density functional theory with the exchange-correlation functional treated according to the Generalized Gradient Approximation (GGA). In order to avoid the problem that represent the complex interaction between the well formed graphene layer and the metallic surface, we recreate the carbon rings formation initial steps, by adding one by one carbon atoms over M(1 1 1) surface. With this strategy, the chemical bonding is always present until the graphene layer is well formed, in which case the GGA neglects van der Waals dispersive forces. We investigate the electronic properties by studying the band structure and the density of states.

  17. Ab initio molecular dynamics simulations of liquid water using high quality meta-GGA functionals

    DOE PAGES

    Ruiz Pestana, Luis; Mardirossian, Narbe; Head-Gordon, Martin; ...

    2017-02-27

    We have used ab initio molecular dynamics (AIMD) to characterize water properties using two meta-generalized gradient approximation (meta-GGA) functionals, M06-L-D3 and B97M-rV, and compared their performance against a standard GGA corrected for dispersion, revPBE-D3, at ambient conditions (298 K, and 1 g cm –3 or 1 atm). Simulations of the equilibrium density, radial distribution functions, self-diffusivity, the infrared spectrum, liquid dipole moments, and characterizations of the hydrogen bond network show that all three functionals have overcome the problem of the early AIMD simulations that erroneously found ambient water to be highly structured, but they differ substantially among themselves in agreementmore » with experiment on this range of water properties. We show directly using water cluster data up through the pentamer that revPBE-D3 benefits from a cancellation of its intrinsic functional error by running classical trajectories, whereas the meta-GGA functionals are demonstrably more accurate and would require the simulation of nuclear quantum effects to realize better agreement with all cluster and condensed phase properties.« less

  18. Electronic structure properties of UO2 as a Mott insulator

    NASA Astrophysics Data System (ADS)

    Sheykhi, Samira; Payami, Mahmoud

    2018-06-01

    In this work using the density functional theory (DFT), we have studied the structural, electronic and magnetic properties of uranium dioxide with antiferromagnetic 1k-, 2k-, and 3k-order structures. Ordinary approximations in DFT, such as the local density approximation (LDA) or generalized gradient approximation (GGA), usually predict incorrect metallic behaviors for this strongly correlated electron system. Using Hubbard term correction for f-electrons, LDA+U method, as well as using the screened Heyd-Scuseria-Ernzerhof (HSE) hybrid functional for the exchange-correlation (XC), we have obtained the correct ground-state behavior as an insulator, with band gaps in good agreement with experiment.

  19. The structural, electronic, magnetic, and mechanical properties of perovskite oxides PbM1/2Nb1/2O3 (M = Fe, Co and Ni)

    NASA Astrophysics Data System (ADS)

    Erkisi, A.; Surucu, G.; Deligoz, E.

    2018-03-01

    In this study, the structural, electronic, magnetic, and mechanical properties of perovskite oxides PbM1/2Nb1/2O3 (M = Fe, Co and Ni) are investigated. The systems are treated in ferromagnetic order. The calculations are carried out in the framework of density functional theory (DFT) within the plane-wave pseudopotential method. The exchange-correlation potential is approximated by generalized-gradient spin approach (GGA). The intra-atomic Coulomb repulsion is also taken into account in calculations (GGA + U). We have considered two generalized-gradient spin approximation functionals, which are Perdew-Burke-Ernzerhof (PBE) and PBE for solids (PBEsol) for structural parameter calculations when it included Hubbard potential. Although the spin-polarized electronic band structures of PbCo1/2Nb1/2O3 and PbNi1/2Nb1/2O3 systems exhibit metallic property in ferromagnetic phase, a bandgap is observed in spin-down states of PbFe1/2Nb1/2O3 resulting in half-metallic behavior. The main reason for this behavior is attributed to the hybridization between d-states of transition metal atoms and p-states of oxygen atoms. The stability mechanically and the calculated mechanical properties by using elastic constants show that these compounds are mechanically stable in tetragonal phase and have anisotropic character mechanically.

  20. Ab-initio calculation for cation vacancy formation energy in anti-fluorite structure

    NASA Astrophysics Data System (ADS)

    Saleel, V. P. Saleel Ahammad; Chitra, D.; Veluraja, K.; Eithiraj, R. D.

    2018-04-01

    Lithium oxide (Li2O) has been suggested as a suitable breeder blanket material for fusion reactors. Li+ vacancies are created by neutron irradiation, forming bulk defect complex whose extra character is experimentally unclear. We present a theoretical study of Li2O using density functional theory (DFT) with a plane-wave basis set. The generalized gradient approximation (GGA) and local-density approximation (LDA) were used for exchange and correlation. Here we address the total energy for defect free, cation defect, cation vacancy and vacancy formation energy in Li2O crystal in anti-fluorite structure.

  1. Derivative discontinuity and exchange-correlation potential of meta-GGAs in density-functional theory.

    PubMed

    Eich, F G; Hellgren, Maria

    2014-12-14

    We investigate fundamental properties of meta-generalized-gradient approximations (meta-GGAs) to the exchange-correlation energy functional, which have an implicit density dependence via the Kohn-Sham kinetic-energy density. To this purpose, we construct the most simple meta-GGA by expressing the local exchange-correlation energy per particle as a function of a fictitious density, which is obtained by inverting the Thomas-Fermi kinetic-energy functional. This simple functional considerably improves the total energy of atoms as compared to the standard local density approximation. The corresponding exchange-correlation potentials are then determined exactly through a solution of the optimized effective potential equation. These potentials support an additional bound state and exhibit a derivative discontinuity at integer particle numbers. We further demonstrate that through the kinetic-energy density any meta-GGA incorporates a derivative discontinuity. However, we also find that for commonly used meta-GGAs the discontinuity is largely underestimated and in some cases even negative.

  2. Band structure calculations of CuAlO2, CuGaO2, CuInO2, and CuCrO2 by screened exchange

    NASA Astrophysics Data System (ADS)

    Gillen, Roland; Robertson, John

    2011-07-01

    We report density functional theory band structure calculations on the transparent conducting oxides CuAlO2, CuGaO2, CuInO2, and CuCrO2. The use of the hybrid functional screened-exchange local density approximation (sX-LDA) leads to considerably improved electronic properties compared to standard LDA and generalized gradient approximation (GGA) approaches. We show that the resulting electronic band gaps compare well with experimental values and previous quasiparticle calculations, and show the correct trends with respect to the atomic number of the cation (Al, Ga, In). The resulting energetic depths of Cu d and O p levels and the valence-band widths are considerable improvements compared to LDA and GGA and are in good agreement with available x-ray photoelectron spectroscopy data. Lastly, we show the calculated imaginary part of the dielectric function for all four systems.

  3. Derivative discontinuity and exchange-correlation potential of meta-GGAs in density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eich, F. G., E-mail: eichf@missouri.edu; Hellgren, Maria

    2014-12-14

    We investigate fundamental properties of meta-generalized-gradient approximations (meta-GGAs) to the exchange-correlation energy functional, which have an implicit density dependence via the Kohn-Sham kinetic-energy density. To this purpose, we construct the most simple meta-GGA by expressing the local exchange-correlation energy per particle as a function of a fictitious density, which is obtained by inverting the Thomas-Fermi kinetic-energy functional. This simple functional considerably improves the total energy of atoms as compared to the standard local density approximation. The corresponding exchange-correlation potentials are then determined exactly through a solution of the optimized effective potential equation. These potentials support an additional bound state andmore » exhibit a derivative discontinuity at integer particle numbers. We further demonstrate that through the kinetic-energy density any meta-GGA incorporates a derivative discontinuity. However, we also find that for commonly used meta-GGAs the discontinuity is largely underestimated and in some cases even negative.« less

  4. Semilocal density functional obeying a strongly tightened bound for exchange

    PubMed Central

    Sun, Jianwei; Perdew, John P.; Ruzsinszky, Adrienn

    2015-01-01

    Because of its useful accuracy and efficiency, density functional theory (DFT) is one of the most widely used electronic structure theories in physics, materials science, and chemistry. Only the exchange-correlation energy is unknown, and needs to be approximated in practice. Exact constraints provide useful information about this functional. The local spin-density approximation (LSDA) was the first constraint-based density functional. The Lieb–Oxford lower bound on the exchange-correlation energy for any density is another constraint that plays an important role in the development of generalized gradient approximations (GGAs) and meta-GGAs. Recently, a strongly and optimally tightened lower bound on the exchange energy was proved for one- and two-electron densities, and conjectured for all densities. In this article, we present a realistic “meta-GGA made very simple” (MGGA-MVS) for exchange that respects this optimal bound, which no previous beyond-LSDA approximation satisfies. This constraint might have been expected to worsen predicted thermochemical properties, but in fact they are improved over those of the Perdew–Burke–Ernzerhof GGA, which has nearly the same correlation part. MVS exchange is however radically different from that of other GGAs and meta-GGAs. Its exchange enhancement factor has a very strong dependence upon the orbital kinetic energy density, which permits accurate energies even with the drastically tightened bound. When this nonempirical MVS meta-GGA is hybridized with 25% of exact exchange, the resulting global hybrid gives excellent predictions for atomization energies, reaction barriers, and weak interactions of molecules. PMID:25561554

  5. Semilocal density functional obeying a strongly tightened bound for exchange.

    PubMed

    Sun, Jianwei; Perdew, John P; Ruzsinszky, Adrienn

    2015-01-20

    Because of its useful accuracy and efficiency, density functional theory (DFT) is one of the most widely used electronic structure theories in physics, materials science, and chemistry. Only the exchange-correlation energy is unknown, and needs to be approximated in practice. Exact constraints provide useful information about this functional. The local spin-density approximation (LSDA) was the first constraint-based density functional. The Lieb-Oxford lower bound on the exchange-correlation energy for any density is another constraint that plays an important role in the development of generalized gradient approximations (GGAs) and meta-GGAs. Recently, a strongly and optimally tightened lower bound on the exchange energy was proved for one- and two-electron densities, and conjectured for all densities. In this article, we present a realistic "meta-GGA made very simple" (MGGA-MVS) for exchange that respects this optimal bound, which no previous beyond-LSDA approximation satisfies. This constraint might have been expected to worsen predicted thermochemical properties, but in fact they are improved over those of the Perdew-Burke-Ernzerhof GGA, which has nearly the same correlation part. MVS exchange is however radically different from that of other GGAs and meta-GGAs. Its exchange enhancement factor has a very strong dependence upon the orbital kinetic energy density, which permits accurate energies even with the drastically tightened bound. When this nonempirical MVS meta-GGA is hybridized with 25% of exact exchange, the resulting global hybrid gives excellent predictions for atomization energies, reaction barriers, and weak interactions of molecules.

  6. Jacob's Ladder as Sketched by Escher: Assessing the Performance of Broadly Used Density Functionals on Transition Metal Surface Properties.

    PubMed

    Vega, Lorena; Ruvireta, Judit; Viñes, Francesc; Illas, Francesc

    2018-01-09

    The present work surveys the performance of various widely used density functional theory exchange-correlation (xc) functionals in describing observable surface properties of a total of 27 transition metals with face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. A total of 81 low Miller index surfaces were considered employing slab models. Exemplary xc functionals within the three first rungs of Jacob's ladder were considered, including the Vosko-Wilk-Nusair xc functional within the local density approximation, the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA), and the Tao-Perdew-Staroverov-Scuseria functional as a meta-GGA functional. Hybrids were excluded in the survey because they are known to fail in properly describing metallic systems. In addition, two variants of PBE were considered, PBE adapted for solids (PBEsol) and revised PBE (RPBE), aimed at improving adsorption energies. Interlayer atomic distances, surface energies, and surface work functions were chosen as the scrutinized properties. A comparison with available experimental data, including single-crystal and polycrystalline values, shows that no xc functional is best at describing all of the surface properties. However, in statistical mean terms the PBEsol xc functional is advised, while PBE is recommended when considering both bulk and surface properties. On the basis of the present results, a discussion of adapting GGA functionals to the treatment of metallic surfaces in an alternative way to meta-GGA or hybrids is provided.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, U. P.; Nayak, V.

    Quantum mechanical first principle calculations have been performed to study the electronic and structural properties of TiN and TiAs in zinc blende (ZB) and rock salt (RS) structures. The full-potential linearized augmented plane wave (FP-LAPW) method has been used within the framework of density functional theory (DFT). The exchange correlation functional has been solved employing generalized gradient approximation (GGA). Our predicted results for lattice constants are in good agreement with the earlier findings. The electronic band structures of TiX are metallic in both the phases.

  8. Semiclassical neutral atom as a reference system in density functional theory.

    PubMed

    Constantin, Lucian A; Fabiano, E; Laricchia, S; Della Sala, F

    2011-05-06

    We use the asymptotic expansions of the semiclassical neutral atom as a reference system in density functional theory to construct accurate generalized gradient approximations (GGAs) for the exchange-correlation and kinetic energies without any empiricism. These asymptotic functionals are among the most accurate GGAs for molecular systems, perform well for solid state, and overcome current GGA state of the art in frozen density embedding calculations. Our results also provide evidence for the conjointness conjecture between exchange and kinetic energies of atomic systems.

  9. Structural, electronic, and elastic properties of CuFeS2: first-principles study

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Gao, Xiang; Cheng, Yan; Chen, Xiangrong; Cai, Lingcang

    2015-03-01

    The structural, electronic, and elastic properties of CuFeS2 have been investigated by using the generalized gradient approximation (GGA), GGA + U (on-site Coulomb repulsion energy), the local density approximation (LDA), and the LDA + U approach in the frame of density functional theory. It is shown that when the GGA + U formalism is selected with a U value of 3 eV for the 3d state of Fe, the calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA + U calculations indicate that CuFeS2 is a semiconductor with a band gap of 0.552 eV and with a magnetic moment of 3.64 µB per Fe atom, which are well consistent with the experimental results. Combined with the density of states, the band structure characteristics of CuFeS2 have been analyzed and their origins have been specified, which reveals a hybridization existing between Fe-3d, Cu-3s, and S-3p, respectively. The charge and Mulliken population analyses indicate that CuFeS2 is a covalent crystal. Moreover, the calculated elastic constants prove that CuFeS2 is mechanically stable but anisotropic. The bulk modulus obtained from elastic constants is 87.1 GPa, which agrees well with the experimental value of 91 ± 15 GPa and better than the theoretical bulk modulus 74 GPa obtained from GGA method by Lazewski et al. The obtained shear modulus and Debye temperature are 21.0 GPa and 287 K, respectively, and the latter accords well with the available experimental value. It is expected that our work can provide useful information to further investigate CuFeS2 from both the experimental and theoretical sides.

  10. Electronic properties of RDX and HMX: Compton scattering experiment and first-principles calculation.

    PubMed

    Ahuja, B L; Jain, Pradeep; Sahariya, Jagrati; Heda, N L; Soni, Pramod

    2013-07-11

    The first-ever electron momentum density (EMD) measurements of explosive materials, namely, RDX (1,3,5-trinitro-1,3,5-triazacyclohexane, (CH2-N-NO2)3) and HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane, (CH2-N-NO2)4), have been reported using a 740 GBq (137)Cs Compton spectrometer. Experimental Compton profiles (CPs) are compared with the EMDs derived from linear combination of atomic orbitals with density functional theory. It is found that the CPs deduced from generalized gradient approximation (GGA) with Wu-Cohen exchange energies give a better agreement with the corresponding experimental profiles than those from local density approximation and other schemes of GGA. Further, Mulliken population, energy bands, partial and total density of states, and band gap have also been reported using GGA calculations. Present ground state calculations unambiguously show large band gap semiconductor nature of both RDX and HMX. A similar type of bonding in these materials is uniquely established using Compton data and density of states. It is also outstandingly consistent with the Mulliken population, which predicts almost equal amount of charge transfer (0.84 and 0.83 e(-)) from H1 + H2 + N2 to C1 + N1 + O1 + O2 in both the explosives.

  11. Half-metallic antiferromagnetism in double perovskite BiPbCrCuO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, Ke-Chuan; Wang, Y. K., E-mail: kant@ntnu.edu.tw

    2015-05-07

    The electronic structure and magnetic properties of BiPbCrCuO{sub 6} double perovskite are investigated based on first-principles density functional calculations with generalized gradient approximation (GGA) and GGA incorporated with Coulomb correlation interaction U (GGA + U). The results suggest the half-metallic (HM) and antiferromagnetic (AFM) properties of BiPbCrCuO{sub 6} double perovskite. The HM-AFM property of the double perovskite is caused by the double-exchange mechanism between neighboring Cr{sup 5+}(t{sub 2g}{sup 1}↓) and Cu{sup 2+}(t{sub 2g}{sup 3}↑t{sub 2g}{sup 3}↓e{sub g}{sup 2}↑e{sub g}↓) via the intermediate O{sup 2−}(2s{sup 2}2p{sup 6}) ion.

  12. Ab-initio calculations of structural, electronic, and optical properties of Zn3(VO4)2

    NASA Astrophysics Data System (ADS)

    Ahmed, Nisar; Mukhtar, S.; Gao, Wei; Zafar Ilyas, Syed

    2018-03-01

    The structural, electronic, and optical properties of Zn3(VO4)2 are investigated using full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). Various approaches are adopted to treat the exchange and correlation potential energy such as generalized gradient approximation (GGA), GGA+U, and the Tran–Blaha modified Becke–Johnson (TB-mBJ) potential. The calculated band gap of 3.424 eV by TB-mBJ is found to be close to the experimental result (3.3 eV). The optical anisotropy is analyzed through optical constants, such as dielectric function and absorption coefficient along parallel and perpendicular crystal orientations. The absorption coefficient reveals high absorption (1.5× {10}6 {cm}}-1) of photons in the ultraviolet region.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz Pestana, Luis; Mardirossian, Narbe; Head-Gordon, Martin

    We have used ab initio molecular dynamics (AIMD) to characterize water properties using two meta-generalized gradient approximation (meta-GGA) functionals, M06-L-D3 and B97M-rV, and compared their performance against a standard GGA corrected for dispersion, revPBE-D3, at ambient conditions (298 K, and 1 g cm –3 or 1 atm). Simulations of the equilibrium density, radial distribution functions, self-diffusivity, the infrared spectrum, liquid dipole moments, and characterizations of the hydrogen bond network show that all three functionals have overcome the problem of the early AIMD simulations that erroneously found ambient water to be highly structured, but they differ substantially among themselves in agreementmore » with experiment on this range of water properties. We show directly using water cluster data up through the pentamer that revPBE-D3 benefits from a cancellation of its intrinsic functional error by running classical trajectories, whereas the meta-GGA functionals are demonstrably more accurate and would require the simulation of nuclear quantum effects to realize better agreement with all cluster and condensed phase properties.« less

  14. Engel-Vosko GGA calculations of the structural, electronic and optical properties of LiYO2

    NASA Astrophysics Data System (ADS)

    Muhammad, Nisar; Khan, Afzal; Haidar Khan, Shah; Sajjaj Siraj, Muhammad; Shah, Syed Sarmad Ali; Murtaza, Ghulam

    2017-09-01

    Structural, electronic and optical properties of lithium yttrium oxide (LiYO2) are investigated using density functional theory (DFT). These calculations are based on full potential linearized augmented plane wave (FP-LAPW) method implemented by WIEN2k. The generalized gradient approximation (GGA) is used as an exchange correlation potential with Perdew-Burk-Ernzerhof (PBE) and Engel-Vosko (EV) as exchange correlation functional. The structural properties are calculated with PBE-GGA as it gives the equilibrium lattice constants very close to the experimental values. While, the band structure and optical properties are calculated with EV-GGA obtain much closer results to their experimental values. Our calculations confirm LiYO2 as large indirect band gap semiconductor having band gap of 5.23 eV exhibiting the characteristics of ultrawide band gap materials showing the properties like higher critical breakdown field, higher temperature operation and higher radiation tolerance. In this article, we report the density of states (DOS) in terms of contribution from s, p, and d-states of the constituent atoms, the band structure, the electronic structure, and the frequency-dependent optical properties of LiYO2. The optical properties presented in this article reveal LiYO2 a suitable candidate for the field of optoelectronic and optical devices.

  15. Vibrational mode frequencies of H2S and H2O adsorbed on Ge(0 0 1)-(2 × 1) surfaces

    NASA Astrophysics Data System (ADS)

    Hartnett, M.; Fahy, S.

    2015-02-01

    The equilibrium geometry and vibrational modes of H2S and H2O-terminated Ge(0 0 1)-(2 × 1) surfaces are calculated in a supercell approach using first-principles density functional theory in the local density (LDA), generalized gradient (GGA) approximations and van der Waals (vdW) interactions. Mode frequencies are found using the frozen phonon method. For the H2S-passivated surface, the calculated frequencies in LDA (GGA) are 2429 cm-1 (2490) for the Hsbnd S stretch mode, 712 cm-1 (706) for the Hsbnd S bond bending mode, 377 cm-1 (36) for the Gesbnd S stretch mode and 328 cm-1 (337) for Hsbnd S wag mode. Frequencies for the H2O passivated surface are 3590 cm-1 (3600) for the Hsbnd O stretch mode, 921 cm-1 (947) for the bending mode, 609 cm-1 (559) for the Gesbnd O stretch, 1995 cm-1 (1991) for the Gesbnd H stretch mode, 498 cm-1 (478) for the Gesbnd H bending mode and 342 cm-1 (336) for the Hsbnd O wag mode. The differences between the functionals including vdW terms and the LDA or GGA are less than the differences between LDA and GGA for the vibrational mode frequencies.

  16. Exploring the limit of accuracy for density functionals based on the generalized gradient approximation: Local, global hybrid, and range-separated hybrid functionals with and without dispersion corrections

    DOE PAGES

    Mardirossian, Narbe; Head-Gordon, Martin

    2014-03-25

    The limit of accuracy for semi-empirical generalized gradient approximation (GGA) density functionals is explored in this paper by parameterizing a variety of local, global hybrid, and range-separated hybrid functionals. The training methodology employed differs from conventional approaches in 2 main ways: (1) Instead of uniformly truncating the exchange, same-spin correlation, and opposite-spin correlation functional inhomogeneity correction factors, all possible fits up to fourth order are considered, and (2) Instead of selecting the optimal functionals based solely on their training set performance, the fits are validated on an independent test set and ranked based on their overall performance on the trainingmore » and test sets. The 3 different methods of accounting for exchange are trained both with and without dispersion corrections (DFT-D2 and VV10), resulting in a total of 491 508 candidate functionals. For each of the 9 functional classes considered, the results illustrate the trade-off between improved training set performance and diminished transferability. Since all 491 508 functionals are uniformly trained and tested, this methodology allows the relative strengths of each type of functional to be consistently compared and contrasted. Finally, the range-separated hybrid GGA functional paired with the VV10 nonlocal correlation functional emerges as the most accurate form for the present training and test sets, which span thermochemical energy differences, reaction barriers, and intermolecular interactions involving lighter main group elements.« less

  17. First-principles calculations for elastic properties of OsB 2 under pressure

    NASA Astrophysics Data System (ADS)

    Yang, Jun-Wei; Chen, Xiang-Rong; Luo, Fen; Ji, Guang-Fu

    2009-11-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daga, Avinash; Sharma, Smita

    First principle study of band structure calculations in the local density approximations (LDA) as well as in the generalized gradient approximations (GGA) have been used to determine the electronic structure of SrMO{sub 3} where M stands for Ti, Zr and Mo. Occurrence of band gap proves SrTiO{sub 3} and SrZrO{sub 3} to be insulating. A small band gap is observed in SrMoO{sub 3} perovskite signifies it to be metallic. Band structures are found to compare well with the available data in the literature showing the relevance of this approach. ABINIT computer code has been used to carry out all themore » calculations.« less

  19. Components of the Bond Energy in Polar Diatomic Molecules, Radicals, and Ions Formed by Group-1 and Group-2 Metal Atoms.

    PubMed

    Yu, Haoyu; Truhlar, Donald G

    2015-07-14

    Although many transition metal complexes are known to have high multireference character, the multireference character of main-group closed-shell singlet diatomic molecules like BeF, CaO, and MgO has been less studied. However, many group-1 and group-2 diatomic molecules do have multireference character, and they provide informative systems for studying multireference character because they are simpler than transition metal compounds. The goal of the present work is to understand these multireference systems better so that, ultimately, we can apply what we learn to more complicated multireference systems and to the design of new exchange-correlation functionals for treating multireference systems more adequately. Fourteen main-group diatomic molecules and one triatomic molecule (including radicals, cations, and anions, as well as neutral closed-shell species) have been studied for this article. Eight of these molecules contain a group-1 element, and six contain a group-2 element. Seven of these molecules are multireference systems, and eight of them are single-reference systems. Fifty-three exchange-correlation functionals of 11 types [local spin-density approximation (LSDA), generalized gradient approximation (GGA), nonseparable gradient approximation (NGA), global-hybrid GGA, meta-GGA, meta-NGA, global-hybrid meta GGA, range-separated hybrid GGA, range-separated hybrid meta-GGA, range-separated hybrid meta-NGA, and DFT augmented with molecular mechanics damped dispersion (DFT-D)] and the Hartree-Fock method have been applied to calculate the bond distance, bond dissociation energy (BDE), and dipole moment of these molecules. All of the calculations are converged to a stable solution by allowing the symmetry of the Slater determinant to be broken. A reliable functional should not only predict an accurate BDE but also predict accurate components of the BDE, so each bond dissociation energy has been decomposed into ionization potential (IP) of the electropositive element, electron affinity of the electronegative bonding partner (EA), atomic excitation energy (EE) to prepare the valence states of the interacting partners, and interaction energy (IE) of the valence-prepared states. Adding Hartree-Fock exchange helps to obtain better results for atomic excitation energy, and this leads to improvements in getting the right answer for the right reason. The following functionals are singled out for reasonably good performance on all three of bond distance, BDE, and dipole moment: B97-1, B97-3, MPW1B95, M05, M06, M06-2X, M08-SO, N12-SX, O3LYP, TPSS, τ-HCTHhyb, and GAM; all but two (TPSS and GAM) of these functionals are hybrid functionals.

  20. Mechanical, electronic and thermodynamic properties of full Heusler compounds Fe2VX(X = Al, Ga)

    NASA Astrophysics Data System (ADS)

    Khalfa, M.; Khachai, H.; Chiker, F.; Baki, N.; Bougherara, K.; Yakoubi, A.; Murtaza, G.; Harmel, M.; Abu-Jafar, M. S.; Omran, S. Bin; Khenata, R.

    2015-11-01

    The electronic structure, mechanical and thermodynamic properties of Fe2VX, (with X = Al and Ga), have been studied self consistently by employing state-of-the-art full-potential linearized approach of augmented plane wave plus local orbitals (FP-LAPW + lo) method. The exchange-correlation potential is treated with the local density and generalized gradient approximations (LDA and GGA). Our predicted ground state properties such as lattice constants, bulk modulus and elastic constants appear more accurate when we employed the GGA rather than the LDA, and these results are in very good agreement with the available experimental and theoretical data. Further, thermodynamic properties of Fe2VAl and Fe2VGa are predicted with pressure and temperature in the ranges of 0-40 GPa and 0-1500 K using the quasi-harmonic Debye model. We have obtained successfully the variations of the heat capacities, primitive cell volume and volume expansion coefficient.

  1. Electronic and Magnetic Properties of Cd-Doped PuRhIn5

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Xin

    Since their discovery nearly a decade ago, plutonium-based superconductors have attracted considerable interest, which is now heightened by the latest discovery of superconductivity in other Pu-115 compounds. Within the generalized gradient approximation (GGA) of density functional theory and its combination with the dynamical mean-field theory, we present a study of electronic structure in the paramagnetic state of Cd-doped PuRhIn5. A doping-induced delocalization-localization transition is identified. In addition, the spin-polarized GGA-based total energy calculations are performed to determine the magnetic exchange interactions in the pristine PuRhIn5. The implication to the nature of quantum criticality is discussed. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at LANL under Contract No. DE-AC52-06NA25396, and was supported by the LANL ASC Program.

  2. Structural and opto-electronic properties of 2D AlSb monolayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Deobrat, E-mail: deobratsingh9@gmail.com; Sonvane, Yogesh; Gupta, Sanjeev K.

    2016-05-23

    We have investigated dielectric function related optical properties such as refractive index, absorption coefficient of two-dimensional hexagonal system of aluminum antimony (AlSb). We have also find structural and electronic properties of AlSb which show direct/indirect band gap with planar structure, employing the density functional theory using the generalized gradient approximation (GGA) given by Perdew-Burke-Ernzerhof (PBE) functional for exchange-correlation potential. The refractive index n(ω) increases with frequency in the near infrared region but in visible region n(ω) increasing after decrease.

  3. Insight into the optoelectronic and thermoelectric properties of Ca-based Zintl phase CaCd2X2 (X = P, As) from first principles calculation

    NASA Astrophysics Data System (ADS)

    Belfarh, T.; Batouche, M.; Seddik, T.; Uğur, G.; Omran, S. Bin; Bouhemadou, A.; Sandeep; Wang, Xiaotian; Sun, Xiao-Wei; Khenata, R.

    2018-06-01

    We have studied the structural, optical, electronic and thermoelectric properties of the CaCd2X2 (X = P, As) compounds by using the full-potential augmented plane wave plus local orbitals method (FP-APW + lo). The exchange-correlation potential was treated using both the gradient generalized approximation (WC-GGA) and local density approximation (LDA). The estimated structural parameters, including the lattice parameters and internal coordinates agree well with the available experimental data. Our computed band structure shows that both studied compounds are semiconductors, with direct band gaps (Γ-Γ) of approximately 1.78 eV and 1.2 eV for CaCd2P2 and CaCd2As2, respectively, using GGA-TB-mBJ approach. The calculated optical spectra reveal a strong response of these materials in the energy range between the visible light and extreme UV regions, making them a good candidate for optoelectronic devices. Thermoelectric parameters, such as thermal conductivity, electrical conductivity, Seebeck coefficient, power factor and figure of merit were calculated. We note that both the CaCd2P2 and CaCd2As2 compounds show promising thermoelectric properties.

  4. First-principles study of the structural, electronic and thermal properties of CaLiF3

    NASA Astrophysics Data System (ADS)

    Chouit, N.; Amara Korba, S.; Slimani, M.; Meradji, H.; Ghemid, S.; Khenata, R.

    2013-09-01

    Density functional theory calculations have been performed to study the structural, electronic and optical properties of CaLiF3 cubic fluoroperovskite. Our calculations were carried out by means of the full-potential linearized augmented plane-wave method. The exchange-correlation potential is treated by the local density approximation and the generalized gradient approximation (GGA) (Perdew, Burke and Ernzerhof). Moreover, the alternative form of GGA proposed by Engel and Vosko is also used for band structure calculations. The calculated total energy versus volume allows us to obtain structural properties such as the lattice constant (a0), bulk modulus (B0) and pressure derivative of the bulk modulus (B'0 ). Band structure, density of states and band gap pressure coefficients are also given. Our calculations show that CaLiF3 has an indirect band gap (R-Γ). Following the quasi-harmonic Debye model, in which the phononic effects are considered, the temperature and pressure effects on the lattice constant, bulk modulus, thermal expansion coefficient, Debye temperature and heat capacities are calculated.

  5. Investigation of half-metallic ferromagnetism in Heusler compounds Co2VZ (Z = Ga, Ge, As, Se)

    NASA Astrophysics Data System (ADS)

    Han, Jiajia; Wang, Zhengwei; Xu, Weiwei; Wang, Cuiping; Liu, Xingjun

    2017-11-01

    The electronic structures and magnetic properties of 3d transition metal-based full Heusler compounds Co2VZ (Z = Ga, Ge, As, Se) are investigated using the projector augmented wave (PAW) pseudopotential method. By considering the strong localization of Co 3d-states and V 3d-states at the Fermi level, these Co2VZ (Z = Ga, Ge, As, Se) compounds were treated in the framework of the generalized gradient approximation (GGA)+U method, and the results from the conventional GGA method are presented for comparison. The results that were obtained from the density of states with the GGA+U and GGA methods show that the Co2VGa compound is a half-metallic ferromagnet. For the Co2VGe and Co2VAs compounds, the GGA+U method predicts that these two compounds are half-metallic ferromagnetic by shifting the Fermi level to a lower value with respect to the gap in the minority states, when compared to the conventional GGA method. The energy gaps are determined to be 0.283 eV and 0.425 eV, respectively. However, these results show that the density of states of the Co2VSe compound has a metallic character, although the 3d states were corrected when using the GGA+U method. We found that the characteristic of half-metallic ferromagnetism is attributed to the interaction between the V 3d-states other than Co 3d-states. The calculated total magnetic moments are 2.046 μB, 3.054 μB and 4.012 μB respectively for the Co2VZ (Z = Ga, Ge, As) compounds with the GGA+U method. The relationship between total spin magnetic moment per formula unit and total number of valence electrons of these Heusler compounds is in agreement with the Slater-Pauling rule.

  6. Influence of xc functional on thermal-elastic properties of Ceria: A DFT-based Debye-Grüneisen model approach

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Hwan; Tak, Youngjoo; Lee, Taehun; Soon, Aloysius

    Ceria (CeO2-x) is widely studied as a choice electrolyte material for intermediate-temperature (~ 800 K) solid oxide fuel cells. At this temperature, maintaining its chemical stability and thermal-mechanical integrity of this oxide are of utmost importance. To understand their thermal-elastic properties, we firstly test the influence of various approximations to the density-functional theory (DFT) xc functionals on specific thermal-elastic properties of both CeO2 and Ce2O3. Namely, we consider the local-density approximation (LDA), the generalized gradient approximation (GGA-PBE) with and without additional Hubbard U as applied to the 4 f electron of Ce, as well as the recently popularized hybrid functional due to Heyd-Scuseria-Ernzehof (HSE06). Next, we then couple this to a volume-dependent Debye-Grüneisen model to determine the thermodynamic quantities of ceria at arbitrary temperatures. We find an explicit description of the strong correlation (e.g. via the DFT + U and hybrid functional approach) is necessary to have a good agreement with experimental values, in contrast to the mean-field treatment in standard xc approximations (such as LDA or GGA-PBE). We acknowledge support from Samsung Research Funding Center of Samsung Electronics (SRFC-MA1501-03).

  7. Modified Fourth-Order Kinetic Energy Gradient Expansion with Hartree Potential-Dependent Coefficients.

    PubMed

    Constantin, Lucian A; Fabiano, Eduardo; Della Sala, Fabio

    2017-09-12

    Using the semiclassical neutral atom theory, we developed a modified fourth-order kinetic energy (KE) gradient expansion (GE4m) that keeps unchanged all the linear-response terms of the uniform electron gas and gives a significant improvement with respect to the known semilocal functionals for both large atoms and jellium surfaces. On the other hand, GE4m is not accurate for light atoms; thus, we modified the GE4m coefficients making them dependent on a novel ingredient, the reduced Hartree potential, recently introduced in the Journal of Chemical Physics 2016, 145, 084110, in the context of exchange functionals. The resulting KE gradient expansion functional, named uGE4m, belongs to the novel class of u-meta-generalized-gradient-approximations (uMGGA) whose members depend on the conventional ingredients (i.e., the reduced gradient and Laplacian of the density) as well as on the reduced Hartree potential. To test uGE4m, we defined an appropriate benchmark (including total KE and KE differences for atoms, molecules and jellium clusters) for gradient expansion functionals, that is, including only those systems which are mainly described by a slowly varying density regime. While most of the GGA and meta-GGA KE functionals (we tested 18 of them) are accurate for some properties and inaccurate for others, uGE4m shows a consistently good performance for all the properties considered. This represents a qualitative boost in the KE functional development and highlights the importance of the reduced Hartree potential for the construction of next-generation KE functionals.

  8. Why is MP2-Water "Cooler" and "Denser" than DFT-Water?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willow, Soohaeng Y.; Zeng, Xiao Cheng; Xantheas, Sotiris S.

    To maintain water in the liquid phase at the correct (1 g/cm3) density during first-principles simulations, density-functional theory (DFT) with a dispersionless generalized-gradient-approximation (GGA) functional requires a much higher temperature and pressure than the ambient conditions. Conversely, ab initio second-order many-body perturbation (MP2) calculations of liquid water performed by Del Ben et al. [J. Chem. Phys. Lett. 4, 3753 (2013); J. Chem. Phys. 143, 054506 (2015)] and by us [Willow et al., Sci. Rep. 5, 14358 (2015)] required a lower temperature and a negative pressure than DFT to keep water liquid. Here, we present a unifying explanation of these trendsmore » derived from classical water simulations using a polarizable force field with different sets of parameters. We show that the calculated temperature and pressure of the liquid phase are strongly correlated with the polarizability of water and the dispersion interaction, respectively. In DFT/GGA, the polarizability and thus the induced dipole moments and the hydrogen-bond strength are all overestimated. This hinders the rotational motion of molecules and requires a higher temperature for water to be liquid. In MP2 and DFT/GGA, the dispersion interaction is stronger and weaker (or lacking), respectively. This explains why liquid water contracts uniformly and becomes too dense in MP2, whereas the opposite is the case for dispersionless DFT/GGA.« less

  9. GGA + U studies of the early actinide mononitrides and dinitrides

    NASA Astrophysics Data System (ADS)

    Obodo, K. O.; Chetty, N.

    2013-11-01

    We present a detailed comparative study of the electronic and mechanical properties of the early actinide mononitrides and dinitrides within the framework of the Perdew-Burke-Ernzerhof generalized gradient approximation (GGA [PBE]) and GGA + U implementations of density functional theory with the inclusion of spin-orbit coupling. The dependence of selected observables of these materials on the effective U-parameter is investigated in detail. The properties include the lattice constant, bulk modulus, charge density distribution, hybridization of the atomic orbitals, energy of formation and the lattice dynamics. The inclusion of the Hubbard U parameter results in a proper description of the 5f electrons, and is subsequently used in the determination of the structural and electronic properties of these compounds. The mononitrides and dinitrides of the early actinides are metallic except for UN2, which is a semiconductor. These actinide nitrides are non-magnetic with the exception of UN, NpN, PuN, NpN2 and PuN2 that are magnetic systems with orbital-dependent magnetic moments oriented in the z-axis. We observed that ThN2 is elastically unstable to isotropic pressure. We discovered that UN2 is thermodynamically unstable, but may be stabilized by N vacancy formation.

  10. Effect of pressure on the Raman-active modes of zircon (ZrSiO4): a first-principles study

    NASA Astrophysics Data System (ADS)

    Sheremetyeva, Natalya; Cherniak, Daniele J.; Watson, E. Bruce; Meunier, Vincent

    2018-02-01

    Density-functional theory (DFT) was employed in a first-principles study of the effects of pressure on the Raman-active modes of zircon (ZrSiO4), using both the generalized gradient and local density approximations (GGA and LDA, respectively). Beginning with the equilibrium structure at zero pressure, we conducted a calibration of the effect of pressure in a manner procedurally similar to an experimental calibration. For pressures between 0 and 7 GPa, we find excellent qualitative agreement of frequency-pressure slopes partial ω /partial P calculated from GGA DFT with results of previous experimental studies. In addition, we were able to rationalize the ω vs. P behavior based on details of the vibrational modes and their atomic displacements. Most of the partial ω /partial P slopes are positive as expected, but the symmetry of the zircon lattice also results in two negative slopes for modes that involve slight shearing and rigid rotation of SiO4 tetrahedra. Overall, LDA yields absolute values of the frequencies of the Raman-active modes in good agreement with experimental values, while GGA reproduces the shift in frequency with pressure especially well.

  11. Charge versus orbital-occupancy ordering in manganites

    NASA Astrophysics Data System (ADS)

    Luo, Weidong; Varela, Maria; Tao, Jing; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2006-03-01

    It is generally assumed that density-functional theory (DFT) in the local-spin-density approximation (LSDA) or the generalized- gradient approximation (GGA) is not adequate to describe mixed- valence manganites. Here we report benchmark DFT/GGA calculations for the ground-state structural, electronic and magnetic properties for both undoped and doped CaMnO3 and find the results to be in excellent agreement with available data, including new atomic-resolution Z-contrast imaging and electron-energy loss spectra. More specifically, we found that the DFT results predict two inequivalent Mn atoms in both 0.33 and 0.5 electron-doped CaMnO3, in agreement with experimental evidence of Mn^+3/Mn^+4 oxidation state ordering. The inequivalent Mn atoms are marked by their distinctive orbital occupancies, dissimilar local Jahn-Teller distortion and different magnetic moments from DFT calculations. We also show that the spherically integrated charges associated with the two inequivalent Mn atoms are the same, and they are actually the same as in the Mn metal. This charge neutrality with different orbital occupancies is the result of self-consistency and atomic relaxations in the crystal. We conclude that DFT without additional correlations can account for the observed properties of oxidation-state ordering in this system. The impact of the results on other mixed-valence systems will be discussed.

  12. Assessment of Real-Time Time-Dependent Density Functional Theory (RT-TDDFT) in Radiation Chemistry: Ionized Water Dimer.

    PubMed

    Chalabala, Jan; Uhlig, Frank; Slavíček, Petr

    2018-03-29

    Ionization in the condensed phase and molecular clusters leads to a complicated chain of processes with coupled electron-nuclear dynamics. It is difficult to describe such dynamics with conventional nonadiabatic molecular dynamics schemes since the number of states swiftly increases as the molecular system grows. It is therefore attractive to use a direct electron and nuclear propagation such as the real-time time-dependent density functional theory (RT-TDDFT). Here we report a RT-TDDFT benchmark study on simulations of singly and doubly ionized states of a water monomer and dimer as a prototype for more complex processes in a condensed phase. We employed the RT-TDDFT based Ehrenfest molecular dynamics with a generalized gradient approximate (GGA) functional and compared it with wave-function-based surface hopping (SH) simulations. We found that the initial dynamics of a singly HOMO ionized water dimer is similar for both the RT-TDDFT/GGA and the SH simulations but leads to completely different reaction channels on a longer time scale. This failure is attributed to the self-interaction error in the GGA functionals and it can be avoided by using hybrid functionals with large fraction of exact exchange (represented here by the BHandHLYP functional). The simulations of doubly ionized states are reasonably described already at the GGA level. This suggests that the RT-TDDFT/GGA method could describe processes following the autoionization processes such as Auger emission, while its applicability to more complex processes such as intermolecular Coulombic decay remains limited.

  13. Ferromagnetic Phase Stability, Magnetic, Electronic, Elasto-Mechanical and Thermodynamic Properties of BaCmO3 Perovskite Oxide

    NASA Astrophysics Data System (ADS)

    Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar; Parey, Vanshree

    2018-04-01

    The structural, electronic, elasto-mechanical and thermodynamic properties of cubic ABO3 perovskites BaCmO3 has been successfully calculated within density functional theory via full potential linearized augmented plane wave. The structural study divulges ferromagnetic stability for the compound. For the precise calculation of electronic and magnetic properties a generalized gradient approximation (GGA), and a Hubbard approximation (GGA + U), (modified Becke Johnson approximation) mBJ have been incorporated. The electronic study portrays the half-metallic nature for the compound in all the approximations. The calculated magnetic moment with different approximations was found to be large and with an integer value of 6 μ b, this integer value of magnetic moment also proves the half-metallic nature for BaCmO3. The calculated elastic constants have been used to predict mechanical properties like the Young modulus (Y), the Shear modulus (G) and the Poisson ratio (ν). The calculated B/G and Cauchy pressure (C12-C44) present the brittle nature for BaCmO3. The thermodynamic parameters like heat capacity, thermal expansion, and Debye temperature have been calculated and examined in the temperature range of 0 K to 700 K and pressure between 0 GPa and 40 GPa. The melting temperature was also calculated and was found to be 1847 ± 300 K.

  14. Accurate, precise, and efficient theoretical methods to calculate anion-π interaction energies in model structures.

    PubMed

    Mezei, Pál D; Csonka, Gábor I; Ruzsinszky, Adrienn; Sun, Jianwei

    2015-01-13

    A correct description of the anion-π interaction is essential for the design of selective anion receptors and channels and important for advances in the field of supramolecular chemistry. However, it is challenging to do accurate, precise, and efficient calculations of this interaction, which are lacking in the literature. In this article, by testing sets of 20 binary anion-π complexes of fluoride, chloride, bromide, nitrate, or carbonate ions with hexafluorobenzene, 1,3,5-trifluorobenzene, 2,4,6-trifluoro-1,3,5-triazine, or 1,3,5-triazine and 30 ternary π-anion-π' sandwich complexes composed from the same monomers, we suggest domain-based local-pair natural orbital coupled cluster energies extrapolated to the complete basis-set limit as reference values. We give a detailed explanation of the origin of anion-π interactions, using the permanent quadrupole moments, static dipole polarizabilities, and electrostatic potential maps. We use symmetry-adapted perturbation theory (SAPT) to calculate the components of the anion-π interaction energies. We examine the performance of the direct random phase approximation (dRPA), the second-order screened exchange (SOSEX), local-pair natural-orbital (LPNO) coupled electron pair approximation (CEPA), and several dispersion-corrected density functionals (including generalized gradient approximation (GGA), meta-GGA, and double hybrid density functional). The LPNO-CEPA/1 results show the best agreement with the reference results. The dRPA method is only slightly less accurate and precise than the LPNO-CEPA/1, but it is considerably more efficient (6-17 times faster) for the binary complexes studied in this paper. For 30 ternary π-anion-π' sandwich complexes, we give dRPA interaction energies as reference values. The double hybrid functionals are much more efficient but less accurate and precise than dRPA. The dispersion-corrected double hybrid PWPB95-D3(BJ) and B2PLYP-D3(BJ) functionals perform better than the GGA and meta-GGA functionals for the present test set.

  15. Ab-initio study of B{sub 2}-type technetium AB (A=Tc, B=Nb and Ta) intermetallic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, Nikita, E-mail: acharyaniks30@gmail.com; Fatima, Bushra; Sanyal, Sankar P.

    2016-05-06

    The structural, electronic and elastic properties of AB type (A = Tc, B = Nb and Ta) technetium intermetallic compounds are studied using full potential linearized plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The calculated lattice parameters agree well with the experimental results. The elastic constants obey the stability criteria for cubic system. Ductility for these compounds has been analyzed using the Pugh’s rule and Cauchy’s pressure and found that all the compounds are ductile in nature. Bonding nature is discussed in terms of Fermi surface and band structures.

  16. Theoretical prediction of the band offsets at the ZnO/anatase TiO2 and GaN/ZnO heterojunctions using the self-consistent ab initio DFT/GGA-1/2 method.

    PubMed

    Fang, D Q; Zhang, S L

    2016-01-07

    The band offsets of the ZnO/anatase TiO2 and GaN/ZnO heterojunctions are calculated using the density functional theory/generalized gradient approximation (DFT/GGA)-1/2 method, which takes into account the self-energy corrections and can give an approximate description to the quasiparticle characteristics of the electronic structure of semiconductors. We present the results of the ionization potential (IP)-based and interfacial offset-based band alignments. In the interfacial offset-based band alignment, to get the natural band offset, we use the surface calculations to estimate the change of reference level due to the interfacial strain. Based on the interface models and GGA-1/2 calculations, we find that the valence band maximum and conduction band minimum of ZnO, respectively, lie 0.64 eV and 0.57 eV above those of anatase TiO2, while lie 0.84 eV and 1.09 eV below those of GaN, which agree well with the experimental data. However, a large discrepancy exists between the IP-based band offset and the calculated natural band offset, the mechanism of which is discussed. Our results clarify band alignment of the ZnO/anatase TiO2 heterojunction and show good agreement with the GW calculations for the GaN/ZnO heterojunction.

  17. Accurate critical pressures for structural phase transitions of group IV, III-V, and II-VI compounds from the SCAN density functional

    NASA Astrophysics Data System (ADS)

    Shahi, Chandra; Sun, Jianwei; Perdew, John P.

    2018-03-01

    Most of the group IV, III-V, and II-VI compounds crystallize in semiconductor structures under ambient conditions. Upon application of pressure, they undergo structural phase transitions to more closely packed structures, sometimes metallic phases. We have performed density functional calculations using projector augmented wave (PAW) pseudopotentials to determine the transition pressures for these transitions within the local density approximation (LDA), the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA), and the strongly constrained and appropriately normed (SCAN) meta-GGA. LDA underestimates the transition pressure for most of the studied materials. PBE under- or overestimates in many cases. SCAN typically corrects the errors of LDA and PBE for the transition pressure. The accuracy of SCAN is comparable to that of computationally expensive methods like the hybrid functional HSE06, the random phase approximation (RPA), and quantum Monte Carlo (QMC), in cases where calculations with these methods have been reported, but at a more modest computational cost. The improvement from LDA to PBE to SCAN is especially clearcut and dramatic for covalent semiconductor-metal transitions, as for Si and Ge, where it reflects the increasing relative stabilization of the covalent semiconducting phases under increasing functional sophistication.

  18. Exploration of near the origin and the asymptotic behaviors of the Kohn-Sham kinetic energy density for two-dimensional quantum dot systems with parabolic confinement

    NASA Astrophysics Data System (ADS)

    Jana, Subrata; Samal, Prasanjit

    2018-01-01

    The behaviors of the positive definite Kohn-Sham kinetic energy density near the origin and at the asymptotic region play a major role in designing meta-generalized gradient approximations (meta-GGAs) for exchange in low-dimensional quantum systems. It is shown that near the origin of the parabolic quantum dot, the Kohn-Sham kinetic energy differs from its von Weizsäcker counterpart due to the p orbital contributions, whereas in the asymptotic region, the difference between the above two kinetic energy densities goes as ˜ρ/(r ) r2 . All these behaviors have been explored using the two-dimensional isotropic quantum harmonic oscillator as a test case. Several meta-GGA ingredients are then studied by making use of the above findings. Also, the asymptotic conditions for the exchange energy density and the potential at the meta-GGA level are proposed using the corresponding behaviors of the two kinetic energy densities.

  19. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jianwei; Remsing, Richard C.; Zhang, Yubo

    2016-06-13

    One atom or molecule binds to another through various types of bond, the strengths of which range from several meV to several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent, metallic, ionic, hydrogen and vanmore » der Waals bonds). This represents a significant improvement at comparable efficiency over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a broad impact on chemistry and materials science.« less

  20. First principles study on the elastic and electronic properties of CdX (X = S, Se and Te)

    NASA Astrophysics Data System (ADS)

    Sharma, Sheetal; Verma, Ajay Singh; Sarkar, Bimal Kumar; Bhandari, Rajiv; Jindal, Vijay Kumar

    2011-12-01

    Wide band gap semiconductors are emerging as a potential candidate for optically active materials in blue green spectral region and operating at high power level and high temperature. CdX, X = S, Se and Te are wide band gap semiconductors having applications in optoelectronics devices. In this paper we investigated the elastic and electronic properties of Cadmium chalcogenide (cubic zinc-blende (ZB) structure) using standard Kohn-Sham self consistent density functional theory method (DFT) that uses non conserving pseudopotentials in fully nonlocal form within the generalized gradient approximation (GGA) for the exchange-correlation potential. The independent elastic constants, C11, C12 and C44, are calculated from direct computation of stresses generated by small strains. The shear modulus and Young's modulus are estimated for CdX. Using the GGA for the exchange correlation potential, the calculated direct fundamental band gap value is in very good agreement with the measured one.

  1. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional.

    PubMed

    Sun, Jianwei; Remsing, Richard C; Zhang, Yubo; Sun, Zhaoru; Ruzsinszky, Adrienn; Peng, Haowei; Yang, Zenghui; Paul, Arpita; Waghmare, Umesh; Wu, Xifan; Klein, Michael L; Perdew, John P

    2016-09-01

    One atom or molecule binds to another through various types of bond, the strengths of which range from several meV to several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent, metallic, ionic, hydrogen and van der Waals bonds). This represents a significant improvement at comparable efficiency over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a broad impact on chemistry and materials science.

  2. Exploration of near the origin and the asymptotic behaviors of the Kohn-Sham kinetic energy density for two-dimensional quantum dot systems with parabolic confinement.

    PubMed

    Jana, Subrata; Samal, Prasanjit

    2018-01-14

    The behaviors of the positive definite Kohn-Sham kinetic energy density near the origin and at the asymptotic region play a major role in designing meta-generalized gradient approximations (meta-GGAs) for exchange in low-dimensional quantum systems. It is shown that near the origin of the parabolic quantum dot, the Kohn-Sham kinetic energy differs from its von Weizsäcker counterpart due to the p orbital contributions, whereas in the asymptotic region, the difference between the above two kinetic energy densities goes as ∼ρ(r)r 2 . All these behaviors have been explored using the two-dimensional isotropic quantum harmonic oscillator as a test case. Several meta-GGA ingredients are then studied by making use of the above findings. Also, the asymptotic conditions for the exchange energy density and the potential at the meta-GGA level are proposed using the corresponding behaviors of the two kinetic energy densities.

  3. First-Principles Study of Electronic Structure, Mechanical, and Thermoelectric Properties of Ternary Palladates CdPd3O4 and TlPd3O4

    NASA Astrophysics Data System (ADS)

    Khan, Amin; Ali, Zahid; Khan, Imad; Ahmad, Iftikhar

    2018-03-01

    Ternary palladates CdPd3O4 and TlPd3O4 have been studied theoretically using the generalized gradient approximation (GGA), modified Becke-Johnson, and spin-orbit coupling (GGA-SOC) exchange-correlation functionals in the density functional theory (DFT) framework. From the calculated ground-state properties, it is found that SOC effects are dominant in these palladates. Mechanical properties reveal that both compounds are ductile in nature. The electronic band structures show that CdPd3O4 is metallic, whereas TlPd3O4 is an indirect-bandgap semiconductor with energy gap of 1.1 eV. The optical properties show that TlPd3O4 is a good dielectric material. The dense electronic states, narrow-gap semiconductor nature, and Seebeck coefficient of TlPd3O4 suggest that it could be used as a good thermoelectric material. The magnetic susceptibility calculated by post-DFT treatment confirmed the paramagnetic behavior of these compounds.

  4. Periodic density functional theory study of spin crossover in the cesium iron hexacyanochromate prussian blue analog

    NASA Astrophysics Data System (ADS)

    Wojdeł, Jacek C.; Moreira, Ibério de P. R.; Illas, Francesc

    2009-01-01

    This paper presents a detailed theoretical analysis of the electronic structure of the CsFe[Cr(CN)6] prussian blue analog with emphasis on the structural origin of the experimentally observed spin crossover transition in this material. Periodic density functional calculations using generalized gradient approximation (GGA)+U and nonlocal hybrid exchange-correlation potentials show that, for the experimental low temperature crystal structure, the t2g6eg0 low spin configuration of FeII is the most stable and CrIII (S =3/2, t2g3eg0) remains the same in all cases. This is also found to be the case for the low spin GGA+U fully relaxed structure with the optimized unit cell. A completely different situation emerges when calculations are carried out using the experimental high temperature structure. Here, GGA+U and hybrid density functional theory calculations consistently predict that the t2g4eg2 FeII high spin configuration is the ground state. However, the two spin configurations appear to be nearly degenerate when calculations are carried out for the geometries arising from a GGA+U full relaxation of the atomic structure carried out at experimental high temperature lattice constant. A detailed analysis of the energy difference between the two spin configurations as a function of the lattice constant strongly suggests that the observed spin crossover transition has a structural origin with non-negligible entropic contributions of the high spin state.

  5. Theoretical investigation of structures and energetics of sodium adatom and its dimer on graphene: DFT study

    NASA Astrophysics Data System (ADS)

    Kaur, Gagandeep; Gupta, Shuchi; Rani, Pooja; Dharamvir, Keya

    2015-11-01

    Extensive ab initio calculations have been performed to study the energetics of a sodium (Na) atom and its dimer adsorbed on graphene using the SIESTA package Soler et al. (2002) [1] which works within a DFT(density functional theory)-GGA (generalized gradient approximation) pseudopotential framework. The adsorption energy, geometry, charge transfer, ionization potential and density of states (DOS), partial density states (PDOS) of adatom/dimer-graphene system have been calculated. After considering various sites for adsorption of Na on graphene, the center of a hexagonal ring of carbon atoms is found to be the preferred site of adsorption while the Na2 dimer prefers to rest parallel to the graphene sheet. We find insignificant energy differences among adsorption configurations involving different possible sites in parallel orientation, which implies high mobility of the dimer on the graphene sheet. We also notice only a slight distortion of the graphene sheet perpendicular to its plane upon adatom adsorption. However, some lateral displacements seen are more perceptible. Summary The adsorption energy, geometry, charge transfer, ionization potential and density of states (DOS) and PDOS of adatom/dimer-graphene system have been calculated using SIESTA package Soler et al. (2002) [1] which works within a DFT(density functional theory)-GGA (generalized gradient approximation) pseudopotential framework. Preferred site for adsorption of a sodium atom on graphene is the hollow site. For the Na dimer adsorption, we found that horizontal orientation is favored over the vertical one. From DOS plots, it is clear that graphene's states are nearly unaffected by the adsorption of Na adatom and Interaction between sodium and graphene is predominantly ionic

  6. Density, structure, and dynamics of water: The effect of van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Román-Pérez, G.; Soler, Jose M.; Artacho, Emilio; Fernández-Serra, M.-V.

    2011-01-01

    It is known that ab initio molecular dynamics (AIMD) simulations of liquid water at ambient conditions, based on the generalized gradient approximation (GGA) to density functional theory (DFT), with commonly used functionals fail to produce structural and diffusive properties in reasonable agreement with experiment. This is true for canonical, constant temperature simulations where the density of the liquid is fixed to the experimental density. The equilibrium density, at ambient conditions, of DFT water has recently been shown by Schmidt et al. [J. Phys. Chem. B, 113, 11959 (2009)] to be underestimated by different GGA functionals for exchange and correlation, and corrected by the addition of interatomic pair potentials to describe van der Waals (vdW) interactions. In this contribution we present a DFT-AIMD study of liquid water using several GGA functionals as well as the van der Waals density functional (vdW-DF) of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. As expected, we find that the density of water is grossly underestimated by GGA functionals. When a vdW-DF is used, the density improves drastically and the experimental diffusivity is reproduced without the need of thermal corrections. We analyze the origin of the density differences between all the functionals. We show that the vdW-DF increases the population of non-H-bonded interstitial sites, at distances between the first and second coordination shells. However, it excessively weakens the H-bond network, collapsing the second coordination shell. This structural problem is partially associated to the choice of GGA exchange in the vdW-DF. We show that a different choice for the exchange functional is enough to achieve an overall improvement both in structure and diffusivity.

  7. The RPA Atomization Energy Puzzle.

    PubMed

    Ruzsinszky, Adrienn; Perdew, John P; Csonka, Gábor I

    2010-01-12

    There is current interest in the random phase approximation (RPA), a "fifth-rung" density functional for the exchange-correlation energy. RPA has full exact exchange and constructs the correlation with the help of the unoccupied Kohn-Sham orbitals. In many cases (uniform electron gas, jellium surface, and free atom), the correction to RPA is a short-ranged effect that is captured by a local spin density approximation (LSDA) or a generalized gradient approximation (GGA). Nonempirical density functionals for the correction to RPA were constructed earlier at the LSDA and GGA levels (RPA+), but they are constructed here at the fully nonlocal level (RPA++), using the van der Waals density functional (vdW-DF) of Langreth, Lundqvist, and collaborators. While they make important and helpful corrections to RPA total and ionization energies of free atoms, they correct the RPA atomization energies of molecules by only about 1 kcal/mol. Thus, it is puzzling that RPA atomization energies are, on average, about 10 kcal/mol lower than those of accurate values from experiment. We find here that a hybrid of 50% Perdew-Burke-Ernzerhof GGA with 50% RPA+ yields atomization energies much more accurate than either one does alone. This suggests a solution to the puzzle: While the proper correction to RPA is short-ranged in some systems, its contribution to the correlation hole can spread out in a molecule with multiple atomic centers, canceling part of the spread of the exact exchange hole (more so than in RPA or RPA+), making the true exchange-correlation hole more localized than in RPA or RPA+. This effect is not captured even by the vdW-DF nonlocality, but it requires the different kind of full nonlocality present in a hybrid functional.

  8. A meta-GGA level screened range-separated hybrid functional by employing short range Hartree-Fock with a long range semilocal functional.

    PubMed

    Jana, Subrata; Samal, Prasanjit

    2018-03-28

    The range-separated hybrid density functionals are very successful in describing a wide range of molecular and solid-state properties accurately. In principle, such functionals are designed from spherically averaged or system averaged as well as reverse engineered exchange holes. In the present attempt, the screened range-separated hybrid functional scheme has been applied to the meta-GGA rung by using the density matrix expansion based semilocal exchange hole (or functional). The hybrid functional proposed here utilizes the spherically averaged density matrix expansion based exchange hole in the range separation scheme. For slowly varying density correction the range separation scheme is employed only through the local density approximation based exchange hole coupled with the corresponding fourth order gradient approximate Tao-Mo enhancement factor. The comprehensive testing and performance of the newly constructed functional indicates its applicability in describing several molecular properties. The most appealing feature of this present screened hybrid functional is that it will be practically very useful in describing solid-state properties at the meta-GGA level.

  9. Density-functional theory applied to d- and f-electron systems

    NASA Astrophysics Data System (ADS)

    Wu, Xueyuan

    Density functional theory (DFT) has been applied to study the electronic and geometric structures of prototype d- and f-electron systems. For the d-electron system, all electron DFT with gradient corrections to the exchange and correlation functionals has been used to investigate the properties of small neutral and cationic vanadium clusters. Results are in good agreement with available experimental and other theoretical data. For the f-electron system, a hybrid DFT, namely, B3LYP (Becke's 3-parameter hybrid functional using the correlation functional of Lee, Yang and Parr) with relativistic effective core potentials and cluster models has been applied to investigate the nature of chemical bonding of both the bulk and the surfaces of plutonium monoxide and dioxide. Using periodic models, the electronic and geometric structures of PuO2 and its (110) surface, as well as water adsorption on this surface have also been investigated using DFT in both local density approximation (LDA) and generalized gradient approximation (GGA) formalisms.

  10. Theoretical investigations on structural, elastic and electronic properties of thallium halides

    NASA Astrophysics Data System (ADS)

    Singh, Rishi Pal; Singh, Rajendra Kumar; Rajagopalan, Mathrubutham

    2011-04-01

    Theoretical investigations on structural, elastic and electronic properties, viz. ground state lattice parameter, elastic moduli and density of states, of thallium halides (viz. TlCl and TlBr) have been made using the full potential linearized augmented plane wave method within the generalized gradient approximation (GGA). The ground state lattice parameter and bulk modulus and its pressure derivative have been obtained using optimization method. Young's modulus, shear modulus, Poisson ratio, sound velocities for longitudinal and shear waves, Debye average velocity, Debye temperature and Grüneisen parameter have also been calculated for these compounds. Calculated structural, elastic and other parameters are in good agreement with the available data.

  11. Thermodynamical study of boron doped CeX{sub 3} (X=Pd, Rh)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Ramesh; Dwivedi, Shalini; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com

    2016-05-06

    The structural, electronic, thermal, and optical properties of cubic non magnetic CeX{sub 3}(X=Pd, Rh) compounds which crystallize in the Au{sub 3}Cu structure have been studied using the projected augmented wave (PAW) method within the density functional theory (DFT) with generalized gradient approximation (GGA) for exchange correlation potential. In this paper we have calculated the band structure which are interpreted using the density of states. The optical properties such as extinction coefficients clearly illustrate the changes in CeX{sub 3} due to intercalation of boron. Lattice instability is observed in CePd{sub 3}B from the calculated dynamical properties.

  12. Electronic and Piezoelectric properties of half-Heusler compounds: A first principles study

    NASA Astrophysics Data System (ADS)

    Rai, D. P.; Sandeep; Shankar, A.; Aly, Abeer E.; Patra, P. K.; Thapa, R. K.

    2016-10-01

    We have investigated the semiconducting and piezoelectric properties of bulk MNiSn (M=Ti, Zr, Hf) type a half-Heusler compound with cubic F-43m symmetry by means of density functional theory (DFT). For electron exchange correlation a generalized gradient approximation (GGA) was used. Special attention was paid to establish a most favourble ground state configuration on magnetic as well as non-magnetic ordering. With fully optimized structure the electronic and ferroelectric calculation was performed. The formation of band gap was discussed on the basis of d-d orbital hybridization. Further we have calculated the spontaneous polarization by means of structural deformation.

  13. Dimerization in honeycomb Na2RuO3 under pressure: a DFT study

    NASA Astrophysics Data System (ADS)

    Gazizova, D. D.; Ushakov, A. V.; Streltsov, S. V.

    2018-04-01

    The structural properties of Na2RuO3 under pressure are studied using density functional theory within the nonmagnetic generalized gradient approximation (GGA). We found that one may expect a structural transition at ˜3 GPa. This structure at the high-pressure phase is exactly the same as the low-temperature structure of Li2RuO3 (at ambient pressure) and is characterized by the P21/m space group. Ru ions form dimers in this phase and one may expect strong modification of the electronic and magnetic properties in Na2RuO3 at pressure higher than 3 GPa.

  14. Theoretical study of Ag doping-induced vacancies defects in armchair graphene

    NASA Astrophysics Data System (ADS)

    Benchallal, L.; Haffad, S.; Lamiri, L.; Boubenider, F.; Zitoune, H.; Kahouadji, B.; Samah, M.

    2018-06-01

    We have performed a density functional theory (DFT) study of the absorption of silver atoms (Ag,Ag2 and Ag3) in graphene using SIESTA code, in the generalized gradient approximation (GGA). The absorption energy, geometry, magnetic moments and charge transfer of Ag clusters-graphene system are calculated. The minimum energy configuration demonstrates that all structures remain planar and silver atoms fit into this plane. The charge transfer between the silver clusters and carbon atoms constituting the graphene surface is an indicative of a strong bond. The structure doped with a single silver atom has a magnetic moment and the two other are nonmagnetic.

  15. E2 and SN2 Reactions of X(-) + CH3CH2X (X = F, Cl); an ab Initio and DFT Benchmark Study.

    PubMed

    Bento, A Patrícia; Solà, Miquel; Bickelhaupt, F Matthias

    2008-06-01

    We have computed consistent benchmark potential energy surfaces (PESs) for the anti-E2, syn-E2, and SN2 pathways of X(-) + CH3CH2X with X = F and Cl. This benchmark has been used to evaluate the performance of 31 popular density functionals, covering local-density approximation, generalized gradient approximation (GGA), meta-GGA, and hybrid density-functional theory (DFT). The ab initio benchmark has been obtained by exploring the PESs using a hierarchical series of ab initio methods [up to CCSD(T)] in combination with a hierarchical series of Gaussian-type basis sets (up to aug-cc-pVQZ). Our best CCSD(T) estimates show that the overall barriers for the various pathways increase in the order anti-E2 (X = F) < SN2 (X = F) < SN2 (X = Cl) ∼ syn-E2 (X = F) < anti-E2 (X = Cl) < syn-E2 (X = Cl). Thus, anti-E2 dominates for F(-) + CH3CH2F, and SN2 dominates for Cl(-) + CH3CH2Cl, while syn-E2 is in all cases the least favorable pathway. Best overall agreement with our ab initio benchmark is obtained by representatives from each of the three categories of functionals, GGA, meta-GGA, and hybrid DFT, with mean absolute errors in, for example, central barriers of 4.3 (OPBE), 2.2 (M06-L), and 2.0 kcal/mol (M06), respectively. Importantly, the hybrid functional BHandH and the meta-GGA M06-L yield incorrect trends and qualitative features of the PESs (in particular, an erroneous preference for SN2 over the anti-E2 in the case of F(-) + CH3CH2F) even though they are among the best functionals as measured by their small mean absolute errors of 3.3 and 2.2 kcal/mol in reaction barriers. OLYP and B3LYP have somewhat higher mean absolute errors in central barriers (5.6 and 4.8 kcal/mol, respectively), but the error distribution is somewhat more uniform, and as a consequence, the correct trends are reproduced.

  16. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations.

    PubMed

    van Meer, R; Gritsenko, O V; Baerends, E J

    2014-10-14

    In recent years, several benchmark studies on the performance of large sets of functionals in time-dependent density functional theory (TDDFT) calculations of excitation energies have been performed. The tested functionals do not approximate exact Kohn-Sham orbitals and orbital energies closely. We highlight the advantages of (close to) exact Kohn-Sham orbitals and orbital energies for a simple description, very often as just a single orbital-to-orbital transition, of molecular excitations. Benchmark calculations are performed for the statistical average of orbital potentials (SAOP) functional for the potential [J. Chem. Phys. 2000, 112, 1344; 2001, 114, 652], which approximates the true Kohn-Sham potential much better than LDA, GGA, mGGA, and hybrid potentials do. An accurate Kohn-Sham potential does not only perform satisfactorily for calculated vertical excitation energies of both valence and Rydberg transitions but also exhibits appealing properties of the KS orbitals including occupied orbital energies close to ionization energies, virtual-occupied orbital energy gaps very close to excitation energies, realistic shapes of virtual orbitals, leading to straightforward interpretation of most excitations as single orbital transitions. We stress that such advantages are completely lost in time-dependent Hartree-Fock and partly in hybrid approaches. Many excitations and excitation energies calculated with local density, generalized gradient, and hybrid functionals are spurious. There is, with an accurate KS, or even the LDA or GGA potentials, nothing problematic about the "band gap" in molecules: the HOMO-LUMO gap is close to the first excitation energy (the optical gap).

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matanovic, Ivana; Atanassov, Plamen; Kiefer, Boris

    The structural equilibrium parameters, the adsorption energies, and the vibrational frequencies of the nitrogen molecule and the hydrogen atom adsorbed on the (111) surface of rhodium have been investigated using different generalized-gradient approximation (GGA), nonlocal correlation, meta-GGA, and hybrid functionals, namely, Perdew, Burke, and Ernzerhof (PBE), Revised-RPBE, vdW-DF, Tao, Perdew, Staroverov, and Scuseria functional (TPSS), and Heyd, Scuseria, and Ernzerhof (HSE06) functional in the plane wave formalism. Among the five tested functionals, nonlocal vdW-DF and meta-GGA TPSS functionals are most successful in describing energetics of dinitrogen physisorption to the Rh(111) surface, while the PBE functional provides the correct chemisorption energymore » for the hydrogen atom. It was also found that TPSS functional produces the best vibrational spectra of the nitrogen molecule and the hydrogen atom on rhodium within the harmonic formalism with the error of 22.62 and 21.1% for the NAN stretching and RhAH stretching frequency. Thus, TPSS functional was proposed as a method of choice for obtaining vibrational spectra of low weight adsorbates on metallic surfaces within the harmonic approximation. At the anharmonic level, by decoupling the RhAH and NAN stretching modes from the bulk phonons and by solving one- and two-dimensional Schr€odinger equation associated with the RhAH, RhAN, and NAN potential energy we calculated the anharmonic correction for NAN and RhAH stretching modes as 231 cm21 and 277 cm21 at PBE level. Anharmonic vibrational frequencies calculated with the use of the hybrid HSE06 function are in best agreement with available experiments.« less

  18. Understanding the HIV-1 protease reactivity with DFT: what do we gain from recent functionals?

    PubMed

    Garrec, J; Sautet, P; Fleurat-Lessard, P

    2011-07-07

    The modeling of HIV-1 plays a crucial role in the understanding of its reactivity and its interactions with specific drugs. In this work, we propose a medium sized model to test the ability of a variety of quantum chemistry approaches to provide reasonable geometric parameters and energetics for this system. Although our model is large enough to include the main polarizing groups of the active site, it is small enough to be used within full quantum studies up to the second order Møller-Plesset (MP2) level with extrapolations to coupled cluster CCSD(T) level. These high level calculations are used as reference to assess the ability of electronic structure methods (semiempirical and DFT) to provide accurate geometries and energies for the HIV-1 protease reaction. All semiempirical methods fail to describe the geometry of the protease active site. Within DFT, pure generalized gradient approximation (GGA) functionals have difficulty in reproducing the reaction energy and underestimate the barrier. Hybrid and/or meta GGA approaches do not yield a consistent improvement. The best results are obtained with hybrid GGA B3LYP or X3LYP and with hybrid meta GGA functionals with a fraction of exact exchange around 30-40%, such as M06, B1B95, or BMK functionals. On the basis of these results, we propose an accurate and computationally efficient strategy, employing quantum chemistry methods. This is applied here to study the protonation state of the reaction intermediate and could be easily used in further QM/MM studies.

  19. DFT benchmark study for the oxidative addition of CH 4 to Pd. Performance of various density functionals

    NASA Astrophysics Data System (ADS)

    de Jong, G. Theodoor; Geerke, Daan P.; Diefenbach, Axel; Matthias Bickelhaupt, F.

    2005-06-01

    We have evaluated the performance of 24 popular density functionals for describing the potential energy surface (PES) of the archetypal oxidative addition reaction of the methane C-H bond to the palladium atom by comparing the results with our recent ab initio [CCSD(T)] benchmark study of this reaction. The density functionals examined cover the local density approximation (LDA), the generalized gradient approximation (GGA), meta-GGAs as well as hybrid density functional theory. Relativistic effects are accounted for through the zeroth-order regular approximation (ZORA). The basis-set dependence of the density-functional-theory (DFT) results is assessed for the Becke-Lee-Yang-Parr (BLYP) functional using a hierarchical series of Slater-type orbital (STO) basis sets ranging from unpolarized double-ζ (DZ) to quadruply polarized quadruple-ζ quality (QZ4P). Stationary points on the reaction surface have been optimized using various GGA functionals, all of which yield geometries that differ only marginally. Counterpoise-corrected relative energies of stationary points are converged to within a few tenths of a kcal/mol if one uses the doubly polarized triple-ζ (TZ2P) basis set and the basis-set superposition error (BSSE) drops to 0.0 kcal/mol for our largest basis set (QZ4P). Best overall agreement with the ab initio benchmark PES is achieved by functionals of the GGA, meta-GGA, and hybrid-DFT type, with mean absolute errors of 1.3-1.4 kcal/mol and errors in activation energies ranging from +0.8 to -1.4 kcal/mol. Interestingly, the well-known BLYP functional compares very reasonably with an only slightly larger mean absolute error of 2.5 kcal/mol and an underestimation by -1.9 kcal/mol of the overall barrier (i.e., the difference in energy between the TS and the separate reactants). For comparison, with B3LYP we arrive at a mean absolute error of 3.8 kcal/mol and an overestimation of the overall barrier by 4.5 kcal/mol.

  20. Apparent violation of the sum rule for exchange-correlation charges by generalized gradient approximations.

    PubMed

    Kohut, Sviataslau V; Staroverov, Viktor N

    2013-10-28

    The exchange-correlation potential of Kohn-Sham density-functional theory, vXC(r), can be thought of as an electrostatic potential produced by the static charge distribution qXC(r) = -(1∕4π)∇(2)vXC(r). The total exchange-correlation charge, QXC = ∫qXC(r) dr, determines the rate of the asymptotic decay of vXC(r). If QXC ≠ 0, the potential falls off as QXC∕r; if QXC = 0, the decay is faster than coulombic. According to this rule, exchange-correlation potentials derived from standard generalized gradient approximations (GGAs) should have QXC = 0, but accurate numerical calculations give QXC ≠ 0. We resolve this paradox by showing that the charge density qXC(r) associated with every GGA consists of two types of contributions: a continuous distribution and point charges arising from the singularities of vXC(r) at each nucleus. Numerical integration of qXC(r) accounts for the continuous charge but misses the point charges. When the point-charge contributions are included, one obtains the correct QXC value. These findings provide an important caveat for attempts to devise asymptotically correct Kohn-Sham potentials by modeling the distribution qXC(r).

  1. Density functional study on redox energetics of LaMO{sub 3−δ} (M=Sc–Cu) perovskite-type oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pishahang, Mehdi, E-mail: Mehdi.Pishahang@sintef.no; Erik Mohn, Chris; Stølen, Svein

    2016-01-15

    This study evaluates the redox energetics of LaMO{sub 3−δ} (M=Sc–Cu) perovskite-type oxides via generalized gradient approximation (GGA) to DFT. Two different approaches to redox energetics of oxygen deficient perovskites of strongly non-stoichiometric (δ=0.5) and dilute defect limits (δ→0) are studied. In the first approach the enthalpies of oxidation are calculated using the stoichiometric end-compounds of LaMO{sub 3} and LaMO{sub 2.5}. The most common structures for the reduced lanthanides and strontides similar to the ones experimentally reported for SrMnO{sub 2.5}, SrFeO{sub 2.5}, and LaNiO{sub 2.5} are considered. The second approach to the oxidation enthalpies termed (δ→0) follow the trend observed experimentally.more » This approach represents the experimental conditions of the measured oxygen enthalpies, and is hampered less by the artificial features due to spurious self-interaction errors in GGA.« less

  2. First-principles calculation of electronic and optical properties of graphene like ZnO (G-ZnO)

    NASA Astrophysics Data System (ADS)

    Farooq, Rabia; Mahmood, Tariq; Anwar, Abdul Waheed; Abbasi, Ghadah Niaz

    2016-02-01

    Semiconductor metal oxides are favorable for their exotic properties like wide band gap, transparency, enhanced charge mobility, and strong luminescence at room temperature. These properties have put metal oxides under limelight, especially ZnO has earned a renowned position in emanate industry for transparent electrodes, electronics, super-capacitors, photo-voltaic cells, gas-sensors, and many more. ZnO is not only environmental friendly but also a highly stable and cheap photo catalytic source naturally available in high abundance. First principles calculation is performed to study optoelectronic properties of ZnO. Geometry optimization of graphene like ZnO (G-ZnO) is preformed using generalized gradient approximation along with hybrid functional (GGA-PBE and GGA-PBE + U) to calculate various structural and electronic parameters of G-ZnO. Employing Hubbard (U) parameter improved band gap and c/a ratio calculation as 1.245 eV and 1.613 respectively; also dielectric constant is calculated as 4.58 (U = 15 eV) which is in accordance with the available experimental data.

  3. Theoretical investigation of the magnetoelectric properties of Bi2NiTiO6

    NASA Astrophysics Data System (ADS)

    Patra, Lokanath; Ravindran, P.

    2018-04-01

    We report the first principle investigations on the structural, electronic, magnetic and ferroelectric properties of a Pb free double perovskite multiferroic Bi2NiTiO6 using density functional theory within the general gradient approximation (GGA) and GGA+U method. Our results show that Bi2NiTiO6 will be an insulator with G-type magnetic ordering in its ground state with Ni2+ in a high spin state and a spin moment of 1.741μB. The paraelectric phase stabilizes in nonmagnetic state with Ni2+ in low spin configuration showing that spin state transition plays an important role in strong magnetoelectric coupling in Bi2NiTiO6. The bonding characteristics of the constituents are analyzed with the help of partial density of states and Born effective charges. The presence of Ti ions at Ni sites suppresses the disproportionation observed in case of BiNiO3 and results in a noncentrosymmetric crystal structure. The coexistence of Bi 6s lone pair and Ti4+ d0 ions which brings covalency produces a polarization of 32 µCcm-2.

  4. Electronic structure of LiCoO2 thin films: A combined photoemission spectroscopy and density functional theory study

    NASA Astrophysics Data System (ADS)

    Ensling, David; Thissen, Andreas; Laubach, Stefan; Schmidt, Peter C.; Jaegermann, Wolfram

    2010-11-01

    The electronic properties of LiCoO2 have been studied by theoretical band-structure calculations (using density functional theory) and experimental methods (photoemission). Synchrotron-induced photoelectron spectroscopy, resonant photoemission spectroscopy (ResPES), and soft x-ray absorption (XAS) have been applied to investigate the electronic structure of both occupied and unoccupied states. High-quality PES spectra were obtained from stoichiometric and highly crystalline LiCoO2 thin films deposited “in situ” by rf magnetron sputtering. An experimental approach of separating oxygen- and cobalt-derived (final) states by ResPES in the valence-band region is presented. The procedure takes advantage of an antiresonant behavior of cobalt-derived states at the 3p-3d excitation threshold. Information about the unoccupied density of states has been obtained by OK XAS. The structure of the CoL absorption edge is compared to semiempirical charge-transfer multiplet calculations. The experimental results are furthermore compared with band-structure calculations considering three different exchange potentials [generalized gradient approximation (GGA), using a nonlocal Hubbard U (GGA+U) and using a hybrid functional (Becke, three-parameter, Lee-Yang-Parr [B3LYP])]. For these different approaches total density of states and partial valence-band density of states have been investigated. The best qualitative agreement with experimental results has been obtained by using a GGA+U functional with U=2.9eV .

  5. The ab initio Calculation of Electric Field Gradient at the Site of P Impurity in α-Al3O2

    NASA Astrophysics Data System (ADS)

    Zhang, Qiao-Li; Yuan, Da-Qing; Zhang, Huan-Qiao; Fan, Ping; Zuo, Yi; Zheng, Yong-Nan; Masuta, K.; Fukuda, M.; Mihara, M.; Minamisono, T.; Kitagawa, A.; Zhu, Sheng-Yun

    2012-09-01

    An ab initio calculation of the electric-field gradient (EFG) at the site of a phosphorous impurity substituting an Al atom in α-Al2O3 is carried out using the WIEN2k code with the full-potential linearized augmented plane wave plus local orbital method (LAPW+lo) in the frame of density functional theory. The atomic lattice relaxations caused by the implanted impurities were calculated for two different charged states to well describe the electronic structure of the doped system. The EFG at the site of the phosphorous impurity in the charged supercell calculated with the exchange-correlation potential of the Wu-Cohen generalized gradient approximation (WC-GGA) is 0.573 × 1021 V/m2. Then, the nuclear quadrupole moment of the I = 3 state in 28P is deduced to be 137 mb from the quadrupole interaction frequency of 190 kHz measured recently by the β-NQR method.

  6. Density-functional energy gaps of solids demystified

    NASA Astrophysics Data System (ADS)

    Perdew, John P.; Ruzsinszky, Adrienn

    2018-06-01

    The fundamental energy gap of a solid is a ground-state second energy difference. Can one find the fundamental gap from the gap in the band structure of Kohn-Sham density functional theory? An argument of Williams and von Barth (WB), 1983, suggests that one can. In fact, self-consistent band-structure calculations within the local density approximation or the generalized gradient approximation (GGA) yield the fundamental gap within the same approximation for the energy. Such a calculation with the exact density functional would yield a band gap that also underestimates the fundamental gap, because the exact Kohn-Sham potential in a solid jumps up by an additive constant when one electron is added, and the WB argument does not take this effect into account. The WB argument has been extended recently to generalized Kohn-Sham theory, the simplest way to implement meta-GGAs and hybrid functionals self-consistently, with an exchange-correlation potential that is a non-multiplication operator. Since this operator is continuous, the band gap is again the fundamental gap within the same approximation, but, because the approximations are more realistic, so is the band gap. What approximations might be even more realistic?

  7. Effect of tellurium concentration on the structural, electronic and mechanical properties of beryllium sulphide: A DFT approach

    NASA Astrophysics Data System (ADS)

    Iyorzor, B. E.; Babalola, M. I.; Adetunji, B. I.; Bakare, F. O.

    2018-05-01

    The structural, electronic and mechanical properties of Be{S}1-xT{e}x are studied within the concentration range of 0≤slant x≤slant 1 using first-principles plane–wave Pseudopotential density functional theory (DFT) approach. We have used generalized gradient approximation (GGA) to treat the exchange-correlation potentials. The elastic constants, bulk, shear and Young’s moduli, Poisson’s ratio, and Zener’s anisotropic factors are calculated. The results were found to be in agreement with other available theoretical and experimental values. It was also observed that the existence and increase of Tellurium concentration decreases the hardness of the alloy.

  8. Density-functional expansion methods: evaluation of LDA, GGA, and meta-GGA functionals and different integral approximations.

    PubMed

    Giese, Timothy J; York, Darrin M

    2010-12-28

    We extend the Kohn-Sham potential energy expansion (VE) to include variations of the kinetic energy density and use the VE formulation with a 6-31G* basis to perform a "Jacob's ladder" comparison of small molecule properties using density functionals classified as being either LDA, GGA, or meta-GGA. We show that the VE reproduces standard Kohn-Sham DFT results well if all integrals are performed without further approximation, and there is no substantial improvement in using meta-GGA functionals relative to GGA functionals. The advantages of using GGA versus LDA functionals becomes apparent when modeling hydrogen bonds. We furthermore examine the effect of using integral approximations to compute the zeroth-order energy and first-order matrix elements, and the results suggest that the origin of the short-range repulsive potential within self-consistent charge density-functional tight-binding methods mainly arises from the approximations made to the first-order matrix elements.

  9. Approximating the Shifted Hartree-Exchange-Correlation Potential in Direct Energy Kohn-Sham Theory.

    PubMed

    Sharpe, Daniel J; Levy, Mel; Tozer, David J

    2018-02-13

    Levy and Zahariev [Phys. Rev. Lett. 113 113002 (2014)] have proposed a new approach for performing density functional theory calculations, termed direct energy Kohn-Sham (DEKS) theory. In this approach, the electronic energy equals the sum of orbital energies, obtained from Kohn-Sham-like orbital equations involving a shifted Hartree-exchange-correlation potential, which must be approximated. In the present study, density scaling homogeneity considerations are used to facilitate DEKS calculations on a series of atoms and molecules, leading to three nonlocal approximations to the shifted potential. The first two rely on preliminary Kohn-Sham calculations using a standard generalized gradient approximation (GGA) exchange-correlation functional and the results illustrate the benefit of describing the dominant Hartree component of the shift exactly. A uniform electron gas analysis is used to eliminate the need for these preliminary Kohn-Sham calculations, leading to a potential with an unconventional form that yields encouraging results, providing strong motivation for further research in DEKS theory.

  10. High pressure behaviour of uranium dicarbide (UC{sub 2}): Ab-initio study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, B. D., E-mail: bdsahoo@barc.gov.in; Mukherjee, D.; Joshi, K. D.

    2016-08-28

    The structural stability of uranium dicarbide has been examined under hydrostatic compression employing evolutionary structure search algorithm implemented in the universal structure predictor: evolutionary Xtallography (USPEX) code in conjunction with ab-initio electronic band structure calculation method. The ab-initio total energy calculations involved for this purpose have been carried out within both generalized gradient approximations (GGA) and GGA + U approximations. Our calculations under GGA approximation predict the high pressure structural sequence of tetragonal → monoclinic → orthorhombic for this material with transition pressures of ∼8 GPa and 42 GPa, respectively. The same transition sequence is predicted by calculations within GGA + U also with transition pressuresmore » placed at ∼24 GPa and ∼50 GPa, respectively. Further, on the basis of comparison of zero pressure equilibrium volume and equation of state with available experimental data, we find that GGA + U approximation with U = 2.5 eV describes this material better than the simple GGA approximation. The theoretically predicted high pressure structural phase transitions are in disagreement with the only high experimental study by Dancausse et al. [J. Alloys. Compd. 191, 309 (1993)] on this compound which reports a tetragonal to hexagonal phase transition at a pressure of ∼17.6 GPa. Interestingly, during lowest enthalpy structure search using USPEX, we do not see any hexagonal phase to be closer to the predicted monoclinic phase even within 0.2 eV/f. unit. More experiments with varying carbon contents in UC{sub 2} sample are required to resolve this discrepancy. The existence of these high pressure phases predicted by static lattice calculations has been further substantiated by analyzing the elastic and lattice dynamic stability of these structures in the pressure regimes of their structural stability. Additionally, various thermo-physical quantities such as equilibrium volume, bulk modulus, Debye temperature, thermal expansion coefficient, Gruneisen parameter, and heat capacity at ambient conditions have been determined from these calculations and compared with the available experimental data.« less

  11. A theoretical study of perovskite CsXCl3 (X=Pb, Cd) within first principles calculations

    NASA Astrophysics Data System (ADS)

    Ilyas, Bahaa M.; Elias, Badal H.

    2017-04-01

    The structural, elastic, electronic, optical acoustic and thermodynamic properties of the cubic perovskite CsPbCl3 and CsCdCl3 unit cell, were studied using an ultra-soft pseudopotential plane wave, the Trouiller-Martins-Functional was utilized to perform these calculations. The study was implemented within both the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA). the Generalized Gradient Approximation (GGA) scheme proposed by van Leeuwen-Baerends which is the same as the Perdew-Wang 92 functional have been carried out to preform our calculations. As for the Local Density Approximation (LDA) the Teter-Pade parametrization (4/93) was implemented which is the same as Perdew-Wang that in its turn reproduces the Ceperley-Alder-Functional. The computed GGA/LDA-lattice parameter for both CsCdCl3 and CsPbCl3 is in an exquisite agreement with the experimental and theoretical results. The energy band structure shows that CsCdCl3 is Γ-R indirect band gap insulator, while CsPbCl3 is an insulator with a direct band gap Γ-Γ separating the valence bands from the conduction bands, which shows metallic nature after pressure 30 GPa. A hybridization exists between Pb-p states and Cl-p states for CsPbCl3, and Cd-p states and Cs-p states for the CsCdCl3 in the valence bonding region. Optimization of both cell shape (geometry) volume were investigated as pressure of 0-20 GPa and 0-40 GPa for the CsCdCl3 and CsPbCl3 respectively. The Pressure dependence of cubic perovskite elastic constants, Young modulus, bulk and shear moduli, Lame's constants, elastic anisotropy factor, elastic wave velocities, phonon dispersion, Debye temperature and the density of states of CsXCl3 (X=Pb, Cd) were theoretically calculated and compared with the other available theoretical results. The above elastic constants reveal the fact that both compounds are stable and show nature of ductility. For the optical properties, both the static refractive index and dielectric constant are found to be related proportionally to the indirect band gap of CsCdCl3. The refractive index, extinction coefficient, complex dielectric function, energy loss function, optical conductivity, reflectivity and absorption coefficient for 0-25 eV incident photon energies have been predicted. The phonon properties were investigated using response functions to predict the phonon lattice dispersion and the density of states. The thermal effect on the heat capacities, entropy, enthalpy and Free energy were predicted and compared using both the quasi-harmonic Debye model and response functions, the latter provided far better results. To the best of the authors' knowledge, most of the studied properties have not been experimentally reported so far. Generally, the computed results for both CsCdCl3 and CsPbCl3 are very satisfactory and show good agreement with other calculations.

  12. Quantifying confidence in density functional theory predictions of magnetic ground states

    NASA Astrophysics Data System (ADS)

    Houchins, Gregory; Viswanathan, Venkatasubramanian

    2017-10-01

    Density functional theory (DFT) simulations, at the generalized gradient approximation (GGA) level, are being routinely used for material discovery based on high-throughput descriptor-based searches. The success of descriptor-based material design relies on eliminating bad candidates and keeping good candidates for further investigation. While DFT has been widely successfully for the former, oftentimes good candidates are lost due to the uncertainty associated with the DFT-predicted material properties. Uncertainty associated with DFT predictions has gained prominence and has led to the development of exchange correlation functionals that have built-in error estimation capability. In this work, we demonstrate the use of built-in error estimation capabilities within the BEEF-vdW exchange correlation functional for quantifying the uncertainty associated with the magnetic ground state of solids. We demonstrate this approach by calculating the uncertainty estimate for the energy difference between the different magnetic states of solids and compare them against a range of GGA exchange correlation functionals as is done in many first-principles calculations of materials. We show that this estimate reasonably bounds the range of values obtained with the different GGA functionals. The estimate is determined as a postprocessing step and thus provides a computationally robust and systematic approach to estimating uncertainty associated with predictions of magnetic ground states. We define a confidence value (c-value) that incorporates all calculated magnetic states in order to quantify the concurrence of the prediction at the GGA level and argue that predictions of magnetic ground states from GGA level DFT is incomplete without an accompanying c-value. We demonstrate the utility of this method using a case study of Li-ion and Na-ion cathode materials and the c-value metric correctly identifies that GGA-level DFT will have low predictability for NaFePO4F . Further, there needs to be a systematic test of a collection of plausible magnetic states, especially in identifying antiferromagnetic (AFM) ground states. We believe that our approach of estimating uncertainty can be readily incorporated into all high-throughput computational material discovery efforts and this will lead to a dramatic increase in the likelihood of finding good candidate materials.

  13. Elasticity of Pargasite Amphibole: A Hydrous Phase at Mid Lithospheric Discontinuity

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Mookherjee, M.

    2017-12-01

    Mid Lithospheric Discontinuity (MLD) is characterized by a low shear wave velocity ( 3 to 10 %). In cratons, the depth of MLD varies between 80 and 100 km. The reduction of the shear wave velocity at MLD is similar to what is observed in the lithosphere-asthenosphere boundary (LAB). Such low velocity at MLD could be caused by partial melting, temperature induced grain boundary sliding, changes in the elastic anisotropy, and/or metasomatism which may lead to the formation of hydrous phases including mica and amphibole. Thus, it is clear that in order to assess the role of metasomatism at MLD, we need better constraints on the elasticity of hydrous phases. However, such elasticity data are scarce. In this study, we explore elasticity of pargasite amphibole [NaCa2(Mg4Al)(Si6Al2)O22(OH)2] using density functional theory (DFT) with local density approximation (LDA) and generalized gradient approximation (GGA). We find that the pressure-volume results can be adequately described by a finite strain equation with the bulk modulus, K0 being 102 and 85 GPa for LDA and GGA respectively. We also determined the full elastic constant tensor (Cij) using the finite difference method. The bulk modulus, K0 determined from the full elastic constant tensor is 104 GPa for LDA and 87 GPa for GGA. The shear modulus, G0 determined from the full elastic constant tensor is 64 GPa for LDA and 58 GPa for GGA. The bulk and shear moduli predicted with LDA are 5 and 1 % stiffer than the recent results [1]. In contrast, the bulk and shear moduli predicted with GGA are 12 and 10 % softer compared to the recent results [1]. The full elastic constant tensor for pargasite shows significant anisotropy. For instance, LDA predicts compressional (AVP) and shear (AVS) wave anisotropy of 22 and 20 % respectively. At higher pressure, elastic moduli stiffen. However, temperature is likely to have an opposite effect on the elasticity and this remains largely unknown for pargasite. Compared to the major mantle minerals, pargasite has softer elastic constants and significant anisotropy and may explain the reduction in shear wave velocity at MLD. Reference: [1] Brown, J. M., Abramson, E. H.,2016, Phys. Earth Planet. Int., 261, 161-171. Acknowledgement: This work is supported by US NSF award EAR 1639552.

  14. Thermal conductivity of wurtzite and zinc blende cubic phases of BeO from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Malakkal, Linu; Szpunar, Barbara; Siripurapu, Ravi Kiran; Zuniga, Juan Carlos; Szpunar, Jerzy A.

    2017-03-01

    The structural, mechanical, thermal and thermodynamic properties of Beryllium oxide (BeO) in the zinc blende (ZB) and wurtzite (WZ) form have been calculated using the density functional theory (DFT) in the general gradient approximation (GGA). The ground state structural and elastic properties of wurtzite BeO (w-BeO) is calculated using the new GGA ultrasoft pseudopotentials for solids (pbesol); the simulated results have shown excellent agreement with the experiments. The thermodynamic properties are studied using quasi-harmonic approximation (QHA), and the predicted properties agree well for the WZ phase for which the experimental data are available, while for ZB phase it remains to be validated with future experiments. Both Boltzmann transport equation (BTE) and Slack model were used to calculate the lattice thermal conductivity of wurtzite BeO (w-BeO). Furthermore, the thermal conductivity along the crystallographic 'a' and 'c' axis of wurtzite BeO is investigated using BTE. Our calculation of w-BeO agrees well with the available experimental measurements. Apart from these studies on w-BeO, we have also compared the mechanical, structural and phonon dispersions of z-BeO with previously reported theoretical studies. Additionally we report the volume thermal expansion and the heat capacity at constant pressure of z-BeO for the first time and the bulk thermal conductivity of zinc blende BeO (z-BeO) using BTE.

  15. Study of pressure variation effect on structural, opto-electronic, elastic, mechanical, and thermodynamic properties of SrLiF3

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Iqbal, Muhammad Azhar

    2017-11-01

    The structural, electronic, elastic, optical and thermodynamic properties of cubic fluoroperovskite SrLiF3 at ambient and high-pressure are investigated by using first-principles total energy calculations within the framework of Generalized Gradient Approximation (GGA), combined with Quasi-harmonic Debye model in which the phonon effects are considered. The pressure effects are determined in the range of 0-50 GPa, in which cubic stability of SrLiF3 fluoroperovskite remains valid. The computed lattice parameters agree well with experimental and previous theoretical results. Decrease in lattice constant and bonds length is observed with the increase in pressure from 0 to 50 GPa. The effect of increase in pressure on electronic band structure calculations with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential reveals a predominant characteristic associated with widening of bandgap. The influence of pressure on elastic constants and their related mechanical parameters have been discussed in detail. All the calculated optical properties such as the complex dielectric function Ԑ(ω), optical conductivity σ(ω), energy loss function L(ω), absorption coefficient α(w), refractive index n (ω), reflectivity R (ω), and effective number of electrons neff, via sum rules shift towards the higher energies under the application of pressure. Moreover, important thermodynamic properties heat capacities (Cp and Cv), volume expansion coefficient (α), and Debye temperature (θD) are predicted successfully in the wide temperature and pressure ranges.

  16. Insights in the electronic structure and redox reaction energy in LiFePO{sub 4} battery material from an accurate Tran-Blaha modified Becke Johnson potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araujo, Rafael B., E-mail: rafael.barros@physics.uu.se; Almeida, J. de S; Instituto de Física, Universidade Federal da Bahia, Salvador, Bahia

    The main goals of this paper are to investigate the accuracy of the Tran-Blaha modified Becke Johnson (TB-mBJ) potential to predict the electronic structure of lithium iron phosphate and the related redox reaction energy with the lithium deintercalation process. The computed electronic structures show that the TB-mBJ method is able to partially localize Fe-3d electrons in LiFePO{sub 4} and FePO{sub 4} which usually is a problem for the generalized gradient approximation (GGA) due to the self interaction error. The energy band gap is also improved by the TB-mBJ calculations in comparison with the GGA results. It turned out, however, thatmore » the redox reaction energy evaluated by the TB-mBJ technique is not in good agreement with the measured one. It is speculated that this disagreement in the computed redox energy and the experimental value is due to the lack of a formal expression to evaluate the exchange and correlation energy. Therefore, the TB-mBJ is an efficient method to improve the prediction of the electronic structures coming form the standard GGA functional in LiFePO{sub 4} and FePO{sub 4}. However, it does not appear to have the same efficiency for evaluating the redox reaction energies for the investigated system.« less

  17. DFT-BASED AB INITIO STUDY OF THE ELECTRONIC AND OPTICAL PROPERTIES OF CESIUM BASED FLUORO-PEROVSKITE CsMF3 (M = Ca AND Sr)

    NASA Astrophysics Data System (ADS)

    Harmel, M.; Khachai, H.; Ameri, M.; Khenata, R.; Baki, N.; Haddou, A.; Abbar, B.; UǦUR, Ş.; Omran, S. Bin; Soyalp, F.

    2012-12-01

    Density functional theory (DFT) is performed to study the structural, electronic and optical properties of cubic fluoroperovskite AMF3 (A = Cs; M = Ca and Sr) compounds. The calculations are based on the total-energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated by local density approximation (LDA) and generalized gradient approximation (GGA). The structural properties, including lattice constants, bulk modulus and their pressure derivatives are in very good agreement with the available experimental and theoretical data. The calculations of the electronic band structure, density of states and charge density reveal that compounds are both ionic insulators. The optical properties (namely: the real and the imaginary parts of the dielectric function ɛ(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 40.0 eV.

  18. Tuning the thermoelectric properties of YNiBi half-Heusler alloy

    NASA Astrophysics Data System (ADS)

    Sharma, Sonu; Kumar, Pradeep

    2018-04-01

    A detail comparison between the results obtained for the electronic and transport properties of YNiBi half-Heusler alloy by local density approximation (LDA) and generalized gradient approximation (GGA) functionals with and without spin–orbit coupling (SOC) is presented. In the presence of SOC both functionals provide ∼30% smaller band gap. The transport coefficients computed without SOC confirm that YNiBi is a promising p-type thermoelectric material. However, with SOC at higher temperature, Seebeck coefficient was found to be negative because of the bipolar effects. Without SOC the computed power factor (PF) is found to be closer to the experimental value, while in the presence of SOC we have obtained comparatively smaller PF. No importance of SOC has been observed in the calculations of transport properties of the compound. The appropriate Ti doping in place of Y is predicted to significantly enhance the thermoelectric properties of YNiBi compound.

  19. Semi-Local DFT Functionals with Exact-Exchange-Like Features: Beyond the AK13

    NASA Astrophysics Data System (ADS)

    Armiento, Rickard

    The Armiento-Kümmel functional from 2013 (AK13) is a non-empirical semi-local exchange functional on generalized gradient approximation form (GGA) in Kohn-Sham (KS) density functional theory (DFT). Recent works have established that AK13 gives improved electronic-structure exchange features over other semi-local methods, with a qualitatively improved orbital description and band structure. For example, the Kohn-Sham band gap is greatly extended, as it is for exact exchange. This talk outlines recent efforts towards new exchange-correlation functionals based on, and extending, the AK13 design ideas. The aim is to improve the quantitative accuracy, the description of energetics, and to address other issues found with the original formulation. Swedish e-Science Research Centre (SeRC).

  20. Structural, Electronic and Elastic Properties of Half-Heusler Alloys CrNiZ (Z = Al, Si, Ge and As)

    NASA Astrophysics Data System (ADS)

    Zitouni, A.; Benstaali, W.; Abbad, A.; Lantri, T.; Bouadjemi, B.; Aziz, Z.

    2018-06-01

    In the present work, a self-consistent ab-initio calculation using the full- potential linearized augmented plane wave (FP-LAPW) method within the framework of the spin-polarized density functional theory (DFT) was used to study the structural, electronic, magnetic and elastic properties of the half Heusler alloys CrNiZ (Z = Al, Si, Ge and As) in three phases ( α, β and γ phases). The generalized gradient approximation (GGA) described by Perdew-Burke-Ernzerhof (PBE) was used. The results obtained for the spin-polarized band structure and the density of states show a halfmetallic behavior for the four compounds. The elastic constants ( C ij ) show that our compounds are ductile, stiff and anisotropic.

  1. ωB97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mardirossian, Narbe; Head-Gordon, Martin

    2013-12-18

    A 10-parameter, range-separated hybrid (RSH), generalized gradient approximation (GGA) density functional with nonlocal correlation (VV10) is presented in this paper. Instead of truncating the B97-type power series inhomogeneity correction factors (ICF) for the exchange, same-spin correlation, and opposite-spin correlation functionals uniformly, all 16 383 combinations of the linear parameters up to fourth order (m = 4) are considered. These functionals are individually fit to a training set and the resulting parameters are validated on a primary test set in order to identify the 3 optimal ICF expansions. Through this procedure, it is discovered that the functional that performs best onmore » the training and primary test sets has 7 linear parameters, with 3 additional nonlinear parameters from range-separation and nonlocal correlation. The resulting density functional, ωB97X-V, is further assessed on a secondary test set, the parallel-displaced coronene dimer, as well as several geometry datasets. Finally and furthermore, the basis set dependence and integration grid sensitivity of ωB97X-V are analyzed and documented in order to facilitate the use of the functional.« less

  2. From clusters to bulk: A relativistic density functional investigation on a series of gold clusters Aun, n=6,…,147

    NASA Astrophysics Data System (ADS)

    Häberlen, Oliver D.; Chung, Sai-Cheong; Stener, Mauro; Rösch, Notker

    1997-03-01

    A series of gold clusters spanning the size range from Au6 through Au147 (with diameters from 0.7 to 1.7 nm) in icosahedral, octahedral, and cuboctahedral structure has been theoretically investigated by means of a scalar relativistic all-electron density functional method. One of the main objectives of this work was to analyze the convergence of cluster properties toward the corresponding bulk metal values and to compare the results obtained for the local density approximation (LDA) to those for a generalized gradient approximation (GGA) to the exchange-correlation functional. The average gold-gold distance in the clusters increases with their nuclearity and correlates essentially linearly with the average coordination number in the clusters. An extrapolation to the bulk coordination of 12 yields a gold-gold distance of 289 pm in LDA, very close to the experimental bulk value of 288 pm, while the extrapolated GGA gold-gold distance is 297 pm. The cluster cohesive energy varies linearly with the inverse of the calculated cluster radius, indicating that the surface-to-volume ratio is the primary determinant of the convergence of this quantity toward bulk. The extrapolated LDA binding energy per atom, 4.7 eV, overestimates the experimental bulk value of 3.8 eV, while the GGA value, 3.2 eV, underestimates the experiment by almost the same amount. The calculated ionization potentials and electron affinities of the clusters may be related to the metallic droplet model, although deviations due to the electronic shell structure are noticeable. The GGA extrapolation to bulk values yields 4.8 and 4.9 eV for the ionization potential and the electron affinity, respectively, remarkably close to the experimental polycrystalline work function of bulk gold, 5.1 eV. Gold 4f core level binding energies were calculated for sites with bulk coordination and for different surface sites. The core level shifts for the surface sites are all positive and distinguish among the corner, edge, and face-centered sites; sites in the first subsurface layer show still small positive shifts.

  3. Calculation of strained BaTiO3 with different exchange correlation functionals examined with criterion by Ginzburg-Landau theory, uncovering expressions by crystallographic parameters

    NASA Astrophysics Data System (ADS)

    Watanabe, Yukio

    2018-05-01

    In the calculations of tetragonal BaTiO3, some exchange-correlation (XC) energy functionals such as local density approximation (LDA) have shown good agreement with experiments at room temperature (RT), e.g., spontaneous polarization (PS), and superiority compared with other XC functionals. This is due to the error compensation of the RT effect and, hence, will be ineffective in the heavily strained case such as domain boundaries. Here, ferroelectrics under large strain at RT are approximated as those at 0 K because the strain effect surpasses the RT effects. To find effective XC energy functionals for strained BaTiO3, we propose a new comparison, i.e., a criterion. This criterion is the properties at 0 K given by the Ginzburg-Landau (GL) theory because GL theory is a thermodynamic description of experiments working under the same symmetry-constraints as ab initio calculations. With this criterion, we examine LDA, generalized gradient approximations (GGA), meta-GGA, meta-GGA + local correlation potential (U), and hybrid functionals, which reveals the high accuracy of some XC functionals superior to XC functionals that have been regarded as accurate. This result is examined directly by the calculations of homogenously strained tetragonal BaTiO3, confirming the validity of the new criterion. In addition, the data points of theoretical PS vs. certain crystallographic parameters calculated with different XC functionals are found to lie on a single curve, despite their wide variations. Regarding these theoretical data points as corresponding to the experimental results, analytical expressions of the local PS using crystallographic parameters are uncovered. These expressions show the primary origin of BaTiO3 ferroelectricity as oxygen displacements. Elastic compliance and electrostrictive coefficients are estimated. For the comparison of strained results, we show that the effective critical temperature TC under strain <-0.01 is >1000 K from an approximate method combining ab initio results with GL theory. In addition, in a definite manner, the present results show much more enhanced ferroelectricity at large strain than the previous reports.

  4. Magnetism by embedding 3d transition metal atoms into germanene

    NASA Astrophysics Data System (ADS)

    Sharma, Durgesh Kumar; Kumar, Sudhir; Auluck, Sushil

    2018-06-01

    We have performed a series of first-principles calculations within the framework of density functional theory for germanene including mono vacancy (MV) and double vacancy (DV). Perdew–Burke–Ernzerhof generalized gradient approximation (GGA) in the form of exchange-correlation potential was used. Ten transition metals (TMs) i.e. Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn, have been embedded at MV and DV site for the purpose to introduce magnetism into germanene. We find TM embedded germanene is stable and the value of magnetic moment can be tune with the TM impurities. Further, carbon (C) or nitrogen (N) in the vicinity of MV has been considered to find its influence on stability and total magnetic moment. Present predictions indicate Mn impurity shows largest magnetic moment among considered ten TMs. The Heyd–Scuseria–Ernzerhof (HSE06) hybrid functional based calculations have been also carried out for Mn system only for shake of comparison standpoint. The GGA/HSE06 calculations show better stability of TM embedded germanene after doping of C or N in vicinity of TM. Our calculations may provide a promising approach to design germanene based spintronic devices.

  5. Enhanced NMR Discrimination of Pharmaceutically Relevant Molecular Crystal Forms through Fragment-Based Ab Initio Chemical Shift Predictions.

    PubMed

    Hartman, Joshua D; Day, Graeme M; Beran, Gregory J O

    2016-11-02

    Chemical shift prediction plays an important role in the determination or validation of crystal structures with solid-state nuclear magnetic resonance (NMR) spectroscopy. One of the fundamental theoretical challenges lies in discriminating variations in chemical shifts resulting from different crystallographic environments. Fragment-based electronic structure methods provide an alternative to the widely used plane wave gauge-including projector augmented wave (GIPAW) density functional technique for chemical shift prediction. Fragment methods allow hybrid density functionals to be employed routinely in chemical shift prediction, and we have recently demonstrated appreciable improvements in the accuracy of the predicted shifts when using the hybrid PBE0 functional instead of generalized gradient approximation (GGA) functionals like PBE. Here, we investigate the solid-state 13 C and 15 N NMR spectra for multiple crystal forms of acetaminophen, phenobarbital, and testosterone. We demonstrate that the use of the hybrid density functional instead of a GGA provides both higher accuracy in the chemical shifts and increased discrimination among the different crystallographic environments. Finally, these results also provide compelling evidence for the transferability of the linear regression parameters mapping predicted chemical shieldings to chemical shifts that were derived in an earlier study.

  6. Enhanced NMR Discrimination of Pharmaceutically Relevant Molecular Crystal Forms through Fragment-Based Ab Initio Chemical Shift Predictions

    PubMed Central

    2016-01-01

    Chemical shift prediction plays an important role in the determination or validation of crystal structures with solid-state nuclear magnetic resonance (NMR) spectroscopy. One of the fundamental theoretical challenges lies in discriminating variations in chemical shifts resulting from different crystallographic environments. Fragment-based electronic structure methods provide an alternative to the widely used plane wave gauge-including projector augmented wave (GIPAW) density functional technique for chemical shift prediction. Fragment methods allow hybrid density functionals to be employed routinely in chemical shift prediction, and we have recently demonstrated appreciable improvements in the accuracy of the predicted shifts when using the hybrid PBE0 functional instead of generalized gradient approximation (GGA) functionals like PBE. Here, we investigate the solid-state 13C and 15N NMR spectra for multiple crystal forms of acetaminophen, phenobarbital, and testosterone. We demonstrate that the use of the hybrid density functional instead of a GGA provides both higher accuracy in the chemical shifts and increased discrimination among the different crystallographic environments. Finally, these results also provide compelling evidence for the transferability of the linear regression parameters mapping predicted chemical shieldings to chemical shifts that were derived in an earlier study. PMID:27829821

  7. Communication: Correct charge transfer in CT complexes from the Becke'05 density functional

    NASA Astrophysics Data System (ADS)

    Becke, Axel D.; Dale, Stephen G.; Johnson, Erin R.

    2018-06-01

    It has been known for over twenty years that density functionals of the generalized-gradient approximation (GGA) type and exact-exchange-GGA hybrids with low exact-exchange mixing fraction yield enormous errors in the properties of charge-transfer (CT) complexes. Manifestations of this error have also plagued computations of CT excitation energies. GGAs transfer far too much charge in CT complexes. This error has therefore come to be called "delocalization" error. It remains, to this day, a vexing unsolved problem in density-functional theory (DFT). Here we report that a 100% exact-exchange-based density functional known as Becke'05 or "B05" [A. D. Becke, J. Chem. Phys. 119, 2972 (2003); 122, 064101 (2005)] predicts excellent charge transfers in classic CT complexes involving the electron donors NH3, C2H4, HCN, and C2H2 and electron acceptors F2 and Cl2. Our approach is variational, as in our recent "B05min" dipole moments paper [Dale et al., J. Chem. Phys. 147, 154103 (2017)]. Therefore B05 is not only an accurate DFT for thermochemistry but is promising as a solution to the delocalization problem as well.

  8. Hybrid functional studies of stability and diffusion of hydrogen in Mg-doped GaN

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sang; Chang, K. J.

    2012-02-01

    Nitride semiconductors are known to suffer from low p-type doping efficiency due to the high activation energy of Mg acceptors and the compensation of hole carriers. To enhance hole carrier concentration, the hydrogen co-doping method is widely used, in which hydrogen is intentionally doped with Mg dopants and removed by subsequent thermal annealing. In this work, we perform first-principles density functional calculations to study the stability and diffusion of hydrogen in Mg-doped GaN. For the exchange-correlation potential, we employ both the generalized gradient approximation (GGA) proposed by Perdew, Burke, and Ernzerhof and the hybrid density functional of Heyd, Scuseria, and Ernzerhof. We examine the diffusion pathways and dissociation barriers of H from the Mg-H complex using the nudged elastic band and dimer methods. We compare the results of the GGA and hybrid density functional calculations for the stability of various H interstitial configurations and the migration barriers for H diffusion. Finally, using the calculated migration barriers as inputs, we perform kinetic Monte Carlo simulations for the dissociation of the Mg-H complex and find that the Mg acceptors are activated by thermal annealing up to 700-800 ^oC, in good agreement with experiments.

  9. Impact of anion replacement on the optoelectronic and thermoelectric properties of CaMg2X2, X= (N, P, As, Sb, Bi) compounds

    NASA Astrophysics Data System (ADS)

    Khan, Abdul Ahad; Yaseen, M.; Laref, A.; Murtaza, G.

    2018-07-01

    The structural, electronic, optical and thermoelectric properties of ternary CaMg2X2 (X = N, P, As, Sb and Bi) compounds are investigated using all electrons full potential linearized augment plane wave method. By using generalized gradient approximation (GGA), unit cell volumes of the compounds are optimized. For calculations of optical and electronic properties the modified Becke Johnson exchange potential is used along with the GGA. The direct energy band gap decreases by replacing the pnictogen elements, while indirect bandgap also decreases except for CaMg2As2. The optical properties show a prominent variation over the change of anion from N to Bi. There is inverse variation between refractive index and the band gap. The refractive indices of these compounds are high in the visible region and sharply decreased in the ultraviolet region. The thermoelectric properties are also studied using Boltzmann statistics through BoltzTrap code. A positive non-zero value of Seebeck coefficient shows a P-type semiconducting behavior of these compounds. High figure of merits (ZT) and optical conductivity peaks for all compounds reveal that they are good candidates for the thermo-electric and optoelectronics devices.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gledhill, Jonathan D.; Tozer, David J., E-mail: d.j.tozer@durham.ac.uk

    Density scaling considerations are used to derive an exchange–correlation explicit density functional that is appropriate for the electron deficient side of the integer and which recovers the exact r → ∞ asymptotic behaviour of the exchange–correlation potential. The functional has an unconventional mathematical form with parameters that are system-dependent; the parameters for an N-electron system are determined in advance from generalised gradient approximation (GGA) calculations on the N- and (N − 1)-electron systems. Compared to GGA results, the functional yields similar exchange–correlation energies, but HOMO energies that are an order of magnitude closer to the negative of the vertical ionisationmore » potential; for anions, the HOMO energies are negative, as required. Rydberg excitation energies are also notably improved and the exchange–correlation potential is visibly lowered towards the near-exact potential. Further development is required to improve valence excitations, static isotropic polarisabilities, and the shape of the potential in non-asymptotic regions. The functional is fundamentally different to conventional approximations.« less

  11. Absence of B1-B2 structural transition in lithium halides under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    de Coss, Romeo; Murrieta, Gabriel

    2005-03-01

    We have investigated the B1-B2 structural transition in LiF, LiCl, LiBr, and LiI under hydrostatic pressure by means of first-principles total-energy calculations using the Full- Potential LAPW method. In order to analyze the gradient effects, we have performed calculations using the local density approximation (LDA) and the generalized gradient approximation (GGA), for the exchange and correlation potential. In agreement with the experimental observations, we find that even for pressures higher than 100 GPa, the Li halides do not present the B1-B2 structural transition. In order to understand this behavior, we have calculated the distribution of the electron densities. From the analysis of the distribution of electron densities for the Li halides in the B1 and B2 phases, we find that for this group of ionic compounds the B1 phase have a distribution of electron densities more homogeneous than in the B2 phase, preventing the B1-B2 structural transition. This work was partially supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant No. 43830-F.

  12. Structural stability, elastic and thermodynamic properties of Au-Cu alloys from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kong, Ge-Xing; Ma, Xiao-Juan; Liu, Qi-Jun; Li, Yong; Liu, Zheng-Tang

    2018-03-01

    Using first-principles calculations method based on density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE) implementation of the generalized gradient approximation (GGA), we investigate the structural, elastic and thermodynamic properties of gold-copper intermetallic compounds (Au-Cu ICs). The calculated lattice parameters are in excellent agreement with experimental data. The elastic constants show that all the investigated Au-Cu alloys are mechanically stable. Elastic properties, including the shear modulus, Young's modulus, Poisson's ratio and Pugh's indicator, of the intermetallic compounds are evaluated and discussed, with special attention to the remarkable anisotropy displayed by Au-Cu ICs. Thermodynamic and transport properties including the Debye temperature, thermal conductivity and melting point are predicted from the averaged sound velocity and elastic moduli, using semi-empirical formulas.

  13. Electronic structure calculation of Sr2CoWO6 double perovskite using DFT+U

    NASA Astrophysics Data System (ADS)

    Mandal, Golak; Jha, Dhiraj; Himanshu, A. K.; Ray, Rajyavardhan; Mukherjee, P.; Das, Nisith; Singh, B. K.; Sreenivas, K.; Singh, M. N.; Sinha, A. K.

    2018-04-01

    Using the synchrotron and Raman spectroscopy we measured the lattice parameter and Raman modes of the half-metallic (HM) Sr2CoWO6 (SCoW) synthesied by the solid state reaction technique.. The physical properties of SCoW are studies within the framework of density function theory (DFT) under the generalised gradient approximation (GGA) of Perdew, Bruke, and Ernzerhof both by itself and including a coulomb repulsion via the Hubbard approach or GGA+U. Our results states that Sr2CoWO6 material behaves as insulators for the spin-up orientation and spindown orientation as found for the half metallic systems and at U = 0.06eV the ground state of spin up channel being insulating with spin gap of 2.27eV comparable to the experimental Band gap (BG).

  14. Structural, electronic, magnetic, elastic, and thermal properties of Co-based equiatomic quaternary Heusler alloys

    NASA Astrophysics Data System (ADS)

    Paudel, Ramesh; Zhu, Jingchuan

    2018-05-01

    In this research work, we have predicted the physical properties of CoFeZrGe and CoFeZrSb for the first time by utilizing first principle calculations based on density functional theory. The exchange-correlation potentials are treated within the generalized-gradient approximation of Perdew-Burke and Ernzerhof (GGA-PBE). The investigated equilibrium lattice parameters of CoFeCrSi are in agreement with available theoretical data and for CoFeZrZ(Z = Ge,Sb) are 6.0013 and 6.2546 Å respectively. The calculated magnetic moments are 1.01μB /fu , 2μB /fu and 1μB /fu for CoFeZrZ(Z = Ge, Sb and Si) respectively, and agree with the Slater-Pauling rule, Mt =Zt - 24 . The CoFeZrGe, CoFeZrSb and CoFeZrSi composites showed half-metallic behaviour with 100 % spin polarization at equilibrium lattice parameters with band gap of 0.43, 0.70 and 0.59 eV for GGA and an improved band gap of 0.86, 1.01 and 1.08 for GGA + U respectively. Elastic properties are also discussed in this paper and it is found that all the materials are mechanically stable and ductile in nature. The CoFeZrSi alloy is found to be stiffer than CoFeZrZ(Z = Ge and Sb) alloys. The Debye temperatures are predicted by using calculated elastic constants. Moreover, the volume heat capacities (Cv) are investigated by utilizing the quasi-harmonic Debye model.

  15. Orbital nodal surfaces: Topological challenges for density functionals

    NASA Astrophysics Data System (ADS)

    Aschebrock, Thilo; Armiento, Rickard; Kümmel, Stephan

    2017-06-01

    Nodal surfaces of orbitals, in particular of the highest occupied one, play a special role in Kohn-Sham density-functional theory. The exact Kohn-Sham exchange potential, for example, shows a protruding ridge along such nodal surfaces, leading to the counterintuitive feature of a potential that goes to different asymptotic limits in different directions. We show here that nodal surfaces can heavily affect the potential of semilocal density-functional approximations. For the functional derivatives of the Armiento-Kümmel (AK13) [Phys. Rev. Lett. 111, 036402 (2013), 10.1103/PhysRevLett.111.036402] and Becke88 [Phys. Rev. A 38, 3098 (1988), 10.1103/PhysRevA.38.3098] energy functionals, i.e., the corresponding semilocal exchange potentials, as well as the Becke-Johnson [J. Chem. Phys. 124, 221101 (2006), 10.1063/1.2213970] and van Leeuwen-Baerends (LB94) [Phys. Rev. A 49, 2421 (1994), 10.1103/PhysRevA.49.2421] model potentials, we explicitly demonstrate exponential divergences in the vicinity of nodal surfaces. We further point out that many other semilocal potentials have similar features. Such divergences pose a challenge for the convergence of numerical solutions of the Kohn-Sham equations. We prove that for exchange functionals of the generalized gradient approximation (GGA) form, enforcing correct asymptotic behavior of the potential or energy density necessarily leads to irregular behavior on or near orbital nodal surfaces. We formulate constraints on the GGA exchange enhancement factor for avoiding such divergences.

  16. Structural and electronic properties of Sr{sub x}Ba{sub 1-x}SnO{sub 3} from first principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, E.; Henriques, J.M.; Azevedo, D.L.

    2012-03-15

    Neutron diffraction data for Sr{sub x}Ba{sub 1-x}SnO{sub 3} (x=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) solid solutions were used as inputs to obtain optimized geometries and electronic properties using the density functional theory (DFT) formalism considering both the local density and generalized gradient approximations, LDA and GGA, respectively. The crystal structures and SnO{sub 6} octahedra tilting angles found after total energy minimization agree well with experiment, specially for the GGA data. Elastic constants were also obtained and compared with theoretical and experimental results for cubic BaSnO{sub 3}. While the alloys with cubic unit cell have an indirect band gap, tetragonalmore » and orthorhombic alloys exhibit direct band gaps (exception made to x=1.0). The Kohn-Sham minimum electronic band gap oscillates from 1.52 eV (cubic x=0.0, LDA) to 2.61 eV (orthorhombic x=1.0, LDA), and from 0.74 eV (cubic BaSnO{sub 3}, GGA) to 1.97 eV (orthorhombic SrSnO{sub 3}, GGA). Parabolic interpolation of bands has allowed us to estimate the effective masses for charge carriers, which are shown to be anisotropic and larger for holes. - Graphical Abstract: Highlights: Black-Right-Pointing-Pointer DFT calculations were performed on Sr{sub x}Ba{sub 1-x}SnO{sub 3} solid solutions. Black-Right-Pointing-Pointer Calculated crystal structures agree well with experiment. Black-Right-Pointing-Pointer Alloys have direct or indirect gaps depending on the Sr molar fraction. Black-Right-Pointing-Pointer The Kohn-Sham gap variation from x=0.0 to x=1.0 is close to the experimental value. Black-Right-Pointing-Pointer Carrier effective masses are very anisotropic, specially for holes.« less

  17. Ab-Initio Investigations of Magnetic Properties and Induced Half-Metallicity in Ga1-xMnxP (x = 0.03, 0.25, 0.5, and 0.75) Alloys.

    PubMed

    Laref, Amel; AlMudlej, Abeer; Laref, Slimane; Yang, Jun Tao; Xiong, Yong-Chen; Luo, Shi Jun

    2017-07-07

    Ab-initio calculations are performed to examine the electronic structures and magnetic properties of spin-polarized Ga 1- x Mn x P ( x = 0.03, 0.25, 0.5, and 0.75) ternary alloys. In order to perceive viable half-metallic (HM) states and unprecedented diluted magnetic semiconductors (DMSs) such as spintronic materials, the full potential linearized augmented plane wave method is utilized within the generalized gradient approximation (GGA). In order to tackle the correlation effects on 3d states of Mn atoms, we also employ the Hubbard U (GGA + U) technique to compute the magnetic properties of an Mn-doped GaP compound. We discuss the emerged global magnetic moments and the robustness of half-metallicity by varying the Mn composition in the GaP compound. Using GGA + U, the results of the density of states demonstrate that the incorporation of Mn develops a half-metallic state in the GaP compound with an engendered band gap at the Fermi level ( E F ) in the spin-down state. Accordingly, the half-metallic feature is produced through the hybridization of Mn-d and P-p orbitals. However, the half-metallic character is present at a low x composition with the GGA procedure. The produced magnetic state occurs in these materials, which is a consequence of the exchange interactions between the Mn-element and the host GaP system. For the considered alloys, we estimated the X-ray absorption spectra at the K edge of Mn. A thorough clarification of the pre-edge peaks is provided via the results of the theoretical absorption spectra. It is inferred that the valence state of Mn in Ga 1- x Mn x P alloys is +3. The predicted theoretical determinations surmise that the Mn-incorporated GaP semiconductor could inevitably be employed in spintronic devices.

  18. Improved half-metallic gap of zincblende half-metal superlattices with the Tran-Blaha modified Becke-Johnson density functional

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong

    2016-08-01

    Binary transition-metal pnictides and chalcogenides half-metallic ferromagnetic materials with zincblende structure, being compatible with current semiconductor technology, can be used to make high-performance spintronic devices. Here, we investigate electronic structures and magnetic properties of composite structure ((CrX)2 /(YX)2 (X=As, Sb; Se, Te and Y=Ga; Zn) superlattices) of zincblende half-metallic ferromagnetism and semiconductor by using Tran and Blaha's modified Becke and Johnson (mBJ) exchange potential. Calculated results show that they all are half-metallic ferromagnets with both generalized gradient approximation (GGA) and mBJ, and the total magnetic moment per formula unit follows a Slater-Pauling-like "rule of 8". The key half-metallic gaps by using mBJ are enhanced with respect to GGA results, which is because mBJ makes the occupied minority-spin p-bands move toward lower energy, but toward higher energy for empty minority-spin Cr-d bands. When the spin-orbit coupling (SOC) is included, the spin polarization deviates from 100%, and a most reduced polarization of 98.3% for (CrSb)2 /(GaSb)2, which indicates that SOC has small effects, of the order of 1%, in the considered four kinds of superlattice.

  19. Theoretical insight into the sensitive mechanism of multilayer-shaped cocrystal explosives: compression and slide.

    PubMed

    Gao, Hong-fei; Zhang, Shu-hai; Ren, Fu-de; Gou, Rui-jun; Han, Gang; Wu, Jing-bo; Ding, Xiong; Zhao, Wen-hu

    2016-05-01

    Multilayer-shaped compression and slide models were employed to investigate the complex sensitive mechanisms of cocrystal explosives in response to external mechanical stimuli. Here, density functional theory (DFT) calculations implementing the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) with the Tkatchenko-Scheffler (TS) dispersion correction were applied to a series of cocrystal explosives: diacetone diperoxide (DADP)/1,3,5-trichloro-2,4,6-trinitrobenzene (TCTNB), DADP/1,3,5-tribromo-2,4,6-trinitrobenzene (TBTNB) and DADP/1,3,5-triiodo-2,4,6-trinitrobenzene (TITNB). The results show that the GGA-PBE-TS method is suitable for calculating these cocrystal systems. Compression and slide models illustrate well the sensitive mechanism of layer-shaped cocrystals of DADP/TCTNB and DADP/TITNB, in accordance with the results from electrostatic potentials and free space per molecule in cocrystal lattice analyses. DADP/TCTNB and DADP/TBTNB prefer sliding along a diagonal direction on the a-c face and generating strong intermolecular repulsions, compared to DADP/TITNB, which slides parallel to the b-c face. The impact sensitivity of DADP/TBTNB is predicted to be the same as that of DADP/TCTNB, and the impact sensitivity of DADP/TBTNB may be slightly more insensitive than that of DADP and much more sensitive than that of TBTNB.

  20. First Principles Study of Electronic Band Structure and Structural Stability of Al2C Monolayer and Nanotubes

    NASA Astrophysics Data System (ADS)

    Pramchu, S.; Jaroenjittichai, A. P.; Laosiritaworn, Y.

    2017-09-01

    We used density functional theory (DFT) based on generalized gradient approximation (GGA) and hybrid functional (HSE06) to investigate band gap and structural stability of Al2C monolayer and nanotubes. From the results, both GGA and HSE06 band gaps of Al2C monolayer agree well with previously reported data. For the Al2C nanotubes, we found that their band gaps are more sensitive to the size and the chirality than that of the widely studied SiC2 nanotubes, indicating the Al2C nanotubes may have higher band gap tuning capabilities (with varying diameter size and chirality) compared with those of SiC2 nanotubes. We have also discovered a desirable direct band gap in the case of (n,0) nanotubes, although Al2C monolayer band gap is indirect. The calculated strain energy reveals that (n,0) nanotubes constructed by wrapping up Al2C monolayer consume less energy than (0,n) nanotubes. Thus, (n,0) nanotubes is easier to synthesize than (0,n) nanotubes. This discovery of direct band gap in (n,0) Al2C nanotubes and their adjustable band gap suggests them as promising sensitizer for enhancing power conversion efficiency of excitonic solar cells.

  1. The role of the van der Waals interactions in the adsorption of anthracene and pentacene on the Ag(111) surface

    NASA Astrophysics Data System (ADS)

    Morbec, Juliana M.; Kratzer, Peter

    2017-01-01

    Using first-principles calculations based on density-functional theory (DFT), we investigated the effects of the van der Waals (vdW) interactions on the structural and electronic properties of anthracene and pentacene adsorbed on the Ag(111) surface. We found that the inclusion of vdW corrections strongly affects the binding of both anthracene/Ag(111) and pentacene/Ag(111), yielding adsorption heights and energies more consistent with the experimental results than standard DFT calculations with generalized gradient approximation (GGA). For anthracene/Ag(111) the effect of the vdW interactions is even more dramatic: we found that "pure" DFT-GGA calculations (without including vdW corrections) result in preference for a tilted configuration, in contrast to the experimental observations of flat-lying adsorption; including vdW corrections, on the other hand, alters the binding geometry of anthracene/Ag(111), favoring the flat configuration. The electronic structure obtained using a self-consistent vdW scheme was found to be nearly indistinguishable from the conventional DFT electronic structure once the correct vdW geometry is employed for these physisorbed systems. Moreover, we show that a vdW correction scheme based on a hybrid functional DFT calculation (HSE) results in an improved description of the highest occupied molecular level of the adsorbed molecules.

  2. Nonseparable exchange–correlation functional for molecules, including homogeneous catalysis involving transition metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Haoyu S.; Zhang, Wenjing; Verma, Pragya

    2015-01-01

    The goal of this work is to develop a gradient approximation to the exchange–correlation functional of Kohn–Sham density functional theory for treating molecular problems with a special emphasis on the prediction of quantities important for homogeneous catalysis and other molecular energetics. Our training and validation of exchange–correlation functionals is organized in terms of databases and subdatabases. The key properties required for homogeneous catalysis are main group bond energies (database MGBE137), transition metal bond energies (database TMBE32), reaction barrier heights (database BH76), and molecular structures (database MS10). We also consider 26 other databases, most of which are subdatabases of a newlymore » extended broad database called Database 2015, which is presented in the present article and in its ESI. Based on the mathematical form of a nonseparable gradient approximation (NGA), as first employed in the N12 functional, we design a new functional by using Database 2015 and by adding smoothness constraints to the optimization of the functional. The resulting functional is called the gradient approximation for molecules, or GAM. The GAM functional gives better results for MGBE137, TMBE32, and BH76 than any available generalized gradient approximation (GGA) or than N12. The GAM functional also gives reasonable results for MS10 with an MUE of 0.018 Å. The GAM functional provides good results both within the training sets and outside the training sets. The convergence tests and the smooth curves of exchange–correlation enhancement factor as a function of the reduced density gradient show that the GAM functional is a smooth functional that should not lead to extra expense or instability in optimizations. NGAs, like GGAs, have the advantage over meta-GGAs and hybrid GGAs of respectively smaller grid-size requirements for integrations and lower costs for extended systems. These computational advantages combined with the relatively high accuracy for all the key properties needed for molecular catalysis make the GAM functional very promising for future applications.« less

  3. Tunable non-interacting free-energy functionals: development and applications to low-density aluminum

    NASA Astrophysics Data System (ADS)

    Trickey, Samuel; Karasiev, Valentin

    We introduce the concept of tunable orbital-free non-interacting free-energy density functionals and present a generalized gradient approximation (GGA) with a subset of parameters defined from constraints and a few free parameters. Those free parameters are tuned to reproduce reference Kohn-Sham (KS) static-lattice pressures for Al at T=8 kK for bulk densities between 0.6 and 2 g/cm3. The tuned functional then is used in OF molecular dynamics (MD) simulations for Al with densities between 0.1 and 2 g/cm3 and T between 6 and 50 kK to calculate the equation of state and generate configurations for electrical conductivity calculations. The tunable functional produces accurate results. Computationally it is very effective especially at elevated temperature. Kohn-Shiam calculations for such low densities are affordable only up to T=10 kK, while other OF approximations, including two-point functionals, fail badly in that regime. Work supported by US DoE Grant DE-SC0002139.

  4. Evolution of the orbitals Dy-4f in the DyB2 compound using the LDA, PBE approximations, and the PBE0 hybrid functional

    NASA Astrophysics Data System (ADS)

    Rasero Causil, Diego; Ortega López, César; Espitia Rico, Miguel

    2018-04-01

    Computational calculations of total energy based on density functional theory were used to investigate the structural, electronic, and magnetic properties of the DyB2 compounds in the hexagonal structure. The calculations were carried out by means of the full-potential linearized augmented plane wave (FP-LAPW) method, employing the computational Wien2k package. The local density approximation (LDA) and the generalized gradient approximation (GGA) were used for the electron-electron interactions. Additionally, we used the functional hybrid PBE0 for a better description the electronic and magnetic properties, because the DyB2 compound is a strongly-correlated system. We found that the calculated lattice constant agrees well with the values reported theoretically and experimentally. The density of states (DOS) calculation shows that the compound exhibits a metallic behavior and has magnetic properties, with a total magnetic moment of 5.47 μ0/cell determined mainly by the 4f states of the rare earth elements. The functional PBE0 shows a strong localization of the Dy-4f orbitals.

  5. First principles calculation of thermo-mechanical properties of thoria using Quantum ESPRESSO

    NASA Astrophysics Data System (ADS)

    Malakkal, Linu; Szpunar, Barbara; Zuniga, Juan Carlos; Siripurapu, Ravi Kiran; Szpunar, Jerzy A.

    2016-05-01

    In this work, we have used Quantum ESPRESSO (QE), an open source first principles code, based on density-functional theory, plane waves, and pseudopotentials, along with quasi-harmonic approximation (QHA) to calculate the thermo-mechanical properties of thorium dioxide (ThO2). Using Python programming language, our group developed qe-nipy-advanced, an interface to QE, which can evaluate the structural and thermo-mechanical properties of materials. We predicted the phonon contribution to thermal conductivity (kL) using the Slack model. We performed the calculations within local density approximation (LDA) and generalized gradient approximation (GGA) with the recently proposed version for solids (PBEsol). We employed a Monkhorst-Pack 5 × 5 × 5 k-points mesh in reciprocal space with a plane wave cut-off energy of 150 Ry to obtain the convergence of the structure. We calculated the dynamical matrices of the lattice on a 4 × 4 × 4 mesh. We have predicted the heat capacity, thermal expansion and the phonon contribution to thermal conductivity, as a function of temperature up to 1400K, and compared them with the previous work and known experimental results.

  6. Charge localization and ordering in A 2 Mn 8 O 16 hollandite group oxides: Impact of density functional theory approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.

    The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less

  7. Charge localization and ordering in A 2 Mn 8 O 16 hollandite group oxides: Impact of density functional theory approaches

    DOE PAGES

    Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.

    2017-12-01

    The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less

  8. Charge localization and ordering in A2Mn8O16 hollandite group oxides: Impact of density functional theory approaches

    NASA Astrophysics Data System (ADS)

    Kaltak, Merzuk; Fernández-Serra, Marivi; Hybertsen, Mark S.

    2017-12-01

    The phases of A2Mn8O16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3 d electrons are more explicitly considered with the DFT + U approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn3 + centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Finally, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.

  9. Prediction of electronic and optical properties of ZnAl2Te4 defect chalcopyrite semiconductor: an ab-initio study

    NASA Astrophysics Data System (ADS)

    Mayengbam, Rishikanta; Tripathy, S. K.; Pandey, B. P.

    2018-03-01

    In this paper, we have investigated the structural, electronic and optical properties of ZnAl2Te4 defect chalcopyrite semiconductor using generalized gradient approximation (GGA) within density functional theory (DFT). We have calculated the optimized lattice constants (a and c) and compared with the available experimental values. The optimized lattice constants have been used to calculate the energy band gap and found to be 1.57 eV. The partial density of states and total density of states have been discussed in detail. The frequency dependent dielectric constant and refractive index have been calculated and plotted in the energy range 0-13 eV. All the above parameters have been compared with the available experimental and theoretical values and found good agreement between them.

  10. Ab initio study of (Fe, Ni) doped GaAs: Magnetic, electronic properties and Faraday rotation

    NASA Astrophysics Data System (ADS)

    Sbai, Y.; Ait Raiss, A.; Bahmad, L.; Benyoussef, A.

    2017-06-01

    The interesting diluted magnetic semiconductor (DMS), Gallium Arsenide (GaAs), was doped with the transition metals magnetic impurities: iron (Fe) and Nickel (Ni), in one hand to study the magnetic and magneto-optical properties of the material Ga(Fe, Ni) As, in the other hand to investigate the effect of the doping on the properties of this material, the calculations were performed within the spin polarized density functional theory (DFT) and generalized gradient approximation (GGA) with AKAI KKR-CPA method, the density of states (DOS) for different doping concentrations were calculated, giving the electronical properties, as well as the magnetic state and magnetic states energy, also the effect of these magnetic impurities on the Faraday rotation as magneto-optical property. Furthermore, we found the stable magnetic state for our doped material GaAs.

  11. Dispersion interactions in room-temperature ionic liquids: Results from a non-empirical density functional

    NASA Astrophysics Data System (ADS)

    Kohanoff, Jorge; Pinilla, Carlos; Youngs, Tristan G. A.; Artacho, Emilio; Soler, José M.

    2011-10-01

    The role of dispersion or van de Waals (VDW) interactions in imidazolium-based room-temperature ionic liquids is studied within the framework of density functional theory, using a recently developed non-empirical functional [M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004), 10.1103/PhysRevLett.92.246401], as efficiently implemented in the SIESTA code [G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009), 10.1103/PhysRevLett.103.096102]. We present results for the equilibrium structure and lattice parameters of several crystalline phases, finding a general improvement with respect to both the local density (LDA) and the generalized gradient approximations (GGA). Similar to other systems characterized by VDW bonding, such as rare gas and benzene dimers as well as solid argon, equilibrium distances and volumes are consistently overestimated by ≈7%, compared to -11% within LDA and 11% within GGA. The intramolecular geometries are retained, while the intermolecular distances and orientations are significantly improved relative to LDA and GGA. The quality is superior to that achieved with tailor-made empirical VDW corrections ad hoc [M. G. Del Pópolo, C. Pinilla, and P. Ballone, J. Chem. Phys. 126, 144705 (2007), 10.1063/1.2715571]. We also analyse the performance of an optimized version of this non-empirical functional, where the screening properties of the exchange have been tuned to reproduce high-level quantum chemical calculations [J. Klimes, D. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 074203 (2010), 10.1088/0953-8984/22/7/074203]. The results for solids are even better with volumes and geometries reproduced within 2% of experimental data. We provide some insight into the issue of polymorphism of [bmim][Cl] crystals, and we present results for the geometry and energetics of [bmim][Tf] and [mmim][Cl] neutral and charged clusters, which validate the use of empirical force fields.

  12. Electronic structure, magnetism, and optical properties of Fe2SiO4 fayalite at ambient and high pressures: A GGA+U study

    NASA Astrophysics Data System (ADS)

    Jiang, Xuefan; Guo, G. Y.

    2004-04-01

    The electronic structure, magnetism, and optical properties of Fe2SiO4 fayalite, the iron-rich end member of the olivine-type silicate, one of the most abundant minerals in Earth’s upper mantle, have been studied by density-functional theory within the generalized gradient approximation (GGA) with the on-site Coulomb energy U=4.5 eV taken into account (GGA+U). The stable insulating antiferromagnetic solution with an energy gap ˜1.49 eV and a spin magnetic moment of 3.65μB and an orbital magnetic moment of 0.044μB per iron atom is obtained. It is found that the gap opening in this fayalite results mainly from the strong on-site Coulomb interaction on the iron atoms. In this band structure, the top of valence bands consists mainly of the 3d orbitals of Fe2 atoms, and the bottom of the conduction bands is mainly composed of the 3d orbitals of Fe1 atoms. Therefore, since the electronic transition from the Fe2 3d to Fe1 3d states is weak, significant electronic transitions would appear only about 1 eV above the absorption edge when Fe-O orbitals are involved in the final states. In addition, our band-structure calculations can explain the observed phenomena including redshift near the absorption edge and the decrease of the electrical resistivity of Fe2SiO4 upon compression. The calculated Fe p partial density of states agree well with Fe K-edge x-ray absorption spectrum. The calculated lattice constants and atomic coordinates for Fe2SiO4 fayalite in orthorhombic structure are in good agreement with experiments.

  13. Structural, electronic and magnetic properties of LaCr2Si2C: Ab initio calculation, mean field approximation and Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Endichi, A.; Zaari, H.; Benyoussef, A.; El Kenz, A.

    2018-06-01

    The magnetic behavior of LaCr2Si2C compound is investigated in this work, using first principle methods, Monte Carlo simulation (MCS) and mean field approximation (MFA). The structural, electronic and magnetic properties are described using ab initio method in the framework of the Generalized Gradient Approximation (GGA), and the Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method implemented in the WIEN2K packages. We have also computed the coupling terms between magnetic atoms which are used in Hamiltonian model. A theoretical study realized by mean field approximation and Monte Carlo Simulation within the Ising model is used to more understand the magnetic properties of this compound. Thereby, our results showed a ferromagnetic ordering of the Cr magnetic moments below the Curie temperature of 30 K (Tc < 30 K) in LaCr2Si2C. Other parameters are also computed as: the magnetization, the energy, the specific heat and the susceptibility. This material shows the small sign of supra-conductivity; and future researches could be focused to enhance the transport and magnetic properties of this system.

  14. Newtype single-layer magnetic semiconductor in transition-metal dichalcogenides VX2 (X = S, Se and Te)

    NASA Astrophysics Data System (ADS)

    Fuh, Huei-Ru; Chang, Ching-Ray; Wang, Yin-Kuo; Evans, Richard F. L.; Chantrell, Roy W.; Jeng, Horng-Tay

    2016-09-01

    We present a newtype 2-dimensional (2D) magnetic semiconductor based on transition-metal dichalcogenides VX2 (X = S, Se and Te) via first-principles calculations. The obtained indirect band gaps of monolayer VS2, VSe2, and VTe2 given from the generalized gradient approximation (GGA) are respectively 0.05, 0.22, and 0.20 eV, all with integer magnetic moments of 1.0 μB. The GGA plus on-site Coulomb interaction U (GGA + U) enhances the exchange splittings and raises the energy gap up to 0.38~0.65 eV. By adopting the GW approximation, we obtain converged G0W0 gaps of 1.3, 1.2, and 0.7 eV for VS2, VSe2, and VTe2 monolayers, respectively. They agree very well with our calculated HSE gaps of 1.1, 1.2, and 0.6 eV, respectively. The gap sizes as well as the metal-insulator transitions are tunable by applying the in-plane strain and/or changing the number of stacking layers. The Monte Carlo simulations illustrate very high Curie-temperatures of 292, 472, and 553 K for VS2, VSe2, and VTe2 monolayers, respectively. They are nearly or well beyond the room temperature. Combining the semiconducting energy gap, the 100% spin polarized valence and conduction bands, the room temperature TC, and the in-plane magnetic anisotropy together in a single layer VX2, this newtype 2D magnetic semiconductor shows great potential in future spintronics.

  15. Analysis of the structural, electronic and optic properties of Ni doped MgSiP{sub 2} semiconductor chalcopyrite compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocak, Belgin, E-mail: koakbelgin@gmail.com; Ciftci, Yasemin Oztekin, E-mail: yasemin@gazi.edu.tr

    2016-03-25

    The structural, electronic band structure and optic properties of the Ni doped MgSiP{sub 2} chalcopyrite compound have been performed by using first-principles method in the density functional theory (DFT) as implemented in Vienna Ab-initio Simulation Package (VASP). The generalized gradient approximation (GGA) in the scheme of Perdew, Burke and Ernzerhof (PBE) is used for the exchange and correlation functional. The present lattice constant (a) follows generally the Vegard’s law. The electronic band structure, total and partial density of states (DOS and PDOS) are calculated. We present data for the frequency dependence of imaginary and real parts of dielectric functions ofmore » Ni doped MgSiP{sub 2}. For further investigation of the optical properties the reflectivity, refractive index, extinction coefficient and electron energy loss function are also predicted. Our obtained results indicate that the lattice constants, electronic band structure and optical properties of this compound are dependent on the substitution concentration of Ni.« less

  16. Electronic band structure of LaCoO3/Y/Mn compounds

    NASA Astrophysics Data System (ADS)

    Rahnamaye Aliabad, H. A.; Hesam, V.; Ahmad, Iftikhar; Khan, Imad

    2013-02-01

    Spin polarization effects on electronic properties of pure LaCoO3 and doped compounds (La0.5Y0.5CoO3, LaCo0.5Mn0.5O3) in the rhombohedral phase have been studied. We have employed the full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA+U) under density functional theory (DFT). The calculated band structures along with total as well as partial densities of states reveal that Y and Mn impurities have a significant effect on the structural and electronic properties of LaCoO3. It is found that Mn alters insulating behavior of this compound to the half metallic for spin up state. Obtained results show that the magnetic moment for the Co-3d state is near 3.12μB in LaCoO3 compound which increases and decreases with addition of Y and Mn dopants respectively.

  17. Lattice dynamics of Ru2FeX (X = Si, Ge) Full Heusler alloys

    NASA Astrophysics Data System (ADS)

    Rizwan, M.; Afaq, A.; Aneeza, A.

    2018-05-01

    In present work, the lattice dynamics of Ru2FeX (X = Si, Ge) full Heusler alloys are investigated using density functional theory (DFT) within generalized gradient approximation (GGA) in a plane wave basis, with norm-conserving pseudopotentials. Phonon dispersion curves and phonon density of states are obtained using first-principles linear response approach of density functional perturbation theory (DFPT) as implemented in Quantum ESPRESSO code. Phonon dispersion curves indicates for both Heusler alloys that there is no imaginary phonon in whole Brillouin zone, confirming dynamical stability of these alloys in L21 type structure. There is a considerable overlapping between acoustic and optical phonon modes predicting no phonon band gap exists in dispersion curves of alloys. The same result is shown by phonon density of states curves for both Heusler alloys. Reststrahlen band for Ru2FeSi is found smaller than Ru2FeGe.

  18. ADSORPTION AND DISSOCIATION OF O2 ON Ti3Al (0001) STUDIED BY FIRST-PRINCIPLES

    NASA Astrophysics Data System (ADS)

    Wei, Li-Jing; Guo, Jian-Xin; Dai, Xiu-Hong; Wang, Ying-Long; Liu, Bao-Ting

    2015-05-01

    The adsorption and dissociation of oxygen molecule on Ti3Al (0001) surface have been investigated by density functional theory (DFT) with the generalized gradient approximation (GGA). All possible adsorption sites including nine vertical and fifteen parallel sites of O2 are considered on Ti3Al (0001) surface. It is found that all oxygen molecules dissociate except for three vertical adsorption sites after structure optimization. This indicates that oxygen molecules prefer to dissociate on the junction site between Ti and Al atoms. Oxygen atoms coming from dissociation of oxygen molecule tend to occupy the most stable adsorption sites of the Ti3Al (0001) surface. The distance of O-O is related to the surface dissociation distance of Ti3Al (0001) surface. The valence electron localization function (ELF) and projected density of states (DOS) show that the bonds of O-O are breakaway at parallel adsorption end structures.

  19. First-principles study of structural stability, electronic, optical and elastic properties of binary intermetallic: PtZr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in; Jain, Ekta, E-mail: jainekta05@gmail.com; Sanyal, S. P., E-mail: sps.physicsbu@gmail.com

    2016-05-06

    Structural, electronic, optical and elastic properties of PtZr have been studied using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). The energy against volume and enthalpy vs. pressure variation in three different structures i.e. B{sub 1}, B{sub 2} and B{sub 3} for PtZr has been presented. The equilibrium lattice parameter, bulk modulus and its pressure derivative have been obtained using optimization method for all the three phases. Furthermore, electronic structure was discussed to reveal the metallic character of the present compound. The linear optical properties are also studied under zero pressure for the first time.more » Results on elastic properties are obtained using generalized gradient approximation (GGA) for exchange correlation potentials. Ductile nature of PtZr compound is predicted in accordance with Pugh’s criteria.« less

  20. DFT study of Al doped armchair SWCNTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhiman, Shobhna, E-mail: s-dhiman@hotmail.com; Rani, Anita; Kumar, Ranjan

    2016-05-23

    Electronic properties of endohedrally doped armchair single-walled carbon nanotubes (SWCNTs) with a chain of six Al atoms have been studied using ab-initio density functional theory. We investigate the binding energy/atom, ionization potential, electron Affinity and Homo-Lumo gap of doped armchair SWNTs from (4,4) to (6,6) with two ends open. BE/dopant atom and ionization potential is maximum for (6, 6) doped armchair carbon nanotube; suggest that it is more stable than (4, 4) and (5, 5) doped tubes. HOMO - LUMO gap of Al doped arm chair carbon nanotubes decreases linearly with the increase in diameter of the tube. This showsmore » that confinement induce a strong effect on electronic properties of doped tubes. These combined systems can be used for future nano electronics. The ab–initio calculations were performed with SIESTA code using generalized gradient approximation (GGA).« less

  1. Investigation of electronic structure and chemical bonding of intermetallic Pd2HfIn: An ab-initio study

    NASA Astrophysics Data System (ADS)

    Bano, Amreen; Gaur, N. K.

    2018-05-01

    Ab-initio calculations are carried out to study the electronic and chemical bonding properties of Intermetallic full Heusler compound Pd2HfIn which crystallizes in F-43m structure. All calculations are performed by using density functional theory (DFT) based code Quantum Espresso. Generalized gradient approximations (GGA) of Perdew- Burke- Ernzerhof (PBE) have been adopted for exchange-correlation potential. Calculated electronic band structure reveals the metallic character of the compound. From partial density of states (PDoS), we found the presence of relatively high intensity electronic states of 4d-Pd atom at Fermi level. We have found a pseudo-gap just abouve the Fermi level and N(E) at Fermi level is observed to be 0.8 states/eV, these finding indicates the existence of superconducting character in Pd2HfIn.

  2. The structural, electronic and optical properties of CuGa (SexS1-x)2 compounds from first-principle calculations

    NASA Astrophysics Data System (ADS)

    Shen, Ke-Sheng; Jiao, Zhao-Yong; Zhang, Xian-Zhou; Huang, Xiao-Fen

    2013-11-01

    The structural, electronic and optical properties of the CuGa (Se x S1- x )2 alloy system have been performed systematic within generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) implemented in the Cambridge serial total energy package (CASTEP) code. We calculate the lattice parameters and axial ratio, which agree with the experimental values quite well. The anion position parameters u are also predicted using the model of Abrahams and Bernstein and the results seem to be trustworthy as compared to the experimental and theoretical values. The total and part density of states are discussed which follow the common rule of the conventional semiconductors. The static dielectric tenser and refractive index are summarized compared with available experimental and theoretical values. Also the spectra of the dielectric functions, refractive index, reflectance, absorption coefficient and real parts of photoconductivity are discussed in details.

  3. Experimental and first principle studies on electronic structure of BaTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagdeo, Archna, E-mail: archnaj@rrcat.gov.in; Ghosh, Haranath, E-mail: archnaj@rrcat.gov.in; Chakrabarti, Aparna, E-mail: archnaj@rrcat.gov.in

    2014-04-24

    We have carried out photoemission experiments to obtain valence band spectra of various crystallographic symmetries of BaTiO{sub 3} system which arise as a function of temperature. We also present results of a detailed first principle study of these symmetries of BaTiO{sub 3} using generalized gradient approximation for the exchange-correlation potential. Here we present theoretical results of density of states obtained from DFT based simulations to compare with the experimental valence band spectra. Further, we also perform calculations using post density functional approaches like GGA + U method as well as non-local hybrid exchange-correlation potentials like PBE0, B3LYP, HSE in ordermore » to understand the extent of effect of correlation on band gaps of different available crystallographic symmetries (5 in number) of BaTiO{sub 3}.« less

  4. Electronic structure and bonding properties of potassium (K) on graphite under external electric field.

    NASA Astrophysics Data System (ADS)

    Tapia, Alejandro; Canto, Gabriel

    2005-03-01

    The effect of an external electric field on the potassium (K) adsorption on the graphite surface, are studied by means of first-principles total-energy calculations. The results were obtained with the pseudopotentials LCAO method (SIESTA code) and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. The structural parameters, bonding properties, and electronic structure of the K-graphite system are studied in the triangular (2x2) overlayer phase as a function of the external electric field magnitude. We find an important change in the K-graphite bonding as a consequence of the charge transfer from the adatom towards the substrate induced by the electric field. The results are discussed in the light of the experimental observed difussion of K into graphite induced by external electric fields. This work was supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grants No. 43830-F and No. 44831-F.

  5. Structural and electronic properties of Li-ion battery cathode material MoF{sub 3} from first-principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, A.Y.; Wu, S.Q.; Yang, Y.

    2015-07-15

    The transition metal fluorides have been extensively investigated recently as the electrode materials with high working voltage and large capacity. The structural, electronic and magnetic properties of MoF{sub 3} are studied by the first-principles calculations within both the generalized gradient approximation (GGA) and GGA+U frameworks. Our results show that the antiferromagnetic configuration of MoF{sub 3} is more stable than the ferromagnetic one, which is consistent with experimental results. The analysis of the electronic density of states shows that MoF{sub 3} is a Mott–Hubbard insulator with a d–d type band gap, which is similar to the case of FeF{sub 3}. Moreover,more » small spin polarizations were found on the sites of fluorine ions, which accords with a fluorine-mediated superexchange mechanism for the Mo–Mo magnetic interaction. - Graphical abstract: Deformation charge density and spin-density for MoF{sub 3} in the AF configuration. - Highlights: • The ground state of MoF{sub 3} is shown to be antiferromagnetic, in consistent with experiments. • The electronic states show that MoF{sub 3} is a Mott–Hubbard insulator with a d–d type band gap. • A fluorine-mediated super-exchange mechanism for the Mo–Mo magnetic interaction is shown.« less

  6. Insight into the structural, electronic, elastic and optical properties of the alkali hydride compounds, XH (X = Rb and Cs)

    NASA Astrophysics Data System (ADS)

    Jaradat, Raed; Abu-Jafar, Mohammed; Abdelraziq, Issam; Mousa, Ahmad; Ouahrani, Tarik; Khenata, Rabah

    2018-04-01

    The equilibrium structural parameters, electronic and optical properties of the alkali hydrides RbH and CsH compounds in rock-salt (RS) and cesium chloride (CsCl) structures have been studied using the full-potential linearized augmented plane-wave (FP-LAPW) method. Wu and Cohen generalized gradient approximation (WC-GGA) was used for the exchange-correlation potential to compute the equilibrium structural parameters, such as the lattice constant (a0), the bulk modulus (B) and bulk modulus first order pressure derivative (B'). In addition to the WC-GGA, the modified Becke Johnson (mBJ) scheme has been also used to overcome the underestimation of the band gap energies. RbH and CsH compounds are found to be semiconductors (wide energy-band gap) using the WC-GGA method, while they are insulators using the mBJ-GGA method. Elastic constants, mechanical and thermodynamic properties were obtained by using the IRelast package. RbH and CsH compounds at ambient pressure are mechanically stable in RS and CsCl structures; they satisfy the Born mechanical stability criteria. Elastic constants (Cij), bulk modulus (B), shear modulus (S) and Debye temperatures (θD) of RbH and CsH compounds decrease as the alkali radius increases. The RS structure of these compounds at ambient conditions is mechanically stronger than CsCl structure. RbH and CsH in RS and CsCl structures are suitable as dielectric compounds. The wide direct energy band gap for these compounds make them promising compounds for optoelectronic UV device applications. Both RbH and CsH have a wide absorption region, on the other hand RbH absorption is very huge compared to the CsH absorption, RbH is an excellent absorbent material, maximum absorption regions are located in the middle ultraviolet (MUV) region and far ultraviolet (FUV) region. The absorption coefficient α (w), imaginary part of the dielectric constant ɛ2(w) and the extinction coefficient k(w) vary in the same way. The present calculated results are in good agreement with the experimental data, indicating the high accuracy of the performed calculations and reliability of the obtained results.

  7. Ab initio calculations of the elastic and thermodynamic properties of gold under pressure

    NASA Astrophysics Data System (ADS)

    Smirnov, N. A.

    2017-03-01

    The paper presents first-principles FP-LMTO calculations on the relative stability of fcc, bcc, hcp and dhcp gold under pressure. They were done in local density approximation (LDA), as well as in generalized gradient approximation (GGA) with and without spin-orbit interaction. Phonon spectra for the considered gold structures were obtained from LDA calculations within linear response theory and the contribution of lattice vibrations to the free energy of the system was determined in quasiharmonic approximation. Our thorough adjustment of FP-LMTO internal parameters (linearization and tail energies, the MT-sphere radius) helped us to obtain results that agree well with the available experimental phase relation Dubrovinsky et al (2007 Phys. Rev. Lett. 98 045503) between fcc and hcp structures of gold under pressure. The calculations suggest that gold compressed at room temperature successively undergoes the following structural changes: fcc\\to hcp\\to bcc . The paper also presents the calculated elastic constants of fcc, bcc and hcp Au, the principal Hugoniot and the melting curve. Calculated results were used to construct the PT-diagram which describes the relative stability of the gold structures under study up to 500 GPa.

  8. Calculation of exchange integrals and Curie temperature for La-substituted barium hexaferrites.

    PubMed

    Wu, Chuanjian; Yu, Zhong; Sun, Ke; Nie, Jinlan; Guo, Rongdi; Liu, Hai; Jiang, Xiaona; Lan, Zhongwen

    2016-10-31

    As the macro behavior of the strength of exchange interaction, state of the art of Curie temperature T c , which is directly proportional to the exchange integrals, makes sense to the high-frequency and high-reliability microwave devices. Challenge remains as finding a quantitative way to reveal the relationship between the Curie temperature and the exchange integrals for doped barium hexaferrites. Here in this report, for La-substituted barium hexaferrites, the electronic structure has been determined by the density functional theory (DFT) and generalized gradient approximation (GGA). By means of the comparison between the ground and relative state, thirteen exchange integrals have been calculated as a function of the effective value U eff . Furthermore, based on the Heisenberg model, the molecular field approximation (MFA) and random phase approximation (RPA), which provide an upper and lower bound of the Curie temperature T c , have been adopted to deduce the Curie temperature T c . In addition, the Curie temperature T c derived from the MFA are coincided well with the experimental data. Finally, the strength of superexchange interaction mainly depends on 2b-4f 1 , 4f 2 -12k, 2a-4f 1 , and 4f 1 -12k interactions.

  9. Ab initio calculations of the elastic and thermodynamic properties of gold under pressure.

    PubMed

    Smirnov, N A

    2017-03-15

    The paper presents first-principles FP-LMTO calculations on the relative stability of fcc, bcc, hcp and dhcp gold under pressure. They were done in local density approximation (LDA), as well as in generalized gradient approximation (GGA) with and without spin-orbit interaction. Phonon spectra for the considered gold structures were obtained from LDA calculations within linear response theory and the contribution of lattice vibrations to the free energy of the system was determined in quasiharmonic approximation. Our thorough adjustment of FP-LMTO internal parameters (linearization and tail energies, the MT-sphere radius) helped us to obtain results that agree well with the available experimental phase relation Dubrovinsky et al (2007 Phys. Rev. Lett. 98 045503) between fcc and hcp structures of gold under pressure. The calculations suggest that gold compressed at room temperature successively undergoes the following structural changes: [Formula: see text]. The paper also presents the calculated elastic constants of fcc, bcc and hcp Au, the principal Hugoniot and the melting curve. Calculated results were used to construct the PT-diagram which describes the relative stability of the gold structures under study up to 500 GPa.

  10. Half-metallic ferromagnetism in Fe, Co and Ni doped BaS: First principles calculations

    NASA Astrophysics Data System (ADS)

    Maurya, Savita; Sharma, Ramesh; Bhamu, K. C.

    2018-04-01

    The first principle investigation of structural, electronic, magnetic and optical properties of Ba1-xTMxS (x = 0.25) have been done using FPLAW method within the density functional theory (DFT) using generalized gradient approximation (GGA) for exchange correlation potential using two different functionals which are the PBE-sol and the modified Becke and Johnson local (spin) density approximation (mBJLDA). It was found that mBJLDA functional offer better account for the electronic structure of the Fe, Co and Ni-doped BaS. It was also observed that Fe/Co/Ni d, S p and Ba d states play a major role in determining the electronic properties of this alloy system. Investigation results shows that Ba0.75(Fe/Co/Ni)0.25S is ferromagnetic with magnetic moment of 3.72 µB, 2.73908 µB and 1.74324 µB at Fe, Co and Ni sites respectively. Complex dielectric constant ɛ(ω) and normal incidence reflectivity R(ω) are also been investigate for broad range of photon energies. These results are compared with the some reported existing experimental values.

  11. A density-functional study on the electronic and vibrational properties of layered antimony telluride.

    PubMed

    Stoffel, Ralf P; Deringer, Volker L; Simon, Ronnie E; Hermann, Raphaël P; Dronskowski, Richard

    2015-03-04

    We present a comprehensive survey of electronic and lattice-dynamical properties of crystalline antimony telluride (Sb2Te3). In a first step, the electronic structure and chemical bonding have been investigated, followed by calculations of the atomic force constants, phonon dispersion relationships and densities of states. Then, (macroscopic) physical properties of Sb2Te3 have been computed, namely, the atomic thermal displacement parameters, the Grüneisen parameter γ, the volume expansion of the lattice, and finally the bulk modulus B. We compare theoretical results from three popular and economic density-functional theory (DFT) approaches: the local density approximation (LDA), the generalized gradient approximation (GGA), and a posteriori dispersion corrections to the latter. Despite its simplicity, the LDA shows excellent performance for all properties investigated-including the Grüneisen parameter, which only the LDA is able to recover with confidence. In the absence of computationally more demanding hybrid DFT methods, the LDA seems to be a good choice for further lattice dynamical studies of Sb2Te3 and related layered telluride materials.

  12. Electron-phonon coupling and superconductivity in MgB2 under hydrostatic pressure.

    NASA Astrophysics Data System (ADS)

    Quijano, Ramiro; Aguayo, Aaron

    2005-03-01

    We have studied the dynamics and coupling of the E2g phonon mode with the σ-band in MgB2 under pressure using the Frozen Phonon Approximation. The results were obtained by means of first-principles total-energy calculations using the full potential Linearized Augmented Plane Wave (LAPW) method and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. We present results for the evolution of the anharmonicity and phonon frequency of the E2g mode, the electron-phonon coupling constant, and Tc as a function of hydrostatic pressure in the range 0-40 GPa. We find that the phonon frequency increases monotonically with pressure, but the the anharmonicity, the electron-phonon coupling and Tc decreases with pressure. We have obtained a very good agreement between the calculated Tc(P) and the experimental data available in the literature, in particular with the experimental data corresponding to monocystalline samples. This work was supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant No. 43830-F.

  13. The Role of Cargo Proteins in GGA Recruitment

    PubMed Central

    Hirst, Jennifer; Seaman, Matthew N J; Buschow, Sonja I; Robinson, Margaret S

    2007-01-01

    Coat proteins are recruited onto membranes to form vesicles that transport cargo from one compartment to another, but the extent to which the cargo helps to recruit the coat proteins is still unclear. Here we have examined the role of cargo in the recruitment of Golgi-localized, γ-ear-containing, ADP ribosylation factor (ARF)-binding proteins (GGAs) onto membranes in HeLa cells. Moderate overexpression of CD8 chimeras with cytoplasmic tails containing DXXLL-sorting signals, which bind to GGAs, increased the localization of all three GGAs to perinuclear membranes, as observed by immunofluorescence. GGA2 was also expressed at approximately twofold higher levels in these cells because it was degraded more slowly. However, this difference only partially accounted for the increase in membrane localization because there was a approximately fivefold increase in GGA2 associated with crude membranes and a ∼12-fold increase in GGA2 associated with clathrin-coated vesicles (CCVs) in cells expressing CD8-DXXLL chimeras. The effect of cargo proteins on GGA recruitment was reconstituted in vitro using permeabilized control and CD8-DXXLL-expressing cells incubated with cytosol containing recombinant GGA2 constructs. Together, these results demonstrate that cargo proteins contribute to the recruitment of GGAs onto membranes and to the formation of GGA-positive CCVs. PMID:17451558

  14. Electronic and optical properties of GaN under pressure: DFT calculations

    NASA Astrophysics Data System (ADS)

    Javaheri, Sahar; Boochani, Arash; Babaeipour, Manuchehr; Naderi, Sirvan

    2017-12-01

    Optical and electronic properties of ZB, RS and WZ structures of gallium nitride (GaN) are studied in equilibrium and under pressure using the first-principles calculation in the density functional theory (DFT) framework to obtain quantities like dielectric function, loss function, reflectance and absorption spectra, refractive index and their relation parameters. The electronic properties are studied using EV-GGA and GGA approximations and the results calculated by EV-GGA approximation were found to be much closer to the experimental results. The interband electron transitions are studied using the band structure and electron transition peaks in the imaginary part of the dielectric function; these transitions occur in three structures from N-2p orbital to Ga-4s and Ga-4p orbitals in the conduction band. Different optical properties of WZ structure were calculated in two polarization directions of (100) and (001) and the results were close to each other. Plasmon energy corresponding to the main peak of the energy-loss function in RS with the value of 26 eV was the highest one, which increased under pressure. In general, RS shows more different properties than WZ and ZB.

  15. A DFT study on the enthalpies of thermite reactions and enthalpies of formation of metal composite oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-ying; Wang, Meng-jie; Chang, Chun-ran; Xu, Kang-zhen; Ma, Hai-xia; Zhao, Feng-qi

    2018-05-01

    The standard thermite reaction enthalpies (ΔrHmθ) for seven metal oxides were theoretically analyzed using density functional theory (DFT) under five different functional levels, and the results were compared with experimental values. Through the comparison of the linear fitting constants, mean error and root mean square error, the Perdew-Wang functional within the framework of local density approximation (LDA-PWC) and Perdew-Burke-Ernzerhof exchange-correlation functional within the framework of generalized gradient approximation (GGA-PBE) were selected to further calculate the thermite reaction enthalpies for metal composite oxides (MCOs). According to the Kirchhoff formula, the standard molar reaction enthalpies for these MCOs were obtained and their standard molar enthalpies of formation (ΔfHmθ) were finally calculated. The results indicated that GGA-PBE is the most suitable one out of the total five methods to calculate these oxides. Tungstate crystals present the maximum deviation of the enthalpies of thermite reactions for MCOs and these of their physical metal oxide mixtures, but ferrite crystals are the minimum. The correlation coefficients are all above 0.95, meaning linear fitting results are very precise. And the molar enthalpies of formation for NiMoO4, CuMoO4, PbZrO3 (Pm/3m), PbZrO3 (PBA2), PbZrO3 (PBam), MgZrO3, CdZrO3, MnZrO3, CuWO4 and Fe2WO6 were first obtained as -1078.75, -1058.45, -1343.87, -1266.54, -1342.29, -1333.03, -1210.43, -1388.05, -1131.07 and - 1860.11 kJ·mol-1, respectively.

  16. Unifying Exchange Sensitivity in Transition-Metal Spin-State Ordering and Catalysis through Bond Valence Metrics.

    PubMed

    Gani, Terry Z H; Kulik, Heather J

    2017-11-14

    Accurate predictions of spin-state ordering, reaction energetics, and barrier heights are critical for the computational discovery of open-shell transition-metal (TM) catalysts. Semilocal approximations in density functional theory, such as the generalized gradient approximation (GGA), suffer from delocalization error that causes them to overstabilize strongly bonded states. Descriptions of energetics and bonding are often improved by introducing a fraction of exact exchange (e.g., erroneous low-spin GGA ground states are instead correctly predicted as high-spin with a hybrid functional). The degree of spin-splitting sensitivity to exchange can be understood based on the chemical composition of the complex, but the effect of exchange on reaction energetics within a single spin state is less well-established. Across a number of model iron complexes, we observe strong exchange sensitivities of reaction barriers and energies that are of the same magnitude as those for spin splitting energies. We rationalize trends in both reaction and spin energetics by introducing a measure of delocalization, the bond valence of the metal-ligand bonds in each complex. The bond valence thus represents a simple-to-compute property that unifies understanding of exchange sensitivity for catalytic properties and spin-state ordering in TM complexes. Close agreement of the resulting per-metal-organic-bond sensitivity estimates, together with failure of alternative descriptors demonstrates the utility of the bond valence as a robust descriptor of how differences in metal-ligand delocalization produce differing relative energetics with exchange tuning. Our unified description explains the overall effect of exact exchange tuning on the paradigmatic two-state FeO + /CH 4 reaction that combines challenges of spin-state and reactivity predictions. This new descriptor-sensitivity relationship provides a path to quantifying how predictions in transition-metal complex screening are sensitive to the method used.

  17. Plane-wave pseudopotential implementation and performance of SCAN meta-GGA exchange-correlation functional for extended systems

    NASA Astrophysics Data System (ADS)

    Yao, Yi; Kanai, Yosuke

    2017-06-01

    We present the implementation and performance of the strongly constrained and appropriately normed, SCAN, meta-GGA exchange-correlation (XC) approximation in the planewave-pseudopotential (PW-PP) formalism using the Troullier-Martins pseudopotential scheme. We studied its performance by applying the PW-PP implementation to several practical applications of interest in condensed matter sciences: (a) crystalline silicon and germanium, (b) martensitic phase transition energetics of phosphorene, and (c) a single water molecule physisorption on a graphene sheet. Given the much-improved accuracy over the GGA functionals and its relatively low computational cost compared to hybrid XC functionals, the SCAN functional is highly promising for various practical applications of density functional theory calculations for condensed matter systems. At same time, the SCAN meta-GGA functional appears to require more careful attention to numerical details. The meta-GGA functional shows more significant dependence on the fast Fourier transform grid, which is used for evaluating the XC potential in real space in the PW-PP formalism, than other more conventional GGA functionals do. Additionally, using pseudopotentials that are generated at a different/lower level of XC approximation could introduce noticeable errors in calculating some properties such as phase transition energetics.

  18. Assessment of the GLLB-SC potential for solid-state properties and attempts for improvement

    NASA Astrophysics Data System (ADS)

    Tran, Fabien; Ehsan, Sohaib; Blaha, Peter

    2018-02-01

    Based on the work of Gritsenko et al. (GLLB) [Phys. Rev. A 51, 1944 (1995), 10.1103/PhysRevA.51.1944], the method of Kuisma et al. [Phys. Rev. B 82, 115106 (2010), 10.1103/PhysRevB.82.115106] to calculate the band gap in solids was shown to be much more accurate than the common local density approximation (LDA) and generalized gradient approximation (GGA). The main feature of the GLLB-SC potential (SC stands for solid and correlation) is to lead to a nonzero derivative discontinuity that can be conveniently calculated and then added to the Kohn-Sham band gap for a comparison with the experimental band gap. In this work, a thorough comparison of GLLB-SC with other methods, e.g., the modified Becke-Johnson (mBJ) potential [Tran and Blaha, Phys. Rev. Lett. 102, 226401 (2009), 10.1103/PhysRevLett.102.226401], for electronic, magnetic, and density-related properties is presented. It is shown that for the band gap, GLLB-SC does not perform as well as mBJ for systems with a small band gap and strongly correlated systems, but is on average of similar accuracy as hybrid functionals. The results on itinerant metals indicate that GLLB-SC overestimates significantly the magnetic moment (much more than mBJ does), but leads to excellent results for the electric field gradient, for which mBJ is in general not recommended. In the aim of improving the results, variants of the GLLB-SC potential are also tested.

  19. A density functional theory study of the influence of exchange-correlation functionals on the properties of FeAs.

    PubMed

    Griffin, Sinéad M; Spaldin, Nicola A

    2017-06-01

    We use density functional theory within the local density approximation (LDA), LDA  +  U, generalised gradient approximation (GGA), GGA  +  U, and hybrid-functional methods to calculate the properties of iron monoarsenide. FeAs, which forms in the MnP structure, is of current interest for potential spintronic applications as well as being the parent compound for the pnictide superconductors. We compare the calculated structural, magnetic and electronic properties obtained using the different functionals to each other and to experiment, and investigate the origin of a recently reported magnetic spiral. Our results indicate the appropriateness or otherwise of the various functionals for describing FeAs and the related Fe-pnictide superconductors.

  20. Prediction for electronic, vibrational and thermoelectric properties of chalcopyrite AgX(X=In,Ga)Te2: PBE + U approach

    PubMed Central

    Yang, Jianhui; Cheng, Xinlu

    2017-01-01

    The electronic, vibrational and thermoelectric transport characteristics of AgInTe2 and AgGaTe2 with chalcopyrite structure have been investigated. The electronic structures are calculated using the density-functional theory within the generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof functional considering the Hubbard-U exchange correlation. The band-gaps of AgInTe2 and AgGaTe2 are much larger than previous standard GGA functional results and agree well with the existing experimental data. The effective mass of the hole and the shape of density of states near the edge of the valence band indicate AgInTe2 and AgGaTe2 are considerable p-type thermoelectric materials. An analysis of lattice dynamics shows the low thermal conductivities of AgInTe2 and AgGaTe2. The thermoelectric transport properties' dependence on carrier concentration for p-type AgInTe2 and AgGaTe2 in a wide range of temperatures has been studied in detail. The results show that p-type AgInTe2 and AgGaTe2 at 800 K can achieve the merit values of 0.91 and 1.38 at about 2.12 × 1020 cm−3 and 1.97 × 1020 cm−3 carrier concentrations, respectively. This indicates p-type AgGaTe2 is a potential thermoelectric material at high temperature. PMID:29134079

  1. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

    PubMed

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth

    2015-08-11

    We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.

  2. Prediction for electronic, vibrational and thermoelectric properties of chalcopyrite AgX(X=In,Ga)Te2: PBE + U approach.

    PubMed

    Yang, Jianhui; Fan, Qiang; Cheng, Xinlu

    2017-10-01

    The electronic, vibrational and thermoelectric transport characteristics of AgInTe 2 and AgGaTe 2 with chalcopyrite structure have been investigated. The electronic structures are calculated using the density-functional theory within the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof functional considering the Hubbard-U exchange correlation. The band-gaps of AgInTe 2 and AgGaTe 2 are much larger than previous standard GGA functional results and agree well with the existing experimental data. The effective mass of the hole and the shape of density of states near the edge of the valence band indicate AgInTe 2 and AgGaTe 2 are considerable p-type thermoelectric materials. An analysis of lattice dynamics shows the low thermal conductivities of AgInTe 2 and AgGaTe 2 . The thermoelectric transport properties' dependence on carrier concentration for p-type AgInTe 2 and AgGaTe 2 in a wide range of temperatures has been studied in detail. The results show that p-type AgInTe 2 and AgGaTe 2 at 800 K can achieve the merit values of 0.91 and 1.38 at about 2.12 × 10 20  cm -3 and 1.97 × 10 20  cm -3 carrier concentrations, respectively. This indicates p-type AgGaTe 2 is a potential thermoelectric material at high temperature.

  3. Full potential study of the elastic, electronic, and optical properties of spinels MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4} under pressure effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semari, F.; Khenata, R.; Depatment of Physics and Astronomy, King Saud University, PO Box 2455, Riyadh 11451

    2010-12-15

    The structural, elastic, electronic, and optical properties of cubic spinel MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4} compounds have been calculated using a full relativistic version of the full-potential linearized-augmented plane wave with the mixed basis FP/APW+lo method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA). Moreover, the Engel-Vosko GGA formalism is also applied to optimize the corresponding potential for band structure calculations. The ground state properties, including the lattice constants, the internal parameter, the bulk modulus, and the pressure derivative of the bulk modulus are in reasonable agreement with the available data. Using the totalmore » energy-strain technique, we have determined the full set of first-order elastic constants C{sub ij} and their pressure dependence, which have not been calculated or measured yet. The shear modulus, Young's modulus, and Poisson's ratio are calculated for polycrystalline XIn{sub 2}S{sub 4} aggregates. The Debye temperature is estimated from the average sound velocity. Electronic band structures show a direct band gap ({Gamma}-{Gamma}) for MgIn{sub 2}S{sub 4} and an indirect band gap (K-{Gamma}) for CdIn{sub 2}S{sub 4}. The calculated band gaps with EVGGA show a significant improvement over the GGA. The optical constants, including the dielectric function {epsilon}({omega}), the refractive index n({omega}), the reflectivity R({omega}), and the energy loss function L({omega}) were calculated for radiation up to 30 eV. -- Graphical abstract: Calculated total and partial densities of states for MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4}« less

  4. First principle study on generalized-stacking-fault energy surfaces of B2-AlRE intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Li, Shaorong; Wang, Shaofeng; Wang, Rui

    2011-12-01

    First-principles calculations are used to predict the generalized-stacking-fault energy (GSFE) surfaces of AlRE intermetallics. The calculations employ the projector augmented-wave (PAW) method within the generalized gradient approximation (GGA) using the density functional theory (DFT). GSFE curves along <1 1 1> {1 1 0} direction, <1 1 0> {1 1 0} direction and <1 0 0> {1 1 0} direction have been calculated. The fitted GSFE surfaces have been obtained from the Fourier series based on the translational symmetry. In order to illuminate the reasonable of our computational accuracy, we have compared our theoretical results of B2 intermetallics YCu with the previous calculated results. The unstable-stacking-fault energy (γus) on the {1 1 0} plane has the laws of AlPr, <1 1 0> and <1 1 1> directions. For the antiphase boundary (APB) energy, that of AlSc is the lowest in the calculated AlRE intermetallics. So the superdislocation with the Burgers vector along <1 1 1> direction of AlSc will easily split into two superpartials.

  5. Phonon renormalization and anharmonicity in Al-doped MgB2

    NASA Astrophysics Data System (ADS)

    Ortiz, Filiberto; Aguayo, Aarón

    2005-03-01

    We have studied the evolution of the E2g phonon mode dynamics in Mg1-xAlxB2 as a function of doping using the Frozen Phonon Approximation (FPA). The doping was modeled in the ab-initio Virtual Crystal Approximation (VCA). The results were obtained by means of first-principles total-energy calculations using the full potential Linearized Augmented Plane Wave (LAPW) method and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. We present results for the evolution of the phonon frequency and anharmonicity of the E2g mode as a function of Al concentration (x). From a comparison of the experimental data with the calculated E2g phonon frequency we show that the VCA-FPA reproduces the observed phonon renormalization in the whole range of Al concentrations. More interestingly, we find that the anharmonicity gradually decreases with Al doping and vanishes for x(Al)>0.5, that behaviour correlates with the evolution of the measured Raman linewidth in Al-doped MgB2. The significance of these results are discussed in the light of the experimentally observed loss of superconductivity in Mg1- xAlxB2.This work was supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant. No. 43830-F.

  6. Structural, electronic, and thermodynamic properties of curium dioxide: Density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Hou, Ling; Li, Wei-Dong; Wang, Fangwei; Eriksson, Olle; Wang, Bao-Tian

    2017-12-01

    We present a systematic investigation of the structural, magnetic, electronic, mechanical, and thermodynamic properties of CmO2 with the local density approximation (LDA)+U and the generalized gradient approximation (GGA)+U approaches. The strong Coulomb repulsion and the spin-orbit coupling (SOC) effects on the lattice structures, electronic density of states, and band gaps are carefully studied, and compared with other A O2 (A =U , Np, Pu, and Am). The ferromagnetic configuration with half-metallic character is predicted to be energetically stable while a charge-transfer semiconductor is predicted for the antiferromagnetic configuration. The elastic constants and phonon spectra show that the fluorite structure is mechanically and dynamically stable. Based on the first-principles phonon density of states, the lattice vibrational energy is calculated using the quasiharmonic approximation. Then, the Gibbs free energy, thermal expansion coefficient, specific heat, and entropy are obtained and compared with experimental data. The mode Grüneisen parameters are presented to analyze the anharmonic properties. The Slack relation is applied to obtain the lattice thermal conductivity in temperature range of 300-1600 K. The phonon group velocities are also calculated to investigate the heat transfer. For all these properties, if available, we compare the results of CmO2 with other A O2 .

  7. Effect of doping on electronic properties of HgSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nag, Abhinav, E-mail: abhinavn76@gmail.com; Sastri, O. S. K. S., E-mail: sastri.osks@gmail.com; Kumar, Jagdish, E-mail: jagdishphysicist@gmail.com

    2016-05-23

    First principle study of electronic properties of pure and doped HgSe have been performed using all electron Full Potential Linearized Augmented Plane Wave (FP-LAPW) method using ELK code. The electronic exchange and co-relations are considered using Generalized Gradient Approach (GGA). Lattice parameter, Density of States (DOS) and Band structure calculations have been performed. The total energy curve (Energy vs Lattice parameter), DOS and band structure calculations are in good agreement with the experimental values and those obtained using other DFT codes. The doped material is studied within the Virtual Crystal Approximation (VCA) with doping levels of 10% to 25% ofmore » electrons (hole) per unit cell. Results predict zero band gap in undopedHgSe and bands meet at Fermi level near the symmetry point Γ. For doped HgSe, we found that by electron (hole) doping, the point where conduction and valence bands meet can be shifted below (above) the fermi level.« less

  8. FIRST PRINCIPLES STUDY ON ELECTRONIC AND OPTICAL PROPERTIES OF Al-DOPED γ-Ge3N4

    NASA Astrophysics Data System (ADS)

    Ding, Y. C.; Xiang, A. P.; Zhu, X. H.; Luo, J.; Hu, X. F.

    2012-12-01

    First principles study of the structural, electronic and optical properties of Al-doped γ-Ge3N4 with different concentration has been reported using the pseudo-potential plane wave method within the generalized gradient approximation (GGA). The binding energy and the formation energy suggest that Aluminum (Al) impurities prefer to substitute Ge at octahedral sites. Different doping concentrations are considered and the corresponding density of states (DOS) are analyzed. Calculated DOS indicates that there are holes in the top of the valance band after doping, meaning a p-type doping. We study the complex dielectric function, the absorption coefficient, and the electron energy loss spectra. It is demonstrated that for the low Al concentration, the material exhibits the dielectric behavior and for the high Al concentration, the material has possibilities to exhibit some metallic behavior. The γ-Ge3N4 doped with Al has a much higher static dielectric constant than undoped γ-Ge3N4, implying its potential applications in electronics and optics.

  9. Band gap bowing and crossing of BxGa1-xN alloy investigated by hybrid functional method

    NASA Astrophysics Data System (ADS)

    Jiaping, Jiang; Yanqin, Gai; Gang, Tang

    2016-02-01

    The electronic properties of zinc-blende BxGa1-xN alloys are comparatively investigated by employing both the Perdewe-Burkee-Ernzerhof generalized-gradient approximation (PBE-GGA) and the Heyd-Scuseria-Ernzerhof screened hybrid functional methods (HSE06). HSE06 reproduced much closer ground-state properties to experiments. Large and composition-dependent bowing parameters bγ for the direct band gaps were obtained from both PBE and HSE06. The crossover composition where alloy switches from direct to indirect was predicted to occur at very similar x from PBE and HSE06. We can obtain direct gap BxGa1-xN with a gap value much larger than that of GaN by alloying x < 0.557 boron into GaN. Project supported by the Fundamental Research Funds for the Central Universities (No. 2010LKWL03), the Special Fund for Theoretical Physics (No. 11047130), and the National Natural Science Foundation of China (No. 11104345).

  10. Development of Fast and Reliable Free-Energy Density Functional Methods for Simulations of Dense Plasmas from Cold- to Hot-Temperature Regimes

    NASA Astrophysics Data System (ADS)

    Karasiev, V. V.

    2017-10-01

    Free-energy density functional theory (DFT) is one of the standard tools in high-energy-density physics used to determine the fundamental properties of dense plasmas, especially in cold and warm regimes when quantum effects are essential. DFT is usually implemented via the orbital-dependent Kohn-Sham (KS) procedure. There are two challenges of conventional implementation: (1) KS computational cost becomes prohibitively expensive at high temperatures; and (2) ground-state exchange-correlation (XC) functionals do not take into account the XC thermal effects. This talk will address both challenges and report details of the formal development of new generalized gradient approximation (GGA) XC free-energy functional which bridges low-temperature (ground state) and high-temperature (plasma) limits. Recent progress on development of functionals for orbital-free DFT as a way to address the second challenge will also be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  11. The structural, electronic and optical properties of Nd doped ZnO using first-principles calculations

    NASA Astrophysics Data System (ADS)

    Wen, Jun-Qing; Zhang, Jian-Min; Chen, Guo-Xiang; Wu, Hua; Yang, Xu

    2018-04-01

    The density functional theory calculations using general gradient approximation (GGA) applying Perdew-Burke-Ernzerhof (PBE) as correlation functional have been systematically performed to research the formation energy, the electronic structures, band structures, total and partial DOS, and optical properties of Nd doping ZnO with the content from 6.25% to 12.5%. The formation energies are negative for both models, which show that two structures are energetically stable. Nd doping ZnO crystal is found to be a direct band gap semiconductor and Fermi level shifts upward into conduction band, which show the properties of n-type semiconductor. Band structures are more compact after Nd doping ZnO, implying that Nd doping induces the strong interaction between different atoms. Nd doping ZnO crystal presents occupied states at near Fermi level, which mainly comes from the Nd 4f orbital. The calculated optical properties imply that Nd doping causes a red-shift of absorption peaks, and enhances the absorption of the visible light.

  12. FP-LAPW calculations of the elastic, electronic and thermoelectric properties of the filled skutterudite CeRu{sub 4}Sb{sub 12}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankar, A., E-mail: amitshan2009@gmail.com; Rai, D.P.; Chettri, Sandeep

    2016-08-15

    We have investigated the electronic structure, elastic and thermoelectric properties of the filled skutterudite CeRu{sub 4}Sb{sub 12} using the density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) approach is used to perform the calculations presented here. The electronic structure calculation suggests an indirect band gap semiconducting nature of the material with energy band gap of 0.08 eV. The analysis of the elastic constants at relaxed positions reveals the ductile nature of the sample material with covalent contribution in the inter-atomic bonding. The narrow band gap semiconductingmore » nature with high value of Seebeck coefficient suggests the possibility of the thermoelectric application of the material. The analysis of the thermal transport properties confirms the result obtained from the energy band structure of the material with high thermopower and dimensionless figure of merit 0.19 at room temperature.« less

  13. Electronic structure and x-ray magnetic circular dichroism in Mn-doped topological insulators Bi2Se3 and Bi2Te3

    NASA Astrophysics Data System (ADS)

    Antonov, V. N.; Bekenov, L. V.; Uba, S.; Ernst, A.

    2017-12-01

    We studied the structural, electronic, and magnetic properties of Mn-doped topological insulators Bi2Se3 and Bi2Te3 within the density-functional theory (DFT) using the generalized gradient approximation (GGA) in the framework of the fully relativistic spin-polarized Dirac linear muffin-tin orbital band-structure method. The x-ray absorption spectra (XAS) and x-ray magnetic circular dichroism at the Mn K and L2 ,3 edges were investigated theoretically from first principles. The calculated results are in good agreement with experimental data. The complex fine structure of the Mn L2 ,3 XAS in Mn-doped Bi2Se3 and Bi2Te3 was found to be not compatible with a pure Mn3 + valency state. Its interpretation demands mixed valent states. The theoretically calculated x-ray emission spectra at the Mn K and L2 ,3 edges are also presented and analyzed.

  14. Structural and magnetic properties of FeHx (x=0.25; 0.50; 0.75)

    NASA Astrophysics Data System (ADS)

    Mikhaylushkin, A. S.; Skorodumova, N. V.; Ahuja, R.; Johansson, B.

    2006-05-01

    The structural and magnetic properties of the FeHx (x=0.25; 0.50; 0.75) compounds have been studied using the projector augmented wave (PAW) method within the generalized gradient approximation (GGA). We compare the hcp, dhcp and fcc structures and find that for the considered concentrations of hydrogen the hcp structure is most stable in a wide pressure range. The magnetic behavior of iron is crucially influenced by hydrogen. In particular, the local moment on a Fe atom depends on the number of hydrogen atoms in the atom surroundings. Iron atoms, which are crystallographically equivalent in their original structures (hcp, fcc) but have different number of hydrogen neighbors, are shown to have different local magnetic moments. This finding suggests that the experimental observations of two magnetic moments in iron hydride can be explained by nonstoichiometry of the hydride and might not be a direct evidence for the presence of the dhcp phase.

  15. Electronic properties of carbon in the fcc phase.

    NASA Astrophysics Data System (ADS)

    Cab, Cesar; Canto, Gabriel

    2005-03-01

    The observation of a new carbon phase in nanoparticles obtained from Mexican crude oil having the face-centered-cubic structure (fcc) has been reported. However, more recently has been suggested that hydrogen is present in the samples forming CH with the zincblende structure. The structural and electronic properties of C(fcc) and CH(zincblende) are unknown. In the present work we have studied the electronic structure of C(fcc) and CH(zincblende) by means of first-principles total-energy calculations. The results were obtained with the pseudopotentials LCAO method (SIESTA code) and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. We have analyzed the band structure, the local density of states (LDOS), and orbital population. We find that in contrast to graphite and diamond, both fcc carbon and CH with the zincblende structure exhibit metallic behavior. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt-M'exico) under Grants No. 43830-F, No. 44831-F, and No. 43828-Y.

  16. Defect-induced magnetism in graphene nanoflakes

    NASA Astrophysics Data System (ADS)

    Martinez-Guerra, E.; Cifuentas-Quintal, M. E.; de Coss, R.

    2009-03-01

    The interaction between electron spin and the magnetic moments of vacancies in graphene could open new opportunities for spintronic and quantum computation. In that direction, we have studied the magnetic properties of graphene nanoflakes (C6n2H6n) with vacancies within the framework of density functional theory, using the pseudopotential LCAO method with a Generalized Gradient Approximation (GGA) for the exchange-correlation energy functional. In particular, we have calculated the magnetic moment of graphene nanoflakes of different diameters with a simple vacancy. We have found that the total spin-polarization of the graphene nanoflakes with a simple vacancy decreases as the diameter increases. In particular, we show that the vacancy induces the appereance of a midgap state at Fermi level. Thus, the spin degeneracy is broken, being only one of the spin channels of the midgap state occupied, the other being empty. This feature could be exploited for future spintronic applications. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 83604.

  17. Structural, electronic and optical properties of monoclinic Na{sub 2}Ti{sub 3}O{sub 7} from density functional theory calculations: A comparison with XRD and optical absorption measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araújo-Filho, Adailton A.; Silva, Fábio L.R.; Righi, Ariete

    Powder samples of bulk monoclinic sodium trititanate Na{sub 2}Ti{sub 3}O{sub 7} were prepared carefully by solid state reaction, and its monoclinic P2{sub 1}/m crystal structure and morphology were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. Moreover, the sodium trititanate main energy band gap was estimated as E{sub g}=3.51±0.01 eV employing UV–Vis spectroscopy, which is smaller than the measured 3.70 eV energy gap published previously by other authors. Aiming to achieve a better understanding of the experimental data, density functional theory (DFT) computations were performed within the local density and generalized gradient approximations (LDA and GGA,more » respectively) taking into account dispersion effects through the scheme of Tkatchenko and Scheffler (GGA+TS). Optimal lattice parameters, with deviations relative to measurements Δa=−0.06 Å, Δb=0.02 Å, and Δc=−0.09 Å, were obtained at the GGA level, which was then used to simulate the sodium trititanate electronic and optical properties. Indirect band transitions have led to a theoretical gap energy value of about 3.25 eV. Our results, however, differ from pioneer DFT results with respect to the specific Brillouin zone vectors for which the indirect transition with smallest energy value occurs. Effective masses for electrons and holes were also estimated along a set of directions in reciprocal space. Lastly, our calculations revealed a relatively large degree of optical isotropy for the Na{sub 2}Ti{sub 3}O{sub 7} optical absorption and complex dielectric function. - Graphical abstract: Monoclinic sodium trititanate Na2Ti3O7 was characterized by experiment and dispersion-corrected DFT calculations. An indirect gap of 3.5 eV is predicted, with heavy electrons and anisotropic holes ruling its conductivity. - Highlights: • Monoclinic Na2Ti3O7 was characterized by experiment (XRD, SEM, UV–Vis spectroscopy). • DFT GGA+TS optimized geometry and optoelectronic properties were obtained. • An experimental (theoretical) indirect gap of 3.5 (3.25) eV is predicted. • Heavy electrons and anisotropic holes rule the conductivity. • Ti-O bond lengths and charge states probably cause oxygen reactivity variations.« less

  18. High-temperature high-pressure properties of silica from Quantum Monte Carlo and Density Functional Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Cohen, R. E.; Driver, K.; Wu, Z.; Militzer, B.; Rios, P. L.; Towler, M.; Needs, R.

    2009-03-01

    We have used diffusion quantum Monte Carlo (DMC) with the CASINO code with thermal free energies from phonons computed using density functional perturbation theory (DFPT) with the ABINIT code to obtain phase transition curves and thermal equations of state of silica phases under pressure. We obtain excellent agreement with experiments for the metastable phase transition from quartz to stishovite. The local density approximation (LDA) incorrectly gives stishovite as the ground state. The generalized gradient approximation (GGA) correctly gives quartz as the ground state, but does worse than LDA for the equations of state. DMC, variational quantum Monte Carlo (VMC), and DFT all give good results for the ferroelastic transition of stishovite to the CaCl2 structure, and LDA or the WC exchange correlation potentials give good results within a given silica phase. The δV and δH from the CaCl2 structure to α-PbO2 is small, giving uncertainly in the theoretical transition pressure. It is interesting that DFT has trouble with silica transitions, although the electronic structures of silica are insulating, simple closed-shell with ionic/covalent bonding. It seems like the errors in DFT are from not precisely giving the ion sizes.

  19. Density functional theory investigation of the LiIn 1-xGa xSe 2 solid solution

    DOE PAGES

    Wiggins, Brenden; Batista, Enrique; Burger, Arnold; ...

    2016-06-07

    Here, the electronic structure and optical properties of the LiIn 1-xGa xSe 2 (x=0, 0.25, 0.5, 0.75, 1) solid solution were studied by density functional theory (DFT) with pure functionals. The exchange-correlation is treated within the local density approximation (LDA) and generalized-gradient approximation (GGA). The electronic structures for each respective compound are discussed in detail. Calculations reveal that gallium incorporation can be used to tune the optical-electrical properties of the solid solution and correlates with the lattice parameter. The band gap trend of the LiIn 1-xGa xSe 2 system follows a nonlinear behavior between the LiInSe 2 and LiGaSe 2more » ternary boundaries. The bowing parameter is estimated to be on the order of 0.1- 0.3 eV at the point. Low-temperature optical absorption revealed a 30% change in the temperature dependence of the band gap for the intermediate compound LiIn 0.6Ga 0.4Se 2 compared to ternary boundaries and suggests the heat capacity to be another control element through strain.« less

  20. Theoretical investigation of structural, electronic and optical properties of MgxBa1-xS, MgxBa1-xSe and MgxBa1-xTe ternary alloys using DFT based FP-LAPW approach

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2017-11-01

    Density functional theory (DFT) based full-potential linearized augmented plane wave (FP-LAPW) methodology has been employed to investigate theoretically the structural, electronic and optical properties of MgxBa1-xS, MgxBa1-xSe and MgxBa1-xTe ternary alloys for 0 ≤ x ≤ 1 in their rock-salt (B1) crystallographic phase. The exchange-correlation potentials for the structural properties have been computed using the Wu-Cohen generalized-gradient approximation (WC-GGA) scheme, while those for the electronic and optical properties have been computed using both the WC-GGA and the recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) schemes. The thermodynamic stability of all the ternary alloys have been investigated by calculating their respective enthalpy of formation. The atomic and orbital origin of different electronic states in the band structure of the compounds have been identified from the respective density of states (DOS). Using the approach of Zunger and co-workers, the microscopic origin of band gap bowing has been discussed in term of volume deformation, charge exchange and structural relaxation. Bonding characteristics among the constituent atoms of each of the specimens have been discussed from their charge density contour plots. Optical properties of the binary compounds and ternary alloys have been investigated theoretically in terms of their respective dielectric function, refractive index, normal incidence reflectivity and optical conductivity. Several calculated results have been compared with available experimental and other theoretical data.

  1. Structure and dynamics of aqueous solutions from PBE-based first-principles molecular dynamics simulations.

    PubMed

    Pham, Tuan Anh; Ogitsu, Tadashi; Lau, Edmond Y; Schwegler, Eric

    2016-10-21

    Establishing an accurate and predictive computational framework for the description of complex aqueous solutions is an ongoing challenge for density functional theory based first-principles molecular dynamics (FPMD) simulations. In this context, important advances have been made in recent years, including the development of sophisticated exchange-correlation functionals. On the other hand, simulations based on simple generalized gradient approximation (GGA) functionals remain an active field, particularly in the study of complex aqueous solutions due to a good balance between the accuracy, computational expense, and the applicability to a wide range of systems. Such simulations are often performed at elevated temperatures to artificially "correct" for GGA inaccuracies in the description of liquid water; however, a detailed understanding of how the choice of temperature affects the structure and dynamics of other components, such as solvated ions, is largely unknown. To address this question, we carried out a series of FPMD simulations at temperatures ranging from 300 to 460 K for liquid water and three representative aqueous solutions containing solvated Na + , K + , and Cl - ions. We show that simulations at 390-400 K with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional yield water structure and dynamics in good agreement with experiments at ambient conditions. Simultaneously, this computational setup provides ion solvation structures and ion effects on water dynamics consistent with experiments. Our results suggest that an elevated temperature around 390-400 K with the PBE functional can be used for the description of structural and dynamical properties of liquid water and complex solutions with solvated ions at ambient conditions.

  2. Solute-Solvent Charge-Transfer Excitations and Optical Absorption of Hydrated Hydroxide from Time-Dependent Density-Functional Theory.

    PubMed

    Opalka, Daniel; Sprik, Michiel

    2014-06-10

    The electronic structure of simple hydrated ions represents one of the most challenging problems in electronic-structure theory. Spectroscopic experiments identified the lowest excited state of the solvated hydroxide as a charge-transfer-to-solvent (CTTS) state. In the present work we report computations of the absorption spectrum of the solvated hydroxide ion, treating both solvent and solute strictly at the same level of theory. The average absorption spectrum up to 25 eV has been computed for samples taken from periodic ab initio molecular dynamics simulations. The experimentally observed CTTS state near the onset of the absorption threshold has been analyzed at the generalized-gradient approximation (GGA) and with a hybrid density-functional. Based on results for the lowest excitation energies computed with the HSE hybrid functional and a Davidson diagonalization scheme, the CTTS transition has been found 0.6 eV below the first absorption band of liquid water. The transfer of an electron to the solvent can be assigned to an excitation from the solute 2pπ orbitals, which are subject to a small energetic splitting due to the asymmetric solvent environment, to the significantly delocalized lowest unoccupied orbital of the solvent. The distribution of the centers of the excited state shows that CTTS along the OH(-) axis of the hydroxide ion is avoided. Furthermore, our simulations indicate that the systematic error arising in the calculated spectrum at the GGA originates from a poor description of the valence band energies in the solution.

  3. Effects of doping of calcium atom(s) on structural, electronic and optical properties of binary strontium chalcogenides - A theoretical investigation using DFT based FP-LAPW methodology

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2017-09-01

    The effects of doping of Ca atom(s) on structural, electronic and optical properties of binary strontium chalcogenide semiconductor compounds have been investigated theoretically using DFT based FP-LAPW approach by modeling the rock-salt (B1) ternary alloys CaxSr1-xS, CaxSr1-xSe and CaxSr1-xTe at some specific concentrations 0 ≤ x ≤ 1 and studying their aforesaid properties. The exchange-correlation potentials for their structural properties have been computed using the Wu-Cohen generalized-gradient approximation (WC-GGA) scheme, while those for the electronic and optical properties have been computed using recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) scheme. In addition, we have computed the electronic and optical properties with the traditional BLYP and PBE-GGA schemes for comparison. The atomic and orbital origin of different electronic states in the band structure of each of the compounds have been identified from the respective density of states (DOS). Using the approach of Zunger and co-workers, the microscopic origin of band gap bowing has been discussed in term of volume deformation, charge exchange and structural relaxation. Bonding characteristics among the constituent atoms of each of the specimens have been discussed from their charge density contour plots. Optical properties of the binary compounds and ternary alloys have been investigated theoretically in terms of their respective dielectric function, refractive index, normal incidence reflectivity and optical conductivity. Several calculated results have been compared with available experimental and other theoretical data.

  4. AB INITIO STUDY OF STRUCTURAL, ELECTRONIC AND OPTICAL PROPERTIES OF MgxCd1-xX (X = S, Se, Te) ALLOYS

    NASA Astrophysics Data System (ADS)

    Noor, N. A.; Shaukat, A.

    2012-12-01

    This study describes structural, electronic and optical properties of MgxCd1-xX (X = S, Se, Te) alloys in the complete range 0≤x ≤1 of composition x in the zinc-blende (ZB) phase with the help of full-potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method within density functional theory (DFT). In order to calculate total energy, generalized gradient approximation (Wu-Cohen GGA) has been applied, which is based on optimization energy. For electronic structure calculations, the corresponding potential is being optimized by Engel-Vosko GGA formalism. Our calculations reveal the nonlinear variation of lattice constant and bulk modulus with different concentration for the end binary and their ternary alloys, which slightly deviates from Vegard's law. The calculated band structures show a direct band gap for all three alloys with increasing order in the complete range of the compositional parameter x. In addition, we have discussed the disorder parameter (gap bowing) and concluded that the total band gap bowing is substantially influenced by the chemical (electronegativity) contribution. The calculated density of states (DOS) of these alloys is discussed in terms of contribution from various s-, p- and d-states of the constituent atoms and charge density distributions plots are analyzed. Optical properties have been presented in the form of the complex dielectric function ɛ(ω), refractive index n(ω) and extinction coefficient k(ω) as function of the incident photon energy, and the results have been compared with existing experimental data and other theoretical calculations.

  5. Two symmetric n-type interfaces SrTiO{sub 3}/LaAlO{sub 3} in perovskite: Electronic properties from density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reshak, A. H., E-mail: maalidph@yahoo.co.uk, E-mail: mabujafar@najah.edu; Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis; Abu-Jafar, M. S., E-mail: maalidph@yahoo.co.uk, E-mail: mabujafar@najah.edu

    2016-06-28

    The first principles study of the (001) two symmetric n-type interfaces between two insulating perovskites, the nonpolar SrTiO{sub 3} (STO), and the polar LaAlO{sub 3} (LAO) was performed. We have analyzed the formation of metallic interface states between the STO and LAO heterointerfaces by using the all-electron full-potential linearized augmented plane-wave approach based on the density functional theory, within the local density approximation, the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA), and the Engel-Vosko GGA (EVGGA) formalism. It has been found that some bands cross the Fermi energy level (E{sub F}), forming a metallic nature of two symmetric n-type 6.5STO/1.5LAO interfaces withmore » density of states at E{sub F}, N(E{sub F}) of about 3.56 (state/eV/unit cell), and bare electronic specific heat coefficient (γ) of about 0.62 mJ/(mol cell K{sup 2}). The electronic band stature and the partial density of states in the vicinity of E{sub F} are mainly originated from Ti1,2,3,4-3dxy orbitals. These bands are responsible for the metallic behavior and the forming of the Fermi surface of the two symmetric n-type 6.5STO/1.5LAO interfaces. To obtain a clear map of the valence band electronic charge density distribution of the two symmetric n-type 6.5STO/1.5LAO interfaces, we have investigated the bond's nature and the interactions between the atoms. It reveals that the charge is attracted towards O atoms as it is clear that the O atoms are surrounded by uniform blue spheres which indicate the maximum charge accumulation.« less

  6. Ab initio study of magnetocrystalline anisotropy, magnetostriction, and Fermi surface of L10 FeNi (tetrataenite)

    NASA Astrophysics Data System (ADS)

    Werwiński, Mirosław; Marciniak, Wojciech

    2017-12-01

    We present results of ab initio calculations of several L10 FeNi characteristics, such as the summary of the magnetocrystalline anisotropy energies (MAEs), the full potential calculations of the anisotropy constant K 3, and the combined analysis of the Fermi surface and 3D {k} -resolved MAE. Other calculated parameters are the spin and orbital magnetic moments, the magnetostrictive coefficient λ0 0 1 , the bulk modulus B 0, and the lattice parameters. The MAEs summary shows rather big discrepancies among the experimental MAEs from the literature and also among the calculated MAE’s. The MAEs calculated in this work with the full potential and generalized gradient approximation (GGA) are equal to 0.47 MJ m-3 from WIEN2k, 0.34 MJ m-3 from FPLO, and 0.23 MJ m-3 from FP-SPR-KKR code. These results suggest that the MAE in GGA is below 0.5 MJ m-3 . It is expected that due to the limitations of the GGA, this value is underestimated. The L10 FeNi has further potential to improve its MAE by modifications, like e.g. tetragonal strain or alloying. The presented 3D {k} -resolved map of the MAE combined with the Fermi surface gives a complete picture of the MAE contributions in the Brillouin zone. The obtained, from the full potential FP-SPR-KKR method, magnetocrystalline anisotropy constants K 2 and K 3 are several orders of magnitude smaller than the MAE/K 1 and equal to -2.0 kJ m-3 and 110 J m-3 , respectively. The calculated spin and orbital magnetic moments of the L10 FeNi are equal to 2.72 and 0.054 μB for Fe and 0.53 and 0.039 μB for Ni atoms, respectively. The calculations of geometry optimization lead to a c/a ratio equal to 1.0036, B 0 equal to 194 GPa, and λ0 0 1 equal to 9.4  ×  10-6.

  7. Investigation of the structural, electronic, elastic and thermodynamic properties of Curium Monopnictides: An ab initio study

    NASA Astrophysics Data System (ADS)

    Baaziz, H.; Guendouz, Dj.; Charifi, Z.; Akbudak, S.; Uğur, G.; Uğur, Ş.; Boudiaf, K.

    2017-12-01

    The structural, electronic, elastic and thermodynamic properties of Curium Monopnictides CmX (X = N, P, As, Sb and Bi) are investigated using first-principles calculations based on the density functional theory (DFT) and full potential linearized augmented plane wave (FP-LAPW) method under ambient condition and high pressure. The exchange-correlation term is treated using two approximations spin-polarized local density approximation (LSDA) and spin-polarized generalized gradient approximation generalized (GGA). The structural parameters such as the equilibrium lattice parameters, bulk modulus and the total energies are calculated in two phases: namely NaCl (B1) and CsCl (B2). The obtained results are compared with the previous theoretical and experimental results. A structural phase transition from B1 phase to B2 phase for Curium pnictides has been obtained. The highest transition pressure is 122 GPa for CmN and the lowest one is 10.0 GPa for CmBi compound. The electronic properties show that these materials exhibit half-metallic behavior in both phases. The magnetic moment is found to be around 7.0 μB. The mechanical properties of CmX (X = N, P, As, Sb and Bi) are predicted from the calculated elastic constants. Our calculated results are in good agreement with the theoretical results in literature. The effect of pressure and temperature on the thermodynamic properties like the cell volume, bulk modulus and the specific heats C𝜗 and CP, the entropy 𝒮 and the Grüneisen parameter γ have been foreseen at expanded pressure and temperature ranges.

  8. Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations.

    PubMed

    Chen, Yuhong; Wang, Jing; Yuan, Lihua; Zhang, Meiling; Zhang, Cairong

    2017-08-02

    The generalized gradient approximation (GGA) function based on density functional theory is adopted to investigate the optimized geometrical structure, electron structure and hydrogen storage performance of Sc modified porous graphene (PG). It is found that the carbon ring center is the most stable adsorbed position for a single Sc atom on PG, and the maximum number of adsorbed H₂ molecules is four with the average adsorption energy of -0.429 eV/H₂. By adding a second Sc atom on the other side of the system, the hydrogen storage capacity of the system can be improved effectively. Two Sc atoms located on opposite sides of the PG carbon ring center hole is the most suitable hydrogen storage structure, and the hydrogen storage capacity reach a maximum 9.09 wt % at the average adsorption energy of -0.296 eV/H₂. The adsorption of H₂ molecules in the PG system is mainly attributed to orbital hybridization among H, Sc, and C atoms, and Coulomb attraction between negatively charged H₂ molecules and positively charged Sc atoms.

  9. Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations

    PubMed Central

    Chen, Yuhong; Wang, Jing; Yuan, Lihua; Zhang, Meiling

    2017-01-01

    The generalized gradient approximation (GGA) function based on density functional theory is adopted to investigate the optimized geometrical structure, electron structure and hydrogen storage performance of Sc modified porous graphene (PG). It is found that the carbon ring center is the most stable adsorbed position for a single Sc atom on PG, and the maximum number of adsorbed H2 molecules is four with the average adsorption energy of −0.429 eV/H2. By adding a second Sc atom on the other side of the system, the hydrogen storage capacity of the system can be improved effectively. Two Sc atoms located on opposite sides of the PG carbon ring center hole is the most suitable hydrogen storage structure, and the hydrogen storage capacity reach a maximum 9.09 wt % at the average adsorption energy of −0.296 eV/H2. The adsorption of H2 molecules in the PG system is mainly attributed to orbital hybridization among H, Sc, and C atoms, and Coulomb attraction between negatively charged H2 molecules and positively charged Sc atoms. PMID:28767084

  10. Computational study of TiO2 Brookite (100), (010) and (210) surface doped with Ruthenium for application in Dye Sensitised Solar Cells

    NASA Astrophysics Data System (ADS)

    Dima, R. S.; Maluta, N. E.; Maphanga, R. R.; Sankaran, V.

    2017-10-01

    Titanium dioxide (TiO2) polymorphs are widely used in many energy-related applications due to their peculiar electronic and physicochemical properties. The electronic structures of brookite TiO2 surfaces doped with transition metal ruthenium have been investigated by ab initio band calculations based on the density functional theory with the planewave ultrasoft pseudopotential method. The generalized gradient approximation (GGA) was used in the scheme of Perdew-Burke-Ernzerhof (PBE) to describe the exchange-correlation functional. All calculations were carried out with CASTEP (Cambridge Sequential Total EnergyPackage) code in Materials Studio of Accelrys Inc. The surface structures of Ru doped TiO2 were constructed by cleaving the 1 × 1 × 1 optimized bulk structure of brookite TiO2. The results indicate that Ru doping can narrow the band gap of TiO2, leading to the improvement in the photoreactivity of TiO2, and simultaneously maintain strong redox potential. The theoretical calculations could provide meaningful guide to develop more active photocatalysts with visible light response.

  11. Proton affinities of maingroup-element hydrides and noble gases: trends across the periodic table, structural effects, and DFT validation.

    PubMed

    Swart, Marcel; Rösler, Ernst; Bickelhaupt, F Matthias

    2006-10-01

    We have carried out an extensive exploration of the gas-phase basicity of archetypal neutral bases across the periodic system using the generalized gradient approximation (GGA) of the density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. First, we validate DFT as a reliable tool for computing proton affinities and related thermochemical quantities: BP86/QZ4P//BP86/TZ2P is shown to yield a mean absolute deviation of 2.0 kcal/mol for the proton affinity at 298 K with respect to experiment, and 1.2 kcal/mol with high-level ab initio benchmark data. The main purpose of this work is to provide the proton affinities (and corresponding entropies) at 298 K of the neutral bases constituted by all maingroup-element hydrides of groups 15-17 and the noble gases, that is, group 18, and periods 1-6. We have also studied the effect of step-wise methylation of the protophilic center of the second- and third-period bases. Copyright 2006 Wiley Periodicals, Inc.

  12. Effect of alloying on screw dislocation structure in Mo: atomistic modelling approach with ab-initio parametrization

    NASA Astrophysics Data System (ADS)

    Gornostyrev, Yu. N.

    2005-03-01

    The plastic deformation in bcc metals is realized by the motion of screw dislocations with a complex star-like non-planar core. In this case, the direct investigation of the solute effect by first principles electronic structure calculations is a challenging problem for which we follow a combined approach that includes atomistic dislocation modelling with ab-initio parametrization of interatomic interactions. The screw dislocation core structure in Mo alloys is described within the model of atomic row displacements along a dislocation line with the interatomic row potential estimated from total energy full-potential linear muffin-tin orbital (FLMTO) calculations with the generalized gradient approximation (GGA) for the exchange-correlation potential. We demonstrate (1) that the solute effect on the dislocation structure is different for ``hard'' and ``easy'' cores and (2) that the softener addition in a ``hard'' core gives rise to a structural transformation into a configuration with a lower energy through an intermediate state. The softener solute is shown to disturb locally the three-fold symmetry of the dislocation core and the dislocation structure tends to the split planar core.

  13. Ab initio 27Al NMR chemical shifts and quadrupolar parameters for Al2O3 phases and their precursors

    NASA Astrophysics Data System (ADS)

    Ferreira, Ary R.; Küçükbenli, Emine; Leitão, Alexandre A.; de Gironcoli, Stefano

    2011-12-01

    The gauge-including projector augmented wave (GIPAW) method, within the density functional theory (DFT) generalized gradient approximation (GGA) framework, is applied to compute solid state NMR parameters for 27Al in the α, θ, and κ aluminium oxide phases and their gibbsite and boehmite precursors. The results for well established crystalline phases compare very well with available experimental data and provide confidence in the accuracy of the method. For γ-alumina, four structural models proposed in the literature are discussed in terms of their ability to reproduce the experimental spectra also reported in the literature. Among the considered models, the Fd3¯m structure proposed by Paglia [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.71.224115 71, 224115 (2005)] shows the best agreement. We attempt to link the theoretical NMR parameters to the local geometry. Chemical shifts depend on coordination number but no further correlation is found with geometrical parameters. Instead, our calculations reveal that, within a given coordination number, a linear correlation exists between chemical shifts and Born effective charges.

  14. Ab initio studies of Th3N4, Th2N3 and Th2N2(NH)

    NASA Astrophysics Data System (ADS)

    Obodo, K. O.; Chetty, N.

    2014-09-01

    Using density functional theory within the Perdew-Burke-Ernzerhof generalized gradient approximation [GGA (PBE)] implemented in the VASP codes, we investigate the structural, elastic and electronic properties of Th3N4, Th2N3 and Th2N2(NH). The calculated structural properties of these thorium-based nitrides are in good agreement with experimental data. We observe that all the Th-N based compounds that we considered are energetically favorable and elastically stable. We find that Th3N4 is semiconducting with a band gap of 1.59 eV, which compares well with the experimental band gap of 1.7 eV and we find Th2N3 to be metallic. Th2N2(NH), which is crystallographically equivalent to Th2N3, is insulating with a band gap of 2.12 eV. This is due to the -(NH) group that effects a shifting of the energy bands that results in the opening of a gap at the Fermi-level. The Th-N based compounds that we considered are predominantly ionic.

  15. Lattice dynamic properties of Rh2XAl (X=Fe and Y) alloys

    NASA Astrophysics Data System (ADS)

    Al, Selgin; Arikan, Nihat; Demir, Süleyman; Iyigör, Ahmet

    2018-02-01

    The electronic band structure, elastic and vibrational spectra of Rh2FeAl and Rh2YAl alloys were computed in detail by employing an ab-initio pseudopotential method and a linear-response technique based on the density-functional theory (DFT) scheme within a generalized gradient approximation (GGA). Computed lattice constants, bulk modulus and elastic constants were compared. Rh2YAl exhibited higher ability to resist volume change than Rh2FeAl. The elastic constants, shear modulus, Young modulus, Poisson's ratio, B/G ratio electronic band structure, total and partial density of states, and total magnetic moment of alloys were also presented. Rh2FeAl showed spin up and spin down states whereas Rh2YAl showed none due to being non-magnetic. The calculated total densities of states for both materials suggest that both alloys are metallic in nature. Full phonon spectra of Rh2FeAl and Rh2YA1 alloys in the L21 phase were collected using the ab-initio linear response method. The obtained phonon frequencies were in the positive region indicating that both alloys are dynamically stable.

  16. First principles calculation of elastic and magnetic properties of Cr-based full-Heusler alloys

    NASA Astrophysics Data System (ADS)

    Aly, Samy H.; Shabara, Reham M.

    2014-06-01

    We present an ab-initio study of the elastic and magnetic properties of Cr-based full-Heusler alloys within the first-principles density functional theory. The lattice constant, magnetic moment, bulk modulus and density of states are calculated using the full-potential nonorthogonal local-orbital minimum basis (FPLO) code in the Generalized Gradient Approximation (GGA) scheme. Only the two alloys Co2CrSi and Fe2CrSi are half-metallic with energy gaps of 0.88 and 0.55 eV in the spin-down channel respectively. We have predicted the metallicity state for Fe2CrSb, Ni2CrIn, Cu2CrIn, and Cu2CrSi alloys. Fe2CrSb shows a strong pressure dependent, e.g. exhibits metallicity at zero pressure and turns into a half-metal at P≥10 GPa. The total and partial magnetic moments of these alloys were studied under higher pressure, e.g. in Co2CrIn, the total magnetic moment is almost unchanged under higher pressure up to 500 GPa.

  17. Clarification of the interaction between Au atoms and the anatase TiO2 (112) surface using density functional theory

    NASA Astrophysics Data System (ADS)

    Tada, Kohei; Koga, Hiroaki; Okumura, Mitsutaka; Tanaka, Shingo

    2018-04-01

    A model (112) surface slab of anatase TiO2 (112) was optimized, and the adsorption of Au atoms onto the (112) surface was investigated by first-principles calculations based on DFT (density functional theory) with the generalized gradient approximation (GGA). Furthermore, the results were compared with those of Au/anatase TiO2 (101) system. The (112) surface has a ridge and a groove (zig-zag structure). The Au atoms were strongly adsorbed in the grooves but became unstable as they climbed toward the ridges, and the promotion of electrons in the 5d orbitals to the 6s and 6p orbitals in the absorbed Au atom occurred. At the Au/anatase TiO2 interface, the Au-Ti4+ coordinate bond in the (112) system is stronger than that in the (101) system because the promotion of electrons is greater in the former interaction than the latter. The results suggest that Au/anatase TiO2 catalysts with a higher dispersion of Au nanoparticles could be prepared when the (112) surface is preferentially exposed.

  18. First principles study of NH3 adsorption on carbon nanowires

    NASA Astrophysics Data System (ADS)

    Tapia, Jorge-Alejandro; Sanchez, Alvaro-Daniel; Acosta, Cesar; Canto, Gabriel

    2009-03-01

    Recently has been reported a new type of one-dimensional carbon structures. Carbon nanowires formed by a linear carbon-atom chain inside an armchair (5,5) carbon nanotube has been observed using high-resolution transmission electron microscopy. Theoretical and experimental studies of the NH3 adsorption in the carbon nanotubes report changes in the electronic properties of the carbon nanotubes. In the present work we have studied the electronic and structure properties of carbon nanowires (chain@SWCNT) when NH3 atoms are adsorbed. We used the Density Functional Theory and the calculations where performed by the pseudopotentials LCAO method (SIESTA code) and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. We have analyzed the changes in the atomic structure and density of states (DOS). We found that the electronic character of the carbon chain of the chain@SWCNT system, can be modulate by NH3 adsorption. This research was supported by SEP under Grant No. PROMEP/103.5/07/2595 and the Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grants No. 82497 and 60534.

  19. Density functional theory calculations for the band gap and formation energy of Pr4-xCaxSi12O3+xN18-x; a highly disordered compound with low symmetry and a large cell size.

    PubMed

    Hong, Sung Un; Singh, Satendra Pal; Pyo, Myoungho; Park, Woon Bae; Sohn, Kee-Sun

    2017-06-28

    A novel oxynitride compound, Pr 4-x Ca x Si 12 O 3+x N 18-x , synthesized using a solid-state route has been characterized as a monoclinic structure in the C2 space group using Rietveld refinement on synchrotron powder X-ray diffraction data. The crystal structure of this compound was disordered due to the random distribution of Ca/Pr and N/O ions at various Wyckoff sites. A pragmatic approach for an ab initio calculation based on density function theory (DFT) for this disordered compound has been implemented to calculate an acceptable value of the band gap and formation energy. In general, for the DFT calculation of a disordered compound, a sufficiently large super cell and infinite variety of ensemble configurations is adopted to simulate the random distribution of ions; however, such an approach is time consuming and cost ineffective. Even a single unit cell model gave rise to 43 008 independent configurations as an input model for the DFT calculations. Since it was nearly impossible to calculate the formation energy and the band gap energy for all 43 008 configurations, an elitist non-dominated sorting genetic algorithm (NSGA-II) was employed to find the plausible configurations. In the NSGA-II, all 43 008 configurations were mathematically treated as genomes and the calculated band gap and the formation energy as the objective (fitness) function. Generalized gradient approximation (GGA) was first employed in the preliminary screening using NSGA-II, and thereafter a hybrid functional calculation (HSE06) was executed only for the most plausible GGA-relaxed configurations with lower formation and higher band gap energies. The final band gap energy (3.62 eV) obtained after averaging over the selected configurations, resembles closely the experimental band gap value (4.11 eV).

  20. First principles study on Fe based ferromagnetic quaternary Heusler alloys

    NASA Astrophysics Data System (ADS)

    Amudhavalli, A.; Rajeswarapalanichamy, R.; Iyakutti, K.

    2017-11-01

    The study of stable half-metallic ferromagnetic materials is important from various fundamental and application points of view in condensed matter Physics. Structural phase stability, electronic structure, mechanical and magnetic properties of Fe-based quaternary Heusler alloys XX‧YZ (X = Co, Ni; X‧ = Fe; Y = Ti; Z = Si, Ge, As) for three different phases namely α, β and γ phases of LiMgPdSn crystal structure have been studied by density functional theory with generalized gradient approximation formulated by Perdew, Burke and Ernzerhof (GGA-PBE) and the Hubbard formalism (GGA-PBE + U). This work aims to identify the ferromagnetic and half-metallic properties of XX‧YZ (X = Co, Ni, X‧ = Fe; Y = Ti; Z = Si, Ge, As) quaternary Heusler alloys. The predicted phase stability shows that α-phase is found to be the lowest energy phase at ambient pressure. A pressure-induced structural phase transition is observed in CoFeTiSi, CoFeTiGe, CoFeTiAs, NiFeTiSi, NiFeTiGe and NiFeTiAs at the pressures of 151.6 GPa, 33.7 GPa, 76.4 GPa, 85.3 GPa, 87.7 GPa and 96.5 GPa respectively. The electronic structure reveals that these materials are half metals at normal pressure whereas metals at high pressure. The investigation of electronic structure and magnetic properties are performed to reveal the underlying mechanism of half metallicity. The spin polarized calculations concede that these quaternary Heusler compounds may exhibit the potential candidate in spintronics application. The magnetic moments for these quaternary Heusler alloys in all the three different phases (α, β and γ) are estimated.

  1. Predicting critical temperatures of iron(II) spin crossover materials: Density functional theory plus U approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yachao, E-mail: yczhang@nano.gznc.edu.cn

    2014-12-07

    A first-principles study of critical temperatures (T{sub c}) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T{sub c} of a pair of iron(II) SCO molecular crystals (αmore » and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE{sub HL} and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T{sub c} by exploiting the ΔH/T − T and ΔS − T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T{sub c} of the two phases. This study shows the applicability of the DFT+U approach for predicting T{sub c} of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.« less

  2. Structure and dynamics of aqueous solutions from PBE-based first-principles molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Tuan Anh; Ogitsu, Tadashi; Lau, Edmond Y.

    Establishing an accurate and predictive computational framework for the description of complex aqueous solutions is an ongoing challenge for density functional theory based first-principles molecular dynamics (FPMD) simulations. In this context, important advances have been made in recent years, including the development of sophisticated exchange-correlation functionals. On the other hand, simulations based on simple generalized gradient approximation (GGA) functionals remain an active field, particularly in the study of complex aqueous solutions due to a good balance between the accuracy, computational expense, and the applicability to a wide range of systems. In such simulations we often perform them at elevated temperaturesmore » to artificially “correct” for GGA inaccuracies in the description of liquid water; however, a detailed understanding of how the choice of temperature affects the structure and dynamics of other components, such as solvated ions, is largely unknown. In order to address this question, we carried out a series of FPMD simulations at temperatures ranging from 300 to 460 K for liquid water and three representative aqueous solutions containing solvated Na +, K +, and Cl - ions. We show that simulations at 390–400 K with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional yield water structure and dynamics in good agreement with experiments at ambient conditions. Simultaneously, this computational setup provides ion solvation structures and ion effects on water dynamics consistent with experiments. These results suggest that an elevated temperature around 390–400 K with the PBE functional can be used for the description of structural and dynamical properties of liquid water and complex solutions with solvated ions at ambient conditions.« less

  3. Structure and dynamics of aqueous solutions from PBE-based first-principles molecular dynamics simulations

    DOE PAGES

    Pham, Tuan Anh; Ogitsu, Tadashi; Lau, Edmond Y.; ...

    2016-10-17

    Establishing an accurate and predictive computational framework for the description of complex aqueous solutions is an ongoing challenge for density functional theory based first-principles molecular dynamics (FPMD) simulations. In this context, important advances have been made in recent years, including the development of sophisticated exchange-correlation functionals. On the other hand, simulations based on simple generalized gradient approximation (GGA) functionals remain an active field, particularly in the study of complex aqueous solutions due to a good balance between the accuracy, computational expense, and the applicability to a wide range of systems. In such simulations we often perform them at elevated temperaturesmore » to artificially “correct” for GGA inaccuracies in the description of liquid water; however, a detailed understanding of how the choice of temperature affects the structure and dynamics of other components, such as solvated ions, is largely unknown. In order to address this question, we carried out a series of FPMD simulations at temperatures ranging from 300 to 460 K for liquid water and three representative aqueous solutions containing solvated Na +, K +, and Cl - ions. We show that simulations at 390–400 K with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional yield water structure and dynamics in good agreement with experiments at ambient conditions. Simultaneously, this computational setup provides ion solvation structures and ion effects on water dynamics consistent with experiments. These results suggest that an elevated temperature around 390–400 K with the PBE functional can be used for the description of structural and dynamical properties of liquid water and complex solutions with solvated ions at ambient conditions.« less

  4. AB INITIO STUDY OF OPTOELECTRONIC PROPERTIES OF SPINEL ZnAl2O4 BEYOND GGA AND LDA

    NASA Astrophysics Data System (ADS)

    Yousaf, Masood; Saeed, M. A.; Isa, Ahmad Radzi Mat; Rahnamaye Aliabad, H. A.; Noor, N. A.

    2012-12-01

    Electronic band structure and optical parameters of ZnAl2O4 are investigated by first-principles technique based on a new potential approximation, known as modified Becke-Johnson (mBJ). This method describes the excited states of insulators and semiconductors more accurately The recent direct band gap result by EV-GGA is underestimated by about 15% compared to our band gap value using mBJ-GGA. The value of the band gap of ZnAl2O4 decreases as follows: Eg(mBJ-GGA/LDA) > Eg(GGA) > Eg(LDA). The band structure base optical parametric quantities (dielectric constant, index of refraction, reflectivity and optical conductivity) are also calculated, and their variations with energy range are discussed. The first critical point (optical absorption's edge) in ZnAl2O4 occurs at about 5.26 eV in case of mBJ. This study about the optoelectronic properties indicates that ZnAl2O4 can be used in optical devices.

  5. Effect of pressure variation on structural, elastic, mechanical, optoelectronic and thermodynamic properties of SrNaF3 fluoroperovskite

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-12-01

    The effect of pressure variation on structural, electronic, elastic, mechanical, optical and thermodynamic characteristics of cubic SrNaF3 fluoroperovskite have been investigated by employing first-principles method within the framework of gradient approximation (GGA). For the total energy calculations, we have used the full-potential linearized augmented plane wave (FP-LAPW) method. Thermodynamic properties are computed in terms of quasi-harmonic Debye model. The pressure effects are determined in the range of 0-25 GPa, in which mechanical stability of SrNaF3 fluoroperovskite remains valid. A prominent decrease in lattice constant and bonds length is observed with the increase in pressure from 0 to 25 GPa. The effect of increase in pressure on band structure calculations with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential reveals a predominant characteristic associated with widening of bandgap. The influence of pressure on set of isotropic elastic parameters and their related properties are numerically estimated for SrNaF3 polycrystalline aggregate. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is observed as pressure is increased from 0 to 25 GPa. We have successfully obtained variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities with pressure and temperature in the range of 0-25 GPa and 0-600 K. All the calculated optical properties such as the complex dielectric function ɛ(ω), optical conductivity σ(ω), energy loss function L(ω), absorption coefficient α(w), refractive index n(ω), reflectivity R(ω), and effective number of electrons n eff, via sum rules shift towards the higher energies under the application of pressure.

  6. Point defects in ZnO: an approach from first principles

    PubMed Central

    Oba, Fumiyasu; Choi, Minseok; Togo, Atsushi; Tanaka, Isao

    2011-01-01

    Recent first-principles studies of point defects in ZnO are reviewed with a focus on native defects. Key properties of defects, such as formation energies, donor and acceptor levels, optical transition energies, migration energies and atomic and electronic structure, have been evaluated using various approaches including the local density approximation (LDA) and generalized gradient approximation (GGA) to DFT, LDA+U/GGA+U, hybrid Hartree–Fock density functionals, sX and GW approximation. Results significantly depend on the approximation to exchange correlation, the simulation models for defects and the post-processes to correct shortcomings of the approximation and models. The choice of a proper approach is, therefore, crucial for reliable theoretical predictions. First-principles studies have provided an insight into the energetics and atomic and electronic structures of native point defects and impurities and defect-induced properties of ZnO. Native defects that are relevant to the n-type conductivity and the non-stoichiometry toward the O-deficient side in reduced ZnO have been debated. It is suggested that the O vacancy is responsible for the non-stoichiometry because of its low formation energy under O-poor chemical potential conditions. However, the O vacancy is a very deep donor and cannot be a major source of carrier electrons. The Zn interstitial and anti-site are shallow donors, but these defects are unlikely to form at a high concentration in n-type ZnO under thermal equilibrium. Therefore, the n-type conductivity is attributed to other sources such as residual impurities including H impurities with several atomic configurations, a metastable shallow donor state of the O vacancy, and defect complexes involving the Zn interstitial. Among the native acceptor-type defects, the Zn vacancy is dominant. It is a deep acceptor and cannot produce a high concentration of holes. The O interstitial and anti-site are high in formation energy and/or are electrically inactive and, hence, are unlikely to play essential roles in electrical properties. Overall defect energetics suggests a preference for the native donor-type defects over acceptor-type defects in ZnO. The O vacancy, Zn interstitial and Zn anti-site have very low formation energies when the Fermi level is low. Therefore, these defects are expected to be sources of a strong hole compensation in p-type ZnO. For the n-type doping, the compensation of carrier electrons by the native acceptor-type defects can be mostly suppressed when O-poor chemical potential conditions, i.e. low O partial pressure conditions, are chosen during crystal growth and/or doping. PMID:27877390

  7. High precision Hugoniot measurements of D2 near maximum compression

    NASA Astrophysics Data System (ADS)

    Benage, John; Knudson, Marcus; Desjarlais, Michael

    2015-11-01

    The Hugoniot response of liquid deuterium has been widely studied due to its general importance and to the significant discrepancy in the inferred shock response obtained from early experiments. With improvements in dynamic compression platforms and experimental standards these results have converged and show general agreement with several equation of state (EOS) models, including quantum molecular dynamics (QMD) calculations within the Generalized Gradient Approximation (GGA). This approach to modeling the EOS has also proven quite successful for other materials and is rapidly becoming a standard approach. However, small differences remain among predictions obtained using different local and semi-local density functionals; these small differences show up in the deuterium Hugoniot at ~ 30-40 GPa near the region of maximum compression. Here we present experimental results focusing on that region of the Hugoniot and take advantage of advancements in the platform and standards, resulting in data with significantly higher precision than that obtained in previous studies. These new data may prove to distinguish between the subtle differences predicted by the various density functionals. Results of these experiments will be presented along with comparison to various QMD calculations. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Protective effect of geranylgeranylacetone against loxoprofen sodium-induced small intestinal lesions in rats.

    PubMed

    Iwai, Tomohisa; Ichikawa, Takafumi; Kida, Mitsuhiro; Goso, Yukinobu; Kurihara, Makoto; Koizumi, Wasaburo; Ishihara, Kazuhiko

    2011-02-10

    Nonsteroidal anti-inflammatory drugs induce small intestinal ulcers but the preventive measures against it remain unknown. So we evaluated the effect of geranylgeranylacetone (GGA), a mucosal protectant, on both the mucus content and loxoprofen sodium-induced lesions in the rat small intestine. Normal male Wistar rats were given GGA (200 or 400mg/kg p.o.) and euthanized 3h later for measurement of mucin content and immunoreactivity. Other Wistar rats were given loxoprofen sodium (30mg/kg s.c.) and euthanized 24h later. GGA (30-400mg/kg p.o.) was administered twice: 30min before and 6h after loxoprofen sodium. The total mucin content of the small intestinal mucosa increased, especially the ratio of sialomucin, which increased approximately 20% more than the control level after a single dose of GGA. Loxoprofen sodium provoked linear ulcers along the mesenteric margin of the distal jejunum, accompanied by an increase in enterobacterial translocation. Treatment of the animals with GGA dose-dependently prevented the development of intestinal lesions, and bacterial translocation following loxoprofen sodium was also significantly decreased. GGA protects the small intestine against loxoprofen sodium-induced lesions, probably by inhibiting enterobacterial invasion of the mucosa as a result of the increase in the mucosal barrier. 2010 Elsevier B.V. All rights reserved.

  9. Electronic and optical properties of graphene-like InAs: An ab initio study

    NASA Astrophysics Data System (ADS)

    Sohrabi, Leila; Boochani, Arash; Ali Sebt, S.; Mohammad Elahi, S.

    2018-03-01

    The present work initially investigates structural, optical, and electronic properties of graphene-like InAs by using the full potential linear augmented plane wave method in the framework of density functional theory and is then compared with the bulk Indium Arsenide in the wurtzite phase. The lattice parameters are optimized with GGA-PBE and LDA approximations for both 2D- and 3D-InAs. In order to study the electronic properties of graphene-like InAs and bulk InAs in the wurtzite phase, the band gap is calculated by GGA-PBG and GGA-EV approximations. Moreover, optical parameters of graphene-like InAs and bulk InAs such as the real and imaginary parts of dielectric function, electron energy loss function, refractivity, extinction and absorption coefficients, and optical conductivity are investigated. Plasmonic frequencies of 2D- and 3D-InAs are also calculated by using maximum electron energy loss function and the roots of the real part of the dielectric function.

  10. The electron affinity of Al13H cluster: high level ab initio study

    NASA Astrophysics Data System (ADS)

    Moc, Jerzy

    2014-11-01

    Al13H clusters have been considered candidates for cluster assembled materials. Here we have carried out benchmark calculations for the Al13H cluster, both neutral and anionic, with the aim of verifying the nature of stationary points on the potential energy surface, studying dynamics of H atom and determining an adiabatic electron affinity. A range of correlated methods applied include second-order perturbation theory (MP2), spin-component-scaled MP2, coupled electron pair (CEPA) and coupled cluster singles and doubles with perturbative triple corrections (CCSD(T)). These methods are used in combination with the correlation consistent basis sets through aug-cc-pVTZ including extrapolation to the complete basis set (CBS) limit. Performance of several different flavours of density functional theory (DFT) such as generalised gradient approximation (GGA), hybrid GGA, meta-GGA and hybrid-meta-GGA is assessed with respect to the ab initio correlated reference data. The harmonic force constant analysis is systematically performed with the MP2 and DFT methods. The MP2 results show that for neutral Al13H only the hollow structure is a potential energy minimum, with the bridged structure being a transition state for the H shift from the hollow site to the adjacent hollow site. The CCSD(T)/aug-cc-pVTZ (CCSD(T)/CBS) estimate of the energy barrier to this H shift is 2.6 (2.9) kcal/mol, implying that the H atom movement over the Al13H cluster surface is facile. By contrast, the DFT force constant analysis results suggest additional terminal and bridged minima structures. For the anion Al13H-, exhibiting 'stiffer' potential energy surface compared to the neutral, the existence of the hollow and terminal isomers is consistent with the earlier photoelectron spectroscopy assignment. The adiabatic electron affinity of Al13H is determined to be 2.00 and 1.95 eV (the latter including the ΔZPE correction) based on the CCSD(T) energies extrapolated to the CBS limit, whereas the respective CCSD(T)/CBS thermodynamic EA values are 2.79 and 2.80 eV.

  11. Protein-ligand interaction energies with dispersion corrected density functional theory and high-level wave function based methods.

    PubMed

    Antony, Jens; Grimme, Stefan; Liakos, Dimitrios G; Neese, Frank

    2011-10-20

    With dispersion-corrected density functional theory (DFT-D3) intermolecular interaction energies for a diverse set of noncovalently bound protein-ligand complexes from the Protein Data Bank are calculated. The focus is on major contacts occurring between the drug molecule and the binding site. Generalized gradient approximation (GGA), meta-GGA, and hybrid functionals are used. DFT-D3 interaction energies are benchmarked against the best available wave function based results that are provided by the estimated complete basis set (CBS) limit of the local pair natural orbital coupled-electron pair approximation (LPNO-CEPA/1) and compared to MP2 and semiempirical data. The size of the complexes and their interaction energies (ΔE(PL)) varies between 50 and 300 atoms and from -1 to -65 kcal/mol, respectively. Basis set effects are considered by applying extended sets of triple- to quadruple-ζ quality. Computed total ΔE(PL) values show a good correlation with the dispersion contribution despite the fact that the protein-ligand complexes contain many hydrogen bonds. It is concluded that an adequate, for example, asymptotically correct, treatment of dispersion interactions is necessary for the realistic modeling of protein-ligand binding. Inclusion of the dispersion correction drastically reduces the dependence of the computed interaction energies on the density functional compared to uncorrected DFT results. DFT-D3 methods provide results that are consistent with LPNO-CEPA/1 and MP2, the differences of about 1-2 kcal/mol on average (<5% of ΔE(PL)) being on the order of their accuracy, while dispersion-corrected semiempirical AM1 and PM3 approaches show a deviating behavior. The DFT-D3 results are found to depend insignificantly on the choice of the short-range damping model. We propose to use DFT-D3 as an essential ingredient in a QM/MM approach for advanced virtual screening approaches of protein-ligand interactions to be combined with similarly "first-principle" accounts for the estimation of solvation and entropic effects.

  12. First principles study on structural, electronic and optical properties of Ga1-xBxP ternary alloys (x = 0, 0.25, 0.5, 0.75 and 1)

    NASA Astrophysics Data System (ADS)

    Hoat, D. M.; Rivas Silva, J. F.; Méndez Blas, A.

    2018-07-01

    The structural, electronic and optical properties of GaP, BP binary compounds and their ternary alloys Ga1-xBxP (x = 0.25, 0.5 and 0.75) have been studied by full-potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT) as implemented in WIEN2k package. Local density approximation (LDA) and generalized gradient approximation (GGA) as proposed by Perdew-Burke-Ernzerhof (PBE), Wu-Cohen (WC) and PBE for solid (PBESol) were used for treatment of exchange-correlation effect in calculations. Additionally, the Tran-Blaha modified Becke-Johnson (mBJ) potential was also employed for electronic and optical calculations due to that it gives very accurate band gap of solids. As B concentration increases, the lattice constant reduces and the energy band gap firstly decreases for small composition x and then it shows increasing trend until pure BP. Our results show that the indirect-direct band gap transition can be reached from x = 0.33. The linear optical properties, such as reflectivity, absorption coefficient, refractive index and optical conductivity of binary compounds and ternary alloys were derived from their calculated complex dielectric function in wide energy range up to 30 eV, and the alloying effect on these properties was also analyzed in detail.

  13. Structural, electronic, elastic, and thermal properties of CaNiH3 perovskite obtained from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Benlamari, S.; Bendjeddou, H.; Boulechfar, R.; Amara Korba, S.; Meradji, H.; Ahmed, R.; Ghemid, S.; Khenata, R.; Omran, S. Bin

    2018-03-01

    A theoretical study of the structural, elastic, electronic, mechanical, and thermal properties of the perovskite-type hydride CaNiH3 is presented. This study is carried out via first-principles full potential (FP) linearized augmented plane wave plus local orbital (LAPW+lo) method designed within the density functional theory (DFT). To treat the exchange–correlation energy/potential for the total energy calculations, the local density approximation (LDA) of Perdew–Wang (PW) and the generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) are used. The three independent elastic constants (C 11, C 12, and C 44) are calculated from the direct computation of the stresses generated by small strains. Besides, we report the variation of the elastic constants as a function of pressure as well. From the calculated elastic constants, the mechanical character of CaNiH3 is predicted. Pertaining to the thermal properties, the Debye temperature is estimated from the average sound velocity. To further comprehend this compound, the quasi-harmonic Debye model is used to analyze the thermal properties. From the calculations, we find that the obtained results of the lattice constant (a 0), bulk modulus (B 0), and its pressure derivative ({B}0^{\\prime }) are in good agreement with the available theoretical as well as experimental results. Similarly, the obtained electronic band structure demonstrates the metallic character of this perovskite-type hydride.

  14. Interdependence of spin structure, anion height and electronic structure of BaFe{sub 2}As{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Smritijit, E-mail: smritijit.sen@gmail.com; Ghosh, Haranath, E-mail: hng@rrcat.gov.in; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094

    2016-05-06

    Superconducting as well as other electronic properties of Fe-based superconductors are quite sensitive to the structural parameters specially, on anion height which is intimately related to z{sub As}, the fractional z co-ordinate of As atom. Due to presence of strong magnetic fluctuation in these Fe-based superconductors, optimized structural parameters (lattice parameters a, b, c) including z{sub As} using density functional theory (DFT) under generalized gradient approximation (GGA) does not match experimental values accurately. In this work, we show that the optimized value of z{sub As} is strongly influenced by the spin structures in the orthorhombic phase of BaFe{sub 2}As{sub 2}more » system. We take all possible spin structures for the orthorhombic BaFe{sub 2}As{sub 2} system and then optimize z{sub As}. Using these optimized structures we calculate electronic structures like density of states, band structures etc., for each spin configurations. From these studies we show that the electronic structure, orbital order which is responsible for structural as well as related to nematic transition, are significantly influenced by the spin structures.« less

  15. Design and investigation of potential Sn-Te-P and Zr-Te-P class of Dirac materials

    NASA Astrophysics Data System (ADS)

    Sarswat, Prashant; Sarkar, Sayan; Free, Michael

    A motivation of new Dirac materials design and synthesis by perturbing the symmetry, was explored by substitution of a Sn vacancy by P that maintains the intrinsic band inversion at the L point but also the direct bandgap shrinkage upon the incorporation of spin-orbit coupling. In a similar line of investigation, Zr-Te-P was also systematically studied. The synthesis of both Sn-Te-P and Zr-Te-P system of compounds resulted in the formation of long needles type crystals and the bulk porous deposits. The exotic morphology of the P-doped SnTe needles possesses the pierced surface throughout its extension. First principle based calculations were also carried out for these sets of compounds using General Gradient Approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. In order to ensure structural optimization, a limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm was employed and the total energy in PBE exchange-correlation functional was considered for the calculation of the formation energy per atom. The new modifications have a potential to establish the new class of Dirac materials ushering upon new frontiers of interest.

  16. Structural and electronic properties of high pressure phases of lead chalcogenides

    NASA Astrophysics Data System (ADS)

    Petersen, John; Scolfaro, Luisa; Myers, Thomas

    2012-10-01

    Lead chalcogenides, most notably PbTe and PbSe, have become an active area of research due to their thermoelectric properties. The high figure of merit (ZT) of these materials has brought much attention to them, due to their ability to convert waste heat into electricity. Variation in synthesis conditions gives rise to a need for analysis of structural and thermoelectric properties of these materials at different pressures. In addition to the NaCl structure at ambient conditions, lead chalcogenides have a dynamic orthorhombic (Pnma) intermediate phase and a higher pressure yet stable CsCl phase. By altering the lattice constant, we simulate the application of external pressure; this has notable effects on ground state total energy, band gap, and structural phase. Using the General Gradient Approximation (GGA) in Density Functional Theory (DFT), we calculate the phase transition pressures by finding the differences in enthalpy from total energy calculations. For each phase, elastic constants, bulk modulus, shear modulus, Young's modulus, and hardness are calculated, using two different approaches. In addition to structural properties, we analyze the band structure and density of states at varying pressures, paying special note to thermoelectric implications.

  17. Shock-Compressed Hydrogen

    NASA Astrophysics Data System (ADS)

    Bickham, S. R.; Collins, L. A.; Kress, J. D.; Lenosky, T. J.

    1999-06-01

    To investigate recent gas-gun and laser experiments on hydrogen at elevated temperatures and high densities, we have performed quantum molecular dynamics simulations using a variety of sophisticated models, ranging from tight-binding(TB) to density functional(DF)(T.J. Lenosky, J.D. Kress, L.A. Collins, and I. Kwon Phys. Rev. B 55), R11907(1997) and references therein.. The TB models have been especially tailored to reproduce experimental findings, such as Diamond-Anvil Cell data, and ab initio calculations, such as H_2, H_3, and H4 potential energy surfaces. The DF calculations have employed the local-density approximation(LDA) as well as generalized gradient corrections(GGA) with large numbers of plane-waves ( ~10^5) that represent a very broad range of excited and continuum electronic states. Good agreement obtains among all these models. The simulations exhibit a rapidly rising electrical conductivity at low temperatures and high pressures in good agreement with the gas-gun results. This conduction property stems from a mobility of the electrons provided principally by the dissociated monomers. The Hugoniot for the conditions of the laser experiment, generated from the TB Equation-of-State, shows a maximum compression of around four instead of the observed six. We also report optical properties of the hydrogen media.

  18. Fragment-based 13C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods

    NASA Astrophysics Data System (ADS)

    Hartman, Joshua D.; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J. O.

    2015-09-01

    We assess the quality of fragment-based ab initio isotropic 13C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic 13C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.

  19. Fragment-based (13)C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods.

    PubMed

    Hartman, Joshua D; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J O

    2015-09-14

    We assess the quality of fragment-based ab initio isotropic (13)C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic (13)C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.

  20. Understanding the effects of Cr doping in rutile TiO2 by DFT calculations and X-ray spectroscopy.

    PubMed

    Vásquez, G Cristian; Maestre, David; Cremades, Ana; Ramírez-Castellanos, Julio; Magnano, Elena; Nappini, Silvia; Karazhanov, Smagul Zh

    2018-06-07

    The effects of Cr on local environment and electronic structure of rutile TiO 2 are studied combining theoretical and experimental approaches. Neutral and negatively charged substitutional Cr impurities Cr Ti 0 and Cr Ti 1- as well as Cr-oxygen vacancy complex 2Cr Ti  + V O are studied by the density functional theory (DFT) within the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) functional. Experimental results based on X-Ray absorption spectroscopy (XAS) and X-Ray photoelectron spectroscopy (XPS) performed on Cr doped TiO 2 at the Synchrotron facility were compared to the theoretical results. It is shown that the electrons of the oxygen vacancy tend to be localized at the t 2g states of the Cr ions in order to reach the stable oxidation state of Cr 3+ . Effects of Cr on crystal field (CF) and structural distortions in the rutile TiO 2 cell were analyzed by the DFT calculations and XAS spectra revealing that the CF and tetragonal distortions in TiO 2 are very sensitive to the concentration of Cr.

  1. Electronic and magnetic properties of double perovskite Sr2CoUO6: Heisenberg model

    NASA Astrophysics Data System (ADS)

    Nid-bahami, A.; Ahmed, S. Sidi; Ait-Tamerd, M.; Zaari, H.; El Kenz, A.; Benyoussef, A.

    2018-01-01

    This work will be focused on the electronic and magnetic properties of Sr2CoUO6 (SCUO) using ab-initio calculations and Monte Carlo Simulation (MCS). Firstly, we calculate the exchange coupling and the crystal field, then, the electronic and magnetic properties will be studied, using the full-potential linearized augmented plane wave (FP-LAPW) method, as implemented in the Wien2k code. This method employing the generalized gradient approximation (GGA) for exchange-correlation term. The half-metallic ferromagnetic nature implies a potential application of this new compound in spintronics devices. Also, we have presented the results of the band structures and densities of states for the two up and down spin polarizations. The exchange coupling and the crystal field calculated are J = 0 . 567 meV and δ = 0 . 559meV, and total spin magnetic moments is 2.96 μB closed to experimental values 3 μB. Secondly, we have presented the results for the magnetization and the susceptibility as a function of temperature. Finally, we obtain the critical temperature T = 9 . 20 K by MCS in good agreement with the experimental value.

  2. Thermal stability of mullite RMn₂O₅ (R  =  Bi, Y, Pr, Sm or Gd): combined density functional theory and experimental study.

    PubMed

    Li, Chenzhe; Thampy, Sampreetha; Zheng, Yongping; Kweun, Joshua M; Ren, Yixin; Chan, Julia Y; Kim, Hanchul; Cho, Maenghyo; Kim, Yoon Young; Hsu, Julia W P; Cho, Kyeongjae

    2016-03-31

    Understanding and effectively predicting the thermal stability of ternary transition metal oxides with heavy elements using first principle simulations are vital for understanding performance of advanced materials. In this work, we have investigated the thermal stability of mullite RMn2O5 (R  =  Bi, Pr, Sm, or Gd) structures by constructing temperature phase diagrams using an efficient mixed generalized gradient approximation (GGA) and the GGA  +  U method. Simulation predicted stability regions without corrections on heavy elements show a 4-200 K underestimation compared to our experimental results. We have found the number of d/f electrons in the heavy elements shows a linear relationship with the prediction deviation. Further correction on the strongly correlated electrons in heavy elements could significantly reduce the prediction deviations. Our corrected simulation results demonstrate that further correction of R-site elements in RMn2O5 could effectively reduce the underestimation of the density functional theory-predicted decomposition temperature to within 30 K. Therefore, it could produce an accurate thermal stability prediction for complex ternary transition metal oxide compounds with heavy elements.

  3. Ab initio study of boron nitride lines on graphene

    NASA Astrophysics Data System (ADS)

    Mata-Carrizal, Berenice; Sanginés-Mendoza, Raúl; Martinez, Edgar

    2013-03-01

    Graphene has unusual electronic properties which make it a promising material for electronic devices. Neverthless, the absence of a band gap sets limitations on its practical applications. Thus, it is crucial to find methods to create and tune the band gap of systems based on graphene. In this way, we explore the modulation of the electronic properties of graphene through doping with boron nitride lines. In particular, we studied the electronic structure of graphene sheets doped with boron nitride lines armchair and zigzag type. The calculations were performed using the pseudopotential LCAO method with a Generalized Gradient Approximation (GGA) for the exchange-correlation energy functional. We found that both doping lines type induce a bandgap and that the energy gap increases as the length of doping lines increases. Accordingly to our DFT calculations, we found that the energy gap on graphene doped with armchair and zigzag lines is due to a two different mechanisms to drain charge from pi- to sigma- orbitals. Thus, we found that doping graphene with boron nitride lines is a useful way to induce and modulate the bandgap on graphene. This research was supported by Consejo Nacional de Ciencia y Tecnología (Conacyt) under Grant No. 133022.

  4. Regioselective intramolecular Pauson-Khand reactions of C60: an electrochemical study and theoretical underpinning.

    PubMed

    Martín, Nazario; Altable, Margarita; Filippone, Salvatore; Martín-Domenech, Angel; Poater, Albert; Solà, Miquel

    2005-04-22

    Suitably functionalized fulleropyrrolidines endowed with one or two propargyl groups at the C-2 position of the pyrrolidine ring (1,6-enynes) react efficiently and regioselectively with [Co2(CO)8] to afford the respective Pauson-Khand products with an unprecedented three (5 a-d, 7, and 24) or five (25) pentagonal rings, respectively, fused onto the fullerene sphere. Fulleropyrrolidines with 1,7-, 1,9-, 1,10-, or 1,11-enyne moieties do not undergo the PK reaction and, instead, the intermediate dicobalt complexes formed with the alkynyl group are isolated in quantitative yields. These differences in reactivity have been studied by DFT calculations with a generalized gradient approximation (GGA) functional and several important energy and structural differences were found for the intermediates formed by the interaction between the coordinatively unsaturated Co atom and the pi system of C60 in 1,6- and 1,7-enynes. The different lengths of the alkyne chains are responsible for the observed reactivities. Cyclic voltammetry reveals that the presence of the cyclopentenone's carbonyl group connected directly to the C60 core results in PK compounds with remarkable electron-accepting ability.

  5. The structural, electronic and dynamic properties of the L1{sub 2}- type Co{sub 3}Ti alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arikan, Nihat; Özduran, Mustafa

    2014-10-06

    The structural, electronic and dynamic properties of the cubic Co{sub 3}Ti alloy in L1{sub 2} structure have been investigated using a pseudopotential plane wave (PP-PW) method within the generalized gradient approximation proposed by Perdew–Burke–Ernzerhof (GGA-PBE). The structural properties, including the lattice constant, the bulk modulus and its pressure derivative agree reasonably with the previous results. The density of state (DOS), projected density of state (PDOS) and electronic band structure are also reported. The DOS shows that Co{sub 3}Ti alloy has a metallic character since the energy bands cross the Fermi level. The density of states at Fermi level mainly comesmore » from the Co-3d states. Phonon dispersion curves and their corresponding total densities of states were obtained using a linear response in the framework of the density functional perturbation theory. All computed phonon frequencies are no imaginer and thus, Co{sub 3}Ti alloy is dynamically stable. The zone center phonon modes have been founded to be 9.307, 9.626 and 13.891 THz for Co{sub 3}Ti.« less

  6. The origin of anisotropy and high density of states in the electronic structure of Cr2GeC by means of polarized soft x-ray spectroscopy and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Magnuson, Martin; Mattesini, Maurizio; Bugnet, Matthieu; Eklund, Per

    2015-10-01

    The anisotropy in the electronic structure of the inherently nanolaminated ternary phase Cr2GeC is investigated by bulk-sensitive and element selective soft x-ray absorption/emission spectroscopy. The angle-resolved absorption/emission measurements reveal differences between the in-plane and out-of-plane bonding at the (0001) interfaces of Cr2GeC. The Cr L 2, 3, C K, and Ge M 1, M 2, 3 emission spectra are interpreted with first-principles density-functional theory (DFT) including core-to-valence dipole transition matrix elements. For the Ge 4s states, the x-ray emission measurements reveal two orders of magnitude higher intensity at the Fermi level than DFT within the General Gradient Approximation (GGA) predicts. We provide direct evidence of anisotropy in the electronic structure and the orbital occupation that should affect the thermal expansion coefficient and transport properties. As shown in this work, hybridization and redistribution of intensity from the shallow 3d core levels to the 4s valence band explain the large Ge density of states at the Fermi level.

  7. The origin of anisotropy and high density of states in the electronic structure of Cr2GeC by means of polarized soft x-ray spectroscopy and ab initio calculations.

    PubMed

    Magnuson, Martin; Mattesini, Maurizio; Bugnet, Matthieu; Eklund, Per

    2015-10-21

    The anisotropy in the electronic structure of the inherently nanolaminated ternary phase Cr2GeC is investigated by bulk-sensitive and element selective soft x-ray absorption/emission spectroscopy. The angle-resolved absorption/emission measurements reveal differences between the in-plane and out-of-plane bonding at the (0001) interfaces of Cr2GeC. The Cr L(2, 3), C K, and Ge M1, M(2, 3) emission spectra are interpreted with first-principles density-functional theory (DFT) including core-to-valence dipole transition matrix elements. For the Ge 4s states, the x-ray emission measurements reveal two orders of magnitude higher intensity at the Fermi level than DFT within the General Gradient Approximation (GGA) predicts. We provide direct evidence of anisotropy in the electronic structure and the orbital occupation that should affect the thermal expansion coefficient and transport properties. As shown in this work, hybridization and redistribution of intensity from the shallow 3d core levels to the 4s valence band explain the large Ge density of states at the Fermi level.

  8. First principles study of hydrogen adsorption on carbon nanowires.

    NASA Astrophysics Data System (ADS)

    Tapia, Alejandro; Aguilera, Luis; Murrieta, Gabriel; de Coss, Romeo

    2007-03-01

    Recently has been reported a new type of one-dimensional carbon structures. Carbon nanowires formed by a linear carbon-atom chain inside an armchair (5,5) carbon nanotube has been observed using high-resolution transmission electron microscopy. In the present work we have studied the changes in the electronic structure of a carbon nanowires and (5,5) single-walled carbon nanotubes (SWCN) when a hydrogen atom is adsorbed. We used the Density Functional Theory and the calculations where performed by the pseudopotentials LCAO method (SIESTA code) and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. We have analyzed the changes in the atomic structure, density of states (LDOS), and the local orbital population. We found charge transfer from the nanotube to the linear chain and the hydrogen atom, the electronic character of the chain and nanotube sub-systems in chain@SWCN is the same that in the corresponding isolated systems, chain or SWCN. But the hydrogen adsorption produced changes in the atomic estructure and the electronic properties. This research was supported by PRIORI-UADY under Grant No. FING-05-004 and Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grants No. 43830-F and 49985-J.

  9. An ab initio study on the structural, electronic and mechanical properties of quaternary full-Heusler alloys FeMnCrSn and FeMnCrSb

    NASA Astrophysics Data System (ADS)

    Erkişi, Aytaç

    2018-06-01

    The quaternary full Heusler alloys FeMnCrSn and FeMnCrSb, which have face-centred cubic (FCC) crystal structure and conform to ? space group with 216 space number, have been investigated using Generalised Gradient Approximation (GGA) in the Density Functional Theory (DFT) as implemented in VASP (Vienna Ab initio Simulation Package) software. These alloys are considered in ferromagnetic (FM) order. After the investigation of structural stability of these alloys, their mechanical and thermal properties and also electronic band structures have been examined. The calculated spin-polarised electronic band structures and total electronic density of states (DOS) within GGA approximation show that these alloys can exhibit both metallic and half-metallic characters in different structural phases. The calculated formation enthalpies and the plotted energy-volume graphs show that Type-III phase is most stable structural phase for these materials. Also, FeMnCrSb alloy in Type-I/Type-III phases and FeMnCrSn alloy in Type-III phase show half-metallic behaviour with integer total magnetic moments almost 2 and 1 μB per formula unit, respectively, since there are band gaps observed in spin-down states, whereas they have metallic behaviour in majority bands. Other structural phases of both systems are also metallic. Moreover, the calculated elastic constants and the estimated anisotropy shear factors indicate that these materials are stable mechanically in all of three phases except FeMnCrSn in Type-I phase that does not satisfy Born stability criteria in this phase and have high anisotropic behaviour.

  10. Hybrid sp2+sp3 carbon phases created from carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tingaev, M. I.; Belenkov, E. A.

    2017-11-01

    Using the density functional theory in the gradient approximation (DFT-GGA) methods was calculated the geometrically optimized structure and electronic properties for six new hybrid carbon phases. These hybrid phases consists of atoms in three - and four-coordinated (sp2+sp3-hybridized) states. The initial structure of the carbon phases was constructed by partial cross-linking of (8,0) carbon nanotube bundles. Sublimation energies calculated for hybrid phases above the sublimation energy of cubic diamond, however, fall into the range of values typical for carbon materials, which are stable under normal conditions. The density of electronic states at the Fermi energy for the two phases is non-zero and these phases should have metallic properties. The other hybrid phases should be semiconductors with a band gap from 0.5 to 1.1 eV.

  11. Structural, optoelectronic, infrared and Raman spectra of orthorhombic SrSnO{sub 3} from DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, E.; Henriques, J.M.; Azevedo, D.L.

    2011-04-15

    Orthorhombic SrSnO{sub 3} was investigated using density functional theory (DFT) considering both the local density and generalized gradient approximations, LDA and GGA, respectively. The electronic band structure, density of states, complex dielectric function, optical absorption, and the infrared and Raman spectra were computed. Calculated lattice parameters are close to the experimental measurements, and an indirect band gap E(S{yields}{Gamma})=1.97eV (2.27 eV) was obtained within the GGA (LDA) level of calculation. Effective masses for holes and electrons were estimated, being very anisotropic in comparison with similar results for orthorhombic CaSnO{sub 3}. The complex dielectric function and the optical absorption of SrSnO{sub 3}more » were shown to be sensitive to the plane of polarization of the incident light. The infrared spectrum between 100 and 600 cm{sup -1} was obtained, with its main peaks being assigned, and a nice agreement between experimental and theoretical peaks of the Raman spectrum of orthorhombic SrSnO{sub 3} was achieved. -- Graphical abstract: Orthorhombic SrSnO{sub 3}: a view of the unit cell (left) and plots showing the calculated and experimental Raman spectra (right). Display Omitted Research highlights: {yields} We have performed DFT calculations on orthorhombic SrSnO{sub 3} crystals, obtaining their structural, electronical and optical properties. {yields} An indirect band gap was obtained, and anisotropic effective masses were found for both electrons and holes. {yields} The complex dielectric function and the optical absorption of SrSnO{sub 3} were shown to be very sensitive to the plane of polarization of the incident light. {yields} The infrared spectrum between 100 and 600 cm{sup -1} was obtained, with its main peaks being assigned, and a nice agreement between experimental and theoretical peaks of the Raman spectrum was achieved.« less

  12. First principles study of structural, electronic and optical properties of perovskites CaZrO3 and CaHfO3 in cubic phase

    NASA Astrophysics Data System (ADS)

    Hoat, D. M.; Silva, J. F. Rivas; Blas, A. Méndez

    2018-07-01

    In this work, we present the first principles calculations for structural, electronic and optical properties of perovskites CaZrO3 and CaHfO3 using the full-potential linearized augmented plane wave method (FP-LAPW) within the framework of density functional theory (DFT) as implemented in WIEN2k package. The exchange-correlation potential is treated with local density approximation (LDA) and generalized gradient approximation (GGA-PBE and PBESol). Additionally, the Tran Blaha modified Becke-Johnson exchange potential (mBJ) also is employed for electronic and optical calculations due to that it gives very accurate band gap of solids. Our obtained structural parameters are in good agreement with experimental datas and other theoretical results. The energy band gap obtained with mBJ is 4.56 eV for CaZrO3 and 5.27 eV for CaHfO3. The hybridization of states of O atom with those of Zr and Hf atoms in CaZrO3 and CaHfO3, respectively, is observed. The spin-orbit coupling effect on electronic properties of considered compounds also is investigated. Finally, the linear optical properties of CaZrO3 and CaHfO3 are derived from their complex dielectric function calculated with mBJ potential for wide energy range up to 45 eV, and all of them analyzed in details.

  13. Topological Phase Transitions in Zinc-Blende Semimetals Driven Exclusively by Electronic Temperature

    NASA Astrophysics Data System (ADS)

    Trushin, Egor; Görling, Andreas

    2018-04-01

    We show that electronic phase transitions in zinc-blende semimetals with quadratic band touching (QBT) at the center of the Brillouin zone, like GaBi, InBi, or HgTe, can occur exclusively due to a change of the electronic temperature without the need to involve structural transformations or electron-phonon coupling. The commonly used Kohn-Sham density-functional methods based on local and semilocal density functionals employing the local density approximation (LDA) or generalized gradient approximations (GGAs), however, are not capable of describing such phenomena because they lack an intrinsic temperature dependence and account for temperature only via the occupation of bands, which essentially leads only to a shift of the Fermi level without changing the shape or topology of bands. Kohn-Sham methods using the exact temperature-dependent exchange potential, not to be confused with the Hartree-Fock exchange potential, on the other hand, describe such phase transitions. A simple modeling of correlation effects can be achieved by screening of the exchange. In the considered zinc-blende compounds the QBT is unstable at low temperatures and a transition to electronic states without QBT takes place. In the case of HgTe and GaBi Weyl points of type I and type II, respectively, emerge during the transitions. This demonstrates that Kohn-Sham methods can describe such topological phase transitions provided they are based on functionals more accurate than those within the LDA or GGA. Moreover, the electronic temperature is identified as a handle to tune topological materials.

  14. Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set

    NASA Astrophysics Data System (ADS)

    Oberhofer, Harald; Blumberger, Jochen

    2010-12-01

    We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q-) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ( {< {| {H_ab } |^2 } > } )^{1/2} = 6.7 {mH}, is significantly higher than the value obtained for the minimum energy structure, | {H_ab } | = 3.8 {mH}. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q- in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.

  15. Real-Space Multiple-Scattering Theory and Its Applications at Exascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenbach, Markus; Wang, Yang

    In recent decades, the ab initio methods based on density functional theory (DFT) (Hohenberg and Kohn 1964, Kohn and Sham 1965) have become a widely used tool in computational materials science, which allows theoretical prediction of physical properties of materials from the first principles and theoretical interpretation of new physical phenomena found in experiments. In the framework of DFT, the original problem that requires solving a quantum mechanical equation for a many-electron system is reduced to a one-electron problem that involves an electron moving in an effective field, while the effective field potential is made up of an electrostatic potential,more » also known as Hartree potential, arising from the electronic and ion charge distribution in space and an exchange–correlation potential, which is a function of the electron density and encapsulates the exchange and correlation effects of the many-electron system. Even though the exact functional form of the exchange-correlation potential is formally unknown, a local density approximation (LDA) or a generalized gradient approximation (GGA) is usually applied so that the calculation of the exchange–correlation potential, as well as the exchange–correlation energy, becomes tractable while a required accuracy is retained. Based on DFT, ab initio electronic structure calculations for a material generally involve a self-consistent process that iterates between two computational tasks: (1) solving an one-electron Schrödinger equation, also known as Kohn–Sham equation, to obtain the electron density and, if needed, the magnetic moment density, and (2) solving the Poisson equation to obtain the electrostatic potential corresponding to the electron density and constructing the effective potential by adding the exchange–correlation potential to the electrostatic potential. This self-consistent process proceeds until a convergence criteria is reached.« less

  16. Combinations of coupled cluster, density functionals, and the random phase approximation for describing static and dynamic correlation, and van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Garza, Alejandro J.; Bulik, Ireneusz W.; Alencar, Ana G. Sousa; Sun, Jianwei; Perdew, John P.; Scuseria, Gustavo E.

    2016-04-01

    Contrary to standard coupled cluster doubles (CCD) and Brueckner doubles (BD), singlet-paired analogues of CCD and BD (denoted here as CCD0 and BD0) do not break down when static correlation is present, but neglect substantial amounts of dynamic correlation. In fact, CCD0 and BD0 do not account for any contributions from multielectron excitations involving only same-spin electrons at all. We exploit this feature to add - without introducing double counting, self-interaction, or increase in cost - the missing correlation to these methods via meta-GGA (generalised gradient approximation) density functionals (Tao-Perdew-Staroverov-Scuseria and strongly constrained and appropriately normed). Furthermore, we improve upon these CCD0+DFT blends by invoking range separation: the short- and long-range correlations absent in CCD0/BD0 are evaluated with density functional theory and the direct random phase approximation, respectively. This corrects the description of long-range van der Waals forces. Comprehensive benchmarking shows that the combinations presented here are very accurate for weakly correlated systems, while also providing a reasonable description of strongly correlated problems without resorting to symmetry breaking.

  17. Adiabatic corrections to density functional theory energies and wave functions.

    PubMed

    Mohallem, José R; Coura, Thiago de O; Diniz, Leonardo G; de Castro, Gustavo; Assafrão, Denise; Heine, Thomas

    2008-09-25

    The adiabatic finite-nuclear-mass-correction (FNMC) to the electronic energies and wave functions of atoms and molecules is formulated for density-functional theory and implemented in the deMon code. The approach is tested for a series of local and gradient corrected density functionals, using MP2 results and diagonal-Born-Oppenheimer corrections from the literature for comparison. In the evaluation of absolute energy corrections of nonorganic molecules the LDA PZ81 functional works surprisingly better than the others. For organic molecules the GGA BLYP functional has the best performance. FNMC with GGA functionals, mainly BLYP, show a good performance in the evaluation of relative corrections, except for nonorganic molecules containing H atoms. The PW86 functional stands out with the best evaluation of the barrier of linearity of H2O and the isotopic dipole moment of HDO. In general, DFT functionals display an accuracy superior than the common belief and because the corrections are based on a change of the electronic kinetic energy they are here ranked in a new appropriate way. The approach is applied to obtain the adiabatic correction for full atomization of alcanes C(n)H(2n+2), n = 4-10. The barrier of 1 mHartree is approached for adiabatic corrections, justifying its insertion into DFT.

  18. Investigation of electronic structures and optical properties of β -Si3N4 doped with IV A elements: A first-principles simulation

    NASA Astrophysics Data System (ADS)

    Lu, Xuefeng; Gao, Xu; Ren, Junqiang; Li, Cuixia; Guo, Xin; Wei, Yupeng; La, Peiqing

    2018-04-01

    Based on first-principles simulations with the generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) functional, we studied the electronic structures and optical properties of hexagonal silicon nitride (β-Si3N4) doped with IV A elements, C, Ge, Sn and Pb. It was found that the Ge-doped system is characterized by a more stable structure with a lower formation energy of 2.584 eV compared with those of the C-, Sn- and Pb-doped systems of 3.877 eV, 5.249 eV and 7.672 eV, respectively. The band gap (EG) of the Pb-doped system was the lowest at 1.6 eV, displaying semiconducting characteristics. Additionally, there was a transition from a direct band gap to an indirect band gap in the C-doped system. Charge difference density analysis showed that the covalent property of the C-N bonds was enhanced by expansion of the electron-free region and the larger Mulliken population values of 0.71 and 0.86. Furthermore, lower absorption and reflectivity peaks at 11.30 eV were observed for the C-doped system, demonstrating its broader potential for application in photoelectric and microelectronic devices.

  19. Enhanced vibronic interaction caused by local lattice symmetry lowering in the (Fe, Mg)As2 ternary system

    NASA Astrophysics Data System (ADS)

    Pishtshev, A.; Rubin, P.

    2018-04-01

    By means of periodic density functional theory (DFT) electronic structure calculations, we investigate iron-site doping effects in a structural model of bulk FeAs2. Simulations performed within the projector augmented-wave method-Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) functional scheme reveal that the impacts of the two stoichiometric substitutions Fe → Mg and Fe → Ni are radically different with respect to the structural and electronic behavior of the dopants. In particular, unlike the Ni dopant, the Mg dopant incorporated in FeAs2 occupies a noncentral equilibrium position characterized by an off-center displacement from the reference higher-symmetry position. Analysis of the respective electron and vibrational factors allows us to explain this result in terms of the local pseudo Jahn-Teller effect (pJTE). On the basis of DFT calculations, we deduce which electron orbitals and lattice vibrational modes are appropriate for promoting the local instability at the origin of the pJTE. Quantitative evaluations of the pJTE parameters performed within the polyatomic formalism of an effective tight-binding model show that it is just the enhanced vibronic interaction in the Mg-[FeAs6] cluster that is responsible for the local lattice symmetry breaking.

  20. Structural, optical, and thermal properties of MAX-phase Cr2AlB2

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hong; Cui, Hong-Ling; Zhang, Rui-Zhou

    2018-04-01

    First-principles calculations of the structural, optical, and thermal properties of Cr2AlB2 are performed using the pseudopotential plane-wave method within the generalized gradient approximation (GGA). Calculation of the elastic constant and phonon dispersion indicates that Cr2AlB2 is mechanically and thermodynamically stable. Analysis of the band structure and density of states indicates that Cr2AlB2 is metallic. The thermal properties under increasing temperature and pressure are investigated using the quasi-harmonic Debye model. The results show that anharmonic effects on Cr2AlB2 are important at low temperature and high pressure. The calculated equilibrium primitive cell volume is 95.91 Å3 at T = 300 K, P = 0 GPa. The ability of Cr2AlB2 to resist volume changes becomes weaker with increasing temperature and stronger with increasing pressure. Analysis of optical properties of Cr2AlB2 shows that the static dielectric function of Cr2AlB2 is 53.1, and the refractive index n 0 is 7.3. If the incident light has a frequency exceeding 16.09 eV, which is the plasma frequency of Cr2AlB2, Cr2AlB2 changes from metallic to dielectric material.

  1. AB INITIO STUDY OF THE ELECTRONIC AND MAGNETIC PROPERTIES OF GRAPHENE WITH AND WITHOUT ADSORPTION OF M ATOM (M = C, N, O, F, Cl)

    NASA Astrophysics Data System (ADS)

    Ismail, Ali I.; Mubarak, A. A.

    We present here an ab initio study for the energetic, electronic, magnetic and optical structures of the graphene sheet with and without the adsorption of M atom (M = C, N, O, F, Cl). The calculations are preformed using the full-potential linearized augmented plane wave (FP-LAPW) within the generalized gradient approximation (GGA) to describe the exchange-correlation potential. The calculations show that N prefers the bridge site, while C, O, F and Cl prefer the top site above the graphene sheet. The calculated M-graphene bond length is found to be inversely proportional to the adsorption energy. The hybridization between sp-states of the graphene sheet and M adatom is determined by the analysis of the partial and local density of states (PDOS and TDOS). In case of O and F as adsorbed atoms, graphene sheets show a wide energy band-gap and some significant magnetic moments. The optical properties of the studied sheets are performed in different radiation regions using the real and imaginary parts of the dielectric function. We think that the energetic, electronic, optical and magnetic properties of the M-graphene sheets are governed by two main factors; the number of unpaired valence electrons and the electronegativity of the M atom.

  2. First-principles investigations on structural, elastic and mechanical properties of BNxAs1‑x ternary alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Junqin; Ma, Huihui; Zhao, Bin; Wei, Qun; Yang, Yintang

    2018-05-01

    A systematic investigation of the structural optimization, elastic and mechanical properties of the BNxAs1‑x ternary alloys are reported in the present work using the density-functional theory with the generalized gradient approximation (GGA) of the exchange-correlation functional. Some of the constants which are used to analyze the properties including elastic constants and modulus, and some parameters describing the elastic anisotropy and Debye temperature are also calculated. Our calculations were performed to evaluate the equilibrium lattice constant and band structure compared with the available theoretical works. On the one hand, our results might be expected to provide a theoretical basis for future study of BNxAs1‑x alloys towards elastic or mechanical properties. On the other hand, we draw a conclusion that BNxAs1‑x alloys show direct bandgap when x equals 0.25, 0.5 or 0.75. We obtained the elastic modulus, Poisson’s ratio and universal anisotropic index which are used to demonstrate the elastic anisotropy of these alloys which is proved according to our calculations. Also, we calculated the Debye temperature to illustrate covalent interactions and obtained the lower limit of the thermal conductivity for further research.

  3. Fragment-based {sup 13}C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, Joshua D.; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu; Monaco, Stephen

    2015-09-14

    We assess the quality of fragment-based ab initio isotropic {sup 13}C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic {sup 13}C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readilymore » in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.« less

  4. First-principles study of electronic structure and Fermi surface in semimetallic YAs

    DOE PAGES

    Swatek, Przemys?aw Wojciech

    2018-03-23

    In the course of searching for new systems, which exhibit nonsaturating and extremely large positive magnetoresistance, electronic structure, Fermi surface, and de Haas-van Alphen characteristics of the semimetallic YAs compound were studied using the all-electron full-potential linearized augmented-plane wave (FP–LAPW) approach in the framework of the generalized gradient approximation (GGA). In the scalar-relativistic calculation, the cubic symmetry splits fivefold degenerate Y- d orbital into low-energy threefold-degenerate and twofold degenerate doublet states at point around the Fermi energy. Furthermore one of them, together with the threefold degenerate character of As-p orbital, render the YAs semimetal with a topologically trivial band ordermore » and fairly low density of states at the Fermi level. Including spin–orbit (SO) coupling into the calculation leads to pronounced splitting of the state and shifting the bands in the energy scale. Consequently, the determined four different 3-dimensional Fermi surface sheets of YAs consists of three concentric hole-like bands at and one ellipsoidal electron-like sheet centred at the X points. In full accordance with the previous first-principles calculations for isostructural YSb and YBi, the calculated Fermi surface of YAs originates from fairly compensated multi-band electronic structures.« less

  5. Density functional study of structural and electronic properties of Al{sub n}@C{sub 60}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhiman, Shobhna, E-mail: s-dhiman@hotmail.com; Kumar, Ranjan; Dharamvir, Keya

    2014-04-24

    Fullerene derivatives have been shown to make contributions in many types of applications. Ab initio investigation of structural and electronic properties of aluminum doped endohedral fullerene has been performed using numerical atomic orbital density functional theory. We have obtained ground state structures for Al{sub n}@C{sub 60} (n=1–10). Which shows that C{sub 60} molecule can accommodate maximum of nine aluminum atoms, for n > 9 the cage eventually break. Encapsulated large number of aluminum atoms leads to deformation of cage with diameter varies from 7.16Å to 7.95Å. Binding energy/Al atom is found to increase till n = 4 and after thatmore » it decreases with the number of Al atoms with a sudden increase for n=10 due to breakage of C{sub 60} cage and electronic affinity first increases till n=4 then it decreases up to n=9 with a sharp increase for n=10. Ionization potential also first increases and then decreases. Homo-Lumo gap decreases till n=3 with a sharp increase for n=4, after that it shows an oscillatory nature. The results obtained are consistent with available theoretical and experimental results. The ab-initio calculations were performed using SIESTA code with generalized gradient approximation (GGA)« less

  6. Density functional theory determination of structural and electronic properties of struvite.

    PubMed

    Romanowski, Zbigniew; Kempisty, Paweł; Prywer, Jolanta; Krukowski, Stanisław; Torzewska, Agnieszka

    2010-07-29

    Crystallographic structure, total energy, electronic structure, and the most important elastic properties of struvite, NH(4)MgPO(4).6H(2)O, the main component of infectious urinary stones, are presented. The calculations were performed using ab initio full-electron calculations within the density functional theory-generalized gradient approximation (DFT-GGA) framework. The obtained crystallographic symmetry and the calculated lattice parameters and also the elastic constants are in good agreement with the experimental data. The elastic properties are essential for establishing an optimal response of urinary stones during shock-wave lithotripsy. The calculated electronic charge distribution confirms the layered structure of the struvite crystals. The polar character of the crystal, well-known from crystal growth experiments, was also confirmed by the magnitude of spontaneous polarization which was obtained from direct determination of the electrical dipole density. The calculated value of spontaneous polarization is equal to -8.8 microC cm(-2). This feature may play a key role in struvite crystallization, electrically binding the charged active impurities and other active species, and consequently determining urinary stone formation. We also present the results of our own experiment of the mineralization of struvite induced to growth by Proteus bacteria which are mainly isolated from infectious urinary stones.

  7. FP-LAPW based investigation of structural, electronic and mechanical properties of CePb{sub 3} intermetallic compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in; Jain, Ekta, E-mail: jainekta05@gmail.com; Abraham, Jisha Annie, E-mail: disisjisha@yahoo.com

    A theoretical study of structural, electronic, elastic and mechanical properties of CePb{sub 3} intermetallic compound has been investigated systematically using first principles density functional theory. The calculations are carried out within the three different forms of generalized gradient approximation (GGA) and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and obtained lattice parameter of this compound shows well agreement with the experimental results. We have calculated three independent second order elastic constants (C{sub 11}, C{sub 12} and C{sub 44}), which has notmore » been calculated and measured yet. From energy dispersion curves, it is found that the studied compound is metallic in nature. Ductility of this compound is analyzed using Pugh’s criteria and Cauchy's pressure (C{sub 11}-C{sub 12}). The mechanical properties such as Young's modulus, shear modulus, anisotropic ratio, Poison's ratio have been calculated for the first time using the Voigt–Reuss–Hill (VRH) averaging scheme. The average sound velocities (v{sub m}), density (ρ) and Debye temperature (θ{sub D}) of this compound are also estimated from the elastic constants.« less

  8. Thermal transport properties of bulk and monolayer MoS2: an ab-initio approach

    NASA Astrophysics Data System (ADS)

    Bano, Amreen; Khare, Preeti; Gaur, N. K.

    2017-05-01

    The transport properties of semiconductors are key to the performance of many solid-state devices (transistors, data storage, thermoelectric cooling and power generation devices, etc). In recent years simulation tools based on first-principles calculations have been greatly improved, being able to obtain the fundamental ground-state properties of materials accurately. The quasi harmonic thermal properties of bulk and monolayer of MoS2 has been computed with ab initio periodic simulations based of density functional theory (DFT). The temperature dependence of bulk modulus, specific heat, thermal expansion and gruneisen parameter have been calculated in our work within the temperature range of 0K to 900K with projected augmented wave (PAW) method using generalized gradient approximation (GGA). Our results show that the optimized lattice parameters are in good agreement with the earlier reported works and also for thermoelastic parameter, i.e. isothermal bulk modulus (B) at 0K indicates that monolayer MoS2 (48.5 GPa)is more compressible than the bulk structure (159.23 GPa). The thermal expansion of monolayer structure is slightly less than the bulk. Similarly, other parameters like heat capacity and gruneisen parameter shows different nature which is due to the confinement of 3 dimensional structure to 2 dimension (2D) for improving its transport characteristics.

  9. Ab initio DFT+U study of He atom incorporation into UO(2) crystals.

    PubMed

    Gryaznov, Denis; Heifets, Eugene; Kotomin, Eugene

    2009-09-07

    We present and discuss results of the density functional theory (DFT) for perfect UO(2) crystals with He atoms in octahedral interstitial positions therein. We have calculated basic bulk crystal properties and He incorporation energies into the low temperature anti-ferromagnetic UO(2) phase using several exchange-correlation functionals within the spin-polarized local density (LDA) and generalized gradient (GGA) approximations. In all DFT calculations we included the on-site correlation corrections using the Hubbard model (DFT+U approach). We analysed a potential crystalline symmetry reduction from tetragonal down to orthorhombic structure and confirmed the presence of the Jahn-Teller effect in a perfect UO(2). We discuss also the problem of a conducting electronic state arising when He is placed into a tetragonal antiferromagnetic phase of UO(2) commonly used in defect modelling. Consequently, we found a specific monoclinic lattice distortion which allowed us to restore the semiconducting state and properly estimate He incorporation energies. Unlike the bulk properties, the He incorporation energy strongly depends on several factors, including the supercell size, the use of spin polarization, the exchange-correlation functionals and on-site correlation corrections. We compare our results for the He incorporation with the previous shell model and ab initio DFT calculations.

  10. First-principles study of defects and phase transition in UO(2).

    PubMed

    Yu, Jianguo; Devanathan, Ram; Weber, William J

    2009-10-28

    Defect properties and phase transition in UO(2) have been studied from first principles by the all-electron projector-augmented-wave (PAW) method. The generalized gradient approximation with empirical self-interaction correction, (GGA)+U, formalism has been used to account for the strong on-site Coulomb repulsion among the localized U 5f electrons. The Hubbard parameter U(eff), magnetic ordering, chemical potential and heat of formation have been systematically examined. By choosing an appropriate U(eff) = 3.0 eV it is possible to consistently describe structural properties of UO(2) and model the phase transition processes. The phase transition pressure for UO(2) is about 20 GPa, which is less than the experimental value of 42 GPa but better than the LDA+U value of 7.8 GPa. Meanwhile our results for the formation energies of intrinsic defects partly confirm earlier calculations for the intrinsic charge neutral defects but reveal large variations depending on the determination of the chemical potential and whether the environment is O-rich or U-rich. Moreover, the results for extrinsic defects of Xe, which are representative of mobile insoluble fission product in UO(2), are consistent with experimental data in which Xe prefers to be trapped by Schottky defects.

  11. Li-adsorption on doped Mo2C monolayer: A novel electrode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Mehta, Veenu; Tankeshwar, K.; Saini, Hardev S.

    2018-04-01

    A first principle calculation has been used to study the electronic and magnetic properties of pristine and N/Mn-doped Mo2C with and without Li-adsorption. The pseudopotential method implemented in SIESTA code based on density functional theory with generalized gradient approximation (GGA) as exchange-correlation (XC) potential has been employed. Our calculated results revealed that the Li gets favorably adsorbed on the hexagonal centre in pristine Mo2C and at the top of C-atom in case of N/Mn-doped Mo2C. The doping of Mn and N atom increases the adsorption of Li in Mo2C monolayer which may results in enhancement of storage capacity in Li-ion batteries. The metallic nature of Li-adsorbed pristine and N/Mn-doped Mo2C monolayer implies a good electronic conduction which is crucial for anode materials for its applications in rechargeable batteries. Also, the open circuit voltage for single Li-adsorption in doped Mo2C monolayer comes in the range of 0.4-1.0 eV which is the optimal range for any material to be used as an anode material. Our result emphasized the enhanced performance of doped Mo2C as an anode material in Li-ion batteries.

  12. First-principles study of electronic structure and Fermi surface in semimetallic YAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swatek, Przemys?aw Wojciech

    In the course of searching for new systems, which exhibit nonsaturating and extremely large positive magnetoresistance, electronic structure, Fermi surface, and de Haas-van Alphen characteristics of the semimetallic YAs compound were studied using the all-electron full-potential linearized augmented-plane wave (FP–LAPW) approach in the framework of the generalized gradient approximation (GGA). In the scalar-relativistic calculation, the cubic symmetry splits fivefold degenerate Y- d orbital into low-energy threefold-degenerate and twofold degenerate doublet states at point around the Fermi energy. Furthermore one of them, together with the threefold degenerate character of As-p orbital, render the YAs semimetal with a topologically trivial band ordermore » and fairly low density of states at the Fermi level. Including spin–orbit (SO) coupling into the calculation leads to pronounced splitting of the state and shifting the bands in the energy scale. Consequently, the determined four different 3-dimensional Fermi surface sheets of YAs consists of three concentric hole-like bands at and one ellipsoidal electron-like sheet centred at the X points. In full accordance with the previous first-principles calculations for isostructural YSb and YBi, the calculated Fermi surface of YAs originates from fairly compensated multi-band electronic structures.« less

  13. Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals

    NASA Astrophysics Data System (ADS)

    Kananen, B. E.; Halliburton, L. E.; Scherrer, E. M.; Stevens, K. T.; Foundos, G. K.; Chang, K. B.; Giles, N. C.

    2017-08-01

    Electron paramagnetic resonance (EPR) is used to directly observe and characterize neutral Mg acceptors ( M gGa0 ) in a β-Ga2O3 crystal. These acceptors, best considered as small polarons, are produced when the Mg-doped crystal is irradiated at or near 77 K with x rays. During the irradiation, neutral acceptors are formed when holes are trapped at singly ionized Mg acceptors ( M gGa- ). Unintentionally present Fe3+ (3d5) and Cr3+ (3d3) transition-metal ions serve as the corresponding electron traps. The hole is localized in a nonbonding p orbital on a threefold-coordinated oxygen ion adjacent to an Mg ion at a sixfold-coordinated Ga site. These M gGa0 acceptors (S = 1/2) have a slightly anisotropic g matrix (principal values are 2.0038, 2.0153, and 2.0371). There is also partially resolved 69Ga and 71Ga hyperfine structure resulting from unequal interactions with the two Ga ions adjacent to the hole. With the magnetic field along the a direction, hyperfine parameters are 2.61 and 1.18 mT for the 69Ga nuclei at the two inequivalent neighboring Ga sites. The M gGa0 acceptors thermally convert back to their nonparamagnetic M gGa- charge state when the temperature of the crystal is raised above approximately 250 K.

  14. An ab initio density functional study of the optical functions of 9-Methyl-3-Thiophen-2-YI-Thieno [3,2e] [1,2,4] Thriazolo [4,3c] Pyrimidine-8-Carboxylic Acid Ethyl Ester crystals.

    PubMed

    Reshak, Ali H; Kityk, I V; Khenata, R; Al-Douri, Y; Auluck, S

    2012-09-01

    An ab initio investigation of the optical constants of 9-Methyl-3-Thiophen-2-YI-Thieno [3,2e] [1,2,4] Thriazolo [4,3c] Pyrimidine-8-Carboxylic Acid Ethyl Ester crystal is performed within a framework of local density approximation (LDA), and the Engel-Vosko generalized gradient approximation (EV-GGA) exchange correlation potentials. It is established that there are two independent molecules (A and B) exhibiting different intra-molecular interactions: C-H⋯O (A) and C-H⋯N (B). These intra-molecular interactions favor stabilization of the crystal structure for molecules A and B. It should be emphasized that there exist remarkable π-π interactions between the pyrimidine rings of the two neighbors B molecules giving extra strengths and stabilizations to the superamolecular structure. These different intra-molecular interactions C-H⋯O (A) and C-H⋯N (B) and the π-π interaction between the pyrimidine rings of the two neighbors B molecules give principal contribution to dispersion of optical properties. With a view to seek deeper insight into the electronic structure, the optical properties were investigated. Our calculations show that the optical constants are very anisotropic. The EVGGA calculation shows a blue spectral shift of around 0.024 eV with significant changes in the spectra compared to the LDA calculation. The observed spectral shifts are in agreement with the calculated band structure and corresponding electron density of states. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. First principles and Debye model study of the thermodynamic, electronic and optical properties of MgO under high-temperature and pressure

    NASA Astrophysics Data System (ADS)

    Miao, Yurun; Li, Huayang; Wang, Hongjuan; He, Kaihua; Wang, Qingbo

    2018-02-01

    First principles and quasi-harmonic Debye model have been used to study the thermodynamic properties, enthalpies, electronic and optical properties of MgO up to the core-mantle boundary (CMB) condition (137 GPa and 3700 K). Thermodynamic properties calculation includes thermal expansion coefficient and capacity, which have been studied up to the CMB pressure (137 GPa) and temperature (3700 K) by the Debye model with generalized gradient approximation (GGA) and local-density approximation (LDA). First principles with hybrid functional method (PBE0) has been used to calculate the electronic and optical properties under pressure up to 137 GPa and 0 K. Our results show the Debye model with LDA and first principles with PBE0 can provide accurate thermodynamic properties, enthalpies, electronic and optical properties. Calculated enthalpies show that MgO keep NaCl (B1) structure up to 137 GPa. And MgO is a direct bandgap insulator with a 7.23 eV calculated bandgap. The bandgap increased with increasing pressure, which will induce a blue shift of optical properties. We also calculated the density of states (DOS) and discussed the relation between DOS and band, optical properties. Equations were used to fit the relations between pressure and bandgaps, absorption coefficient (α(ω)) of MgO. The equations can be used to evaluate pressure after careful calibration. Our calculations can not only be used to identify some geological processes, but also offer a reference to the applications of MgO in the future.

  16. Structural stability and electronic behaviors of Co1-xOsxSi and macroscopic magnetic susceptibilities of CoSi and OsSi: GGA-PBEsol, GW-approximation and QTAIM investigations

    NASA Astrophysics Data System (ADS)

    Bouafia, H.; Sahli, B.; Timaoui, M. A.; Djebour, B.; Hiadsi, S.; Abidri, B.

    2018-02-01

    The present work represents a theoretical investigation based on FP-(L)APW + lo method of structural properties, mechanical stability and electronic properties of Co1-xOsxSi as well as the macroscopic magnetic susceptibilities of CoSi and OsSi. The structural properties such as cell parameter, bulk modulus, internal parameters and total energy of non-magnetic NM, ferromagnetic FM and antiferromagnetic AFM phases were predicted by GGA-PBEsol semilocal functional. The obtained results for CoSi and OsSi are in good agreement with those found previously. The spin, orbital and total macroscopic magnetic susceptibilities of CoSi and OsSi have been estimated and confirmed that these compounds are diamagnetic. The total energy of the ferromagnetic phase of Co1-xOsxSi (with x = 0.25, 0.5 and 0.75) is the lowest indicating that they are ferromagnetic materials. The generalized stability criteria indicate that Co1-xOsxSi maintain their mechanical stabilities under a hydrostatic pressure less than 10 GPa. The electronic properties calculated by GW-approximation indicate that CoSi and Co1-xOsxSi (with x = 0.25, 0.50 and 0.75) are semimetals whereas OsSi is a semiconductor with a pseudo-direct band-gap. The topological analysis by QTAIM and the charge density plots indicate that the strong covalent character is predominant for Cosbnd Si, Ossbnd Si and Cosbnd Os bonds.

  17. When Anatase Nanoparticles Become Bulklike: Properties of Realistic TiO2 Nanoparticles in the 1-6 nm Size Range from All Electron Relativistic Density Functional Theory Based Calculations.

    PubMed

    Lamiel-Garcia, Oriol; Ko, Kyoung Chul; Lee, Jin Yong; Bromley, Stefan T; Illas, Francesc

    2017-04-11

    All electron relativistic density functional theory (DFT) based calculations using numerical atom-centered orbitals have been carried out to explore the relative stability, atomic, and electronic structure of a series of stoichiometric TiO 2 anatase nanoparticles explicitly containing up to 1365 atoms as a function of size and morphology. The nanoparticles under scrutiny exhibit octahedral or truncated octahedral structures and span the 1-6 nm diameter size range. Initial structures were obtained using the Wulff construction, thus exhibiting the most stable (101) and (001) anatase surfaces. Final structures were obtained from geometry optimization with full relaxation of all structural parameters using both generalized gradient approximation (GGA) and hybrid density functionals. Results show that, for nanoparticles of a similar size, octahedral and truncated octahedral morphologies have comparable energetic stabilities. The electronic structure properties exhibit a clear trend converging to the bulk values as the size of the nanoparticles increases but with a marked influence of the density functional employed. Our results suggest that electronic structure properties, and hence reactivity, for the largest anatase nanoparticles considered in this study will be similar to those exhibited by even larger mesoscale particles or by bulk systems. Finally, we present compelling evidence that anatase nanoparticles become effectively bulklike when reaching a size of ∼20 nm diameter.

  18. Electronic properties of functionalized (5,5) beryllium oxide nanotubes.

    PubMed

    Chigo Anota, Ernesto; Cocoletzi, Gregorio Hernández

    2013-05-01

    Using the density functional theory (DFT) we study the structural and electronic properties of functionalized (5,5) chirality single wall beryllium oxide nanotubes (SW-BeONTs), i.e. armchair nanotubes. The nanotube surface and ends are functionalized by the hydroxyl (OH) functional group. Our calculations consider the Hamprecht-Cohen-Tozer-Handy functional in the generalized gradient approximation (HCTH-GGA) to deal with the exchange-correlation energies, and the base function with double polarization (DNP). The geometry optimization of both defects free and with point defects nanotubes is done applying the criterion of minimum energy. Six configurations are considered: The OH oriented toward the Be (on the surface and at the end), toward the O (on the surface and at the end) and placed at the nanotube ends. Simulation results show that the nanotube functionalization takes place at the nanotube ends with the BeO bond displaying hydrogen-like bridge bonds. Moreover the nanotube semiconductor behavior remains unchanged. The polarity is high (it shows a transition from covalent to ionic) favoring solvatation. On the other hand, the work function low value suggests this to be a good candidate for the device fabrication. When the nanotube contains surface point defects the work function is reduced which provides excellent possibilities for the use of this material in the electronic industry. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Phase stability, magnetic, electronic, half-metallic and mechanical properties of a new equiatomic quaternary Heusler compound ZrRhTiIn: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Xing; Chen, Z. B.; Gao, Y. C.

    2018-05-01

    In this manuscript, we have studied the electronic, magnetic, half-metallic and mechanical properties of a new Zr-based equiatomic quaternary Heusler (EQH) compound, ZrRhTiIn using first-principles calculations. The generalized gradient approximation (GGA) calculation results imply that at its equilibrium lattice constant of 6.70 Å, ZrRhTiIn is a half-metallic material (HMM) with a considerable band gap (Ebg) of 0.530 eV and a spin-filter/half-metallic band-gap (EHM) of 0.080 eV in the minority-spin channel. For ZrRhTiIn, the formation energy of -2.738 eV and the cohesive energy of 21.38 eV indicate that it is a thermodynamically stable material according to theory. The minority-spin EHM arises from the hybridization among Zr-4d, Ti-3d and Rh-4d electrons. The calculated total magnetic moment of ZrRhTiIn is 2 μB, meeting the well-known Slater-Pauling rule Mt = Zt -18. Furthermore, uniform strain and tetragonal strain were applied in this work to examine the magneto-electronic and half-metallic behaviors of the ZrRhTiIn system. Finally, we show that ZrRhTiIn is mechanically stable, ductile and anisotropic.

  20. Theoretical and experimental studies on wide-band-gap p-type conductive BaCuSeF and related compounds

    NASA Astrophysics Data System (ADS)

    Sakakima, Hiroshi; Nishitani, Mikihiko; Yamamoto, Koichi; Wada, Takahiro

    2015-08-01

    BaCuSeF and related compounds, MCuQF (M = Ba, Sr; Q = Se, S), are known to show p-type conduction. The formation energies of the Cu vacancy ΔH[VCu] in a MCuQF system were computed by first-principles calculation with a generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) functional as an electron exchange and correlation functional. The density of states (DOS) of BaCuSeF was calculated with the hybrid functional of Heyd-Scuseria-Ernzerhof (HSE) 06. ΔH[VCu] was found to be very small under both the Cu- and Q-rich conditions, which probably contributes to p-type conduction. The electronic structure of BaCuSeF was studied by X-ray photoelectron spectroscopy (XPS) with UV photoelectron yield spectroscopy (UVPYS) and photoemission yield spectroscopy (PYS). The determined depth of the top of the valence band relative to the vacuum level was about 4.9 eV. This value is desirable for applications in compound semiconductor thin-film tandem solar cells since the absorbers of polycrystalline thin-film solar cells, such as CdTe and Cu(In,Ga)Se2, are p-type semiconductors. The DOS of BaCuSeF calculated with the HSE06 functional was almost consistent with the XPS spectrum.

  1. First-principles study of the structural, elastic, vibrational, thermodynamic and electronic properties of the Mo2B intermetallic under pressure

    NASA Astrophysics Data System (ADS)

    Escamilla, R.; Carvajal, E.; Cruz-Irisson, M.; Romero, M.; Gómez, R.; Marquina, V.; Galván, D. H.; Durán, A.

    2016-12-01

    The structural, elastic, vibrational, thermodynamic and electronic properties of the Mo2B intermetallic under pressure are assessed using first-principles calculations based on the generalized gradient approximation (GGA) proposed by Perdew-Wang (PW91). Our results show that the calculated structural parameters at a pressure of zero GPa are in good agreement with the available experimental data. The effect of high pressures on the lattice constants shows that the compression along the c-axis and along the a-axis are similar. The elastic constants were calculated using the static finite strain technique, and the bulk shear moduli are derived from the ideal polycrystalline aggregate. We find that the elastic constants, elastic modulus and hardness monotonically increase as a function of pressure; consequently, the structure is dynamically stable and tends from brittle to ductile behavior under pressure. The Debye temperature θD increases and the so-called Gru¨ neisen constant γ decreases due to stiffening of the crystal structure. The phonon dispersion curves were obtained using the direct method. Additionally, the internal energy (ΔE), the Helmholtz free energy (ΔF), the entropy (S) and the lattice contribution to the heat capacity Cv were calculated and analyzed with the help of the phonon dispersion curves. The N(EF) and the electron transfer between the B and Mo atoms increase as a function of pressure.

  2. Ab initio study of ceria films for resistive switching memory applications

    NASA Astrophysics Data System (ADS)

    Firdos, Mehreen; Hussain, Fayyaz; Imran, Muhammad; Ismail, Muhammad; Rana, A. M.; Arshad Javid, M.; Majid, Abdul; Arif Khalil, R. M.; Ullah, Hafeez

    2017-10-01

    The aim of this study is to investigate the charge distribution/relocation activities in relation to resistive switching (RS) memory behavior in the metal/insulator/metal (MIM) structure of Zr/CeO2/Pt hybrid layers. The Zr layer is truly expected to act not only as an oxygen ion extraction layer but also as an ion barrier by forming a ZrO2 interfacial layer. Such behavior of the Zr not only introduces a high concentration of oxygen vacancies to the active CeO2 layer but also enhances the resistance change capability. Such Zr contributions have been explored by determining the work function, charge distribution and electronic properties with the help of density functional theory (DFT) based on the generalized gradient approximation (GGA). In doped CeO2, the dopant (Zr) plays a significant role in the formation of defect states, such as oxygen vacancies, which are necessary for generating conducting filaments. The total density of state (DOS) analyses reveal that the existence of impurity states in the hybrid system considerably upgrade the performance of charge transfer/accumulation, consequently leading to enhanced RS behavior, as noticed in our earlier experimental results on Zr/CeO2/Pt devices. Hence it can be concluded that the present DFT studies can be implemented on CeO2-based RRAM devices, which have skyscraping potential for future nonvolatile memory (NVM) applications.

  3. Comparative studies of the spectroscopy of CuCl2: DFT versus standard ab initio approaches

    NASA Astrophysics Data System (ADS)

    Ramírez-Solís, A.; Poteau, R.; Vela, A.; Daudey, J. P.

    2005-04-01

    The XΠg2-Σg +2, XΠg2-Δg2, XΠg2-Σu +2, XΠg2-Πu2 transitions on CuCl2 have been studied using several exchange-correlation functionals from the various types of density functional theory (DFT) approaches like local density approximation (LDA), generalized gradient approximation (GGA), hybrid and meta-GGA. The results are compared with the experience and with those coming from the most sophisticated nondynamic and dynamic electronic correlation treatments using the same relativistic effective core potentials and especially developed basis sets to study the electronic structure of the five lowest states and the corresponding vertical and adiabatic transition energies. The calculated transition energies for three of the hybrid functionals (B3LYP, B97-2, and PBE0) are in very good agreement with the benchmark ab initio results and experimental figures. All of the other functionals largely overestimate the XΠg2-Σg +2 and XΠg2-Δg2 transition energies, many of them even placing the Δg2 ligand field state above the charge transfer Πu2 and Σu +2 states. The relative weight of the Hartree-Fock exchange in the definition of the functional used appears to play a key role in the accurate description of the ΛSΣ density defined by the orientation of the 3d hole (σ, π, or δ) on Cu in the field of both chlorine atoms, but no simple connection of this weight with the quality of the spectra has been found. Mulliken charges and spin densities are carefully analyzed; a possible link between the extent of spin density on the metal for the XΠg2 state and the performance of the various functionals was observed, suggesting that those that lead to the largest values (close to 0.65) are the ones that best reproduce these four transitions. Most functionals lead to a remarkably low ionicity for the three ligand field states even for the best performing functionals, compared to the complete active space (SCF) (21, 14) ab initio values. These findings show that not only large variational ab initio calculations can produce reliable spectroscopic results for extremely complex systems where delicate electronic correlation effects have to be carefully dealt with. However, those functionals that were recently shown to perform best for a series of molecular properties [J. Chem. Phys. 121 3405 (2004)] are not the ones that produce the best transition energies for this complex case.

  4. Effects of van der Waals density functional corrections on trends in furfural adsorption and hydrogenation on close-packed transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Cheng, Lei; Curtiss, Larry; Greeley, Jeffrey

    2014-04-01

    The hydrogenation of furfural to furfuryl alcohol on Pd(111), Cu(111) and Pt(111) is studied with both standard Density Functional Theory (DFT)-GGA functionals and with van der Waals-corrected density functionals. VdW-DF functionals, including optPBE, optB88, optB86b, and Grimme's method, are used to optimize the adsorption configurations of furfural, furfuryl alcohol, and related intermediates resulting from hydrogenation of furfural, and the results are compared to corresponding values determined with GGA functionals, including PW91 and PBE. On Pd(111) and Pt(111), the adsorption geometries of the intermediates are not noticeably different between the two classes of functionals, while on Cu(111), modest changes are seen in both the perpendicular distance and the orientation of the aromatic ring with respect to the planar surface. In general, the binding energies increase substantially in magnitude as a result of van der Waals contributions on all metals. In contrast, however, dispersion effects on the kinetics of hydrogenation are relatively small. It is found that activation barriers are not significantly affected by the inclusion of dispersion effects, and a Brønsted-Evans-Polanyi relationship developed solely from PW91 calculations on Pd(111) is capable of describing corresponding results on Cu(111) and Pt(111), even when the dispersion effects are included. Finally, the reaction energies and barriers derived from the dispersion-corrected and pure GGA calculations are used to plot simple potential energy profiles for furfural hydrogenation to furfuryl alcohol on the three considered metals, and an approximately constant downshift of the energetics due to the dispersion corrections is observed.

  5. Mechanical and magneto-electronic properties of half-metallic ferromagnetism in Ti-doped ZnSe and CdSe alloys: Ab initio study

    NASA Astrophysics Data System (ADS)

    El Amine Monir, Mohammed; Ullah, Hayat; Baltach, Hadj; Gulbahar Ashiq, M.; Khenata, R.

    2017-11-01

    In this article we have studied the structural, elastic, electronic and magnetic properties of Zn1-xTixSe and Cd1-xTixSe alloys at (x = 0.25, 0.50, 0.75) using first principles density functional theory calculations with local spin density approximation (LSDA) and generalized gradient approximation plus Hubbard parameter (GGA+U) as exchange-correlation potential. The physical properties of both alloys were investigated in the zinc-blend phase. The structural parameters at equilibrium are consistent with experimental and earlier theoretical predictions. The elastic constants are also computed and compared with the literature. The DOS curves of Zn1-xTixSe and Cd1-xTixSe alloys for all the concentrations show the existence of hybridization among Ti (3d) and Se (4p) states. The calculated exchange constants N0α(s-d) and N0β (p-d) are useful to determine the contribution in the valence band and conduction band and are also shows the magnetic character of these alloys. In addition, the p-d hybridization in the PDOS reduces local magnetic moment of Ti from its free space charge of 2 μB and results small magnetic moments on the nonmagnetic Zn, Cd and Se sites. The calculated negative values of formation energy (Ef) reveal that all the Zn1-xTixSe and Cd1-xTixSe alloys are thermodynamically stables. A larger/Smaller value of Curie temperature (TC) for all the Zn1-xTixSe and Cd1-xTixSe alloys shows the strong/low interaction among the magnetic atoms respectively.

  6. Impact of strain on electronic and transport properties of 6 nm hydrogenated germanane nano-ribbon channel double gate field effect transistor

    NASA Astrophysics Data System (ADS)

    Meher Abhinav, E.; Sundararaj, Anuraj; Gopalakrishnan, Chandrasekaran; Kasmir Raja, S. V.; Chokhra, Saurabh

    2017-11-01

    In this work, chair like fully hydrogenated germanane (CGeH) nano-ribbon 6 nm short channel double gate field effect transistor (DG-FET) has been modeled and the impact of strain on the I-V characteristics of CGeH channel has been examined. The bond lengths, binding and formation energies of various hydrogenated geometries of buckled germanane channel were calculated using local density approximation (LDA) with Perdew-Zunger (PZ) and generalized gradient approximation (GGA) with Perdew Burke Ernzerhof (PBE) parameterization. From four various geometries, chair like structure is found to be more stable compared to boat like obtuse, stiruup structure and table like structure. The bandgap versus width, bandgap versus strain characteristics and I-V characteristics had been analyzed at room temperature using density functional theory (DFT). Using self consistent calculation it was observed that the electronic properties of nano-ribbon is independent of length and band structure, but dependent on edge type, strain [Uni-axial (ɛ xx ), bi-axial (ɛ xx   =  ɛ yy )] and width of the ribbon. The strain engineered hydrogenated germanane (GeH) showed wide direct bandgap (2.3 eV) which could help to build low noise electronic devices that operates at high frequencies. The observed bi-axial compression has high impact on the device transport characteristics with peak to valley ratio (PVR) of 2.14 and 380% increase in peak current compared to pristine CGeH device. The observed strain in CGeH DG-FET could facilitate in designing novel multiple-logic memory devices due to multiple negative differential resistance (NDR) regions.

  7. The unique GGA clathrin adaptor of Drosophila melanogaster is not essential.

    PubMed

    Luan, Shan; Ilvarsonn, Anne M; Eissenberg, Joel C

    2012-01-01

    The Golgi-localized, γ-ear-containing, ARF binding proteins (GGAs) are a highly conserved family of monomeric clathrin adaptor proteins implicated in clathrin-mediated protein sorting between the trans-Golgi network and endosomes. GGA RNAi knockdowns in Drosophila have resulted in conflicting data concerning whether the Drosophila GGA (dGGA) is essential. The goal of this study was to define the null phenotype for the unique Drosophila GGA. We describe two independently derived dGGA mutations. Neither allele expresses detectable dGGA protein. Homozygous and hemizygous flies with each allele are viable and fertile. In contrast to a previous report using RNAi knockdown, GGA mutant flies show no evidence of age-dependent retinal degeneration or cathepsin missorting. Our results demonstrate that several of the previous RNAi knockdown phenotypes were the result of off-target effects. However, GGA null flies are hypersensitive to dietary chloroquine and to starvation, implicating GGA in lysosomal function and autophagy.

  8. Pressure effects on band structures in dense lithium

    NASA Astrophysics Data System (ADS)

    Goto, Naoyuki; Nagara, Hitose

    2012-07-01

    We studied the change of the band structures in some structures of Li predicted at high pressures, using GGA and GW calculations. The width of the 1s band coming from the 1s electron of Li shows broadening by the pressurization, which is the normal behavior of bands at high pressure. The width of the band just below the Fermi level decreases by the pressurization, which is an opposite behavior to the normal bands. The character of this narrowing band is mostly p-like with a little s-like portion. The band gaps in some structures are really observed even by the GGA calculations. The gaps by the GW calculations increase to about 1.5 times the GGA values. Generally the one-shot GW calculation (diagonal only calculations) gives more reliable values than the GGA, but it may fail to predict band gaps for the case where band dispersion shows complex crossing near the Fermi level. There remains some structures for which GW calculations with off-diagonal elements taken into account are needed to identify the phase to be metallic or semiconducting.

  9. DFT-GGA errors in NO chemisorption energies on (111) transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Mason, Sara E.

    2014-03-01

    We investigate whether well-known DFT-GGA errors in predicting the chemisorption energy (Echem) of CO on transition metal surfaces manifest in analogous NO chemisorption systems. While widely investigated in the case of CO/metal, analogous DFT-GGA errors have long been claimed to be absent in NO/metal chemisorption. Here, we provide theoretical evidence of systematic enhanced back-donation in NO/metal chemisorption at the DFT-GGA level. We use electronic structure analysis to show that the partially filled molecular NO 2π* orbital rehybridizes with the transition metal d-band to form new bonding and anti-bonding states. We relate the back-donation charge transfer associated with chemisorption to the promotion of an electron from the 5σ orbital to the 2π* orbital in the gas-phase NO G2Σ- ← X2Π excitation. We establish linear relationships between Echem and ΔEG ← X and formulate an Echem correction scheme in the style of Mason et al. [Physical Review B 69, 161401(R)]. We apply the NO Echem correction method to the (111) surfaces of Pt, Pd, Rh, and Ir, with NO chemisorption modeled at a coverage of 0.25 ML. We note that the slope of Echemvs. ΔEG ← X and the dipole moment depend strongly on adsorption site for each metal, and we construct an approximate correction scheme which we test using NO/Pt(100) chemisorption.

  10. First-principles study on the structural, elastic and electronic properties of Ti4N3 and Ti6N5 under high pressure

    NASA Astrophysics Data System (ADS)

    Yang, Ruike; Chai, Bao; Zhu, Chuanshuai; Wei, Qun; Du, Zheng

    2017-12-01

    The structural, elastic and electronic properties of Ti4N3 and Ti6N5 have been systematically studied by first-principles calculations based on density functional theory (DFT) with generalized gradient approximation (GGA) and local density approximation (LDA). Basic physical properties for Ti4N3 and Ti6N5, such as the lattice constants, the bulk modulus, shear modulus, and elastic constants are calculated. The results show that Ti4N3 and Ti6N5 are mechanically stable under ambient pressure. The phonon dispersion spectra are researched throughout the Brillouin zone via the linear response approach as implemented in the CASTEP code, which indicate the optimized structures are stable dynamically. The Young’s modulus E and Poisson’s ratios ν are also determined within the framework of the Voigt-Reuss-Hill approximation. The analyses show that Ti4N3 is more ductile than Ti6N5 at the same pressure and ductility increases as the pressure increases. Moreover, the anisotropies of the Ti4N3 and Ti6N5 are discussed by the Young’s modulus at different directions, and the results indicate that the anisotropy of the two Ti-N compounds is obvious. The total density of states (TDOS) and partial density of states (PDOS) show that the TDOS of TiN, Ti4N3 and Ti6N5 originate mainly from Ti “d” and N “p” states. The results show that Ti4N3 and Ti6N5 present semimetal character. Pressure makes the level range of DOS significantly extended, for TiN, Ti4N3 and Ti6N5. The TDOS decreases with the pressure rise, at Fermi level.

  11. Recent developments in LIBXC - A comprehensive library of functionals for density functional theory

    NASA Astrophysics Data System (ADS)

    Lehtola, Susi; Steigemann, Conrad; Oliveira, Micael J. T.; Marques, Miguel A. L.

    2018-01-01

    LIBXC is a library of exchange-correlation functionals for density-functional theory. We are concerned with semi-local functionals (or the semi-local part of hybrid functionals), namely local-density approximations, generalized-gradient approximations, and meta-generalized-gradient approximations. Currently we include around 400 functionals for the exchange, correlation, and the kinetic energy, spanning more than 50 years of research. Moreover, LIBXC is by now used by more than 20 codes, not only from the atomic, molecular, and solid-state physics, but also from the quantum chemistry communities.

  12. Optical Absorption in Molecular Crystals from Time-Dependent Density Functional Theory

    DTIC Science & Technology

    2017-04-18

    fundamental gap but there is little effect on the optical spectra. We therefore believe that the method is robust and can be used for studies of... quantitative DFT- based prediction of excited-state properties in molecu- lar solids.[28, 29] In this approach, one first computes the underlying gas...gradient ap- proximation (GGA). In some cases , the fraction of SR Fock exchange, α, can be determined from first-principles based on satisfaction of

  13. Electronic structure and optical properties of CsI, CsI(Ag), and CsI(Tl)

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Zhao, Qiang; Li, Yang; Ouyang, Xiao-Ping

    2016-05-01

    The band structure, electronic density of states and optical properties of CsI and of CsI doped with silver or thallium are studied by using a first-principles calculation based on density functional theory (DFT). The exchange and the correlation potentials among the electrons are described by using the generalized gradient approximation (GGA). The results of our study show that the electronic structure changes somewhat when CsI is doped with silver or thallium. The band gaps of CsI(Ag) and CsI(Tl) are smaller than that of CsI, and the width of the conduction band of CsI is increased when CsI is doped with thallium or silver. Two peaks located in the conduction band of CsI(Ag) and CsI(Tl) are observed from their electronic densities of states. The absorption coefficients of CsI, CsI(Ag), and CsI(Tl) are zero when their photon energies are below 3.5 eV, 1.5 eV, and 3.1 eV, respectively. The results show that doping can improve the detection performance of CsI scintillators. Our study can explain why doping can improve the detection performance from a theoretical point of view. The results of our research provide both theoretical support for the luminescent mechanisms at play in scintillator materials when they are exposed to radiation and a reference for CsI doping from the point of view of the electronic structure.

  14. The optical spectrum of ternary alloy BBi1-xAsx

    NASA Astrophysics Data System (ADS)

    Yalcin, Battal G.; Aslan, M.; Ozcan, M. H.; Rahnamaye Aliabad, H. A.

    2016-06-01

    Among the III-V semiconductors, boron BBi and BAs as well as their alloys have attracted both scientific and technological interest in recent years. We present a calculation of the structural, electronic and optical properties of ternary alloy BBi1-xAsx by means of the WIEN2k software package. The exchange-correlation potential is treated by the generalized gradient approximation (GGA) within the schema of Wu and Cohen. Also, we have used the modified Becke-Johnson (mBJ) formalism to improve the band gap results. All the calculations have been performed after geometry optimization. In this study, we have investigated structural properties such as the lattice constant (a0), bulk modulus (B0) and its pressure derivative (B‧), and calculated the electronic band structures of the studied materials. Accurate calculation of linear optical properties, such as real (ɛ 1) and imaginary (ɛ 2) dielectric functions, reflectivity (R), electron energy loss spectrum, absorption coefficient (α), refractive index (n) and sum rule (Neff) are investigated. Our obtained results for studied binary compounds, BBi and BAs, fairly coincide with other theoretical calculations and experimental measurements. According to the best of our knowledge, no experimental or theoretical data are presently available for the studied ternary alloy BBi1-xAsx (0 < x < 1). The role of electronic band structure calculation with regards to the linear optical properties of BBi1-xAsx is discussed. The effect of the spin-orbit interaction (SOI) is also investigated and found to be quite small.

  15. Thermodynamic Stability of Low- and High-Index Spinel LiMn 2 O 4 Surface Terminations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warburton, Robert E.; Iddir, Hakim; Curtiss, Larry A.

    2016-05-04

    Density functional theory calculations are performed within the generalized gradient approximation (GGA+U) to determine stable terminations of both low- and high-index spinel LiMn2O4 (LMO) surfaces. A grand canonical thermodynamic approach is employed, permitting a direct comparison of offstoichiometric surfaces with previously reported stoichiometric surface terminations at various environmental conditions. Within this formalism, we have identified trends in the structure of the low-index surfaces as a function of the Li and O chemical potentials. The results suggest that, under a range of chemical potentials for which bulk LMO is stable, Li/O and Li-rich (111) surface terminations are favored, neither of whichmore » adopts an inverse spinel structure in the subsurface region. This thermodynamic analysis is extended to identify stable structures for certain high-index surfaces, including (311), (331), (511), and (531), which constitute simple models for steps or defects that may be present on real LMO particles. The low- and high-index results are combined to determine the relative stability of each surface facet under a range of environmental conditions. The relative surface energies are further employed to predict LMO particle shapes through a Wulff construction approach, which suggests that LMO particles will adopt either an octahedron or a truncated octahedron shape at conditions in which LMO is thermodynamically stable. These results are in agreement with the experimental observations of LMO particle shapes.« less

  16. Insight into proton transfer in phosphotungstic acid functionalized mesoporous silica-based proton exchange membrane fuel cells.

    PubMed

    Zhou, Yuhua; Yang, Jing; Su, Haibin; Zeng, Jie; Jiang, San Ping; Goddard, William A

    2014-04-02

    We have developed for fuel cells a novel proton exchange membrane (PEM) using inorganic phosphotungstic acid (HPW) as proton carrier and mesoporous silica as matrix (HPW-meso-silica) . The proton conductivity measured by electrochemical impedance spectroscopy is 0.11 S cm(-1) at 90 °C and 100% relative humidity (RH) with a low activation energy of ∼14 kJ mol(-1). In order to determine the energetics associated with proton migration within the HPW-meso-silica PEM and to determine the mechanism of proton hopping, we report density functional theory (DFT) calculations using the generalized gradient approximation (GGA). These DFT calculations revealed that the proton transfer process involves both intramolecular and intermolecular proton transfer pathways. When the adjacent HPWs are close (less than 17.0 Å apart), the calculated activation energy for intramolecular proton transfer within a HPW molecule is higher (29.1-18.8 kJ/mol) than the barrier for intermolecular proton transfer along the hydrogen bond. We find that the overall barrier for proton movement within the HPW-meso-silica membranes is determined by the intramolecular proton transfer pathway, which explains why the proton conductivity remains unchanged when the weight percentage of HPW on meso-silica is above 67 wt %. In contrast, the activation energy of proton transfer on a clean SiO2 (111) surface is computed to be as high as ∼40 kJ mol(-1), confirming the very low proton conductivity on clean silica surfaces observed experimentally.

  17. Band gap characterization of ternary BBi1-xNx (0≤x≤1) alloys using modified Becke-Johnson (mBJ) potential

    NASA Astrophysics Data System (ADS)

    Yalcin, Battal G.

    2015-04-01

    The semi-local Becke-Johnson (BJ) exchange-correlation potential and its modified form proposed by Tran and Blaha have attracted a lot of interest recently because of the surprisingly accurate band gaps they can deliver for many semiconductors and insulators (e.g., sp semiconductors, noble-gas solids, and transition-metal oxides). The structural and electronic properties of ternary alloys BBi1-xNx (0≤x≤1) in zinc-blende phase have been reported in this study. The results of the studied binary compounds (BN and BBi) and ternary alloys BBi1-xNx structures are presented by means of density functional theory. The exchange and correlation effects are taken into account by using the generalized gradient approximation (GGA) functional of Wu and Cohen (WC) which is an improved form of the most popular Perdew-Burke-Ernzerhof (PBE). For electronic properties the modified Becke-Johnson (mBJ) potential, which is more accurate than standard semi-local LDA and PBE calculations, has been chosen. Geometric optimization has been implemented before the volume optimization calculations for all the studied alloys structure. The obtained equilibrium lattice constants of the studied binary compounds are in coincidence with experimental works. And, the variation of the lattice parameter of ternary alloys BBi1-xNx almost perfectly matches with Vegard's law. The spin-orbit interaction (SOI) has been also considered for structural and electronic calculations and the results are compared to those of non-SOI calculations.

  18. Benchmark fragment-based 1H, 13C, 15N and 17O chemical shift predictions in molecular crystals†

    PubMed Central

    Hartman, Joshua D.; Kudla, Ryan A.; Day, Graeme M.; Mueller, Leonard J.; Beran, Gregory J. O.

    2016-01-01

    The performance of fragment-based ab initio 1H, 13C, 15N and 17O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. 1H, 13C, 15N, and 17O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same 1H, 13C, 15N, and 17O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tertbutyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2. PMID:27431490

  19. Benchmark fragment-based (1)H, (13)C, (15)N and (17)O chemical shift predictions in molecular crystals.

    PubMed

    Hartman, Joshua D; Kudla, Ryan A; Day, Graeme M; Mueller, Leonard J; Beran, Gregory J O

    2016-08-21

    The performance of fragment-based ab initio(1)H, (13)C, (15)N and (17)O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. (1)H, (13)C, (15)N, and (17)O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same (1)H, (13)C, (15)N, and (17)O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tert-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2.

  20. Geranylgeranylacetone blocks doxorubicin-induced cardiac toxicity and reduces cancer cell growth and invasion through RHO pathway inhibition.

    PubMed

    Sysa-Shah, Polina; Xu, Yi; Guo, Xin; Pin, Scott; Bedja, Djahida; Bartock, Rachel; Tsao, Allison; Hsieh, Angela; Wolin, Michael S; Moens, An; Raman, Venu; Orita, Hajime; Gabrielson, Kathleen L

    2014-07-01

    Doxorubicin is a widely used chemotherapy for solid tumors and hematologic malignancies, but its use is limited due to cardiotoxicity. Geranylgeranylacetone (GGA), an antiulcer agent used in Japan for 30 years, has no significant adverse effects, and unexpectedly reduces ovarian cancer progression in mice. Because GGA reduces oxidative stress in brain and heart, we hypothesized that GGA would prevent oxidative stress of doxorubicin cardiac toxicity and improve doxorubicin's chemotherapeutic effects. Nude mice implanted with MDA-MB-231 breast cancer cells were studied after chronic treatment with doxorubicin, doxorubicin/GGA, GGA, or saline. Transthoracic echocardiography was used to monitor systolic heart function and xenografts evaluated. Mice were euthanized and cardiac tissue evaluated for reactive oxygen species generation, TUNEL assay, and RHO/ROCK pathway analysis. Tumor metastases were evaluated in lung sections. In vitro studies using Boyden chambers were performed to evaluate GGA effects on RHO pathway activator lysophosphatidic acid (LPA)-induced motility and invasion. We found that GGA reduced doxorubicin cardiac toxicity, preserved cardiac function, prevented TUNEL-positive cardiac cell death, and reduced doxorubicin-induced oxidant production in a nitric oxide synthase-dependent and independent manner. GGA also reduced heart doxorubicin-induced ROCK1 cleavage. Remarkably, in xenograft-implanted mice, combined GGA/doxorubicin treatment decreased tumor growth more effectively than doxorubicin treatment alone. As evidence of antitumor effect, GGA inhibited LPA-induced motility and invasion by MDA-MB-231 cells. These anti-invasive effects of GGA were suppressed by geranylgeraniol suggesting GGA inhibits RHO pathway through blocking geranylation. Thus, GGA protects the heart from doxorubicin chemotherapy-induced injury and improves anticancer efficacy of doxorubicin in breast cancer. ©2014 American Association for Cancer Research.

  1. Geranylgeranylacetone prevents stress-induced decline of leptin secretion in mice.

    PubMed

    Itai, Miki; Kuwano, Yuki; Nishikawa, Tatsuya; Rokutan, Kazuhito; Kensei, Nishida

    2018-01-01

    Geranylgeranylacetone (GGA) is a chaperon inducer that protects various types of cell and tissue against stress. We examined whether GGA modulated energy intake and expenditure under stressful conditions. After mice were untreated or treated orally with GGA (0.16 g per kg body weight per day) for 10 days, they were subjected to 2-h restraint stress once or once a day for 5 consecutive days. GGA administration did not affect corticosterone response to the stress. Restraint stress rapidly decreased plasma leptin levels in control mice. GGA significantly increased circulating leptin levels without changing food intake and prevented the stress-induced decline of circulating leptin. However GGA-treated mice significantly reduced food intake during the repeated stress, compared with control mice. GGA prevented the stress-induced decline of leptin mRNA and its protein levels in epidydimal adipose tissues. We also found that GGA decreased ghrelin mRNA expression in gastric mucosa before the stress, whereas GGA-treated mice recovered the ghrelin mRNA expression to the baseline level after the repeated stress. Leptin and ghrelin are now recognized as regulators of anxiety and depressive mood. Our results suggest that GGA may regulate food intake and relief stress-induced mood disturbance through regulating leptin and ghrelin secretions. J. Med. Invest. 65:103-109, February, 2018.

  2. Density functional theory and chromium: Insights from the dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Würdemann, Rolf; Kristoffersen, Henrik H.; Moseler, Michael

    2015-03-28

    The binding in small Cr clusters is re-investigated, where the correct description of the dimer in three charge states is used as criterion to assign the most suitable density functional theory approximation. The difficulty in chromium arises from the subtle interplay between energy gain from hybridization and energetic cost due to exchange between s and d based molecular orbitals. Variations in published bond lengths and binding energies are shown to arise from insufficient numerical representation of electron density and Kohn-Sham wave-functions. The best functional performance is found for gradient corrected (GGA) functionals and meta-GGAs, where we find severe differences betweenmore » functionals from the same family due to the importance of exchange. Only the “best fit” from Bayesian error estimation is able to predict the correct energetics for all three charge states unambiguously. With this knowledge, we predict small bond-lengths to be exclusively present in Cr{sub 2} and Cr{sub 2}{sup −}. Already for the dimer cation, solely long bond-lengths appear, similar to what is found in the trimer and in chromium bulk.« less

  3. L-Asparagine crystals with wide gap semiconductor features: optical absorption measurements and density functional theory computations.

    PubMed

    Zanatta, G; Gottfried, C; Silva, A M; Caetano, E W S; Sales, F A M; Freire, V N

    2014-03-28

    Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences Δa, Δb, Δc between theory and experiment were as small as 0.020, 0.051, and 0.022 Å, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z → Γ and Z → β transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to α3 → Γ, α1 → Γ, and α2 → Γ transitions, respectively. Δ-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2p-carboxyl, C 2p-side chain, and C 2p-carboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical anisotropy for the absorption and complex dielectric function, with more structured curves for incident light polarized along the 100 and 101 directions.

  4. Band structure and thermoelectric properties of half-Heusler semiconductors from many-body perturbation theory

    NASA Astrophysics Data System (ADS)

    Zahedifar, Maedeh; Kratzer, Peter

    2018-01-01

    Various ab initio approaches to the band structure of A NiSn and A CoSb half-Heusler compounds (A = Ti, Zr, Hf) are compared and their consequences for the prediction of thermoelectric properties are explored. Density functional theory with the generalized-gradient approximation (GGA), as well as the hybrid density functional HSE06 and ab initio many-body perturbation theory in the form of the G W0 approach, are employed. The G W0 calculations confirm the trend of a smaller band gap (0.75 to 1.05 eV) in A NiSn compared to the A CoSb compounds (1.13 to 1.44 eV) already expected from the GGA calculations. While in A NiSn materials the G W0 band gap is 20% to 50% larger than in HSE06, the fundamental gap of A CoSb materials is smaller in G W0 compared to HSE06. This is because G W0 , similar to PBE, locates the valence band maximum at the L point of the Brillouin zone, whereas it is at the Γ point in the HSE06 calculations. The differences are attributed to the observation that the relative positions of the d levels of the transition metal atoms vary among the different methods. Using the calculated band structures and scattering rates taking into account the band effective masses at the extrema, the Seebeck coefficients, thermoelectric power factors, and figures of merit Z T are predicted for all six half-Heusler compounds. Comparable performance is predicted for the n -type A NiSn materials, whereas clear differences are found for the p -type A CoSb materials. Using the most reliable G W0 electronic structure, ZrCoSb is predicted to be the most efficient material with a power factor of up to 0.07 W/(K2 m) at a temperature of 600 K. We find strong variations among the different ab initio methods not only in the prediction of the maximum power factor and Z T value of a given material, but also in comparing different materials to each other, in particular in the p -type thermoelectric materials. Thus we conclude that the most elaborate, but also most costly G W0 method is required to perform a reliable computational search for the optimum material.

  5. Novel Therapeutic Strategy for the Prevention of Bone Fractures

    DTIC Science & Technology

    2013-06-01

    AGA GAG GGA GAT GCT CAG TGT TGG M32599 18S AGT GCG GGT CAT AAG CTT GC GGG CCT CAC TAA AC CAT CCA V00851 β-actin GTT TGA GAC CTT CAA CAC CCC GTG ...GCC ATC TCC TGC TCG AAG TC Meredith et al 2011* Mstn ACT GGA CCT CTC GAT AGA ACA CTC ACT TAG TGC TGT GTG TGT GGA GAT NM_010834.2 IGF-1 CAG...ACA GGA GCC CAG GAA AG AAG TGC CGT ATC CCA GAG GA NM_184052 MHC ACA GTC AGA GGT GTG ACTC AGC CG CCG ACT TGC GGA GGA AAG GTG C NM_001099635 Murf1

  6. Novel Therapeutic Strategy for the Prevention of Bone Fractures

    DTIC Science & Technology

    2014-08-01

    GAC CTT CAA CAC CCC GTG GCC ATC TCC TGC TCG AAG TC Meredith et al 2011* Mstn ACT GGA CCT CTC GAT AGA ACA CTC ACT TAG TGC TGT GTG TGT GGA GAT...NM_010834.2 IGF-1 CAG ACA GGA GCC CAG GAA AG AAG TGC CGT ATC CCA GAG GA NM_184052 MHC ACA GTC AGA GGT GTG ACTC AGC CG CCG ACT TGC GGA GGA AAG GTG C...AGC AGA GA TGA GTG CCT GCG GTA CAG AT NM_007553.2 RUNX-2 GGA AAG GCA CTG ACT GAC CTA ACA AAT TCT AAG CTT GGG AGG A NM_009820 Osx ACT ACC CAC CCT TCC

  7. Comparison of approximations in density functional theory calculations: Energetics and structure of binary oxides

    NASA Astrophysics Data System (ADS)

    Hinuma, Yoyo; Hayashi, Hiroyuki; Kumagai, Yu; Tanaka, Isao; Oba, Fumiyasu

    2017-09-01

    High-throughput first-principles calculations based on density functional theory (DFT) are a powerful tool in data-oriented materials research. The choice of approximation to the exchange-correlation functional is crucial as it strongly affects the accuracy of DFT calculations. This study compares performance of seven approximations, six of which are based on Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) with and without Hubbard U and van der Waals corrections (PBE, PBE+U, PBED3, PBED3+U, PBEsol, and PBEsol+U), and the strongly constrained and appropriately normed (SCAN) meta-GGA on the energetics and crystal structure of elementary substances and binary oxides. For the latter, only those with closed-shell electronic structures are considered, examples of which include C u2O , A g2O , MgO, ZnO, CdO, SnO, PbO, A l2O3 , G a2O3 , I n2O3 , L a2O3 , B i2O3 , Si O2 , Sn O2 , Pb O2 , Ti O2 , Zr O2 , Hf O2 , V2O5 , N b2O5 , T a2O5 , Mo O3 , and W O3 . Prototype crystal structures are selected from the Inorganic Crystal Structure Database (ICSD) and cation substitution is used to make a set of existing and hypothetical oxides. Two indices are proposed to quantify the extent of lattice and internal coordinate relaxation during a calculation. The former is based on the second invariant and determinant of the transformation matrix of basis vectors from before relaxation to after relaxation, and the latter is derived from shifts of internal coordinates of atoms in the unit cell. PBED3, PBEsol, and SCAN reproduce experimental lattice parameters of elementary substances and oxides well with few outliers. Notably, PBEsol and SCAN predict the lattice parameters of low dimensional structures comparably well with PBED3, even though these two functionals do not explicitly treat van der Waals interactions. SCAN gives formation enthalpies and Gibbs free energies closest to experimental data, with mean errors (MEs) of 0.01 and -0.04 eV, respectively, and root-mean-square errors (RMSEs) are both 0.07 eV. In contrast, all GGAs including those with Hubbard U and van der Waals corrections give 0.1 to 0.2 eV MEs and at least 0.11 eV RMSEs. Phonon contributions of solid phases to the formation enthalpies and Gibbs free energies are estimated to be small at less than ˜0.1 eV/atom within the quasiharmonic approximation. The same crystal structure appears as the lowest energy polymorph with different approximations in most of the investigated binary oxides. However, there are some systems where the choice of approximation significantly affects energy differences between polymorphs, or even the order of stability between phases. SCAN is the most reasonable regarding relative energies between polymorphs. The calculated transition pressure between polymorphs of ZnO and Sn O2 is closest to experimental values when PBED3, PBEsol (also PBED3+U and PBEsol+U for ZnO), and SCAN are employed. In summary, SCAN appears to be the best choice among the seven approximations based on the analysis of the energetics and crystal structure of binary oxides, while PBEsol is the best among the GGAs considered and shows a comparably good performance with SCAN for many cases. The use of PBEsol+U alongside PBEsol is also a reasonable choice, given that U corrections are required for several materials to qualitatively reproduce their electronic structures.

  8. Reversible upregulation of tropomyosin-related kinase receptor B by geranylgeranoic acid in human neuroblastoma SH-SY5Y cells.

    PubMed

    Sakane, Chiharu; Shidoji, Yoshihiro

    2011-09-01

    All-trans retinoic acid (ATRA) plays crucial roles in cell survival and differentiation of neuroblastoma cells. In the present study, we investigated the effects of geranylgeranoic acid (GGA), an acyclic retinoid, on differentiation and tropomyosin-related kinase receptor B (TrkB) gene expression in SH-SY5Y human neuroblastoma cells in comparison with ATRA. GGA induced growth suppression and neural differentiation to the same extent as ATRA. Two variants (145 and 95 kD) of the TrkB protein were dramatically increased by GGA treatment, comparable to the effect of ATRA. Following 6- to 8-day GGA treatment, the effect of GGA on TrkB was reversed after 2-4 days of its removal, whereas the effect of ATRA was irreversible under the same conditions. Both GGA and ATRA upregulated the cellular levels of three major TrkB messenger RNA splice variants in a time-dependent manner. Time-dependent induction of cell cycle-related genes, such as cyclin D1 and retinoblastoma protein, and amplification of the neural progenitor cell marker, brain lipid binding protein, were suppressed by GGA treatment and were completely abolished by ATRA. ATRA and GGA induced retinoic acid receptor β (RARβ) expression, whereas the time-dependent expression of both RARα and RARγ was abolished by ATRA, but not by GGA. Our results suggest that GGA may be able to restore neuronal properties of SH-SY5Y human neuroblastoma cells in a similar but not identical way to ATRA.

  9. Exchange-correlation energies of atoms from efficient density functionals: influence of the electron density

    DOE PAGES

    Tao, Jianmin; Ye, Lin -Hui; Duan, Yuhua

    2017-11-20

    The primary goal of Kohn–Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao–Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew–Burke–Ernzerhof (PBE), Tao–Perdew–Staroverov–Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree–Fock density yields the exchange and correlation energies in good agreement with the Optimizedmore » Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Lastly, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.« less

  10. Exchange-correlation energies of atoms from efficient density functionals: influence of the electron density

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Ye, Lin-Hui; Duan, Yuhua

    2017-12-01

    The primary goal of Kohn-Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao-Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE), Tao-Perdew-Staroverov-Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree-Fock density yields the exchange and correlation energies in good agreement with the Optimized Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Finally, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.

  11. Exchange-correlation energies of atoms from efficient density functionals: influence of the electron density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jianmin; Ye, Lin -Hui; Duan, Yuhua

    The primary goal of Kohn–Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao–Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew–Burke–Ernzerhof (PBE), Tao–Perdew–Staroverov–Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree–Fock density yields the exchange and correlation energies in good agreement with the Optimizedmore » Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Lastly, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.« less

  12. Theoretical simulations of the structural stabilities, elastic, thermodynamic and electronic properties of Pt3Sc and Pt3Y compounds

    NASA Astrophysics Data System (ADS)

    Boulechfar, R.; Khenioui, Y.; Drablia, S.; Meradji, H.; Abu-Jafar, M.; Omran, S. Bin; Khenata, R.; Ghemid, S.

    2018-05-01

    Ab-initio calculations based on density functional theory have been performed to study the structural, electronic, thermodynamic and mechanical properties of intermetallic compounds Pt3Sc and Pt3Y using the full-potential linearized augmented plane wave(FP-LAPW) method. The total energy calculations performed for L12, D022 and D024 structures confirm the experimental phase stability. Using the generalized gradient approximation (GGA), the values of enthalpies formation are -1.23 eV/atom and -1.18 eV/atom for Pt3Sc and Pt3Y, respectively. The densities of states (DOS) spectra show the existence of a pseudo-gap at the Fermi level for both compounds which indicate the strong spd hybridization and directing covalent bonding. Furthermore, the density of states at the Fermi level N(EF), the electronic specific heat coefficient (γele) and the number of bonding electrons per atom are predicted in addition to the elastic constants (C11, C12 and C44). The shear modulus (GH), Young's modulus (E), Poisson's ratio (ν), anisotropy factor (A), ratio of B/GH and Cauchy pressure (C12-C44) are also estimated. These parameters show that the Pt3Sc and Pt3Y are ductile compounds. The thermodynamic properties were calculated using the quasi-harmonic Debye model to account for their lattice vibrations. In addition, the influence of the temperature and pressure was analyzed on the heat capacities (Cp and Cv), thermal expansion coefficient (α), Debye temperature (θD) and Grüneisen parameter (γ).

  13. A Novel Energetic Perchlorate Amine Salt: Synthesis, Properties, and Density Functional Theory Calculation

    NASA Astrophysics Data System (ADS)

    Ma, Peng; Pan, Yong; Jiang, Juncheng; Zhu, Shunguan

    2017-10-01

    A novel explosive, ethylenediamine triethylenediamine tetraperchlorate (ETT), was synthesized by a rapid " one-pot" method. The molecular and crystal structures of ETT were determined by X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The purity of the ETT was characterized by hydrogen nuclear magnetic resonance (H-NMR) spectra and elemental analysis (EA). The chemical and physical properties of the co-crystal ETT were further explored including impact sensitivity, velocity of detonation, and thermal behavior. The impact sensitivity of the ETT (h50% = 9.50 cm) is much lower than that of its components, ethylenediamine diperchlorate (ED) (h50% = 5.60 cm) and triethylenediamine diperchlorate (TD) (h50% = 2.10 cm). The measured detonation velocity is 8956 m/s (ρ = 1.873 g/cm3), which is much higher than that of TNT (6900 m/s) or RDX (8350 m/s). The co-crystal ETT shows a unique thermal behavior with a decomposition peak temperature at 365 °C. Band structure and density of states (DOS) of the ETT were confirmed by the CASTEP code. The first-principles tight-binding method within the general gradient approximation (GGA) was employed to study the electronic band structure as well as the DOS and Fermi energy. Hirshfeld surfaces were applied to analyze the intermolecular interactions in the co-crystal, and the results showed that weak interaction was dominantly mediated by H … O hydrogen bond. By analyzing the bond length at different temperatures, N-H covalent bond is the trigger bond for the ETT.

  14. Novel BTlGaN semiconducting materials for infrared opto-electronic devices

    NASA Astrophysics Data System (ADS)

    Assali, Abdenacer; Bouslama, M'hamed

    2017-03-01

    BTlGaN quaternary alloys are proposed as new semiconductor materials for infrared opto-electronic applications. The structural and opto-electronic properties of zinc blende BxTlyGa1-x-yN alloys lattice matched to GaN with (0 ⩽ x and y ⩽ 0.187) are studied using density functional theory (DFT) within full-potential linearized augmented plane wave (FP-LAPW) method. The calculated structural parameters such as lattice constant a0 and bulk modulus B0 are found to be in good agreement with experimental data using the new form of generalized gradient approximation (GGA-WC). The band gaps of the compounds are also found very close to the experimental results using the recently developed Tran-Blaha-modified Becke-Johnson (TB-mBJ) exchange potential. A quaternary BxTlyGa1-x-yN is expected to be lattice matched to the GaN substrate with concentrations x = 0.125 and y = 0.187 allows to produce high interface layers quality. It has been found that B incorporation into BTlGaN does not significantly affect the band gap, while the addition of dilute Tl content leads to induce a strong reduction of the band gap, which in turn increases the emission wavelengths to the infrared region. The refractivity, reflectivity and absorption coefficient of these alloys were investigated. BTlGaN/GaN is an interesting new material to be used as active layer/barriers in quantum wells suitable for realizing advanced Laser Diodes and Light-Emitting Diodes as new sources of light emitting in the infrared spectrum region.

  15. Thermoelectric properties of topological insulator BaSn2

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong; Qiu, Liang

    2017-01-01

    Recently, \\text{BaS}{{\\text{n}}2} has been predicted to be a strong topological insulator by the first-principle calculations. It is well known that topological insulators have a close connection to thermoelectric materials, such as the \\text{B}{{\\text{i}}2}\\text{T}{{\\text{e}}3} family. In this work, we investigate thermoelectric properties of \\text{BaS}{{\\text{n}}2} by the first-principles calculations combined with the Boltzmann transport theory. The electronic part is carried out by a modified Becke and Johnson (mBJ) exchange potential, including spin-orbit coupling (SOC), while the phonon part is performed using a generalized gradient approximation (GGA). It was found that the electronic transport coefficients between the in-plane and cross-plane directions showed strong anisotropy, while lattice-lattice thermal conductivities demonstrated almost complete isotropy. Calculated results revealed a very low lattice thermal conductivity for \\text{BaS}{{\\text{n}}2} , and the corresponding average lattice thermal conductivity at room temperature is 1.69 \\text{W}~{{\\text{m}}-1}~{{\\text{K}}-1} , which is comparable or lower than those of lead chalcogenides and bismuth-tellurium systems as classic thermoelectric materials. Due to the complicated scattering mechanism, calculating the scattering time τ is challenging. By using an empirical τ ={{10}-14} s, the n-type figure of merit ZT is greater than 0.40 in wide temperature ranges. Experimentally, it is possible to attain better thermoelectric performance by strain or tuning size parameters. This work indicates that \\text{BaS}{{\\text{n}}2} may be a potential thermoelectric material, which can stimulate further theoretical and experimental work.

  16. Investigation of structural and multiferroic properties of three phases of BiFeO3 using modified Becke Johnson potential technique

    NASA Astrophysics Data System (ADS)

    Sagar, Elle; Mahesh, R.; Pavan Kumar, N.; Venugopal Reddy, P.

    2017-11-01

    Electronic band structure, ferroelectric and ferromagnetic properties of Cubic, Tetragonal and Rhombohedral (hexagonal axis) phases of multiferroic BiFeO3 compound has been investigated using first-principles calculations under the generalized gradient (GGA) and TB-mBJ semi local (Tran-Blaha modified Becke-Johnson) potential approximations using WIEN2k code. For this purpose, the total energies were calculated as a function of reduced volumes and the data were fitted to Brich Murnaghan equation. The estimated ground state parameters are found to be comparable with those of experimental ones. The semiconducting behavior of the material was obtained using TB-mBJ method in the spin polarized mode. Analysis of the density of states indicates that the valence band consists of Fe-d and O-p states, while the conduction band is composed of Fe-d and Bi-p states. The analysis of electron localization function shows that stereochemically active lone-pair electrons are present at Bi sites of Rhombohedral and Tetragonal phases and are responsible for the displacements of Bi atoms from the centro-symmetric to the non-centrosymmetric structure leading to the exhibition of ferroelectricity. Further, it has been concluded that the "lone pair" may have been formed due to the hybridization of 6s and 6p atomic orbitals with 6s2 electrons filling one of the resulting orbitals in Bi. The Polarization and the magnetic properties including susceptibility were obtained. The calculated magnetic moments at the iron sites are not integer values, since Fe electrons have a hybridization interaction with the neighboring O ions.

  17. Structural, optical and electronic properties of indium sulfide compositions under influence of copper impurity produced by chemical method

    NASA Astrophysics Data System (ADS)

    Esmaili, Parisa; Kangarlou, Haleh; Savaloni, Hadi; Ghorannevis, Mahmood

    Aqueous solutions with 70 °C and pH = 2.5 constant values were prepared from convenient chemical compounds to produce In2S3: Cu crystals and thin films. Crystal compositions were grown in this solution under special conditions. Micrographs showed amorphous In2S3 orange powder and transparent vitreous pieces of CuInS2 crystals. Indium sulfide films were produced using the same solution in CBD method, on the glass substrates at different [Cu/In] molar ratio concentrations. Cu+ ions by different concentration doped from copper chloride source into In2S3 films. The produced films were post-annealed at 400 °C for about 1 h. Their crystallography, phase transitions, element analysis and nanostructures were investigated by X-ray diffraction, SEM, EDAX and AFM analyses. β-In2S3 phase was dominant and by doping copper impurity, XRD results suggested the formation of CuInS2 compositions. Morphology of the films, nano-structures, grain shapes and hardness was changed. Optical reflectance was measured in the UV-VIS wavelength range by a spectrophotometer. Other optical properties and optical band gaps were calculated using Kramers-Kronig relations on reflectivity curves. Electronic properties were calculated by full potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, generalized gradient approximation (GGA) was used for the exchange-correlation potential calculation. Band gap structures, density of states and imaginary parts of dielectric function were calculated for In2S3: Cu compositions.

  18. Computational study of dye adsorption onto Brookite TiO2 surfaces for the applications in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Maluta, N. E.; Dima, R. S.; Nemudzivhadi, H.; Maphanga, R. R.; Sankaran

    2017-10-01

    The theoretical and computational studies of dye sensitized solar cells (DSSCs) can contribute to a deeper understanding of these type of solar cells. In the current study the density functional theory (DFT) is used to understand the electronic properties of low index brookite (1 0 0) surface doped with ruthenium. The structural optimizations, band structure, and electronic density of states of doped and undoped titanium dioxide (TiO2) brookite surface was performed using the first-principles calculations based on DFT emplotying a plane-wave pseudopotential method. The generalized gradient approximation (GGA) was used in the scheme of Perdew-Burke-Ernzerhof (PBE) to describe the exchange-correlation functional. All calculations were carried out with CASTEP (Cambridge Sequential Total Energy Package) code in Materials Studio of Accelrys Inc. The two different doping methods employed in the current work are, doping by replacement and adsorption. The overlap among the Ruthenium (Ru) 3d, Titanium (Ti) 3d, and Oxygen (O) 2p states enhance photocatalytic activity in the visible light region. The adsorption method shows that an equilibrium position is reached for ruthenium element after optimization. All the methods show that the TiO2 brookite (1 0 0) surface reduces its band gap after been doped with the ruthenium element. From the two techniques used, the total energy of the doped structures show that they are energetically favorable, with the band gap being reduced to 0.263 eV compared to 2.376 eV of the pure system.

  19. Magnetoelectric properties of Pb free Bi2FeTiO6: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Patra, Lokanath; Ravindran, P.

    2018-05-01

    The structural, electronic, magnetic and ferroelectric properties of Pb free double perovskite multiferroic Bi2FeTiO6 are investigated using density functional theory within the general gradient approximation (GGA) method. Our structural optimization using total energy calculations for different potential structures show a minimum energy for a non-centrosymmetric rhombohedral structure with R3c space group. Bi2FeTiO6 is found to be an antiferromagnetic insulator with C-type magnetic ordering with bandgap value of 0.3 eV. The calculated magnetic moment of 3.52 μB at Fe site shows the high spin arrangement of 3d electrons which is also confirmed by our orbital projected density of states analysis. We have analyzed the characteristics of bonding present between the constituents of Bi2FeTiO6 with the help of calculated partial density of states and Born effective charges. The ground state of the nearest centrosymmetric structure is found to be a G-type antiferromagnet with half metallicity showing that by the application of external electric field we can not only get a polarized state but also change the magnetic ordering and electronic structure in the present compound indicating strong magnetoelectric coupling. The cation sites the coexistence of Bi 6s lone pair (bring disproportionate charge distribution) and Ti4+ d0 ions which brings covalency produces off-center displacement and favors a non-centrosymmetric ground state and thus ferroelectricity. Our Berry phase calculation gives a polarization of 48 µCcm-2 for Bi2FeTiO6.

  20. Diffusion pore imaging with generalized temporal gradient profiles.

    PubMed

    Laun, Frederik B; Kuder, Tristan A

    2013-09-01

    In porous material research, one main interest of nuclear magnetic resonance diffusion (NMR) experiments is the determination of the shape of pores. While it has been a longstanding question if this is in principle achievable, it has been shown recently that it is indeed possible to perform NMR-based diffusion pore imaging. In this work we present a generalization of these previous results. We show that the specific temporal gradient profiles that were used so far are not unique as more general temporal diffusion gradient profiles may be used. These temporal gradient profiles may consist of any number of "short" gradient pulses, which fulfil the short-gradient approximation. Additionally, "long" gradient pulses of small amplitude may be present, which can be used to fulfil the rephasing condition for the complete profile. Some exceptions exist. For example, classical q-space gradients consisting of two short gradient pulses of opposite sign cannot be used as the phase information is lost due to the temporal antisymmetry of this profile. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. gga-miR-155 Enhances Type I Interferon Expression and Suppresses Infectious Burse Disease Virus Replication via Targeting SOCS1 and TANK

    PubMed Central

    Wang, Bin; Fu, Mengjiao; Liu, Yanan; Wang, Yongqiang; Li, Xiaoqi; Cao, Hong; Zheng, Shijun J.

    2018-01-01

    Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). MicroRNAs (miRNAs) are involved in host-pathogen interactions and innate immune response to viral infection. However, the role of miRNAs in host response to IBDV infection is not clear. We report here that gga-miR-155 acts as an anti-virus host factor inhibiting IBDV replication. We found that transfection of DF-1 cells with gga-miR-155 suppressed IBDV replication, while blockage of the endogenous gga-miR-155 by inhibitors enhanced IBDV replication. Furthermore, our data showed that gga-miR-155 enhanced the expression of type I interferon in DF-1 cells post IBDV infection. Importantly, we found that gga-miR-155 enhanced type I interferon expression via targeting SOCS1 and TANK, two negative regulators of type I IFN signaling. These results indicate that gga-miR-155 plays a critical role in cell response to IBDV infection. PMID:29564226

  2. Microsatellite mapping of QTLs affecting resistance to coccidiosis (Eimeria tenella) in a Fayoumi x White Leghorn cross.

    PubMed

    Pinard-van der Laan, Marie-Hélène; Bed'hom, Bertrand; Coville, Jean-Luc; Pitel, Frédérique; Feve, Katia; Leroux, Sophie; Legros, Hélène; Thomas, Aurélie; Gourichon, David; Repérant, Jean-Michel; Rault, Paul

    2009-01-20

    Avian coccidiosis is a major parasitic disease of poultry, causing severe economical loss to poultry production by affecting growth and feed efficiency of infected birds. Current control strategies using mainly drugs and more recently vaccination are showing drawbacks and alternative strategies are needed. Using genetic resistance that would limit the negative and very costly effects of the disease would be highly relevant. The purpose of this work was to detect for the first time QTL for disease resistance traits to Eimeria tenella in chicken by performing a genome scan in an F2 cross issued from a resistant Fayoumi line and a susceptible Leghorn line. The QTL analysis detected 21 chromosome-wide significant QTL for the different traits related to disease resistance (body weight growth, plasma coloration, hematocrit, rectal temperature and lesion) on 6 chromosomes. Out of these, a genome-wide very significant QTL for body weight growth was found on GGA1, five genome-wide significant QTL for body weight growth, plasma coloration and hematocrit and one for plasma coloration were found on GGA1 and GGA6, respectively. Two genome-wide suggestive QTL for plasma coloration and rectal temperature were found on GGA1 and GGA2, respectively. Other chromosme-wide significant QTL were identified on GGA2, GGA3, GGA6, GGA15 and GGA23. Parent-of-origin effects were found for QTL for body weight growth and plasma coloration on GGA1 and GGA3. Several QTL for different resistance phenotypes were identified as co-localized on the same location. Using an F2 cross from resistant and susceptible chicken lines proved to be a successful strategy to identify QTL for different resistance traits to Eimeria tenella, opening the way for further gene identification and underlying mechanisms and hopefully possibilities for new breeding strategies for resistance to coccidiosis in the chicken. From the QTL regions identified, several candidate genes and relevant pathways linked to innate immune and inflammatory responses were suggested. These results will be combined with functional genomics approaches on the same lines to provide positional candidate genes for resistance loci for coccidiosis. Results suggested also for further analysis, models tackling the complexity of the genetic architecture of these correlated disease resistance traits including potential epistatic effects.

  3. Pressure induced elastic softening in framework aluminosilicate- albite (NaAlSi 3O 8)

    DOE PAGES

    Mookherjee, Mainak; Mainprice, David; Maheshwari, Ketan; ...

    2016-10-13

    Albite (NaAlSi 3O 8) is an aluminosilicate mineral. Its crystal structure consists of 3-D framework of Al and Si tetrahedral units. We have used Density Functional Theory to investigate the high-pressure behavior of the crystal structure and how it affects the elasticity of albite. Our results indicate elastic softening between 6–8 GPa. This is observed in all the individual elastic stiffness components. Our analysis indicates that the softening is due to the response of the three-dimensional tetrahedral framework, in particular by the pressure dependent changes in the tetrahedral tilts. At pressure <6 GPa, the PAW-GGA can be described by amore » Birch-Murnaghan equation of state with V GGA 0 = 687.4Å 3, K GGA 0 = 51.7 GPa, and G GGA 0 = 4.7. The shear modulus and its pressure derivative are K ⊕GGA 0 = 33.7 GPa, and G ⊕GGA 0 = 2.9. At 1 bar, the azimuthal compressional and shear wave anisotropy AV GGA P = 42.8%, and AV GGA S = 50.1%. We also investigate the densification of albite to a mixture of jadeite and quartz. The transformation is likely to cause a discontinuity in density, compressional, and shear wave velocity across the crust and mantle. Furthermore, this could partially account for the Mohorovicic discontinuity in thickened continental crustal regions.« less

  4. Identifying Molecular Regulators of Neuronal Functions Affected in the Movement Disorder Dystonia

    DTIC Science & Technology

    2015-08-01

    GC-3’ (forward), 5’-CGT GTG GCT GTT GGG GTT GTT GCT GAG GTA-3’ (reverse) for the 498-bp amplicon, 5’-CAC CCT ATC AGG GGA GGA CAA CTT TCG-3’ (forward...3’ (reverse) for the 983- bp amplicon, and 5’-CAC CCT ATC AGG GGA GGA CAA CTT TCG-3’ (forward), 5’-ACA GTG TAG TAA GGC AAA GCA AGG AG-3’ (reverse) for

  5. Better GGA and meta-GGA Functionals: VT84, meta-VMT, meta-VT84

    NASA Astrophysics Data System (ADS)

    Vela, Alberto; Martin Del Campo, J.; Gazquez, J. L.; Trickey, S. B.

    2011-03-01

    The goal of fast DFT calculations on large families of highly complicated systems (e.g. large clusters, biomolecules) implicitly conflicts with the heavy emphasis of recent years on inclusion of exact exchange. In response we have worked on improving non-empirical GGA X functionals. Here we report extension of our VMT GGA functional (J. Chem. Phys. 130 244103 (2009)) to satisfy a relevant asymptotic constraint, yielding the VT{84} X functional. With the PBE C functional, VT{84} gives about 10% improvement over VMT in energetics on the G3 223 molecule set. At the meta-GGA level of complexity, we have both meta-VMT and meta-{84}. The former is about 10% better on the G3 set than the TPSS meta-GGA, while meta-VT{84} gives roughly 10% further improvement over meta-VMT. Details of these assessments, including improvements in chemical shifts, will be presented. SBT acknowledges US DOE Grant DE-SC0002139.

  6. BACE1 elevation engendered by GGA3 deletion increases β-amyloid pathology in association with APP elevation and decreased CHL1 processing in 5XFAD mice.

    PubMed

    Kim, WonHee; Ma, Liang; Lomoio, Selene; Willen, Rachel; Lombardo, Sylvia; Dong, Jinghui; Haydon, Philip G; Tesco, Giuseppina

    2018-02-02

    β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate-limiting enzyme in the production of amyloid beta (Aβ), the toxic peptide that accumulates in the brains of Alzheimer's disease (AD) patients. Our previous studies have shown that the clathrin adaptor Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) plays a key role in the trafficking of BACE1 to lysosomes, where it is normally degraded. GGA3 depletion results in BACE1 stabilization both in vitro and in vivo. Moreover, levels of GGA3 are reduced and inversely related to BACE1 levels in post-mortem brains of AD patients. In order to assess the effect of GGA3 deletion on AD-like phenotypes, we crossed GGA3 -/- mice with 5XFAD mice. BACE1-mediated processing of APP and the cell adhesion molecule L1 like protein (CHL1) was measured as well as levels of Aβ42 and amyloid burden. In 5XFAD mice, we found that hippocampal and cortical levels of GGA3 decreased while BACE1 levels increased with age, similar to what is observed in human AD brains. GGA3 deletion prevented age-dependent elevation of BACE1 in GGA3KO;5XFAD mice. We also found that GGA3 deletion resulted in increased hippocampal levels of Aβ42 and amyloid burden in 5XFAD mice at 12 months of age. While levels of BACE1 did not change with age and gender in GGAKO;5XFAD mice, amyloid precursor protein (APP) levels increased with age and were higher in female mice. Moreover, elevation of APP was associated with a decreased BACE1-mediated processing of CHL1 not only in 12 months old 5XFAD mice but also in human brains from subjects affected by Down syndrome, most likely due to substrate competition. This study demonstrates that GGA3 depletion is a leading candidate mechanism underlying elevation of BACE1 in AD. Furthermore, our findings suggest that BACE1 inhibition could exacerbate mechanism-based side effects in conditions associated with APP elevation (e.g. Down syndrome) owing to impairment of BACE1-mediated processing of CHL1. Therefore, therapeutic approaches aimed to restore GGA3 function and to prevent the down stream effects of its depletion (e.g. BACE1 elevation) represent an attractive alternative to BACE inhibition for the prevention/treatment of AD.

  7. First-principles calculation of adsorption of shale gas on CaCO3 (100) surfaces.

    PubMed

    Luo, Qiang; Pan, Yikun; Guo, Ping; Wang, Zhouhua; Wei, Na; Sun, Pengfei; Liu, Yuxiao

    2017-06-16

    To demonstrate the adsorption strength of shale gas to calcium carbonate in shale matrix, the adsorption of shale gas on CaCO3 (100) surfaces was studied using the first-principles method, which is based on the density functional theory (DFT). The structures and electronic properties of CH4, C2H6, CO2 and N2 molecules were calculated by the generalized gradient approximation (GGA), for a coverage of 1 monolayer (ML). Under the same conditions, the density of states (DOS) of CaCO3 (100) surfaces before and after the adsorption of shale gas molecules at high-symmetry adsorption sites were compared. The results showed that the adsorption energies of CH4, C2H6, CO2 and N2 on CaCO3 (100) surfaces were between 0.2683 eV and -0.7388 eV. When a CH4 molecule was adsorbed at a hollow site and its 2 hydrogen atoms were parallel to the long diagonal (H3) on the CaCO3 (100) surface, it had the most stable adsorption, and the adsorption energy was only -0.4160 eV. The change of adsorption energy of CH4 was no more than 0.0535 eV. Compared with the DOS distribution of CH4 before adsorption, it shifted to the left overall after adsorption. At the same time, the partial density of states (PDOS) curves of CaCO3 (100) surfaces before and after adsorption basically overlapped. This work showed that the adsorption effect of shale gas on calcium carbonate is very weak, and the adsorption is physisorption at the molecular level.

  8. Selection of fluxing agent for coal ash and investigation of fusion mechanism: a first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jie Li; Mei-Fang Du; Zhong-Xiao Zhang

    2009-01-15

    An approach based on the ab initio quantum chemical modeling (CASTEP, generalized gradient approximation (GGA), and density functional theory (DFT)) was first employed to guide the selection of the appropriate fluxing agent to reduce the coal ash melting temperature. Two kinds of typical Chinese coal ash A and B with a high-melting temperature were chosen as the investigated subjects. Result of the calculation shows that mullite mineral, which is the main component of coal ash, is easier to combine with an electron acceptor than with an electron donor. Because the cations of borax (Na{sub 2}B{sub 4}O{sub 7}10H{sub 2}O) and limestonemore » can act as electron acceptors, borax and limestone were selected as the fluxing agents in our experiment. Results of the experiment show that the melting temperatures of coal ash A and B are both decreased by borax and limestone, respectively. Moreover, borax has a better fluxing effect than limestone under the same conditions. The further numerical study on the coal ash fusing mechanism indicates that the Na{sup +} and Ca{sup 2+} cations, as acceptors, can enter into the crystal lattice of mullite mainly through O(7) and O(8) and then cause the Al(6)-O(8) and Al(5)-O(7) bonds to rupture in the (AlO{sub 6})-octahedron. From this, mullite is forced to transform to feldspar and corundum minerals that have a low binding energy. Because of the phase change of minerals in the coal ash, the coal ash melting temperature is decreased by adding borax and limestone. 27 refs., 8 figs., 3 tabs.« less

  9. First-Principles Prediction of Electronic, Magnetic, and Optical Properties of Co2MnAs Full-Heusler Half-Metallic Compound

    NASA Astrophysics Data System (ADS)

    Bakhshayeshi, A.; Sarmazdeh, M. Majidiyan; Mendi, R. Taghavi; Boochani, A.

    2017-04-01

    Electronic, magnetic, and optical properties of Co2MnAs full-Heusler compound have been calculated using a first-principles approach with the full-potential linearized augmented plane-wave (FP-LAPW) method and generalized gradient approximation plus U (GGA + U). The results are compared with various properties of Co2Mn Z ( Z = Si, Ge, Al, Ga, Sn) full-Heusler compounds. The results of our calculations show that Co2MnAs is a half-metallic ferromagnetic compound with 100% spin polarization at the Fermi level. The total magnetic moment and half-metallic gap of Co2MnAs compound are found to be 6.00 μ B and 0.43 eV, respectively. It is also predicted that the spin-wave stiffness constant and Curie temperature of Co2MnAs compound are about 3.99 meV nm2 and 1109 K, respectively. The optical results show that the dominant behavior, at energy below 2 eV, is due to interactions of free electrons in the system. Interband optical transitions have been calculated based on the imaginary part of the dielectric function and analysis of critical points in the second energy derivative of the dielectric function. The results show that there is more than one plasmon energy for Co2MnAs compound, with the highest occurring at 25 eV. Also, the refractive index variations and optical reflectivity for radiation at normal incidence are calculated for Co2MnAs. Because of its high magnetic moment, high Curie temperature, and 100% spin polarization at the Fermi level as well as its optical properties, Co2MnAs is a good candidate for use in spintronic components and magnetooptical devices.

  10. Structural and electronic properties of Aun-xPtx (n = 2-14; x ⩽ n) clusters: The density functional theory investigation

    NASA Astrophysics Data System (ADS)

    Yuan, H. K.; Kuang, A. L.; Tian, C. L.; Chen, H.

    2014-03-01

    The structural evolutions and electronic properties of bimetallic Aun-xPtx (n = 2-14; x ⩽ n) clusters are investigated by using the density functional theory (DFT) with the generalized gradient approximation (GGA). The monatomic doping Aun-1Pt clusters are emphasized and compared with the corresponding pristine Aun clusters. The results reveal that the planar configurations are favored for both Aun-1Pt and Aun clusters with size up to n = 13, and the former often employ the substitution patterns based on the structures of the latter. The most stable clusters are Au6 and Au6Pt, which adopt regular planar triangle (D3h) and hexagon-ring (D6h) structures and can be regarded as the preferential building units in designing large clusters. For Pt-rich bimetallic clusters, their structures can be obtained from the substitution of Pt atoms by Au atoms from the Ptn structures, where Pt atoms assemble together and occupy the center yet Au atoms prefer the apex positions showing a segregation effect. With respect to pristine Au clusters, AunPt clusters exhibit somewhat weaker and less pronounced odd-even oscillations in the highest occupied and lowest unoccupied molecular-orbital gaps (HOMO-LUMO gap), electron affinity (EA), and ionization potential (IP) due to the partially released electron pairing effect. The analyses of electronic structure indicate that Pt atoms in AuPt clusters would delocalize their one 6s and one 5d electrons to contribute the electronic shell closure. The sp-d hybridizations as well as the d-d interactions between the host Au and dopant Pt atoms result in the enhanced stabilities of AuPt clusters.

  11. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Weiss, A. H.

    2013-04-01

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sites of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.

  12. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Weiss, A. H.

    2013-04-19

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sitesmore » of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.« less

  13. Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX{sub 2}: X = S, Se, Te)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Sheetal; Department of Physics, Panjab University, Chandigarh 160014; Verma, A.S., E-mail: ajay_phy@rediffmail.com

    2014-05-01

    Graphical abstract: - Highlights: • FP-LAPW method has been used to compute the solid state properties of AgGaX{sub 2} (X = S, Se, Te). • Electronic and optical properties reported with recently developed mBJ potential. • Thermal expansion, heat capacity, Debye temperature, entropy and Grüneisen parameter were evaluated. • Hardness was calculated for the first time at different temperature and pressure. - Abstract: We have performed ab initio calculations for the structural, electronic, optical, elastic and thermal properties of the silver gallium dichalcogenides (AgGaX{sub 2}: X = S, Se, Te). In this study, we have used the accurate full potentialmore » linearized augmented plane wave (FP-LAPW) method to find the equilibrium structural parameters and to compute the six elastic constants (C{sub 11}, C{sub 12}, C{sub 13}, C{sub 33}, C{sub 44} and C{sub 66}). We have reported electronic and optical properties with the recently developed density functional theory of Tran and Blaha, and this theory is used along with the Wu-Cohen generalized gradient approximation (WC-GGA) for the exchange-correlation potential. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients and optical conductivities were calculated for photon energies up to 40 eV. The thermodynamical properties such as thermal expansion, heat capacity, debye temperature, entropy, Grüneisen parameter and bulk modulus were calculated employing the quasi-harmonic Debye model at different temperatures (0–900 K) and pressures (0–8 GPa) and the silent results were interpreted. Hardness of the materials was calculated for the first time at different temperatures and pressures.« less

  14. A computational study of Na behavior on graphene

    NASA Astrophysics Data System (ADS)

    Malyi, Oleksandr I.; Sopiha, Kostiantyn; Kulish, Vadym V.; Tan, Teck L.; Manzhos, Sergei; Persson, Clas

    2015-04-01

    We present the first ab initio and molecular dynamics study of Na adsorption and diffusion on ideal graphene that considers Na-Na interaction and dispersion forces. From density functional theory (DFT) calculations using the generalized gradient approximation (GGA), the binding energy (vs. the vacuum reference state) of -0.75 eV is higher than the cohesive energy of Na metal (E

  15. Alkali-Metal-Ion-Functionalized Graphene Oxide as a Superior Anode Material for Sodium-Ion Batteries.

    PubMed

    Wan, Fang; Li, Yu-Han; Liu, Dai-Huo; Guo, Jin-Zhi; Sun, Hai-Zhu; Zhang, Jing-Ping; Wu, Xing-Long

    2016-06-06

    Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium-ion batteries (SIBs) because of the existence of H-bonding between the layers and ultralow electrical conductivity which impedes the Na(+) and e(-) transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali-metal-ion (Li(+) , Na(+) , K(+) )-functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na-storage capabilities. Electrochemical tests demonstrated that sodium-ion-functionalized GO (GNa) has shown outstanding Na-storage performance in terms of excellent rate capability and long-term cycle life (110 mAh g(-1) after 600 cycles at 1 A g(-1) ) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na-storage capabilities of functionalized GO. These calculations have indicated that the Na-O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na-storage properties among all comparatives functionalized by other alkali metal ions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Elastic, Optoelectronic and Thermoelectric Properties of the Lead-Free Halide Semiconductors Cs2AgBi X 6 ( X = Cl, Br): Ab Initio Investigation

    NASA Astrophysics Data System (ADS)

    Guechi, N.; Bouhemadou, A.; Bin-Omran, S.; Bourzami, A.; Louail, L.

    2018-02-01

    We report a detailed investigation of the elastic moduli, electronic band structure, density of states, chemical bonding, electron and hole effective masses, optical response functions and thermoelectric properties of the lead-free halide double perovskites Cs2AgBiCl6 and Cs2AgBiBr6 using the full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA-PBEsol) and the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. Because of the presence of heavy elements in the studied compounds, we include the spin-orbit coupling (SOC) effect. Our calculated structural parameters agree very well with the available experimental and theoretical findings. Single-crystal and polycrystalline elastic constants are predicted using the total-energy versus strain approach. Three-dimensional representations of the crystallographic direction dependence on the shear modulus, Young's modulus and Poisson's ratio demonstrate a noticeable elastic anisotropy. The TB-mBJ potential with SOC yields an indirect band gap of 2.44 (1.93) eV for Cs2AgBiCl6 (Cs2AgBiBr6), in good agreement with the existing experimental data. The chemical bonding features are probed via density of states and valence electron density distribution calculations. Optical response functions were predicted from the calculated band structure. Both of the investigated compounds have a significant absorption coefficient (˜ 25 × 104 {cm}^{ - 1} ) in the visible range of sunlight. The thermoelectric properties of the title compounds were investigated using the FP-LAPW approach in combination with the semi-classical Boltzmann transport theory. The Cs2AgBiCl6 and Cs2AgBiBr6 compounds have a large thermopower S, which makes them potential candidates for thermoelectric applications.

  17. Nucleophilic substitution at phosphorus centers (SN2@p).

    PubMed

    van Bochove, Marc A; Swart, Marcel; Bickelhaupt, F Matthias

    2007-12-03

    We have studied the characteristics of archetypal model systems for bimolecular nucleophilic substitution at phosphorus (SN2@P) and, for comparison, at carbon (SN2@C) and silicon (SN2@Si) centers. In our studies, we applied the generalized gradient approximation (GGA) of density functional theory (DFT) at the OLYP/TZ2P level. Our model systems cover nucleophilic substitution at carbon in X(-)+CH3Y (SN2@C), at silicon in X(-)+SiH3Y (SN2@Si), at tricoordinate phosphorus in X(-)+PH2Y (SN2@P3), and at tetracoordinate phosphorus in X(-)+POH2Y (SN2@P4). The main feature of going from SN2@C to SN2@P is the loss of the characteristic double-well potential energy surface (PES) involving a transition state [X--CH3--Y]- and the occurrence of a single-well PES with a stable transition complex, namely, [X--PH2--Y]- or [X--POH2--Y](-). The differences between SN2@P3 and SN2@P4 are relatively small. We explored both the symmetric and asymmetric (i.e. X, Y=Cl, OH) SN2 reactions in our model systems, the competition between backside and frontside pathways, and the dependence of the reactions on the conformation of the reactants. Furthermore, we studied the effect, on the symmetric and asymmetric SN2@P3 and S(N)2@P4 reactions, of replacing hydrogen substituents at the phosphorus centers by chlorine and fluorine in the model systems X(-)+PR2Y and X(-)+POR2Y, with R=Cl, F. An interesting phenomenon is the occurrence of a triple-well PES not only in the symmetric, but also in the asymmetric SN2@P4 reactions of X(-)+POCl2--Y.

  18. GGA3 Functions as a Switch to Promote Met Receptor Recycling, Essential for Sustained ERK and Cell Migration

    PubMed Central

    Parachoniak, Christine Anna; Luo, Yi; Abella, Jasmine Vanessa; Keen, James H.; Park, Morag

    2011-01-01

    Summary Cells are dependent on correct sorting of activated receptor tyrosine kinases (RTKs) for the outcome of growth factor signaling. Upon activation, RTKs are coupled through the endocytic machinery for degradation, or recycled to the cell surface. However, the molecular mechanisms governing RTK recycling are poorly understood. Here, we show that Golgi-localized gamma-ear containing Arf-binding protein 3 (GGA3) interacts selectively with the Met/Hepatocyte Growth Factor RTK when stimulated, to sort it for recycling in association with “gyrating”-clathrin. GGA3 loss abrogates Met recycling from a Rab4 endosomal subdomain, resulting in pronounced trafficking of Met towards degradation. Decreased Met recycling attenuates ERK activation and cell migration. Met recycling, sustained ERK activation and migration require interaction of GGA3 with Arf6 and an unexpected association with the Crk adaptor. The data show that GGA3 defines an active recycling pathway and support a broader role for GGA3-mediated cargo selection in targeting receptors destined for recycling. PMID:21664574

  19. Guanidinylated 3-gluconamidopropyl methacrylamide-s-3-aminopropyl methacrylamide copolymer as siRNA carriers for inhibiting human telomerase reverse transcriptase expression.

    PubMed

    Wu, Yang; Ji, Jinkai; Yang, Ran; Zhang, Xiaoqiang; Li, Yuanhui; Pu, Yuepu; Li, Xinsong

    2013-01-01

    In this report, a series of well-defined glucose- and guanidine-based cationic copolymers as gene carriers were developed to inhibit human telomerase reverse transcriptase (hTERT) gene expression. First of all, guandinylated 3-gluconamidopropyl methacrylamide-s-3-aminopropyl methacrylamide copolymers (guanidinylated GAPMA-s-APMA, abbreviated as GGA) were prepared via aqueous reversible addition--fragmentation chain transfer polymerization (RAFT). Then, three target hTERT siRNA TERT-1, TERT-2 and TERT-3 were designed and combined with GGA copolymers to form siRNA/GGA polyplexes. The polyplexes were examined by dynamic light scattering and agarose gel electrophoresis. The results indicated that GGA copolymers can condense siRNA effectively to form particles with the diameter from 157 nm to 411 nm and zeta potential values in the range from +3.7 to +15.8 mV at various charge ratios (N/P). The MTT assay data of siRNA/GGA polyplexes on human hepatocellular liver carcinoma cells (HepG2) indicated that GGA copolymer had better cell viabilities than polyethylenimine (PEI). Furthermore, the transfection of siRNA/GGA polyplexes was detected by real-time quantitative PCR (RT-qPCR) in HepG2. It was found that siRNA/GGA polyplexes could effectively silence hTERT mRNA expression in serum-free media (p<0.01). In the presence of serum, the hTERT mRNA expression in HepG2 cells have significant difference (p<0.01) between siRNA/GGA3 polyplexes and blank. The results showed that the GAPMA component can reduce the aggregation of protein in serum media. Therefore, the enhancement of transfection may be attributed to the combination of guadino groups and glucose component. And, the guandinylated 3-gluconamidopropyl methacrylamide-s-3-aminopropyl methacrylamide copolymers might be promise in gene delivery.

  20. Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria

    NASA Astrophysics Data System (ADS)

    Kowalczuk, Zdzisław; Białaszewski, Tomasz

    2018-01-01

    A novel idea to perform evolutionary computations (ECs) for solving highly dimensional multi-objective optimization (MOO) problems is proposed. Following the general idea of evolution, it is proposed that information about gender is used to distinguish between various groups of objectives and identify the (aggregate) nature of optimality of individuals (solutions). This identification is drawn out of the fitness of individuals and applied during parental crossover in the processes of evolutionary multi-objective optimization (EMOO). The article introduces the principles of the genetic-gender approach (GGA) and virtual gender approach (VGA), which are not just evolutionary techniques, but constitute a completely new rule (philosophy) for use in solving MOO tasks. The proposed approaches are validated against principal representatives of the EMOO algorithms of the state of the art in solving benchmark problems in the light of recognized EC performance criteria. The research shows the superiority of the gender approach in terms of effectiveness, reliability, transparency, intelligibility and MOO problem simplification, resulting in the great usefulness and practicability of GGA and VGA. Moreover, an important feature of GGA and VGA is that they alleviate the 'curse' of dimensionality typical of many engineering designs.

  1. Preinduction of HSP70 promotes hypoxic tolerance and facilitates acclimatization to acute hypobaric hypoxia in mouse brain

    PubMed Central

    Zhang, Kuan; Zhao, Tong; Huang, Xin; Liu, Zhao-hui; Xiong, Lei; Li, Ming-ming; Wu, Li-ying; Zhao, Yong-qi

    2008-01-01

    It has been shown that induction of HSP70 by administration of geranylgeranylacetone (GGA) leads to protection against ischemia/reperfusion injury. The present study was performed to determine the effect of GGA on the survival of mice and on brain damage under acute hypobaric hypoxia. The data showed that the mice injected with GGA survived significantly longer than control animals (survival time of 9.55 ± 3.12 min, n = 16 vs. controls at 4.28 ± 4.29 min, n = 15, P < 0.005). Accordingly, the cellular necrosis or degeneration of the hippocampus and the cortex induced by sublethal hypoxia for 6 h could be attenuated by preinjection with GGA, especially in the CA2 and CA3 regions of the hippocampus. In addition, the activity of nitric oxide synthase (NOS) of the hippocampus and the cortex was increased after exposure to sublethal hypoxia for 6 h but could be inhibited by the preinjection of GGA. Furthermore, the expression of HSP70 was significantly increased at 1 h after GGA injection. These results suggest that administration of GGA improved survival rate and prevented acute hypoxic damage to the brain and that the underlying mechanism involved induction of HSP70 and inhibition of NOS activity. PMID:19105051

  2. Investigating the Psychometric Properties of the ACEI Global Guidelines Assessment (GGA) in Four Countries

    ERIC Educational Resources Information Center

    Hardin, Belinda J.; Bergen, Doris; Hung, Hsuan-Fang

    2013-01-01

    The ACEI Global Guidelines Assessment (GGA) was developed to provide an international assessment tool that can be used by early childhood educators to develop, assess, and improve program quality worldwide. This pilot study was conducted in four countries to investigate the psychometric properties of the GGA within and across different countries.…

  3. Development and Characterization of Novel Bioluminecent Systems

    DTIC Science & Technology

    2013-07-01

    Ppy I108R. The following primers and their respective reverse compliments were used: Y447E, 5´- CT TTA ATT AAA TAC AAA GGA GAG CAG GTG GCC CCC GCT G...3´ [EcoRV] and I108R, 5´- GGA GTT GCA GTG GCG CCC GCG AAC GAC CGT TAT AAT GAA CGT-3´ [KasI] (bold represents the mutated codons, underlined...primers and their respective reverse compliments: Y447C, 5´- G AAG TCT TTA ATA AAA TAC AAA GGA TGT CAG GTG GCC CCC GCT G -3´ [PacI] and I108C, 5´- GGA

  4. Applying the Zel'dovich approximation to general relativity

    NASA Astrophysics Data System (ADS)

    Croudace, K. M.; Parry, J.; Salopek, D. S.; Stewart, J. M.

    1994-03-01

    Starting from general relativity, we give a systematic derivation of the Zel'dovich approximation describing the nonlinear evolution of collisionless dust. We begin by evolving dust along world lines, and we demonstrate that the Szekeres line element is an exact but apparently unstable solution of the evolution equations describing pancake collapse. Next, we solve the Einstein field equations by employing Hamilton-Jacobi techniques and a spatial gradient expansion. We give a prescription for evolving a primordial or 'seed' metric up to the formation of pancakes, and demonstrate its validity by rederiving the Szekeres solution approximately at third order and exactly at fifth order in spatial gradients. Finally we show that the range of validity of the expansion can be improved quite significantly if one notes that the 3-metric must have nonnegative eigenvalues. With this improvement the exact Szekeres solution is obtained after only one iteration.

  5. Perturbative Out of Equilibrium Quantum Field Theory beyond the Gradient Approximation and Generalized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Ozaki, H.

    2004-01-01

    Using the closed-time-path formalism, we construct perturbative frameworks, in terms of quasiparticle picture, for studying quasiuniform relativistic quantum field systems near equilibrium and non-equilibrium quasistationary systems. We employ the derivative expansion and take in up to the second-order term, i.e., one-order higher than the gradient approximation. After constructing self-energy resummed propagator, we formulated two kinds of mutually equivalent perturbative frameworks: The first one is formulated on the basis of the ``bare'' number density function, and the second one is formulated on the basis of ``physical'' number density function. In the course of construction of the second framework, the generalized Boltzmann equations directly come out, which describe the evolution of the system.

  6. The molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory: The DEC-RI-MP2 gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykov, Dmytro; Kristensen, Kasper; Kjærgaard, Thomas

    We report an implementation of the molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory (DEC-RI-MP2). The new DEC-RI-MP2 gradient method combines the precision control as well as the linear-scaling and massively parallel features of the DEC scheme with efficient evaluations of the gradient contributions using the RI approximation. We further demonstrate that the DEC-RI-MP2 gradient method is capable of calculating molecular gradients for very large molecular systems. A test set of supramolecular complexes containing up to 158 atoms and 1960 contracted basis functions has been employed to demonstrate the general applicability of the DEC-RI-MP2 methodmore » and to analyze the errors of the DEC approximation. Moreover, the test set contains molecules of complicated electronic structures and is thus deliberately chosen to stress test the DEC-RI-MP2 gradient implementation. Additionally, as a showcase example the full molecular gradient for insulin (787 atoms and 7604 contracted basis functions) has been evaluated.« less

  7. DFT calculations for Au adsorption onto a reduced TiO2 (110) surface with the coexistence of Cl

    NASA Astrophysics Data System (ADS)

    Tada, Kohei; Sakata, Kohei; Yamada, Satoru; Okazaki, Kazuyuki; Kitagawa, Yasutaka; Kawakami, Takashi; Yamanaka, Shusuke; Okumura, Mitsutaka

    2014-02-01

    Residual chlorines, which originate from HAuCl4, enhance the aggregation of gold (Au) nanoparticles and clusters, preventing the generation of highly active supported Au catalysts. However, the detailed mechanism of residual-chlorine-promoted aggregation of Au is unknown. Herein to investigate this mechanism, density functional theory (DFT) calculations of Au and Cl adsorption onto a reduced rutile TiO2 (110) surface were performed using a generalised gradient approximation Perdew, Burke, and Ernzerhof formula (GGA-PBE) functional and plane-wave basis. Although both Au and Cl atoms prefer to mono-absorb onto oxygen defect sites, Cl atoms have a stronger absorption onto a reduced TiO2 (110) surface, abbreviated as rTiO2 (110) in the following, than Au atoms. Additionally, co-adsorption of a Cl atom and a Au atom or Au nanorod onto a rTiO2 surface was investigated; Cl adsorption onto an oxygen defect site weakens the interaction between a Au atom or Au nanorod and rTiO2 (110) surface. The calculation results suggest that the depletion of interaction between Au and rTiO2 surface is due to strong interaction between Cl atoms at oxygen defect sites and neighbouring bridging oxygen (OB) atoms.

  8. Hydrogen interaction with ferrite/cementite interface: ab initio calculations and thermodynamics

    NASA Astrophysics Data System (ADS)

    Mirzoev, A. A.; Verkhovykh, A. V.; Okishev, K. Yu.; Mirzaev, D. A.

    2018-02-01

    The paper presents the results of ab initio modelling of the interaction of hydrogen atoms with ferrite/cementite interfaces in steels and thermodynamic assessment of the ability of interfaces to trap hydrogen atoms. Modelling was performed using the density functional theory with generalised gradient approximation (GGA'96), as implemented in WIEN2k package. An Isaichev-type orientation relationship between the two phases was accepted, with a habit plane (101)c ∥ (112)α. The supercell contained 64 atoms (56 Fe and 8 C). The calculated formation energies of ferrite/cementite interface were 0.594 J/m2. The calculated trapping energy at cementite interstitial was 0.18 eV, and at the ferrite/cementite interface - 0.30 eV. Considering calculated zero-point energy, the trapping energies at cementite interstitial and ferrite/cementite interface become 0.26 eV and 0.39 eV, respectively. The values are close to other researchers' data. These results were used to construct a thermodynamic description of ferrite/cementite interface-hydrogen interaction. Absorption calculations using the obtained trapping energy values showed that even thin lamellar ferrite/cementite mixture with an interlamellar spacing smaller than 0.1 μm has noticeable hydrogen trapping ability at a temperature below 400 K.

  9. The under-pressure behaviour of mechanical, electronic and optical properties of calcium titanate and its ground state thermoelectric response

    NASA Astrophysics Data System (ADS)

    Noor, N. A.; Alay-e-Abbas, S. M.; Hassan, M.; Mahmood, I.; Alahmed, Z. A.; Reshak, A. H.

    2017-08-01

    In this study, the elastic, electronic, optical and thermoelectric properties of CaTiO3 perovskite oxide have been investigated using first-principles calculations. The generalised gradient approximation (GGA) has been employed for evaluating structural and elastic properties, while the modified Becke Johnson functional is used for studying the optical response of this compound. In addition to ground state physical properties, we also investigate the effects of pressure (0, 30, 60, 90 and 120 GPa) on the electronic structure of CaTiO3. The application of pressure from 0 to 90 GPa shows that the indirect band gap (Γ-M) of CaTiO3 increases with increasing pressure and at 120 GPa it spontaneously decreases transforming cubic CaTiO3 to a direct (Γ-Γ) band gap material. The complex dielectric function and some optical parameters are also investigated under the application of pressures. All the calculated optical properties have been found to exhibit a shift to the higher energies with the increase of applied pressure suggesting potential optoelectronic device applications of CaTiO3. The thermoelectric properties of CaTiO3 have been computed at 0 GPa in terms of electrical conductivity, thermal conductivity and Seebeck coefficient.

  10. Uncertainty based pressure reconstruction from velocity measurement with generalized least squares

    NASA Astrophysics Data System (ADS)

    Zhang, Jiacheng; Scalo, Carlo; Vlachos, Pavlos

    2017-11-01

    A method using generalized least squares reconstruction of instantaneous pressure field from velocity measurement and velocity uncertainty is introduced and applied to both planar and volumetric flow data. Pressure gradients are computed on a staggered grid from flow acceleration. The variance-covariance matrix of the pressure gradients is evaluated from the velocity uncertainty by approximating the pressure gradient error to a linear combination of velocity errors. An overdetermined system of linear equations which relates the pressure and the computed pressure gradients is formulated and then solved using generalized least squares with the variance-covariance matrix of the pressure gradients. By comparing the reconstructed pressure field against other methods such as solving the pressure Poisson equation, the omni-directional integration, and the ordinary least squares reconstruction, generalized least squares method is found to be more robust to the noise in velocity measurement. The improvement on pressure result becomes more remarkable when the velocity measurement becomes less accurate and more heteroscedastic. The uncertainty of the reconstructed pressure field is also quantified and compared across the different methods.

  11. Cosmological collapse and the improved Zel'dovich approximation.

    NASA Astrophysics Data System (ADS)

    Salopek, D. S.; Stewart, J. M.; Croudace, K. M.; Parry, J.

    Using a general relativistic formulation, the authors show how to compute the higher order terms in the Zel'dovich approximation which describes cosmological collapse. They evolve the 3-metric in a spatial gradient expansion. Their method is an advance over earlier work because it is local at each order. Using the improved Zel'dovich approximation, they compute the epoch of collapse.

  12. Depletion of GGA3 stabilizes BACE and enhances β-secretase activity

    PubMed Central

    Tesco, Giuseppina; Koh, Young Ho; Kang, Eugene; Cameron, Andrew; Das, Shinjita; Sena-Esteves, Miguel; Hiltunen, Mikko; Yang, Shao-Hua; Zhong, Zhenyu; Shen, Yong; Simpkins, James; Tanzi, Rudolph E.

    2007-01-01

    Summary Beta-site APP-cleaving enzyme (BACE) is required for production of the Alzheimer's disease (AD)-associated Aβ protein. BACE levels are elevated in AD brain, and increasing evidence reveals BACE as a stress-related protease that is upregulated following cerebral ischemia. However, the molecular mechanism responsible is unknown. We show that increases in BACE and β-secretase activity are due to post-translational stabilization following caspase activation. We also found that during cerebral ischemia, levels of GGA3, an adaptor protein involved in BACE trafficking, are reduced, while BACE levels are increased. RNAi silencing of GGA3 also elevated levels of BACE and Aβ. Finally, in AD brain samples, GGA3 protein levels were significantly decreased and inversely correlated with increased levels of BACE. In summary, we have elucidated a novel GGA3-dependent mechanism regulating BACE levels and β-secretase activity. This mechanism may explain increased cerebral levels of BACE and Aβ following cerebral ischemia and in AD. PMID:17553422

  13. Blunted activation of NF-{kappa}B and NF-{kappa}B-dependent gene expression by geranylgeranylacetone: Involvement of unfolded protein response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayakawa, Kunihiro; Hiramatsu, Nobuhiko; Okamura, Maro

    2008-01-04

    Geranylgeranylacetone (GGA), an anti-ulcer agent, has anti-inflammatory potential against experimental colitis and ischemia-induced renal inflammation. However, molecular mechanisms involved in its anti-inflammatory effects are largely unknown. We found that, in glomerular mesangial cells, GGA blocked activation of nuclear factor-{kappa}B and consequent induction of monocyte chemoattractant protein 1 (MCP-1) by inflammatory cytokines. It was inversely correlated with induction of unfolded protein response (UPR) evidenced by expression of 78 kDa glucose-regulated protein (GRP78) and suppression of endoplasmic reticulum stress-responsive alkaline phosphatase. Various inducers of UPR including tunicamycin, thapsigargin, A23187, 2-deoxyglucose, dithiothreitol, and AB{sub 5} subtilase cytotoxin reproduced the suppressive effects of GGA.more » Furthermore, attenuation of UPR by stable transfection with GRP78 diminished the anti-inflammatory effects of GGA. These results disclosed a novel, UPR-dependent mechanism underlying the anti-inflammatory potential of GGA.« less

  14. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival

    PubMed Central

    Li, Xuezhi; Lavigne, Pierre; Lavoie, Christine

    2015-01-01

    Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses. PMID:26446845

  15. Visualisation and orbital-free parametrisation of the large-Z scaling of the kinetic energy density of atoms

    NASA Astrophysics Data System (ADS)

    Cancio, Antonio C.; Redd, Jeremy J.

    2017-03-01

    The scaling of neutral atoms to large Z, combining periodicity with a gradual trend to homogeneity, is a fundamental probe of density functional theory, one that has driven recent advances in understanding both the kinetic and exchange-correlation energies. Although research focus is normally upon the scaling of integrated energies, insights can also be gained from energy densities. We visualise the scaling of the positive-definite kinetic energy density (KED) in closed-shell atoms, in comparison to invariant quantities based upon the gradient and Laplacian of the density. We notice a striking fit of the KED within the core of any atom to a gradient expansion using both the gradient and the Laplacian, appearing as an asymptotic limit around which the KED oscillates. The gradient expansion is qualitatively different from that derived from first principles for a slowly varying electron gas and is correlated with a nonzero Pauli contribution to the KED near the nucleus. We propose and explore orbital-free meta-GGA models for the kinetic energy to describe these features, with some success, but the effects of quantum oscillations in the inner shells of atoms make a complete parametrisation difficult. We discuss implications for improved orbital-free description of molecular properties.

  16. Modeling the archetype cysteine protease reaction using dispersion corrected density functional methods in ONIOM-type hybrid QM/MM calculations; the proteolytic reaction of papain.

    PubMed

    Fekete, Attila; Komáromi, István

    2016-12-07

    A proteolytic reaction of papain with a simple peptide model substrate N-methylacetamide has been studied. Our aim was twofold: (i) we proposed a plausible reaction mechanism with the aid of potential energy surface scans and second geometrical derivatives calculated at the stationary points, and (ii) we investigated the applicability of the dispersion corrected density functional methods in comparison with the popular hybrid generalized gradient approximations (GGA) method (B3LYP) without such a correction in the QM/MM calculations for this particular problem. In the resting state of papain the ion pair and neutral forms of the Cys-His catalytic dyad have approximately the same energy and they are separated by only a small barrier. Zero point vibrational energy correction shifted this equilibrium slightly to the neutral form. On the other hand, the electrostatic solvation free energy corrections, calculated using the Poisson-Boltzmann method for the structures sampled from molecular dynamics simulation trajectories, resulted in a more stable ion-pair form. All methods we applied predicted at least a two elementary step acylation process via a zwitterionic tetrahedral intermediate. Using dispersion corrected DFT methods the thioester S-C bond formation and the proton transfer from histidine occur in the same elementary step, although not synchronously. The proton transfer lags behind (or at least does not precede) the S-C bond formation. The predicted transition state corresponds mainly to the S-C bond formation while the proton is still on the histidine Nδ atom. In contrast, the B3LYP method using larger basis sets predicts a transition state in which the S-C bond is almost fully formed and the transition state can be mainly featured by the Nδ(histidine) to N(amid) proton transfer. Considerably lower activation energy was predicted (especially by the B3LYP method) for the next amide bond breaking elementary step of acyl-enzyme formation. Deacylation appeared to be a single elementary step process in all the methods we applied.

  17. Smooth function approximation using neural networks.

    PubMed

    Ferrari, Silvia; Stengel, Robert F

    2005-01-01

    An algebraic approach for representing multidimensional nonlinear functions by feedforward neural networks is presented. In this paper, the approach is implemented for the approximation of smooth batch data containing the function's input, output, and possibly, gradient information. The training set is associated to the network adjustable parameters by nonlinear weight equations. The cascade structure of these equations reveals that they can be treated as sets of linear systems. Hence, the training process and the network approximation properties can be investigated via linear algebra. Four algorithms are developed to achieve exact or approximate matching of input-output and/or gradient-based training sets. Their application to the design of forward and feedback neurocontrollers shows that algebraic training is characterized by faster execution speeds and better generalization properties than contemporary optimization techniques.

  18. Rocksalt or cesium chloride: Investigating the relative stability of the cesium halide structures with random phase approximation based methods

    NASA Astrophysics Data System (ADS)

    Nepal, Niraj K.; Ruzsinszky, Adrienn; Bates, Jefferson E.

    2018-03-01

    The ground state structural and energetic properties for rocksalt and cesium chloride phases of the cesium halides were explored using the random phase approximation (RPA) and beyond-RPA methods to benchmark the nonempirical SCAN meta-GGA and its empirical dispersion corrections. The importance of nonadditivity and higher-order multipole moments of dispersion in these systems is discussed. RPA generally predicts the equilibrium volume for these halides within 2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational energy is small and shows that the stability of these halides is purely due to electronic correlation effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel consistently predicted results in agreement with the experiment for all of the halides. However, due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good alternative to the RPA-like methods for describing the properties of these ionic solids.

  19. Semismooth Newton method for gradient constrained minimization problem

    NASA Astrophysics Data System (ADS)

    Anyyeva, Serbiniyaz; Kunisch, Karl

    2012-08-01

    In this paper we treat a gradient constrained minimization problem, particular case of which is the elasto-plastic torsion problem. In order to get the numerical approximation to the solution we have developed an algorithm in an infinite dimensional space framework using the concept of the generalized (Newton) differentiation. Regularization was done in order to approximate the problem with the unconstrained minimization problem and to make the pointwise maximum function Newton differentiable. Using semismooth Newton method, continuation method was developed in function space. For the numerical implementation the variational equations at Newton steps are discretized using finite elements method.

  20. Convergent sum of gradient expansion of the kinetic-energy density functional up to the sixth order term using Padé approximant

    NASA Astrophysics Data System (ADS)

    Sergeev, A.; Alharbi, F. H.; Jovanovic, R.; Kais, S.

    2016-04-01

    The gradient expansion of the kinetic energy density functional, when applied to atoms or finite systems, usually grossly overestimates the energy in the fourth order and generally diverges in the sixth order. We avoid the divergence of the integral by replacing the asymptotic series including the sixth order term in the integrand by a rational function. Padé approximants show moderate improvements in accuracy in comparison with partial sums of the series. The results are discussed for atoms and Hooke’s law model for two-electron atoms.

  1. Wetting of flat gradient surfaces.

    PubMed

    Bormashenko, Edward

    2018-04-01

    Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. First-principles study of the electronic properties and discharge profile of AgNa(VO2F2)2

    NASA Astrophysics Data System (ADS)

    Onoue, Masatoshi; Trimarchi, Giancarlo; Freeman, Arthur J.

    2014-03-01

    Implantable cardiac defibrillators (ICDs) require batteries with high capacities and high discharge rates to ensure the optimal operation of the device over several years. Ag2V4O11 has been a cathode material of choice for the ICDs owing to its high capacity and fast rate of electronic discharge. To reduce ICD size and improve ICD performance, a new cathode material would need to display a higher volumetric capacity and redox potential. Recently, the new cathode compound AgNa(VO2F2)2 (SSVOF) was synthesized and displayed favorable voltage for sodium-ion batteries. However, the discharge reaction has been unclear. In this presentation, we study the discharge reaction of SSVOF through DFT calculations. All calculations are performed within the PAW method using the GGA and GGA + U functionals. Among several possible reactions, we focus on the reaction Ag X + A --> AX + Ag, where X is Na(VO2F2)2 and A is Li or Na. In this reaction, the discharge occurs by replacing Ag with A. The calculated discharge potential for Li is 3.3 V in GGA and 2.9 V in GGA + U and that for Na is 3.1 V in GGA and 2.8 V in GGA + U . These values are consistent with the experimental ones. Supported by the DOE ER46536 Program.

  3. Formation of a parallel-stranded DNA homoduplex by d(GGA) repeat oligonucleotides.

    PubMed Central

    Suda, T; Mishima, Y; Asakura, H; Kominami, R

    1995-01-01

    The GGA9-H molecules consisting of a double helical stretch followed by a single-stranded 3'-terminal overhang of nine GGA sequence repeats exhibited a gel mobility-shifted band in a concentration-dependent manner, suggestive of the intermolecular complex formation. The position of the shifted band in a gel was almost identical to that of the Y-shaped dimer marker of the same molecular weight that had the two double-helices at one side. This suggests that GGA9-H dimerizes in a parallel orientation without the formation of four-stranded hairpin structure. Since the GGA9-H homoduplex was stably formed at pH 4, 7 and 9, the formation does not require protonation or deprotonation of the N1 position of adenines. Neither does it require the N7 group of guanines responsible for Hoogsteen base pairing from the methylation interference and modification studies. Modification of the N7 group of guanines with dimethyl sulfate (DMS) did not inhibit the association and also the N7 group in the homoduplex was not protected from DMS. On the other hand, the GAA9-H having the G to A base substitution did not show such an association with either GGA9-H or GAA9-H. These results suggest that the homoduplex formation may be due to G.G base pairing through non-Hoogsteen hydrogen bonds. Images PMID:7479009

  4. Molecular Cytogenetic Characterization of Multiple Intrachromosomal Rearrangements in Two Representatives of the Genus Turdus (Turdidae, Passeriformes)

    PubMed Central

    Kretschmer, Rafael; Gunski, Ricardo José; Garnero, Analía Del Valle; Furo, Ivanete de Oliveira; O'Brien, Patricia C. M.; Ferguson-Smith, Malcolm A.; de Oliveira, Edivaldo Herculano Corrêa

    2014-01-01

    Turdus rufiventris and Turdus albicollis, two songbirds belonging to the family Turdidae (Aves, Passeriformes) were studied by C-banding, 18S rDNA, as well as the use of whole chromosome probes derived from Gallus gallus (GGA) and Leucopternis albicollis (LAL). They showed very similar karyotypes, with 2n = 78 and the same pattern of distribution of heterochromatic blocks and hybridization patterns. However, the analysis of 18/28S rDNA has shown differences in the number of NOR-bearing chromosomes and ribosomal clusters. The hybridization pattern of GGA macrochromosomes was similar to the one found in songbirds studied by Fluorescent in situ hybridization, with fission of GGA 1 and GGA 4 chromosomes. In contrast, LAL chromosome paintings revealed a complex pattern of intrachromosomal rearrangements (paracentric and pericentric inversions) on chromosome 2, which corresponds to GGA1q. The first inversion changed the chromosomal morphology and the second and third inversions changed the order of chromosome segments. Karyotype analysis in Turdus revealed that this genus has derived characteristics in relation to the putative avian ancestral karyotype, highlighting the importance of using new tools for analysis of chromosomal evolution in birds, such as the probes derived from L. albicollis, which make it possible to identify intrachromosomal rearrangements not visible with the use of GGA chromosome painting solely. PMID:25058578

  5. Extensive homology of chicken macrochromosomes in the karyotypes of Trachemys scripta elegans and Crocodylus niloticus revealed by chromosome painting despite long divergence times.

    PubMed

    Kasai, F; O'Brien, P C M; Martin, S; Ferguson-Smith, M A

    2012-01-01

    We report extensive chromosome homology revealed by chromosome painting between chicken (Gallus gallus domesticus, GGA, 2n = 78) macrochromosomes (representing 70% of the chicken genome) and the chromosomes of a turtle, the red-eared slider (Trachemys scripta elegans, TSC, 2n = 50), and the Nile crocodile (Crocodylus niloticus, CNI, 2n = 32). Our data show that GGA1-8 arms seem to be conserved in the arms of TSC chromosomes, GGA1-2 arms are separated and homologous to CNI1p, 3q, 4q and 5q. In addition to GGAZ homologues in our previous study, large-scale GGA autosome syntenies have been conserved in turtle and crocodile despite hundreds of millions of years divergence time. Based on phylogenetic hypotheses that crocodiles diverged after the divergence of birds and turtles, our results in CNI suggest that GGA1-2 and TSC1-2 represent the ancestral state and that chromosome fissions followed by fusions have been the mechanisms responsible for the reduction of chromosome number in crocodiles. Copyright © 2012 S. Karger AG, Basel.

  6. Application of graphene from exfoliation in kitchen mixer allows mechanical reinforcement of PVA/graphene film

    NASA Astrophysics Data System (ADS)

    Ismail, Zulhelmi; Abdullah, Abu Hannifa; Zainal Abidin, Anis Sakinah; Yusoh, Kamal

    2017-08-01

    Mechanical properties of polyvinyl alcohol (PVA) can be reinforced from the addition of graphene into its matrix. However, pristine graphene lacks solubility in water and thus makes dispersion a challenging task. Notably, functionalisation of graphene is required to accommodate graphene presence in the water. In this work, we have used a kitchen mixer to produce gum Arabic-graphene (GGA) for the first time as filler for mechanical reinforcement of PVA. For the characterisation of exfoliated graphene, mean lateral size of GGA was measured from the imaging by transmission electron microscopy while the mean thickness of graphene was predicted from the obtained spectra by Raman spectroscopy. During the preparation of PVA/graphene film by solution casting, GGA was varied between 0, 0.05, 0.075, 0.10 and 0.15 wt% in concentration. We found that the presence of GGA in PVA improves the tensile stress and elastic modulus about 72-200 and 19-187% from the original values. The data from Halpin-Tsai meanwhile suggested that the mechanical reinforcement of PVA/graphene film is due to the random distribution network of GGA in PVA.

  7. The gga-let-7 family post-transcriptionally regulates TGFBR1 and LIN28B during the differentiation process in early chick development.

    PubMed

    Lee, Sang In; Jeon, Mi-Hyang; Kim, Jeom Sun; Jeon, Ik-Soo; Byun, Sung June

    2015-12-01

    Early chick embryogenesis is governed by a complex mechanism involving transcriptional and post-transcriptional regulation, although how post-transcriptional processes influence the balance between pluripotency and differentiation during early chick development have not been previously investigated. Here, we characterized the microRNA (miRNA) signature associated with differentiation in the chick embryo, and found that as expression of the gga-let-7 family increases through early development, expression of their direct targets, TGFBR1 and LIN28B, decreases; indeed, gga-let-7a-5p and gga-let-7b miRNAs directly bind to TGFBR1 and LIN28B transcripts. Our data further indicate that TGFBR1 and LIN28B maintain pluripotency by regulating POUV, NANOG, and CRIPTO. Therefore, gga-let-7 miRNAs act as post-transcriptional regulators of differentiation in blastodermal cells by repressing the expression of the TGFBR1 and LIN28B, which intrinsically controls blastodermal cell differentiation in early chick development. © 2015 Wiley Periodicals, Inc.

  8. Front dynamics and entanglement in the XXZ chain with a gradient

    NASA Astrophysics Data System (ADS)

    Eisler, Viktor; Bauernfeind, Daniel

    2017-11-01

    We consider the XXZ spin chain with a magnetic field gradient and study the profiles of the magnetization as well as the entanglement entropy. For a slowly varying field, it is shown that, by means of a local density approximation, the ground-state magnetization profile can be obtained with standard Bethe ansatz techniques. Furthermore, it is argued that the low-energy description of the theory is given by a Luttinger liquid with slowly varying parameters. This allows us to obtain a very good approximation of the entanglement profile using a recently introduced technique of conformal field theory in curved spacetime. Finally, the front dynamics is also studied after the gradient field has been switched off, following arguments of generalized hydrodynamics for integrable systems. While for the XX chain the hydrodynamic solution can be found analytically, the XXZ case appears to be more complicated and the magnetization profiles are recovered only around the edge of the front via an approximate numerical solution.

  9. Quantitative trait loci segregating in crosses between New Hampshire and White Leghorn chicken lines: III. Fat deposition and intramuscular fat content.

    PubMed

    Nassar, M K; Goraga, Z S; Brockmann, G A

    2013-02-01

    In this study, a genome scan was performed to detect genomic loci that affect fat deposition in white adipose tissues and muscles in 278 F (2) males of reciprocal crosses between the genetically and phenotypically extreme inbred chicken lines New Hampshire (NHI) and White Leghorn (WL77). Genome-wide highly significant quantitative trait loci (QTL) influencing fat deposition in white adipose tissues were found on GGA2 and 4. The peak QTL positions for different visceral and subcutaneous white adipose tissues were located between 41.4 and 112.4 Mb on GGA2 and between 76.2 and 78.7 Mb on GGA4, which explained 4.2-10.4% and 4.3-11.6% respectively of the phenotypic F (2) variances. Contrary to our expectations, the QTL allele descending from the lean line WL77 on GGA4 led to increased fat deposition. We suggest a transgressive action of the obesity allele only if it is not in the genetic background of the line WL77. Additional highly significant loci for subcutaneous adipose tissue mass were identified on GGA12 and 15. For intramuscular fat content, a suggestive QTL was located on GGA14. The analysed crosses provide a valuable resource for further fine mapping of fatness genes and subsequent gene discovery. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  10. The Effects of Large Wood on Stream Channel Morphology on Three Low-Gradient Stream Reaches in the Coastal Redwood Region

    Treesearch

    Scott Carroll; E. George Robison

    2007-01-01

    Several studies have shown that large wood has a prominent role in habitat quality, however there is little research on the role of wood on pool characteristics and other habitat components in low gradient streams (channel slopes less than one percent). Longitudinal profiles are used to analyze general residual pool characteristics of three approximately 1000-meter...

  11. Global collocation methods for approximation and the solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Solomonoff, A.; Turkel, E.

    1986-01-01

    Polynomial interpolation methods are applied both to the approximation of functions and to the numerical solutions of hyperbolic and elliptic partial differential equations. The derivative matrix for a general sequence of the collocation points is constructed. The approximate derivative is then found by a matrix times vector multiply. The effects of several factors on the performance of these methods including the effect of different collocation points are then explored. The resolution of the schemes for both smooth functions and functions with steep gradients or discontinuities in some derivative are also studied. The accuracy when the gradients occur both near the center of the region and in the vicinity of the boundary is investigated. The importance of the aliasing limit on the resolution of the approximation is investigated in detail. Also examined is the effect of boundary treatment on the stability and accuracy of the scheme.

  12. Variations of Human DNA Polymerase Genes as Biomarkers of Prostate Cancer Progression

    DTIC Science & Technology

    2011-07-01

    Forward sequence Reverse sequence Sequence contextb 1 g.39835C4Tc P169S 15 25 gTG GGG TC CTT g.39897C4T Intronic 22 15 AGA T GGt TA AAT g.39985T4C...Intronic 34 25 AGA TT tAA AAG g.40051C4Tc P184S 19 34 TGt CT GGA ATT 4 g.39835C4Tc P169S 19 29 gTG GGG TC CTT g.40051C4Tc P184S 23 34 TGt CT GGA ATT 6 g...39835C4Tc P169S 14 24 gTG GGG TC CTT g.40051C4Tc P184S 21 32 TGt CT GGA ATT 11 g.40055A4G D185G 28 35 TTC C AGA C AAG g.40073A4G Y191C 28 20 gGA T AtG CC

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, Jonathon; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Neaton, Jeffrey B.

    With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions—noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms—with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methodsmore » and systems examined, the most complete basis is Jensen’s pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems.« less

  14. Geometrical-optics approximation of forward scattering by gradient-index spheres.

    PubMed

    Li, Xiangzhen; Han, Xiang'e; Li, Renxian; Jiang, Huifen

    2007-08-01

    By means of geometrical optics we present an approximation method for acceleration of the computation of the scattering intensity distribution within a forward angular range (0-60 degrees ) for gradient-index spheres illuminated by a plane wave. The incident angle of reflected light is determined by the scattering angle, thus improving the approximation accuracy. The scattering angle and the optical path length are numerically integrated by a general-purpose integrator. With some special index models, the scattering angle and the optical path length can be expressed by a unique function and the calculation is faster. This method is proved effective for transparent particles with size parameters greater than 50. It fails to give good approximation results at scattering angles whose refractive rays are in the backward direction. For different index models, the geometrical-optics approximation is effective only for forward angles, typically those less than 60 degrees or when the refractive-index difference of a particle is less than a certain value.

  15. A Comparative Study of Structural Stability and Mechanical and Optical Properties of Fluorapatite (Ca5(PO4)3F) and Lithium Disilicate (Li2Si2O5) Components Forming Dental Glass-Ceramics: First Principles Study

    NASA Astrophysics Data System (ADS)

    Biskri, Z. E.; Rached, H.; Bouchear, M.; Rached, D.; Aida, M. S.

    2016-10-01

    The aim of this paper is a comparative study of structural stability and mechanical and optical properties of fluorapatite (FA) (Ca5(PO4)3F) and lithium disilicate (LD) (Li2Si2O5), using the first principles pseudopotential method based on density functional theory (DFT) within the generalized gradient approximation (GGA). The stability of fluorapatite and lithium disilicate compounds has been evaluated on the basis of their formation enthalpies. The results show that fluorapatite is more energetically stable than lithium disilicate. The independent elastic constants and related mechanical properties, including bulk modulus ( B), shear modulus ( G), Young's modulus ( E) and Poisson's ratio ( ν) as well as the Vickers hardness ( H v), have been calculated for fluorapatite compound and compared with other theoretical and experimental results. The obtained values of the shear modulus, Young's modulus and Vickers hardness are smaller in comparison with those of lithium disilicate compound, implying that lithium disilicate is more rigid than fluorapatite. The brittle and ductile properties were also discussed using B/ G ratio and Poisson's ratio. Optical properties such as refractive index n( ω), extinction coefficient k( ω), absorption coefficient α( ω) and optical reflectivity R( ω) have been determined from the calculations of the complex dielectric function ɛ( ω), and interpreted on the basis of the electronic structures of both compounds. The calculated values of static dielectric constant ɛ 1(0) and static refractive index n(0) show that the Li2Si2O5 compound has larger values compared to those of the Ca5(PO4)3F compound. The results of the extinction coefficient show that Li2Si2O5 compound exhibits a much stronger ultraviolet absorption. According to the absorption and reflectivity spectra, we inferred that both compounds are theoretically the best visible and infrared transparent materials.

  16. Stimulus generalization, discrimination learning, and peak shift in horses.

    PubMed Central

    Dougherty, D M; Lewis, P

    1991-01-01

    Using horses, we investigated three aspects of the stimulus control of lever-pressing behavior: stimulus generalization, discrimination learning, and peak shift. Nine solid black circles, ranging in size from 0.5 in. to 4.5 in. (1.3 cm to 11.4 cm) served as stimuli. Each horse was shaped, using successive approximations, to press a rat lever with its lip in the presence of a positive stimulus, the 2.5-in. (6.4-cm) circle. Shaping proceeded quickly and was comparable to that of other laboratory organisms. After responding was maintained on a variable-interval 30-s schedule, stimulus generalization gradients were collected from 2 horses prior to discrimination training. During discrimination training, grain followed lever presses in the presence of a positive stimulus (a 2.5-in circle) and never followed lever presses in the presence of a negative stimulus (a 1.5-in. [3.8-cm] circle). Three horses met a criterion of zero responses to the negative stimulus in fewer than 15 sessions. Horses given stimulus generalization testing prior to discrimination training produced symmetrical gradients; horses given discrimination training prior to generalization testing produced asymmetrical gradients. The peak of these gradients shifted away from the negative stimulus. These results are consistent with discrimination, stimulus generalization, and peak-shift phenomena observed in other organisms. PMID:1940765

  17. ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mardirossian, Narbe; Head-Gordon, Martin

    2016-06-07

    A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation is presented in this paper. The final 12-parameter functional form is selected from approximately 10 × 10 9 candidate fits that are trained on a training set of 870 data points and tested on a primary test set of 2964 data points. The resulting density functional, ωB97M-V, is further tested for transferability on a secondary test set of 1152 data points. For comparison, ωB97M-V is benchmarked against 11 leading density functionals including M06-2X, ωB97X-D, M08-HX, M11, ωM05-D, ωB97X-V, and MN15. Encouragingly, the overall performance of ωB97M-V on nearlymore » 5000 data points clearly surpasses that of all of the tested density functionals. Finally, in order to facilitate the use of ωB97M-V, its basis set dependence and integration grid sensitivity are thoroughly assessed, and recommendations that take into account both efficiency and accuracy are provided.« less

  18. A relativistic density functional study of the role of 5f electrons in atomic and molecular adsorptions on actinide surfaces

    NASA Astrophysics Data System (ADS)

    Huda, Muhammad Nurul

    Atomic and molecular adsorptions of oxygen and hydrogen on actinide surfaces have been studied within the generalized gradient approximations to density functional theory (GGA-DFT). The primary goal of this work is to understand the details of the adsorption processes, such as chemisorption sites, energies, adsorption configurations and activation energies for dissociation of molecules; and the signature role of the plutonium 5f electrons. The localization of the 5f electrons remains one of central questions in actinides and one objective here is to understand the extent to which localizations plays a role in adsorption on actinide surfaces. We also investigated the magnetism of the plutonium surfaces, given the fact that magnetism in bulk plutonium is a highly controversial issue, and the surface magnetism of it is not a well explored territory. Both the non-spin-polarized and spin-polarized calculations have been performed to arrive at our conclusions. We have studied both the atomic and molecular hydrogen and oxygen adsorptions on plutonium (100) and (111) surfaces. We have also investigated the oxygen molecule adsorptions on uranium (100) surface. Comparing the adsorption on uranium and plutonium (100) surfaces, we have seen that O2 chemisorption energy for the most favorable adsorption site on uranium surface has higher chemisorption energy, 9.492 eV, than the corresponding plutonium site, 8.787 eV. Also degree of localization of 5f electrons is less for uranium surface. In almost all of the cases, the most favorable adsorption sites are found where the coordination numbers are higher. For example, we found center sites are the most favorable sites for atomic adsorptions. In general oxygen reacts more strongly with plutonium surface than hydrogen. We found that atomic oxygen adsorption energy on (100) surface is 3.613 eV more than that of the hydrogen adsorptions, considering only the most favorable site. This is also true for molecular adsorptions, as the oxygen molecules on both (100) and (111) plutonium surfaces dissociate almost spontaneously, whereas hydrogen needs some activation energy to dissociate. From spin-polarized calculations we found both (100) and (111) surfaces have the layer by layer alternating spin-magnetic behavior. In general adsorption of H2 and O2 do not change this behavior.

  19. Quantitative trait loci segregating in crosses between New Hampshire and White Leghorn chicken lines: II. Muscle weight and carcass composition.

    PubMed

    Nassar, M K; Goraga, Z S; Brockmann, G A

    2012-12-01

    In order to identify genetic factors influencing muscle weight and carcass composition in chicken, a linkage analysis was performed with 278 F(2) males of reciprocal crosses between the extremely different inbred lines New Hampshire (NHI) and White Leghorn (WL77). The NHI line had been selected for high meat yield and the WL77 for low egg weight before inbreeding. Highly significant quantitative trait loci (QTL) controlling body weight and the weights of carcass, breast muscle, drumsticks-thighs and wings were identified on GGA4 between 151.5 and 160.5 cM and on GGA27 between 4 and 52 cM. These genomic regions explained 13.7-40.2% and 5.3-13.8% of the phenotypic F(2) variances of the corresponding traits respectively. Additional genome-wide highly significant QTL for the weight of drumsticks-thighs were mapped on GGA1, 5 and 7. Moreover, significant QTL controlling body weight were found on GGA2 and 11. The data obtained in this study can be used for increasing the mapping resolution and subsequent gene targeting on GGA4 and 27 by combining data with other crosses where the same QTL were found. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  20. Quantitative trait loci segregating in crosses between New Hampshire and White Leghorn chicken lines: IV. Growth performance.

    PubMed

    Nassar, M K; Goraga, Z S; Brockmann, G A

    2015-08-01

    Reciprocal crosses between the inbred lines New Hampshire (NHI) and White Leghorn (WL77) comprising 579 F2 individuals were used to map QTL for body weight and composition. Here, we examine the growth performance until 20 weeks of age. Linkage analysis provided evidence for highly significant QTL on GGA1, 2, 4, 10 and 27 which had specific effects on early or late growth. The highest QTL effects, accounting for 4.6-25.6% of the phenotypic F2 variance, were found on the distal region of GGA4 between 142 and 170 cM (F ≥ 13.68). The NHI QTL allele increased body mass by 141.86 g at 20 weeks. Using body weight as a covariate in the analysis of body composition traits provided evidence for genes in the GGA4 QTL region affecting fat mass independently of body mass. The QTL effect size differed between sexes and depended on the direction of cross. TBC1D1, CCKAR and PPARGC1A are functional candidate genes in the QTL peak region. Our study confirmed the importance of the distal GGA4 region for chicken growth performance. The strong effect of the GGA4 QTL makes fine mapping and gene discovery feasible. © 2015 Stichting International Foundation for Animal Genetics.

  1. Multidirectional chromosome painting in Synallaxis frontalis (Passeriformes, Furnariidae) reveals high chromosomal reorganization, involving fissions and inversions.

    PubMed

    Kretschmer, Rafael; de Lima, Vanusa Lilian Camargo; de Souza, Marcelo Santos; Costa, Alice Lemos; O'Brien, Patricia C M; Ferguson-Smith, Malcolm A; de Oliveira, Edivaldo Herculano Corrêa; Gunski, Ricardo José; Garnero, Analía Del Valle

    2018-01-01

    In this work we performed comparative chromosome painting using probes from Gallus gallus (GGA) Linnaeus, 1758 and Leucopternis albicollis (LAL) Latham, 1790 in Synallaxis frontalis Pelzeln, 1859 (Passeriformes, Furnariidae), an exclusively Neotropical species, in order to analyze whether the complex pattern of intrachromosomal rearrangements (paracentric and pericentric inversions) proposed for Oscines and Suboscines is shared with more basal species. S. frontalis has 82 chromosomes, similar to most Avian species, with a large number of microchromosomes and a few pairs of macrochromosomes. We found polymorphisms in pairs 1 and 3, where homologues were submetacentric and acrocentric. Hybridization of GGA probes showed syntenies in the majority of ancestral macrochromosomes, except for GGA1 and GGA2, which hybridized to more than one pair of chromosomes each. LAL probes confirmed the occurrence of intrachromosomal rearrangements in the chromosomes corresponding to GGA1q, as previously proposed for species from the order Passeriformes. In addition, LAL probes suggest that pericentric inversions or centromere repositioning were responsible for variations in the morphology of the heteromorphic pairs 1 and 3. Altogether, the analysis of our data on chromosome painting and the data published in other Passeriformes highlights chromosomal changes that have occurred during the evolution of Passeriformes.

  2. Multidirectional chromosome painting in Synallaxis frontalis (Passeriformes, Furnariidae) reveals high chromosomal reorganization, involving fissions and inversions

    PubMed Central

    Kretschmer, Rafael; de Lima, Vanusa Lilian Camargo; de Souza, Marcelo Santos; Costa, Alice Lemos; O’Brien, Patricia C. M.; Ferguson-Smith, Malcolm A.; de Oliveira, Edivaldo Herculano Corrêa; Gunski, Ricardo José; Garnero, Analía Del Valle

    2018-01-01

    Abstract In this work we performed comparative chromosome painting using probes from Gallus gallus (GGA) Linnaeus, 1758 and Leucopternis albicollis (LAL) Latham, 1790 in Synallaxis frontalis Pelzeln, 1859 (Passeriformes, Furnariidae), an exclusively Neotropical species, in order to analyze whether the complex pattern of intrachromosomal rearrangements (paracentric and pericentric inversions) proposed for Oscines and Suboscines is shared with more basal species. S. frontalis has 82 chromosomes, similar to most Avian species, with a large number of microchromosomes and a few pairs of macrochromosomes. We found polymorphisms in pairs 1 and 3, where homologues were submetacentric and acrocentric. Hybridization of GGA probes showed syntenies in the majority of ancestral macrochromosomes, except for GGA1 and GGA2, which hybridized to more than one pair of chromosomes each. LAL probes confirmed the occurrence of intrachromosomal rearrangements in the chromosomes corresponding to GGA1q, as previously proposed for species from the order Passeriformes. In addition, LAL probes suggest that pericentric inversions or centromere repositioning were responsible for variations in the morphology of the heteromorphic pairs 1 and 3. Altogether, the analysis of our data on chromosome painting and the data published in other Passeriformes highlights chromosomal changes that have occurred during the evolution of Passeriformes. PMID:29675139

  3. Molecular Excitation Energies from Time-Dependent Density Functional Theory Employing Random-Phase Approximation Hessians with Exact Exchange.

    PubMed

    Heßelmann, Andreas

    2015-04-14

    Molecular excitation energies have been calculated with time-dependent density-functional theory (TDDFT) using random-phase approximation Hessians augmented with exact exchange contributions in various orders. It has been observed that this approach yields fairly accurate local valence excitations if combined with accurate asymptotically corrected exchange-correlation potentials used in the ground-state Kohn-Sham calculations. The inclusion of long-range particle-particle with hole-hole interactions in the kernel leads to errors of 0.14 eV only for the lowest excitations of a selection of three alkene, three carbonyl, and five azabenzene molecules, thus surpassing the accuracy of a number of common TDDFT and even some wave function correlation methods. In the case of long-range charge-transfer excitations, the method typically underestimates accurate reference excitation energies by 8% on average, which is better than with standard hybrid-GGA functionals but worse compared to range-separated functional approximations.

  4. Effects of urban land-use change on streamflow and water quality in Oakland County, Michigan, 1970-2003, as inferred from urban gradient and temporal analysis

    USGS Publications Warehouse

    Aichele, Stephen S.

    2005-01-01

    This apparent contradiction may be caused by the differences in the changes measured in each analysis. The change-through-time approach describes change from a fixed starting point of approximately 1970; the gradient approach describes the cumulative effect of all change up to approximately 2000. These findings indicate that although urbanization in Oakland County results in most of the effects observed in the literature, as evidenced in the gradient approach, relatively few of the anticipated effects have been observed during the past three decades. This relative stability despite rapid land-cover change may be related to efforts to mitigate the effects of development and a general decrease in the density of new residential development. It may also be related to external factors such as climate variability and reduced atmospheric deposition of specific chemicals. 

  5. Structural optimization with approximate sensitivities

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Hopkins, D. A.; Coroneos, R.

    1994-01-01

    Computational efficiency in structural optimization can be enhanced if the intensive computations associated with the calculation of the sensitivities, that is, gradients of the behavior constraints, are reduced. Approximation to gradients of the behavior constraints that can be generated with small amount of numerical calculations is proposed. Structural optimization with these approximate sensitivities produced correct optimum solution. Approximate gradients performed well for different nonlinear programming methods, such as the sequence of unconstrained minimization technique, method of feasible directions, sequence of quadratic programming, and sequence of linear programming. Structural optimization with approximate gradients can reduce by one third the CPU time that would otherwise be required to solve the problem with explicit closed-form gradients. The proposed gradient approximation shows potential to reduce intensive computation that has been associated with traditional structural optimization.

  6. First principles study of structural, optoelectronic and thermoelectric properties of Cu{sub 2}CdSnX{sub 4} (X = S, Se, Te) chalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Sajjad; Murtaza, G., E-mail: murtaza@icp.edu.pk; Haidar Khan, Shah

    2016-07-15

    Highlights: • Copper based quaternary chalcogenides are important for optoelectronic devices. • The WC-GGA shows that the materials are metallic in nature. • The EV-GGA predicts better band gaps compared to WC-GGA. • Absorption peaks are high in the visible and ultraviolet energy regions. • All the semiconductors have figure of merit above 0.70. - Abstract: In this work, structural, electronic, optical and thermoelectric properties of Cu{sub 2}CdSnX{sub 4} (X = S, Se, Te) have been studied through the full potential linearized augmented plane wave method. Calculated ground state lattice parameters are in good agreement with the experimental results. Latticemore » constant and bulk moduli vary inversely by replacing the anion X from S to Te in Cu{sub 2}CdSnX{sub 4}. The WC-GGA shows that the materials are metallic in nature. The EV-GGA predicts better band gaps compared to WC-GGA. The calculated bandgap values are 1.8, 1.06 and 0.8042 for Cu{sub 2}CdSnX{sub 4}, Cu{sub 2}CdSnX{sub 4}, Cu{sub 2}CdSnX{sub 4} respectively. Cd-d, Sn-s and X-p states contribute significantly in the density of states of the compounds. Absorption peaks and optical conductivity is high in the visible and ultraviolet energy regions. All the semiconductors have figure of merit above 0.70. The optical and thermoelectric properties clearly show that Cu{sub 2}CdSnX{sub 4} are potential candidates in the fields of solar cell and thermoelectric technology.« less

  7. Analytical energy gradients for explicitly correlated wave functions. I. Explicitly correlated second-order Møller-Plesset perturbation theory

    NASA Astrophysics Data System (ADS)

    Győrffy, Werner; Knizia, Gerald; Werner, Hans-Joachim

    2017-12-01

    We present the theory and algorithms for computing analytical energy gradients for explicitly correlated second-order Møller-Plesset perturbation theory (MP2-F12). The main difficulty in F12 gradient theory arises from the large number of two-electron integrals for which effective two-body density matrices and integral derivatives need to be calculated. For efficiency, the density fitting approximation is used for evaluating all two-electron integrals and their derivatives. The accuracies of various previously proposed MP2-F12 approximations [3C, 3C(HY1), 3*C(HY1), and 3*A] are demonstrated by computing equilibrium geometries for a set of molecules containing first- and second-row elements, using double-ζ to quintuple-ζ basis sets. Generally, the convergence of the bond lengths and angles with respect to the basis set size is strongly improved by the F12 treatment, and augmented triple-ζ basis sets are sufficient to closely approach the basis set limit. The results obtained with the different approximations differ only very slightly. This paper is the first step towards analytical gradients for coupled-cluster singles and doubles with perturbative treatment of triple excitations, which will be presented in the second part of this series.

  8. A new smoothing modified three-term conjugate gradient method for [Formula: see text]-norm minimization problem.

    PubMed

    Du, Shouqiang; Chen, Miao

    2018-01-01

    We consider a kind of nonsmooth optimization problems with [Formula: see text]-norm minimization, which has many applications in compressed sensing, signal reconstruction, and the related engineering problems. Using smoothing approximate techniques, this kind of nonsmooth optimization problem can be transformed into a general unconstrained optimization problem, which can be solved by the proposed smoothing modified three-term conjugate gradient method. The smoothing modified three-term conjugate gradient method is based on Polak-Ribière-Polyak conjugate gradient method. For the Polak-Ribière-Polyak conjugate gradient method has good numerical properties, the proposed method possesses the sufficient descent property without any line searches, and it is also proved to be globally convergent. Finally, the numerical experiments show the efficiency of the proposed method.

  9. Accuracy of Gradient Reconstruction on Grids with High Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Thomas, James

    2008-01-01

    Gradient approximation methods commonly used in unstructured-grid finite-volume schemes intended for solutions of high Reynolds number flow equations are studied comprehensively. The accuracy of gradients within cells and within faces is evaluated systematically for both node-centered and cell-centered formulations. Computational and analytical evaluations are made on a series of high-aspect-ratio grids with different primal elements, including quadrilateral, triangular, and mixed element grids, with and without random perturbations to the mesh. Both rectangular and cylindrical geometries are considered; the latter serves to study the effects of geometric curvature. The study shows that the accuracy of gradient reconstruction on high-aspect-ratio grids is determined by a combination of the grid and the solution. The contributors to the error are identified and approaches to reduce errors are given, including the addition of higher-order terms in the direction of larger mesh spacing. A parameter GAMMA characterizing accuracy on curved high-aspect-ratio grids is discussed and an approximate-mapped-least-square method using a commonly-available distance function is presented; the method provides accurate gradient reconstruction on general grids. The study is intended to be a reference guide accompanying the construction of accurate and efficient methods for high Reynolds number applications

  10. Gene order and recombination rate in homologous chromosome regions of the chicken and a passerine bird.

    PubMed

    Dawson, Deborah A; Akesson, Mikael; Burke, Terry; Pemberton, Josephine M; Slate, Jon; Hansson, Bengt

    2007-07-01

    Genome structure has been found to be highly conserved between distantly related birds and recent data for a limited part of the genome suggest that this is true also for the gene order (synteny) within chromosomes. Here, we confirm that synteny is maintained for large chromosomal regions in chicken and a passerine bird, the great reed warbler Acrocephalus arundinaceus, with few rearrangements, but in contrast show that the recombination-based linkage map distances differ substantially between these species. We assigned a chromosomal location based on sequence similarity to the chicken genome sequence to a set of microsatellite loci mapped in a pedigree of great reed warblers. We detected homologous loci on 14 different chromosomes corresponding to chicken chromosomes Gga1-5, 7-9, 13, 19, 20, 24, 25, and Z. It is known that 2 passerine macrochromosomes correspond to the chicken chromosome Gga1. Homology of 2 different great reed warbler linkage groups (LG13 and LG5) to Gga1 allowed us to locate the split to a position between 20.8 and 84.8 Mb on Gga1. Data from the 5 chromosomal regions (on Gga1, 2, 3, 5, and Z) with 3 or more homologous loci showed that synteny was conserved with the exception of 2 large previously unreported inversions on Gga1/LG5 and Gga2/LG3, respectively. Recombination data from the 9 chromosomal regions in which we identified 2 or more homologous loci (accounting for the inversions) showed that the linkage map distances in great reed warblers were only 6.3% and 13.3% of those in chickens for males and females, respectively. This is likely to reflect the true interspecific difference in recombination rate because our markers were not located in potentially low-recombining regions: several linkage groups covered a substantial part of their corresponding chicken chromosomes and were not restricted to centromeres. We conclude that recombination rates may differ strongly between bird species with highly conserved genome structure and synteny and that the chicken linkage map may not be suitable, in terms of genetic distances, as a model for all bird species.

  11. Importance of nonlocal electron correlation in the BaNiS2 semimetal from quantum oscillations studies

    NASA Astrophysics Data System (ADS)

    Klein, Yannick; Casula, Michele; Santos-Cottin, David; Audouard, Alain; Vignolles, David; Fève, Gwendal; Freulon, Vincent; Plaçais, Bernard; Verseils, Marine; Yang, Hancheng; Paulatto, Lorenzo; Gauzzi, Andrea

    2018-02-01

    By means of Shubnikov-de Haas and de Haas-van Alphen oscillations, and ab initio calculations, we have studied the Fermi surface of high-quality BaNiS2 single crystals, with mean free path l ˜400 Å . The angle and temperature dependence of quantum oscillations indicates a quasi-two-dimensional Fermi surface, made of an electronlike tube centered at Γ , and of four holelike cones, generated by Dirac bands, weakly dispersive in the out-of-plane direction. Ab initio electronic structure calculations, in the density functional theory framework, show that the inclusion of screened exchange is necessary to account for the experimental Fermi pockets. Therefore, the choice of the functional becomes crucial. A modified HSE hybrid functional with 7% of exact exchange outperforms both GGA and GGA +U density functionals, signaling the importance of nonlocal screened-exchange interactions in BaNiS2, and, more generally, in 3 d compensated semimetals.

  12. Two-Component Noncollinear Time-Dependent Spin Density Functional Theory for Excited State Calculations.

    PubMed

    Egidi, Franco; Sun, Shichao; Goings, Joshua J; Scalmani, Giovanni; Frisch, Michael J; Li, Xiaosong

    2017-06-13

    We present a linear response formalism for the description of the electronic excitations of a noncollinear reference defined via Kohn-Sham spin density functional methods. A set of auxiliary variables, defined using the density and noncollinear magnetization density vector, allows the generalization of spin density functional kernels commonly used in collinear DFT to noncollinear cases, including local density, GGA, meta-GGA and hybrid functionals. Working equations and derivations of functional second derivatives with respect to the noncollinear density, required in the linear response noncollinear TDDFT formalism, are presented in this work. This formalism takes all components of the spin magnetization into account independent of the type of reference state (open or closed shell). As a result, the method introduced here is able to afford a nonzero local xc torque on the spin magnetization while still satisfying the zero-torque theorem globally. The formalism is applied to a few test cases using the variational exact-two-component reference including spin-orbit coupling to illustrate the capabilities of the method.

  13. Approximate error conjugation gradient minimization methods

    DOEpatents

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  14. Push it to the limit: Characterizing the convergence of common sequences of basis sets for intermolecular interactions as described by density functional theory

    NASA Astrophysics Data System (ADS)

    Witte, Jonathon; Neaton, Jeffrey B.; Head-Gordon, Martin

    2016-05-01

    With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions—noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms—with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methods and systems examined, the most complete basis is Jensen's pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems.

  15. Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: An efficient implementation for the density-fitted second-order Møller–Plesset perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozkaya, Uğur, E-mail: ugur.bozkaya@atauni.edu.tr

    General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller–Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele,more » Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.« less

  16. Critical Analysis of Cluster Models and Exchange-Correlation Functionals for Calculating Magnetic Shielding in Molecular Solids.

    PubMed

    Holmes, Sean T; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil

    2015-11-10

    Calculations of the principal components of magnetic-shielding tensors in crystalline solids require the inclusion of the effects of lattice structure on the local electronic environment to obtain significant agreement with experimental NMR measurements. We assess periodic (GIPAW) and GIAO/symmetry-adapted cluster (SAC) models for computing magnetic-shielding tensors by calculations on a test set containing 72 insulating molecular solids, with a total of 393 principal components of chemical-shift tensors from 13C, 15N, 19F, and 31P sites. When clusters are carefully designed to represent the local solid-state environment and when periodic calculations include sufficient variability, both methods predict magnetic-shielding tensors that agree well with experimental chemical-shift values, demonstrating the correspondence of the two computational techniques. At the basis-set limit, we find that the small differences in the computed values have no statistical significance for three of the four nuclides considered. Subsequently, we explore the effects of additional DFT methods available only with the GIAO/cluster approach, particularly the use of hybrid-GGA functionals, meta-GGA functionals, and hybrid meta-GGA functionals that demonstrate improved agreement in calculations on symmetry-adapted clusters. We demonstrate that meta-GGA functionals improve computed NMR parameters over those obtained by GGA functionals in all cases, and that hybrid functionals improve computed results over the respective pure DFT functional for all nuclides except 15N.

  17. A novel activity of HMG domains: promotion of the triple-stranded complex formation between DNA containing (GGA/TCC)11 and d(GGA)11 oligonucleotides.

    PubMed Central

    Suda, T; Mishima, Y; Takayanagi, K; Asakura, H; Odani, S; Kominami, R

    1996-01-01

    The high mobility group protein (HMG)-box is a DNA-binding domain found in many proteins that bind preferentially to DNA of irregular structures in a sequence-independent manner and can bend the DNA. We show here that GST-fusion proteins of HMG domains from HMG1 and HMG2 promote a triple-stranded complex formation between DNA containing the (GGA/TCC)11 repeat and oligonucleotides of d(GGA)11 probably due to G:G base pairing. The activity is to reduce association time and requirements of Mg2+ and oligonucleotide concentrations. The HMG box of SRY, the protein determining male-sex differentiation, also has the activity, suggesting that it is not restricted to the HMG-box domains derived from HMG1/2 but is common to those from other members of the HMG-box family of proteins. Interestingly, the box-AB and box-B of HMG1 bend DNA containing the repeat, but SRY fails to bend in a circularization assay. The difference suggests that the two activities of association-promotion and DNA bending are distinct. These results suggest that the HMG-box domain has a novel activity of promoting the association between GGA repeats which might be involved in higher-order architecture of chromatin. PMID:8972860

  18. FeP(Im)–AB Bonding Energies Evaluated with A Large Number of Density Functionals (P = porphine, Im = imidazole, AB = CO, NO, and O2)

    PubMed Central

    Liao, Meng-Sheng; Huang, Ming-Ju; Watts, John D.

    2011-01-01

    Sixty-four (64) density functionals, ranging from GGA, meta-GGA, hybrid GGA to hybrid meta-GGA, were tested to evaluate the FeP(Im)-AB bonding energies (Ebond) in the heme model complexes FeP(Im)(AB) (P = porphine, Im = imidazole, AB = CO, NO, and O2). The results indicate that an accurate prediction of Ebond for the various ligands to heme is difficult with the DFT methods; usually a functional successful for one system does not perform equally well for the other system(s). Relatively satisfactory results for the various FeP(Im)-AB bonding energies are obtained with the meta-GGA funtionals BLAP3 and Bmτ1; they yield Ebond values of ca.1.1, 1.2, and 0.4 eV for AB = CO, NO, and O2, respectively, which are in reasonable agreement with experimental data (0.78 – 0.85 eV for CO, 0.99 eV for NO, and 0.44 – 0.53 eV for O2). The other functionals show more or less deficiency for one or two of the systems. The performances of the various functionals in describing the spin-state energetics of the five-coordinate FeP(Im) complex were also examined. PMID:22228914

  19. Turbulent kinetic energy and a possible hierarchy of length scales in a generalization of the Navier-Stokes alpha theory.

    PubMed

    Fried, Eliot; Gurtin, Morton E

    2007-05-01

    We present a continuum-mechanical formulation and generalization of the Navier-Stokes alpha theory based on a general framework for fluid-dynamical theories with gradient dependencies. Our flow equation involves two additional problem-dependent length scales alpha and beta. The first of these scales enters the theory through the internal kinetic energy, per unit mass, alpha2|D|2, where D is the symmetric part of the gradient of the filtered velocity. The remaining scale is associated with a dissipative hyperstress which depends linearly on the gradient of the filtered vorticity. When alpha and beta are equal, our flow equation reduces to the Navier-Stokes alpha equation. In contrast to the original derivation of the Navier-Stokes alpha equation, which relies on Lagrangian averaging, our formulation delivers boundary conditions. For a confined flow, our boundary conditions involve an additional length scale l characteristic of the eddies found near walls. Based on a comparison with direct numerical simulations for fully developed turbulent flow in a rectangular channel of height 2h, we find that alphabeta approximately Re(0.470) and lh approximately Re(-0.772), where Re is the Reynolds number. The first result, which arises as a consequence of identifying the internal kinetic energy with the turbulent kinetic energy, indicates that the choice alpha=beta required to reduce our flow equation to the Navier-Stokes alpha equation is likely to be problematic. The second result evinces the classical scaling relation eta/L approximately Re(-3/4) for the ratio of the Kolmogorov microscale eta to the integral length scale L . The numerical data also suggests that l < or = beta . We are therefore led to conjecture a tentative hierarchy, l < or = beta < alpha , involving the three length scales entering our theory.

  20. Global grids of gravity anomalies and vertical gravity gradients at 10 km altitude from GOCE gradient data 2009-2011 and polar gravity.

    NASA Astrophysics Data System (ADS)

    Tscherning, Carl Christian; Arabelos, Dimitrios; Reguzzoni, Mirko

    2013-04-01

    The GOCE satellite measures gravity gradients which are filtered and transformed to gradients into an Earth-referenced frame by the GOCE High Level processing Facility. More than 80000000 data with 6 components are available from the period 2009-2011. IAG Arctic gravity was used north of 83 deg., while data at the Antarctic was not used due to bureaucratic restrictions by the data-holders. Subsets of the data have been used to produce gridded values at 10 km altitude of gravity anomalies and vertical gravity gradients in 20 deg. x 20 deg. blocks with 10' spacing. Various combinations and densities of data were used to obtain values in areas with known gravity anomalies. The (marginally) best choice was vertical gravity gradients selected with an approximately 0.125 deg spacing. Using Least-Squares Collocation, error-estimates were computed and compared to the difference between the GOCE-grids and grids derived from EGM2008 to deg. 512. In general a good agreement was found, however with some inconsistencies in certain areas. The computation time on a usual server with 24 processors was typically 100 minutes for a block with generally 40000 GOCE vertical gradients as input. The computations will be updated with new Wiener-filtered data in the near future.

  1. Polar surface energies of iono-covalent materials: implications of a charge-transfer model tested on Li2FeSiO4 surfaces.

    PubMed

    Hörmann, Nicolas G; Groß, Axel

    2014-07-21

    The ionic compounds that are used as electrode materials in Li-based rechargeable batteries can exhibit polar surfaces that in general have high surface energies. We derive an analytical estimate for the surface energy of such polar surfaces assuming charge redistribution as a polarity compensating mechanism. The polar contribution to the converged surface energy is found to be proportional to the bandgap multiplied by the surface charge necessary to compensate for the depolarization field, and some higher order correction terms that depend on the specific surface. Other features, such as convergence behavior, coincide with published results. General conclusions are drawn on how to perform polar surface energy calculations in a slab configuration and upper boundaries of "purely" polar surface energies are estimated. Furthermore, we compare these findings with results obtained in a density functional theory study of Li(2)FeSiO(4) surfaces. We show that typical polar features are observed and provide a decomposition of surface energies into polar and local bond-cutting contributions for 29 different surfaces. We show that the model is able to explain subtle differences of GGA and GGA+U surface energy calculations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Spatial Gradients and Source Apportionment of Volatile Organic Compounds Near Roadways

    EPA Science Inventory

    Concentrations of 55 volatile organic compounds (VOCs) are reported near a highway in Raleigh, NC (traffic volume of approximately 125,000 vehicles/day). Levels of VOCs generally decreased exponentially with perpendicular distance from the roadway 10-100m). The EPA Chemical Mass ...

  3. Solving the Hamilton-Jacobi equation for general relativity

    NASA Astrophysics Data System (ADS)

    Parry, J.; Salopek, D. S.; Stewart, J. M.

    1994-03-01

    We demonstrate a systematic method for solving the Hamilton-Jacobi equation for general relativity with the inclusion of matter fields. The generating functional is expanded in a series of spatial gradients. Each term is manifestly invariant under reparametrizations of the spatial coordinates (``gauge invariant''). At each order we solve the Hamiltonian constraint using a conformal transformation of the three-metric as well as a line integral in superspace. This gives a recursion relation for the generating functional which then may be solved to arbitrary order simply by functionally differentiating previous orders. At fourth order in spatial gradients we demonstrate solutions for irrotational dust as well as for a scalar field. We explicitly evolve the three-metric to the same order. This method can be used to derive the Zel'dovich approximation for general relativity.

  4. Revealing the optoelectronic and thermoelectric properties of the Zintl quaternary arsenides ACdGeAs{sub 2} (A = K, Rb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azam, Sikander; Khan, Saleem Ayaz; Goumri-Said, Souraya, E-mail: Souraya.Goumri-Said@chemistry.gatech.edu

    Highlights: • Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) are chalcopyrite and semiconductors. • Their direct band gap is suitable for PV, optolectronic and thermoelectric applications. • Combination of DFT and Boltzmann transport theory is employed. • The present arsenides are found to be covalent materials. - Abstract: Chalcopyrite semiconductors have attracted much attention due to their potential implications in photovoltaic and thermoelectric applications. First principle calculations were performed to investigate the electronic, optical and thermoelectric properties of the Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) using the full potential linear augmented plane wave method andmore » the Engle–Vosko GGA (EV–GGA) approximation. The present compounds are found semiconductors with direct band gap and covalent bonding character. The optical transitions are investigated via the dielectric function (real and imaginary parts) along with other related optical constants including refractive index, reflectivity and energy-loss spectrum. Combining results from DFT and Boltzmann transport theory, we reported the thermoelectric properties such as the Seebeck’s coefficient, electrical and thermal conductivity, figure of merit and power factor as function of temperatures. The present chalcopyrite Zintl quaternary arsenides deserve to be explored for their potential applications as thermoelectric materials and for photovoltaic devices.« less

  5. Spin–orbit DFT with Analytic Gradients and Applications to Heavy Element Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhiyong

    We have implemented the unrestricted DFT approach with one-electron spin–orbit operators in the massively parallel NWChem program. Also implemented is the analytic gradient in the DFT approach with spin–orbit interactions. The current capabilities include single-point calculations and geometry optimization. Vibrational frequencies can be calculated numerically from the analytically calculated gradients. The implementation is based on the spin–orbit interaction operator derived from the effective core potential approach. The exchange functionals used in the implementation are functionals derived for non-spin–orbit calculations, including GGA as well as hybrid functionals. Spin–orbit Hartree–Fock calculations can also be carried out. We have applied the spin–orbit DFTmore » methods to the Uranyl aqua complexes. We have optimized the structures and calculated the vibrational frequencies of both (UO2 2+)aq and (UO2 +)aq with and without spin–orbit effects. The effects of the spin–orbit interaction on the structures and frequencies of these two complexes are discussed. We also carried out calculations for Th2, and several low-lying electronic states are calculated. Our results indicate that, for open-shell systems, there are significant effects due to the spin–orbit effects and the electronic configurations with and without spin–orbit interactions could change due to the occupation of orbitals of larger spin–orbit interactions.« less

  6. Analytic energy gradients for the coupled-cluster singles and doubles method with the density-fitting approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozkaya, Uğur, E-mail: ugur.bozkaya@hacettepe.edu.tr; Department of Chemistry, Atatürk University, Erzurum 25240; Sherrill, C. David

    2016-05-07

    An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the “gradient terms”: computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbitalmore » (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C{sub 10}H{sub 22}), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies.« less

  7. Properties of real metallic surfaces: Effects of density functional semilocality and van der Waals nonlocality

    PubMed Central

    Patra, Abhirup; Bates, Jefferson E.; Sun, Jianwei; Perdew, John P.

    2017-01-01

    We have computed the surface energies, work functions, and interlayer surface relaxations of clean (111), (100), and (110) surfaces of Al, Cu, Ru, Rh, Pd, Ag, Pt, and Au. We interpret the surface energy from liquid metal measurements as the mean of the solid-state surface energies over these three lowest-index crystal faces. We compare experimental (and random phase approximation) reference values to those of a family of nonempirical semilocal density functionals, from the basic local density approximation (LDA) to our most advanced general purpose meta-generalized gradient approximation, strongly constrained and appropriately normed (SCAN). The closest agreement is achieved by the simplest density functional LDA, and by the most sophisticated one, SCAN+rVV10 (Vydrov–Van Voorhis 2010). The long-range van der Waals interaction, incorporated through rVV10, increases the surface energies by about 10%, and increases the work functions by about 3%. LDA works for metal surfaces through two known error cancellations. The Perdew–Burke–Ernzerhof generalized gradient approximation tends to underestimate both surface energies (by about 24%) and work functions (by about 4%), yielding the least-accurate results. The amount by which a functional underestimates these surface properties correlates with the extent to which it neglects van der Waals attraction at intermediate and long range. Qualitative arguments are given for the signs of the van der Waals contributions to the surface energy and work function. A standard expression for the work function in Kohn–Sham (KS) theory is shown to be valid in generalized KS theory. Interlayer relaxations from different functionals are in reasonable agreement with one another, and usually with experiment. PMID:29042509

  8. Convergence Rates of Finite Difference Stochastic Approximation Algorithms

    DTIC Science & Technology

    2016-06-01

    dfferences as gradient approximations. It is shown that the convergence of these algorithms can be accelerated by controlling the implementation of the...descent algorithm, under various updating schemes using finite dfferences as gradient approximations. It is shown that the convergence of these...the Kiefer-Wolfowitz algorithm and the mirror descent algorithm, under various updating schemes using finite differences as gradient approximations. It

  9. Gradients estimation from random points with volumetric tensor in turbulence

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomoaki; Nagata, Koji

    2017-12-01

    We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.

  10. Performance of the strongly constrained and appropriately normed density functional for solid-state materials

    DOE PAGES

    Isaacs, Eric B.; Wolverton, Chris

    2018-06-22

    Constructed to satisfy 17 known exact constraints for a semilocal density functional, the strongly constrained and appropriately normed (SCAN) meta-generalized-gradient-approximation functional has shown early promise for accurately describing the electronic structure of molecules and solids. One open question is how well SCAN predicts the formation energy, a key quantity for describing the thermodynamic stability of solid-state compounds. To answer this question, we perform an extensive benchmark of SCAN by computing the formation energies for a diverse group of nearly 1000 crystalline compounds for which experimental values are known. Due to an enhanced exchange interaction in the covalent bonding regime, SCANmore » substantially decreases the formation energy errors for strongly bound compounds, by approximately 50% to 110 meV/atom, as compared to the generalized gradient approximation of Perdew, Burke, and Ernzerhof (PBE). However, for intermetallic compounds, SCAN performs moderately worse than PBE with an increase in formation energy error of approximately 20%, stemming from SCAN's distinct behavior in the weak bonding regime. The formation energy errors can be further reduced via elemental chemical potential fitting. We find that SCAN leads to significantly more accurate predicted crystal volumes, moderately enhanced magnetism, and mildly improved band gaps as compared to PBE. Altogether, SCAN represents a significant improvement in accurately describing the thermodynamics of strongly bound compounds.« less

  11. Performance of the strongly constrained and appropriately normed density functional for solid-state materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, Eric B.; Wolverton, Chris

    Constructed to satisfy 17 known exact constraints for a semilocal density functional, the strongly constrained and appropriately normed (SCAN) meta-generalized-gradient-approximation functional has shown early promise for accurately describing the electronic structure of molecules and solids. One open question is how well SCAN predicts the formation energy, a key quantity for describing the thermodynamic stability of solid-state compounds. To answer this question, we perform an extensive benchmark of SCAN by computing the formation energies for a diverse group of nearly 1000 crystalline compounds for which experimental values are known. Due to an enhanced exchange interaction in the covalent bonding regime, SCANmore » substantially decreases the formation energy errors for strongly bound compounds, by approximately 50% to 110 meV/atom, as compared to the generalized gradient approximation of Perdew, Burke, and Ernzerhof (PBE). However, for intermetallic compounds, SCAN performs moderately worse than PBE with an increase in formation energy error of approximately 20%, stemming from SCAN's distinct behavior in the weak bonding regime. The formation energy errors can be further reduced via elemental chemical potential fitting. We find that SCAN leads to significantly more accurate predicted crystal volumes, moderately enhanced magnetism, and mildly improved band gaps as compared to PBE. Altogether, SCAN represents a significant improvement in accurately describing the thermodynamics of strongly bound compounds.« less

  12. Ab initio study of Fe{sub 2}MnZ (Al, Si, Ge) Heusler alloy using GGA approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Vivek Kumar, E-mail: vivek.jain129@gmail.com; Jain, Vishal, E-mail: vivek.jain129@gmail.com; Lakshmi, N., E-mail: vivek.jain129@gmail.com

    Density functional theory based on FP-LAPW method used to investigate the electronic structure of Fe{sub 2}MnZ, shows that the total spin magnetic moment shows a trend consistent with the Slater–Pauling curve. The Fe and Mn magnetic moment depend on choice of Z element although the magnetic moment of Z element is negative and less than 0.1 μ{sub B}. Spin polarization calculations evidence 100% spin polarization for Fe{sub 2}MnSi. Fe{sub 2}MnAl and Fe{sub 2}MnGe show metallic behavior with 93%, 98% spin polarization.

  13. Electronic structure of clathrates Bax@AlySi46-y ; thermoelectric devices

    NASA Astrophysics Data System (ADS)

    Eguchi, Haruki; Nagano, Takatoshi; Takenaka, Hiroyuki; Tsumuraya, Kazuo

    2002-03-01

    Clathrates have received much attention as a candidate of high performance thermoelectric devices. This is because they have a) low thermal conductivity due to rattle effect of the alkali or heavy alkali-earth metals such as Ba atoms in the cages of clusters of the clathrates, and b) adjustablity of the Fermi levels through replacement of frame Si atoms with acceptor Al atoms and addition of the cage atoms as donors. We present the dispersion curves with LDA and GGA approximations for the exchange correlation of electrons using the planewave based pseudopotential methods and predict the electronic properties of the clathrates.

  14. Changes in the reflectivity of a lithium niobate crystal decorated with a graphene layer

    NASA Astrophysics Data System (ADS)

    Salas, O.; Garcés, E.; Castillo, F. L.; Magaña, L. F.

    2017-01-01

    Density functional theory and molecular dynamics were used to study the interaction of a graphene layer with the surface of lithium niobate. The simulations were performed at atmospheric pressure and 300K. We found that the graphene layer is physisorbed with an adsorption energy of -0.8205 eV/C-atom. Subsequently, the optical absorption of the graphene-(lithium niobate) system was calculated and compared with that of graphene solo and lithium niobate alone, respectively. The calculations were performed using the Quantum Espresso code with the GGA approximation and Vdw-DF2 (which includes long-range correlation effects as Van der Waals interactions).

  15. Investigating the Psychometric Properties of the ACEI Global Guidelines Assessment, Third Edition (GGA) in Nine Countries

    ERIC Educational Resources Information Center

    Hardin, Belinda J.; Bergen, Doris; Busio, Dionne Sills; Boone, William

    2017-01-01

    The Third Edition of the ACEI Global Guidelines Assessment (GGA) was evaluated for its effectiveness as an international assessment tool for use by early childhood educators to develop, assess, and improve program quality worldwide. This expanded study was conducted in nine countries [People's Republic of China (2 sites), Guatemala, India, Italy,…

  16. Induced oligomerization targets Golgi proteins for degradation in lysosomes.

    PubMed

    Tewari, Ritika; Bachert, Collin; Linstedt, Adam D

    2015-12-01

    Manganese protects cells against forms of Shiga toxin by down-regulating the cycling Golgi protein GPP130. Down-regulation occurs when Mn binding causes GPP130 to oligomerize and traffic to lysosomes. To determine how GPP130 is redirected to lysosomes, we tested the role of GGA1 and clathrin, which mediate sorting in the canonical Golgi-to-lysosome pathway. GPP130 oligomerization was induced using either Mn or a self-interacting version of the FKBP domain. Inhibition of GGA1 or clathrin specifically blocked GPP130 redistribution, suggesting recognition of the aggregated GPP130 by the GGA1/clathrin-sorting complex. Unexpectedly, however, GPP130's cytoplasmic domain was not required, and redistribution also occurred after removal of GPP130 sequences needed for its normal cycling. Therefore, to test whether aggregate recognition might be a general phenomenon rather than one involving a specific GPP130 determinant, we induced homo-oligomerization of two unrelated Golgi-targeted constructs using the FKBP strategy. These were targeted to the cis- and trans-Golgi, respectively, using domains from mannosidase-1 and galactosyltransferase. Significantly, upon oligomerization, each redistributed to peripheral punctae and was degraded. This occurred in the absence of detectable UPR activation. These findings suggest the unexpected presence of quality control in the Golgi that recognizes aggregated Golgi proteins and targets them for degradation in lysosomes. © 2015 Tewari et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Spheroidal Integral Equations for Geodetic Inversion of Geopotential Gradients

    NASA Astrophysics Data System (ADS)

    Novák, Pavel; Šprlák, Michal

    2018-03-01

    The static Earth's gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth's surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet's boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green's kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.

  18. Comparative In Situ Measurements of Plasma Instabilities in the Equatorial and Auroral Electrojets

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert F.

    2008-01-01

    This presentation provides a comparison of in situ measurements of plasma instabilities gathered by rocket-borne probes in the equatorial and auroral electrojets. Specifically, using detailed measurements of the DC electric fields, current density, and plasma number density within the unstable daytime equatorial electrojet from Brazil (Guara Campaign) and in the auroral electrojet from Sweden (ERRIS Campaign), we present comparative observations and general conclusions regarding the observed physical properties of Farley-Buneman two-stream waves and large scale, gradient drift waves. The two stream observations reveal coherent-like waves propagating near the E x B direction but at reduced speeds (nearer to the presumed acoustic velocity) with wavelengths of approximately 5-10m in both the equatorial and auroral electrojet, as measured using the spaced-receiver technique. The auroral electrojet data generally shows extensions to shorter wavelengths, in concert with the fact that these waves are driven harder. With respect to gradient-drift driven waves, observations of this instability are much more pronounced in the equatorial electrojet, given the more favorable geometry for growth provided by the vertical gradient and horizontal magnetic field lines. We present new analysis of Guara rocket observations of electric field and plasma density data that reveal considerable structuring in the middle and lower portion of the electrojet (90-105 km) where the ambient plasma density gradient is unstable. Although the electric field amplitudes are largest (approximately 10-15 mV/m) in the zonal direction, considerable structure (approximately 5-10 mV/m) is also observed in the vertical electric field component as well, implying that the dominant large scale waves involve significant vertical interaction and coupling within the narrow altitude range where they are observed. Furthermore, a detailed examination of the phase of the waveforms show that on some, but not all occasions, locally enhanced eastward fields are associated with locally enhanced upwards (polarization) electric fields. The measurements are discussed in terms of theories involving the non-linear evolution and structuring of plasma waves.

  19. Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Haowei; Yang, Zeng-Hui; Perdew, John P.

    A “best-of-both-worlds” van der Waals (vdW) density functional is constructed, seamlessly supplementing the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation for short- and intermediate-range interactions with the long-range vdW interaction from r VV 10 , the revised Vydrov–van Voorhis nonlocal correlation functional. The resultant SCAN + r VV 10 is the only vdW density functional to date that yields excellent interlayer binding energies and spacings, as well as intralayer lattice constants in 28 layered materials. Its versatility for various kinds of bonding is further demonstrated by its good performance for 22 interactions between molecules; the cohesive energies andmore » lattice constants of 50 solids; the adsorption energy and distance of a benzene molecule on coinage-metal surfaces; the binding energy curves for graphene on Cu(111), Ni(111), and Co(0001) surfaces; and the rare-gas solids. We argue that a good semilocal approximation should (as SCAN does) capture the intermediate-range vdW through its exchange term. We have found an effective range of the vdW interaction between 8 and 16 Å for systems considered here, suggesting that this interaction is negligibly small at the larger distances where it reaches its asymptotic power-law decay.« less

  20. Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation

    DOE PAGES

    Peng, Haowei; Yang, Zeng-Hui; Perdew, John P.; ...

    2016-10-12

    A “best-of-both-worlds” van der Waals (vdW) density functional is constructed, seamlessly supplementing the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation for short- and intermediate-range interactions with the long-range vdW interaction from r VV 10 , the revised Vydrov–van Voorhis nonlocal correlation functional. The resultant SCAN + r VV 10 is the only vdW density functional to date that yields excellent interlayer binding energies and spacings, as well as intralayer lattice constants in 28 layered materials. Its versatility for various kinds of bonding is further demonstrated by its good performance for 22 interactions between molecules; the cohesive energies andmore » lattice constants of 50 solids; the adsorption energy and distance of a benzene molecule on coinage-metal surfaces; the binding energy curves for graphene on Cu(111), Ni(111), and Co(0001) surfaces; and the rare-gas solids. We argue that a good semilocal approximation should (as SCAN does) capture the intermediate-range vdW through its exchange term. We have found an effective range of the vdW interaction between 8 and 16 Å for systems considered here, suggesting that this interaction is negligibly small at the larger distances where it reaches its asymptotic power-law decay.« less

  1. Synthesis and First Principles Investigation of HMX/NMP Cocrystal Explosive

    NASA Astrophysics Data System (ADS)

    Lin, He; Zhu, Shun-Guan; Zhang, Lin; Peng, Xin-Hua; LI, Hong-Zhen

    2013-10-01

    1,3,5,7-Tetranitro-l,3,5,7-tetrazocine (HMX)/N-methyl-2-pyrrolidone (NMP) cocrystal explosive was prepared by a solution evaporation method. This cocrystal explosive crystallized in the trigonal system (space group ? ), with cell parameters a = 16.605(8) Å and c = 31.496(4) Å. Theoretical investigations of the formation mechanism of HMX/NMP cocrystal were carried out in Cambridge serial total energy package (CASTEP) based on dispersion-corrected density functional theory (DFT-D) with a plane wave scheme. The exchange-correlation potential was treated with the Perdew-Burke-Ernzerhof function of generalized gradient approximation, and dispersion force was correlated using Grimme's method. The band structure, density of states, projected density of states, and Mulliken populations were calculated at the generalized gradient approximation level. The results showed that the main host-guest interactions in HMX/NMP cocrystal were hydrogen bonds and stacking interactions, which were the same as those analyzed using X-ray diffraction. Theoretical investigations of HMX/NMP cocrystal explosive may provide the basis for the preparation of cocrystal explosive composed of HMX and energetic materials.

  2. Density functional theory investigation of the geometric and electronic structures of [UO2(H2O)m(OH)n](2 - n) (n + m = 5).

    PubMed

    Ingram, Kieran I M; Häller, L Jonas L; Kaltsoyannis, Nikolas

    2006-05-28

    Gradient corrected density functional theory has been used to calculate the geometric and electronic structures of the family of molecules [UO2(H2O)m(OH)n](2 - n) (n + m = 5). Comparisons are made with previous experimental and theoretical structural and spectroscopic data. r(U-O(yl)) is found to lengthen as water molecules are replaced by hydroxides in the equatorial plane, and the nu(sym) and nu(asym) uranyl vibrational wavenumbers decrease correspondingly. GGA functionals (BP86, PW91 and PBE) are generally found to perform better for the cationic complexes than for the anions. The inclusion of solvent effects using continuum models leads to spurious low frequency imaginary vibrational modes and overall poorer agreement with experimental data for nu(sym) and nu(asym). Analysis of the molecular orbital structure is performed in order to trace the origin of the lengthening and weakening of the U-O(yl) bond as waters are replaced by hydroxides. No evidence is found to support previous suggestions of a competition for U 6d atomic orbitals in U-O(yl) and U-O(hydroxide)pi bonding. Rather, the lengthening and weakening of U-O(yl) is attributed to reduced ionic bonding generated in part by the sigma-donating ability of the hydroxide ligands.

  3. Nonempirical Semilocal Free-Energy Density Functional for Matter under Extreme Conditions

    DOE PAGES

    Karasiev, Valentin V.; Dufty, James W.; Trickey, S. B.

    2018-02-14

    The potential for density functional calculations to predict the properties of matter under extreme conditions depends crucially upon having a non-empirical approximate free energy functional valid over a wide range of state conditions. Unlike the ground-state case, no such free-energy exchange- correlation (XC) functional exists. We remedy that with systematic construction of a generalized gradient approximation XC free-energy functional based on rigorous constraints, including the free energy gradient expansion. The new functional provides the correct temperature dependence in the slowly varying regime and the correct zero-T, high-T, and homogeneous electron gas limits. Application in Kohn-Sham calculations for hot electrons inmore » a static fcc Aluminum lattice demon- strates the combined magnitude of thermal and gradient effects handled by this functional. Its accuracy in the increasingly important warm dense matter regime is attested by excellent agreement of the calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and elevated temperatures and by low density Al calculations over a wide T range.« less

  4. Nonempirical Semilocal Free-Energy Density Functional for Matter under Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karasiev, Valentin V.; Dufty, James W.; Trickey, S. B.

    The potential for density functional calculations to predict the properties of matter under extreme conditions depends crucially upon having a non-empirical approximate free energy functional valid over a wide range of state conditions. Unlike the ground-state case, no such free-energy exchange- correlation (XC) functional exists. We remedy that with systematic construction of a generalized gradient approximation XC free-energy functional based on rigorous constraints, including the free energy gradient expansion. The new functional provides the correct temperature dependence in the slowly varying regime and the correct zero-T, high-T, and homogeneous electron gas limits. Application in Kohn-Sham calculations for hot electrons inmore » a static fcc Aluminum lattice demon- strates the combined magnitude of thermal and gradient effects handled by this functional. Its accuracy in the increasingly important warm dense matter regime is attested by excellent agreement of the calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and elevated temperatures and by low density Al calculations over a wide T range.« less

  5. First-principles study of the covalently functionalized graphene

    NASA Astrophysics Data System (ADS)

    Jha, Sanjiv Kumar

    Theoretical investigations of nanoscale systems, such as functionalized graphene, present major challenges to conventional computational methods employed in quantum chemistry and solid state physics. The properties of graphene can be affected by chemical functionalization. The surface functionalization of graphene offers a promising way to increase the solubility and reactivity of graphene for use in nanocomposites and chemical sensors. Covalent functionalization is an efficient way to open band-gap in graphene for applications in nanoelectronics. We apply ab initio computational methods based on density functional theory to study the covalent functionalization of graphene with benzyne (C6H4), tetracyanoethylene oxide (TCNEO), and carboxyl (COOH) groups. Our calculations are carried out using the SIESTA and Quantum-ESPRESSO electronic structure codes combined with the generalized gradient (GGA) and local density approximations (LDA) for the exchange correlation functionals and norm-conserving Troullier-Martins pseudopotentials. Calculated binding energies, densities of states (DOS), band structures, and vibrational spectra of functionalized graphene are analyzed in comparison with the available experimental data. Our calculations show that the reactions of [2 + 2] and [2 + 4] cycloaddition of C6H4 to the surface of pristine graphene are exothermic, with binding energies of --0.73 eV and --0.58 eV, respectively. Calculated band structures indicate that the [2 + 2] and [2 + 4] attachments of benzyne results in opening small band gap in graphene. The study of graphene--TCNEO interactions suggests that the reaction of cycloaddition of TCNEO to the surface of pristine graphene is endothermic. On the other hand, the reaction of cycloaddition of TCNEO is found to be exothermic for the edge of an H-terminated graphene sheet. Simulated Raman and infrared spectra of graphene functionalized with TCNEO are consistent with experimental results. The Raman (non-resonant) and infrared (IR) spectra of graphene functionalized with carboxyl (COON) groups are studied in graphene with no surface defects, di-vacancies (DV), and Stone-Wales (SW) defects. Simulated Raman and IR spectra of carboxylated graphene are consistent with available experimental results. Computed vibrational spectra of carboxylated graphene show that the presence of point defects near the functionalization site affect the Raman and IR spectroscopic signatures of the functionalized graphene.

  6. Vibrational Properties of Bulk Boric Acid 2A and 3T Polymorphs and Their Two-Dimensional Layers: Measurements and Density Functional Theory Calculations.

    PubMed

    Bezerra da Silva, M; Santos, R C R; Freire, P T C; Caetano, E W S; Freire, V N

    2018-02-08

    Boric acid (H 3 BO 3 ) is being used effectively nowadays in traps/baits for the management of Aedes aegypti L. and Aedes albopictus Skuse species of mosquitoes, which are the main spreading vectors worldwide for diseases such as malaria, dengue, and zika. Previously, we published results on the structural, electronic, and optical properties of its molecular triclinic H 3 BO 3 -2A and trigonal H 3 BO 3 -3T polymorphs within the framework of density functional theory (DFT). Because of the renewed importance of these materials, the focus of this work is on the vibrational properties of the bulk boric acid 2A and 3T polymorphs. We measured the infrared and Raman spectra of the former, which was accompanied and interpreted through state-of-the-art DFT calculations, supplemented by computations regarding the H 3 BO 3 molecule and two-dimensional layers based on the bulk structures. We identify/assign their normal modes and find vibrational signatures for each polymorph as well as in- and out-of-plane motions and molecular vibrations, unveiling a nice agreement between the DFT level of theory employed and our improved spectroscopic measurements in the wavenumber ranges of 400-2000 cm -1 (infrared) and 0-1500 cm -1 (Raman). We show that a dispersion-corrected DFT functional within the generalized gradient approximation (GGA) can be very accurate in describing the vibrational properties of the boric acid polymorphs. Besides, several issues left open/not clearly resolved in previously published works on the vibrational mode assignments of the bulk and 2D sheets of boric acid are explained satisfactorily. Finally, phonon dispersions and associated densities of states were also evaluated for each polymorph along with their temperature-dependent DFT-calculated entropy, enthalpy, free energy, heat capacity, and Debye temperature. In particular, our DFT calculations suggest a possible way to differentiate the 2A and 3T boric acid polymorphs through Raman spectroscopy and heat capacity measurements.

  7. Effect of dispersion correction on the Au(1 1 1)-H2O interface: A first-principles study

    NASA Astrophysics Data System (ADS)

    Nadler, Roger; Sanz, Javier Fdez.

    2012-09-01

    A theoretical study of the H2O-Au(1 1 1) interface based on first principles density functional theory (DFT) calculations with and without inclusion of dispersion correction is reported. Three different computational approaches are considered. First, the standard generalized gradient approximation (GGA) functional PBE is employed. Second, an additional energy term is further included that adds a semi-empirically derived dispersion correction (PBE-D2), and, finally, a recently proposed functional that includes van der Waals (vdW) interactions directly in its functional form (optB86b-vdW) was used to represent the state-of-the art of DFT functionals. The monomeric water adsorption was first considered in order to explore the dependency of geometry on the details of the model slab used to represent it (size, thickness, coverage). When the dispersion corrections are included the Au-H2O interaction is stronger, as manifested by the smaller dAu-O and stronger adsorption energies. Additionally, the interfacial region between Au(1 1 1) slab surfaces and a liquid water layer was investigated with Born-Oppenheimer molecular dynamics (BOMD) using the same functionals. Two or three interfacial orientations can be determined, depending on the theoretical methodology applied. Closest to the surface, H2O is adsorbed O-down, whereas further away it is oriented with one OH bond pointing to the surface and the molecular plane parallel to the normal direction. For the optB86b-vdW functional a third orientation is found where one H atom points into the bulk water layer and the second OH bond is oriented parallel to the metal surface. As for the water density in the first adsorption layer we find a very small increase of roughly 8%. From the analysis of vibrational spectra a weakening of the H-bond network is observed upon the inclusion of the Au(1 1 1) slab, however, no disruption of H-bonds is observed. While the PBE and PBE-D2 spectra are very similar, the optB86b-vdW spectrum shows that the H-bonds are even more weakened.

  8. Gradient Pre-Emphasis to Counteract First-Order Concomitant Fields on Asymmetric MRI Gradient Systems

    PubMed Central

    Tao, Shengzhen; Weavers, Paul T.; Trzasko, Joshua D.; Shu, Yunhong; Huston, John; Lee, Seung-Kyun; Frigo, Louis M.; Bernstein, Matt A.

    2016-01-01

    PURPOSE To develop a gradient pre-emphasis scheme that prospectively counteracts the effects of the first-order concomitant fields for any arbitrary gradient waveform played on asymmetric gradient systems, and to demonstrate the effectiveness of this approach using a real-time implementation on a compact gradient system. METHODS After reviewing the first-order concomitant fields that are present on asymmetric gradients, a generalized gradient pre-emphasis model assuming arbitrary gradient waveforms is developed to counteract their effects. A numerically straightforward, simple to implement approximate solution to this pre-emphasis problem is derived, which is compatible with the current hardware infrastructure used on conventional MRI scanners for eddy current compensation. The proposed method was implemented on the gradient driver sub-system, and its real-time use was tested using a series of phantom and in vivo data acquired from 2D Cartesian phase-difference, echo-planar imaging (EPI) and spiral acquisitions. RESULTS The phantom and in vivo results demonstrate that unless accounted for, first-order concomitant fields introduce considerable phase estimation error into the measured data and result in images exhibiting spatially dependent blurring/distortion. The resulting artifacts are effectively prevented using the proposed gradient pre-emphasis. CONCLUSION An efficient and effective gradient pre-emphasis framework is developed to counteract the effects of first-order concomitant fields of asymmetric gradient systems. PMID:27373901

  9. Scale matters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margolin, L. G.

    The applicability of Navier–Stokes equations is limited to near-equilibrium flows in which the gradients of density, velocity and energy are small. Here I propose an extension of the Chapman–Enskog approximation in which the velocity probability distribution function (PDF) is averaged in the coordinate phase space as well as the velocity phase space. I derive a PDF that depends on the gradients and represents a first-order generalization of local thermodynamic equilibrium. I then integrate this PDF to derive a hydrodynamic model. Finally, I discuss the properties of that model and its relation to the discrete equations of computational fluid dynamics.

  10. Scale matters

    DOE PAGES

    Margolin, L. G.

    2018-03-19

    The applicability of Navier–Stokes equations is limited to near-equilibrium flows in which the gradients of density, velocity and energy are small. Here I propose an extension of the Chapman–Enskog approximation in which the velocity probability distribution function (PDF) is averaged in the coordinate phase space as well as the velocity phase space. I derive a PDF that depends on the gradients and represents a first-order generalization of local thermodynamic equilibrium. I then integrate this PDF to derive a hydrodynamic model. Finally, I discuss the properties of that model and its relation to the discrete equations of computational fluid dynamics.

  11. Aberrant AR Signaling as a Function of Declining Androgen

    DTIC Science & Technology

    2005-03-01

    The first was represented as PSA or hAIAK/GAPD1t1 mRNA ratios, sense, 5’-AUG UCA ACU CCA GGA UGC UTT-3’ and antisense, 5’-AGC AUC Transient... advertisement in accordance indirect effects are general transcription factors like SP1 or with 18 U.S.C. Section 1734 solely to indicate this fact. We thank...Targeting the androgen receptor: improvi 1989,17:71-7. growth vs . expression of prostate specific differentiation comes for castration-resistant

  12. Charts and Tables for Estimating the Stability of the Compressible Laminar Boundary Layer with Heat Transfer and Arbitrary Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal

    1959-01-01

    The minimum critical Reynolds numbers for the similar solutions of the compressible laminar boundary layer computed by Cohen and Reshotko and also for the Falkner and Skan solutions as recomputed by Smith have been calculated by Lin's rapid approximate method for two-dimensional disturbances. These results enable the stability of the compressible laminar boundary layer with heat transfer and pressure gradient to be easily estimated after the behavior of the boundary layer has been computed by the approximate method of Cohen and Reshotko. The previously reported unusual result (NACA Technical Note 4037) that a highly cooled stagnation point flow is more unstable than a highly cooled flat-plate flow is again encountered. Moreover, this result is found to be part of the more general result that a favorable pressure gradient is destabilizing for very cool walls when the Mach number is less than that for complete stability. The minimum critical Reynolds numbers for these wall temperature ratios are, however, all larger than any value of the laminar-boundary-layer Reynolds number likely to be encountered. For Mach numbers greater than those for which complete stability occurs a favorable pressure gradient is stabilizing, even for very cool walls.

  13. Slater-Pauling behavior within quaternary intermetallic borides of the Ti{sub 3}Co{sub 5}B{sub 2} structure-type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burghaus, Jens; Dronskowski, Richard, E-mail: drons@HAL9000.ac.rwth-aachen.d; Miller, Gordon J.

    2009-10-15

    First-principles, density-functional studies of several intermetallic borides of the general type M{sub 2}M'Ru{sub 5-n}Rh{sub n}B{sub 2} (n=0-5; M=Sc, Ti, Nb; M'=Fe, Co) show that the variation in saturation magnetic moment with valence-electron count follows a Slater-Pauling curve, with a maximum moment occurring typically at 66 valence electrons. The magnetic moments in these compounds occur primarily from the 3d electrons of the magnetically active M' sites, with some contribution from the Ru/Rh sites via magnetic polarization. Electronic DOS curves reveal that a rigid-band approach is a reasonable approximation for the estimation of saturation moments and the analysis of orbital interactions inmore » this family of complex borides. COHP analyses of the M'-M' orbital interactions indicate optimized interactions in the minority spin states for Co-containing phases, but strong bonding interactions remaining in Fe-containing phases. - Graphical abstract: Theoretically determined (spin-polarized LMTO-GGA) local magnetic moments as a function of the chemical valence Z for various intermetallic borides.« less

  14. Adsorbate Diffusion on Transition Metal Nanoparticles

    DTIC Science & Technology

    2015-01-01

    different sizes and shapes using density functional theory calculations. We show that nanoparticles bind adsorbates more strongly than the...structure theoretical methods, a quantitative study with accurate density functional theory (DFT) calculations is still missing. Here, we perform a...functional theory . The projector augmented wave (PAW) potentials29,30 were used for electron- ion interactions and the generalized gradient approximation

  15. Structural, electronic and optical properties of LiNbO3 using GGA-PBE and TB-mBJ functionals: A DFT study

    NASA Astrophysics Data System (ADS)

    Arshad Javid, M.; Khan, Zafar Ullah; Mehmood, Zahid; Nabi, Azeem; Hussain, Fayyaz; Imran, M.; Nadeem, Muhammad; Anjum, Naeem

    2018-06-01

    In the present work, first-principles calculations were performed to obtain the structural, electronic and optical properties of lithium niobate crystal using two exchange-correlation functionals (GGA-PBE and TB-mBJ). The calculated structural parameters were very close to the experimental values. TB-mBJ functional was found to be good when compared to LDA and GGA functionals in case of bandgap energy of 3.715 eV of lithium niobate. It was observed that the upper valence and lower conduction bands consist mainly the O-2p and Nb-4d states, respectively. Furthermore, calculations for real and imaginary parts of frequency-dependent dielectric function 𝜀(ω) of lithium niobate crystal were performed using TD-DFT method. The ordinary refractive index no(ω), extraordinary refractive index ne(ω), its birefringence and absorption peaks in imaginary dielectric function 𝜀2(ω) were also calculated.

  16. A Model-Free No-arbitrage Price Bound for Variance Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnans, J. Frederic, E-mail: frederic.bonnans@inria.fr; Tan Xiaolu, E-mail: xiaolu.tan@polytechnique.edu

    2013-08-01

    We suggest a numerical approximation for an optimization problem, motivated by its applications in finance to find the model-free no-arbitrage bound of variance options given the marginal distributions of the underlying asset. A first approximation restricts the computation to a bounded domain. Then we propose a gradient projection algorithm together with the finite difference scheme to solve the optimization problem. We prove the general convergence, and derive some convergence rate estimates. Finally, we give some numerical examples to test the efficiency of the algorithm.

  17. In silico screening of the chicken genome for overlaps between genomic regions: microRNA genes, coding and non-coding transcriptional units, QTL, and genetic variations.

    PubMed

    Zorc, Minja; Kunej, Tanja

    2016-05-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs involved in posttranscriptional regulation of target genes. Regulation requires complementarity between target mRNA and the mature miRNA seed region, responsible for their recognition and binding. It has been estimated that each miRNA targets approximately 200 genes, and genetic variability of miRNA genes has been reported to affect phenotypic variability and disease susceptibility in humans, livestock species, and model organisms. Polymorphisms in miRNA genes could therefore represent biomarkers for phenotypic traits in livestock animals. In our previous study, we collected polymorphisms within miRNA genes in chicken. In the present study, we identified miRNA-related genomic overlaps to prioritize genomic regions of interest for further functional studies and biomarker discovery. Overlapping genomic regions in chicken were analyzed using the following bioinformatics tools and databases: miRNA SNiPer, Ensembl, miRBase, NCBI Blast, and QTLdb. Out of 740 known pre-miRNA genes, 263 (35.5 %) contain polymorphisms; among them, 35 contain more than three polymorphisms The most polymorphic miRNA genes in chicken are gga-miR-6662, containing 23 single nucleotide polymorphisms (SNPs) within the pre-miRNA region, including five consecutive SNPs, and gga-miR-6688, containing ten polymorphisms including three consecutive polymorphisms. Several miRNA-related genomic hotspots have been revealed in chicken genome; polymorphic miRNA genes are located within protein-coding and/or non-coding transcription units and quantitative trait loci (QTL) associated with production traits. The present study includes the first description of an exonic miRNA in a chicken genome, an overlap between the miRNA gene and the exon of the protein-coding gene (gga-miR-6578/HADHB), and the first report of a missense polymorphism located within a mature miRNA seed region. Identified miRNA-related genomic hotspots in chicken can serve researchers as a starting point for further functional studies and association studies with poultry production and health traits and the basis for systematic screening of exonic miRNAs and missense/miRNA seed polymorphisms in other genomes.

  18. A Conjugate Gradient Algorithm with Function Value Information and N-Step Quadratic Convergence for Unconstrained Optimization

    PubMed Central

    Li, Xiangrong; Zhao, Xupei; Duan, Xiabin; Wang, Xiaoliang

    2015-01-01

    It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence—with at most a linear convergence rate—because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method. PMID:26381742

  19. A Conjugate Gradient Algorithm with Function Value Information and N-Step Quadratic Convergence for Unconstrained Optimization.

    PubMed

    Li, Xiangrong; Zhao, Xupei; Duan, Xiabin; Wang, Xiaoliang

    2015-01-01

    It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence--with at most a linear convergence rate--because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method.

  20. Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L

    2017-10-01

    The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.

  1. Genome-wide association study and biological pathway analysis of the Eimeria maxima response in broilers.

    PubMed

    Hamzić, Edin; Buitenhuis, Bart; Hérault, Frédéric; Hawken, Rachel; Abrahamsen, Mitchel S; Servin, Bertrand; Elsen, Jean-Michel; Pinard-van der Laan, Marie-Hélène; Bed'Hom, Bertrand

    2015-11-25

    Coccidiosis is the most common and costly disease in the poultry industry and is caused by protozoans of the Eimeria genus. The current control of coccidiosis, based on the use of anticoccidial drugs and vaccination, faces serious obstacles such as drug resistance and the high costs for the development of efficient vaccines, respectively. Therefore, the current control programs must be expanded with complementary approaches such as the use of genetics to improve the host response to Eimeria infections. Recently, we have performed a large-scale challenge study on Cobb500 broilers using E. maxima for which we investigated variability among animals in response to the challenge. As a follow-up to this challenge study, we performed a genome-wide association study (GWAS) to identify genomic regions underlying variability of the measured traits in the response to Eimeria maxima in broilers. Furthermore, we conducted a post-GWAS functional analysis to increase our biological understanding of the underlying response to Eimeria maxima challenge. In total, we identified 22 single nucleotide polymorphisms (SNPs) with q value <0.1 distributed across five chromosomes. The highly significant SNPs were associated with body weight gain (three SNPs on GGA5, one SNP on GGA1 and one SNP on GGA3), plasma coloration measured as optical density at wavelengths in the range 465-510 nm (10 SNPs and all on GGA10) and the percentage of β2-globulin in blood plasma (15 SNPs on GGA1 and one SNP on GGA2). Biological pathways related to metabolic processes, cell proliferation, and primary innate immune processes were among the most frequent significantly enriched biological pathways. Furthermore, the network-based analysis produced two networks of high confidence, with one centered on large tumor suppressor kinase 1 (LATS1) and 2 (LATS2) and the second involving the myosin heavy chain 6 (MYH6). We identified several strong candidate genes and genomic regions associated with traits measured in response to Eimeria maxima in broilers. Furthermore, the post-GWAS functional analysis indicates that biological pathways and networks involved in tissue proliferation and repair along with the primary innate immune response may play the most important role during the early stage of Eimeria maxima infection in broilers.

  2. Distribution and differential expression of microRNAs in the intestinal mucosal layer of necrotic enteritis induced Fayoumi chickens

    PubMed Central

    Rengaraj, Deivendran; Truong, Anh Duc; Ban, Jihye; Lillehoj, Hyun S.; Hong, Yeong Ho

    2017-01-01

    Objective Despite an increasing number of investigations into the pathophysiology of necrotic enteritis (NE) disease, etiology of NE-associated diseases, and gene expression profiling of NE-affected tissues, the microRNA (miRNA) profiles of NE-affected poultry have been poorly studied. The aim of this study was to induce NE disease in the genetically disparate Fayoumi chicken lines, and to perform non-coding RNA sequencing in the intestinal mucosal layer. Methods NE disease was induced in the Fayoumi chicken lines (M5.1 and M15.2), and non-coding RNA sequencing was performed in the intestinal mucosal layer of both NE-affected and uninfected chickens to examine the differential expression of miRNAs. Next, quantitative real-time polymerase chain reaction (real-time qPCR) was performed to further examine four miRNAs that showed the highest fold differences. Finally, bioinformatics analyses were performed to examine the four miRNAs target genes involvement in the signaling pathways, and to examine their interaction. Results According to non-coding RNA sequencing, total 50 upregulated miRNAs and 26 downregulated miRNAs were detected in the NE-induced M5.1 chickens. While 32 upregulated miRNAs and 11 downregulated miRNAs were detected in the NE-induced M15.2 chickens. Results of real-time qPCR analysis on the four miRNAs (gga-miR-9-5p, gga-miR-20b-5p, gga-miR-196-5p, and gga-let-7d) were mostly correlated with the results of RNAseq. Overall, gga-miR-20b-5p was significantly downregulated in the NE-induced M5.1 chickens and this was associated with the upregulation of its top-ranking target gene, mitogen-activated protein kinase, kinase 2. Further bioinformatics analyses revealed that 45 of the gene targets of gga-miR-20b-5p were involved in signal transduction and immune system-related pathways, and 35 of these targets were predicted to interact with each other. Conclusion Our study is a novel report of miRNA expression in Fayoumi chickens, and could be very useful in understanding the role of differentially expressed miRNAs in a NE disease model. PMID:28111433

  3. The role of large-scale eddies in the climate equilibrium. Part 2: Variable static stability

    NASA Technical Reports Server (NTRS)

    Zhou, Shuntai; Stone, Peter H.

    1993-01-01

    Lorenz's two-level model on a sphere is used to investigate how the results of Part 1 are modified when the interaction of the vertical eddy heat flux and static stability is included. In general, the climate state does not depend very much on whether or not this interaction is included, because the poleward eddy heat transport dominates the eddy forcing of mean temperature and wind fields. However, the climatic sensitivity is significantly affected. Compared to two-level model results with fixed static stability, the poleward eddy heat flux is less sensitive to the meridional temperature gradient and the gradient is more sensitive to the forcing. For example, the logarithmic derivative of the eddy flux with respect to the gradient has a slope that is reduced from approximately 15 on a beta-plane with fixed static stability and approximately 6 on a sphere with fixed static stability, to approximately 3 to 4 in the present model. This last result is more in line with analyses from observations. The present model also has a stronger baroclinic adjustment than that in Part 1, more like that in two-level beta-plane models with fixed static stability, that is, the midlatitude isentropic slope is very insensitive to the forcing, the diabatic heating, and the friction, unless the forcing is very weak.

  4. Combined therapy with gas gangrene antitoxin and recombinant human soluble thrombomodulin for Clostridium perfringens sepsis in a rat model.

    PubMed

    Hifumi, Toru; Nakano, Daisuke; Chiba, Joe; Takahashi, Motohide; Yamamoto, Akihiko; Fujisawa, Yoshihide; Kawakita, Kenya; Kuroda, Yasuhiro; Nishiyama, Akira

    2018-01-01

    Cases of Clostridium perfringens septicemia, such as liver abscess, often develop a rapidly progressive intravascular hemolysis and coagulation; the mortality rate with current standard care including antibiotics and surgery is high. Herein, we firstly investigated the effects of gas gangrene antitoxin (GGA) (antitoxin against C. perfringens) and recombinant human soluble thrombomodulin (rTM) on the hemolysis, coagulation status, inflammatory process, and mortality in α-toxin-treated rats. Male 11-week-old Sprague Dawley rats were randomly divided into five groups: control group, α-toxin group, GGA group, rTM group, and combined GGA and rTM (combination group). After α-toxin injection, mortality and platelet counts, and hemolysis were observed for 6 h. The fibrin/fibrinogen degradation products (FDP), and plasma high-mobility group box 1 (HMGB1) were also measured at 6 h. The combination group demonstrated 100% survival compared with 50% survival in the α-toxin group and demonstrated significantly improved hemolysis, platelet counts, and lactate levels compared with those in the α-toxin group (p < .01). The FDP and HMGB1 levels in the combination therapy group were significantly lower than those in the α-toxin group (p < .05). Combination therapy with GGA and rTM administration is applicable as adjunct therapy for fatal C. perfringens sepsis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Gradient pre-emphasis to counteract first-order concomitant fields on asymmetric MRI gradient systems.

    PubMed

    Tao, Shengzhen; Weavers, Paul T; Trzasko, Joshua D; Shu, Yunhong; Huston, John; Lee, Seung-Kyun; Frigo, Louis M; Bernstein, Matt A

    2017-06-01

    To develop a gradient pre-emphasis scheme that prospectively counteracts the effects of the first-order concomitant fields for any arbitrary gradient waveform played on asymmetric gradient systems, and to demonstrate the effectiveness of this approach using a real-time implementation on a compact gradient system. After reviewing the first-order concomitant fields that are present on asymmetric gradients, we developed a generalized gradient pre-emphasis model assuming arbitrary gradient waveforms to counteract their effects. A numerically straightforward, easily implemented approximate solution to this pre-emphasis problem was derived that was compatible with the current hardware infrastructure of conventional MRI scanners for eddy current compensation. The proposed method was implemented on the gradient driver subsystem, and its real-time use was tested using a series of phantom and in vivo data acquired from two-dimensional Cartesian phase-difference, echo-planar imaging, and spiral acquisitions. The phantom and in vivo results demonstrated that unless accounted for, first-order concomitant fields introduce considerable phase estimation error into the measured data and result in images with spatially dependent blurring/distortion. The resulting artifacts were effectively prevented using the proposed gradient pre-emphasis. We have developed an efficient and effective gradient pre-emphasis framework to counteract the effects of first-order concomitant fields of asymmetric gradient systems. Magn Reson Med 77:2250-2262, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  6. The numerical evaluation of maximum-likelihood estimates of the parameters for a mixture of normal distributions from partially identified samples

    NASA Technical Reports Server (NTRS)

    Walker, H. F.

    1976-01-01

    Likelihood equations determined by the two types of samples which are necessary conditions for a maximum-likelihood estimate were considered. These equations suggest certain successive approximations iterative procedures for obtaining maximum likelihood estimates. The procedures, which are generalized steepest ascent (deflected gradient) procedures, contain those of Hosmer as a special case.

  7. Genetic parameters and genome-wide association study of hyperpigmentation of the visceral peritoneum in chickens.

    PubMed

    Luo, Chenglong; Qu, Hao; Wang, Jie; Wang, Yan; Ma, Jie; Li, Chunyu; Yang, Chunfen; Hu, Xiaoxiang; Li, Ning; Shu, Dingming

    2013-05-16

    Hyperpigmentation of the visceral peritoneum (HVP) has recently garnered much attention in the poultry industry because of the possible risk to the health of affected animals and the damage it causes to the appearance of commercial chicken carcasses. However, the heritable characters of HVP remain unclear. The objective of this study was to investigate the genetic parameters of HVP by genome-wide association study (GWAS) in chickens. HVP was found to be influenced by genetic factors, with a heritability score of 0.33. HVP had positive genetic correlations with growth and carcass traits, such as leg muscle weight (rg = 0.34), but had negative genetic correlations with immune traits, such as the antibody response to Newcastle disease virus (rg = -0.42). The GWAS for HVP using 39,833 single nucleotide polymorphisms indicated the genetic factors associated with HVP displayed an additive effect rather than a dominance effect. In addition, we determined that three genomic regions, involving the 50.5-54.0 Mb region of chicken (Gallus gallus) chromosome 1 (GGA1), the 58.5-60.5 Mb region of GGA1, and the 10.5-12.0 Mb region of GGA20, were strongly associated (P < 6.28 × 10-7) with HVP in chickens. Variants in these regions explained >50% of additive genetic variance for HVP. This study also confirmed that expression of BMP7, which codes for a bone morphogenetic protein and is located in one of the candidate regions, was significantly higher in the visceral peritoneum of Huiyang Beard chickens with HVP than in that of chickens without pigmentation (P < 0.05). HVP is a quantitative trait with moderate heritability. Genomic variants resulting in HVP were identified on GGA1 and GGA20, and expression of the BMP7 gene appears to be upregulated in HVP-affected chickens. Findings from this study should be used as a basis for further functional validation of candidate genes involved in HVP.

  8. Scale matters

    NASA Astrophysics Data System (ADS)

    Margolin, L. G.

    2018-04-01

    The applicability of Navier-Stokes equations is limited to near-equilibrium flows in which the gradients of density, velocity and energy are small. Here I propose an extension of the Chapman-Enskog approximation in which the velocity probability distribution function (PDF) is averaged in the coordinate phase space as well as the velocity phase space. I derive a PDF that depends on the gradients and represents a first-order generalization of local thermodynamic equilibrium. I then integrate this PDF to derive a hydrodynamic model. I discuss the properties of that model and its relation to the discrete equations of computational fluid dynamics. This article is part of the theme issue `Hilbert's sixth problem'.

  9. Radiative transfer in dusty nebulae. III - The effects of dust albedo

    NASA Technical Reports Server (NTRS)

    Petrosian, V.; Dana, R. A.

    1980-01-01

    The effects of an albedo of internal dust, such as ionization structure and temperature of dust grain, were studied by the quasi-diffusion method with an iterative technique for solving the radiative heat transfer equations. It was found that the generalized on-the-spot approximation solution is adequate for most astrophysical applications for a zero albedo; for a nonzero albedo, the Eddington approximation is more accurate. The albedo increases the average energy of the diffuse photons, increasing the ionization level of hydrogen and heavy elements if the Eddington approximation is applied; the dust thermal gradient is reduced so that the infrared spectrum approaches blackbody spectrum with an increasing albedo.

  10. Analytic energy gradients for orbital-optimized MP3 and MP2.5 with the density-fitting approximation: An efficient implementation.

    PubMed

    Bozkaya, Uğur

    2018-03-15

    Efficient implementations of analytic gradients for the orbital-optimized MP3 and MP2.5 and their standard versions with the density-fitting approximation, which are denoted as DF-MP3, DF-MP2.5, DF-OMP3, and DF-OMP2.5, are presented. The DF-MP3, DF-MP2.5, DF-OMP3, and DF-OMP2.5 methods are applied to a set of alkanes and noncovalent interaction complexes to compare the computational cost with the conventional MP3, MP2.5, OMP3, and OMP2.5. Our results demonstrate that density-fitted perturbation theory (DF-MP) methods considered substantially reduce the computational cost compared to conventional MP methods. The efficiency of our DF-MP methods arise from the reduced input/output (I/O) time and the acceleration of gradient related terms, such as computations of particle density and generalized Fock matrices (PDMs and GFM), solution of the Z-vector equation, back-transformations of PDMs and GFM, and evaluation of analytic gradients in the atomic orbital basis. Further, application results show that errors introduced by the DF approach are negligible. Mean absolute errors for bond lengths of a molecular set, with the cc-pCVQZ basis set, is 0.0001-0.0002 Å. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Structural, electronic and vibrational properties of LaF3 according to density functional theory and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oreshonkov, A. S.; Roginskii, E. M.; Krylov, A. S.; Ershov, A. A.; Voronov, V. N.

    2018-06-01

    Crystal structure of LaF3 single crystal is refined in tysonite-type trigonal unit cell P c1 using density functional theory calculations and Raman spectroscopy. It is shown that trigonal structure with P c1 space group is more energy-efficient than hexagonal structure with space group P63 cm. Simulated Raman spectra obtained using LDA approximation is in much better agreement with experimental data than that obtained with PBE and PBEsol functionals of GGA. The calculated frequency value of silent mode B 2 in case of hexagonal structure P63 cm was found to be imaginary (unstable mode), thus the energy surface obtains negative curvature with respect to the corresponding normal coordinates of the mode which leads to instability of the hexagonal structure in harmonic approximation. The A 1g line at 214 cm‑1 in Raman spectra of LaF3 related to the translation of F2 ions along c axis can be connected with F2 ionic conductivity.

  12. MicroRNAs-1614-3p gene seed region polymorphisms and association analysis with chicken production traits.

    PubMed

    Li, Hong; Sun, Gui-Rong; Tian, Ya-Dong; Han, Rui-Li; Li, Guo-Xi; Kang, Xiang-Tao

    2013-05-01

    In the present study, a total of 860 chickens from a Gushi-Anka F2 resource population were used to evaluate the genetic effect of the gga-miR-1614-3p gene. A novel, silent, single nucleotide polymorphism (SNP, +5 C>T) was detected in the gga-miR-1614-3p gene seed region through AvaII polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and PCR products sequencing methods. Associations between the SNP and chicken growth, meat quality and carcass traits were performed by association analysis. The results showed that the SNP was significantly associated with breast muscle shear force and leg muscle water loss rate, wing weight, liver weight and heart weight (p<0.05), and highly significantly associated with the weight of the abdominal fat (p<0.01). The secondary structure of gga-miR-1614 and the free energy were altered due to the variation predicted by the M-fold program.

  13. Affordable and accurate large-scale hybrid-functional calculations on GPU-accelerated supercomputers

    NASA Astrophysics Data System (ADS)

    Ratcliff, Laura E.; Degomme, A.; Flores-Livas, José A.; Goedecker, Stefan; Genovese, Luigi

    2018-03-01

    Performing high accuracy hybrid functional calculations for condensed matter systems containing a large number of atoms is at present computationally very demanding or even out of reach if high quality basis sets are used. We present a highly optimized multiple graphics processing unit implementation of the exact exchange operator which allows one to perform fast hybrid functional density-functional theory (DFT) calculations with systematic basis sets without additional approximations for up to a thousand atoms. With this method hybrid DFT calculations of high quality become accessible on state-of-the-art supercomputers within a time-to-solution that is of the same order of magnitude as traditional semilocal-GGA functionals. The method is implemented in a portable open-source library.

  14. Higher Nucleoporin-Importinβ Affinity at the Nuclear Basket Increases Nucleocytoplasmic Import

    PubMed Central

    Azimi, Mohammad; Mofrad, Mohammad R. K.

    2013-01-01

    Several in vitro studies have shown the presence of an affinity gradient in nuclear pore complex proteins for the import receptor Importinβ, at least partially contributing to nucleocytoplasmic transport, while others have historically argued against the presence of such a gradient. Nonetheless, the existence of an affinity gradient has remained an uncharacterized contributing factor. To shed light on the affinity gradient theory and better characterize how the existence of such an affinity gradient between the nuclear pore and the import receptor may influence the nucleocytoplasmic traffic, we have developed a general-purpose agent based modeling (ABM) framework that features a new method for relating rate constants to molecular binding and unbinding probabilities, and used our ABM approach to quantify the effects of a wide range of forward and reverse nucleoporin-Importinβ affinity gradients. Our results indicate that transport through the nuclear pore complex is maximized with an effective macroscopic affinity gradient of 2000 µM, 200 µM and 10 µM in the cytoplasmic, central channel and nuclear basket respectively. The transport rate at this gradient is approximately 10% higher than the transport rate for a comparable pore lacking any affinity gradient, which has a peak transport rate when all nucleoporins have an affinity of 200 µM for Importinβ. Furthermore, this optimal ratio of affinity gradients is representative of the ratio of affinities reported for the yeast nuclear pore complex – suggesting that the affinity gradient seen in vitro is highly optimized. PMID:24282617

  15. Solving large mixed linear models using preconditioned conjugate gradient iteration.

    PubMed

    Strandén, I; Lidauer, M

    1999-12-01

    Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.

  16. Towards an Optimal Gradient-dependent Energy Functional of the PZ-SIC Form

    DOE PAGES

    Jónsson, Elvar Örn; Lehtola, Susi; Jónsson, Hannes

    2015-06-01

    Results of Perdew–Zunger self-interaction corrected (PZ-SIC) density functional theory calculations of the atomization energy of 35 molecules are compared to those of high-level quantum chemistry calculations. While the PBE functional, which is commonly used in calculations of condensed matter, is known to predict on average too high atomization energy (overbinding of the molecules), the application of PZ-SIC gives a large overcorrection and leads to significant underestimation of the atomization energy. The exchange enhancement factor that is optimal for the generalized gradient approximation within the Kohn-Sham (KS) approach may not be optimal for the self-interaction corrected functional. The PBEsol functional, wheremore » the exchange enhancement factor was optimized for solids, gives poor results for molecules in KS but turns out to work better than PBE in PZ-SIC calculations. The exchange enhancement is weaker in PBEsol and the functional is closer to the local density approximation. Furthermore, the drop in the exchange enhancement factor for increasing reduced gradient in the PW91 functional gives more accurate results than the plateaued enhancement in the PBE functional. A step towards an optimal exchange enhancement factor for a gradient dependent functional of the PZ-SIC form is taken by constructing an exchange enhancement factor that mimics PBEsol for small values of the reduced gradient, and PW91 for large values. The average atomization energy is then in closer agreement with the high-level quantum chemistry calculations, but the variance is still large, the F 2 molecule being a notable outlier.« less

  17. A high speed model-based approach for wavefront sensorless adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Lianghua, Wen; Yang, Ping; Shuai, Wang; Wenjing, Liu; Shanqiu, Chen; Xu, Bing

    2018-02-01

    To improve temporal-frequency property of wavefront sensorless adaptive optics (AO) systems, a fast general model-based aberration correction algorithm is presented. The fast general model-based approach is based on the approximately linear relation between the mean square of the aberration gradients and the second moment of far-field intensity distribution. The presented model-based method is capable of completing a mode aberration effective correction just applying one disturbing onto the deformable mirror(one correction by one disturbing), which is reconstructed by the singular value decomposing the correlation matrix of the Zernike functions' gradients. Numerical simulations of AO corrections under the various random and dynamic aberrations are implemented. The simulation results indicate that the equivalent control bandwidth is 2-3 times than that of the previous method with one aberration correction after applying N times disturbing onto the deformable mirror (one correction by N disturbing).

  18. Nonlinear electronic excitations in crystalline solids using meta-generalized gradient approximation and hybrid functional in time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Shunsuke A.; Taniguchi, Yasutaka; Department of Medical and General Sciences, Nihon Institute of Medical Science, 1276 Shimogawara, Moroyama-Machi, Iruma-Gun, Saitama 350-0435

    2015-12-14

    We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functionalmore » which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.« less

  19. Neural networks for feedback feedforward nonlinear control systems.

    PubMed

    Parisini, T; Zoppoli, R

    1994-01-01

    This paper deals with the problem of designing feedback feedforward control strategies to drive the state of a dynamic system (in general, nonlinear) so as to track any desired trajectory joining the points of given compact sets, while minimizing a certain cost function (in general, nonquadratic). Due to the generality of the problem, conventional methods are difficult to apply. Thus, an approximate solution is sought by constraining control strategies to take on the structure of multilayer feedforward neural networks. After discussing the approximation properties of neural control strategies, a particular neural architecture is presented, which is based on what has been called the "linear-structure preserving principle". The original functional problem is then reduced to a nonlinear programming one, and backpropagation is applied to derive the optimal values of the synaptic weights. Recursive equations to compute the gradient components are presented, which generalize the classical adjoint system equations of N-stage optimal control theory. Simulation results related to nonlinear nonquadratic problems show the effectiveness of the proposed method.

  20. A first-principles study of the influence of helium atoms on the optical response of small silver clusters.

    PubMed

    Pereiro, M; Baldomir, D; Arias, J E

    2011-02-28

    Optical excitation spectra of Ag(n) and Ag(n)@He(60) (n = 2, 8) clusters are investigated in the framework of the time-dependent density functional theory (TDDFT) within the linear response regime. We have performed the ab initio calculations for two different exact exchange functionals (GGA-exact and LDA-exact). The computed spectra of Ag(n)@He(60) clusters with the GGA-exact functional accounting for exchange-correlation effects are found to be generally in a relatively good agreement with the experiment. A strategy is proposed to obtain the ground-state structures of the Ag(n)@He(60) clusters and in the initial process of the geometry optimization, the He environment is simulated with buckyballs. A redshift of the silver clusters spectra is observed in the He environment with respect to the ones of bare silver clusters. This observation is discussed and explained in terms of a contraction of the Ag-He bonding length and a consequent confinement of the s valence electrons in silver clusters. Likewise, the Mie-Gans predictions combined with our TDDFT calculations also show that the dielectric effect produced by the He matrix is considerably less important in explaining the redshifting observed in the optical spectra of Ag(n)@He(60) clusters.

  1. RES: Regularized Stochastic BFGS Algorithm

    NASA Astrophysics Data System (ADS)

    Mokhtari, Aryan; Ribeiro, Alejandro

    2014-12-01

    RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.

  2. First-principles elastic constants of α- and θ-Al2O3

    NASA Astrophysics Data System (ADS)

    Shang, Shunli; Wang, Yi; Liu, Zi-Kui

    2007-03-01

    Using an efficient strain-stress method, the first-principles elastic constants cij's of α-Al2O3 and θ-Al2O3 have been predicted within the local density approximation and the generalized gradient approximation. It is indicated that more accurate calculations of cij's can be accomplished by the local density approximation. The predicted cij's of θ-Al2O3 provide helpful guidance for future measurements, especially the predicted negative c15. The present results make the stress estimation in thermally grown oxides containing of α- and θ-Al2O3 possible, which in turn provide helpful insights for preventing the failure of thermal barrier coatings on components in gas-turbine engines.

  3. DFT investigation on electronic, magnetic, mechanical and thermodynamic properties under pressure of some EuMO3 (M  =  Ga, In) perovskites

    NASA Astrophysics Data System (ADS)

    Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar; Parey, Vanshree; Pagare, Gitanjali

    2017-10-01

    The structural, electronic, magnetic and elastic properties of cubic EuMO3 (M  =  Ga, In) perovskites has been successfully predicted within well accepted density functional theory using full potential linearized augmented plane wave (FP-LAPW). The structural study reveals ferromagnetic stability for both the compounds. The Hubbard correlation (GGA+U) calculated spin polarized electronic band and density of states presents half-metallic nature for both the compounds. The magnetic moments calculated with different approximations were found to be approximately 6 µ B for EuGaO3 and approximately 7 µ B for EuInO3. The three independent elastic constants (C 11, C 12, C 44) have been used for the prediction of mechanical properties like Young modulus (Y), Shear modulus (G), Poisson ratio (ν), Anisotropic factor (A) under pressure. The B/G ratio presents the ductile nature for both compounds. The thermodynamic parameters like specific heat capacity, thermal expansion, Grüneisen parameter and Debye temperature etc have also been analyzed in the temperature range 0-900 K and pressure range from 0 to 30 GPa.

  4. First-Principles Molecular Dynamics Simulations of NaCl in Water: Performance of Advanced Exchange-Correlation Approximations in Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Yao, Yi; Kanai, Yosuke

    Our ability to correctly model the association of oppositely charged ions in water is fundamental in physical chemistry and essential to various technological and biological applications of molecular dynamics (MD) simulations. MD simulations using classical force fields often show strong clustering of NaCl in the aqueous ionic solutions as a consequence of a deep contact pair minimum in the potential of mean force (PMF) curve. First-Principles Molecular Dynamics (FPMD) based on Density functional theory (DFT) with the popular PBE exchange-correlation approximation, on the other hand, show a different result with a shallow contact pair minimum in the PMF. We employed two of most promising exchange-correlation approximations, ωB97xv by Mardiorossian and Head-Gordon and SCAN by Sun, Ruzsinszky and Perdew, to examine the PMF using FPMD simulations. ωB97xv is highly empirically and optimized in the space of range-separated hybrid functional with a dispersion correction while SCAN is the most recent meta-GGA functional that is constructed by satisfying various known conditions in well-defined physical limits. We will discuss our findings for PMF, charge transfer, water dipoles, etc.

  5. How a High-Gradient Magnetic Field Could Affect Cell Life

    NASA Astrophysics Data System (ADS)

    Zablotskii, Vitalii; Polyakova, Tatyana; Lunov, Oleg; Dejneka, Alexandr

    2016-11-01

    The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate.

  6. How a High-Gradient Magnetic Field Could Affect Cell Life

    PubMed Central

    Zablotskii, Vitalii; Polyakova, Tatyana; Lunov, Oleg; Dejneka, Alexandr

    2016-01-01

    The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate. PMID:27857227

  7. Genetic parameters and genome-wide association study of hyperpigmentation of the visceral peritoneum in chickens

    PubMed Central

    2013-01-01

    Background Hyperpigmentation of the visceral peritoneum (HVP) has recently garnered much attention in the poultry industry because of the possible risk to the health of affected animals and the damage it causes to the appearance of commercial chicken carcasses. However, the heritable characters of HVP remain unclear. The objective of this study was to investigate the genetic parameters of HVP by genome-wide association study (GWAS) in chickens. Results HVP was found to be influenced by genetic factors, with a heritability score of 0.33. HVP had positive genetic correlations with growth and carcass traits, such as leg muscle weight (rg = 0.34), but had negative genetic correlations with immune traits, such as the antibody response to Newcastle disease virus (rg = −0.42). The GWAS for HVP using 39,833 single nucleotide polymorphisms indicated the genetic factors associated with HVP displayed an additive effect rather than a dominance effect. In addition, we determined that three genomic regions, involving the 50.5–54.0 Mb region of chicken (Gallus gallus) chromosome 1 (GGA1), the 58.5–60.5 Mb region of GGA1, and the 10.5–12.0 Mb region of GGA20, were strongly associated (P < 6.28 × 10-7) with HVP in chickens. Variants in these regions explained >50% of additive genetic variance for HVP. This study also confirmed that expression of BMP7, which codes for a bone morphogenetic protein and is located in one of the candidate regions, was significantly higher in the visceral peritoneum of Huiyang Beard chickens with HVP than in that of chickens without pigmentation (P < 0.05). Conclusions HVP is a quantitative trait with moderate heritability. Genomic variants resulting in HVP were identified on GGA1 and GGA20, and expression of the BMP7 gene appears to be upregulated in HVP-affected chickens. Findings from this study should be used as a basis for further functional validation of candidate genes involved in HVP. PMID:23679099

  8. Energetics and magnetic properties of V-doped MgO bulk and (001) surface: A GGA, GGA+U , and hybrid density functional study

    NASA Astrophysics Data System (ADS)

    Århammar, C.; Moyses Araujo, C.; Rao, K. V.; Norgren, Susanne; Johansson, Börje; Ahuja, Rajeev

    2010-10-01

    In this work, a first-principles study of the energetic and magnetic properties of V-doped MgO is presented, where both the bulk and (001) surface were investigated. It is found that V assumes a high-spin state with a local moment of about 3μB . In the bulk, the interaction between these local moments is very short ranged and the antiferromagnetic (AFM) ordering is energetically more favorable. The formation of V-VMg-V defect clusters is found to weaken the antiferromagnetic coupling in bulk MgO, degenerating the AFM and ferromagnetic state. However, these clusters are high in energy and will not form at equilibrium conditions. By employing the GGA+U approach, with U=5eV , the V3d states on the (001) surface are shifted below the Fermi level, and a reasonable surface geometry was achieved. A calculation with the hybrid HSE03 functional, contradicts the GGA+U results, indicating that the V-MgO surface should be metallic at this concentration. From the energetics it is concluded that, at the modeled concentration, VxOy phases will limit the solubility of V in MgO at equilibrium conditions, which is in agreement with previous experimental findings. In order to achieve higher concentrations of V, an off-equilibrium synthesis method is needed. Finally, we find that the formation energy of V at the surface is considerably higher than in the bulk and V is thus expected to diffuse from the surface into the bulk of MgO.

  9. Strong solutions and instability for the fitness gradient system in evolutionary games between two populations

    NASA Astrophysics Data System (ADS)

    Xu, Qiuju; Belmonte, Andrew; deForest, Russ; Liu, Chun; Tan, Zhong

    2017-04-01

    In this paper, we study a fitness gradient system for two populations interacting via a symmetric game. The population dynamics are governed by a conservation law, with a spatial migration flux determined by the fitness. By applying the Galerkin method, we establish the existence, regularity and uniqueness of global solutions to an approximate system, which retains most of the interesting mathematical properties of the original fitness gradient system. Furthermore, we show that a Turing instability occurs for equilibrium states of the fitness gradient system, and its approximations.

  10. Gradient elution behavior of proteins in hydrophobic interaction chromatography with U-shaped retention factor curves.

    PubMed

    Creasy, Arch; Lomino, Joseph; Barker, Gregory; Khetan, Anurag; Carta, Giorgio

    2018-04-27

    Protein retention in hydrophobic interaction chromatography is described by the solvophobic theory as a function of the kosmostropic salt concentration. In general, an increase in salt concentration drives protein partitioning to the hydrophobic surface while a decrease reduces it. In some cases, however, protein retention also increases at low salt concentrations resulting in a U-shaped retention factor curve. During gradient elution the salt concentration is gradually decreased from a high value thereby reducing the retention factor and increasing the protein chromatographic velocity. For these conditions, a steep gradient can overtake the protein in the column, causing it to rebind. Two dynamic models, one based on the local equilibrium theory and the other based on the linear driving force approximation, are presented. We show that the normalized gradient slope determines whether the protein elutes in the gradient, partially elutes, or is trapped in the column. Experimental results are presented for two different monoclonal antibodies and for lysozyme on Capto Phenyl (High Sub) resin. One of the mAbs and lysozyme exhibit U-shaped retention factor curves and for each, we determine the critical gradient slope beyond which 100% recovery is no longer possible. Elution with a reverse gradient is also demonstrated at low salt concentrations for these proteins. Understanding this behavior has implications in the design of gradient elution since the gradient slope impacts protein recovery. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Investigation of structural, electronic, elastic and optical properties of Cd1-x-yZnxHgyTe alloys

    NASA Astrophysics Data System (ADS)

    Tamer, M.

    2016-06-01

    Structural, optical and electronic properties and elastic constants of Cd1-x-yZnx HgyTe alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers-Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard's law. It is seen that results obtained from theory and experiments are all in agreement.

  12. Inverse solutions for electrical impedance tomography based on conjugate gradients methods

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2002-01-01

    A multistep inverse solution for two-dimensional electric field distribution is developed to deal with the nonlinear inverse problem of electric field distribution in relation to its boundary condition and the problem of divergence due to errors introduced by the ill-conditioned sensitivity matrix and the noise produced by electrode modelling and instruments. This solution is based on a normalized linear approximation method where the change in mutual impedance is derived from the sensitivity theorem and a method of error vector decomposition. This paper presents an algebraic solution of the linear equations at each inverse step, using a generalized conjugate gradients method. Limiting the number of iterations in the generalized conjugate gradients method controls the artificial errors introduced by the assumption of linearity and the ill-conditioned sensitivity matrix. The solution of the nonlinear problem is approached using a multistep inversion. This paper also reviews the mathematical and physical definitions of the sensitivity back-projection algorithm based on the sensitivity theorem. Simulations and discussion based on the multistep algorithm, the sensitivity coefficient back-projection method and the Newton-Raphson method are given. Examples of imaging gas-liquid mixing and a human hand in brine are presented.

  13. Local CC2 response method based on the Laplace transform: analytic energy gradients for ground and excited states.

    PubMed

    Ledermüller, Katrin; Schütz, Martin

    2014-04-28

    A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest.

  14. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    NASA Astrophysics Data System (ADS)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to autotrophic respiration of the whole plot. I anticipate that heterotrophic processes contribute more to total Reco than the autotrophic ones and that they become more important with increasing water table.

  15. A Novel Tumor Antigen and Foxp3 Dual Targeting Tumor Cell Vaccine Enhances the Immunotherapy in a Murine Model of Renal Cell Carcinoma

    DTIC Science & Technology

    2015-12-01

    GTA TCC GAT GTC CAC AAT-30; CD206_fw 50-GCA AAT GGA GCC GTC TGT GC-30, CD206_rev 50-CTC GTG GAT CTC CGT GAC AC-30; Arg-1_fw 50- GTG AAG AAC CCA CGG TCT...GT-30, Arg-1_rev 50-CTG GTT GTC AGG GGA GTG TT-30; iNOS_fw 50-TGG TGG TGA CAA GCA CAT TT-30, iNOS_rev 50- AAG GCC AAA CAC AGC ATA CC-30; Cxcl9_fw 50

  16. Effect of biaxial strain on the magnetism of Fe16N2: Density-functional investigations

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Liu, Lijuan; Wu, Ping

    2014-02-01

    The effect of biaxial strain on the magnetism of α″-Fe16N2 was investigated by the first principles calculations. The GGA, GGA + U and HSE06 calculations give the same result that the magnetic moments increase with the biaxial strain in the ab plane. All non-equivalent Fe atoms contribute to the increase of magnetic moments, although the variations of inter-atomic distances between non-equivalent Fe and N are different. Additionally, the magnetic anisotropy of Fe16N2 could be controlled by the biaxial strain.

  17. Density functional theory (DFT) study on the hydrolysis behavior of degradable Mg/Mg alloys for biomedical applications

    NASA Astrophysics Data System (ADS)

    Nezafati, Marjan

    Magnesium-based (Mg and/or Mg alloys) materials possess many advantageous physicochemical/biological characteristics such as good biocompatibility and similarity of the mechanical properties to the human bone tissue, which renders this material a promising candidate for the biomedical and implant applications. One of the most attractive features of Mg-based materials is the degradability in the physiological environment. With the burst of research on the biodegradable materials for the healthcare device applications, Mg and its alloys attracted a strong attention in the bioengineering field in recent years. However, the major limitation of applying Mg-based materials to biomedical applications is the fast degradation/corrosion rate with regards to the healing process time-span. In the present thesis, an atomistic model employing the density-functional theory (DFT) has been developed to study the hydrolysis process by understanding the influences of commonly used alloying elements (zinc (Zn), calcium (Ca), aluminum (Al), and yttrium (Y)) and the crystallographic orientation of the dissolution surfaces (basal (0001), prism (1010), and pyramidal (1011) planes) on the corrosion behavior. These parameters are known to strongly impact the initial hydrolysis phenomena of Mg-based materials. To develop the atomistic computational model, we have implemented the Dmol3 software package in conjunction with PBE (Perdew, Burke and Ernzerhof) correlation energy functional in the GGA (generalized gradient approximation) scheme. Throughout the thesis, we performed three sets of calculations, i) surface energy, ii) dissolution potential, and iii) water adsorption computations, to examine the hydrolysis mechanism and the subsequent corrosion/degradation of Mg/Mg alloys. The total energy changes of various Mg-based systems in different conditions for these surface energies, dissolution behavior, and tendency of the system for adsorbing the water molecule were quantified. The results obtained from the atomistic model showed that these structural/compositional parameters (i.e., different types of alloying elements and surface planes) can considerably impact the stability of surfaces that are in contact with the corrosion media. The dissolution potential change computation predicted that Al can prevent the dissolution of Mg atoms from the surface of Mg-Al systems. In addition, it was found that the trend of water adsorption phenomena with different alloying elements/planes can be well-explained by the stability of corrosion surface.

  18. The Dropout Learning Algorithm

    PubMed Central

    Baldi, Pierre; Sadowski, Peter

    2014-01-01

    Dropout is a recently introduced algorithm for training neural network by randomly dropping units during training to prevent their co-adaptation. A mathematical analysis of some of the static and dynamic properties of dropout is provided using Bernoulli gating variables, general enough to accommodate dropout on units or connections, and with variable rates. The framework allows a complete analysis of the ensemble averaging properties of dropout in linear networks, which is useful to understand the non-linear case. The ensemble averaging properties of dropout in non-linear logistic networks result from three fundamental equations: (1) the approximation of the expectations of logistic functions by normalized geometric means, for which bounds and estimates are derived; (2) the algebraic equality between normalized geometric means of logistic functions with the logistic of the means, which mathematically characterizes logistic functions; and (3) the linearity of the means with respect to sums, as well as products of independent variables. The results are also extended to other classes of transfer functions, including rectified linear functions. Approximation errors tend to cancel each other and do not accumulate. Dropout can also be connected to stochastic neurons and used to predict firing rates, and to backpropagation by viewing the backward propagation as ensemble averaging in a dropout linear network. Moreover, the convergence properties of dropout can be understood in terms of stochastic gradient descent. Finally, for the regularization properties of dropout, the expectation of the dropout gradient is the gradient of the corresponding approximation ensemble, regularized by an adaptive weight decay term with a propensity for self-consistent variance minimization and sparse representations. PMID:24771879

  19. Environmental Assessment for North Central Texas Relay Node Site NO. RN8C915TX

    DTIC Science & Technology

    1993-02-11

    Relatively steep escarpments, reaching up to 20 percent in gradient , form boundaries between these incised river valleys and the surrounding plain...Pleistocene, approximately 11,500 to 7,500 years ago, when small bands composed of several families hunted megafauna such as bison and mammoth...conditions in the upper part Megafauna Large mammals such as bison and mammoths Native A generalized reference to an individual whose ancestry may be

  20. Numerical optimization in Hilbert space using inexact function and gradient evaluations

    NASA Technical Reports Server (NTRS)

    Carter, Richard G.

    1989-01-01

    Trust region algorithms provide a robust iterative technique for solving non-convex unstrained optimization problems, but in many instances it is prohibitively expensive to compute high accuracy function and gradient values for the method. Of particular interest are inverse and parameter estimation problems, since function and gradient evaluations involve numerically solving large systems of differential equations. A global convergence theory is presented for trust region algorithms in which neither function nor gradient values are known exactly. The theory is formulated in a Hilbert space setting so that it can be applied to variational problems as well as the finite dimensional problems normally seen in trust region literature. The conditions concerning allowable error are remarkably relaxed: relative errors in the gradient error condition is automatically satisfied if the error is orthogonal to the gradient approximation. A technique for estimating gradient error and improving the approximation is also presented.

Top