Sample records for generate complex contours

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaffney, David K., E-mail: david.gaffney@hci.utah.edu; King, Bronwyn; Viswanathan, Akila N.

    Purpose: The purpose of this study was to develop a radiation therapy (RT) contouring atlas and recommendations for women with postoperative and locally advanced vulvar carcinoma. Methods and Materials: An international committee of 35 expert gynecologic radiation oncologists completed a survey of the treatment of vulvar carcinoma. An initial set of recommendations for contouring was discussed and generated by consensus. Two cases, 1 locally advanced and 1 postoperative, were contoured by 14 physicians. Contours were compared and analyzed using an expectation-maximization algorithm for simultaneous truth and performance level estimation (STAPLE), and a 95% confidence interval contour was developed. The levelmore » of agreement among contours was assessed using a kappa statistic. STAPLE contours underwent full committee editing to generate the final atlas consensus contours. Results: Analysis of the 14 contours showed substantial agreement, with kappa statistics of 0.69 and 0.64 for cases 1 and 2, respectively. There was high specificity for both cases (≥99%) and only moderate sensitivity of 71.3% and 64.9% for cases 1 and 2, respectively. Expert review and discussion generated consensus recommendations for contouring target volumes and treatment for postoperative and locally advanced vulvar cancer. Conclusions: These consensus recommendations for contouring and treatment of vulvar cancer identified areas of complexity and controversy. Given the lack of clinical research evidence in vulvar cancer radiation therapy, the committee advocates a conservative and consistent approach using standardized recommendations.« less

  2. [Development of a Software for Automatically Generated Contours in Eclipse TPS].

    PubMed

    Xie, Zhao; Hu, Jinyou; Zou, Lian; Zhang, Weisha; Zou, Yuxin; Luo, Kelin; Liu, Xiangxiang; Yu, Luxin

    2015-03-01

    The automatic generation of planning targets and auxiliary contours have achieved in Eclipse TPS 11.0. The scripting language autohotkey was used to develop a software for automatically generated contours in Eclipse TPS. This software is named Contour Auto Margin (CAM), which is composed of operational functions of contours, script generated visualization and script file operations. RESULTS Ten cases in different cancers have separately selected, in Eclipse TPS 11.0 scripts generated by the software could not only automatically generate contours but also do contour post-processing. For different cancers, there was no difference between automatically generated contours and manually created contours. The CAM is a user-friendly and powerful software, and can automatically generated contours fast in Eclipse TPS 11.0. With the help of CAM, it greatly save plan preparation time and improve working efficiency of radiation therapy physicists.

  3. Advanced metrology by offline SEM data processing

    NASA Astrophysics Data System (ADS)

    Lakcher, Amine; Schneider, Loïc.; Le-Gratiet, Bertrand; Ducoté, Julien; Farys, Vincent; Besacier, Maxime

    2017-06-01

    Today's technology nodes contain more and more complex designs bringing increasing challenges to chip manufacturing process steps. It is necessary to have an efficient metrology to assess process variability of these complex patterns and thus extract relevant data to generate process aware design rules and to improve OPC models. Today process variability is mostly addressed through the analysis of in-line monitoring features which are often designed to support robust measurements and as a consequence are not always very representative of critical design rules. CD-SEM is the main CD metrology technique used in chip manufacturing process but it is challenged when it comes to measure metrics like tip to tip, tip to line, areas or necking in high quantity and with robustness. CD-SEM images contain a lot of information that is not always used in metrology. Suppliers have provided tools that allow engineers to extract the SEM contours of their features and to convert them into a GDS. Contours can be seen as the signature of the shape as it contains all the dimensional data. Thus the methodology is to use the CD-SEM to take high quality images then generate SEM contours and create a data base out of them. Contours are used to feed an offline metrology tool that will process them to extract different metrics. It was shown in two previous papers that it is possible to perform complex measurements on hotspots at different process steps (lithography, etch, copper CMP) by using SEM contours with an in-house offline metrology tool. In the current paper, the methodology presented previously will be expanded to improve its robustness and combined with the use of phylogeny to classify the SEM images according to their geometrical proximities.

  4. Contouring variability of human- and deformable-generated contours in radiotherapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Gardner, Stephen J.; Wen, Ning; Kim, Jinkoo; Liu, Chang; Pradhan, Deepak; Aref, Ibrahim; Cattaneo, Richard, II; Vance, Sean; Movsas, Benjamin; Chetty, Indrin J.; Elshaikh, Mohamed A.

    2015-06-01

    This study was designed to evaluate contouring variability of human-and deformable-generated contours on planning CT (PCT) and CBCT for ten patients with low-or intermediate-risk prostate cancer. For each patient in this study, five radiation oncologists contoured the prostate, bladder, and rectum, on one PCT dataset and five CBCT datasets. Consensus contours were generated using the STAPLE method in the CERR software package. Observer contours were compared to consensus contour, and contour metrics (Dice coefficient, Hausdorff distance, Contour Distance, Center-of-Mass [COM] Deviation) were calculated. In addition, the first day CBCT was registered to subsequent CBCT fractions (CBCTn: CBCT2-CBCT5) via B-spline Deformable Image Registration (DIR). Contours were transferred from CBCT1 to CBCTn via the deformation field, and contour metrics were calculated through comparison with consensus contours generated from human contour set. The average contour metrics for prostate contours on PCT and CBCT were as follows: Dice coefficient—0.892 (PCT), 0.872 (CBCT-Human), 0.824 (CBCT-Deformed); Hausdorff distance—4.75 mm (PCT), 5.22 mm (CBCT-Human), 5.94 mm (CBCT-Deformed); Contour Distance (overall contour)—1.41 mm (PCT), 1.66 mm (CBCT-Human), 2.30 mm (CBCT-Deformed); COM Deviation—2.01 mm (PCT), 2.78 mm (CBCT-Human), 3.45 mm (CBCT-Deformed). For human contours on PCT and CBCT, the difference in average Dice coefficient between PCT and CBCT (approx. 2%) and Hausdorff distance (approx. 0.5 mm) was small compared to the variation between observers for each patient (standard deviation in Dice coefficient of 5% and Hausdorff distance of 2.0 mm). However, additional contouring variation was found for the deformable-generated contours (approximately 5.0% decrease in Dice coefficient and 0.7 mm increase in Hausdorff distance relative to human-generated contours on CBCT). Though deformable contours provide a reasonable starting point for contouring on CBCT, we conclude that contours generated with B-Spline DIR require physician review and editing if they are to be used in the clinic.

  5. The role of shape complexity in the detection of closed contours.

    PubMed

    Wilder, John; Feldman, Jacob; Singh, Manish

    2016-09-01

    The detection of contours in noise has been extensively studied, but the detection of closed contours, such as the boundaries of whole objects, has received relatively little attention. Closed contours pose substantial challenges not present in the simple (open) case, because they form the outlines of whole shapes and thus take on a range of potentially important configural properties. In this paper we consider the detection of closed contours in noise as a probabilistic decision problem. Previous work on open contours suggests that contour complexity, quantified as the negative log probability (Description Length, DL) of the contour under a suitably chosen statistical model, impairs contour detectability; more complex (statistically surprising) contours are harder to detect. In this study we extended this result to closed contours, developing a suitable probabilistic model of whole shapes that gives rise to several distinct though interrelated measures of shape complexity. We asked subjects to detect either natural shapes (Exp. 1) or experimentally manipulated shapes (Exp. 2) embedded in noise fields. We found systematic effects of global shape complexity on detection performance, demonstrating how aspects of global shape and form influence the basic process of object detection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Automated consensus contour building for prostate MRI.

    PubMed

    Khalvati, Farzad

    2014-01-01

    Inter-observer variability is the lack of agreement among clinicians in contouring a given organ or tumour in a medical image. The variability in medical image contouring is a source of uncertainty in radiation treatment planning. Consensus contour of a given case, which was proposed to reduce the variability, is generated by combining the manually generated contours of several clinicians. However, having access to several clinicians (e.g., radiation oncologists) to generate a consensus contour for one patient is costly. This paper presents an algorithm that automatically generates a consensus contour for a given case using the atlases of different clinicians. The algorithm was applied to prostate MR images of 15 patients manually contoured by 5 clinicians. The automatic consensus contours were compared to manual consensus contours where a median Dice similarity coefficient (DSC) of 88% was achieved.

  7. Focusators for laser-branding

    NASA Astrophysics Data System (ADS)

    Doskolovich, L. L.; Kazanskiy, N. L.; Kharitonov, S. I.; Uspleniev, G. V.

    A new method is investigated for synthesis of computer-generated optical elements: focusators that are able to focus the radial-symmetrical laser beam into complex focal contours, in particular into alphanumeric symbols. The method is based on decomposition of the focal contour into segments of straight lines and semi-circles, following corresponding spacing out of the focusator on elementary segments (concentric rings or sectors) and solution of the inverse task of focusing from focusator segments into corresponding elements of the focal contour. The results of numerical computing of the field from synthesized focusators into the letters are presented. The theoretical efficiency of the focusators discussed is no less than 85%. The amplitude masks and the results of operational studies of synthesized focusators are presented.

  8. Generation of 3-D surface maps in waste storage silos using a structured light source

    NASA Technical Reports Server (NTRS)

    Burks, B. L.; Rowe, J. C.; Dinkins, M. A.; Christensen, B.; Selleck, C.; Jacoboski, D.; Markus, R.

    1992-01-01

    Surface contours inside the large waste storage tanks typical of the Department of Energy (DOE) complex are, in general, highly irregular. In addition to pipes and other pieces of equipment in the tanks, the surfaces may have features such as mounds, fissures, crystalline structures, and mixed solid and liquid forms. Prior to remediation activities, it will be necessary to characterize the waste to determine the most effective remediation approaches. Surface contour data will be required both prior to and during remediation. The use is described of a structured light source to generate 3-D surface contour maps of the interior of waste storage silos at the Feed Materials Production Center at Fernald, OH. The landscape inside these large waste storage tanks bears a strong resemblance to some of the landscapes that might be encountered during lunar or planetary exploration. Hence, these terrestrial 3-D mapping techniques may be directly applicable to extraterrestrial exploration. In further development, it will be demonstrated that these 3-D data can be used for robotic task planning just as 3-D surface contour data of a satellite could be used to plan maintenance tasks for a space-based servicing robot.

  9. Expert Consensus Contouring Guidelines for Intensity Modulated Radiation Therapy in Esophageal and Gastroesophageal Junction Cancer.

    PubMed

    Wu, Abraham J; Bosch, Walter R; Chang, Daniel T; Hong, Theodore S; Jabbour, Salma K; Kleinberg, Lawrence R; Mamon, Harvey J; Thomas, Charles R; Goodman, Karyn A

    2015-07-15

    Current guidelines for esophageal cancer contouring are derived from traditional 2-dimensional fields based on bony landmarks, and they do not provide sufficient anatomic detail to ensure consistent contouring for more conformal radiation therapy techniques such as intensity modulated radiation therapy (IMRT). Therefore, we convened an expert panel with the specific aim to derive contouring guidelines and generate an atlas for the clinical target volume (CTV) in esophageal or gastroesophageal junction (GEJ) cancer. Eight expert academically based gastrointestinal radiation oncologists participated. Three sample cases were chosen: a GEJ cancer, a distal esophageal cancer, and a mid-upper esophageal cancer. Uniform computed tomographic (CT) simulation datasets and accompanying diagnostic positron emission tomographic/CT images were distributed to each expert, and the expert was instructed to generate gross tumor volume (GTV) and CTV contours for each case. All contours were aggregated and subjected to quantitative analysis to assess the degree of concordance between experts and to generate draft consensus contours. The panel then refined these contours to generate the contouring atlas. The κ statistics indicated substantial agreement between panelists for each of the 3 test cases. A consensus CTV atlas was generated for the 3 test cases, each representing common anatomic presentations of esophageal cancer. The panel agreed on guidelines and principles to facilitate the generalizability of the atlas to individual cases. This expert panel successfully reached agreement on contouring guidelines for esophageal and GEJ IMRT and generated a reference CTV atlas. This atlas will serve as a reference for IMRT contours for clinical practice and prospective trial design. Subsequent patterns of failure analyses of clinical datasets using these guidelines may require modification in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Expert consensus contouring guidelines for IMRT in esophageal and gastroesophageal junction cancer

    PubMed Central

    Wu, Abraham J.; Bosch, Walter R.; Chang, Daniel T.; Hong, Theodore S.; Jabbour, Salma K.; Kleinberg, Lawrence R.; Mamon, Harvey J.; Thomas, Charles R.; Goodman, Karyn A.

    2015-01-01

    Purpose/Objective(s) Current guidelines for esophageal cancer contouring are derived from traditional two-dimensional fields based on bony landmarks, and do not provide sufficient anatomical detail to ensure consistent contouring for more conformal radiotherapy techniques such as intensity-modulated radiation therapy (IMRT). Therefore, we convened an expert panel with the specific aim to derive contouring guidelines and generate an atlas for the clinical target volume (CTV) in esophageal or gastroesophageal junction (GEJ) cancer. Methods and Materials Eight expert academically-based gastrointestinal radiation oncologists participated. Three sample cases were chosen: a GEJ cancer, a distal esophageal cancer, and a mid-upper esophageal cancer. Uniform CT simulation datasets and an accompanying diagnostic PET-CT were distributed to each expert, and he/she was instructed to generate gross tumor volume (GTV) and CTV contours for each case. All contours were aggregated and subjected to quantitative analysis to assess the degree of concordance between experts and generate draft consensus contours. The panel then refined these contours to generate the contouring atlas. Results Kappa statistics indicated substantial agreement between panelists for each of the three test cases. A consensus CTV atlas was generated for the three test cases, each representing common anatomic presentations of esophageal cancer. The panel agreed on guidelines and principles to facilitate the generalizability of the atlas to individual cases. Conclusions This expert panel successfully reached agreement on contouring guidelines for esophageal and GEJ IMRT and generated a reference CTV atlas. This atlas will serve as a reference for IMRT contours for clinical practice and prospective trial design. Subsequent patterns of failure analyses of clinical datasets utilizing these guidelines may require modification in the future. PMID:26104943

  11. Expert Consensus Contouring Guidelines for Intensity Modulated Radiation Therapy in Esophageal and Gastroesophageal Junction Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Abraham J., E-mail: wua@mskcc.org; Bosch, Walter R.; Chang, Daniel T.

    Purpose/Objective(s): Current guidelines for esophageal cancer contouring are derived from traditional 2-dimensional fields based on bony landmarks, and they do not provide sufficient anatomic detail to ensure consistent contouring for more conformal radiation therapy techniques such as intensity modulated radiation therapy (IMRT). Therefore, we convened an expert panel with the specific aim to derive contouring guidelines and generate an atlas for the clinical target volume (CTV) in esophageal or gastroesophageal junction (GEJ) cancer. Methods and Materials: Eight expert academically based gastrointestinal radiation oncologists participated. Three sample cases were chosen: a GEJ cancer, a distal esophageal cancer, and a mid-upper esophagealmore » cancer. Uniform computed tomographic (CT) simulation datasets and accompanying diagnostic positron emission tomographic/CT images were distributed to each expert, and the expert was instructed to generate gross tumor volume (GTV) and CTV contours for each case. All contours were aggregated and subjected to quantitative analysis to assess the degree of concordance between experts and to generate draft consensus contours. The panel then refined these contours to generate the contouring atlas. Results: The κ statistics indicated substantial agreement between panelists for each of the 3 test cases. A consensus CTV atlas was generated for the 3 test cases, each representing common anatomic presentations of esophageal cancer. The panel agreed on guidelines and principles to facilitate the generalizability of the atlas to individual cases. Conclusions: This expert panel successfully reached agreement on contouring guidelines for esophageal and GEJ IMRT and generated a reference CTV atlas. This atlas will serve as a reference for IMRT contours for clinical practice and prospective trial design. Subsequent patterns of failure analyses of clinical datasets using these guidelines may require modification in the future.« less

  12. Contributions of divergent and nondivergent winds to the kinetic energy balance of a severe storm environment

    NASA Technical Reports Server (NTRS)

    Browning, P. A.; Fuelberg, H. E.

    1983-01-01

    Divergent and rotational components of the synoptic scale kinetic energy balance are presented using rawinsonde data at 3 and 6 h intervals from the Atmospheric Variability Experiment (AVE 4). Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclose and move with the convection. Although small in magnitude, the divergent wind component played an important role in the cross contour generation and horizontal flux divergence of kinetic energy. The importance of V sub D appears directly to the presence and intensity of convection within the area. Although K sub D usually comprised less than 10 percent of the total kinetic energy content within the storm environment, as much as 87 percent of the total horizontal flux divergence and 68 percent of the total cross contour generation was due to the divergent component in the upper atmosphere. Generation of kinetic energy by the divergent component appears to be a major factor in the creation of an upper level wind maximum on the poleward side of one of the complexes. A random error analysis is presented to assess confidence limits in the various energy parameters.

  13. GPU based contouring method on grid DEM data

    NASA Astrophysics Data System (ADS)

    Tan, Liheng; Wan, Gang; Li, Feng; Chen, Xiaohui; Du, Wenlong

    2017-08-01

    This paper presents a novel method to generate contour lines from grid DEM data based on the programmable GPU pipeline. The previous contouring approaches often use CPU to construct a finite element mesh from the raw DEM data, and then extract contour segments from the elements. They also need a tracing or sorting strategy to generate the final continuous contours. These approaches can be heavily CPU-costing and time-consuming. Meanwhile the generated contours would be unsmooth if the raw data is sparsely distributed. Unlike the CPU approaches, we employ the GPU's vertex shader to generate a triangular mesh with arbitrary user-defined density, in which the height of each vertex is calculated through a third-order Cardinal spline function. Then in the same frame, segments are extracted from the triangles by the geometry shader, and translated to the CPU-side with an internal order in the GPU's transform feedback stage. Finally we propose a "Grid Sorting" algorithm to achieve the continuous contour lines by travelling the segments only once. Our method makes use of multiple stages of GPU pipeline for computation, which can generate smooth contour lines, and is significantly faster than the previous CPU approaches. The algorithm can be easily implemented with OpenGL 3.3 API or higher on consumer-level PCs.

  14. Evaluation of atlas-based auto-segmentation software in prostate cancer patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenham, Stuart, E-mail: stuart.greenham@ncahs.health.nsw.gov.au; Dean, Jenna; Fu, Cheuk Kuen Kenneth

    2014-09-15

    The performance and limitations of an atlas-based auto-segmentation software package (ABAS; Elekta Inc.) was evaluated using male pelvic anatomy as the area of interest. Contours from 10 prostate patients were selected to create atlases in ABAS. The contoured regions of interest were created manually to align with published guidelines and included the prostate, bladder, rectum, femoral heads and external patient contour. Twenty-four clinically treated prostate patients were auto-contoured using a randomised selection of two, four, six, eight or ten atlases. The concordance between the manually drawn and computer-generated contours were evaluated statistically using Pearson's product–moment correlation coefficient (r) and clinicallymore » in a validated qualitative evaluation. In the latter evaluation, six radiation therapists classified the degree of agreement for each structure using seven clinically appropriate categories. The ABAS software generated clinically acceptable contours for the bladder, rectum, femoral heads and external patient contour. For these structures, ABAS-generated volumes were highly correlated with ‘as treated’ volumes, manually drawn; for four atlases, for example, bladder r = 0.988 (P < 0.001), rectum r = 0.739 (P < 0.001) and left femoral head r = 0.560 (P < 0.001). Poorest results were seen for the prostate (r = 0.401, P < 0.05) (four atlases); however this was attributed to the comparison prostate volume being contoured on magnetic resonance imaging (MRI) rather than computed tomography (CT) data. For all structures, increasing the number of atlases did not consistently improve accuracy. ABAS-generated contours are clinically useful for a range of structures in the male pelvis. Clinically appropriate volumes were created, but editing of some contours was inevitably required. The ideal number of atlases to improve generated automatic contours is yet to be determined.« less

  15. Learning to Link Visual Contours

    PubMed Central

    Li, Wu; Piëch, Valentin; Gilbert, Charles D.

    2008-01-01

    SUMMARY In complex visual scenes, linking related contour elements is important for object recognition. This process, thought to be stimulus driven and hard wired, has substrates in primary visual cortex (V1). Here, however, we find contour integration in V1 to depend strongly on perceptual learning and top-down influences that are specific to contour detection. In naive monkeys the information about contours embedded in complex backgrounds is absent in V1 neuronal responses, and is independent of the locus of spatial attention. Training animals to find embedded contours induces strong contour-related responses specific to the trained retinotopic region. These responses are most robust when animals perform the contour detection task, but disappear under anesthesia. Our findings suggest that top-down influences dynamically adapt neural circuits according to specific perceptual tasks. This may serve as a general neuronal mechanism of perceptual learning, and reflect top-down mediated changes in cortical states. PMID:18255036

  16. A Voronoi interior adjacency-based approach for generating a contour tree

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Qiao, Chaofei; Zhao, Renliang

    2004-05-01

    A contour tree is a good graphical tool for representing the spatial relations of contour lines and has found many applications in map generalization, map annotation, terrain analysis, etc. A new approach for generating contour trees by introducing a Voronoi-based interior adjacency set concept is proposed in this paper. The immediate interior adjacency set is employed to identify all of the children contours of each contour without contour elevations. It has advantages over existing methods such as the point-in-polygon method and the region growing-based method. This new approach can be used for spatial data mining and knowledge discovering, such as the automatic extraction of terrain features and construction of multi-resolution digital elevation model.

  17. On Machine Capacitance Dimensional and Surface Profile Measurement System

    NASA Technical Reports Server (NTRS)

    Resnick, Ralph

    1993-01-01

    A program was awarded under the Air Force Machine Tool Sensor Improvements Program Research and Development Announcement to develop and demonstrate the use of a Capacitance Sensor System including Capacitive Non-Contact Analog Probe and a Capacitive Array Dimensional Measurement System to check the dimensions of complex shapes and contours on a machine tool or in an automated inspection cell. The manufacturing of complex shapes and contours and the subsequent verification of those manufactured shapes is fundamental and widespread throughout industry. The critical profile of a gear tooth; the overall shape of a graphite EDM electrode; the contour of a turbine blade in a jet engine; and countless other components in varied applications possess complex shapes that require detailed and complex inspection procedures. Current inspection methods for complex shapes and contours are expensive, time-consuming, and labor intensive.

  18. Space shuttle main engine computed tomography applications

    NASA Technical Reports Server (NTRS)

    Sporny, Richard F.

    1990-01-01

    For the past two years the potential applications of computed tomography to the fabrication and overhaul of the Space Shuttle Main Engine were evaluated. Application tests were performed at various government and manufacturer facilities with equipment produced by four different manufacturers. The hardware scanned varied in size and complexity from a small temperature sensor and turbine blades to an assembled heat exchanger and main injector oxidizer inlet manifold. The evaluation of capabilities included the ability to identify and locate internal flaws, measure the depth of surface cracks, measure wall thickness, compare manifold design contours to actual part contours, perform automatic dimensional inspections, generate 3D computer models of actual parts, and image the relationship of the details in a complex assembly. The capabilities evaluated, with the exception of measuring the depth of surface flaws, demonstrated the existing and potential ability to perform many beneficial Space Shuttle Main Engine applications.

  19. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer.

    PubMed

    Lustberg, Tim; van Soest, Johan; Gooding, Mark; Peressutti, Devis; Aljabar, Paul; van der Stoep, Judith; van Elmpt, Wouter; Dekker, Andre

    2018-02-01

    Contouring of organs at risk (OARs) is an important but time consuming part of radiotherapy treatment planning. The aim of this study was to investigate whether using institutional created software-generated contouring will save time if used as a starting point for manual OAR contouring for lung cancer patients. Twenty CT scans of stage I-III NSCLC patients were used to compare user adjusted contours after an atlas-based and deep learning contour, against manual delineation. The lungs, esophagus, spinal cord, heart and mediastinum were contoured for this study. The time to perform the manual tasks was recorded. With a median time of 20 min for manual contouring, the total median time saved was 7.8 min when using atlas-based contouring and 10 min for deep learning contouring. Both atlas based and deep learning adjustment times were significantly lower than manual contouring time for all OARs except for the left lung and esophagus of the atlas based contouring. User adjustment of software generated contours is a viable strategy to reduce contouring time of OARs for lung radiotherapy while conforming to local clinical standards. In addition, deep learning contouring shows promising results compared to existing solutions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. An approach to contouring the dorsal vagal complex for radiotherapy planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Steen, Lillie; Amdur, Robert J., E-mail: amdurr@shands.ufl.edu

    Multiple studies suggest that radiation dose to the area of the brainstem called the “dorsal vagal complex (DVC)” influences the frequency of nausea and vomiting during radiotherapy. The purpose of this didactic article is to describe the step-by-step process that we use to contour the general area of the DVC on axial computed tomography (CT) images as would be done for radiotherapy planning. The contouring procedure that we describe for contouring the area of the DVC is useful to medical dosimetrists and radiation oncologists.

  1. Earthquake Potential of the St. Louis District

    DTIC Science & Technology

    1981-02-01

    The trends of the fault plane solutions strike northwest, northeast, and north-south indicating a complex generating mechanism . The focal depth for...thrust, strike-slip, oblique) is of prime importance in understanding seismic activity. Focal Mechanism Studies: A common method of obtaining regional... focal mechanisms , and to better understand magnitude-recurrence relations. Gravity and Magnetics: Gravity and magnetic contours may be used to

  2. DEM generation from contours and a low-resolution DEM

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Shen, Huanfeng; Feng, Ruitao; Li, Jie; Zhang, Liangpei

    2017-12-01

    A digital elevation model (DEM) is a virtual representation of topography, where the terrain is established by the three-dimensional co-ordinates. In the framework of sparse representation, this paper investigates DEM generation from contours. Since contours are usually sparsely distributed and closely related in space, sparse spatial regularization (SSR) is enforced on them. In order to make up for the lack of spatial information, another lower spatial resolution DEM from the same geographical area is introduced. In this way, the sparse representation implements the spatial constraints in the contours and extracts the complementary information from the auxiliary DEM. Furthermore, the proposed method integrates the advantage of the unbiased estimation of kriging. For brevity, the proposed method is called the kriging and sparse spatial regularization (KSSR) method. The performance of the proposed KSSR method is demonstrated by experiments in Shuttle Radar Topography Mission (SRTM) 30 m DEM and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 30 m global digital elevation model (GDEM) generation from the corresponding contours and a 90 m DEM. The experiments confirm that the proposed KSSR method outperforms the traditional kriging and SSR methods, and it can be successfully used for DEM generation from contours.

  3. A shape-based inter-layer contours correspondence method for ICT-based reverse engineering

    PubMed Central

    Duan, Liming; Yang, Shangpeng; Zhang, Gui; Feng, Fei; Gu, Minghui

    2017-01-01

    The correspondence of a stack of planar contours in ICT (industrial computed tomography)-based reverse engineering, a key step in surface reconstruction, is difficult when the contours or topology of the object are complex. Given the regularity of industrial parts and similarity of the inter-layer contours, a specialized shape-based inter-layer contours correspondence method for ICT-based reverse engineering was presented to solve the above problem based on the vectorized contours. In this paper, the vectorized contours extracted from the slices consist of three graphical primitives: circles, arcs and segments. First, the correspondence of the inter-layer primitives is conducted based on the characteristics of the primitives. Second, based on the corresponded primitives, the inter-layer contours correspond with each other using the proximity rules and exhaustive search. The proposed method can make full use of the shape information to handle industrial parts with complex structures. The feasibility and superiority of this method have been demonstrated via the related experiments. This method can play an instructive role in practice and provide a reference for the related research. PMID:28489867

  4. A shape-based inter-layer contours correspondence method for ICT-based reverse engineering.

    PubMed

    Duan, Liming; Yang, Shangpeng; Zhang, Gui; Feng, Fei; Gu, Minghui

    2017-01-01

    The correspondence of a stack of planar contours in ICT (industrial computed tomography)-based reverse engineering, a key step in surface reconstruction, is difficult when the contours or topology of the object are complex. Given the regularity of industrial parts and similarity of the inter-layer contours, a specialized shape-based inter-layer contours correspondence method for ICT-based reverse engineering was presented to solve the above problem based on the vectorized contours. In this paper, the vectorized contours extracted from the slices consist of three graphical primitives: circles, arcs and segments. First, the correspondence of the inter-layer primitives is conducted based on the characteristics of the primitives. Second, based on the corresponded primitives, the inter-layer contours correspond with each other using the proximity rules and exhaustive search. The proposed method can make full use of the shape information to handle industrial parts with complex structures. The feasibility and superiority of this method have been demonstrated via the related experiments. This method can play an instructive role in practice and provide a reference for the related research.

  5. Normal contour error measurement on-machine and compensation method for polishing complex surface by MRF

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Chen, Jihong; Wang, Baorui; Zheng, Yongcheng

    2016-10-01

    The Magnetorheological finishing (MRF) process, based on the dwell time method with the constant normal spacing for flexible polishing, would bring out the normal contour error in the fine polishing complex surface such as aspheric surface. The normal contour error would change the ribbon's shape and removal characteristics of consistency for MRF. Based on continuously scanning the normal spacing between the workpiece and the finder by the laser range finder, the novel method was put forward to measure the normal contour errors while polishing complex surface on the machining track. The normal contour errors was measured dynamically, by which the workpiece's clamping precision, multi-axis machining NC program and the dynamic performance of the MRF machine were achieved for the verification and security check of the MRF process. The unit for measuring the normal contour errors of complex surface on-machine was designed. Based on the measurement unit's results as feedback to adjust the parameters of the feed forward control and the multi-axis machining, the optimized servo control method was presented to compensate the normal contour errors. The experiment for polishing 180mm × 180mm aspherical workpiece of fused silica by MRF was set up to validate the method. The results show that the normal contour error was controlled in less than 10um. And the PV value of the polished surface accuracy was improved from 0.95λ to 0.09λ under the conditions of the same process parameters. The technology in the paper has been being applied in the PKC600-Q1 MRF machine developed by the China Academe of Engineering Physics for engineering application since 2014. It is being used in the national huge optical engineering for processing the ultra-precision optical parts.

  6. Feasibility study consisting of a review of contour generation methods from stereograms

    NASA Technical Reports Server (NTRS)

    Kim, C. J.; Wyant, J. C.

    1980-01-01

    A review of techniques for obtaining contour information from stereo pairs is given. Photogrammetric principles including a description of stereoscopic vision are presented. The use of conventional contour generation methods, such as the photogrammetric plotting technique, electronic correlator, and digital correlator are described. Coherent optical techniques for contour generation are discussed and compared to the electronic correlator. The optical techniques are divided into two categories: (1) image plane operation and (2) frequency plane operation. The description of image plane correlators are further divided into three categories: (1) image to image correlator, (2) interferometric correlator, and (3) positive negative transparencies. The frequency plane correlators are divided into two categories: (1) correlation of Fourier transforms, and (2) filtering techniques.

  7. Molecular dynamic simulations and structure-based pharmacophore development for farnesyltransferase inhibitors discovery.

    PubMed

    Moorthy, N S Hari Narayana; Sousa, Sergio F; Ramos, Maria J; Fernandes, Pedro A

    2016-12-01

    Farnesyltransferase is one of the enzyme targets for the development of drugs for diseases, including cancer, malaria, progeria, etc. In the present study, the structure-based pharmacophore models have been developed from five complex structures (1LD7, 1NI1, 2IEJ, 2ZIR and 2ZIS) obtained from the protein data bank. Initially, molecular dynamic (MD) simulations were performed for the complexes for 10 ns using AMBER 12 software. The conformers of the complexes (75) generated from the equilibrated protein were undergone protein-ligand interaction fingerprint (PLIF) analysis. The results showed that some important residues, such as LeuB96, TrpB102, TrpB106, ArgB202, TyrB300, AspB359 and TyrB361, are predominantly present in most of the complexes for interactions. These residues form side chain acceptor and surface (hydrophobic or π-π) kind of interactions with the ligands present in the complexes. The structure-based pharmacophore models were generated from the fingerprint bits obtained from PLIF analysis. The pharmacophore models have 3-4 pharmacophore contours consist of acceptor and metal ligation (Acc & ML), hydrophobic (HydA) and extended acceptor (Acc2) features with the radius ranging between 1-3 Å for Acc & ML and 1-2 Å for HydA. The excluded volumes of the pharmacophore contours radius are between 1-2 Å. Further, the distance between the interacting groups, root mean square deviation (RMSD), root mean square fluctuation (RMSF) and radial distribution function (RDF) analysis were performed for the MD-simulated proteins using PTRAJ module. The generated pharmacophore models were used to screen a set of natural compounds and database compounds to select significant HITs. We conclude that the developed pharmacophore model can be a significant model for the identification of HITs as FTase inhibitors.

  8. Salient contour extraction from complex natural scene in night vision image

    NASA Astrophysics Data System (ADS)

    Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lian-fa

    2014-03-01

    The theory of center-surround interaction in non-classical receptive field can be applied in night vision information processing. In this work, an optimized compound receptive field modulation method is proposed to extract salient contour from complex natural scene in low-light-level (LLL) and infrared images. The kernel idea is that multi-feature analysis can recognize the inhomogeneity in modulatory coverage more accurately and that center and surround with the grouping structure satisfying Gestalt rule deserves high connection-probability. Computationally, a multi-feature contrast weighted inhibition model is presented to suppress background and lower mutual inhibition among contour elements; a fuzzy connection facilitation model is proposed to achieve the enhancement of contour response, the connection of discontinuous contour and the further elimination of randomly distributed noise and texture; a multi-scale iterative attention method is designed to accomplish dynamic modulation process and extract contours of targets in multi-size. This work provides a series of biologically motivated computational visual models with high-performance for contour detection from cluttered scene in night vision images.

  9. Automatic segmentation of mitochondria in EM data using pairwise affinity factorization and graph-based contour searching.

    PubMed

    Ghita, Ovidiu; Dietlmeier, Julia; Whelan, Paul F

    2014-10-01

    In this paper, we investigate the segmentation of closed contours in subcellular data using a framework that primarily combines the pairwise affinity grouping principles with a graph partitioning contour searching approach. One salient problem that precluded the application of these methods to large scale segmentation problems is the onerous computational complexity required to generate comprehensive representations that include all pairwise relationships between all pixels in the input data. To compensate for this problem, a practical solution is to reduce the complexity of the input data by applying an over-segmentation technique prior to the application of the computationally demanding strands of the segmentation process. This approach opens the opportunity to build specific shape and intensity models that can be successfully employed to extract the salient structures in the input image which are further processed to identify the cycles in an undirected graph. The proposed framework has been applied to the segmentation of mitochondria membranes in electron microscopy data which are characterized by low contrast and low signal-to-noise ratio. The algorithm has been quantitatively evaluated using two datasets where the segmentation results have been compared with the corresponding manual annotations. The performance of the proposed algorithm has been measured using standard metrics, such as precision and recall, and the experimental results indicate a high level of segmentation accuracy.

  10. Application of snakes and dynamic programming optimisation technique in modeling of buildings in informal settlement areas

    NASA Astrophysics Data System (ADS)

    Rüther, Heinz; Martine, Hagai M.; Mtalo, E. G.

    This paper presents a novel approach to semiautomatic building extraction in informal settlement areas from aerial photographs. The proposed approach uses a strategy of delineating buildings by optimising their approximate building contour position. Approximate building contours are derived automatically by locating elevation blobs in digital surface models. Building extraction is then effected by means of the snakes algorithm and the dynamic programming optimisation technique. With dynamic programming, the building contour optimisation problem is realized through a discrete multistage process and solved by the "time-delayed" algorithm, as developed in this work. The proposed building extraction approach is a semiautomatic process, with user-controlled operations linking fully automated subprocesses. Inputs into the proposed building extraction system are ortho-images and digital surface models, the latter being generated through image matching techniques. Buildings are modeled as "lumps" or elevation blobs in digital surface models, which are derived by altimetric thresholding of digital surface models. Initial windows for building extraction are provided by projecting the elevation blobs centre points onto an ortho-image. In the next step, approximate building contours are extracted from the ortho-image by region growing constrained by edges. Approximate building contours thus derived are inputs into the dynamic programming optimisation process in which final building contours are established. The proposed system is tested on two study areas: Marconi Beam in Cape Town, South Africa, and Manzese in Dar es Salaam, Tanzania. Sixty percent of buildings in the study areas have been extracted and verified and it is concluded that the proposed approach contributes meaningfully to the extraction of buildings in moderately complex and crowded informal settlement areas.

  11. In search of the `impenetrable' volume of a molecule in a noncovalent complex

    NASA Astrophysics Data System (ADS)

    Murray, Jane S.; Politzer, Peter

    2018-03-01

    We propose to characterise the "impenetrable" volumes of molecules A and B in a complex A--B by finding that contour of its electronic density that separates the molecular surfaces of A and B but leaves them almost touching. The volume of the complex within that contour is always less than within the 0.001 au contour. The percent difference measures the interpenetration of the two molecules at equilibrium, and is found to directly correlate with the binding energy of the complex. We interpret the volume of each molecule that is enclosed by the almost-touching contour as that molecule's impenetrable volume relative to its particular partner. The percents by which the molecules' relative impenetrable volumes differ from their 0.001 au volumes in the free states also correlate with the strengths of the interactions. This allows the "absolute" impenetrable volume of any molecule to be estimated as ∼25% of its 0.001 au volume in the free state. However this absolute impenetrable volume is only approached by the molecule in a relatively strong interaction.

  12. SU-E-J-109: Accurate Contour Transfer Between Different Image Modalities Using a Hybrid Deformable Image Registration and Fuzzy Connected Image Segmentation Method.

    PubMed

    Yang, C; Paulson, E; Li, X

    2012-06-01

    To develop and evaluate a tool that can improve the accuracy of contour transfer between different image modalities under challenging conditions of low image contrast and large image deformation, comparing to a few commonly used methods, for radiation treatment planning. The software tool includes the following steps and functionalities: (1) accepting input of images of different modalities, (2) converting existing contours on reference images (e.g., MRI) into delineated volumes and adjusting the intensity within the volumes to match target images (e.g., CT) intensity distribution for enhanced similarity metric, (3) registering reference and target images using appropriate deformable registration algorithms (e.g., B-spline, demons) and generate deformed contours, (4) mapping the deformed volumes on target images, calculating mean, variance, and center of mass as the initialization parameters for consecutive fuzzy connectedness (FC) image segmentation on target images, (5) generate affinity map from FC segmentation, (6) achieving final contours by modifying the deformed contours using the affinity map with a gradient distance weighting algorithm. The tool was tested with the CT and MR images of four pancreatic cancer patients acquired at the same respiration phase to minimize motion distortion. Dice's Coefficient was calculated against direct delineation on target image. Contours generated by various methods, including rigid transfer, auto-segmentation, deformable only transfer and proposed method, were compared. Fuzzy connected image segmentation needs careful parameter initialization and user involvement. Automatic contour transfer by multi-modality deformable registration leads up to 10% of accuracy improvement over the rigid transfer. Two extra proposed steps of adjusting intensity distribution and modifying the deformed contour with affinity map improve the transfer accuracy further to 14% averagely. Deformable image registration aided by contrast adjustment and fuzzy connectedness segmentation improves the contour transfer accuracy between multi-modality images, particularly with large deformation and low image contrast. © 2012 American Association of Physicists in Medicine.

  13. Character feature integration of Chinese calligraphy and font

    NASA Astrophysics Data System (ADS)

    Shi, Cao; Xiao, Jianguo; Jia, Wenhua; Xu, Canhui

    2013-01-01

    A framework is proposed in this paper to effectively generate a new hybrid character type by means of integrating local contour feature of Chinese calligraphy with structural feature of font in computer system. To explore traditional art manifestation of calligraphy, multi-directional spatial filter is applied for local contour feature extraction. Then the contour of character image is divided into sub-images. The sub-images in the identical position from various characters are estimated by Gaussian distribution. According to its probability distribution, the dilation operator and erosion operator are designed to adjust the boundary of font image. And then new Chinese character images are generated which possess both contour feature of artistical calligraphy and elaborate structural feature of font. Experimental results demonstrate the new characters are visually acceptable, and the proposed framework is an effective and efficient strategy to automatically generate the new hybrid character of calligraphy and font.

  14. SU-C-BRA-03: An Automated and Quick Contour Errordetection for Auto Segmentation in Online Adaptive Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Ates, O; Li, X

    Purpose: To develop a tool that can quickly and automatically assess contour quality generated from auto segmentation during online adaptive replanning. Methods: Due to the strict time requirement of online replanning and lack of ‘ground truth’ contours in daily images, our method starts with assessing image registration accuracy focusing on the surface of the organ in question. Several metrics tightly related to registration accuracy including Jacobian maps, contours shell deformation, and voxel-based root mean square (RMS) analysis were computed. To identify correct contours, additional metrics and an adaptive decision tree are introduced. To approve in principle, tests were performed withmore » CT sets, planned and daily CTs acquired using a CT-on-rails during routine CT-guided RT delivery for 20 prostate cancer patients. The contours generated on daily CTs using an auto-segmentation tool (ADMIRE, Elekta, MIM) based on deformable image registration of the planning CT and daily CT were tested. Results: The deformed contours of 20 patients with total of 60 structures were manually checked as baselines. The incorrect rate of total contours is 49%. To evaluate the quality of local deformation, the Jacobian determinant (1.047±0.045) on contours has been analyzed. In an analysis of rectum contour shell deformed, the higher rate (0.41) of error contours detection was obtained compared to 0.32 with manual check. All automated detections took less than 5 seconds. Conclusion: The proposed method can effectively detect contour errors in micro and macro scope by evaluating multiple deformable registration metrics in a parallel computing process. Future work will focus on improving practicability and optimizing calculation algorithms and metric selection.« less

  15. Synthesis of Polysyllabic Sequences of Thai Tones Using a Generative Model of Fundamental Frequency Contours

    NASA Astrophysics Data System (ADS)

    Seresangtakul, Pusadee; Takara, Tomio

    In this paper, the distinctive tones of Thai in running speech are studied. We present rules to synthesize F0 contours of Thai tones in running speech by using the generative model of F0 contours. Along with our method, the pitch contours of Thai polysyllabic words, both disyllabic and trisyllabic words, were analyzed. The coarticulation effect of Thai tones in running speech were found. Based on the analysis of the polysyllabic words using this model, rules are derived and applied to synthesize Thai polysyllabic tone sequences. We performed listening tests to evaluate intelligibility of the rules for Thai tones generation. The average intelligibility scores became 98.8%, and 96.6% for disyllabic and trisyllabic words, respectively. From these result, the rule of the tones' generation was shown to be effective. Furthermore, we constructed the connecting rules to synthesize suprasegmental F0 contours using the trisyllable training rules' parameters. The parameters of the first, the third, and the second syllables were selected and assigned to the initial, the ending, and the remaining syllables in a sentence, respectively. Even such a simple rule, the synthesized phrases/senetences were completely identified in listening tests. The MOSs (Mean Opinion Score) was 3.50 while the original and analysis/synthesis samples were 4.82 and 3.59, respectively.

  16. Material properties from contours: New insights on object perception.

    PubMed

    Pinna, Baingio; Deiana, Katia

    2015-10-01

    In this work we explored phenomenologically the visual complexity of the material attributes on the basis of the contours that define the boundaries of a visual object. The starting point is the rich and pioneering work done by Gestalt psychologists and, more in detail, by Rubin, who first demonstrated that contours contain most of the information related to object perception, like the shape, the color and the depth. In fact, by investigating simple conditions like those used by Gestalt psychologists, mostly consisting of contours only, we demonstrated that the phenomenal complexity of the material attributes emerges through appropriate manipulation of the contours. A phenomenological approach, analogous to the one used by Gestalt psychologists, was used to answer the following questions. What are contours? Which attributes can be phenomenally defined by contours? Are material properties determined only by contours? What is the visual syntactic organization of object attributes? The results of this work support the idea of a visual syntactic organization as a new kind of object formation process useful to understand the language of vision that creates well-formed attribute organizations. The syntax of visual attributes can be considered as a new way to investigate the modular coding and, more generally, the binding among attributes, i.e., the issue of how the brain represents the pairing of shape and material properties. Copyright © 2015. Published by Elsevier Ltd.

  17. Painless, safe, and efficacious noninvasive skin tightening, body contouring, and cellulite reduction using multisource 3DEEP radiofrequency.

    PubMed

    Harth, Yoram

    2015-03-01

    In the last decade, Radiofrequency (RF) energy has proven to be safe and highly efficacious for face and neck skin tightening, body contouring, and cellulite reduction. In contrast to first-generation Monopolar/Bipolar and "X -Polar" RF systems which use one RF generator connected to one or more skin electrodes, multisource radiofrequency devices use six independent RF generators allowing efficient dermal heating to 52-55°C, with no pain or risk of other side effects. In this review, the basic science and clinical results of body contouring and cellulite treatment using multisource radiofrequency system (Endymed PRO, Endymed, Cesarea, Israel) will be discussed and analyzed. © 2015 Wiley Periodicals, Inc.

  18. The deconvolution of complex spectra by artificial immune system

    NASA Astrophysics Data System (ADS)

    Galiakhmetova, D. I.; Sibgatullin, M. E.; Galimullin, D. Z.; Kamalova, D. I.

    2017-11-01

    An application of the artificial immune system method for decomposition of complex spectra is presented. The results of decomposition of the model contour consisting of three components, Gaussian contours, are demonstrated. The method of artificial immune system is an optimization method, which is based on the behaviour of the immune system and refers to modern methods of search for the engine optimization.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamichhane, N; Johnson, P; Chinea, F

    Purpose: To evaluate the correlation between image features and the accuracy of manually drawn target contours on synthetic PET images Methods: A digital PET phantom was used in combination with Monte Carlo simulation to create a set of 26 simulated PET images featuring a variety of tumor shapes and activity heterogeneity. These tumor volumes were used as a gold standard in comparisons with manual contours delineated by 10 radiation oncologist on the simulated PET images. Metrics used to evaluate segmentation accuracy included the dice coefficient, false positive dice, false negative dice, symmetric mean absolute surface distance, and absolute volumetric difference.more » Image features extracted from the simulated tumors consisted of volume, shape complexity, mean curvature, and intensity contrast along with five texture features derived from the gray-level neighborhood difference matrices including contrast, coarseness, busyness, strength, and complexity. Correlation between these features and contouring accuracy were examined. Results: Contour accuracy was reasonably well correlated with a variety of image features. Dice coefficient ranged from 0.7 to 0.90 and was correlated closely with contrast (r=0.43, p=0.02) and complexity (r=0.5, p<0.001). False negative dice ranged from 0.10 to 0.50 and was correlated closely with contrast (r=0.68, p<0.001) and complexity (r=0.66, p<0.001). Absolute volumetric difference ranged from 0.0002 to 0.67 and was correlated closely with coarseness (r=0.46, p=0.02) and complexity (r=0.49, p=0.008). Symmetric mean absolute difference ranged from 0.02 to 1 and was correlated closely with mean curvature (r=0.57, p=0.02) and contrast (r=0.6, p=0.001). Conclusion: The long term goal of this study is to assess whether contouring variability can be reduced by providing feedback to the practitioner based on image feature analysis. The results are encouraging and will be used to develop a statistical model which will enable a prediction of contour accuracy based purely on image feature analysis.« less

  20. ILT based defect simulation of inspection images accurately predicts mask defect printability on wafer

    NASA Astrophysics Data System (ADS)

    Deep, Prakash; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2016-05-01

    At advanced technology nodes mask complexity has been increased because of large-scale use of resolution enhancement technologies (RET) which includes Optical Proximity Correction (OPC), Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO). The number of defects detected during inspection of such mask increased drastically and differentiation of critical and non-critical defects are more challenging, complex and time consuming. Because of significant defectivity of EUVL masks and non-availability of actinic inspection, it is important and also challenging to predict the criticality of defects for printability on wafer. This is one of the significant barriers for the adoption of EUVL for semiconductor manufacturing. Techniques to decide criticality of defects from images captured using non actinic inspection images is desired till actinic inspection is not available. High resolution inspection of photomask images detects many defects which are used for process and mask qualification. Repairing all defects is not practical and probably not required, however it's imperative to know which defects are severe enough to impact wafer before repair. Additionally, wafer printability check is always desired after repairing a defect. AIMSTM review is the industry standard for this, however doing AIMSTM review for all defects is expensive and very time consuming. Fast, accurate and an economical mechanism is desired which can predict defect printability on wafer accurately and quickly from images captured using high resolution inspection machine. Predicting defect printability from such images is challenging due to the fact that the high resolution images do not correlate with actual mask contours. The challenge is increased due to use of different optical condition during inspection other than actual scanner condition, and defects found in such images do not have correlation with actual impact on wafer. Our automated defect simulation tool predicts printability of defects at wafer level and automates the process of defect dispositioning from images captured using high resolution inspection machine. It first eliminates false defects due to registration, focus errors, image capture errors and random noise caused during inspection. For the remaining real defects, actual mask-like contours are generated using the Calibre® ILT solution [1][2], which is enhanced to predict the actual mask contours from high resolution defect images. It enables accurate prediction of defect contours, which is not possible from images captured using inspection machine because some information is already lost due to optical effects. Calibre's simulation engine is used to generate images at wafer level using scanner optical conditions and mask-like contours as input. The tool then analyses simulated images and predicts defect printability. It automatically calculates maximum CD variation and decides which defects are severe to affect patterns on wafer. In this paper, we assess the printability of defects for the mask of advanced technology nodes. In particular, we will compare the recovered mask contours with contours extracted from SEM image of the mask and compare simulation results with AIMSTM for a variety of defects and patterns. The results of printability assessment and the accuracy of comparison are presented in this paper. We also suggest how this method can be extended to predict printability of defects identified on EUV photomasks.

  1. Computational approach to compact Riemann surfaces

    NASA Astrophysics Data System (ADS)

    Frauendiener, Jörg; Klein, Christian

    2017-01-01

    A purely numerical approach to compact Riemann surfaces starting from plane algebraic curves is presented. The critical points of the algebraic curve are computed via a two-dimensional Newton iteration. The starting values for this iteration are obtained from the resultants with respect to both coordinates of the algebraic curve and a suitable pairing of their zeros. A set of generators of the fundamental group for the complement of these critical points in the complex plane is constructed from circles around these points and connecting lines obtained from a minimal spanning tree. The monodromies are computed by solving the defining equation of the algebraic curve on collocation points along these contours and by analytically continuing the roots. The collocation points are chosen to correspond to Chebychev collocation points for an ensuing Clenshaw-Curtis integration of the holomorphic differentials which gives the periods of the Riemann surface with spectral accuracy. At the singularities of the algebraic curve, Puiseux expansions computed by contour integration on the circles around the singularities are used to identify the holomorphic differentials. The Abel map is also computed with the Clenshaw-Curtis algorithm and contour integrals. As an application of the code, solutions to the Kadomtsev-Petviashvili equation are computed on non-hyperelliptic Riemann surfaces.

  2. Estimation of contour motion and deformation for nonrigid object tracking

    NASA Astrophysics Data System (ADS)

    Shao, Jie; Porikli, Fatih; Chellappa, Rama

    2007-08-01

    We present an algorithm for nonrigid contour tracking in heavily cluttered background scenes. Based on the properties of nonrigid contour movements, a sequential framework for estimating contour motion and deformation is proposed. We solve the nonrigid contour tracking problem by decomposing it into three subproblems: motion estimation, deformation estimation, and shape regulation. First, we employ a particle filter to estimate the global motion parameters of the affine transform between successive frames. Then we generate a probabilistic deformation map to deform the contour. To improve robustness, multiple cues are used for deformation probability estimation. Finally, we use a shape prior model to constrain the deformed contour. This enables us to retrieve the occluded parts of the contours and accurately track them while allowing shape changes specific to the given object types. Our experiments show that the proposed algorithm significantly improves the tracker performance.

  3. Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowling, Jason A., E-mail: jason.dowling@csiro.au; University of Newcastle, Callaghan, New South Wales; Sun, Jidi

    Purpose: To validate automatic substitute computed tomography CT (sCT) scans generated from standard T2-weighted (T2w) magnetic resonance (MR) pelvic scans for MR-Sim prostate treatment planning. Patients and Methods: A Siemens Skyra 3T MR imaging (MRI) scanner with laser bridge, flat couch, and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole-pelvis MRI scan (1.6 mm 3-dimensional isotropic T2w SPACE [Sampling Perfection with Application optimized Contrasts using different flip angle Evolution] sequence) was acquired. Three additional small field of view scans were acquired: T2w, T2*w, and T1wmore » flip angle 80° for gold fiducials. Patients received a routine planning CT scan. Manual contouring of the prostate, rectum, bladder, and bones was performed independently on the CT and MR scans. Three experienced observers contoured each organ on MRI, allowing interobserver quantification. To generate a training database, each patient CT scan was coregistered to their whole-pelvis T2w using symmetric rigid registration and structure-guided deformable registration. A new multi-atlas local weighted voting method was used to generate automatic contours and sCT results. Results: The mean error in Hounsfield units between the sCT and corresponding patient CT (within the body contour) was 0.6 ± 14.7 (mean ± 1 SD), with a mean absolute error of 40.5 ± 8.2 Hounsfield units. Automatic contouring results were very close to the expert interobserver level (Dice similarity coefficient): prostate 0.80 ± 0.08, bladder 0.86 ± 0.12, rectum 0.84 ± 0.06, bones 0.91 ± 0.03, and body 1.00 ± 0.003. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same dose prescription was found to be 0.3% ± 0.8%. The 3-dimensional γ pass rate was 1.00 ± 0.00 (2 mm/2%). Conclusions: The MR-Sim setup and automatic sCT generation methods using standard MR sequences generates realistic contours and electron densities for prostate cancer radiation therapy dose planning and digitally reconstructed radiograph generation.« less

  4. A Review of Research Related to Unmanned Aircraft System Visual Observers

    DTIC Science & Technology

    2014-10-01

    accommodation. Poor Contrast Contrast refers to the difference in luminance between an object and its background. The larger the difference in luminance , the...to camouflage potential targets. Complex Backgrounds When the background behind an object contains a variety of luminance levels and contours it...itself contained a variety of luminance levels and contours. It is likely that this complex background effect would be seen more often between air

  5. Digital computer programs for generating oblique orthographic projections and contour plots

    NASA Technical Reports Server (NTRS)

    Giles, G. L.

    1975-01-01

    User and programer documentation is presented for two programs for automatic plotting of digital data. One of the programs generates oblique orthographic projections of three-dimensional numerical models and the other program generates contour plots of data distributed in an arbitrary planar region. A general description of the computational algorithms, user instructions, and complete listings of the programs is given. Several plots are included to illustrate various program options, and a single example is described to facilitate learning the use of the programs.

  6. Learning Compositional Shape Models of Multiple Distance Metrics by Information Projection.

    PubMed

    Luo, Ping; Lin, Liang; Liu, Xiaobai

    2016-07-01

    This paper presents a novel compositional contour-based shape model by incorporating multiple distance metrics to account for varying shape distortions or deformations. Our approach contains two key steps: 1) contour feature generation and 2) generative model pursuit. For each category, we first densely sample an ensemble of local prototype contour segments from a few positive shape examples and describe each segment using three different types of distance metrics. These metrics are diverse and complementary with each other to capture various shape deformations. We regard the parameterized contour segment plus an additive residual ϵ as a basic subspace, namely, ϵ -ball, in the sense that it represents local shape variance under the certain distance metric. Using these ϵ -balls as features, we then propose a generative learning algorithm to pursue the compositional shape model, which greedily selects the most representative features under the information projection principle. In experiments, we evaluate our model on several public challenging data sets, and demonstrate that the integration of multiple shape distance metrics is capable of dealing various shape deformations, articulations, and background clutter, hence boosting system performance.

  7. Modified Inverse First Order Reliability Method (I-FORM) for Predicting Extreme Sea States.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert-Gallup, Aubrey Celia; Sallaberry, Cedric Jean-Marie; Dallman, Ann Renee

    Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulation s as a part of the stand ard current practice for designing marine structure s to survive extreme sea states. Such environmental contours are characterized by combinations of significant wave height ( ) and energy period ( ) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first - order reliability method (IFORM) i s standard design practice for generating environmental contours.more » In this paper, the traditional appli cation of the IFORM to generating environmental contours representing extreme sea states is described in detail and its merits and drawbacks are assessed. The application of additional methods for analyzing sea state data including the use of principal component analysis (PCA) to create an uncorrelated representation of the data under consideration is proposed. A reexamination of the components of the IFORM application to the problem at hand including the use of new distribution fitting techniques are shown to contribute to the development of more accurate a nd reasonable representations of extreme sea states for use in survivability analysis for marine struc tures. Keywords: In verse FORM, Principal Component Analysis , Environmental Contours, Extreme Sea State Characteri zation, Wave Energy Converters« less

  8. Dilated contour extraction and component labeling algorithm for object vector representation

    NASA Astrophysics Data System (ADS)

    Skourikhine, Alexei N.

    2005-08-01

    Object boundary extraction from binary images is important for many applications, e.g., image vectorization, automatic interpretation of images containing segmentation results, printed and handwritten documents and drawings, maps, and AutoCAD drawings. Efficient and reliable contour extraction is also important for pattern recognition due to its impact on shape-based object characterization and recognition. The presented contour tracing and component labeling algorithm produces dilated (sub-pixel) contours associated with corresponding regions. The algorithm has the following features: (1) it always produces non-intersecting, non-degenerate contours, including the case of one-pixel wide objects; (2) it associates the outer and inner (i.e., around hole) contours with the corresponding regions during the process of contour tracing in a single pass over the image; (3) it maintains desired connectivity of object regions as specified by 8-neighbor or 4-neighbor connectivity of adjacent pixels; (4) it avoids degenerate regions in both background and foreground; (5) it allows an easy augmentation that will provide information about the containment relations among regions; (6) it has a time complexity that is dominantly linear in the number of contour points. This early component labeling (contour-region association) enables subsequent efficient object-based processing of the image information.

  9. Robust iterative learning contouring controller with disturbance observer for machine tool feed drives.

    PubMed

    Simba, Kenneth Renny; Bui, Ba Dinh; Msukwa, Mathew Renny; Uchiyama, Naoki

    2018-04-01

    In feed drive systems, particularly machine tools, a contour error is more significant than the individual axial tracking errors from the view point of enhancing precision in manufacturing and production systems. The contour error must be within the permissible tolerance of given products. In machining complex or sharp-corner products, large contour errors occur mainly owing to discontinuous trajectories and the existence of nonlinear uncertainties. Therefore, it is indispensable to design robust controllers that can enhance the tracking ability of feed drive systems. In this study, an iterative learning contouring controller consisting of a classical Proportional-Derivative (PD) controller and disturbance observer is proposed. The proposed controller was evaluated experimentally by using a typical sharp-corner trajectory, and its performance was compared with that of conventional controllers. The results revealed that the maximum contour error can be reduced by about 37% on average. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. A fast hidden line algorithm with contour option. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thue, R. E.

    1984-01-01

    The JonesD algorithm was modified to allow the processing of N-sided elements and implemented in conjunction with a 3-D contour generation algorithm. The total hidden line and contour subsystem is implemented in the MOVIE.BYU Display package, and is compared to the subsystems already existing in the MOVIE.BYU package. The comparison reveals that the modified JonesD hidden line and contour subsystem yields substantial processing time savings, when processing moderate sized models comprised of 1000 elements or less. There are, however, some limitations to the modified JonesD subsystem.

  11. Technique for Chestband Contour Shape-Mapping in Lateral Impact

    PubMed Central

    Hallman, Jason J; Yoganandan, Narayan; Pintar, Frank A

    2011-01-01

    The chestband transducer permits noninvasive measurement of transverse plane biomechanical response during blunt thorax impact. Although experiments may reveal complex two-dimensional (2D) deformation response to boundary conditions, biomechanical studies have heretofore employed only uniaxial chestband contour quantifying measurements. The present study described and evaluated an algorithm by which source subject-specific contour data may be systematically mapped to a target generalized anthropometry for computational studies of biomechanical response or anthropomorphic test dummy development. Algorithm performance was evaluated using chestband contour datasets from two rigid lateral impact boundary conditions: Flat wall and anterior-oblique wall. Comparing source and target anthropometry contours, peak deflections and deformation-time traces deviated by less than 4%. These results suggest that the algorithm is appropriate for 2D deformation response to lateral impact boundary conditions. PMID:21676399

  12. Contour advection with surgery: A technique for investigating finescale structure in tracer transport

    NASA Technical Reports Server (NTRS)

    Waugh, Darryn W.; Plumb, R. Alan

    1994-01-01

    We present a trajectory technique, contour advection with surgery (CAS), for tracing the evolution of material contours in a specified (including observed) evolving flow. CAS uses the algorithms developed by Dritschel for contour dynamics/surgery to trace the evolution of specified contours. The contours are represented by a series of particles, which are advected by a specified, gridded, wind distribution. The resolution of the contours is preserved by continually adjusting the number of particles, and finescale features are produced that are not present in the input data (and cannot easily be generated using standard trajectory techniques). The reliability, and dependence on the spatial and temporal resolution of the wind field, of the CAS procedure is examined by comparisons with high-resolution numerical data (from contour dynamics calculations and from a general circulation model), and with routine stratospheric analyses. These comparisons show that the large-scale motions dominate the deformation field and that CAS can accurately reproduce small scales from low-resolution wind fields. The CAS technique therefore enables examination of atmospheric tracer transport at previously unattainable resolution.

  13. Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates

    NASA Technical Reports Server (NTRS)

    Mikic, I.; Krucinski, S.; Thomas, J. D.

    1998-01-01

    This paper presents a method for segmentation and tracking of cardiac structures in ultrasound image sequences. The developed algorithm is based on the active contour framework. This approach requires initial placement of the contour close to the desired position in the image, usually an object outline. Best contour shape and position are then calculated, assuming that at this configuration a global energy function, associated with a contour, attains its minimum. Active contours can be used for tracking by selecting a solution from a previous frame as an initial position in a present frame. Such an approach, however, fails for large displacements of the object of interest. This paper presents a technique that incorporates the information on pixel velocities (optical flow) into the estimate of initial contour to enable tracking of fast-moving objects. The algorithm was tested on several ultrasound image sequences, each covering one complete cardiac cycle. The contour successfully tracked boundaries of mitral valve leaflets, aortic root and endocardial borders of the left ventricle. The algorithm-generated outlines were compared against manual tracings by expert physicians. The automated method resulted in contours that were within the boundaries of intraobserver variability.

  14. Design of a Mach-3 Nozzle for TBCC Testing in the NASA LaRC 8-ft High Temperature Tunnel

    NASA Technical Reports Server (NTRS)

    Gaffney, Richard L., Jr.; Norris, Andrew T.

    2008-01-01

    A new nozzle is being constructed for the NASA Langley Research Center 8-Foot High Temperature Tunnel. The axisymmetric nozzle was designed with a Mach-3 exit flow for testing Turbine-Based Combined-Cycle engines at a Mach number in the vicinity of the transition from turbojet to ramjet operation. The nozzle contour was designed using the NASA Langley IMOCND computer program which solves the potential equation using the classical method of characteristics. To include viscous effects, the design procedure iterated the MOC contour generation with CFD Navier-Stokes calculations, adjusting MOC input parameters until target nozzle-exit conditions were achieved in the Navier-Stokes calculations. The design process was complicated by a requirement to use the final 29.5 inches of an existing 54.5-inch exit-diameter Mach-5 nozzle contour. This was accomplished by generating a Mach-3 contour that matched the radius of the Mach-5 contour at the match point and using a 3rd order polynomial to create a smooth transition between the two contours. During the final evaluation of the design it was realized that the throat diameter is more than half that of the upstream mixing chamber. This led to the concern that large vortical structures generated in the mixer would persist downstream, affecting nozzle-exit flow. This concern was addressed by analyzing the results of three-dimensional, viscous, numerical simulations of the entire flowfield, from the exit of the facility combustor to the nozzle exit. An analysis of the solution indicated that large scale structures do not pass through the throat and that both the total temperature and species (CO2) are well mixed in the mixer, providing uniform flow to the nozzle and subsequently the test cabin.

  15. Object detection approach using generative sparse, hierarchical networks with top-down and lateral connections for combining texture/color detection and shape/contour detection

    DOEpatents

    Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.; Schultz, Peter F.; George, John S.

    2015-07-28

    An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using a combinatorial algorithm.

  16. SU-E-J-129: Atlas Development for Cardiac Automatic Contouring Using Multi-Atlas Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, R; Yang, J; Pan, T

    Purpose: To develop a set of atlases for automatic contouring of cardiac structures to determine heart radiation dose and the associated toxicity. Methods: Six thoracic cancer patients with both contrast and non-contrast CT images were acquired for this study. Eight radiation oncologists manually and independently delineated cardiac contours on the non-contrast CT by referring to the fused contrast CT and following the RTOG 1106 atlas contouring guideline. Fifteen regions of interest (ROIs) were delineated, including heart, four chambers, four coronary arteries, pulmonary artery and vein, inferior and superior vena cava, and ascending and descending aorta. Individual expert contours were fusedmore » using the simultaneous truth and performance level estimation (STAPLE) algorithm for each ROI and each patient. The fused contours became atlases for an in-house multi-atlas segmentation. Using leave-one-out test, we generated auto-segmented contours for each ROI and each patient. The auto-segmented contours were compared with the fused contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: Inter-observer variability was not obvious for heart, chambers, and aorta but was large for other structures that were not clearly distinguishable on CT image. The average DSC between individual expert contours and the fused contours were less than 50% for coronary arteries and pulmonary vein, and the average MSD were greater than 4.0 mm. The largest MSD of expert contours deviating from the fused contours was 2.5 cm. The mean DSC and MSD of auto-segmented contours were within one standard deviation of expert contouring variability except the right coronary artery. The coronary arteries, vena cava, and pulmonary vein had DSC<70% and MSD>3.0 mm. Conclusion: A set of cardiac atlases was created for cardiac automatic contouring, the accuracy of which was comparable to the variability in expert contouring. However, substantial modification may need for auto-segmented contours of indistinguishable small structures.« less

  17. Computer numerically controlled (CNC) aspheric shaping with toroidal Wheels (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Ketelsen, D.; Kittrell, W. C.; Kuhn, W. M.; Parks, R. E.; Lamb, George L.; Baker, Lynn

    1987-01-01

    Contouring with computer numerically controlled (CNC) machines can be accomplished with several different tool geometries and coordinated machine axes. To minimize the number of coordinated axes for nonsymmetric work to three, it is common practice to use a spherically shaped tool such as a ball-end mill. However, to minimize grooving due to the feed and ball radius, it is desirable to use a long ball radius, but there is clearly a practical limit to ball diameter with the spherical tool. We have found that the use of commercially available toroidal wheels permits long effective cutting radii, which in turn improve finish and minimize grooving for a set feed. In addition, toroidal wheels are easier than spherical wheels to center accurately. Cutting parameters are also easier to control because the feed rate past the tool does not change as the slope of the work changes. The drawback to the toroidal wheel is the more complex calculation of the tool path. Of course, once the algorithm is worked out, the tool path is as easily calculated as for a spherical tool. We have performed two experiments with the Large Optical Generator (LOG) that were ideally suited to three-axis contouring--surfaces that have no axis of rotational symmetry. By oscillating the cutting head horizontally or vertically (in addition to the motions required to generate the power of the surface) , and carefully coordinating those motions with table rotation, the mostly astigmatic departure for these surfaces is produced. The first experiment was a pair of reflector molds that together correct the spherical aberration of the Arecibo radio telescope. The larger of these was 5 m in diameter and had a 12 cm departure from the best-fit sphere. The second experiment was the generation of a purely astigmatic surface to demonstrate the feasibility of producing axially symmetric asphe.rics while mounted and rotated about any off-axis point. Measurements of the latter (the first experiment had relatively loose tolerances) indicate an accuracy only 3 or 4 times that achieved by conventional two-axis contouring (10 AM as opposed to 3 pm rms) The successful completion of these projects demonstrates the successful application of three-axis contouring with the LOG. Toroidal cutters have also solved many of the drawbacks of spherical wheels. Work remains to be done in improving machine response and decreasing the contribution of backlash errors.

  18. Unification of color postprocessing techniques for 3-dimensional computational mechanics

    NASA Technical Reports Server (NTRS)

    Bailey, Bruce Charles

    1985-01-01

    To facilitate the understanding of complex three-dimensional numerical models, advanced interactive color postprocessing techniques are introduced. These techniques are sufficiently flexible so that postprocessing difficulties arising from model size, geometric complexity, response variation, and analysis type can be adequately overcome. Finite element, finite difference, and boundary element models may be evaluated with the prototype postprocessor. Elements may be removed from parent models to be studied as independent subobjects. Discontinuous responses may be contoured including responses which become singular, and nonlinear color scales may be input by the user for the enhancement of the contouring operation. Hit testing can be performed to extract precise geometric, response, mesh, or material information from the database. In addition, stress intensity factors may be contoured along the crack front of a fracture model. Stepwise analyses can be studied, and the user can recontour responses repeatedly, as if he were paging through the response sets. As a system, these tools allow effective interpretation of complex analysis results.

  19. Pre-loading of components during laser peenforming

    DOEpatents

    Hackel, Lloyd A [Livermore, CA; Halpin, John M [Tracy, CA; Harris, Fritz B [Rocklin, CA

    2003-12-30

    A method and apparatus are provided for forming shapes and contours in metal sections by prestressing a workpiece and generating laser induced compressive stress on the surface of the metal workpiece. The step of prestressing the workpiece is carried out with a jig. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts.

  20. Recent Naval Postgraduate School Publications.

    DTIC Science & Technology

    1985-09-30

    Software and Har ware, Vaxjo, Sweden, Aug. 11-12, 1981 Proc. , (1 S8 1) . SchneidEwind, N F Disciplined approach to real - time software design: A look at...29 p. Zyda, M 3 Real - time contour surface display generation Ercpared for chief of Naval Res., Arlington, Va. Naval Postgraduate School, (NPS-.51-84-O...13), Sept., 1984. 21 p. Zyda M .3 THe fEasibility of a multi rccessor architecture for real - time contour surface is, lay generation Prcparea for Chief

  1. SU-E-J-124: FDG PET Metrics Analysis in the Context of An Adaptive PET Protocol for Node Positive Gynecologic Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrocki, J; Chino, J; Light, K

    2014-06-01

    Purpose: To compare PET extracted metrics and investigate the role of a gradient-based PET segmentation tool, PET Edge (MIM Software Inc., Cleveland, OH), in the context of an adaptive PET protocol for node positive gynecologic cancer patients. Methods: An IRB approved protocol enrolled women with gynecological, PET visible malignancies. A PET-CT was obtained for treatment planning prescribed to 45–50.4Gy with a 55– 70Gy boost to the PET positive nodes. An intra-treatment PET-CT was obtained between 30–36Gy, and all volumes re-contoured. Standard uptake values (SUVmax, SUVmean, SUVmedian) and GTV volumes were extracted from the clinician contoured GTVs on the pre- andmore » intra-treament PET-CT for primaries and nodes and compared with a two tailed Wilcoxon signed-rank test. The differences between primary and node GTV volumes contoured in the treatment planning system and those volumes generated using PET Edge were also investigated. Bland-Altman plots were used to describe significant differences between the two contouring methods. Results: Thirteen women were enrolled in this study. The median baseline/intra-treatment primary (SUVmax, mean, median) were (30.5, 9.09, 7.83)/( 16.6, 4.35, 3.74), and nodes were (20.1, 4.64, 3.93)/( 6.78, 3.13, 3.26). The p values were all < 0.001. The clinical contours were all larger than the PET Edge generated ones, with mean difference of +20.6 ml for primary, and +23.5 ml for nodes. The Bland-Altman revealed changes between clinician/PET Edge contours to be mostly within the margins of the coefficient of variability. However, there was a proportional trend, i.e. the larger the GTV, the larger the clinical contours as compared to PET Edge contours. Conclusion: Primary and node SUV values taken from the intratreament PET-CT can be used to assess the disease response and to design an adaptive plan. The PET Edge tool can streamline the contouring process and lead to smaller, less user-dependent contours.« less

  2. SU-F-J-174: A Series of Computational Human Phantoms in DICOM-RT Format for Normal Tissue Dose Reconstruction in Epidemiological Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyakuryal, A; Moroz, B; Lee, C

    2016-06-15

    Purpose: Epidemiological studies of second cancer risk in radiotherapy patients often require individualized dose estimates of normal tissues. Prior to 3D conformal radiation therapy planning, patient anatomy information was mostly limited to 2D radiological images or not even available. Generic patient CT images are often used in commercial radiotherapy treatment planning system (TPS) to reconstruct normal tissue doses. The objective of the current work was to develop a series of reference size computational human phantoms in DICOM-RT format for direct use in dose reconstruction in TPS. Methods: Contours of 93 organs and tissues were extracted from a series of pediatricmore » and adult hybrid computational human phantoms (newborn, 1-, 5-, 10-, 15-year-old, and adult males and females) using Rhinoceros software. A MATLAB script was created to convert the contours into the DICOM-RT structure format. The simulated CT images with the resolution of 1×1×3 mm3 were also generated from the binary phantom format and coupled with the DICOM-structure files. Accurate volumes of the organs were drawn in the format using precise delineation of the contours in converted format. Due to complex geometry of organs, higher resolution (1×1×1 mm3) was found to be more efficient in the conversion of newborn and 1-year-old phantoms. Results: Contour sets were efficiently converted into DICOM-RT structures in relatively short time (about 30 minutes for each phantom). A good agreement was observed in the volumes between the original phantoms and the converted contours for large organs (NRMSD<1.0%) and small organs (NRMSD<7.7%). Conclusion: A comprehensive series of computational human phantoms in DICOM-RT format was created to support epidemiological studies of second cancer risks in radiotherapy patients. We confirmed the DICOM-RT phantoms were successfully imported into the TPS programs of major vendors.« less

  3. Automated Laser Cutting In Three Dimensions

    NASA Technical Reports Server (NTRS)

    Bird, Lisa T.; Yvanovich, Mark A.; Angell, Terry R.; Bishop, Patricia J.; Dai, Weimin; Dobbs, Robert D.; He, Mingli; Minardi, Antonio; Shelton, Bret A.

    1995-01-01

    Computer-controlled machine-tool system uses laser beam assisted by directed flow of air to cut refractory materials into complex three-dimensional shapes. Velocity, position, and angle of cut varied. In original application, materials in question were thermally insulating thick blankets and tiles used on space shuttle. System shapes tile to concave or convex contours and cuts beveled edges on blanket, without cutting through outer layer of quartz fabric part of blanket. For safety, system entirely enclosed to prevent escape of laser energy. No dust generated during cutting operation - all material vaporized; larger solid chips dislodged from workpiece easily removed later.

  4. Object detection approach using generative sparse, hierarchical networks with top-down and lateral connections for combining texture/color detection and shape/contour detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.

    An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using amore » combinatorial algorithm.« less

  5. KSC-02pd0890

    NASA Image and Video Library

    2002-06-05

    KENNEDY SPACE CENTER, FLA. -- At Launch Complex 17-A, Cape Canaveral Air Force Station, one half of the fairing of the Delta II rocket for encapsulation of the Comet Nucleus Tour (CONTOUR) spacecraft is lifted up the tower. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround them. Launch of CONTOUR is scheduled for July 1, 2002

  6. A GENERAL ALGORITHM FOR THE CONSTRUCTION OF CONTOUR PLOTS

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1994-01-01

    The graphical presentation of experimentally or theoretically generated data sets frequently involves the construction of contour plots. A general computer algorithm has been developed for the construction of contour plots. The algorithm provides for efficient and accurate contouring with a modular approach which allows flexibility in modifying the algorithm for special applications. The algorithm accepts as input data values at a set of points irregularly distributed over a plane. The algorithm is based on an interpolation scheme in which the points in the plane are connected by straight line segments to form a set of triangles. In general, the data is smoothed using a least-squares-error fit of the data to a bivariate polynomial. To construct the contours, interpolation along the edges of the triangles is performed, using the bivariable polynomial if data smoothing was performed. Once the contour points have been located, the contour may be drawn. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer with a central memory requirement of approximately 100K of 8-bit bytes. This computer algorithm was developed in 1981.

  7. Investigation of conjugate circular arcs in rocket nozzle contour design

    NASA Astrophysics Data System (ADS)

    Schomberg, K.; Olsen, J.; Neely, A.; Doig, G.

    2018-05-01

    The use of conjugate circular arcs in rocket nozzle contour design has been investigated by numerically comparing three existing sub-scale nozzles to a range of equivalent arc-based contour designs. Three performance measures were considered when comparing nozzle designs: thrust coefficient, nozzle exit wall pressure, and a transition between flow separation regimes during the engine start-up phase. In each case, an equivalent arc-based contour produced an increase in the thrust coefficient and exit wall pressure of up to 0.4 and 40% respectively, in addition to suppressing the transition between a free and restricted shock separation regime. A general approach to arc-based nozzle contour design has also been presented to outline a rapid and repeatable process for generating sub-scale arc-based contours with an exit Mach number of 3.8-5.4 and a length between 60 and 100% of a 15° conical nozzle. The findings suggest that conjugate circular arcs may represent a viable approach for producing sub-scale rocket nozzle contours, and that a further investigation is warranted between arc-based and existing full-scale rocket nozzles.

  8. SU-E-J-101: Improved CT to CBCT Deformable Registration Accuracy by Incorporating Multiple CBCTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godley, A; Stephans, K; Olsen, L Sheplan

    2015-06-15

    Purpose: Combining prior day CBCT contours with STAPLE was previously shown to improve automated prostate contouring. These accurate STAPLE contours are now used to guide the planning CT to pre-treatment CBCT deformable registration. Methods: Six IGRT prostate patients with daily kilovoltage CBCT had their original planning CT and 9 CBCTs contoured by the same physician. These physician contours for the planning CT and each prior CBCT are deformed to match the current CBCT anatomy, producing multiple contour sets. These sets are then combined using STAPLE into one optimal set (e.g. for day 3 CBCT, combine contours produced using the planmore » plus day 1 and 2 CBCTs). STAPLE computes a probabilistic estimate of the true contour from this collection of contours by maximizing sensitivity and specificity. The deformation field from planning CT to CBCT registration is then refined by matching its deformed contours to the STAPLE contours. ADMIRE (Elekta Inc.) was used for this. The refinement does not force perfect agreement of the contours, typically Dice’s Coefficient (DC) of > 0.9 is obtained, and the image difference metric remains in the optimization of the deformable registration. Results: The average DC between physician delineated CBCT contours and deformed planning CT contours for the bladder, rectum and prostate was 0.80, 0.79 and 0.75, respectively. The accuracy significantly improved to 0.89, 0.84 and 0.84 (P<0.001 for all) when using the refined deformation field. The average time to run STAPLE with five scans and refine the planning CT deformation was 66 seconds on a Telsa K20c GPU. Conclusion: Accurate contours generated from multiple CBCTs provided guidance for CT to CBCT deformable registration, significantly improving registration accuracy as measured by contour DC. A more accurate deformation field is now available for transferring dose or electron density to the CBCT for adaptive planning. Research grant from Elekta.« less

  9. SU-F-J-171: Robust Atlas Based Segmentation of the Prostate and Peripheral Zone Regions On MRI Utilizing Multiple MRI System Vendors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, K; Pollack, A; Stoyanova, R

    Purpose: Automatically generated prostate MRI contours can be used to aid in image registration with CT or ultrasound and to reduce the burden of contouring for radiation treatment planning. In addition, prostate and zonal contours can assist to automate quantitative imaging features extraction and the analyses of longitudinal MRI studies. These potential gains are limited if the solutions are not compatible across different MRI vendors. The goal of this study is to characterize an atlas based automatic segmentation procedure of the prostate collected on MRI systems from multiple vendors. Methods: The prostate and peripheral zone (PZ) were manually contoured bymore » an expert radiation oncologist on T2-weighted scans acquired on both GE (n=31) and Siemens (n=33) 3T MRI systems. A leave-one-out approach was utilized where the target subject is removed from the atlas before the segmentation algorithm is initiated. The atlas-segmentation method finds the best nine matched atlas subjects and then performs a normalized intensity-based free-form deformable registration of these subjects to the target subject. These nine contours are then merged into a single contour using Simultaneous Truth and Performance Level Estimation (STAPLE). Contour comparisons were made using Dice similarity coefficients (DSC) and Hausdorff distances. Results: Using the T2 FatSat (FS) GE datasets the atlas generated contours resulted in an average DSC of 0.83±0.06 for prostate, 0.57±0.12 for PZ and 0.75±0.09 for CG. Similar results were found when using the Siemens data with a DSC of 0.79±0.14 for prostate, 0.54±0.16 and 0.70±0.9. Contrast between prostate and surrounding anatomy and between the PZ and CG contours for both vendors demonstrated superior contrast separation; significance was found for all comparisons p-value < 0.0001. Conclusion: Atlas-based segmentation yielded promising results for all contours compared to expertly defined contours in both Siemens and GE 3T systems providing fast and automatic segmentation of the prostate. Funding Support, Disclosures, and Conflict of Interest: AS Nelson is a partial owner of MIM Software, Inc. AS Nelson, and A Swallen are current employees at MIM Software, Inc.« less

  10. The New Albany Shale Petroleum System, Illinois Basin - Data and Map Image Archive from the Material-Balance Assessment

    USGS Publications Warehouse

    Higley, Debra K.; Henry, M.E.; Lewan, M.D.; Pitman, Janet K.

    2003-01-01

    The data files and explanations presented in this report were used to generate published material-balance approach estimates of amounts of petroleum 1) expelled from a source rock, and the sum of 2) petroleum discovered in-place plus that lost due to 3) secondary migration within, or leakage or erosion from a petroleum system. This study includes assessment of cumulative production, known petroleum volume, and original oil in place for hydrocarbons that were generated from the New Albany Shale source rocks.More than 4.00 billion barrels of oil (BBO) have been produced from Pennsylvanian-, Mississippian-, Devonian-, and Silurian-age reservoirs in the New Albany Shale petroleum system. Known petroleum volume is 4.16 BBO; the average recovery factor is 103.9% of the current cumulative production. Known petroleum volume of oil is 36.22% of the total original oil in place of 11.45 BBO. More than 140.4 BBO have been generated from the Upper Devonian and Lower Mississippian New Albany Shale in the Illinois Basin. Approximately 86.29 billion barrels of oil that was trapped south of the Cottage Grove fault system were lost by erosion of reservoir intervals. The remaining 54.15 BBO are 21% of the hydrocarbons that were generated in the basin and are accounted for using production data. Included in this publication are 2D maps that show the distribution of production for different formations versus the Rock-Eval pyrolysis hydrogen-indices (HI) contours, and 3D images that show the close association between burial depth and HI values.The primary vertical migration pathway of oil and gas was through faults and fractures into overlying reservoir strata. About 66% of the produced oil is located within the generative basin, which is outlined by an HI contour of 400. The remaining production is concentrated within 30 miles (50 km) outside the 400 HI contour. The generative basin is subdivided by contours of progressively lower hydrogen indices that represent increased levels of thermal maturity and generative capacity of New Albany Shale source rocks. The generative basin was also divided into seven oil-migration catchments. The catchments were determined using a surface-flow hydrologic model with contoured HI values as input to the model.

  11. Object segmentation using graph cuts and active contours in a pyramidal framework

    NASA Astrophysics Data System (ADS)

    Subudhi, Priyambada; Mukhopadhyay, Susanta

    2018-03-01

    Graph cuts and active contours are two very popular interactive object segmentation techniques in the field of computer vision and image processing. However, both these approaches have their own well-known limitations. Graph cut methods perform efficiently giving global optimal segmentation result for smaller images. However, for larger images, huge graphs need to be constructed which not only takes an unacceptable amount of memory but also increases the time required for segmentation to a great extent. On the other hand, in case of active contours, initial contour selection plays an important role in the accuracy of the segmentation. So a proper selection of initial contour may improve the complexity as well as the accuracy of the result. In this paper, we have tried to combine these two approaches to overcome their above-mentioned drawbacks and develop a fast technique of object segmentation. Here, we have used a pyramidal framework and applied the mincut/maxflow algorithm on the lowest resolution image with the least number of seed points possible which will be very fast due to the smaller size of the image. Then, the obtained segmentation contour is super-sampled and and worked as the initial contour for the next higher resolution image. As the initial contour is very close to the actual contour, so fewer number of iterations will be required for the convergence of the contour. The process is repeated for all the high-resolution images and experimental results show that our approach is faster as well as memory efficient as compare to both graph cut or active contour segmentation alone.

  12. Cross Validation on the Equality of Uav-Based and Contour-Based Dems

    NASA Astrophysics Data System (ADS)

    Ma, R.; Xu, Z.; Wu, L.; Liu, S.

    2018-04-01

    Unmanned Aerial Vehicles (UAV) have been widely used for Digital Elevation Model (DEM) generation in geographic applications. This paper proposes a novel framework of generating DEM from UAV images. It starts with the generation of the point clouds by image matching, where the flight control data are used as reference for searching for the corresponding images, leading to a significant time saving. Besides, a set of ground control points (GCP) obtained from field surveying are used to transform the point clouds to the user's coordinate system. Following that, we use a multi-feature based supervised classification method for discriminating non-ground points from ground ones. In the end, we generate DEM by constructing triangular irregular networks and rasterization. The experiments are conducted in the east of Jilin province in China, which has been suffered from soil erosion for several years. The quality of UAV based DEM (UAV-DEM) is compared with that generated from contour interpolation (Contour-DEM). The comparison shows a higher resolution, as well as higher accuracy of UAV-DEMs, which contains more geographic information. In addition, the RMSE errors of the UAV-DEMs generated from point clouds with and without GCPs are ±0.5 m and ±20 m, respectively.

  13. The influence of uncertain map features on risk beliefs and perceived ambiguity for maps of modeled cancer risk from air pollution

    PubMed Central

    Myers, Jeffrey D.

    2012-01-01

    Maps are often used to convey information generated by models, for example, modeled cancer risk from air pollution. The concrete nature of images, such as maps, may convey more certainty than warranted for modeled information. Three map features were selected to communicate the uncertainty of modeled cancer risk: (a) map contours appeared in or out of focus, (b) one or three colors were used, and (c) a verbal-relative or numeric risk expression was used in the legend. Study aims were to assess how these features influenced risk beliefs and the ambiguity of risk beliefs at four assigned map locations that varied by risk level. We applied an integrated conceptual framework to conduct this full factorial experiment with 32 maps that varied by the three dichotomous features and four risk levels; 826 university students participated. Data was analyzed using structural equation modeling. Unfocused contours and the verbal-relative risk expression generated more ambiguity than their counterparts. Focused contours generated stronger risk beliefs for higher risk levels and weaker beliefs for lower risk levels. Number of colors had minimal influence. The magnitude of risk level, conveyed using incrementally darker shading, had a substantial dose-response influence on the strength of risk beliefs. Personal characteristics of prior beliefs and numeracy also had substantial influences. Bottom-up and top-down information processing suggest why iconic visual features of incremental shading and contour focus had the strongest visual influences on risk beliefs and ambiguity. Variations in contour focus and risk expression show promise for fostering appropriate levels of ambiguity. PMID:22985196

  14. Development of explosive welding procedures to fabricate channeled nozzle structures

    NASA Technical Reports Server (NTRS)

    Pattee, H. E.; Linse, V. D.

    1976-01-01

    Research was conducted to demonstrate the feasibility of fabricating a large contoured structure with complex internal channeling by explosive welding procedures. Structures or nozzles of this nature for wind tunnel applications were designed. Such nozzles vary widely in their complexity. However, in their simplest form, they consist of a grooved base section to which a cover sheet is attached to form a series of internal cooling passages. The cover sheet attachment can be accomplished in various ways: fusion welding, brazing, and diffusion welding. The cover sheet has also been electroformed in place. Of these fabrication methods, brazing has proved most successful in producing nozzles with complex contoured surfaces and a multiplicity of internal channels.

  15. Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer.

    PubMed

    La Macchia, Mariangela; Fellin, Francesco; Amichetti, Maurizio; Cianchetti, Marco; Gianolini, Stefano; Paola, Vitali; Lomax, Antony J; Widesott, Lamberto

    2012-09-18

    To validate, in the context of adaptive radiotherapy, three commercial software solutions for atlas-based segmentation. Fifteen patients, five for each group, with cancer of the Head&Neck, pleura, and prostate were enrolled in the study. In addition to the treatment planning CT (pCT) images, one replanning CT (rCT) image set was acquired for each patient during the RT course. Three experienced physicians outlined on the pCT and rCT all the volumes of interest (VOIs). We used three software solutions (VelocityAI 2.6.2 (V), MIM 5.1.1 (M) by MIMVista and ABAS 2.0 (A) by CMS-Elekta) to generate the automatic contouring on the repeated CT. All the VOIs obtained with automatic contouring (AC) were successively corrected manually. We recorded the time needed for: 1) ex novo ROIs definition on rCT; 2) generation of AC by the three software solutions; 3) manual correction of AC.To compare the quality of the volumes obtained automatically by the software and manually corrected with those drawn from scratch on rCT, we used the following indexes: overlap coefficient (DICE), sensitivity, inclusiveness index, difference in volume, and displacement differences on three axes (x, y, z) from the isocenter. The time saved by the three software solutions for all the sites, compared to the manual contouring from scratch, is statistically significant and similar for all the three software solutions. The time saved for each site are as follows: about an hour for Head&Neck, about 40 minutes for prostate, and about 20 minutes for mesothelioma. The best DICE similarity coefficient index was obtained with the manual correction for: A (contours for prostate), A and M (contours for H&N), and M (contours for mesothelioma). From a clinical point of view, the automated contouring workflow was shown to be significantly shorter than the manual contouring process, even though manual correction of the VOIs is always needed.

  16. Pulmonary parenchyma segmentation in thin CT image sequences with spectral clustering and geodesic active contour model based on similarity

    NASA Astrophysics Data System (ADS)

    He, Nana; Zhang, Xiaolong; Zhao, Juanjuan; Zhao, Huilan; Qiang, Yan

    2017-07-01

    While the popular thin layer scanning technology of spiral CT has helped to improve diagnoses of lung diseases, the large volumes of scanning images produced by the technology also dramatically increase the load of physicians in lesion detection. Computer-aided diagnosis techniques like lesions segmentation in thin CT sequences have been developed to address this issue, but it remains a challenge to achieve high segmentation efficiency and accuracy without much involvement of human manual intervention. In this paper, we present our research on automated segmentation of lung parenchyma with an improved geodesic active contour model that is geodesic active contour model based on similarity (GACBS). Combining spectral clustering algorithm based on Nystrom (SCN) with GACBS, this algorithm first extracts key image slices, then uses these slices to generate an initial contour of pulmonary parenchyma of un-segmented slices with an interpolation algorithm, and finally segments lung parenchyma of un-segmented slices. Experimental results show that the segmentation results generated by our method are close to what manual segmentation can produce, with an average volume overlap ratio of 91.48%.

  17. Calculation of continuum damping of Alfvén eigenmodes in tokamak and stellarator equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowden, G. W.; Hole, M. J.; Könies, A.

    2015-09-15

    In an ideal magnetohydrodynamic (MHD) plasma, shear Alfvén eigenmodes may experience dissipationless damping due to resonant interaction with the shear Alfvén continuum. This continuum damping can make a significant contribution to the overall growth/decay rate of shear Alfvén eigenmodes, with consequent implications for fast ion transport. One method for calculating continuum damping is to solve the MHD eigenvalue problem over a suitable contour in the complex plane, thereby satisfying the causality condition. Such an approach can be implemented in three-dimensional ideal MHD codes which use the Galerkin method. Analytic functions can be fitted to numerical data for equilibrium quantities inmore » order to determine the value of these quantities along the complex contour. This approach requires less resolution than the established technique of calculating damping as resistivity vanishes and is thus more computationally efficient. The complex contour method has been applied to the three-dimensional finite element ideal MHD Code for Kinetic Alfvén waves. In this paper, we discuss the application of the complex contour technique to calculate the continuum damping of global modes in tokamak as well as torsatron, W7-X and H-1NF stellarator cases. To the authors' knowledge, these stellarator calculations represent the first calculation of continuum damping for eigenmodes in fully three-dimensional equilibria. The continuum damping of global modes in W7-X and H-1NF stellarator configurations investigated is found to depend sensitively on coupling to numerous poloidal and toroidal harmonics.« less

  18. Design optimization of highly asymmetrical layouts by 2D contour metrology

    NASA Astrophysics Data System (ADS)

    Hu, C. M.; Lo, Fred; Yang, Elvis; Yang, T. H.; Chen, K. C.

    2018-03-01

    As design pitch shrinks to the resolution limit of up-to-date optical lithography technology, the Critical Dimension (CD) variation tolerance has been dramatically decreased for ensuring the functionality of device. One of critical challenges associates with the narrower CD tolerance for whole chip area is the proximity effect control on asymmetrical layout environments. To fulfill the tight CD control of complex features, the Critical Dimension Scanning Electron Microscope (CD-SEM) based measurement results for qualifying process window and establishing the Optical Proximity Correction (OPC) model become insufficient, thus 2D contour extraction technique [1-5] has been an increasingly important approach for complementing the insufficiencies of traditional CD measurement algorithm. To alleviate the long cycle time and high cost penalties for product verification, manufacturing requirements are better to be well handled at design stage to improve the quality and yield of ICs. In this work, in-house 2D contour extraction platform was established for layout design optimization of 39nm half-pitch Self-Aligned Double Patterning (SADP) process layer. Combining with the adoption of Process Variation Band Index (PVBI), the contour extraction platform enables layout optimization speedup as comparing to traditional methods. The capabilities of identifying and handling lithography hotspots in complex layout environments of 2D contour extraction platform allow process window aware layout optimization to meet the manufacturing requirements.

  19. Proposed method of producing large optical mirrors Single-point diamond crushing followed by polishing with a small-area tool

    NASA Technical Reports Server (NTRS)

    Wright, G.; Bryan, J. B.

    1986-01-01

    Faster production of large optical mirrors may result from combining single-point diamond crushing of the glass with polishing using a small area tool to smooth the surface and remove the damaged layer. Diamond crushing allows a surface contour accurate to 0.5 microns to be generated, and the small area computer-controlled polishing tool allows the surface roughness to be removed without destroying the initial contour. Final contours with an accuracy of 0.04 microns have been achieved.

  20. Contour forming of metals by laser peening

    DOEpatents

    Hackel, Lloyd; Harris, Fritz

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  1. Segmentation and Tracking of Cytoskeletal Filaments Using Open Active Contours

    PubMed Central

    Smith, Matthew B.; Li, Hongsheng; Shen, Tian; Huang, Xiaolei; Yusuf, Eddy; Vavylonis, Dimitrios

    2010-01-01

    We use open active contours to quantify cytoskeletal structures imaged by fluorescence microscopy in two and three dimensions. We developed an interactive software tool for segmentation, tracking, and visualization of individual fibers. Open active contours are parametric curves that deform to minimize the sum of an external energy derived from the image and an internal bending and stretching energy. The external energy generates (i) forces that attract the contour toward the central bright line of a filament in the image, and (ii) forces that stretch the active contour toward the ends of bright ridges. Images of simulated semiflexible polymers with known bending and torsional rigidity are analyzed to validate the method. We apply our methods to quantify the conformations and dynamics of actin in two examples: actin filaments imaged by TIRF microscopy in vitro, and actin cables in fission yeast imaged by spinning disk confocal microscopy. PMID:20814909

  2. KSC-02pd0963

    NASA Image and Video Library

    2002-06-06

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) a worker monitors the fueling of the Comet Nucleus Tour (CONTOUR) spacecraft. SCAPE refers to Self-Contained Atmospheric Protective Ensemble. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround them. CONTOUR is scheduled for launch aboard a Boeing Delta II rocket July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station

  3. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours

    NASA Astrophysics Data System (ADS)

    Li, Dengwang; Liu, Li; Chen, Jinhu; Li, Hongsheng; Yin, Yong; Ibragimov, Bulat; Xing, Lei

    2017-01-01

    Atlas-based segmentation utilizes a library of previously delineated contours of similar cases to facilitate automatic segmentation. The problem, however, remains challenging because of limited information carried by the contours in the library. In this studying, we developed a narrow-shell strategy to enhance the information of each contour in the library and to improve the accuracy of the exiting atlas-based approach. This study presented a new concept of atlas based segmentation method. Instead of using the complete volume of the target organs, only information along the organ contours from the atlas images was used for guiding segmentation of the new image. In setting up an atlas-based library, we included not only the coordinates of contour points, but also the image features adjacent to the contour. In this work, 139 CT images with normal appearing livers collected for radiotherapy treatment planning were used to construct the library. The CT images within the library were first registered to each other using affine registration. The nonlinear narrow shell was generated alongside the object contours of registered images. Matching voxels were selected inside common narrow shell image features of a library case and a new case using a speed-up robust features (SURF) strategy. A deformable registration was then performed using a thin plate splines (TPS) technique. The contour associated with the library case was propagated automatically onto the new image by exploiting the deformation field vectors. The liver contour was finally obtained by employing level set based energy optimization within the narrow shell. The performance of the proposed method was evaluated by comparing quantitatively the auto-segmentation results with that delineated by physicians. A novel atlas-based segmentation technique with inclusion of neighborhood image features through the introduction of a narrow-shell surrounding the target objects was established. Application of the technique to 30 liver cases suggested that the technique was capable to reliably segment liver cases from CT, 4D-CT, and CBCT images with little human interaction. The accuracy and speed of the proposed method are quantitatively validated by comparing automatic segmentation results with the manual delineation results. The Jaccard similarity metric between the automatically generated liver contours obtained by the proposed method and the physician delineated results are on an average 90%-96% for planning images. Incorporation of image features into the library contours improves the currently available atlas-based auto-contouring techniques and provides a clinically practical solution for auto-segmentation. The proposed mountainous narrow shell atlas based method can achieve efficient automatic liver propagation for CT, 4D-CT and CBCT images with following treatment planning and should find widespread application in future treatment planning systems.

  4. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours.

    PubMed

    Li, Dengwang; Liu, Li; Chen, Jinhu; Li, Hongsheng; Yin, Yong; Ibragimov, Bulat; Xing, Lei

    2017-01-07

    Atlas-based segmentation utilizes a library of previously delineated contours of similar cases to facilitate automatic segmentation. The problem, however, remains challenging because of limited information carried by the contours in the library. In this studying, we developed a narrow-shell strategy to enhance the information of each contour in the library and to improve the accuracy of the exiting atlas-based approach. This study presented a new concept of atlas based segmentation method. Instead of using the complete volume of the target organs, only information along the organ contours from the atlas images was used for guiding segmentation of the new image. In setting up an atlas-based library, we included not only the coordinates of contour points, but also the image features adjacent to the contour. In this work, 139 CT images with normal appearing livers collected for radiotherapy treatment planning were used to construct the library. The CT images within the library were first registered to each other using affine registration. The nonlinear narrow shell was generated alongside the object contours of registered images. Matching voxels were selected inside common narrow shell image features of a library case and a new case using a speed-up robust features (SURF) strategy. A deformable registration was then performed using a thin plate splines (TPS) technique. The contour associated with the library case was propagated automatically onto the new image by exploiting the deformation field vectors. The liver contour was finally obtained by employing level set based energy optimization within the narrow shell. The performance of the proposed method was evaluated by comparing quantitatively the auto-segmentation results with that delineated by physicians. A novel atlas-based segmentation technique with inclusion of neighborhood image features through the introduction of a narrow-shell surrounding the target objects was established. Application of the technique to 30 liver cases suggested that the technique was capable to reliably segment liver cases from CT, 4D-CT, and CBCT images with little human interaction. The accuracy and speed of the proposed method are quantitatively validated by comparing automatic segmentation results with the manual delineation results. The Jaccard similarity metric between the automatically generated liver contours obtained by the proposed method and the physician delineated results are on an average 90%-96% for planning images. Incorporation of image features into the library contours improves the currently available atlas-based auto-contouring techniques and provides a clinically practical solution for auto-segmentation. The proposed mountainous narrow shell atlas based method can achieve efficient automatic liver propagation for CT, 4D-CT and CBCT images with following treatment planning and should find widespread application in future treatment planning systems.

  5. Measuring effectiveness of three postfire hillslope erosion barrier treatments, western Montana, USA

    Treesearch

    Peter R. Robichaud; Frederick B. Pierson; Robert E. Brown; Joseph W. Wagenbrenner

    2008-01-01

    After the Valley Complex Fire burned 86 000 ha in western Montana in 2000, two studies were conducted to determine the effectiveness of contour-felled log, straw wattle, and hand-dug contour trench erosion barriers in mitigating postfire runoff and erosion. Sixteen plots were located across a steep, severely burned slope, with a single barrier installed in 12 plots (...

  6. Robust active contour via additive local and global intensity information based on local entropy

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Monkam, Patrice; Zhang, Feng; Luan, Fangjun; Koomson, Ben Alfred

    2018-01-01

    Active contour-based image segmentation can be a very challenging task due to many factors such as high intensity inhomogeneity, presence of noise, complex shape, weak boundaries objects, and dependence on the position of the initial contour. We propose a level set-based active contour method to segment complex shape objects from images corrupted by noise and high intensity inhomogeneity. The energy function of the proposed method results from combining the global intensity information and local intensity information with some regularization factors. First, the global intensity term is proposed based on a scheme formulation that considers two intensity values for each region instead of one, which outperforms the well-known Chan-Vese model in delineating the image information. Second, the local intensity term is formulated based on local entropy computed considering the distribution of the image brightness and using the generalized Gaussian distribution as the kernel function. Therefore, it can accurately handle high intensity inhomogeneity and noise. Moreover, our model is not dependent on the position occupied by the initial curve. Finally, extensive experiments using various images have been carried out to illustrate the performance of the proposed method.

  7. TH-CD-202-07: A Methodology for Generating Numerical Phantoms for Radiation Therapy Using Geometric Attribute Distribution Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolly, S; Chen, H; Mutic, S

    Purpose: A persistent challenge for the quality assessment of radiation therapy treatments (e.g. contouring accuracy) is the absence of the known, ground truth for patient data. Moreover, assessment results are often patient-dependent. Computer simulation studies utilizing numerical phantoms can be performed for quality assessment with a known ground truth. However, previously reported numerical phantoms do not include the statistical properties of inter-patient variations, as their models are based on only one patient. In addition, these models do not incorporate tumor data. In this study, a methodology was developed for generating numerical phantoms which encapsulate the statistical variations of patients withinmore » radiation therapy, including tumors. Methods: Based on previous work in contouring assessment, geometric attribute distribution (GAD) models were employed to model both the deterministic and stochastic properties of individual organs via principle component analysis. Using pre-existing radiation therapy contour data, the GAD models are trained to model the shape and centroid distributions of each organ. Then, organs with different shapes and positions can be generated by assigning statistically sound weights to the GAD model parameters. Organ contour data from 20 retrospective prostate patient cases were manually extracted and utilized to train the GAD models. As a demonstration, computer-simulated CT images of generated numerical phantoms were calculated and assessed subjectively and objectively for realism. Results: A cohort of numerical phantoms of the male human pelvis was generated. CT images were deemed realistic both subjectively and objectively in terms of image noise power spectrum. Conclusion: A methodology has been developed to generate realistic numerical anthropomorphic phantoms using pre-existing radiation therapy data. The GAD models guarantee that generated organs span the statistical distribution of observed radiation therapy patients, according to the training dataset. The methodology enables radiation therapy treatment assessment with multi-modality imaging and a known ground truth, and without patient-dependent bias.« less

  8. A metal artifact reduction algorithm in CT using multiple prior images by recursive active contour segmentation

    PubMed Central

    Nam, Haewon

    2017-01-01

    We propose a novel metal artifact reduction (MAR) algorithm for CT images that completes a corrupted sinogram along the metal trace region. When metal implants are located inside a field of view, they create a barrier to the transmitted X-ray beam due to the high attenuation of metals, which significantly degrades the image quality. To fill in the metal trace region efficiently, the proposed algorithm uses multiple prior images with residual error compensation in sinogram space. Multiple prior images are generated by applying a recursive active contour (RAC) segmentation algorithm to the pre-corrected image acquired by MAR with linear interpolation, where the number of prior image is controlled by RAC depending on the object complexity. A sinogram basis is then acquired by forward projection of the prior images. The metal trace region of the original sinogram is replaced by the linearly combined sinogram of the prior images. Then, the additional correction in the metal trace region is performed to compensate the residual errors occurred by non-ideal data acquisition condition. The performance of the proposed MAR algorithm is compared with MAR with linear interpolation and the normalized MAR algorithm using simulated and experimental data. The results show that the proposed algorithm outperforms other MAR algorithms, especially when the object is complex with multiple bone objects. PMID:28604794

  9. SU-E-T-398: Feasibility of Automated Tools for Robustness Evaluation of Advanced Photon and Proton Techniques in Oropharyngeal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Liang, X; Kalbasi, A

    2014-06-01

    Purpose: Advanced radiotherapy (RT) techniques such as proton pencil beam scanning (PBS) and photon-based volumetric modulated arc therapy (VMAT) have dosimetric advantages in the treatment of head and neck malignancies. However, anatomic or alignment changes during treatment may limit robustness of PBS and VMAT plans. We assess the feasibility of automated deformable registration tools for robustness evaluation in adaptive PBS and VMAT RT of oropharyngeal cancer (OPC). Methods: We treated 10 patients with bilateral OPC with advanced RT techniques and obtained verification CT scans with physician-reviewed target and OAR contours. We generated 3 advanced RT plans for each patient: protonmore » PBS plan using 2 posterior oblique fields (2F), proton PBS plan using an additional third low-anterior field (3F), and a photon VMAT plan using 2 arcs (Arc). For each of the planning techniques, we forward calculated initial (Ini) plans on the verification scans to create verification (V) plans. We extracted DVH indicators based on physician-generated contours for 2 target and 14 OAR structures to investigate the feasibility of two automated tools (contour propagation (CP) and dose deformation (DD)) as surrogates for routine clinical plan robustness evaluation. For each verification scan, we compared DVH indicators of V, CP and DD plans in a head-to-head fashion using Student's t-test. Results: We performed 39 verification scans; each patient underwent 3 to 6 verification scan. We found no differences in doses to target or OAR structures between V and CP, V and DD, and CP and DD plans across all patients (p > 0.05). Conclusions: Automated robustness evaluation tools, CP and DD, accurately predicted dose distributions of verification (V) plans using physician-generated contours. These tools may be further developed as a potential robustness screening tool in the workflow for adaptive treatment of OPC using advanced RT techniques, reducing the need for physician-generated contours.« less

  10. Investigation of anticancer properties of caffeinated complexes via computational chemistry methods

    NASA Astrophysics Data System (ADS)

    Sayin, Koray; Üngördü, Ayhan

    2018-03-01

    Computational investigations were performed for 1,3,7-trimethylpurine-2,6-dione, 3,7-dimethylpurine-2,6-dione, their Ru(II) and Os(III) complexes. B3LYP/6-311 ++G(d,p)(LANL2DZ) level was used in numerical calculations. Geometric parameters, IR spectrum, 1H-, 13C and 15N NMR spectrum were examined in detail. Additionally, contour diagram of frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP) maps, MEP contour and some quantum chemical descriptors were used in the determination of reactivity rankings and active sites. The electron density on the surface was similar to each other in studied complexes. Quantum chemical descriptors were investigated and the anticancer activity of complexes were more than cisplatin and their ligands. Additionally, molecular docking calculations were performed in water between related complexes and a protein (ID: 3WZE). The most interact complex was found as Os complex. The interaction energy was calculated as 342.9 kJ/mol.

  11. Global regularizing flows with topology preservation for active contours and polygons.

    PubMed

    Sundaramoorthi, Ganesh; Yezzi, Anthony

    2007-03-01

    Active contour and active polygon models have been used widely for image segmentation. In some applications, the topology of the object(s) to be detected from an image is known a priori, despite a complex unknown geometry, and it is important that the active contour or polygon maintain the desired topology. In this work, we construct a novel geometric flow that can be added to image-based evolutions of active contours and polygons in order to preserve the topology of the initial contour or polygon. We emphasize that, unlike other methods for topology preservation, the proposed geometric flow continually adjusts the geometry of the original evolution in a gradual and graceful manner so as to prevent a topology change long before the curve or polygon becomes close to topology change. The flow also serves as a global regularity term for the evolving contour, and has smoothness properties similar to curvature flow. These properties of gradually adjusting the original flow and global regularization prevent geometrical inaccuracies common with simple discrete topology preservation schemes. The proposed topology preserving geometric flow is the gradient flow arising from an energy that is based on electrostatic principles. The evolution of a single point on the contour depends on all other points of the contour, which is different from traditional curve evolutions in the computer vision literature.

  12. Tumour auto-contouring on 2d cine MRI for locally advanced lung cancer: A comparative study.

    PubMed

    Fast, Martin F; Eiben, Björn; Menten, Martin J; Wetscherek, Andreas; Hawkes, David J; McClelland, Jamie R; Oelfke, Uwe

    2017-12-01

    Radiotherapy guidance based on magnetic resonance imaging (MRI) is currently becoming a clinical reality. Fast 2d cine MRI sequences are expected to increase the precision of radiation delivery by facilitating tumour delineation during treatment. This study compares four auto-contouring algorithms for the task of delineating the primary tumour in six locally advanced (LA) lung cancer patients. Twenty-two cine MRI sequences were acquired using either a balanced steady-state free precession or a spoiled gradient echo imaging technique. Contours derived by the auto-contouring algorithms were compared against manual reference contours. A selection of eight image data sets was also used to assess the inter-observer delineation uncertainty. Algorithmically derived contours agreed well with the manual reference contours (median Dice similarity index: ⩾0.91). Multi-template matching and deformable image registration performed significantly better than feature-driven registration and the pulse-coupled neural network (PCNN). Neither MRI sequence nor image orientation was a conclusive predictor for algorithmic performance. Motion significantly degraded the performance of the PCNN. The inter-observer variability was of the same order of magnitude as the algorithmic performance. Auto-contouring of tumours on cine MRI is feasible in LA lung cancer patients. Despite large variations in implementation complexity, the different algorithms all have relatively similar performance. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. Fuzzy and process modelling of contour ridge water dynamics

    NASA Astrophysics Data System (ADS)

    Mhizha, Alexander; Ndiritu, John

    2018-05-01

    Contour ridges are an in-situ rainwater harvesting technology developed initially for soil erosion control but are currently also widely promoted for rainwater harvesting. The effectiveness of contour ridges depends on geophysical, hydro-climatic and socio economic factors that are highly varied in time and space. Furthermore, field-scale data on these factors are often unavailable. This together with the complexity of hydrological processes at field scale limits the application of classical distributed process modelling to highly-instrumented experimental fields. This paper presents a framework that combines fuzzy logic and process-based approach for modelling contour ridges for rainwater harvesting where detailed field data are not available. Water balance for a representative contour-ridged field incorporating the water flow processes across the boundaries is integrated with fuzzy logic to incorporate the uncertainties in estimating runoff. The model is tested using data collected during the 2009/2010 and 2010/2011 rainfall seasons from two contour-ridged fields in Zhulube located in the semi-arid parts of Zimbabwe. The model is found to replicate soil moisture in the root zone reasonably well (NSE = 0.55 to 0.66 and PBIAS = -1.3 to 6.1 %). The results show that combining fuzzy logic and process based approaches can adequately model soil moisture in a contour ridged-field and could help to assess the water dynamics in contour ridged fields.

  14. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation.

    PubMed

    He, Jingsong; Wang, Lihong; Li, Linjing; Porsezian, K; Erdélyi, R

    2014-06-01

    In this paper, we consider the complex modified Korteweg-de Vries (mKdV) equation as a model of few-cycle optical pulses. Using the Lax pair, we construct a generalized Darboux transformation and systematically generate the first-, second-, and third-order rogue wave solutions and analyze the nature of evolution of higher-order rogue waves in detail. Based on detailed numerical and analytical investigations, we classify the higher-order rogue waves with respect to their intrinsic structure, namely, fundamental pattern, triangular pattern, and ring pattern. We also present several new patterns of the rogue wave according to the standard and nonstandard decomposition. The results of this paper explain the generalization of higher-order rogue waves in terms of rational solutions. We apply the contour line method to obtain the analytical formulas of the length and width of the first-order rogue wave of the complex mKdV and the nonlinear Schrödinger equations. In nonlinear optics, the higher-order rogue wave solutions found here will be very useful to generate high-power few-cycle optical pulses which will be applicable in the area of ultrashort pulse technology.

  15. Parametric Analysis of a Hover Test Vehicle using Advanced Test Generation and Data Analysis

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; Schumann, Johann; Menzies, Tim; Barrett, Tony

    2009-01-01

    Large complex aerospace systems are generally validated in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. This is due to the large parameter space, and complex, highly coupled nonlinear nature of the different systems that contribute to the performance of the aerospace system. We have addressed the factors deterring such an analysis by applying a combination of technologies to the area of flight envelop assessment. We utilize n-factor (2,3) combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. The data generated is automatically analyzed through a combination of unsupervised learning using a Bayesian multivariate clustering technique (AutoBayes) and supervised learning of critical parameter ranges using the machine-learning tool TAR3, a treatment learner. Covariance analysis with scatter plots and likelihood contours are used to visualize correlations between simulation parameters and simulation results, a task that requires tool support, especially for large and complex models. We present results of simulation experiments for a cold-gas-powered hover test vehicle.

  16. Design and milling manufacture of polyurethane custom contoured cushions for wheelchair users.

    PubMed

    da Silva, Fabio Pinto; Beretta, Elisa Marangon; Prestes, Rafael Cavalli; Kindlein Junior, Wilson

    2011-01-01

    The design of custom contoured cushions manufactured in flexible polyurethane foams is an option to improve positioning and comfort for people with disabilities that spend most of the day seated in the same position. These surfaces increase the contact area between the seat and the user. This fact contributes to minimise the local pressures that can generate problems like decubitus ulcers. The present research aims at establishing development routes for custom cushion production to wheelchair users. This study also contributes to the investigation of Computer Numerical Control (CNC) machining of flexible polyurethane foams. The proposed route to obtain the customised seat began with acquiring the user's contour in adequate posture through plaster cast. To collect the surface geometry, the cast was three-dimensionally scanned and manipulated in CAD/CAM software. CNC milling parameters such as tools, spindle speeds and feed rates to machine flexible polyurethane foams were tested. These parameters were analysed regarding the surface quality. The best parameters were then tested in a customised seat. The possible dimensional changes generated during foam cutting were analysed through 3D scanning. Also, the customised seat pressure and temperature distribution was tested. The best parameters found for foams with a density of 50kg/cm(3) were high spindle speeds (24000 rpm) and feed rates between 2400-4000mm/min. Those parameters did not generate significant deformities in the machined cushions. The custom contoured cushion satisfactorily increased the contact area between wheelchair and user, as it distributed pressure and heat evenly. Through this study it was possible to define routes for the development and manufacturing of customised seats using direct CNC milling in flexible polyurethane foams. It also showed that custom contoured cushions efficiently distribute pressure and temperature, which is believed to minimise tissue lesions such as pressure ulcers.

  17. Automated seamline detection along skeleton for remote sensing image mosaicking

    NASA Astrophysics Data System (ADS)

    Zhang, Hansong; Chen, Jianyu; Liu, Xin

    2015-08-01

    The automatic generation of seamline along the overlap region skeleton is a concerning problem for the mosaicking of Remote Sensing(RS) images. Along with the improvement of RS image resolution, it is necessary to ensure rapid and accurate processing under complex conditions. So an automated seamline detection method for RS image mosaicking based on image object and overlap region contour contraction is introduced. By this means we can ensure universality and efficiency of mosaicking. The experiments also show that this method can select seamline of RS images with great speed and high accuracy over arbitrary overlap regions, and realize RS image rapid mosaicking in surveying and mapping production.

  18. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    PubMed Central

    Gay, Hiram A.; Barthold, H. Joseph; O’Meara, Elizabeth; Bosch, Walter R.; El Naqa, Issam; Al-Lozi, Rawan; Rosenthal, Seth A.; Lawton, Colleen; Lee, W. Robert; Sandler, Howard; Zietman, Anthony; Myerson, Robert; Dawson, Laura A.; Willett, Christopher; Kachnic, Lisa A.; Jhingran, Anuja; Portelance, Lorraine; Ryu, Janice; Small, William; Gaffney, David; Viswanathan, Akila N.; Michalski, Jeff M.

    2012-01-01

    Purpose To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa_R, Adnexa_L, Prostate, SeminalVesc, PenileBulb, Femur_R, and Femur_L. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research. PMID:22483697

  19. TU-C-17A-03: An Integrated Contour Evaluation Software Tool Using Supervised Pattern Recognition for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H; Tan, J; Kavanaugh, J

    Purpose: Radiotherapy (RT) contours delineated either manually or semiautomatically require verification before clinical usage. Manual evaluation is very time consuming. A new integrated software tool using supervised pattern contour recognition was thus developed to facilitate this process. Methods: The contouring tool was developed using an object-oriented programming language C# and application programming interfaces, e.g. visualization toolkit (VTK). The C# language served as the tool design basis. The Accord.Net scientific computing libraries were utilized for the required statistical data processing and pattern recognition, while the VTK was used to build and render 3-D mesh models from critical RT structures in real-timemore » and 360° visualization. Principal component analysis (PCA) was used for system self-updating geometry variations of normal structures based on physician-approved RT contours as a training dataset. The inhouse design of supervised PCA-based contour recognition method was used for automatically evaluating contour normality/abnormality. The function for reporting the contour evaluation results was implemented by using C# and Windows Form Designer. Results: The software input was RT simulation images and RT structures from commercial clinical treatment planning systems. Several abilities were demonstrated: automatic assessment of RT contours, file loading/saving of various modality medical images and RT contours, and generation/visualization of 3-D images and anatomical models. Moreover, it supported the 360° rendering of the RT structures in a multi-slice view, which allows physicians to visually check and edit abnormally contoured structures. Conclusion: This new software integrates the supervised learning framework with image processing and graphical visualization modules for RT contour verification. This tool has great potential for facilitating treatment planning with the assistance of an automatic contour evaluation module in avoiding unnecessary manual verification for physicians/dosimetrists. In addition, its nature as a compact and stand-alone tool allows for future extensibility to include additional functions for physicians’ clinical needs.« less

  20. Orientation-Cue Invariant Population Responses to Contrast-Modulated and Phase-Reversed Contour Stimuli in Macaque V1 and V2

    PubMed Central

    An, Xu; Gong, Hongliang; Yin, Jiapeng; Wang, Xiaochun; Pan, Yanxia; Zhang, Xian; Lu, Yiliang; Yang, Yupeng; Toth, Zoltan; Schiessl, Ingo; McLoughlin, Niall; Wang, Wei

    2014-01-01

    Visual scenes can be readily decomposed into a variety of oriented components, the processing of which is vital for object segregation and recognition. In primate V1 and V2, most neurons have small spatio-temporal receptive fields responding selectively to oriented luminance contours (first order), while only a subgroup of neurons signal non-luminance defined contours (second order). So how is the orientation of second-order contours represented at the population level in macaque V1 and V2? Here we compared the population responses in macaque V1 and V2 to two types of second-order contour stimuli generated either by modulation of contrast or phase reversal with those to first-order contour stimuli. Using intrinsic signal optical imaging, we found that the orientation of second-order contour stimuli was represented invariantly in the orientation columns of both macaque V1 and V2. A physiologically constrained spatio-temporal energy model of V1 and V2 neuronal populations could reproduce all the recorded population responses. These findings suggest that, at the population level, the primate early visual system processes the orientation of second-order contours initially through a linear spatio-temporal filter mechanism. Our results of population responses to different second-order contour stimuli support the idea that the orientation maps in primate V1 and V2 can be described as a spatial-temporal energy map. PMID:25188576

  1. Closed geometric models in medical applications

    NASA Astrophysics Data System (ADS)

    Jagannathan, Lakshmipathy; Nowinski, Wieslaw L.; Raphel, Jose K.; Nguyen, Bonnie T.

    1996-04-01

    Conventional surface fitting methods give twisted surfaces and complicates capping closures. This is a typical character of surfaces that lack rectangular topology. We suggest an algorithm which overcomes these limitations. The analysis of the algorithm is presented with experimental results. This algorithm assumes the mass center lying inside the object. Both capping closure and twisting are results of inadequate information on the geometric proximity of the points and surfaces which are proximal in the parametric space. Geometric proximity at the contour level is handled by mapping the points along the contour onto a hyper-spherical space. The resulting angular gradation with respect to the centroid is monotonic and hence avoids the twisting problem. Inter-contour geometric proximity is achieved by partitioning the point set based on the angle it makes with the respective centroids. Avoidance of capping complications is achieved by generating closed cross curves connecting curves which are reflections about the abscissa. The method is of immense use for the generation of the deep cerebral structures and is applied to the deep structures generated from the Schaltenbrand- Wahren brain atlas.

  2. Application of principal component analysis (PCA) and improved joint probability distributions to the inverse first-order reliability method (I-FORM) for predicting extreme sea states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert-Gallup, Aubrey C.; Sallaberry, Cédric J.; Dallman, Ann R.

    Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulations as a part of the standard current practice for designing marine structures to survive extreme sea states. These environmental contours are characterized by combinations of significant wave height (H s) and either energy period (T e) or peak period (T p) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first-order reliability method (I-FORM) is a standard design practice for generating environmentalmore » contours. This paper develops enhanced methodologies for data analysis prior to the application of the I-FORM, including the use of principal component analysis (PCA) to create an uncorrelated representation of the variables under consideration as well as new distribution and parameter fitting techniques. As a result, these modifications better represent the measured data and, therefore, should contribute to the development of more realistic representations of environmental contours of extreme sea states for determining design loads for marine structures.« less

  3. Application of principal component analysis (PCA) and improved joint probability distributions to the inverse first-order reliability method (I-FORM) for predicting extreme sea states

    DOE PAGES

    Eckert-Gallup, Aubrey C.; Sallaberry, Cédric J.; Dallman, Ann R.; ...

    2016-01-06

    Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulations as a part of the standard current practice for designing marine structures to survive extreme sea states. These environmental contours are characterized by combinations of significant wave height (H s) and either energy period (T e) or peak period (T p) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first-order reliability method (I-FORM) is a standard design practice for generating environmentalmore » contours. This paper develops enhanced methodologies for data analysis prior to the application of the I-FORM, including the use of principal component analysis (PCA) to create an uncorrelated representation of the variables under consideration as well as new distribution and parameter fitting techniques. As a result, these modifications better represent the measured data and, therefore, should contribute to the development of more realistic representations of environmental contours of extreme sea states for determining design loads for marine structures.« less

  4. KSC-02pd0952

    NASA Image and Video Library

    2002-06-06

    KENNEDY SPACE CENTER, FLA. - SCAPE suits are ready for worker who will use them during fueling of the Comet Nucleus Tour (CONTOUR) spacecraft in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2). SCAPE refers to Self-Contained Atmospheric Protective Ensemble. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround them. CONTOUR is scheduled for launch aboard a Boeing Delta II rocket July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station

  5. KSC-02pd0960

    NASA Image and Video Library

    2002-06-06

    KENNEDY SPACE CENTER, FLA. -- Dressed in their SCAPE suits, workers are ready for the fueling of the Comet Nucleus Tour (CONTOUR) spacecraft in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2). SCAPE refers to Self-Contained Atmospheric Protective Ensemble. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround them. CONTOUR is scheduled for launch aboard a Boeing Delta II rocket July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station

  6. KSC-02pd0957

    NASA Image and Video Library

    2002-06-06

    KENNEDY SPACE CENTER, FLA. -- Workers finish donning SCAPE suits for the fueling of the Comet Nucleus Tour (CONTOUR) spacecraft in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2). SCAPE refers to Self-Contained Atmospheric Protective Ensemble. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround them. CONTOUR is scheduled for launch aboard a Boeing Delta II rocket July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station

  7. KSC-02pd0955

    NASA Image and Video Library

    2002-06-06

    KENNEDY SPACE CENTER, FLA. - Workers get into donning SCAPE suits for the fueling of the Comet Nucleus Tour (CONTOUR) spacecraft in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2). SCAPE refers to Self-Contained Atmospheric Protective Ensemble. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround them. CONTOUR is scheduled for launch aboard a Boeing Delta II rocket July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station

  8. KSC-02pd0959

    NASA Image and Video Library

    2002-06-06

    KENNEDY SPACE CENTER, FLA. - Dressed in their SCAPE suits, workers are ready for the fueling of the Comet Nucleus Tour (CONTOUR) spacecraft in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2). SCAPE refers to Self-Contained Atmospheric Protective Ensemble. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround them. CONTOUR is scheduled for launch aboard a Boeing Delta II rocket July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station

  9. KSC-02pd0953

    NASA Image and Video Library

    2002-06-06

    KENNEDY SPACE CENTER, FLA. - Workers begin donning SCAPE suits for the fueling of the Comet Nucleus Tour (CONTOUR) spacecraft in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2). SCAPE refers to Self-Contained Atmospheric Protective Ensemble. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround them. CONTOUR is scheduled for launch aboard a Boeing Delta II rocket July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station

  10. KSC-02pd0958

    NASA Image and Video Library

    2002-06-06

    KENNEDY SPACE CENTER, FLA. -- Workers finish donning SCAPE suits for the fueling of the Comet Nucleus Tour (CONTOUR) spacecraft in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2). SCAPE refers to Self-Contained Atmospheric Protective Ensemble. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround them. CONTOUR is scheduled for launch aboard a Boeing Delta II rocket July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station

  11. KSC-02pd0956

    NASA Image and Video Library

    2002-06-06

    KENNEDY SPACE CENTER, FLA. - Workers finish donning SCAPE suits for the fueling of the Comet Nucleus Tour (CONTOUR) spacecraft in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2). SCAPE refers to Self-Contained Atmospheric Protective Ensemble. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround them. CONTOUR is scheduled for launch aboard a Boeing Delta II rocket July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station

  12. Evaluation of a technique to generate artificially thickened boundary layers in supersonic and hypersonic flows

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Hingst, W. R.; Davis, D. O.; Blair, A. B., Jr.

    1991-01-01

    The feasibility of using a contoured honeycomb model to generate a thick boundary layer in high-speed, compressible flow was investigated. The contour of the honeycomb was tailored to selectively remove momentum in a minimum of streamwise distance to create an artificially thickened turbulent boundary layer. Three wind tunnel experiments were conducted to verify the concept. Results indicate that this technique is a viable concept, especially for high-speed inlet testing applications. In addition, the compactness of the honeycomb boundary layer simulator allows relatively easy integration into existing wind tunnel model hardware.

  13. GENERALIZED DIGITAL CONTOURING PROGRAM

    NASA Technical Reports Server (NTRS)

    Jones, R. L.

    1994-01-01

    This is a digital computer contouring program developed by combining desirable characteristics from several existing contouring programs. It can easily be adapted to many different research requirements. The overlaid structure of the program permits desired modifications to be made with ease. The contouring program performs both the task of generating a depth matrix from either randomly or regularly spaced surface heights and the task of contouring the data. Each element of the depth matrix is computed as a weighted mean of heights predicted at an element by planes tangent to the surface at neighboring control points. Each contour line is determined by its intercepts with the sides of geometrical figures formed by connecting the various elements of the depth matrix with straight lines. Although contour charts are usually thought of as being two-dimensional pictorial representations of topographic formations of land masses, they can also be useful in portraying data which are obtained during the course of research in various scientific disciplines and which would ordinarily be tabulated. Any set of data which can be referenced to a two-dimensional coordinate system can be graphically represented by this program. This program is written in FORTRAN IV and ASSEMBLER for batch execution and has been implemented on the CDC 6000 Series. This program was developed in 1971.

  14. Enlightening intracellular complexity of living cells with quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Martinez Torres, C.; Laperrousaz, B.; Berguiga, L.; Boyer Provera, E.; Elezgaray, J.; Nicolini, F. E.; Maguer-Satta, V.; Arneodo, A.; Argoul, F.

    2016-03-01

    The internal distribution of refractive indices (RIs) of a living cell is much more complex than usually admitted in multi-shell models. The reconstruction of RI maps from single phase images has rarely been achieved for several reasons: (i) we still have very little knowledge of the impact of internal macromolecular complexes on the local RI and (ii) phase changes produced by light propagation through the sample are mixed with diffraction effects by internal cell bodies. We propose the implementation a 2D wavelet-based contour chain detection method to distinguish internal boundaries thanks to their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are morphological indicators for distinguishing cells of different origins and to follow their transformation in pathologic situations. We use this method to compare non adherent blood cells from primary and laboratory culture origins, in healthy and pathological situations (chronic myelogenous leukaemia). In a second part of this presentation, we concentrate on the temporal dynamics of the phase contour chains and we discuss the spectral decomposition of their dynamics in both health and disease.

  15. SU-E-J-108: Solving the Chinese Postman Problem for Effective Contour Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J; Zhang, L; Balter, P

    2015-06-15

    Purpose: To develop a practical approach for accurate contour deformation when deformable image registration (DIR) is used for atlas-based segmentation or contour propagation in image-guided radiotherapy. Methods: A contour deformation approach was developed on the basis of 3D mesh operations. The 2D contours represented by a series of points in each slice were first converted to a 3D triangular mesh, which was deformed by the deformation vectors resulting from DIR. A set of parallel 2D planes then cut through the deformed 3D mesh, generating unordered points and line segments, which should be reorganized into a set of 2D contour points.more » It was realized that the reorganization problem was equivalent to solving the Chinese Postman Problem (CPP) by traversing a graph built from the unordered points with the least cost. Alternatively, deformation could be applied to a binary mask converted from the original contours. The deformed binary mask was then converted back into contours at the CT slice locations. We performed a qualitative comparison to validate the mesh-based approach against the image-based approach. Results: The DIR could considerably change the 3D mesh, making complicated 2D contour representations after deformation. CPP was able to effectively reorganize the points in 2D planes no matter how complicated the 2D contours were. The mesh-based approach did not require a post-processing of the contour, thus accurately showing the actual deformation in DIR. The mesh-based approach could keep some fine details and resulted in smoother contours than the image-based approach did, especially for the lung structure. Image-based approach appeared to over-process contours and suffered from image resolution limits. The mesh-based approach was integrated into in-house DIR software for use in routine clinic and research. Conclusion: We developed a practical approach for accurate contour deformation. The efficiency of this approach was demonstrated in both clinic and research applications. This work was partially supported by Cancer Prevention & Research Institute of Texas (CPRIT) RP110562.« less

  16. Roles of divergent and rotational winds in the kinetic energy balance during intense convective activity

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Browning, P. A.

    1983-01-01

    Contributions of divergent and rotational wind components to the synoptic-scale kinetic energy balance are described using rawinsonde data at 3 and 6 h intervals from NASA's fourth Atmospheric Variability experiment. Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclosed storm-induced, upper level wind maxima located poleward of convection. Although small in magnitude, the divergent wind component played an important role in the cross-contour generation and horizontal flux divergence of kinetic energy. The importance of V(D) appears directly related to the presence and intensity of convection. Although K(D) usually comprised less than 10 percent of the total kinetic energy content, generation of kinetic energy by V(D) was a major factor in the creation of upper-level wind maxima to the north of the storm complexes. Omission of the divergent wind apparently would lead to serious misrepresentations of the energy balance. A random error analysis is presented to assess confidence limits in the various energy parameters.

  17. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gay, Hiram A., E-mail: hgay@radonc.wustl.edu; Barthold, H. Joseph; Beth Israel Deaconess Medical Center, Boston, MA

    2012-07-01

    Purpose: To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials: One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The followingmore » were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results: The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa{sub R}, Adnexa{sub L}, Prostate, SeminalVesc, PenileBulb, Femur{sub R}, and Femur{sub L}. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions: Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research.« less

  18. Atlas-Based Segmentation Improves Consistency and Decreases Time Required for Contouring Postoperative Endometrial Cancer Nodal Volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Amy V.; Department of Radiation Oncology, St. Luke's-Roosevelt Hospital, New York, NY; Wortham, Angela

    2011-03-01

    Purpose: Accurate target delineation of the nodal volumes is essential for three-dimensional conformal and intensity-modulated radiotherapy planning for endometrial cancer adjuvant therapy. We hypothesized that atlas-based segmentation ('autocontouring') would lead to time savings and more consistent contours among physicians. Methods and Materials: A reference anatomy atlas was constructed using the data from 15 postoperative endometrial cancer patients by contouring the pelvic nodal clinical target volume on the simulation computed tomography scan according to the Radiation Therapy Oncology Group 0418 trial using commercially available software. On the simulation computed tomography scans from 10 additional endometrial cancer patients, the nodal clinical targetmore » volume autocontours were generated. Three radiation oncologists corrected the autocontours and delineated the manual nodal contours under timed conditions while unaware of the other contours. The time difference was determined, and the overlap of the contours was calculated using Dice's coefficient. Results: For all physicians, manual contouring of the pelvic nodal target volumes and editing the autocontours required a mean {+-} standard deviation of 32 {+-} 9 vs. 23 {+-} 7 minutes, respectively (p = .000001), a 26% time savings. For each physician, the time required to delineate the manual contours vs. correcting the autocontours was 30 {+-} 3 vs. 21 {+-} 5 min (p = .003), 39 {+-} 12 vs. 30 {+-} 5 min (p = .055), and 29 {+-} 5 vs. 20 {+-} 5 min (p = .0002). The mean overlap increased from manual contouring (0.77) to correcting the autocontours (0.79; p = .038). Conclusion: The results of our study have shown that autocontouring leads to increased consistency and time savings when contouring the nodal target volumes for adjuvant treatment of endometrial cancer, although the autocontours still required careful editing to ensure that the lymph nodes at risk of recurrence are properly included in the target volume.« less

  19. Building a New Model of Care for Rapid Breast Radiotherapy Treatment Planning: Evaluation of the Advanced Practice Radiation Therapist in Cavity Delineation.

    PubMed

    Lee, G; Dinniwell, R; Liu, F F; Fyles, A; Han, K; Conrad, T; Levin, W; Marshall, A; Purdie, T G; Koch, C A

    2016-12-01

    Breast radiotherapy treatment is commonly managed by a multidisciplinary team to ensure optimal delivery of care. We sought a new model of care whereby a clinical specialist radiation therapist (CSRT) delineates the cavity target for whole breast radiotherapy treatment planning and the radiation oncologist validates the contour during final plan review. This study evaluated the radiation oncologist's acceptance of these contours and identified characteristics of cavities suitable for CSRT-directed contouring. Following specialised breast oncology education and training by the radiation oncologist, the CSRT prospectively delineated cavities in 30 tangential breast radiotherapy cases and consulted the radiation oncologist in 'complex' cases but directed 'non-complex' cases for treatment planning. Changes to CSRT contours were evaluated using the conformity index. Breast density, time since surgery and cavity location, size and visualisation score [CVS: range 1 (no visible cavity) to 5 (homogenous cavity)] were captured. Of the 30 CSRT delineated cavities contours, the CSRT directed 20 (66.7%) cases for planning without radiation oncology review; 19 were accepted (without changes) by the radiation oncologist upon final plan review and one was changed by the radiation oncologist (conformity index = 0.93) for boost treatment and did not affect the tangential treatment plan. Ten (33.3%) cases, all CVS ≤ 3, were reviewed with the radiation oncologist before planning (conformity index = 0.88 ± 0.12). CVS was inversely correlated with breast density and cavity size (P < 0.01). The CSRT delineated cavities appropriate for clinical radiotherapy treatment planning in women with well-visualised cavities, whereas 'complex' cases with dense breast parenchyma, CVS ≤ 3, and/or cases needing boost radiotherapy treatment required review with the radiation oncologist before planning. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  20. Joint classification and contour extraction of large 3D point clouds

    NASA Astrophysics Data System (ADS)

    Hackel, Timo; Wegner, Jan D.; Schindler, Konrad

    2017-08-01

    We present an effective and efficient method for point-wise semantic classification and extraction of object contours of large-scale 3D point clouds. What makes point cloud interpretation challenging is the sheer size of several millions of points per scan and the non-grid, sparse, and uneven distribution of points. Standard image processing tools like texture filters, for example, cannot handle such data efficiently, which calls for dedicated point cloud labeling methods. It turns out that one of the major drivers for efficient computation and handling of strong variations in point density, is a careful formulation of per-point neighborhoods at multiple scales. This allows, both, to define an expressive feature set and to extract topologically meaningful object contours. Semantic classification and contour extraction are interlaced problems. Point-wise semantic classification enables extracting a meaningful candidate set of contour points while contours help generating a rich feature representation that benefits point-wise classification. These methods are tailored to have fast run time and small memory footprint for processing large-scale, unstructured, and inhomogeneous point clouds, while still achieving high classification accuracy. We evaluate our methods on the semantic3d.net benchmark for terrestrial laser scans with >109 points.

  1. Three-dimensional surface contouring of macroscopic objects by means of phase-difference images.

    PubMed

    Velásquez Prieto, Daniel; Garcia-Sucerquia, Jorge

    2006-09-01

    We report a technique to determine the 3D contour of objects with dimensions of at least 4 orders of magnitude larger than the illumination optical wavelength. Our proposal is based on the numerical reconstruction of the optical wave field of digitally recorded holograms. The required modulo 2pi phase map in any contouring process is obtained by means of the direct subtraction of two phase-contrast images under different illumination angles to create a phase-difference image of a still object. Obtaining the phase-difference images is only possible by using the capability of numerical reconstruction of the complex optical field provided by digital holography. This unique characteristic leads us to a robust, reliable, and fast procedure that requires only two images. A theoretical analysis of the contouring system is shown, with verification by means of numerical and experimental results.

  2. Sedimentary dynamics and high-frequency sequence stratigraphy of the southwestern slope of Great Bahama Bank

    NASA Astrophysics Data System (ADS)

    Wunsch, Marco; Betzler, Christian; Eberli, Gregor P.; Lindhorst, Sebastian; Lüdmann, Thomas; Reijmer, John J. G.

    2018-01-01

    New geophysical data from the leeward slope of Great Bahama Bank show how contour currents shape the slope and induce re-sedimentation processes. Along slope segments with high current control, drift migration and current winnowing at the toe of slope form a deep moat. Here, the slope progradation is inhibited by large channel incisions and the accumulation of large mass transport complexes, triggered by current winnowing. In areas where the slope is bathed by weaker currents, the accumulation of mass transport complexes and channel incision is rather controlled by the position of the sea level. Large slope failures were triggered during the Mid-Pleistocene transition and Mid-Brunhes event, both periods characterized by changes in the cyclicity or the amplitude of sea-level fluctuations. Within the seismic stratigraphic framework of third order sequences, four sequences of higher order were identified in the succession of the upper Pleistocene. These higher order sequences also show clear differences in function of the slope exposure to contour currents. Two stochastic models emphasize the role of the contour currents and slope morphology in the facies distribution in the upper Pleistocene sequences. In areas of high current influence the interplay of erosional and depositional processes form a complex facies pattern with downslope and along strike facies alterations. In zones with lower current influence, major facies alternations occur predominately in downslope direction, and a layer-cake pattern characterizes the along strike direction. Therefore, this study highlights that contour currents are an underestimated driver for the sediment distribution and architecture of carbonate slopes.

  3. KSC-02pd0961

    NASA Image and Video Library

    2002-06-06

    KENNEDY SPACE CENTER, FLA. -- Dressed in their SCAPE suits, workers head for the vehicle that will take them to the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) to fuel the Comet Nucleus Tour (CONTOUR) spacecraft. SCAPE refers to Self-Contained Atmospheric Protective Ensemble. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround them. CONTOUR is scheduled for launch aboard a Boeing Delta II rocket July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station

  4. KSC-02pd0962

    NASA Image and Video Library

    2002-06-06

    KENNEDY SPACE CENTER, FLA. -- The last of the workers dressed in their SCAPE suits file into the vehicle that will take them to the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) to fuel the Comet Nucleus Tour (CONTOUR) spacecraft. SCAPE refers to Self-Contained Atmospheric Protective Ensemble. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround them. CONTOUR is scheduled for launch aboard a Boeing Delta II rocket July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station

  5. KSC-02pd0954

    NASA Image and Video Library

    2002-06-06

    KENNEDY SPACE CENTER, FLA. -- Workers put on protective head covers, part of the SCAPE suits they will use during the fueling of the Comet Nucleus Tour (CONTOUR) spacecraft in the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2). SCAPE refers to Self-Contained Atmospheric Protective Ensemble. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround them. CONTOUR is scheduled for launch aboard a Boeing Delta II rocket July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station

  6. An adaptive DPCM algorithm for predicting contours in NTSC composite video signals

    NASA Astrophysics Data System (ADS)

    Cox, N. R.

    An adaptive DPCM algorithm is proposed for encoding digitized National Television Systems Committee (NTSC) color video signals. This algorithm essentially predicts picture contours in the composite signal without resorting to component separation. The contour parameters (slope thresholds) are optimized using four 'typical' television frames that have been sampled at three times the color subcarrier frequency. Three variations of the basic predictor are simulated and compared quantitatively with three non-adaptive predictors of similar complexity. By incorporating a dual-word-length coder and buffer memory, high quality color pictures can be encoded at 4.0 bits/pel or 42.95 Mbit/s. The effect of channel error propagation is also investigated.

  7. Investigating CT to CBCT image registration for head and neck proton therapy as a tool for daily dose recalculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landry, Guillaume, E-mail: g.landry@lmu.de; Nijhuis, Reinoud; Thieke, Christian

    2015-03-15

    Purpose: Intensity modulated proton therapy (IMPT) of head and neck (H and N) cancer patients may be improved by plan adaptation. The decision to adapt the treatment plan based on a dose recalculation on the current anatomy requires a diagnostic quality computed tomography (CT) scan of the patient. As gantry-mounted cone beam CT (CBCT) scanners are currently being offered by vendors, they may offer daily or weekly updates of patient anatomy. CBCT image quality may not be sufficient for accurate proton dose calculation and it is likely necessary to perform CBCT CT number correction. In this work, the authors investigatedmore » deformable image registration (DIR) of the planning CT (pCT) to the CBCT to generate a virtual CT (vCT) to be used for proton dose recalculation. Methods: Datasets of six H and N cancer patients undergoing photon intensity modulated radiation therapy were used in this study to validate the vCT approach. Each dataset contained a CBCT acquired within 3 days of a replanning CT (rpCT), in addition to a pCT. The pCT and rpCT were delineated by a physician. A Morphons algorithm was employed in this work to perform DIR of the pCT to CBCT following a rigid registration of the two images. The contours from the pCT were deformed using the vector field resulting from DIR to yield a contoured vCT. The DIR accuracy was evaluated with a scale invariant feature transform (SIFT) algorithm comparing automatically identified matching features between vCT and CBCT. The rpCT was used as reference for evaluation of the vCT. The vCT and rpCT CT numbers were converted to stopping power ratio and the water equivalent thickness (WET) was calculated. IMPT dose distributions from treatment plans optimized on the pCT were recalculated with a Monte Carlo algorithm on the rpCT and vCT for comparison in terms of gamma index, dose volume histogram (DVH) statistics as well as proton range. The DIR generated contours on the vCT were compared to physician-drawn contours on the rpCT. Results: The DIR accuracy was better than 1.4 mm according to the SIFT evaluation. The mean WET differences between vCT (pCT) and rpCT were below 1 mm (2.6 mm). The amount of voxels passing 3%/3 mm gamma criteria were above 95% for the vCT vs rpCT. When using the rpCT contour set to derive DVH statistics from dose distributions calculated on the rpCT and vCT the differences, expressed in terms of 30 fractions of 2 Gy, were within [−4, 2 Gy] for parotid glands (D{sub mean}), spinal cord (D{sub 2%}), brainstem (D{sub 2%}), and CTV (D{sub 95%}). When using DIR generated contours for the vCT, those differences ranged within [−8, 11 Gy]. Conclusions: In this work, the authors generated CBCT based stopping power distributions using DIR of the pCT to a CBCT scan. DIR accuracy was below 1.4 mm as evaluated by the SIFT algorithm. Dose distributions calculated on the vCT agreed well to those calculated on the rpCT when using gamma index evaluation as well as DVH statistics based on the same contours. The use of DIR generated contours introduced variability in DVH statistics.« less

  8. Comparison of [{sup 11}C]choline Positron Emission Tomography With T2- and Diffusion-Weighted Magnetic Resonance Imaging for Delineating Malignant Intraprostatic Lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Joe H.; University of Melbourne, Victoria; Lim Joon, Daryl

    2015-06-01

    Purpose: The purpose of this study was to compare the accuracy of [{sup 11}C]choline positron emission tomography (CHOL-PET) with that of the combination of T2-weighted and diffusion-weighted (T2W/DW) magnetic resonance imaging (MRI) for delineating malignant intraprostatic lesions (IPLs) for guiding focal therapies and to investigate factors predicting the accuracy of CHOL-PET. Methods and Materials: This study included 21 patients who underwent CHOL-PET and T2W/DW MRI prior to radical prostatectomy. Two observers manually delineated IPL contours for each scan, and automatic IPL contours were generated on CHOL-PET based on varying proportions of the maximum standardized uptake value (SUV). IPLs identified onmore » prostatectomy specimens defined reference standard contours. The imaging-based contours were compared with the reference standard contours using Dice similarity coefficient (DSC), and sensitivity and specificity values. Factors that could potentially predict the DSC of the best contouring method were analyzed using linear models. Results: The best automatic contouring method, 60% of the maximum SUV (SUV{sub 60}) , had similar correlations (DSC: 0.59) with the manual PET contours (DSC: 0.52, P=.127) and significantly better correlations than the manual MRI contours (DSC: 0.37, P<.001). The sensitivity and specificity values were 72% and 71% for SUV{sub 60}; 53% and 86% for PET manual contouring; and 28% and 92% for MRI manual contouring. The tumor volume and transition zone pattern could independently predict the accuracy of CHOL-PET. Conclusions: CHOL-PET is superior to the combination of T2W/DW MRI for delineating IPLs. The accuracy of CHOL-PET is insufficient for gland-sparing focal therapies but may be accurate enough for focal boost therapies. The transition zone pattern is a new classification that may predict how well CHOL-PET delineates IPLs.« less

  9. WE-AB-207B-07: Dose Cloud: Generating “Big Data” for Radiation Therapy Treatment Plan Optimization Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folkerts, MM; University of California San Diego, La Jolla, California; Long, T

    Purpose: To provide a tool to generate large sets of realistic virtual patient geometries and beamlet doses for treatment optimization research. This tool enables countless studies exploring the fundamental interplay between patient geometry, objective functions, weight selections, and achievable dose distributions for various algorithms and modalities. Methods: Generating realistic virtual patient geometries requires a small set of real patient data. We developed a normalized patient shape model (PSM) which captures organ and target contours in a correspondence-preserving manner. Using PSM-processed data, we perform principal component analysis (PCA) to extract major modes of variation from the population. These PCA modes canmore » be shared without exposing patient information. The modes are re-combined with different weights to produce sets of realistic virtual patient contours. Because virtual patients lack imaging information, we developed a shape-based dose calculation (SBD) relying on the assumption that the region inside the body contour is water. SBD utilizes a 2D fluence-convolved scatter kernel, derived from Monte Carlo simulations, and can compute both full dose for a given set of fluence maps, or produce a dose matrix (dose per fluence pixel) for many modalities. Combining the shape model with SBD provides the data needed for treatment plan optimization research. Results: We used PSM to capture organ and target contours for 96 prostate cases, extracted the first 20 PCA modes, and generated 2048 virtual patient shapes by randomly sampling mode scores. Nearly half of the shapes were thrown out for failing anatomical checks, the remaining 1124 were used in computing dose matrices via SBD and a standard 7-beam protocol. As a proof of concept, and to generate data for later study, we performed fluence map optimization emphasizing PTV coverage. Conclusions: We successfully developed and tested a tool for creating customizable sets of virtual patients suitable for large-scale radiation therapy optimization research.« less

  10. Using the stereokinetic effect to convey depth - Computationally efficient depth-from-motion displays

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Proffitt, Dennis R.

    1992-01-01

    Recent developments in microelectronics have encouraged the use of 3D data bases to create compelling volumetric renderings of graphical objects. However, even with the computational capabilities of current-generation graphical systems, real-time displays of such objects are difficult, particularly when dynamic spatial transformations are involved. In this paper we discuss a type of visual stimulus (the stereokinetic effect display) that is computationally far less complex than a true three-dimensional transformation but yields an equally compelling depth impression, often perceptually indiscriminable from the true spatial transformation. Several possible applications for this technique are discussed (e.g., animating contour maps and air traffic control displays so as to evoke accurate depth percepts).

  11. The effort to close the gap: Tracking the development of illusory contour processing from childhood to adulthood with high-density electrical mapping

    PubMed Central

    Altschuler, Ted S.; Molholm, Sophie; Butler, John S.; Mercier, Manuel R.; Brandwein, Alice B.; Foxe, John J.

    2014-01-01

    The adult human visual system can efficiently fill-in missing object boundaries when low-level information from the retina is incomplete, but little is known about how these processes develop across childhood. A decade of visual-evoked potential (VEP) studies has produced a theoretical model identifying distinct phases of contour completion in adults. The first, termed a perceptual phase, occurs from approximately 100-200 ms and is associated with automatic boundary completion. The second is termed a conceptual phase occurring between 230-400 ms. The latter has been associated with the analysis of ambiguous objects which seem to require more effort to complete. The electrophysiological markers of these phases have both been localized to the lateral occipital complex, a cluster of ventral visual stream brain regions associated with object-processing. We presented Kanizsa-type illusory contour stimuli, often used for exploring contour completion processes, to neurotypical persons ages 6-31 (N= 63), while parametrically varying the spatial extent of these induced contours, in order to better understand how filling-in processes develop across childhood and adolescence. Our results suggest that, while adults complete contour boundaries in a single discrete period during the automatic perceptual phase, children display an immature response pattern - engaging in more protracted processing across both timeframes and appearing to recruit more widely distributed regions which resemble those evoked during adult processing of higher-order ambiguous figures. However, children older than 5 years of age were remarkably like adults in that the effects of contour processing were invariant to manipulation of contour extent. PMID:24365674

  12. Automated segmentation and dose-volume analysis with DICOMautomaton

    NASA Astrophysics Data System (ADS)

    Clark, H.; Thomas, S.; Moiseenko, V.; Lee, R.; Gill, B.; Duzenli, C.; Wu, J.

    2014-03-01

    Purpose: Exploration of historical data for regional organ dose sensitivity is limited by the effort needed to (sub-)segment large numbers of contours. A system has been developed which can rapidly perform autonomous contour sub-segmentation and generic dose-volume computations, substantially reducing the effort required for exploratory analyses. Methods: A contour-centric approach is taken which enables lossless, reversible segmentation and dramatically reduces computation time compared with voxel-centric approaches. Segmentation can be specified on a per-contour, per-organ, or per-patient basis, and can be performed along either an embedded plane or in terms of the contour's bounds (e.g., split organ into fractional-volume/dose pieces along any 3D unit vector). More complex segmentation techniques are available. Anonymized data from 60 head-and-neck cancer patients were used to compare dose-volume computations with Varian's EclipseTM (Varian Medical Systems, Inc.). Results: Mean doses and Dose-volume-histograms computed agree strongly with Varian's EclipseTM. Contours which have been segmented can be injected back into patient data permanently and in a Digital Imaging and Communication in Medicine (DICOM)-conforming manner. Lossless segmentation persists across such injection, and remains fully reversible. Conclusions: DICOMautomaton allows researchers to rapidly, accurately, and autonomously segment large amounts of data into intricate structures suitable for analyses of regional organ dose sensitivity.

  13. On the Relationship between Variational Level Set-Based and SOM-Based Active Contours

    PubMed Central

    Abdelsamea, Mohammed M.; Gnecco, Giorgio; Gaber, Mohamed Medhat; Elyan, Eyad

    2015-01-01

    Most Active Contour Models (ACMs) deal with the image segmentation problem as a functional optimization problem, as they work on dividing an image into several regions by optimizing a suitable functional. Among ACMs, variational level set methods have been used to build an active contour with the aim of modeling arbitrarily complex shapes. Moreover, they can handle also topological changes of the contours. Self-Organizing Maps (SOMs) have attracted the attention of many computer vision scientists, particularly in modeling an active contour based on the idea of utilizing the prototypes (weights) of a SOM to control the evolution of the contour. SOM-based models have been proposed in general with the aim of exploiting the specific ability of SOMs to learn the edge-map information via their topology preservation property and overcoming some drawbacks of other ACMs, such as trapping into local minima of the image energy functional to be minimized in such models. In this survey, we illustrate the main concepts of variational level set-based ACMs, SOM-based ACMs, and their relationship and review in a comprehensive fashion the development of their state-of-the-art models from a machine learning perspective, with a focus on their strengths and weaknesses. PMID:25960736

  14. Correlations between contouring similarity metrics and simulated treatment outcome for prostate radiotherapy

    NASA Astrophysics Data System (ADS)

    Roach, D.; Jameson, M. G.; Dowling, J. A.; Ebert, M. A.; Greer, P. B.; Kennedy, A. M.; Watt, S.; Holloway, L. C.

    2018-02-01

    Many similarity metrics exist for inter-observer contouring variation studies, however no correlation between metric choice and prostate cancer radiotherapy dosimetry has been explored. These correlations were investigated in this study. Two separate trials were undertaken, the first a thirty-five patient cohort with three observers, the second a five patient dataset with ten observers. Clinical and planning target volumes (CTV and PTV), rectum, and bladder were independently contoured by all observers in each trial. Structures were contoured on T2-weighted MRI and transferred onto CT following rigid registration for treatment planning in the first trial. Structures were contoured directly on CT in the second trial. STAPLE and majority voting volumes were generated as reference gold standard volumes for each structure for the two trials respectively. VMAT treatment plans (78 Gy to PTV) were simulated for observer and gold standard volumes, and dosimetry assessed using multiple radiobiological metrics. Correlations between contouring similarity metrics and dosimetry were calculated using Spearman’s rank correlation coefficient. No correlations were observed between contouring similarity metrics and dosimetry for CTV within either trial. Volume similarity correlated most strongly with radiobiological metrics for PTV in both trials, including TCPPoisson (ρ  =  0.57, 0.65), TCPLogit (ρ  =  0.39, 0.62), and EUD (ρ  =  0.43, 0.61) for each respective trial. Rectum and bladder metric correlations displayed no consistency for the two trials. PTV volume similarity was found to significantly correlate with rectum normal tissue complication probability (ρ  =  0.33, 0.48). Minimal to no correlations with dosimetry were observed for overlap or boundary contouring metrics. Future inter-observer contouring variation studies for prostate cancer should incorporate volume similarity to provide additional insights into dosimetry during analysis.

  15. High Speed Thermal Imaging on Ballistic Impact of Triaxially Braided Composites

    NASA Technical Reports Server (NTRS)

    Johnston, Joel P.; Pereira, J. Michael; Ruggeri, Charles R.; Roberts, Gary D.

    2017-01-01

    Ballistic impact experiments were performed on triaxially braided polymer matrix composites to study the heat generated in the material due to projectile velocity and penetration damage. Quantifying the heat generation phenomenon is crucial for attaining a better understanding of composite behavior and failure under impact loading. The knowledge gained can also be used to improve physics-based models which can numerically simulate impact of composites. Triaxially braided (0/+60/-60) composite panels were manufactured with T700S standard modulus carbon fiber and two epoxy resins. The PR520 (toughened) and 3502 (untoughened) resin systems were used to make different panels to study the effects of resin properties on temperature rise. Ballistic impact tests were conducted on these composite panels using a gas gun, and different projectile velocities were applied to study the effect on the temperature results. Temperature contours were obtained from the rear surface of the panel during the test through a high speed, infrared (IR) thermal imaging system. The contours show that high temperatures were locally generated and more pronounced along the axial tows for the T700S/PR520 composite specimens; whereas, tests performed on T700S/3502 composite panels using similar impact velocities demonstrated a widespread area of lower temperature rises. Nondestructive, ultrasonic C-scan analyses were performed to observe and verify the failure patterns in the impacted panels. Overall, the impact experimentation showed temperatures exceeding 525 K (485degF) in both composites which is well above the respective glass transition temperatures for the polymer constituents. This expresses the need for further high strain rate testing and measurement of the temperature and deformation fields to fully understand the complex behavior and failure of the material in order to improve the confidence in designing aerospace components with these materials.

  16. Neural dynamics of feedforward and feedback processing in figure-ground segregation

    PubMed Central

    Layton, Oliver W.; Mingolla, Ennio; Yazdanbakhsh, Arash

    2014-01-01

    Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation) is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure's interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells), and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells). Neurons (convex cells) that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up) information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation. PMID:25346703

  17. Neural dynamics of feedforward and feedback processing in figure-ground segregation.

    PubMed

    Layton, Oliver W; Mingolla, Ennio; Yazdanbakhsh, Arash

    2014-01-01

    Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation) is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure's interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells), and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells). Neurons (convex cells) that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up) information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation.

  18. Online 3D terrain visualisation using Unity 3D game engine: A comparison of different contour intervals terrain data draped with UAV images

    NASA Astrophysics Data System (ADS)

    Hafiz Mahayudin, Mohd; Che Mat, Ruzinoor

    2016-06-01

    The main objective of this paper is to discuss on the effectiveness of visualising terrain draped with Unmanned Aerial Vehicle (UAV) images generated from different contour intervals using Unity 3D game engine in online environment. The study area that was tested in this project was oil palm plantation at Sintok, Kedah. The contour data used for this study are divided into three different intervals which are 1m, 3m and 5m. ArcGIS software were used to clip the contour data and also UAV images data to be similar size for the overlaying process. The Unity 3D game engine was used as the main platform for developing the system due to its capabilities which can be launch in different platform. The clipped contour data and UAV images data were process and exported into the web format using Unity 3D. Then process continue by publishing it into the web server for comparing the effectiveness of different 3D terrain data (contour data) draped with UAV images. The effectiveness is compared based on the data size, loading time (office and out-of-office hours), response time, visualisation quality, and frame per second (fps). The results were suggest which contour interval is better for developing an effective online 3D terrain visualisation draped with UAV images using Unity 3D game engine. It therefore benefits decision maker and planner related to this field decide on which contour is applicable for their task.

  19. A Hybrid Method for Endocardial Contour Extraction of Right Ventricle in 4-Slices from 3D Echocardiography Dataset.

    PubMed

    Dawood, Faten A; Rahmat, Rahmita W; Kadiman, Suhaini B; Abdullah, Lili N; Zamrin, Mohd D

    2014-01-01

    This paper presents a hybrid method to extract endocardial contour of the right ventricular (RV) in 4-slices from 3D echocardiography dataset. The overall framework comprises four processing phases. In Phase I, the region of interest (ROI) is identified by estimating the cavity boundary. Speckle noise reduction and contrast enhancement were implemented in Phase II as preprocessing tasks. In Phase III, the RV cavity region was segmented by generating intensity threshold which was used for once for all frames. Finally, Phase IV is proposed to extract the RV endocardial contour in a complete cardiac cycle using a combination of shape-based contour detection and improved radial search algorithm. The proposed method was applied to 16 datasets of 3D echocardiography encompassing the RV in long-axis view. The accuracy of experimental results obtained by the proposed method was evaluated qualitatively and quantitatively. It has been done by comparing the segmentation results of RV cavity based on endocardial contour extraction with the ground truth. The comparative analysis results show that the proposed method performs efficiently in all datasets with overall performance of 95% and the root mean square distances (RMSD) measure in terms of mean ± SD was found to be 2.21 ± 0.35 mm for RV endocardial contours.

  20. Between fall and fall-rise: substance-function relations in German phrase-final intonation contours.

    PubMed

    Ambrazaitis, Gilbert

    2005-01-01

    This study investigates an intonation contour of German whose status has not been established yet: a globally falling contour with a slight rise at the very end of the phrase (FSR). The contour may be said to lie on a phonetic continuum between falling (F) and falling-rising (FR) contours. It is hypothesized that F, FR and FSR differ with respect to their communicative functions: F is terminal, FR is non-terminal, and FSR is pseudo-terminal, respectively. The hypotheses were tested in two steps. First, measurements in a labelled corpus of spontaneous speech provided the necessary background information on the phonetics of the contours. In the second step, the general hypothesis was approached in a perceptual experiment using the paradigm of a semantic differential: 49 listeners judged 17 systematically generated stimuli on nine semantic scales, such as 'impolite/polite'. The hypotheses were generally confirmed. Both F and FSR were associated with a conclusive statement, while FR was more likely to be judged as marking a question. FSR differs from F in that it does not express features such as categoricalness, dominance or impoliteness. The results are interpreted as an instance of the frequency code: the addition of a slight rise means avoidance of extremely low F(0); the functional consequence is a reduction of communicated dominance.

  1. The impact of robustness of deformable image registration on contour propagation and dose accumulation for head and neck adaptive radiotherapy.

    PubMed

    Zhang, Lian; Wang, Zhi; Shi, Chengyu; Long, Tengfei; Xu, X George

    2018-05-30

    Deformable image registration (DIR) is the key process for contour propagation and dose accumulation in adaptive radiation therapy (ART). However, currently, ART suffers from a lack of understanding of "robustness" of the process involving the image contour based on DIR and subsequent dose variations caused by algorithm itself and the presetting parameters. The purpose of this research is to evaluate the DIR caused variations for contour propagation and dose accumulation during ART using the RayStation treatment planning system. Ten head and neck cancer patients were selected for retrospective studies. Contours were performed by a single radiation oncologist and new treatment plans were generated on the weekly CT scans for all patients. For each DIR process, four deformation vector fields (DVFs) were generated to propagate contours and accumulate weekly dose by the following algorithms: (a) ANACONDA with simple presetting parameters, (b) ANACONDA with detailed presetting parameters, (c) MORFEUS with simple presetting parameters, and (d) MORFEUS with detailed presetting parameters. The geometric evaluation considered DICE coefficient and Hausdorff distance. The dosimetric evaluation included D 95 , D max , D mean , D min , and Homogeneity Index. For geometric evaluation, the DICE coefficient variations of the GTV were found to be 0.78 ± 0.11, 0.96 ± 0.02, 0.64 ± 0.15, and 0.91 ± 0.03 for simple ANACONDA, detailed ANACONDA, simple MORFEUS, and detailed MORFEUS, respectively. For dosimetric evaluation, the corresponding Homogeneity Index variations were found to be 0.137 ± 0.115, 0.006 ± 0.032, 0.197 ± 0.096, and 0.006 ± 0.033, respectively. The coherent geometric and dosimetric variations also consisted in large organs and small organs. Overall, the results demonstrated that the contour propagation and dose accumulation in clinical ART were influenced by the DIR algorithm, and to a greater extent by the presetting parameters. A quality assurance procedure should be established for the proper use of a commercial DIR for adaptive radiation therapy. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  2. Validation of a Magnetic Resonance Imaging-based Auto-contouring Software Tool for Gross Tumour Delineation in Head and Neck Cancer Radiotherapy Planning.

    PubMed

    Doshi, T; Wilson, C; Paterson, C; Lamb, C; James, A; MacKenzie, K; Soraghan, J; Petropoulakis, L; Di Caterina, G; Grose, D

    2017-01-01

    To carry out statistical validation of a newly developed magnetic resonance imaging (MRI) auto-contouring software tool for gross tumour volume (GTV) delineation in head and neck tumours to assist in radiotherapy planning. Axial MRI baseline scans were obtained for 10 oropharyngeal and laryngeal cancer patients. GTV was present on 102 axial slices and auto-contoured using the modified fuzzy c-means clustering integrated with the level set method (FCLSM). Peer-reviewed (C-gold) manual contours were used as the reference standard to validate auto-contoured GTVs (C-auto) and mean manual contours (C-manual) from two expert clinicians (C1 and C2). Multiple geometric metrics, including the Dice similarity coefficient (DSC), were used for quantitative validation. A DSC≥0.7 was deemed acceptable. Inter- and intra-variabilities among the manual contours were also validated. The two-dimensional contours were then reconstructed in three dimensions for GTV volume calculation, comparison and three-dimensional visualisation. The mean DSC between C-gold and C-auto was 0.79. The mean DSC between C-gold and C-manual was 0.79 and that between C1 and C2 was 0.80. The average time for GTV auto-contouring per patient was 8 min (range 6-13 min; mean 45 s per axial slice) compared with 15 min (range 6-23 min; mean 88 s per axial slice) for C1. The average volume concordance between C-gold and C-auto volumes was 86.51% compared with 74.16% between C-gold and C-manual. The average volume concordance between C1 and C2 volumes was 86.82%. This newly designed MRI-based auto-contouring software tool shows initial acceptable results in GTV delineation of oropharyngeal and laryngeal tumours using FCLSM. This auto-contouring software tool may help reduce inter- and intra-variability and can assist clinical oncologists with time-consuming, complex radiotherapy planning. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  3. Application and histology-driven refinement of active contour models to functional region and nerve delineation: towards a digital brainstem atlas

    NASA Astrophysics Data System (ADS)

    Patel, Nirmal; Sultana, Sharmin; Rashid, Tanweer; Krusienski, Dean; Audette, Michel A.

    2015-03-01

    This paper presents a methodology for the digital formatting of a printed atlas of the brainstem and the delineation of cranial nerves from this digital atlas. It also describes on-going work on the 3D resampling and refinement of the 2D functional regions and nerve contours. In MRI-based anatomical modeling for neurosurgery planning and simulation, the complexity of the functional anatomy entails a digital atlas approach, rather than less descriptive voxel or surface-based approaches. However, there is an insufficiency of descriptive digital atlases, in particular of the brainstem. Our approach proceeds from a series of numbered, contour-based sketches coinciding with slices of the brainstem featuring both closed and open contours. The closed contours coincide with functionally relevant regions, whereby our objective is to fill in each corresponding label, which is analogous to painting numbered regions in a paint-by-numbers kit. Any open contour typically coincides with a cranial nerve. This 2D phase is needed in order to produce densely labeled regions that can be stacked to produce 3D regions, as well as identifying the embedded paths and outer attachment points of cranial nerves. Cranial nerves are modeled using an explicit contour based technique called 1-Simplex. The relevance of cranial nerves modeling of this project is two-fold: i) this atlas will fill a void left by the brain segmentation communities, as no suitable digital atlas of the brainstem exists, and ii) this atlas is necessary to make explicit the attachment points of major nerves (except I and II) having a cranial origin. Keywords: digital atlas, contour models, surface models

  4. Evaluating the impact of an integrated multidisciplinary head & neck competency-based anatomy & radiology teaching approach in radiation oncology: a prospective cohort study

    PubMed Central

    2014-01-01

    Background Modern radiation oncology demands a thorough understanding of gross and cross-sectional anatomy for diagnostic and therapeutic applications. Complex anatomic sites present challenges for learners and are not well-addressed in traditional postgraduate curricula. A multidisciplinary team (MDT) based head-and-neck gross and radiologic anatomy program for radiation oncology trainees was developed, piloted, and empirically assessed for efficacy and learning outcomes. Methods Four site-specific MDT head-and-neck seminars were implemented, each involving a MDT delivering didactic and case-based instruction, supplemented by cadaveric presentations. There was no dedicated contouring instruction. Pre- and post-testing were performed to assess knowledge, and ability to apply knowledge to the clinical setting as defined by accuracy of contouring. Paired analyses of knowledge pretests and posttests were performed by Wilcoxon matched-pair signed-rank test. Results Fifteen post-graduate trainees participated. A statistically significant (p < 0.001) mean absolute improvement of 4.6 points (17.03%) was observed between knowledge pretest and posttest scores. Contouring accuracy was analyzed quantitatively by comparing spatial overlap of participants’ pretest and posttest contours with a gold standard through the dice similarity coefficient. A statistically significant improvement in contouring accuracy was observed for 3 out of 20 anatomical structures. Qualitative and quantitative feedback revealed that participants were more confident at contouring and were enthusiastic towards the seminars. Conclusions MDT seminars were associated with improved knowledge scores and resident satisfaction; however, increased gross and cross-sectional anatomic knowledge did not translate into improvements in contouring accuracy. Further research should evaluate the impact of hands-on contouring sessions in addition to dedicated instructional sessions to develop competencies. PMID:24969509

  5. The effort to close the gap: tracking the development of illusory contour processing from childhood to adulthood with high-density electrical mapping.

    PubMed

    Altschuler, Ted S; Molholm, Sophie; Butler, John S; Mercier, Manuel R; Brandwein, Alice B; Foxe, John J

    2014-04-15

    The adult human visual system can efficiently fill-in missing object boundaries when low-level information from the retina is incomplete, but little is known about how these processes develop across childhood. A decade of visual-evoked potential (VEP) studies has produced a theoretical model identifying distinct phases of contour completion in adults. The first, termed a perceptual phase, occurs from approximately 100-200 ms and is associated with automatic boundary completion. The second is termed a conceptual phase occurring between 230 and 400 ms. The latter has been associated with the analysis of ambiguous objects which seem to require more effort to complete. The electrophysiological markers of these phases have both been localized to the lateral occipital complex, a cluster of ventral visual stream brain regions associated with object-processing. We presented Kanizsa-type illusory contour stimuli, often used for exploring contour completion processes, to neurotypical persons ages 6-31 (N=63), while parametrically varying the spatial extent of these induced contours, in order to better understand how filling-in processes develop across childhood and adolescence. Our results suggest that, while adults complete contour boundaries in a single discrete period during the automatic perceptual phase, children display an immature response pattern-engaging in more protracted processing across both timeframes and appearing to recruit more widely distributed regions which resemble those evoked during adult processing of higher-order ambiguous figures. However, children older than 5years of age were remarkably like adults in that the effects of contour processing were invariant to manipulation of contour extent. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Evaluating the impact of an integrated multidisciplinary head & neck competency-based anatomy & radiology teaching approach in radiation oncology: a prospective cohort study.

    PubMed

    D'Souza, Leah; Jaswal, Jasbir; Chan, Francis; Johnson, Marjorie; Tay, Keng Yeow; Fung, Kevin; Palma, David

    2014-06-26

    Modern radiation oncology demands a thorough understanding of gross and cross-sectional anatomy for diagnostic and therapeutic applications. Complex anatomic sites present challenges for learners and are not well-addressed in traditional postgraduate curricula. A multidisciplinary team (MDT) based head-and-neck gross and radiologic anatomy program for radiation oncology trainees was developed, piloted, and empirically assessed for efficacy and learning outcomes. Four site-specific MDT head-and-neck seminars were implemented, each involving a MDT delivering didactic and case-based instruction, supplemented by cadaveric presentations. There was no dedicated contouring instruction. Pre- and post-testing were performed to assess knowledge, and ability to apply knowledge to the clinical setting as defined by accuracy of contouring. Paired analyses of knowledge pretests and posttests were performed by Wilcoxon matched-pair signed-rank test. Fifteen post-graduate trainees participated. A statistically significant (p < 0.001) mean absolute improvement of 4.6 points (17.03%) was observed between knowledge pretest and posttest scores. Contouring accuracy was analyzed quantitatively by comparing spatial overlap of participants' pretest and posttest contours with a gold standard through the dice similarity coefficient. A statistically significant improvement in contouring accuracy was observed for 3 out of 20 anatomical structures. Qualitative and quantitative feedback revealed that participants were more confident at contouring and were enthusiastic towards the seminars. MDT seminars were associated with improved knowledge scores and resident satisfaction; however, increased gross and cross-sectional anatomic knowledge did not translate into improvements in contouring accuracy. Further research should evaluate the impact of hands-on contouring sessions in addition to dedicated instructional sessions to develop competencies.

  7. Globally inconsistent figure/ground relations induced by a negative part.

    PubMed

    Kim, Sung-Ho; Feldman, Jacob

    2009-09-10

    Figure/ground interpretation is a dynamic and complex process involving the cooperation and competition of a number of perceptual factors. Most research has assumed that figure/ground assignment is globally consistent along the entire contour of a single figure, meaning that the one side of each boundary is interpreted as figure along the entire length of the boundary, and the other side interpreted as ground. We investigated a situation that challenges this assumption, because local cues to figure/ground conflict with global cues: a "negative part," a contour region that appears locally convex but that the global form requires be concave. To measure figure/ground assignment, we use a new task based on local contour motion attribution that allows us to measure border ownership locally at points along the contour. The results from two experiments showed that the more salient a negative part is, the more border ownership tended to locally reverse within it, creating an inconsistency in figure/ground assignments along the contour. This suggests that border ownership assignment is not an all-or-none process, but rather a locally autonomous process that is not strictly constrained by global cues.

  8. A complete system for head tracking using motion-based particle filter and randomly perturbed active contour

    NASA Astrophysics Data System (ADS)

    Bouaynaya, N.; Schonfeld, Dan

    2005-03-01

    Many real world applications in computer and multimedia such as augmented reality and environmental imaging require an elastic accurate contour around a tracked object. In the first part of the paper we introduce a novel tracking algorithm that combines a motion estimation technique with the Bayesian Importance Sampling framework. We use Adaptive Block Matching (ABM) as the motion estimation technique. We construct the proposal density from the estimated motion vector. The resulting algorithm requires a small number of particles for efficient tracking. The tracking is adaptive to different categories of motion even with a poor a priori knowledge of the system dynamics. Particulary off-line learning is not needed. A parametric representation of the object is used for tracking purposes. In the second part of the paper, we refine the tracking output from a parametric sample to an elastic contour around the object. We use a 1D active contour model based on a dynamic programming scheme to refine the output of the tracker. To improve the convergence of the active contour, we perform the optimization over a set of randomly perturbed initial conditions. Our experiments are applied to head tracking. We report promising tracking results in complex environments.

  9. Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation

    PubMed Central

    Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Rostro-Gonzalez, H.; Garcia-Capulin, C. H.; Torres-Cisneros, M.; Guzman-Cabrera, R.

    2013-01-01

    This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation. PMID:23983809

  10. The contour-buildup algorithm to calculate the analytical molecular surface.

    PubMed

    Totrov, M; Abagyan, R

    1996-01-01

    A new algorithm is presented to calculate the analytical molecular surface defined as a smooth envelope traced out by the surface of a probe sphere rolled over the molecule. The core of the algorithm is the sequential build up of multi-arc contours on the van der Waals spheres. This algorithm yields substantial reduction in both memory and time requirements of surface calculations. Further, the contour-buildup principle is intrinsically "local", which makes calculations of the partial molecular surfaces even more efficient. Additionally, the algorithm is equally applicable not only to convex patches, but also to concave triangular patches which may have complex multiple intersections. The algorithm permits the rigorous calculation of the full analytical molecular surface for a 100-residue protein in about 2 seconds on an SGI indigo with R4400++ processor at 150 Mhz, with the performance scaling almost linearly with the protein size. The contour-buildup algorithm is faster than the original Connolly algorithm an order of magnitude.

  11. Zeta functions on tori using contour integration

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio; Kirsten, Klaus; Robles, Nicolas; Williams, Floyd

    2015-12-01

    A new, seemingly useful presentation of zeta functions on complex tori is derived by using contour integration. It is shown to agree with the one obtained by using the Chowla-Selberg series formula, for which an alternative proof is thereby given. In addition, a new proof of the functional determinant on the torus results, which does not use the Kronecker first limit formula nor the functional equation of the non-holomorphic Eisenstein series. As a bonus, several identities involving the Dedekind eta function are obtained as well.

  12. Joint Denoising/Compression of Image Contours via Shape Prior and Context Tree

    NASA Astrophysics Data System (ADS)

    Zheng, Amin; Cheung, Gene; Florencio, Dinei

    2018-07-01

    With the advent of depth sensing technologies, the extraction of object contours in images---a common and important pre-processing step for later higher-level computer vision tasks like object detection and human action recognition---has become easier. However, acquisition noise in captured depth images means that detected contours suffer from unavoidable errors. In this paper, we propose to jointly denoise and compress detected contours in an image for bandwidth-constrained transmission to a client, who can then carry out aforementioned application-specific tasks using the decoded contours as input. We first prove theoretically that in general a joint denoising / compression approach can outperform a separate two-stage approach that first denoises then encodes contours lossily. Adopting a joint approach, we first propose a burst error model that models typical errors encountered in an observed string y of directional edges. We then formulate a rate-constrained maximum a posteriori (MAP) problem that trades off the posterior probability p(x'|y) of an estimated string x' given y with its code rate R(x'). We design a dynamic programming (DP) algorithm that solves the posed problem optimally, and propose a compact context representation called total suffix tree (TST) that can reduce complexity of the algorithm dramatically. Experimental results show that our joint denoising / compression scheme outperformed a competing separate scheme in rate-distortion performance noticeably.

  13. SU-F-BRF-01: A GPU Framework for Developing Interactive High-Resolution Patient-Specific Biomechanical Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neylon, J; Qi, S; Sheng, K

    2014-06-15

    Purpose: To develop a GPU-based framework that can generate highresolution and patient-specific biomechanical models from a given simulation CT and contoured structures, optimized to run at interactive speeds, for addressing adaptive radiotherapy objectives. Method: A Massspring-damping (MSD) model was generated from a given simulation CT. The model's mass elements were generated for every voxel of anatomy, and positioned in a deformation space in the GPU memory. MSD connections were established between neighboring mass elements in a dense distribution. Contoured internal structures allowed control over elastic material properties of different tissues. Once the model was initialized in GPU memory, skeletal anatomymore » was actuated using rigid-body transformations, while soft tissues were governed by elastic corrective forces and constraints, which included tensile forces, shear forces, and spring damping forces. The model was validated by applying a known load to a soft tissue block and comparing the observed deformation to ground truth calculations from established elastic mechanics. Results: Our analyses showed that both local and global load experiments yielded results with a correlation coefficient R{sup 2} > 0.98 compared to ground truth. Models were generated for several anatomical regions. Head and neck models accurately simulated posture changes by rotating the skeletal anatomy in three dimensions. Pelvic models were developed for realistic deformations for changes in bladder volume. Thoracic models demonstrated breast deformation due to gravity when changing treatment position from supine to prone. The GPU framework performed at greater than 30 iterations per second for over 1 million mass elements with up to 26 MSD connections each. Conclusions: Realistic simulations of site-specific, complex posture and physiological changes were simulated at interactive speeds using patient data. Incorporating such a model with live patient tracking would facilitate real time assessment of variations of the actual anatomy and delivered dose for adaptive intervention and re-planning.« less

  14. Evidence for attractors in English intonation.

    PubMed

    Braun, Bettina; Kochanski, Greg; Grabe, Esther; Rosner, Burton S

    2006-06-01

    Although the pitch of the human voice is continuously variable, some linguists contend that intonation in speech is restricted to a small, limited set of patterns. This claim is tested by asking subjects to mimic a block of 100 randomly generated intonation contours and then to imitate themselves in several successive sessions. The produced f0 contours gradually converge towards a limited set of distinct, previously recognized basic English intonation patterns. These patterns are "attractors" in the space of possible intonation English contours. The convergence does not occur immediately. Seven of the ten participants show continued convergence toward their attractors after the first iteration. Subjects retain and use information beyond phonological contrasts, suggesting that intonational phonology is not a complete description of their mental representation of intonation.

  15. ConTour: Data-Driven Exploration of Multi-Relational Datasets for Drug Discovery.

    PubMed

    Partl, Christian; Lex, Alexander; Streit, Marc; Strobelt, Hendrik; Wassermann, Anne-Mai; Pfister, Hanspeter; Schmalstieg, Dieter

    2014-12-01

    Large scale data analysis is nowadays a crucial part of drug discovery. Biologists and chemists need to quickly explore and evaluate potentially effective yet safe compounds based on many datasets that are in relationship with each other. However, there is a lack of tools that support them in these processes. To remedy this, we developed ConTour, an interactive visual analytics technique that enables the exploration of these complex, multi-relational datasets. At its core ConTour lists all items of each dataset in a column. Relationships between the columns are revealed through interaction: selecting one or multiple items in one column highlights and re-sorts the items in other columns. Filters based on relationships enable drilling down into the large data space. To identify interesting items in the first place, ConTour employs advanced sorting strategies, including strategies based on connectivity strength and uniqueness, as well as sorting based on item attributes. ConTour also introduces interactive nesting of columns, a powerful method to show the related items of a child column for each item in the parent column. Within the columns, ConTour shows rich attribute data about the items as well as information about the connection strengths to other datasets. Finally, ConTour provides a number of detail views, which can show items from multiple datasets and their associated data at the same time. We demonstrate the utility of our system in case studies conducted with a team of chemical biologists, who investigate the effects of chemical compounds on cells and need to understand the underlying mechanisms.

  16. Human recognition based on head-shoulder contour extraction and BP neural network

    NASA Astrophysics Data System (ADS)

    Kong, Xiao-fang; Wang, Xiu-qin; Gu, Guohua; Chen, Qian; Qian, Wei-xian

    2014-11-01

    In practical application scenarios like video surveillance and human-computer interaction, human body movements are uncertain because the human body is a non-rigid object. Based on the fact that the head-shoulder part of human body can be less affected by the movement, and will seldom be obscured by other objects, in human detection and recognition, a head-shoulder model with its stable characteristics can be applied as a detection feature to describe the human body. In order to extract the head-shoulder contour accurately, a head-shoulder model establish method with combination of edge detection and the mean-shift algorithm in image clustering has been proposed in this paper. First, an adaptive method of mixture Gaussian background update has been used to extract targets from the video sequence. Second, edge detection has been used to extract the contour of moving objects, and the mean-shift algorithm has been combined to cluster parts of target's contour. Third, the head-shoulder model can be established, according to the width and height ratio of human head-shoulder combined with the projection histogram of the binary image, and the eigenvectors of the head-shoulder contour can be acquired. Finally, the relationship between head-shoulder contour eigenvectors and the moving objects will be formed by the training of back-propagation (BP) neural network classifier, and the human head-shoulder model can be clustered for human detection and recognition. Experiments have shown that the method combined with edge detection and mean-shift algorithm proposed in this paper can extract the complete head-shoulder contour, with low calculating complexity and high efficiency.

  17. Intonation and emotion: influence of pitch levels and contour type on creating emotions.

    PubMed

    Rodero, Emma

    2011-01-01

    Intonation is a vehicle for communication, which sometimes contributes greater meaning than the semantic content of speech itself. This prosodic element lends the message linguistic and paralinguistic meaning, which carries a highly significant communicative value when conveying emotional states. For this reason, this article analyses the use of intonation as an instrument for arousing various sensations in the listener. The aim was to verify which elements of intonation are more decisive to generate a specific sensation. Experimental research is conducted, in which certain pitch patterns (pitch levels and contour type) are assigned different emotions (joy, anxiety, sadness, and calmness) and are then listened to and assessed using a questionnaire with a bipolar scale of opposed pairs, by a sample audience comprising 100 individuals. The main conclusion drawn is that, although both the variables analyzed--pitch level and contour type--are representative of expressing emotions, contour type is more decisive. In all the models analyzed, contour type has been highly significant and constitutes the variable that has been determined as the final component for recognizing various emotions. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  18. Object-oriented approach to the automatic segmentation of bones from pediatric hand radiographs

    NASA Astrophysics Data System (ADS)

    Shim, Hyeonjoon; Liu, Brent J.; Taira, Ricky K.; Hall, Theodore R.

    1997-04-01

    The purpose of this paper is to develop a robust and accurate method that automatically segments phalangeal and epiphyseal bones from digital pediatric hand radiographs exhibiting various stages of growth. The development of this system draws principles from object-oriented design, model- guided analysis, and feedback control. A system architecture called 'the object segmentation machine' was implemented incorporating these design philosophies. The system is aided by a knowledge base where all model contours and other information such as age, race, and sex, are stored. These models include object structure models, shape models, 1-D wrist profiles, and gray level histogram models. Shape analysis is performed first by using an arc-length orientation transform to break down a given contour into elementary segments and curves. Then an interpretation tree is used as an inference engine to map known model contour segments to data contour segments obtained from the transform. Spatial and anatomical relationships among contour segments work as constraints from shape model. These constraints aid in generating a list of candidate matches. The candidate match with the highest confidence is chosen to be the current intermediate result. Verification of intermediate results are perform by a feedback control loop.

  19. A simple model that identifies potential effects of sea-level rise on estuarine and estuary-ecotone habitat locations for salmonids in Oregon, USA.

    PubMed

    Flitcroft, Rebecca; Burnett, Kelly; Christiansen, Kelly

    2013-07-01

    Diadromous aquatic species that cross a diverse range of habitats (including marine, estuarine, and freshwater) face different effects of climate change in each environment. One such group of species is the anadromous Pacific salmon (Oncorhynchus spp.). Studies of the potential effects of climate change on salmonids have focused on both marine and freshwater environments. Access to a variety of estuarine habitat has been shown to enhance juvenile life-history diversity, thereby contributing to the resilience of many salmonid species. Our study is focused on the effect of sea-level rise on the availability, complexity, and distribution of estuarine, and low-freshwater habitat for Chinook salmon (Oncorhynchus tshawytscha), steelhead (anadromous O. mykiss), and coho salmon (O. kisutch) along the Oregon Coast under future climate change scenarios. Using LiDAR, we modeled the geomorphologies of five Oregon estuaries and estimated a contour associated with the current mean high tide. Contour intervals at 1- and 2-m increments above the current mean high tide were generated, and changes in the estuary morphology were assessed. Because our analysis relied on digital data, we compared three types of digital data in one estuary to assess the utility of different data sets in predicting the changes in estuary shape. For each salmonid species, changes in the amount and complexity of estuarine edge habitats varied by estuary. The simple modeling approach we applied can also be used to identify areas that may be most amenable to pre-emptive restoration actions to mitigate or enhance salmonid habitat under future climatic conditions.

  20. Reliability of a new 4th generation FloTrac algorithm to track cardiac output changes in patients receiving phenylephrine.

    PubMed

    Ji, Fuhai; Li, Jian; Fleming, Neal; Rose, David; Liu, Hong

    2015-08-01

    Phenylephrine is often used to treat intra-operative hypotension. Previous studies have shown that the FloTrac cardiac monitor may overestimate cardiac output (CO) changes following phenylephrine administration. A new algorithm (4th generation) has been developed to improve performance in this setting. We performed a prospective observational study to assess the effects of phenylephrine administration on CO values measured by the 3rd and 4th generation FloTrac algorithms. 54 patients were enrolled in this study. We used the Nexfin, a pulse contour method shown to be insensitive to vasopressor administration, as the reference method. Radial arterial pressures were recorded continuously in patients undergoing surgery. Phenylephrine administration times were documented. Arterial pressure recordings were subsequently analyzed offline using three different pulse contour analysis algorithms: FloTrac 3rd generation (G3), FloTrac 4th generation (G4), and Nexfin (nf). One minute of hemodynamic measurements was analyzed immediately before phenylephrine administration and then repeated when the mean arterial pressure peaked. A total of 157 (4.6 ± 3.2 per patient, range 1-15) paired sets of hemodynamic recordings were analyzed. Phenylephrine induced a significant increase in stroke volume (SV) and CO with the FloTrac G3, but not with FloTrac G4 or Nexfin algorithms. Agreement between FloTrac G3 and Nexfin was: 0.23 ± 1.19 l/min and concordance was 51.1%. In contrast, agreement between FloTrac G4 and Nexfin was: 0.19 ± 0.86 l/min and concordance was 87.2%. In conclusion, the pulse contour method of measuring CO, as implemented in FloTrac 4th generation algorithm, has significantly improved its ability to track the changes in CO induced by phenylephrine.

  1. Wiring assembly and method of forming a channel in a wiring assembly for receiving conductor and providing separate regions of conductor contact with the channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stelzer, Gerald; Meinke, Rainer; Senti, Mark

    A conductor assembly and method for constructing an assembly of the type which, when conducting current, generates a magnetic field or which, in the presence of a changing magnetic field, induces a voltage. In one embodiment the method provides a first insulative layer tubular in shape and including a surface along which a conductor segment may be positioned. A channel formed in the surface of the insulative layer defines a first conductor path and includes a surface of first contour in cross section along a first plane transverse to the conductor path. A segment of conductor having a surface ofmore » second contour in cross section is positioned at least partly in the channel and extends along the conductor path. Along the first plane, contact between the conductor surface of second contour and the channel surface of first contour includes at least two separate regions of contact.« less

  2. Pedagogical efficiency of melodic contour mapping technology as it relates to vocal timbre in singers of classical music repertoire.

    PubMed

    Barnes-Burroughs, Kathryn; Anderson, Edward E; Hughes, Thomas; Lan, William Y; Dent, Karl; Arnold, Sue; Dolter, Gerald; McNeil, Kathy

    2007-11-01

    The purpose of this investigation was to ascertain the pedagogical viability of computer-generated melodic contour mapping systems in the classical singing studio, as perceived by their resulting effect (if any) on vocal timbre when a singer's head and neck remained in a normal singing posture. The evaluation of data gathered during the course of the study indicates that the development of consistent vocal timbre produced by the classical singing student may be enhanced through visual/kinesthetic response to melodic contour inversion mapping, as it balances the singer's perception of melodic intervals in standard musical notation. Unexpectedly, it was discovered that the system, in its natural melodic contour mode, may also be useful for teaching a student to sing a consistent legato line. The results of the study also suggest that the continued development of this new technology for the general teaching studio, designed to address standard musical notation and a singer's visual/kinesthetic response to it, may indeed be useful.

  3. A novel method of naturally contouring the reconstructed ear: modified antihelix complex affixed to grooved base frame.

    PubMed

    Li, Datao; Zhang, Ruhong; Zhang, Qun; Xu, Zhicheng; Xu, Feng; Li, Yiyuan; Sun, Nan; Wang, Cheng

    2014-05-01

    Prior reports of ear reconstruction have cited favorable results. Although greater attention has been devoted to fabricating a more refined cartilaginous framework, many patients still complain that the contours are unnatural. The authors' aim was to offer a new technique that resolves some lingering issues. To fabricate the antihelix complex optimally, the authors modified an existing method. Rather than chiseling a sharp, Y-shaped graft of cartilage for structural prominence, the superior crus is broadened, and a gentle slope is sculpted on both aspects. Simultaneously, a groove in the base frame is carved for smooth attachment. The width of the inferior crus is limited to roughly one-third that of the superior crus, and the inferior crus is maintained in high relief. A gentle slope is shaped on the antihelix, and a groove for placement of the antihelix is carved into the base frame. Between 2011 and 2013, a total of 162 patients underwent reconstruction using this modified technique. Three such subjects have been selected to highlight the favorable results achieved. Given modifications confer natural contours to superior and inferior crura, antihelix, and surrounding structures, providing a cohesive framework for the integrity of a reconstructed ear. The antihelix complex is critical for creating a natural auricle. Harmonious integration of superior and inferior crura and antihelix enhances the overall aesthetics, increasing procedural satisfaction for patient and surgeon alike. Therapeutic, IV.

  4. WAVDRAG- ZERO-LIFT WAVE DRAG OF COMPLEX AIRCRAFT CONFIGURATIONS

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.

    1994-01-01

    WAVDRAG calculates the supersonic zero-lift wave drag of complex aircraft configurations. The numerical model of an aircraft is used throughout the design process from concept to manufacturing. WAVDRAG incorporates extended geometric input capabilities to permit use of a more accurate mathematical model. With WAVDRAG, the engineer can define aircraft components as fusiform or nonfusiform in terms of non-intersecting contours in any direction or more traditional parallel contours. In addition, laterally asymmetric configurations can be simulated. The calculations in WAVDRAG are based on Whitcomb's area-rule computation of equivalent-bodies, with modifications for supersonic speed. Instead of using a single equivalent-body, WAVDRAG calculates a series of equivalent-bodies, one for each roll angle. The total aircraft configuration wave drag is the integrated average of the equivalent-body wave drags through the full roll range of 360 degrees. WAVDRAG currently accepts up to 30 user-defined components containing a maximum of 50 contours as geometric input. Each contour contains a maximum of 50 points. The Mach number, angle-of-attack, and coordinates of angle-of-attack rotation are also input. The program warns of any fusiform-body line segments having a slope larger than the Mach angle. WAVDRAG calculates total drag and the wave-drag coefficient of the specified aircraft configuration. WAVDRAG is written in FORTRAN 77 for batch execution and has been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 63K (octal) of 60 bit words. This program was developed in 1983.

  5. Determination of Vertical Borehole and Geological Formation Properties using the Crossed Contour Method.

    PubMed

    Leyde, Brian P; Klein, Sanford A; Nellis, Gregory F; Skye, Harrison

    2017-03-01

    This paper presents a new method called the Crossed Contour Method for determining the effective properties (borehole radius and ground thermal conductivity) of a vertical ground-coupled heat exchanger. The borehole radius is used as a proxy for the overall borehole thermal resistance. The method has been applied to both simulated and experimental borehole Thermal Response Test (TRT) data using the Duct Storage vertical ground heat exchanger model implemented in the TRansient SYstems Simulation software (TRNSYS). The Crossed Contour Method generates a parametric grid of simulated TRT data for different combinations of borehole radius and ground thermal conductivity in a series of time windows. The error between the average of the simulated and experimental bore field inlet and outlet temperatures is calculated for each set of borehole properties within each time window. Using these data, contours of the minimum error are constructed in the parameter space of borehole radius and ground thermal conductivity. When all of the minimum error contours for each time window are superimposed, the point where the contours cross (intersect) identifies the effective borehole properties for the model that most closely represents the experimental data in every time window and thus over the entire length of the experimental data set. The computed borehole properties are compared with results from existing model inversion methods including the Ground Property Measurement (GPM) software developed by Oak Ridge National Laboratory, and the Line Source Model.

  6. A simple method for the generation of organ and vessel contours from roentgenographic or fluoroscopic images

    NASA Technical Reports Server (NTRS)

    Newell, J. D.; Keller, R. A.; Baily, N. A.

    1974-01-01

    A simple method for outlining or contouring any area defined by a change in film density or fluoroscopic screen intensity is described. The entire process, except for the positioning of an electronic window, is accomplished using a small computer having appropriate softwave. The electronic window is operator positioned over the area to be processed. The only requirement is that the window be large enough to encompass the total area to be considered.

  7. Aeromechanics and Vehicle Configuration Demonstrations. Volume 2: Understanding Vehicle Sizing, Aeromechanics and Configuration Trades, Risks, and Issues for Next-Generations Access to Space Vehicles

    DTIC Science & Technology

    2014-01-01

    and proportional correctors. The weighting function evaluates nearby data samples to determine the utility of each correction style , eliminating the...sparse methods may be of use. As for other multi-fidelity techniques, true cokriging in the style described by geo-statisticians[93] is beyond the...sampling style between sampling points predicted to fall near the contour and sampling points predicted to be farther from the contour but with

  8. An Analysis of Image Segmentation Time in Beam’s-Eye-View Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chun; Spelbring, D.R.; Chen, George T.Y.

    In this work we tabulate and histogram the image segmentation time for beam’s eye view (BEV) treatment planning in our center. The average time needed to generate contours on CT images delineating normal structures and treatment target volumes is calculated using a data base containing over 500 patients’ BEV plans. The average number of contours and total image segmentation time needed for BEV plans in three common treatment sites, namely, head/neck, lung/chest, and prostate, were estimated.

  9. Automated delineation and characterization of drumlins using a localized contour tree approach

    NASA Astrophysics Data System (ADS)

    Wang, Shujie; Wu, Qiusheng; Ward, Dylan

    2017-10-01

    Drumlins are ubiquitous landforms in previously glaciated regions, formed through a series of complex subglacial processes operating underneath the paleo-ice sheets. Accurate delineation and characterization of drumlins are essential for understanding the formation mechanism of drumlins as well as the flow behaviors and basal conditions of paleo-ice sheets. Automated mapping of drumlins is particularly important for examining the distribution patterns of drumlins across large spatial scales. This paper presents an automated vector-based approach to mapping drumlins from high-resolution light detection and ranging (LiDAR) data. The rationale is to extract a set of concentric contours by building localized contour trees and establishing topological relationships. This automated method can overcome the shortcomings of previously manual and automated methods for mapping drumlins, for instance, the azimuthal biases during the generation of shaded relief images. A case study was carried out over a portion of the New York Drumlin Field. Overall 1181 drumlins were identified from the LiDAR-derived DEM across the study region, which had been underestimated in previous literature. The delineation results were visually and statistically compared to the manual digitization results. The morphology of drumlins was characterized by quantifying the length, width, elongation ratio, height, area, and volume. Statistical and spatial analyses were conducted to examine the distribution pattern and spatial variability of drumlin size and form. The drumlins and the morphologic characteristics exhibit significant spatial clustering rather than randomly distributed patterns. The form of drumlins varies from ovoid to spindle shapes towards the downstream direction of paleo ice flows, along with the decrease in width, area, and volume. This observation is in line with previous studies, which may be explained by the variations in sediment thickness and/or the velocity increases of ice flows towards ice front.

  10. Kepler Planet Detection Metrics: Per-Target Detection Contours for Data Release 25

    NASA Technical Reports Server (NTRS)

    Burke, Christopher J.; Catanzarite, Joseph

    2017-01-01

    A necessary input to planet occurrence calculations is an accurate model for the pipeline completeness (Burke et al., 2015). This document describes the use of the Kepler planet occurrence rate products in order to calculate a per-target detection contour for the measured Data Release 25 (DR25) pipeline performance. A per-target detection contour measures for a given combination of orbital period, Porb, and planet radius, Rp, what fraction of transit signals are recoverable by the Kepler pipeline (Twicken et al., 2016; Jenkins et al., 2017). The steps for calculating a detection contour follow the procedure outlined in Burke et al. (2015), but have been updated to provide improved accuracy enabled by the substantially larger database of transit injection and recovery tests that were performed on the final version (i.e., SOC 9.3) of the Kepler pipeline (Christiansen, 2017; Burke Catanzarite, 2017a). In the following sections, we describe the main inputs to the per-target detection contour and provide a worked example of the python software released with this document (Kepler Planet Occurrence Rate Tools KeplerPORTs)1 that illustrates the generation of a detection contour in practice. As background material for this document and its nomenclature, we recommend the reader be familiar with the previous method of calculating a detection contour (Section 2 of Burke et al.,2015), input parameters relevant for describing the data quantity and quality of Kepler targets (Burke Catanzarite, 2017b), and the extensive new transit injection and recovery tests of the Kepler pipeline (Christiansen et al., 2016; Burke Catanzarite, 2017a; Christiansen, 2017).

  11. An experimental version of the MZT (speech-from-text) system with external F(sub 0) control

    NASA Astrophysics Data System (ADS)

    Nowak, Ignacy

    1994-12-01

    The version of a Polish speech from text system described in this article was developed using the speech-from-text system. The new system has additional functions which make it possible to enter commands in edited orthographic text to control the phrase component and accentuation parameters. This makes it possible to generate a series of modified intonation contours in the texts spoken by the system. The effects obtained are made easier to control by a graphic illustration of the base frequency pattern in phrases that were last 'spoken' by the system. This version of the system was designed as a test prototype which will help us expand and refine our set of rules for automatic generation of intonation contours, which in turn will enable the fully automated speech-from-text system to generate speech with a more varied and precisely formed fundamental frequency pattern.

  12. Gaining a Better Understanding of Estuarine Circulation and Improving Data Visualization Skills Through a Hands-on Contouring Exercise

    NASA Astrophysics Data System (ADS)

    Mailloux, B. J.; Kenna, T. C.

    2008-12-01

    The creation and accurate interpretation of graphs is becoming a lost art among students. The availability of numerous graphing software programs makes the act of graphing data easy but does not necessarily aide students in interpreting complex visual data. This is especially true for contour maps; which have become a critical skill in the earth sciences and everyday life. In multiple classes, we have incorporated a large-scale, hands-on, contouring exercise of temperature, salinity, and density data collected in the Hudson River Estuary. The exercise allows students to learn first-hand how to plot, analyze, and present three dimensional data. As part of a day-long sampling expedition aboard an 80' research vessel, students deploy a water profiling instrument (Seabird CTD). Data are collected along a transect between the Verrazano and George Washington Bridges. The data are then processed and binned at 0.5 meter intervals. The processed data is then used during a later laboratory period for the contouring exercise. In class, students work in groups of 2 to 4 people and are provided with the data, a set of contouring instructions, a piece of large (3' x 3') graph paper, a ruler, and a set of colored markers. We then let the groups work together to determine the details of the graphs. Important steps along the way are talking to the students about X and Y scales, interpolation, and choices of contour intervals and colors. Frustration and bottlenecks are common at the beginning when students are unsure how to even begin with the raw data. At some point during the exercise, students start to understand the contour concept and each group usually produces a finished contour map in an hour or so. Interestingly, the groups take pride in the coloring portion of the contouring as it indicates successful interpretation of the data. The exercise concludes with each group presenting and discussing their contour plot. In almost every case, the hands-on graphing has improved the "students" visualization skills. Contouring has been incorporated into the River Summer (www.riversumer.org, http://www.riversumer.org/) program and our Environmental Measurements laboratory course. This has resulted in the exercise being utilized with undergraduates, high-school teachers, graduate students, and college faculty. We are in the process of making this curricular module available online to educators.

  13. WE-G-BRD-07: Automated MR Image Standardization and Auto-Contouring Strategy for MRI-Based Adaptive Brachytherapy for Cervix Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, H Al; Erickson, B; Paulson, E

    Purpose: MRI-based adaptive brachytherapy (ABT) is an emerging treatment modality for patients with gynecological tumors. However, MR image intensity non-uniformities (IINU) can vary from fraction to fraction, complicating image interpretation and auto-contouring accuracy. We demonstrate here an automated MR image standardization and auto-contouring strategy for MRI-based ABT of cervix cancer. Methods: MR image standardization consisted of: 1) IINU correction using the MNI N3 algorithm, 2) noise filtering using anisotropic diffusion, and 3) signal intensity normalization using the volumetric median. This post-processing chain was implemented as a series of custom Matlab and Java extensions in MIM (v6.4.5, MIM Software) and wasmore » applied to 3D T2 SPACE images of six patients undergoing MRI-based ABT at 3T. Coefficients of variation (CV=σ/µ) were calculated for both original and standardized images and compared using Mann-Whitney tests. Patient-specific cumulative MR atlases of bladder, rectum, and sigmoid contours were constructed throughout ABT, using original and standardized MR images from all previous ABT fractions. Auto-contouring was performed in MIM two ways: 1) best-match of one atlas image to the daily MR image, 2) multi-match of all previous fraction atlas images to the daily MR image. Dice’s Similarity Coefficients (DSCs) were calculated for auto-generated contours relative to reference contours for both original and standardized MR images and compared using Mann-Whitney tests. Results: Significant improvements in CV were detected following MR image standardization (p=0.0043), demonstrating an improvement in MR image uniformity. DSCs consistently increased for auto-contoured bladder, rectum, and sigmoid following MR image standardization, with the highest DSCs detected when the combination of MR image standardization and multi-match cumulative atlas-based auto-contouring was utilized. Conclusion: MR image standardization significantly improves MR image uniformity. The combination of MR image standardization and multi-match cumulative atlas-based auto-contouring produced the highest DSCs and is a promising strategy for MRI-based ABT for cervix cancer.« less

  14. Automatic exudate detection by fusing multiple active contours and regionwise classification.

    PubMed

    Harangi, Balazs; Hajdu, Andras

    2014-11-01

    In this paper, we propose a method for the automatic detection of exudates in digital fundus images. Our approach can be divided into three stages: candidate extraction, precise contour segmentation and the labeling of candidates as true or false exudates. For candidate detection, we borrow a grayscale morphology-based method to identify possible regions containing these bright lesions. Then, to extract the precise boundary of the candidates, we introduce a complex active contour-based method. Namely, to increase the accuracy of segmentation, we extract additional possible contours by taking advantage of the diverse behavior of different pre-processing methods. After selecting an appropriate combination of the extracted contours, a region-wise classifier is applied to remove the false exudate candidates. For this task, we consider several region-based features, and extract an appropriate feature subset to train a Naïve-Bayes classifier optimized further by an adaptive boosting technique. Regarding experimental studies, the method was tested on publicly available databases both to measure the accuracy of the segmentation of exudate regions and to recognize their presence at image-level. In a proper quantitative evaluation on publicly available datasets the proposed approach outperformed several state-of-the-art exudate detector algorithms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Measurement of large steel plates based on linear scan structured light scanning

    NASA Astrophysics Data System (ADS)

    Xiao, Zhitao; Li, Yaru; Lei, Geng; Xi, Jiangtao

    2018-01-01

    A measuring method based on linear structured light scanning is proposed to achieve the accurate measurement of the complex internal shape of large steel plates. Firstly, by using a calibration plate with round marks, an improved line scanning calibration method is designed. The internal and external parameters of camera are determined through the calibration method. Secondly, the images of steel plates are acquired by line scan camera. Then the Canny edge detection method is used to extract approximate contours of the steel plate images, the Gauss fitting algorithm is used to extract the sub-pixel edges of the steel plate contours. Thirdly, for the problem of inaccurate restoration of contour size, by measuring the distance between adjacent points in the grid of known dimensions, the horizontal and vertical error curves of the images are obtained. Finally, these horizontal and vertical error curves can be used to correct the contours of steel plates, and then combined with the calibration parameters of internal and external, the size of these contours can be calculated. The experiments results demonstrate that the proposed method can achieve the error of 1 mm/m in 1.2m×2.6m field of view, which has satisfied the demands of industrial measurement.

  16. Aeroacoustic Improvements to Fluidic Chevron Nozzles

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Kinzie, Kevin; Whitmire, Julia; Abeysinghe, Amal

    2006-01-01

    Fluidic chevrons use injected air near the trailing edge of a nozzle to emulate mixing and jet noise reduction characteristics of mechanical chevrons. While previous investigations of "first generation" fluidic chevron nozzles showed only marginal improvements in effective perceived noise levels when compared to nozzles without injection, significant improvements in noise reduction characteristics were achieved through redesigned "second generation" nozzles on a bypass ratio 5 model system. The second-generation core nozzles had improved injection passage contours, external nozzle contour lines, and nozzle trailing edges. The new fluidic chevrons resulted in reduced overall sound pressure levels over that of the baseline nozzle for all observation angles. Injection ports with steep injection angles produced lower overall sound pressure levels than those produced by shallow injection angles. The reductions in overall sound pressure levels were the result of noise reductions at low frequencies. In contrast to the first-generation nozzles, only marginal increases in high frequency noise over that of the baseline nozzle were observed for the second-generation nozzles. The effective perceived noise levels of the new fluidic chevrons are shown to approach those of the core mechanical chevrons.

  17. Covering Cavities by Electrodeposition

    NASA Technical Reports Server (NTRS)

    Schmeets, M.; Duesberg, J.

    1986-01-01

    Reworking technique allows complex surfaces to be reshaped. Contours of large machined parts reworked quickly and inexpensively by electrodeposition and machining, with little risk of damage. Reworking method employs simple, reliable, well-known procedures.

  18. Diagnostic accuracy of ovarian cyst segmentation in B-mode ultrasound images

    NASA Astrophysics Data System (ADS)

    Bibicu, Dorin; Moraru, Luminita; Stratulat (Visan), Mirela

    2013-11-01

    Cystic and polycystic ovary syndrome is an endocrine disorder affecting women in the fertile age. The Moore Neighbor Contour, Watershed Method, Active Contour Models, and a recent method based on Active Contour Model with Selective Binary and Gaussian Filtering Regularized Level Set (ACM&SBGFRLS) techniques were used in this paper to detect the border of the ovarian cyst from echography images. In order to analyze the efficiency of the segmentation an original computer aided software application developed in MATLAB was proposed. The results of the segmentation were compared and evaluated against the reference contour manually delineated by a sonography specialist. Both the accuracy and time complexity of the segmentation tasks are investigated. The Fréchet distance (FD) as a similarity measure between two curves and the area error rate (AER) parameter as the difference between the segmented areas are used as estimators of the segmentation accuracy. In this study, the most efficient methods for the segmentation of the ovarian were analyzed cyst. The research was carried out on a set of 34 ultrasound images of the ovarian cyst.

  19. Segregation and persistence of form in the lateral occipital complex.

    PubMed

    Ferber, Susanne; Humphrey, G Keith; Vilis, Tutis

    2005-01-01

    While the lateral occipital complex (LOC) has been shown to be implicated in object recognition, it is unclear whether this brain area is responsive to low-level stimulus-driven features or high-level representational processes. We used scrambled shape-from-motion displays to disambiguate the presence of contours from figure-ground segregation and to measure the strength of the binding process for shapes without contours. We found persisting brain activation in the LOC for scrambled displays after the motion stopped indicating that this brain area subserves and maintains figure-ground segregation processes, a low-level function in the object processing hierarchy. In our second experiment, we found that the figure-ground segregation process has some form of spatial constancy indicating top-down influences. The persisting activation after the motion stops suggests an intermediate role in object recognition processes for this brain area and might provide further evidence for the idea that the lateral occipital complex subserves mnemonic functions mediating between iconic and short-term memory.

  20. Determination of Vertical Borehole and Geological Formation Properties using the Crossed Contour Method

    PubMed Central

    Leyde, Brian P.; Klein, Sanford A; Nellis, Gregory F.; Skye, Harrison

    2017-01-01

    This paper presents a new method called the Crossed Contour Method for determining the effective properties (borehole radius and ground thermal conductivity) of a vertical ground-coupled heat exchanger. The borehole radius is used as a proxy for the overall borehole thermal resistance. The method has been applied to both simulated and experimental borehole Thermal Response Test (TRT) data using the Duct Storage vertical ground heat exchanger model implemented in the TRansient SYstems Simulation software (TRNSYS). The Crossed Contour Method generates a parametric grid of simulated TRT data for different combinations of borehole radius and ground thermal conductivity in a series of time windows. The error between the average of the simulated and experimental bore field inlet and outlet temperatures is calculated for each set of borehole properties within each time window. Using these data, contours of the minimum error are constructed in the parameter space of borehole radius and ground thermal conductivity. When all of the minimum error contours for each time window are superimposed, the point where the contours cross (intersect) identifies the effective borehole properties for the model that most closely represents the experimental data in every time window and thus over the entire length of the experimental data set. The computed borehole properties are compared with results from existing model inversion methods including the Ground Property Measurement (GPM) software developed by Oak Ridge National Laboratory, and the Line Source Model. PMID:28785125

  1. Segmentation of breast ultrasound images based on active contours using neutrosophic theory.

    PubMed

    Lotfollahi, Mahsa; Gity, Masoumeh; Ye, Jing Yong; Mahlooji Far, A

    2018-04-01

    Ultrasound imaging is an effective approach for diagnosing breast cancer, but it is highly operator-dependent. Recent advances in computer-aided diagnosis have suggested that it can assist physicians in diagnosis. Definition of the region of interest before computer analysis is still needed. Since manual outlining of the tumor contour is tedious and time-consuming for a physician, developing an automatic segmentation method is important for clinical application. The present paper represents a novel method to segment breast ultrasound images. It utilizes a combination of region-based active contour and neutrosophic theory to overcome the natural properties of ultrasound images including speckle noise and tissue-related textures. First, due to inherent speckle noise and low contrast of these images, we have utilized a non-local means filter and fuzzy logic method for denoising and image enhancement, respectively. This paper presents an improved weighted region-scalable active contour to segment breast ultrasound images using a new feature derived from neutrosophic theory. This method has been applied to 36 breast ultrasound images. It generates true-positive and false-positive results, and similarity of 95%, 6%, and 90%, respectively. The purposed method indicates clear advantages over other conventional methods of active contour segmentation, i.e., region-scalable fitting energy and weighted region-scalable fitting energy.

  2. Representation of tactile curvature in macaque somatosensory area 2

    PubMed Central

    Connor, Charles E.; Hsiao, Steven S.

    2013-01-01

    Tactile shape information is elaborated in a cortical hierarchy spanning primary (SI) and secondary somatosensory cortex (SII). Indeed, SI neurons in areas 3b and 1 encode simple contour features such as small oriented bars and edges, whereas higher order SII neurons represent large curved contour features such as angles and arcs. However, neural coding of these contour features has not been systematically characterized in area 2, the most caudal SI subdivision in the postcentral gyrus. In the present study, we analyzed area 2 neural responses to embossed oriented bars and curved contour fragments to establish whether curvature representations are generated in the postcentral gyrus. We found that many area 2 neurons (26 of 112) exhibit clear curvature tuning, preferring contours pointing in a particular direction. Fewer area 2 neurons (15 of 112) show preferences for oriented bars. Because area 2 response patterns closely resembled SII patterns, we also compared area 2 and SII response time courses to characterize the temporal dynamics of curvature synthesis in the somatosensory system. We found that curvature representations develop and peak concurrently in area 2 and SII. These results reveal that transitions from orientation tuning to curvature selectivity in the somatosensory cortical hierarchy occur within SI rather than between SI and SII. PMID:23536717

  3. Model Cortical Association Fields Account for the Time Course and Dependence on Target Complexity of Human Contour Perception

    PubMed Central

    Gintautas, Vadas; Ham, Michael I.; Kunsberg, Benjamin; Barr, Shawn; Brumby, Steven P.; Rasmussen, Craig; George, John S.; Nemenman, Ilya; Bettencourt, Luís M. A.; Kenyon, Garret T.

    2011-01-01

    Can lateral connectivity in the primary visual cortex account for the time dependence and intrinsic task difficulty of human contour detection? To answer this question, we created a synthetic image set that prevents sole reliance on either low-level visual features or high-level context for the detection of target objects. Rendered images consist of smoothly varying, globally aligned contour fragments (amoebas) distributed among groups of randomly rotated fragments (clutter). The time course and accuracy of amoeba detection by humans was measured using a two-alternative forced choice protocol with self-reported confidence and variable image presentation time (20-200 ms), followed by an image mask optimized so as to interrupt visual processing. Measured psychometric functions were well fit by sigmoidal functions with exponential time constants of 30-91 ms, depending on amoeba complexity. Key aspects of the psychophysical experiments were accounted for by a computational network model, in which simulated responses across retinotopic arrays of orientation-selective elements were modulated by cortical association fields, represented as multiplicative kernels computed from the differences in pairwise edge statistics between target and distractor images. Comparing the experimental and the computational results suggests that each iteration of the lateral interactions takes at least ms of cortical processing time. Our results provide evidence that cortical association fields between orientation selective elements in early visual areas can account for important temporal and task-dependent aspects of the psychometric curves characterizing human contour perception, with the remaining discrepancies postulated to arise from the influence of higher cortical areas. PMID:21998562

  4. Computer object segmentation by nonlinear image enhancement, multidimensional clustering, and geometrically constrained contour optimization

    NASA Astrophysics Data System (ADS)

    Bruynooghe, Michel M.

    1998-04-01

    In this paper, we present a robust method for automatic object detection and delineation in noisy complex images. The proposed procedure is a three stage process that integrates image segmentation by multidimensional pixel clustering and geometrically constrained optimization of deformable contours. The first step is to enhance the original image by nonlinear unsharp masking. The second step is to segment the enhanced image by multidimensional pixel clustering, using our reducible neighborhoods clustering algorithm that has a very interesting theoretical maximal complexity. Then, candidate objects are extracted and initially delineated by an optimized region merging algorithm, that is based on ascendant hierarchical clustering with contiguity constraints and on the maximization of average contour gradients. The third step is to optimize the delineation of previously extracted and initially delineated objects. Deformable object contours have been modeled by cubic splines. An affine invariant has been used to control the undesired formation of cusps and loops. Non linear constrained optimization has been used to maximize the external energy. This avoids the difficult and non reproducible choice of regularization parameters, that are required by classical snake models. The proposed method has been applied successfully to the detection of fine and subtle microcalcifications in X-ray mammographic images, to defect detection by moire image analysis, and to the analysis of microrugosities of thin metallic films. The later implementation of the proposed method on a digital signal processor associated to a vector coprocessor would allow the design of a real-time object detection and delineation system for applications in medical imaging and in industrial computer vision.

  5. A hand tracking algorithm with particle filter and improved GVF snake model

    NASA Astrophysics Data System (ADS)

    Sun, Yi-qi; Wu, Ai-guo; Dong, Na; Shao, Yi-zhe

    2017-07-01

    To solve the problem that the accurate information of hand cannot be obtained by particle filter, a hand tracking algorithm based on particle filter combined with skin-color adaptive gradient vector flow (GVF) snake model is proposed. Adaptive GVF and skin color adaptive external guidance force are introduced to the traditional GVF snake model, guiding the curve to quickly converge to the deep concave region of hand contour and obtaining the complex hand contour accurately. This algorithm realizes a real-time correction of the particle filter parameters, avoiding the particle drift phenomenon. Experimental results show that the proposed algorithm can reduce the root mean square error of the hand tracking by 53%, and improve the accuracy of hand tracking in the case of complex and moving background, even with a large range of occlusion.

  6. A comparison of contour maps derived from independent methods of measuring lunar magnetic fields

    NASA Technical Reports Server (NTRS)

    Lichtenstein, B. R.; Coleman, P. J., Jr.; Russell, C. T.

    1978-01-01

    Computer-generated contour maps of strong lunar remanent magnetic fields are presented and discussed. The maps, obtained by previously described (Eliason and Soderblom, 1977) techniques, are derived from a variety of direct and indirect measurements from Apollo 15 and 16 and Explorer 35 magnetometer and electron reflection data. A common display format is used to facilitate comparison of the maps over regions of overlapping coverage. Most large scale features of either weak or strong magnetic field regions are found to correlate fairly well on all the maps considered.

  7. Automatic Atlas Based Electron Density and Structure Contouring for MRI-based Prostate Radiation Therapy on the Cloud

    NASA Astrophysics Data System (ADS)

    Dowling, J. A.; Burdett, N.; Greer, P. B.; Sun, J.; Parker, J.; Pichler, P.; Stanwell, P.; Chandra, S.; Rivest-Hénault, D.; Ghose, S.; Salvado, O.; Fripp, J.

    2014-03-01

    Our group have been developing methods for MRI-alone prostate cancer radiation therapy treatment planning. To assist with clinical validation of the workflow we are investigating a cloud platform solution for research purposes. Benefits of cloud computing can include increased scalability, performance and extensibility while reducing total cost of ownership. In this paper we demonstrate the generation of DICOM-RT directories containing an automatic average atlas based electron density image and fast pelvic organ contouring from whole pelvis MR scans.

  8. Computer programs for plotting spot-beam coverages from an earth synchronous satellite and earth-station antenna elevation angle contours

    NASA Technical Reports Server (NTRS)

    Stagl, T. W.; Singh, J. P.

    1972-01-01

    A description and listings of computer programs for plotting geographical and political features of the world or a specified portion of it, for plotting spot-beam coverages from an earth-synchronous satellite over the computer generated mass, and for plotting polar perspective views of the earth and earth-station antenna elevation contours for a given satellite location are presented. The programs have been prepared in connection with a project on Application of Communication Satellites to Educational Development.

  9. Dynamical density delay maps: simple, new method for visualising the behaviour of complex systems

    PubMed Central

    2014-01-01

    Background Physiologic signals, such as cardiac interbeat intervals, exhibit complex fluctuations. However, capturing important dynamical properties, including nonstationarities may not be feasible from conventional time series graphical representations. Methods We introduce a simple-to-implement visualisation method, termed dynamical density delay mapping (“D3-Map” technique) that provides an animated representation of a system’s dynamics. The method is based on a generalization of conventional two-dimensional (2D) Poincaré plots, which are scatter plots where each data point, x(n), in a time series is plotted against the adjacent one, x(n + 1). First, we divide the original time series, x(n) (n = 1,…, N), into a sequence of segments (windows). Next, for each segment, a three-dimensional (3D) Poincaré surface plot of x(n), x(n + 1), h[x(n),x(n + 1)] is generated, in which the third dimension, h, represents the relative frequency of occurrence of each (x(n),x(n + 1)) point. This 3D Poincaré surface is then chromatised by mapping the relative frequency h values onto a colour scheme. We also generate a colourised 2D contour plot from each time series segment using the same colourmap scheme as for the 3D Poincaré surface. Finally, the original time series graph, the colourised 3D Poincaré surface plot, and its projection as a colourised 2D contour map for each segment, are animated to create the full “D3-Map.” Results We first exemplify the D3-Map method using the cardiac interbeat interval time series from a healthy subject during sleeping hours. The animations uncover complex dynamical changes, such as transitions between states, and the relative amount of time the system spends in each state. We also illustrate the utility of the method in detecting hidden temporal patterns in the heart rate dynamics of a patient with atrial fibrillation. The videos, as well as the source code, are made publicly available. Conclusions Animations based on density delay maps provide a new way of visualising dynamical properties of complex systems not apparent in time series graphs or standard Poincaré plot representations. Trainees in a variety of fields may find the animations useful as illustrations of fundamental but challenging concepts, such as nonstationarity and multistability. For investigators, the method may facilitate data exploration. PMID:24438439

  10. New descriptor for skeletons of planar shapes: the calypter

    NASA Astrophysics Data System (ADS)

    Pirard, Eric; Nivart, Jean-Francois

    1994-05-01

    The mathematical definition of the skeleton as the locus of centers of maximal inscribed discs is a nondigitizable one. The idea presented in this paper is to incorporate the skeleton information and the chain-code of the contour into a single descriptor by associating to each point of a contour the center and radius of the maximum inscribed disc tangent at that point. This new descriptor is called calypter. The encoding of a calypter is a three stage algorithm: (1) chain coding of the contour; (2) euclidean distance transformation, (3) climbing on the distance relief from each point of the contour towards the corresponding maximal inscribed disc center. Here we introduce an integer euclidean distance transform called the holodisc distance transform. The major interest of this holodisc transform is to confer 8-connexity to the isolevels of the generated distance relief thereby allowing a climbing algorithm to proceed step by step towards the centers of the maximal inscribed discs. The calypter has a cyclic structure delivering high speed access to the skeleton data. Its potential uses are in high speed euclidean mathematical morphology, shape processing, and analysis.

  11. Understanding Physiological and Degenerative Natural Vision Mechanisms to Define Contrast and Contour Operators

    PubMed Central

    Demongeot, Jacques; Fouquet, Yannick; Tayyab, Muhammad; Vuillerme, Nicolas

    2009-01-01

    Background Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. Methodology First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this, we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential Hamiltonian flows; we compare it with the watershed method and we use it for contouring. Conclusions We conclude by showing the utility of these biomimetic methods with some examples of application in medical imaging and computed assisted surgery. PMID:19547712

  12. The relative pose estimation of aircraft based on contour model

    NASA Astrophysics Data System (ADS)

    Fu, Tai; Sun, Xiangyi

    2017-02-01

    This paper proposes a relative pose estimation approach based on object contour model. The first step is to obtain a two-dimensional (2D) projection of three-dimensional (3D)-model-based target, which will be divided into 40 forms by clustering and LDA analysis. Then we proceed by extracting the target contour in each image and computing their Pseudo-Zernike Moments (PZM), thus a model library is constructed in an offline mode. Next, we spot a projection contour that resembles the target silhouette most in the present image from the model library with reference of PZM; then similarity transformation parameters are generated as the shape context is applied to match the silhouette sampling location, from which the identification parameters of target can be further derived. Identification parameters are converted to relative pose parameters, in the premise that these values are the initial result calculated via iterative refinement algorithm, as the relative pose parameter is in the neighborhood of actual ones. At last, Distance Image Iterative Least Squares (DI-ILS) is employed to acquire the ultimate relative pose parameters.

  13. Secondary motion in three-dimensional branching networks

    NASA Astrophysics Data System (ADS)

    Guha, Abhijit; Pradhan, Kaustav

    2017-06-01

    A major aim of the present work is to understand and thoroughly document the generation, the three-dimensional distribution, and the evolution of the secondary motion as the fluid progresses downstream through a branched network. Six generations (G0-G5) of branches (involving 63 straight portions and 31 bifurcation modules) are computed in one go; such computational challenges are rarely taken in the literature. More than 30 × 106 computational elements are employed for high precision of computed results and fine quality of the flow visualization diagrams. The study of co-planar vis-à-vis non-planar space-filling configurations establishes a quantitative evaluation of the dependence of the fluid dynamics on the three-dimensional arrangement of the same individual branches. As compared to the secondary motion in a simple curved pipe, three distinctive features, viz., the change of shape and size of the flow-cross-section, the division of non-uniform primary flow in a bifurcation module, and repeated switchover from clockwise to anticlockwise curvature and vice versa in the flow path, make the present situation more complex. It is shown that the straight portions in the network, in general, attenuate the secondary motion, while the three-dimensionally complex bifurcation modules generate secondary motion and may alter the number, arrangement, and structure of vortices. A comprehensive picture of the evolution of quantitative flow visualizations of the secondary motion is achieved by constructing contours of secondary velocity | v → S | , streamwise vorticity ω S , and λ 2 iso-surfaces. It is demonstrated, for example, that for in-plane configuration, the vortices on any plane appear in pair (i.e., for each clockwise rotating vortex, there is an otherwise identical anticlockwise vortex), whereas the vortices on a plane for the out-of-plane configuration may be dissimilar, and there may even be an odd number of vortices. We have formulated three new parameters (ES/P, δ S F , and δ G n ) for a quantitative description of the overall features of the secondary flow field. δ S F represents a non-uniformity index of the secondary flow in an individual branch, ES/P represents the mass-flow-averaged relative kinetic energy of the secondary motion in an individual branch, and δ G n provides a measure of the non-uniformity of the secondary flow between various branches of the same generation Gn. The repeated enhancement of the secondary kinetic energy in the bifurcation modules is responsible for the occurrence of significant values of ES/P even in generation G5. For both configurations, it is found that for any bifurcation module, the value of ES/P is greater in that daughter branch in which the mass-flow rate is greater. Even though the various contour plots of the complex secondary flow structure appear visually very different from one another, the values of δ S F are found to lie within a small range ( 0.37 ≤ δ S F ≤ 0.66 ) for the six-generation networks studied. It is shown that δ G n grows as the generation number Gn increases. It is established that the out-of-plane configuration, in general, creates more secondary kinetic energy (higher ES/P), a similar level of non-uniformity in the secondary flow in an individual branch (similar δ S F ), and a significantly lower level of non-uniformity in the distribution of secondary motion among various branches of the same generation (much lower δ G n ), as compared to the in-plane arrangement of the same branches.

  14. Secondary motion in three-dimensional branching networks

    PubMed Central

    Guha, Abhijit; Pradhan, Kaustav

    2017-01-01

    A major aim of the present work is to understand and thoroughly document the generation, the three-dimensional distribution, and the evolution of the secondary motion as the fluid progresses downstream through a branched network. Six generations (G0-G5) of branches (involving 63 straight portions and 31 bifurcation modules) are computed in one go; such computational challenges are rarely taken in the literature. More than 30 × 106 computational elements are employed for high precision of computed results and fine quality of the flow visualization diagrams. The study of co-planar vis-à-vis non-planar space-filling configurations establishes a quantitative evaluation of the dependence of the fluid dynamics on the three-dimensional arrangement of the same individual branches. As compared to the secondary motion in a simple curved pipe, three distinctive features, viz., the change of shape and size of the flow-cross-section, the division of non-uniform primary flow in a bifurcation module, and repeated switchover from clockwise to anticlockwise curvature and vice versa in the flow path, make the present situation more complex. It is shown that the straight portions in the network, in general, attenuate the secondary motion, while the three-dimensionally complex bifurcation modules generate secondary motion and may alter the number, arrangement, and structure of vortices. A comprehensive picture of the evolution of quantitative flow visualizations of the secondary motion is achieved by constructing contours of secondary velocity v→S, streamwise vorticity ωS, and λ2 iso-surfaces. It is demonstrated, for example, that for in-plane configuration, the vortices on any plane appear in pair (i.e., for each clockwise rotating vortex, there is an otherwise identical anticlockwise vortex), whereas the vortices on a plane for the out-of-plane configuration may be dissimilar, and there may even be an odd number of vortices. We have formulated three new parameters (ES/P, δSF, and δGn) for a quantitative description of the overall features of the secondary flow field. δSF represents a non-uniformity index of the secondary flow in an individual branch, ES/P represents the mass-flow-averaged relative kinetic energy of the secondary motion in an individual branch, and δGn provides a measure of the non-uniformity of the secondary flow between various branches of the same generation Gn. The repeated enhancement of the secondary kinetic energy in the bifurcation modules is responsible for the occurrence of significant values of ES/P even in generation G5. For both configurations, it is found that for any bifurcation module, the value of ES/P is greater in that daughter branch in which the mass-flow rate is greater. Even though the various contour plots of the complex secondary flow structure appear visually very different from one another, the values of δSF are found to lie within a small range (0.37≤δSF≤0.66) for the six-generation networks studied. It is shown that δGn grows as the generation number Gn increases. It is established that the out-of-plane configuration, in general, creates more secondary kinetic energy (higher ES/P), a similar level of non-uniformity in the secondary flow in an individual branch (similar δSF), and a significantly lower level of non-uniformity in the distribution of secondary motion among various branches of the same generation (much lower δGn), as compared to the in-plane arrangement of the same branches. PMID:28713213

  15. Hierarchical representation of shapes in visual cortex—from localized features to figural shape segregation

    PubMed Central

    Tschechne, Stephan; Neumann, Heiko

    2014-01-01

    Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1–V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy. PMID:25157228

  16. Hierarchical representation of shapes in visual cortex-from localized features to figural shape segregation.

    PubMed

    Tschechne, Stephan; Neumann, Heiko

    2014-01-01

    Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1-V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy.

  17. A visual model for object detection based on active contours and level-set method.

    PubMed

    Satoh, Shunji

    2006-09-01

    A visual model for object detection is proposed. In order to make the detection ability comparable with existing technical methods for object detection, an evolution equation of neurons in the model is derived from the computational principle of active contours. The hierarchical structure of the model emerges naturally from the evolution equation. One drawback involved with initial values of active contours is alleviated by introducing and formulating convexity, which is a visual property. Numerical experiments show that the proposed model detects objects with complex topologies and that it is tolerant of noise. A visual attention model is introduced into the proposed model. Other simulations show that the visual properties of the model are consistent with the results of psychological experiments that disclose the relation between figure-ground reversal and visual attention. We also demonstrate that the model tends to perceive smaller regions as figures, which is a characteristic observed in human visual perception.

  18. Computational Geometry and Computer-Aided Design

    NASA Technical Reports Server (NTRS)

    Fay, T. H. (Compiler); Shoosmith, J. N. (Compiler)

    1985-01-01

    Extended abstracts of papers addressing the analysis, representation, and synthesis of shape information are presented. Curves and shape control, grid generation and contouring, solid modelling, surfaces, and curve intersection are specifically addressed.

  19. Extracting contours of oval-shaped objects by Hough transform and minimal path algorithms

    NASA Astrophysics Data System (ADS)

    Tleis, Mohamed; Verbeek, Fons J.

    2014-04-01

    Circular and oval-like objects are very common in cell and micro biology. These objects need to be analyzed, and to that end, digitized images from the microscope are used so as to come to an automated analysis pipeline. It is essential to detect all the objects in an image as well as to extract the exact contour of each individual object. In this manner it becomes possible to perform measurements on these objects, i.e. shape and texture features. Our measurement objective is achieved by probing contour detection through dynamic programming. In this paper we describe a method that uses Hough transform and two minimal path algorithms to detect contours of (ovoid-like) objects. These algorithms are based on an existing grey-weighted distance transform and a new algorithm to extract the circular shortest path in an image. The methods are tested on an artificial dataset of a 1000 images, with an F1-score of 0.972. In a case study with yeast cells, contours from our methods were compared with another solution using Pratt's figure of merit. Results indicate that our methods were more precise based on a comparison with a ground-truth dataset. As far as yeast cells are concerned, the segmentation and measurement results enable, in future work, to retrieve information from different developmental stages of the cell using complex features.

  20. User Manual for Beta Version of TURBO-GRD: A Software System for Interactive Two-Dimensional Boundary/ Field Grid Generation, Modification, and Refinement

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Slater, John W.; Henderson, Todd L.; Bidwell, Colin S.; Braun, Donald C.; Chung, Joongkee

    1998-01-01

    TURBO-GRD is a software system for interactive two-dimensional boundary/field grid generation. modification, and refinement. Its features allow users to explicitly control grid quality locally and globally. The grid control can be achieved interactively by using control points that the user picks and moves on the workstation monitor or by direct stretching and refining. The techniques used in the code are the control point form of algebraic grid generation, a damped cubic spline for edge meshing and parametric mapping between physical and computational domains. It also performs elliptic grid smoothing and free-form boundary control for boundary geometry manipulation. Internal block boundaries are constructed and shaped by using Bezier curve. Because TURBO-GRD is a highly interactive code, users can read in an initial solution, display its solution contour in the background of the grid and control net, and exercise grid modification using the solution contour as a guide. This process can be called an interactive solution-adaptive grid generation.

  1. Optimal Positioning of the Nipple-Areola Complex in Men Using the Mohrenheim-Estimated-Tangential-Tracking-Line (METT-Line): An Intuitive Approach.

    PubMed

    Mett, Tobias R; Krezdorn, Nicco; Luketina, Rosalia; Boyce, Maria K; Henseler, Helga; Ipaktchi, Ramin; Vogt, Peter M

    2017-12-01

    The reconstruction of the body shape after post-bariatric surgery or high-grade gynecomastia involves, besides skin tightening, the repositioning of anatomical, apparent landmarks. The surgeon usually defines these during the preoperative planning. In particular, the positions of the nipple-areola complexes (NAC) should contribute to the gender-appropriate appearance. While in the female breast numerous methods have been developed to determine the optimal position of the NACs, there are only a few, metric and often impractical algorithms for positioning the nipples and areoles in the male. With this study, we show the accuracy of the intuitive positioning of the nipple-areola complex in men. From a pre-examined and measured quantity of 10 young and healthy men, six subjects were selected, which corresponded, on the basis of their chest and trunk dimensions, to the average of known data from the literature. The photographed frontal views were retouched in two steps. Initially, only the NACs were removed and the chest contours were left. In a second step, all contours and the navel were blurred. These pictures were submitted to resident and consultant plastic surgeons, who were asked to draw the missing NACs without any tools. The original positions of the nipples were compared with the inscriptions. Furthermore, the results were compared between the contoured and completely retouched pictures and between the residents and consultants. A total of 8 consultants and 7 residents were included. In the contoured and completely retouched images, a significant deviation of the marked positions of the missing features was found. The height of the NAC was determined somewhat more precisely than the vertical position. There was no significant difference between the contoured and completely retouched images, with a discretely more accurate tendency on the contoured images. In comparison with the professional experience, the consultants were tangentially more precise, but without a statistically significant impact. The intuitive determination of the NACs is a challenge for the plastic surgeon. In this study, a statistically significant deviation was seen in almost all dimensions, although the clinical relevance cannot be conclusively assessed. We found a positional relationship of the NAC to the infraclavicular groove ("Mohrenheim pit") in the vertical and 4-4.5 cm above the submammary fold. The position of the NAC can be satisfactorily determined by a combination of plastic surgical intuition, patient wishes and practical metric methods using the Mohrenheim-Estimated-Tangential-Tracking-Line (METT-Line). This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  2. Wrapping Python around MODFLOW/MT3DMS based groundwater models

    NASA Astrophysics Data System (ADS)

    Post, V.

    2008-12-01

    Numerical models that simulate groundwater flow and solute transport require a great amount of input data that is often organized into different files. A large proportion of the input data consists of spatially-distributed model parameters. The model output consists of a variety data such as heads, fluxes and concentrations. Typically all files have different formats. Consequently, preparing input and managing output is a complex and error-prone task. Proprietary software tools are available that facilitate the preparation of input files and analysis of model outcomes. The use of such software may be limited if it does not support all the features of the groundwater model or when the costs of such tools are prohibitive. Therefore a Python library was developed that contains routines to generate input files and process output files of MODFLOW/MT3DMS based models. The library is freely available and has an open structure so that the routines can be customized and linked into other scripts and libraries. The current set of functions supports the generation of input files for MODFLOW and MT3DMS, including the capability to read spatially-distributed input parameters (e.g. hydraulic conductivity) from PNG files. Both ASCII and binary output files can be read efficiently allowing for visualization of, for example, solute concentration patterns in contour plots with superimposed flow vectors using matplotlib. Series of contour plots are then easily saved as an animation. The subroutines can also be used within scripts to calculate derived quantities such as the mass of a solute within a particular region of the model domain. Using Python as a wrapper around groundwater models provides an efficient and flexible way of processing input and output data, which is not constrained by limitations of third-party products.

  3. Evaluating performance of a user-trained MR lung tumor autocontouring algorithm in the context of intra- and interobserver variations.

    PubMed

    Yip, Eugene; Yun, Jihyun; Gabos, Zsolt; Baker, Sarah; Yee, Don; Wachowicz, Keith; Rathee, Satyapal; Fallone, B Gino

    2018-01-01

    Real-time tracking of lung tumors using magnetic resonance imaging (MRI) has been proposed as a potential strategy to mitigate the ill-effects of breathing motion in radiation therapy. Several autocontouring methods have been evaluated against a "gold standard" of a single human expert user. However, contours drawn by experts have inherent intra- and interobserver variations. In this study, we aim to evaluate our user-trained autocontouring algorithm with manually drawn contours from multiple expert users, and to contextualize the accuracy of these autocontours within intra- and interobserver variations. Six nonsmall cell lung cancer patients were recruited, with institutional ethics approval. Patients were imaged with a clinical 3 T Philips MR scanner using a dynamic 2D balanced SSFP sequence under free breathing. Three radiation oncology experts, each in two separate sessions, contoured 130 dynamic images for each patient. For autocontouring, the first 30 images were used for algorithm training, and the remaining 100 images were autocontoured and evaluated. Autocontours were compared against manual contours in terms of Dice's coefficient (DC) and Hausdorff distances (d H ). Intra- and interobserver variations of the manual contours were also evaluated. When compared with the manual contours of the expert user who trained it, the algorithm generates autocontours whose evaluation metrics (same session: DC = 0.90(0.03), d H  = 3.8(1.6) mm; different session DC = 0.88(0.04), d H  = 4.3(1.5) mm) are similar to or better than intraobserver variations (DC = 0.88(0.04), and d H  = 4.3(1.7) mm) between two sessions. The algorithm's autocontours are also compared to the manual contours from different expert users with evaluation metrics (DC = 0.87(0.04), d H  = 4.8(1.7) mm) similar to interobserver variations (DC = 0.87(0.04), d H  = 4.7(1.6) mm). Our autocontouring algorithm delineates tumor contours (<20 ms per contour), in dynamic MRI of lung, that are comparable to multiple human experts (several seconds per contour), but at a much faster speed. At the same time, the agreement between autocontours and manual contours is comparable to the intra- and interobserver variations. This algorithm may be a key component of the real time tumor tracking workflow for our hybrid Linac-MR device in the future. © 2017 American Association of Physicists in Medicine.

  4. Determination of volume-time curves for the right ventricle and its outflow tract for functional analyses.

    PubMed

    Gabbert, Dominik D; Entenmann, Andreas; Jerosch-Herold, Michael; Frettlöh, Felicitas; Hart, Christopher; Voges, Inga; Pham, Minh; Andrade, Ana; Pardun, Eileen; Wegner, P; Hansen, Traudel; Kramer, Hans-Heiner; Rickers, Carsten

    2013-12-01

    The determination of right ventricular volumes and function is of increasing interest for the postoperative care of patients with congenital heart defects. The presentation of volumetry data in terms of volume-time curves allows a comprehensive functional assessment. By using manual contour tracing, the generation of volume-time curves is exceedingly time-consuming. This study describes a fast and precise method for determining volume-time curves for the right ventricle and for the right ventricular outflow tract. The method applies contour detection and includes a feature for identifying the right ventricular outflow tract volume. The segregation of the outflow tract is performed by four-dimensional curved smooth boundary surfaces defined by prespecified anatomical landmarks. The comparison with manual contour tracing demonstrates that the method is accurate and improves the precision of the measurement. Compared to manual contour tracing the bias is <0.1% ± 4.1% (right ventricle) and -2.6% ± 20.0% (right ventricular outflow tract). The standard deviations of inter- and intraobserver variabilities for determining the volume of the right ventricular outflow tract are reduced to less than half the values of manual contour tracing. The time consumption per patient is reduced from 341 ± 80 min (right ventricle) and 56 ± 11 min (right ventricular outflow tract) using manual contour tracing to 46 ± 9 min for a combined analysis of right ventricle and right ventricular outflow tract. The analysis of volume-time curves for the right ventricle and its outflow tract discloses new evaluation methods in clinical routine and science. Copyright © 2013 Wiley Periodicals, Inc.

  5. Design of thrust vectoring exhaust nozzles for real-time applications using neural networks

    NASA Technical Reports Server (NTRS)

    Prasanth, Ravi K.; Markin, Robert E.; Whitaker, Kevin W.

    1991-01-01

    Thrust vectoring continues to be an important issue in military aircraft system designs. A recently developed concept of vectoring aircraft thrust makes use of flexible exhaust nozzles. Subtle modifications in the nozzle wall contours produce a non-uniform flow field containing a complex pattern of shock and expansion waves. The end result, due to the asymmetric velocity and pressure distributions, is vectored thrust. Specification of the nozzle contours required for a desired thrust vector angle (an inverse design problem) has been achieved with genetic algorithms. This approach is computationally intensive and prevents the nozzles from being designed in real-time, which is necessary for an operational aircraft system. An investigation was conducted into using genetic algorithms to train a neural network in an attempt to obtain, in real-time, two-dimensional nozzle contours. Results show that genetic algorithm trained neural networks provide a viable, real-time alternative for designing thrust vectoring nozzles contours. Thrust vector angles up to 20 deg were obtained within an average error of 0.0914 deg. The error surfaces encountered were highly degenerate and thus the robustness of genetic algorithms was well suited for minimizing global errors.

  6. Triggering mechanism and tsunamogenic potential of the Cape Fear Slide complex, U.S. Atlantic margin

    USGS Publications Warehouse

    Hornbach, Matthew J.; Lavier, Luc L.; Ruppel, Carolyn D.

    2007-01-01

    Analysis of new multibeam bathymetry data and seismic Chirp data acquired over the Cape Fear Slide complex on the U.S. Atlantic margin suggests that at least 5 major submarine slides have likely occurred there within the past 30,000 years, indicating that repetitive, large-scale mass wasting and associated tsunamis may be more common in this area than previously believed. Gas hydrate deposits and associated free gas as well as salt tectonics have been implicated in previous studies as triggers for the major Cape Fear slide events. Analysis of the interaction of the gas hydrate phase boundary and the various generations of slides indicates that only the most landward slide likely intersected the phase boundary and inferred high gas pressures below it. For much of the region, we believe that displacement along a newly recognized normal fault led to upward migration of salt, oversteepening of slopes, and repeated slope failures. Using new constraints on slide morphology, we develop the first tsunami model for the Cape Fear Slide complex. Our results indicate that if the most seaward Cape Fear slide event occurred today, it could produce waves in excess of 2 m at the present-day 100 m bathymetric contour.

  7. Multivalued classical mechanics arising from singularity loops in complex time

    NASA Astrophysics Data System (ADS)

    Koch, Werner; Tannor, David J.

    2018-02-01

    Complex-valued classical trajectories in complex time encounter singular times at which the momentum diverges. A closed time contour around such a singular time may result in final values for q and p that differ from their initial values. In this work, we develop a calculus for determining the exponent and prefactor of the asymptotic time dependence of p from the singularities of the potential as the singularity time is approached. We identify this exponent with the number of singularity loops giving distinct solutions to Hamilton's equations of motion. The theory is illustrated for the Eckart, Coulomb, Morse, and quartic potentials. Collectively, these potentials illustrate a wide variety of situations: poles and essential singularities at finite and infinite coordinate values. We demonstrate quantitative agreement between analytical and numerical exponents and prefactors, as well as the connection between the exponent and the time circuit count. This work provides the theoretical underpinnings for the choice of time contours described in the studies of Doll et al. [J. Chem. Phys. 58(4), 1343-1351 (1973)] and Petersen and Kay [J. Chem. Phys. 141(5), 054114 (2014)]. It also has implications for wavepacket reconstruction from complex classical trajectories when multiple branches of trajectories are involved.

  8. Thermal-Structural Analysis of PICA Tiles for Solar Tower Test

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Empey, Daniel M.; Squire, Thomas H.

    2009-01-01

    Thermal protection materials used in spacecraft heatshields are subjected to severe thermal and mechanical loading environments during re-entry into earth atmosphere. In order to investigate the reliability of PICA tiles in the presence of high thermal gradients as well as mechanical loads, the authors designed and conducted solar-tower tests. This paper presents the design and analysis work for this tests series. Coupled non-linear thermal-mechanical finite element analyses was conducted to estimate in-depth temperature distribution and stress contours for various cases. The first set of analyses performed on isolated PICA tile showed that stresses generated during the tests were below the PICA allowable limit and should not lead to any catastrophic failure during the test. The tests results were consistent with analytical predictions. The temperature distribution and magnitude of the measured strains were also consistent with predicted values. The second test series is designed to test the arrayed PICA tiles with various gap-filler materials. A nonlinear contact method is used to model the complex geometry with various tiles. The analyses for these coupons predict the stress contours in PICA and inside gap fillers. Suitable mechanical loads for this architecture will be predicted, which can be applied during the test to exceed the allowable limits and demonstrate failure modes. Thermocouple and strain-gauge data obtained from the solar tower tests will be used for subsequent analyses and validation of FEM models.

  9. End-to-end distance and contour length distribution functions of DNA helices

    NASA Astrophysics Data System (ADS)

    Zoli, Marco

    2018-06-01

    I present a computational method to evaluate the end-to-end and the contour length distribution functions of short DNA molecules described by a mesoscopic Hamiltonian. The method generates a large statistical ensemble of possible configurations for each dimer in the sequence, selects the global equilibrium twist conformation for the molecule, and determines the average base pair distances along the molecule backbone. Integrating over the base pair radial and angular fluctuations, I derive the room temperature distribution functions as a function of the sequence length. The obtained values for the most probable end-to-end distance and contour length distance, providing a measure of the global molecule size, are used to examine the DNA flexibility at short length scales. It is found that, also in molecules with less than ˜60 base pairs, coiled configurations maintain a large statistical weight and, consistently, the persistence lengths may be much smaller than in kilo-base DNA.

  10. Generation algorithm of craniofacial structure contour in cephalometric images

    NASA Astrophysics Data System (ADS)

    Mondal, Tanmoy; Jain, Ashish; Sardana, H. K.

    2010-02-01

    Anatomical structure tracing on cephalograms is a significant way to obtain cephalometric analysis. Computerized cephalometric analysis involves both manual and automatic approaches. The manual approach is limited in accuracy and repeatability. In this paper we have attempted to develop and test a novel method for automatic localization of craniofacial structure based on the detected edges on the region of interest. According to the grey scale feature at the different region of the cephalometric images, an algorithm for obtaining tissue contour is put forward. Using edge detection with specific threshold an improved bidirectional contour tracing approach is proposed by an interactive selection of the starting edge pixels, the tracking process searches repetitively for an edge pixel at the neighborhood of previously searched edge pixel to segment images, and then craniofacial structures are obtained. The effectiveness of the algorithm is demonstrated by the preliminary experimental results obtained with the proposed method.

  11. Automated method and system for the alignment and correlation of images from two different modalities

    DOEpatents

    Giger, Maryellen L.; Chen, Chin-Tu; Armato, Samuel; Doi, Kunio

    1999-10-26

    A method and system for the computerized registration of radionuclide images with radiographic images, including generating image data from radiographic and radionuclide images of the thorax. Techniques include contouring the lung regions in each type of chest image, scaling and registration of the contours based on location of lung apices, and superimposition after appropriate shifting of the images. Specific applications are given for the automated registration of radionuclide lungs scans with chest radiographs. The method in the example given yields a system that spatially registers and correlates digitized chest radiographs with V/Q scans in order to correlate V/Q functional information with the greater structural detail of chest radiographs. Final output could be the computer-determined contours from each type of image superimposed on any of the original images, or superimposition of the radionuclide image data, which contains high activity, onto the radiographic chest image.

  12. 3D reconstruction of microminiature objects based on contour line

    NASA Astrophysics Data System (ADS)

    Li, Cailin; Wang, Qiang; Guo, Baoyun

    2009-10-01

    A new 3D automatic reconstruction method of micro solid of revolution is presented in this paper. In the implementation procedure of this method, image sequence of the solid of revolution of 360° is obtained, which rotation speed is controlled by motor precisely, in the rotate photographic mode of back light. Firstly, we need calibrate the height of turntable, the size of pixel and rotation axis of turntable. Then according to the calibration result of rotation axis, the height of turntable, rotation angle and the pixel size, the contour points of each image can be transformed into 3D points in the reference coordinate system to generate the point cloud model. Finally, the surface geometrical model of solid of revolution is obtained by using the relationship of two adjacent contours. Experimental results on real images are presented, which demonstrate the effectiveness of the Approach.

  13. Reprogramming the Chemodiversity of Terpenoid Cyclization by Remolding the Active Site Contour of epi-Isozizaene Synthase

    PubMed Central

    2015-01-01

    The class I terpenoid cyclase epi-isozizaene synthase (EIZS) utilizes the universal achiral isoprenoid substrate, farnesyl diphosphate, to generate epi-isozizaene as the predominant sesquiterpene cyclization product and at least five minor sesquiterpene products, making EIZS an ideal platform for the exploration of fidelity and promiscuity in a terpenoid cyclization reaction. The hydrophobic active site contour of EIZS serves as a template that enforces a single substrate conformation, and chaperones subsequently formed carbocation intermediates through a well-defined mechanistic sequence. Here, we have used the crystal structure of EIZS as a guide to systematically remold the hydrophobic active site contour in a library of 26 site-specific mutants. Remolded cyclization templates reprogram the reaction cascade not only by reproportioning products generated by the wild-type enzyme but also by generating completely new products of diverse structure. Specifically, we have tripled the overall number of characterized products generated by EIZS. Moreover, we have converted EIZS into six different sesquiterpene synthases: F96A EIZS is an (E)-β-farnesene synthase, F96W EIZS is a zizaene synthase, F95H EIZS is a β-curcumene synthase, F95M EIZS is a β-acoradiene synthase, F198L EIZS is a β-cedrene synthase, and F96V EIZS and W203F EIZS are (Z)-γ-bisabolene synthases. Active site aromatic residues appear to be hot spots for reprogramming the cyclization cascade by manipulating the stability and conformation of critical carbocation intermediates. A majority of mutant enzymes exhibit only relatively modest 2–100-fold losses of catalytic activity, suggesting that residues responsible for triggering substrate ionization readily tolerate mutations deeper in the active site cavity. PMID:24517311

  14. Auto-steering apparatus and method

    DOEpatents

    McKay, Mark D.; Anderson, Matthew O.

    2007-03-13

    A vehicular guidance method involves providing a user interface using which data can be input to establish a contour for a vehicle to follow, the user interface further configured to receive information from a differential global positioning system (DGPS), determining cross track and offset data using information received from the DGPS, generating control values, using at least vehicular kinematics, the cross track, and the offset data, and providing an output to control steering of the vehicle, using the control values, in a direction to follow the established contour while attempting to minimize the cross track and the offset data.

  15. Optically Phase-Locked Electronic Speckle Pattern Interferometer (OPL-ESPI)

    NASA Astrophysics Data System (ADS)

    Moran, Steven E.; Law, Robert L.; Craig, Peter N.; Goldberg, Warren M.

    1986-10-01

    This report describes the design, theory, operation, and characteristics of the OPL-ESPI, which generates real time equal Doppler speckle contours of vibrating objects from unstable sensor platforms with a Doppler resolution of 30 Hz and a maximum tracking range of + or - 5 HMz. The optical phase locked loop compensates for the deleterious effects of ambient background vibration and provides the bases for a new ESPI video signal processing technique, which produces high contrast speckle contours. The OPL-ESPI system has local oscillator phase modulation capability, offering the potential for detection of vibrations with the amplitudes less than lambda/100.

  16. The perception of subjective contours and neon color spreading figures in young infants.

    PubMed

    Kavsek, Michael

    2009-02-01

    The goal of the present habituation-dishabituation study was to explore sensitivity to subjective contours and neon color spreading patterns in infants. The first experiment was a replication of earlier investigations that showed evidence that even young infants are capable of perceiving subjective contours. Participants 4 months of age were habituated to a subjective Kanizsa square and were tested afterward for their ability to differentiate between the subjective square and a nonsubjective pattern that was constructed by rotating some of the inducing elements. Data analysis indicated a significant preference for the nonsubjective pattern. A control condition ensured that this result was not generated by the difference in figural symmetry or by the local differences between the test displays. In the second experiment, infant perception of a neon color spreading display was analyzed. Again, 4-month-old infants could discriminate between the illusory figure and a nonillusory pattern. Furthermore, infants in a control group did not respond to the difference in symmetry and the local differences between two nonillusory targets. Overall, the results show that young infants respond to illusory figures that are generated by either implicit T-junctions (Experiment 1) or implicit X-junctions (Experiment 2). The findings are interpreted against the background of the neurophysiological model proposed by Grossberg and Mingolla (1985).

  17. The museum of unnatural form: a visual and tactile experience of fractals.

    PubMed

    Della-Bosca, D; Taylor, R P

    2009-01-01

    A remarkable computer technology is revolutionizing the world of design, allowing intricate patterns to be created with mathematical precision and then 'printed' as physical objects. Contour crafting is a fabrication process capable of assembling physical structures the sizes of houses, firing the imagination of a new generation of architects and artists (Khoshnevisat, 2008). Daniel Della-Bosca has jumped at this opportunity to create the 'Museum of Unnatural Form' at Griffith University. Della-Bosca's museum is populated with fractals sculptures - his own versions of nature's complex objects - that have been printed with the new technology. His sculptures bridge the historical divide in fractal studies between the abstract images of mathematics and the physical objects of Nature (Mandelbrot, 1982). Four of his fractal images will be featured on the cover of NDPLS in 2009.

  18. Radiation oncology: a primer for medical students.

    PubMed

    Berman, Abigail T; Plastaras, John P; Vapiwala, Neha

    2013-09-01

    Radiation oncology requires a complex understanding of cancer biology, radiation physics, and clinical care. This paper equips the medical student to understand the fundamentals of radiation oncology, first with an introduction to cancer treatment and the use of radiation therapy. Considerations during radiation oncology consultations are discussed extensively with an emphasis on how to formulate an assessment and plan including which treatment modality to use. The treatment planning aspects of radiation oncology are then discussed with a brief introduction to how radiation works, followed by a detailed explanation of the nuances of simulation, including different imaging modalities, immobilization, and accounting for motion. The medical student is then instructed on how to participate in contouring, plan generation and evaluation, and the delivery of radiation on the machine. Lastly, potential adverse effects of radiation are discussed with a particular focus on the on-treatment patient.

  19. Segmentation propagation for the automated quantification of ventricle volume from serial MRI

    NASA Astrophysics Data System (ADS)

    Linguraru, Marius George; Butman, John A.

    2009-02-01

    Accurate ventricle volume estimates could potentially improve the understanding and diagnosis of communicating hydrocephalus. Postoperative communicating hydrocephalus has been recognized in patients with brain tumors where the changes in ventricle volume can be difficult to identify, particularly over short time intervals. Because of the complex alterations of brain morphology in these patients, the segmentation of brain ventricles is challenging. Our method evaluates ventricle size from serial brain MRI examinations; we (i) combined serial images to increase SNR, (ii) automatically segmented this image to generate a ventricle template using fast marching methods and geodesic active contours, and (iii) propagated the segmentation using deformable registration of the original MRI datasets. By applying this deformation to the ventricle template, serial volume estimates were obtained in a robust manner from routine clinical images (0.93 overlap) and their variation analyzed.

  20. Automated extraction and classification of time-frequency contours in humpback vocalizations.

    PubMed

    Ou, Hui; Au, Whitlow W L; Zurk, Lisa M; Lammers, Marc O

    2013-01-01

    A time-frequency contour extraction and classification algorithm was created to analyze humpback whale vocalizations. The algorithm automatically extracted contours of whale vocalization units by searching for gray-level discontinuities in the spectrogram images. The unit-to-unit similarity was quantified by cross-correlating the contour lines. A library of distinctive humpback units was then generated by applying an unsupervised, cluster-based learning algorithm. The purpose of this study was to provide a fast and automated feature selection tool to describe the vocal signatures of animal groups. This approach could benefit a variety of applications such as species description, identification, and evolution of song structures. The algorithm was tested on humpback whale song data recorded at various locations in Hawaii from 2002 to 2003. Results presented in this paper showed low probability of false alarm (0%-4%) under noisy environments with small boat vessels and snapping shrimp. The classification algorithm was tested on a controlled set of 30 units forming six unit types, and all the units were correctly classified. In a case study on humpback data collected in the Auau Chanel, Hawaii, in 2002, the algorithm extracted 951 units, which were classified into 12 distinctive types.

  1. Hydrographic Surveys for Six Water Bodies in Eastern Nebraska, 2005-07

    USGS Publications Warehouse

    Johnson, Michaela R.; Andersen, Michael J.; Sebree, Sonja K.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Nebraska Department of Environmental Quality, completed hydrographic surveys for six water bodies in eastern Nebraska: Maskenthine Wetland, Olive Creek Lake, Standing Bear Lake, Wagon Train Lake and Wetland, Wildwood Lake, and Yankee Hill Lake and sediment basin. The bathymetric data were collected using a boat-mounted survey-grade fathometer that operated at 200 kHz, and a differentially corrected Global Positioning System with antenna mounted directly above the echo-sounder transducer. Shallow-water and terrestrial areas were surveyed using a Real-Time Kinematic Global Positioning System. The bathymetric, shallow-water, and terrestrial data were processed in a geographic information system to generate a triangulated irregular network representation of the bottom of the water body. Bathymetric contours were interpolated from the triangulated irregular network data using a 2-foot contour interval. Bathymetric contours at the conservation pool elevation for Maskenthine Wetland, Yankee Hill Lake, and Yankee Hill sediment pond also were interpolated in addition to the 2-foot contours. The surface area and storage capacity of each lake or wetland were calculated for 1-foot intervals of water surface elevation and are tabulated in the Appendix for all water bodies.

  2. Modeling pilot interaction with automated digital avionics systems: Guidance and control algorithms for contour and nap-of-the-Earth flight

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1990-01-01

    A collection of technical papers are presented that cover modeling pilot interaction with automated digital avionics systems and guidance and control algorithms for contour and nap-of-the-earth flight. The titles of the papers presented are as follows: (1) Automation effects in a multiloop manual control system; (2) A qualitative model of human interaction with complex dynamic systems; (3) Generalized predictive control of dynamic systems; (4) An application of generalized predictive control to rotorcraft terrain-following flight; (5) Self-tuning generalized predictive control applied to terrain-following flight; and (6) Precise flight path control using a predictive algorithm.

  3. Synthesis, Characterization, and Application of High Surface Area, Mesoporous, Stabilized Anatase TiO2 Catalyst Supports

    NASA Astrophysics Data System (ADS)

    Olsen, Rebecca Elizabeth

    Vortex rings constitute the main structure in the wakes of a wide class of swimming and flying animals, as well as in cardiac flows and in the jets generated by some moss and fungi. However, there is a physical limit, determined by an energy maximization principle called the Kelvin-Benjamin principle, to the size that axisymmetric vortex rings can achieve. The existence of this limit is known to lead to the separation of a growing vortex ring from the shear layer feeding it, a process known as `vortex pinch-off', and characterized by the dimensionless vortex formation number. The goal of this thesis is to improve our understanding of vortex pinch-off as it relates to biological propulsion, and to provide future researchers with tools to assist in identifying and predicting pinch-off in biological flows. To this end, we introduce a method for identifying pinch-off in starting jets using the Lagrangian coherent structures in the flow, and apply this criterion to an experimentally-generated starting jet. Since most naturally-occurring vortex rings are not circular, we extend the definition of the vortex formation number to include non-axisymmetric vortex rings, and find that the formation number for moderately non-axisymmetric vortices is similar to that of circular vortex rings. This suggests that naturally-occurring vortex rings may be modeled as axisymmetric vortex rings. Therefore, we consider the perturbation response of the Norbury family of axisymmetric vortex rings. This family is chosen to model vortex rings of increasing thickness and circulation, and their response to prolate shape perturbations is simulated using contour dynamics. Finally, the response of more realistic models for vortex rings, constructed from experimental data using nested contours, to perturbations which resemble those encountered by forming vortices more closely, is simulated using contour dynamics. In both families of models, a change in response analogous to pinch-off is found as members of the family with progressively thicker cores are considered. We posit that this analogy may be exploited to understand and predict pinch-off in complex biological flows, where current methods are not applicable in practice, and criteria based on the properties of vortex rings alone are necessary.

  4. SU-F-T-42: MRI and TRUS Image Fusion as a Mode of Generating More Accurate Prostate Contours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petronek, M; Purysko, A; Balik, S

    Purpose: Transrectal Ultrasound (TRUS) imaging is utilized intra-operatively for LDR permanent prostate seed implant treatment planning. Prostate contouring with TRUS can be challenging at the apex and base. This study attempts to improve accuracy of prostate contouring with MRI-TRUS fusion to prevent over- or under-estimation of the prostate volume. Methods: 14 patients with previous MRI guided prostate biopsy and undergone an LDR permanent prostate seed implant have been selected. The prostate was contoured on the MRI images (1 mm slice thickness) by a radiologist. The prostate was also contoured on TRUS images (5 mm slice thickness) during LDR procedure bymore » a urologist. MRI and TRUS images were rigidly fused manually and the prostate contours from MRI and TRUS were compared using Dice similarity coefficient, percentage volume difference and length, height and width differences. Results: The prostate volume was overestimated by 8 ± 18% (range: 34% to −25%) in TRUS images compared to MRI. The mean Dice was 0.77 ± 0.09 (range: 0.53 to 0.88). The mean difference (TRUS-MRI) in the prostate width was 0 ± 4 mm (range: −11 to 5 mm), height was −3 ± 6 mm (range: −13 to 6 mm) and length was 6 ± 6 (range: −10 to 16 mm). Prostate was overestimated with TRUS imaging at the base for 6 cases (mean: 8 ± 4 mm and range: 5 to 14 mm), at the apex for 6 cases (mean: 11 ± 3 mm and range: 5 to 15 mm) and 1 case was underestimated at both base and apex by 4 mm. Conclusion: Use of intra-operative TRUS and MRI image fusion can help to improve the accuracy of prostate contouring by accurately accounting for prostate over- or under-estimations, especially at the base and apex. The mean amount of discrepancy is within a range that is significant for LDR sources.« less

  5. SU-E-J-134: Optimizing Technical Parameters for Using Atlas Based Automatic Segmentation for Evaluation of Contour Accuracy Experience with Cardiac Structures From NRG Oncology/RTOG 0617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J; Gong, Y; Bar-Ad, V

    Purpose: Accurate contour delineation is crucial for radiotherapy. Atlas based automatic segmentation tools can be used to increase the efficiency of contour accuracy evaluation. This study aims to optimize technical parameters utilized in the tool by exploring the impact of library size and atlas number on the accuracy of cardiac contour evaluation. Methods: Patient CT DICOMs from RTOG 0617 were used for this study. Five experienced physicians delineated the cardiac structures including pericardium, atria and ventricles following an atlas guideline. The consistency of cardiac structured delineation using the atlas guideline was verified by a study with four observers and seventeenmore » patients. The CT and cardiac structure DICOM files were then used for the ABAS technique.To study the impact of library size (LS) and atlas number (AN) on automatic contour accuracy, automatic contours were generated with varied technique parameters for five randomly selected patients. Three LS (20, 60, and 100) were studied using commercially available software. The AN was four, recommended by the manufacturer. Using the manual contour as the gold standard, Dice Similarity Coefficient (DSC) was calculated between the manual and automatic contours. Five-patient averaged DSCs were calculated for comparison for each cardiac structure.In order to study the impact of AN, the LS was set 100, and AN was tested from one to five. The five-patient averaged DSCs were also calculated for each cardiac structure. Results: DSC values are highest when LS is 100 and AN is four. The DSC is 0.90±0.02 for pericardium, 0.75±0.06 for atria, and 0.86±0.02 for ventricles. Conclusion: By comparing DSC values, the combination AN=4 and LS=100 gives the best performance. This project was supported by NCI grants U24CA12014, U24CA180803, U10CA180868, U10CA180822, PA CURE grant and Bristol-Myers Squibb and Eli Lilly.« less

  6. Techniques to derive geometries for image-based Eulerian computations

    PubMed Central

    Dillard, Seth; Buchholz, James; Vigmostad, Sarah; Kim, Hyunggun; Udaykumar, H.S.

    2014-01-01

    Purpose The performance of three frequently used level set-based segmentation methods is examined for the purpose of defining features and boundary conditions for image-based Eulerian fluid and solid mechanics models. The focus of the evaluation is to identify an approach that produces the best geometric representation from a computational fluid/solid modeling point of view. In particular, extraction of geometries from a wide variety of imaging modalities and noise intensities, to supply to an immersed boundary approach, is targeted. Design/methodology/approach Two- and three-dimensional images, acquired from optical, X-ray CT, and ultrasound imaging modalities, are segmented with active contours, k-means, and adaptive clustering methods. Segmentation contours are converted to level sets and smoothed as necessary for use in fluid/solid simulations. Results produced by the three approaches are compared visually and with contrast ratio, signal-to-noise ratio, and contrast-to-noise ratio measures. Findings While the active contours method possesses built-in smoothing and regularization and produces continuous contours, the clustering methods (k-means and adaptive clustering) produce discrete (pixelated) contours that require smoothing using speckle-reducing anisotropic diffusion (SRAD). Thus, for images with high contrast and low to moderate noise, active contours are generally preferable. However, adaptive clustering is found to be far superior to the other two methods for images possessing high levels of noise and global intensity variations, due to its more sophisticated use of local pixel/voxel intensity statistics. Originality/value It is often difficult to know a priori which segmentation will perform best for a given image type, particularly when geometric modeling is the ultimate goal. This work offers insight to the algorithm selection process, as well as outlining a practical framework for generating useful geometric surfaces in an Eulerian setting. PMID:25750470

  7. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoot, A. J. A. J. van de, E-mail: a.j.schootvande@amc.uva.nl; Schooneveldt, G.; Wognum, S.

    Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used tomore » guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation results significantly (p < 0.01) based on DSC (6.72%) and SD of contour-to-contour distances (0.08 cm) and decreased the 95% confidence intervals of the bladder volume differences. Moreover, expanding the shape model improved the segmentation results significantly (p < 0.01) based on DSC and SD of contour-to-contour distances. Conclusions: This patient-specific shape model based automatic bladder segmentation method on CBCT is accurate and generic. Our segmentation method only needs two pretreatment imaging data sets as prior knowledge, is independent of patient gender and patient treatment position and has the possibility to manually adapt the segmentation locally.« less

  8. SU-D-BRF-04: Digital Tomosynthesis for Improved Daily Setup in Treatment of Liver Lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, H; Jones, B; Miften, M

    Purpose: Daily localization of liver lesions with cone-beam CT (CBCT) is difficult due to poor image quality caused by scatter, respiratory motion, and the lack of radiographic contrast between the liver parenchyma and the lesion(s). Digital tomosynthesis (DTS) is investigated as a modality to improve liver visualization and lesion/parenchyma contrast for daily setup. Methods: An in-house tool was developed to generate DTS images using a point-by-point filtered back-projection method from on-board CBCT projection data. DTS image planes are generated in a user defined orientation to visualize the anatomy at various depths. Reference DTS images are obtained from forward projection ofmore » the planning CT dataset at each projection angle. The CBCT DTS image set can then be registered to the reference DTS image set as a means for localization. Contour data from the planning CT's associate RT Structure file and forward projected similarly to the planning CT data. DTS images are created for each contoured structure, which can then be overlaid onto the DTS images for organ volume visualization. Results: High resolution DTS images generated from CBCT projections show fine anatomical detail, including small blood vessels, within the patient. However, the reference DTS images generated from forward projection of the planning CT lacks this level of detail due to the low resolution of the CT voxels as compared to the pixel size in the projection images; typically 1mm-by-1mm-by-3mm (lat, vrt, lng) for the planning CT vs. 0.4mm-by-0.4mm for CBCT projections. Overlaying of the contours onto the DTS image allows for visualization of structures of interest. Conclusion: The ability to generate DTS images over a limited range of projection angles allows for reduction in the amount of respiratory motion within each acquisition. DTS may provide improved visualization of structures and lesions as compared to CBCT for highly mobile tumors.« less

  9. Rapid Contour-based Segmentation for 18F-FDG PET Imaging of Lung Tumors by Using ITK-SNAP: Comparison to Expert-based Segmentation.

    PubMed

    Besson, Florent L; Henry, Théophraste; Meyer, Céline; Chevance, Virgile; Roblot, Victoire; Blanchet, Elise; Arnould, Victor; Grimon, Gilles; Chekroun, Malika; Mabille, Laurence; Parent, Florence; Seferian, Andrei; Bulifon, Sophie; Montani, David; Humbert, Marc; Chaumet-Riffaud, Philippe; Lebon, Vincent; Durand, Emmanuel

    2018-04-03

    Purpose To assess the performance of the ITK-SNAP software for fluorodeoxyglucose (FDG) positron emission tomography (PET) segmentation of complex-shaped lung tumors compared with an optimized, expert-based manual reference standard. Materials and Methods Seventy-six FDG PET images of thoracic lesions were retrospectively segmented by using ITK-SNAP software. Each tumor was manually segmented by six raters to generate an optimized reference standard by using the simultaneous truth and performance level estimate algorithm. Four raters segmented 76 FDG PET images of lung tumors twice by using ITK-SNAP active contour algorithm. Accuracy of ITK-SNAP procedure was assessed by using Dice coefficient and Hausdorff metric. Interrater and intrarater reliability were estimated by using intraclass correlation coefficients of output volumes. Finally, the ITK-SNAP procedure was compared with currently recommended PET tumor delineation methods on the basis of thresholding at 41% volume of interest (VOI; VOI 41 ) and 50% VOI (VOI 50 ) of the tumor's maximal metabolism intensity. Results Accuracy estimates for the ITK-SNAP procedure indicated a Dice coefficient of 0.83 (95% confidence interval: 0.77, 0.89) and a Hausdorff distance of 12.6 mm (95% confidence interval: 9.82, 15.32). Interrater reliability was an intraclass correlation coefficient of 0.94 (95% confidence interval: 0.91, 0.96). The intrarater reliabilities were intraclass correlation coefficients above 0.97. Finally, VOI 41 and VOI 50 accuracy metrics were as follows: Dice coefficient, 0.48 (95% confidence interval: 0.44, 0.51) and 0.34 (95% confidence interval: 0.30, 0.38), respectively, and Hausdorff distance, 25.6 mm (95% confidence interval: 21.7, 31.4) and 31.3 mm (95% confidence interval: 26.8, 38.4), respectively. Conclusion ITK-SNAP is accurate and reliable for active-contour-based segmentation of heterogeneous thoracic PET tumors. ITK-SNAP surpassed the recommended PET methods compared with ground truth manual segmentation. © RSNA, 2018.

  10. Atlas ranking and selection for automatic segmentation of the esophagus from CT scans

    NASA Astrophysics Data System (ADS)

    Yang, Jinzhong; Haas, Benjamin; Fang, Raymond; Beadle, Beth M.; Garden, Adam S.; Liao, Zhongxing; Zhang, Lifei; Balter, Peter; Court, Laurence

    2017-12-01

    In radiation treatment planning, the esophagus is an important organ-at-risk that should be spared in patients with head and neck cancer or thoracic cancer who undergo intensity-modulated radiation therapy. However, automatic segmentation of the esophagus from CT scans is extremely challenging because of the structure’s inconsistent intensity, low contrast against the surrounding tissues, complex and variable shape and location, and random air bubbles. The goal of this study is to develop an online atlas selection approach to choose a subset of optimal atlases for multi-atlas segmentation to the delineate esophagus automatically. We performed atlas selection in two phases. In the first phase, we used the correlation coefficient of the image content in a cubic region between each atlas and the new image to evaluate their similarity and to rank the atlases in an atlas pool. A subset of atlases based on this ranking was selected, and deformable image registration was performed to generate deformed contours and deformed images in the new image space. In the second phase of atlas selection, we used Kullback-Leibler divergence to measure the similarity of local-intensity histograms between the new image and each of the deformed images, and the measurements were used to rank the previously selected atlases. Deformed contours were overlapped sequentially, from the most to the least similar, and the overlap ratio was examined. We further identified a subset of optimal atlases by analyzing the variation of the overlap ratio versus the number of atlases. The deformed contours from these optimal atlases were fused together using a modified simultaneous truth and performance level estimation algorithm to produce the final segmentation. The approach was validated with promising results using both internal data sets (21 head and neck cancer patients and 15 thoracic cancer patients) and external data sets (30 thoracic patients).

  11. Perception of Elasticity in the Kinetic Illusory Object with Phase Differences in Inducer Motion

    PubMed Central

    Masuda, Tomohiro; Sato, Kazuki; Murakoshi, Takuma; Utsumi, Ken; Kimura, Atsushi; Shirai, Nobu; Kanazawa, So; Yamaguchi, Masami K.; Wada, Yuji

    2013-01-01

    Background It is known that subjective contours are perceived even when a figure involves motion. However, whether this includes the perception of rigidity or deformation of an illusory surface remains unknown. In particular, since most visual stimuli used in previous studies were generated in order to induce illusory rigid objects, the potential perception of material properties such as rigidity or elasticity in these illusory surfaces has not been examined. Here, we elucidate whether the magnitude of phase difference in oscillation influences the visual impressions of an object's elasticity (Experiment 1) and identify whether such elasticity perceptions are accompanied by the shape of the subjective contours, which can be assumed to be strongly correlated with the perception of rigidity (Experiment 2). Methodology/Principal Findings In Experiment 1, the phase differences in the oscillating motion of inducers were controlled to investigate whether they influenced the visual impression of an illusory object's elasticity. The results demonstrated that the impression of the elasticity of an illusory surface with subjective contours was systematically flipped with the degree of phase difference. In Experiment 2, we examined whether the subjective contours of a perceived object appeared linear or curved using multi-dimensional scaling analysis. The results indicated that the contours of a moving illusory object were perceived as more curved than linear in all phase-difference conditions. Conclusions/Significance These findings suggest that the phase difference in an object's motion is a significant factor in the material perception of motion-related elasticity. PMID:24205281

  12. An open CAM system for dentistry on the basis of China-made 5-axis simultaneous contouring CNC machine tool and industrial CAM software.

    PubMed

    Lu, Li; Liu, Shusheng; Shi, Shenggen; Yang, Jianzhong

    2011-10-01

    China-made 5-axis simultaneous contouring CNC machine tool and domestically developed industrial computer-aided manufacture (CAM) technology were used for full crown fabrication and measurement of crown accuracy, with an attempt to establish an open CAM system for dental processing and to promote the introduction of domestic dental computer-aided design (CAD)/CAM system. Commercially available scanning equipment was used to make a basic digital tooth model after preparation of crown, and CAD software that comes with the scanning device was employed to design the crown by using domestic industrial CAM software to process the crown data in order to generate a solid model for machining purpose, and then China-made 5-axis simultaneous contouring CNC machine tool was used to complete machining of the whole crown and the internal accuracy of the crown internal was measured by using 3D-MicroCT. The results showed that China-made 5-axis simultaneous contouring CNC machine tool in combination with domestic industrial CAM technology can be used for crown making and the crown was well positioned in die. The internal accuracy was successfully measured by using 3D-MicroCT. It is concluded that an open CAM system for dentistry on the basis of China-made 5-axis simultaneous contouring CNC machine tool and domestic industrial CAM software has been established, and development of the system will promote the introduction of domestically-produced dental CAD/CAM system.

  13. Learning-dependent plasticity with and without training in the human brain.

    PubMed

    Zhang, Jiaxiang; Kourtzi, Zoe

    2010-07-27

    Long-term experience through development and evolution and shorter-term training in adulthood have both been suggested to contribute to the optimization of visual functions that mediate our ability to interpret complex scenes. However, the brain plasticity mechanisms that mediate the detection of objects in cluttered scenes remain largely unknown. Here, we combine behavioral and functional MRI (fMRI) measurements to investigate the human-brain mechanisms that mediate our ability to learn statistical regularities and detect targets in clutter. We show two different routes to visual learning in clutter with discrete brain plasticity signatures. Specifically, opportunistic learning of regularities typical in natural contours (i.e., collinearity) can occur simply through frequent exposure, generalize across untrained stimulus features, and shape processing in occipitotemporal regions implicated in the representation of global forms. In contrast, learning to integrate discontinuities (i.e., elements orthogonal to contour paths) requires task-specific training (bootstrap-based learning), is stimulus-dependent, and enhances processing in intraparietal regions implicated in attention-gated learning. We propose that long-term experience with statistical regularities may facilitate opportunistic learning of collinear contours, whereas learning to integrate discontinuities entails bootstrap-based training for the detection of contours in clutter. These findings provide insights in understanding how long-term experience and short-term training interact to shape the optimization of visual recognition processes.

  14. The Facial Platysma and Its Underappreciated Role in Lower Face Dynamics and Contour.

    PubMed

    de Almeida, Ada R T; Romiti, Alessandra; Carruthers, Jean D A

    2017-08-01

    The platysma is a superficial muscle involved in important features of the aging neck. Vertical bands, horizontal lines, and loss of lower face contour are effectively treated with botulinum toxin A (BoNT-A). However, its pars facialis, mandibularis, and modiolaris have been underappreciated. To demonstrate the role of BoNT-A treatment of the upper platysma and its impact on lower face dynamics and contour. Retrospective analysis of cases treated by an injection pattern encompassing the facial platysma components, aiming to block the lower face as a whole complex. It consisted of 2 intramuscular injections into the mentalis muscle and 2 horizontal lines of BoNT-A injections superficially performed above and below the mandible (total dose, 16 onabotulinumtoxinA U/side). Photographs were taken at rest and during motion (frontal and oblique views), before and after treatment. A total of 161 patients have been treated in the last 2 years with the following results: frontal and lateral enhancement of lower facial contour, relaxation of high horizontal lines located just below the lateral mandibular border, and lower deep vertical smile lines present lateral to the oral commissures and melomental folds. The upper platysma muscle plays a relevant role in the functional anatomy of the lower face that can be modulated safely with neuromodulators.

  15. The complexity of body image following bariatric surgery: a systematic review of the literature.

    PubMed

    Ivezaj, V; Grilo, C M

    2018-06-13

    Poor body image is common among individuals seeking bariatric surgery and is associated with adverse psychosocial sequelae. Following massive weight loss secondary to bariatric surgery, many individuals experience excess skin and associated concerns, leading to subsequent body contouring procedures. Little is known, however, about body image changes and associated features from pre-to post-bariatric surgery and subsequent body contouring. The objective of the present study was to conduct a comprehensive literature review of body image following bariatric surgery to help inform future clinical research and care. The articles for the current review were identified by searching PubMed and SCOPUS and references from relevant articles. A total of 60 articles examining body image post-bariatric surgery were identified, and 45 did not include body contouring surgery. Overall, there was great variation in standards of reporting sample characteristics and body image terms. When examining broad levels of body image dissatisfaction, the literature suggests general improvements in certain aspects of body image following bariatric surgery; however, few studies have systematically examined various body image domains from pre-to post-bariatric surgery and subsequent body contouring surgery. In conclusion, there is a paucity of research that examines the multidimensional elements of body image following bariatric surgery. © 2018 World Obesity Federation.

  16. Refinement of a methodology for siting maintenance area headquarters.

    DOT National Transportation Integrated Search

    1986-01-01

    Prior to this study, a methodology that generates travel time, or isochronal, contours around area headquarters or the housing bases of maintenance crews was developed. The methodology was then pilot tested for the Charlottesville Residency, and was ...

  17. Auditory Imagery: Empirical Findings

    ERIC Educational Resources Information Center

    Hubbard, Timothy L.

    2010-01-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d)…

  18. Trace for Differential Pencils on a Star-Type Graph

    NASA Astrophysics Data System (ADS)

    Yang, Chuan-Fu

    2013-07-01

    In this work, we consider the spectral problem for differential pencils on a star-type graph with a Kirchhoff-type condition in the internal vertex. The regularized trace formula of this operator is established with the contour integration method in complex analysis.

  19. Description, instructions, and verification for Basinsoft, a computer program to quantify drainage- basin characteristics

    USGS Publications Warehouse

    Harvey, Craig A.; Eash, David A.

    1996-01-01

    Statistical comparison tests indicate Basinsoft quantifications are not significantly different from manual topographic-map measurements for 9 of 10 basin characteristics tested. The results also indicate that elevation contours generated by ARC/INFO from l:250,000-scale digital elevation model (DEM) data are over-generalized when compared to elevation contours shown on l:250,000-scale topographic maps, and that quantification of basin-slope thus is underestimated using DEM data. A qualitative comparison test indicated that the Basinsoft module used to quantify basin slope is valid and that differences in the quantification of basin slope are due to sourcedata differences.

  20. Supersonic minimum length nozzle design for dense gases

    NASA Technical Reports Server (NTRS)

    Aldo, Andrew C.; Argrow, Brian M.

    1993-01-01

    Recently, dense gases have been investigated for many engineering applications such as for turbomachinery and wind tunnels. Supersonic nozzle design for these gases is complicated by their nonclassical behavior in the transonic flow regime. In this paper a method of characteristics (MOC) is developed for two-dimensional (planar) and, primarily, axisymmetric flow of a van der Waals gas. Using a straight aortic line assumption, a centered expansion is used to generate an inviscid wall contour of minimum length. The van der Waals results are compared to previous perfect gas results to show the real gas effects on the flow properties and inviscid wall contours.

  1. Subcortical Plasticity Following Perceptual Learning in a Pitch Discrimination Task

    PubMed Central

    Plack, Christopher J.

    2010-01-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change. PMID:20878201

  2. Subcortical plasticity following perceptual learning in a pitch discrimination task.

    PubMed

    Carcagno, Samuele; Plack, Christopher J

    2011-02-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change.

  3. Network model of top-down influences on local gain and contextual interactions in visual cortex.

    PubMed

    Piëch, Valentin; Li, Wu; Reeke, George N; Gilbert, Charles D

    2013-10-22

    The visual system uses continuity as a cue for grouping oriented line segments that define object boundaries in complex visual scenes. Many studies support the idea that long-range intrinsic horizontal connections in early visual cortex contribute to this grouping. Top-down influences in primary visual cortex (V1) play an important role in the processes of contour integration and perceptual saliency, with contour-related responses being task dependent. This suggests an interaction between recurrent inputs to V1 and intrinsic connections within V1 that enables V1 neurons to respond differently under different conditions. We created a network model that simulates parametrically the control of local gain by hypothetical top-down modification of local recurrence. These local gain changes, as a consequence of network dynamics in our model, enable modulation of contextual interactions in a task-dependent manner. Our model displays contour-related facilitation of neuronal responses and differential foreground vs. background responses over the neuronal ensemble, accounting for the perceptual pop-out of salient contours. It quantitatively reproduces the results of single-unit recording experiments in V1, highlighting salient contours and replicating the time course of contextual influences. We show by means of phase-plane analysis that the model operates stably even in the presence of large inputs. Our model shows how a simple form of top-down modulation of the effective connectivity of intrinsic cortical connections among biophysically realistic neurons can account for some of the response changes seen in perceptual learning and task switching.

  4. Testing a model of intonation in a tone language.

    PubMed

    Lindau, M

    1986-09-01

    Schematic fundamental frequency curves of simple statements and questions are generated for Hausa, a two-tone language of Nigeria, using a modified version of an intonational model developed by Gårding and Bruce [Nordic Prosody II, edited by T. Fretheim (Tapir, Trondheim, 1981), pp. 33-39]. In this model, rules for intonation and tones are separated. Intonation is represented as sloping grids of (near) parallel lines, inside which tones are placed. The tones are associated with turning points of the fundamental frequency contour. Local rules may also modify the exact placement of a tone within the grid. The continuous fundamental frequency contour is modeled by concatenating the tonal points using polynomial equations. Thus the final pitch contour is modeled as an interaction between global and local factors. The slope of the intonational grid lines depends at least on sentence type (statement or question), sentence length, and tone pattern. The model is tested by reference to data from nine speakers of Kano Hausa.

  5. Reconstitution of craniofacial osseous contour deformities, sequelae of trauma and post resection for tumors, with an alloplastic-autogenous graft.

    PubMed

    Leake, D L; Habal, M B

    1977-04-01

    Our experience using a new technique for reconstructing contour defects of facial bones has been presented. It employs particulate, cancellous bone and an implantable prosthesis accurately fabricated of polyether urethane and polyethylene terephthalate cloth mesh which can be produced in a variety of configurations. A mannequin made of these materials displaying the various parts of the craniofacial complex that have been restored or are currently under investigation is shown in Figure 10. Large cranial vault defects, orbital floors, mandibles including chin augmentation, and nasal bone deformities have been successfully restored in man. Restoration of the pinna of the ear is currently being evaluated in laboratory animals.

  6. Digital modeling of end-mill cutting tools for FEM applications from the active cutting contour

    NASA Astrophysics Data System (ADS)

    Salguero, Jorge; Marcos, M.; Batista, M.; Gómez, A.; Mayuet, P.; Bienvenido, R.

    2012-04-01

    A very current technique in the research field of machining by material removal is the use of simulations using the Finite Element Method (FEM). Nevertheless, and although is widely used in processes that allows approximations to orthogonal cutting, such as shaping, is scarcely used in more complexes processes, such as milling. This fact is due principally to the complex geometry of the cutting tools in these processes, and the need to realize the studi es in an oblique cutting configuration. This paper shows a methodology for the geometrical characterization of commercial endmill cutting tools, by the extraction of the cutting tool contour, making use of optical metrology, and using this geometry to model the active cutting zone with a 3D CAD software. This model is easily exportable to different CAD formats, such as IGES or STEP, and importable from FEM software, where is possible to study the behavior in service of the same ones.

  7. Investigating protein-protein interaction surfaces using a reduced stereochemical and electrostatic model.

    PubMed

    Warwicker, J

    1989-03-20

    A method of calculating the electrostatic potential energy between two molecules, using finite difference potential, is presented. A reduced charge set is used so that the interaction energy can be calculated as the two static molecules explore their full six-dimensional configurational space. The energies are contoured over surfaces fixed to each molecule with an interactive computer graphics program. For two crystal structures (trypsin-trypsin inhibitor and anti-lysozyme Fab-lysozyme), it is found that the complex corresponds to highly favourable interacting regions in the contour plots. These matches arise from a small number of protruding basic residues interacting with enhanced negative potential in each case. The redox pair cytochrome c peroxidase-cytochrome c exhibits an extensive favourably interacting surface within which a possible electron transfer complex may be defined by an increased electrostatic complementarity, but a decreased electrostatic energy. A possible substrate transfer configuration for the glycolytic enzyme pair glyceraldehyde phosphate dehydrogenase-phosphoglycerate kinase is presented.

  8. A universal algorithm for an improved finite element mesh generation Mesh quality assessment in comparison to former automated mesh-generators and an analytic model.

    PubMed

    Kaminsky, Jan; Rodt, Thomas; Gharabaghi, Alireza; Forster, Jan; Brand, Gerd; Samii, Madjid

    2005-06-01

    The FE-modeling of complex anatomical structures is not solved satisfyingly so far. Voxel-based as opposed to contour-based algorithms allow an automated mesh generation based on the image data. Nonetheless their geometric precision is limited. We developed an automated mesh-generator that combines the advantages of voxel-based generation with improved representation of the geometry by displacement of nodes on the object-surface. Models of an artificial 3D-pipe-section and a skullbase were generated with different mesh-densities using the newly developed geometric, unsmoothed and smoothed voxel generators. Compared to the analytic calculation of the 3D-pipe-section model the normalized RMS error of the surface stress was 0.173-0.647 for the unsmoothed voxel models, 0.111-0.616 for the smoothed voxel models with small volume error and 0.126-0.273 for the geometric models. The highest element-energy error as a criterion for the mesh quality was 2.61x10(-2) N mm, 2.46x10(-2) N mm and 1.81x10(-2) N mm for unsmoothed, smoothed and geometric voxel models, respectively. The geometric model of the 3D-skullbase resulted in the lowest element-energy error and volume error. This algorithm also allowed the best representation of anatomical details. The presented geometric mesh-generator is universally applicable and allows an automated and accurate modeling by combining the advantages of the voxel-technique and of improved surface-modeling.

  9. Recurrent V1-V2 interaction in early visual boundary processing.

    PubMed

    Neumann, H; Sepp, W

    1999-11-01

    A majority of cortical areas are connected via feedforward and feedback fiber projections. In feedforward pathways we mainly observe stages of feature detection and integration. The computational role of the descending pathways at different stages of processing remains mainly unknown. Based on empirical findings we suggest that the top-down feedback pathways subserve a context-dependent gain control mechanism. We propose a new computational model for recurrent contour processing in which normalized activities of orientation selective contrast cells are fed forward to the next processing stage. There, the arrangement of input activation is matched against local patterns of contour shape. The resulting activities are subsequently fed back to the previous stage to locally enhance those initial measurements that are consistent with the top-down generated responses. In all, we suggest a computational theory for recurrent processing in the visual cortex in which the significance of local measurements is evaluated on the basis of a broader visual context that is represented in terms of contour code patterns. The model serves as a framework to link physiological with perceptual data gathered in psychophysical experiments. It handles a variety of perceptual phenomena, such as the local grouping of fragmented shape outline, texture surround and density effects, and the interpolation of illusory contours.

  10. Optimal graph based segmentation using flow lines with application to airway wall segmentation.

    PubMed

    Petersen, Jens; Nielsen, Mads; Lo, Pechin; Saghir, Zaigham; Dirksen, Asger; de Bruijne, Marleen

    2011-01-01

    This paper introduces a novel optimal graph construction method that is applicable to multi-dimensional, multi-surface segmentation problems. Such problems are often solved by refining an initial coarse surface within the space given by graph columns. Conventional columns are not well suited for surfaces with high curvature or complex shapes but the proposed columns, based on properly generated flow lines, which are non-intersecting, guarantee solutions that do not self-intersect and are better able to handle such surfaces. The method is applied to segment human airway walls in computed tomography images. Comparison with manual annotations on 649 cross-sectional images from 15 different subjects shows significantly smaller contour distances and larger area of overlap than are obtained with recently published graph based methods. Airway abnormality measurements obtained with the method on 480 scan pairs from a lung cancer screening trial are reproducible and correlate significantly with lung function.

  11. The role of thermal and lubricant boundary layers in the transient thermal analysis of spur gears

    NASA Technical Reports Server (NTRS)

    El-Bayoumy, L. E.; Akin, L. S.; Townsend, D. P.; Choy, F. C.

    1989-01-01

    An improved convection heat-transfer model has been developed for the prediction of the transient tooth surface temperature of spur gears. The dissipative quality of the lubricating fluid is shown to be limited to the capacity extent of the thermal boundary layer. This phenomenon can be of significance in the determination of the thermal limit of gears accelerating to the point where gear scoring occurs. Steady-state temperature prediction is improved considerably through the use of a variable integration time step that substantially reduces computer time. Computer-generated plots of temperature contours enable the user to animate the propagation of the thermal wave as the gears come into and out of contact, thus contributing to better understanding of this complex problem. This model has a much better capability at predicting gear-tooth temperatures than previous models.

  12. Biopolymer dynamics driven by helical flagella

    NASA Astrophysics Data System (ADS)

    Balin, Andrew K.; Zöttl, Andreas; Yeomans, Julia M.; Shendruk, Tyler N.

    2017-11-01

    Microbial flagellates typically inhabit complex suspensions of polymeric material which can impact the swimming speed of motile microbes, filter feeding of sessile cells, and the generation of biofilms. There is currently a need to better understand how the fundamental dynamics of polymers near active cells or flagella impacts these various phenomena, in particular, the hydrodynamic and steric influence of a rotating helical filament on suspended polymers. Our Stokesian dynamics simulations show that as a stationary rotating helix pumps fluid along its long axis, polymers migrate radially inward while being elongated. We observe that the actuation of the helix tends to increase the probability of finding polymeric material within its pervaded volume. This accumulation of polymers within the vicinity of the helix is stronger for longer polymers. We further analyze the stochastic work performed by the helix on the polymers and show that this quantity is positive on average and increases with polymer contour length.

  13. Meteorological and air pollution modeling for an urban airport

    NASA Technical Reports Server (NTRS)

    Swan, P. R.; Lee, I. Y.

    1980-01-01

    Results are presented of numerical experiments modeling meteorology, multiple pollutant sources, and nonlinear photochemical reactions for the case of an airport in a large urban area with complex terrain. A planetary boundary-layer model which predicts the mixing depth and generates wind, moisture, and temperature fields was used; it utilizes only surface and synoptic boundary conditions as input data. A version of the Hecht-Seinfeld-Dodge chemical kinetics model is integrated with a new, rapid numerical technique; both the San Francisco Bay Area Air Quality Management District source inventory and the San Jose Airport aircraft inventory are utilized. The air quality model results are presented in contour plots; the combined results illustrate that the highly nonlinear interactions which are present require that the chemistry and meteorology be considered simultaneously to make a valid assessment of the effects of individual sources on regional air quality.

  14. Automated, contour-based tracking and analysis of cell behaviour over long time scales in environments of varying complexity and cell density.

    PubMed

    Baker, Richard M; Brasch, Megan E; Manning, M Lisa; Henderson, James H

    2014-08-06

    Understanding single and collective cell motility in model environments is foundational to many current research efforts in biology and bioengineering. To elucidate subtle differences in cell behaviour despite cell-to-cell variability, we introduce an algorithm for tracking large numbers of cells for long time periods and present a set of physics-based metrics that quantify differences in cell trajectories. Our algorithm, termed automated contour-based tracking for in vitro environments (ACTIVE), was designed for adherent cell populations subject to nuclear staining or transfection. ACTIVE is distinct from existing tracking software because it accommodates both variability in image intensity and multi-cell interactions, such as divisions and occlusions. When applied to low-contrast images from live-cell experiments, ACTIVE reduced error in analysing cell occlusion events by as much as 43% compared with a benchmark-tracking program while simultaneously tracking cell divisions and resulting daughter-daughter cell relationships. The large dataset generated by ACTIVE allowed us to develop metrics that capture subtle differences between cell trajectories on different substrates. We present cell motility data for thousands of cells studied at varying densities on shape-memory-polymer-based nanotopographies and identify several quantitative differences, including an unanticipated difference between two 'control' substrates. We expect that ACTIVE will be immediately useful to researchers who require accurate, long-time-scale motility data for many cells. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochiai, Yoshihiro

    Heat-conduction analysis under steady state without heat generation can easily be treated by the boundary element method. However, in the case with heat conduction with heat generation can approximately be solved without a domain integral by an improved multiple-reciprocity boundary element method. The convention multiple-reciprocity boundary element method is not suitable for complicated heat generation. In the improved multiple-reciprocity boundary element method, on the other hand, the domain integral in each step is divided into point, line, and area integrals. In order to solve the problem, the contour lines of heat generation, which approximate the actual heat generation, are used.

  16. Third-order perturbative lattice and complex Langevin analyses of the finite-temperature equation of state of nonrelativistic fermions in one dimension

    NASA Astrophysics Data System (ADS)

    Loheac, Andrew C.; Drut, Joaquín E.

    2017-05-01

    We analyze the pressure and density equations of state of unpolarized nonrelativistic fermions at finite temperature in one spatial dimension with contact interactions. For attractively interacting regimes, we perform a third-order lattice perturbation theory calculation, assess its convergence properties by comparing with hybrid Monte Carlo results (there is no sign problem in this regime), and demonstrate agreement with real Langevin calculations. For repulsive interactions, we present lattice perturbation theory results as well as complex Langevin calculations, with a modified action to prevent uncontrolled excursions in the complex plane. Although perturbation theory is a common tool, our implementation of it is unconventional; we use a Hubbard-Stratonovich transformation to decouple the system and automate the application of Wick's theorem, thus generating the diagrammatic expansion, including symmetry factors, at any desired order. We also present an efficient technique to tackle nested Matsubara frequency sums without relying on contour integration, which is independent of dimension and applies to both relativistic and nonrelativistic systems, as well as all energy-independent interactions. We find exceptional agreement between perturbative and nonperturbative results at weak couplings, and furnish predictions based on complex Langevin at strong couplings. We additionally present perturbative calculations of up to the fifth-order virial coefficient for repulsive and attractive couplings. Both the lattice perturbation theory and complex Langevin formalisms can easily be extended to a variety of situations including polarized systems, bosons, and higher dimension.

  17. Method for contour extraction for object representation

    DOEpatents

    Skourikhine, Alexei N.; Prasad, Lakshman

    2005-08-30

    Contours are extracted for representing a pixelated object in a background pixel field. An object pixel is located that is the start of a new contour for the object and identifying that pixel as the first pixel of the new contour. A first contour point is then located on the mid-point of a transition edge of the first pixel. A tracing direction from the first contour point is determined for tracing the new contour. Contour points on mid-points of pixel transition edges are sequentially located along the tracing direction until the first contour point is again encountered to complete tracing the new contour. The new contour is then added to a list of extracted contours that represent the object. The contour extraction process associates regions and contours by labeling all the contours belonging to the same object with the same label.

  18. Program Manipulates Plots For Effective Display

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Downing, J.

    1990-01-01

    Windowed Observation of Relative Motion (WORM) computer program primarily intended for generation of simple X-Y plots from data created by other programs. Enables user to label, zoom, and change scales of various plots. Three-dimensional contour and line plots provided. Written in PASCAL.

  19. Anatomy structure creation and editing using 3D implicit surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hibbard, Lyndon S.

    2012-05-15

    Purpose: To accurately reconstruct, and interactively reshape 3D anatomy structures' surfaces using small numbers of 2D contours drawn in the most visually informative views of 3D imagery. The innovation of this program is that the number of 2D contours can be very much smaller than the number of transverse sections, even for anatomy structures spanning many sections. This program can edit 3D structures from prior segmentations, including those from autosegmentation programs. The reconstruction and surface editing works with any image modality. Methods: Structures are represented by variational implicit surfaces defined by weighted sums of radial basis functions (RBFs). Such surfacesmore » are smooth, continuous, and closed and can be reconstructed with RBFs optimally located to efficiently capture shape in any combination of transverse (T), sagittal (S), and coronal (C) views. The accuracy of implicit surface reconstructions was measured by comparisons with the corresponding expert-contoured surfaces in 103 prostate cancer radiotherapy plans. Editing a pre-existing surface is done by overdrawing its profiles in image views spanning the affected part of the structure, deleting an appropriate set of prior RBFs, and merging the remainder with the new edit contour RBFs. Two methods were devised to identify RBFs to be deleted based only on the geometry of the initial surface and the locations of the new RBFs. Results: Expert-contoured surfaces were compared with implicit surfaces reconstructed from them over varying numbers and combinations of T/S/C planes. Studies revealed that surface-surface agreement increases monotonically with increasing RBF-sample density, and that the rate of increase declines over the same range. These trends were observed for all surface agreement metrics and for all the organs studied--prostate, bladder, and rectum. In addition, S and C contours may convey more shape information than T views for CT studies in which the axial slice thickness is greater than the pixel size. Surface editing accuracy likewise improves with larger sampling densities, and the rate of improvement similarly declines over the same conditions. Conclusions: Implicit surfaces based on RBFs are accurate representations of anatomic structures and can be interactively generated or modified to correct segmentation errors. The number of input contours is typically smaller than the number of T contours spanned by the structure.« less

  20. Elective Clinical Target Volumes for Conformal Therapy in Anorectal Cancer: A Radiation Therapy Oncology Group Consensus Panel Contouring Atlas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myerson, Robert J.; Garofalo, Michael C.; El Naqa, Issam

    2009-07-01

    Purpose: To develop a Radiation Therapy Oncology Group (RTOG) atlas of the elective clinical target volume (CTV) definitions to be used for planning pelvic intensity-modulated radiotherapy (IMRT) for anal and rectal cancers. Methods and Materials: The Gastrointestinal Committee of the RTOG established a task group (the nine physician co-authors) to develop this atlas. They responded to a questionnaire concerning three elective CTVs (CTVA: internal iliac, presacral, and perirectal nodal regions for both anal and rectal case planning; CTVB: external iliac nodal region for anal case planning and for selected rectal cases; CTVC: inguinal nodal region for anal case planning andmore » for select rectal cases), and to outline these areas on individual computed tomographic images. The imaging files were shared via the Advanced Technology Consortium. A program developed by one of the co-authors (I.E.N.) used binomial maximum-likelihood estimates to generate a 95% group consensus contour. The computer-estimated consensus contours were then reviewed by the group and modified to provide a final contouring consensus atlas. Results: The panel achieved consensus CTV definitions to be used as guidelines for the adjuvant therapy of rectal cancer and definitive therapy for anal cancer. The most important difference from similar atlases for gynecologic or genitourinary cancer is mesorectal coverage. Detailed target volume contouring guidelines and images are discussed. Conclusion: This report serves as a template for the definition of the elective CTVs to be used in IMRT planning for anal and rectal cancers, as part of prospective RTOG trials.« less

  1. Extracting morphologies from third harmonic generation images of structurally normal human brain tissue.

    PubMed

    Zhang, Zhiqing; Kuzmin, Nikolay V; Groot, Marie Louise; de Munck, Jan C

    2017-06-01

    The morphologies contained in 3D third harmonic generation (THG) images of human brain tissue can report on the pathological state of the tissue. However, the complexity of THG brain images makes the usage of modern image processing tools, especially those of image filtering, segmentation and validation, to extract this information challenging. We developed a salient edge-enhancing model of anisotropic diffusion for image filtering, based on higher order statistics. We split the intrinsic 3-phase segmentation problem into two 2-phase segmentation problems, each of which we solved with a dedicated model, active contour weighted by prior extreme. We applied the novel proposed algorithms to THG images of structurally normal ex-vivo human brain tissue, revealing key tissue components-brain cells, microvessels and neuropil, enabling statistical characterization of these components. Comprehensive comparison to manually delineated ground truth validated the proposed algorithms. Quantitative comparison to second harmonic generation/auto-fluorescence images, acquired simultaneously from the same tissue area, confirmed the correctness of the main THG features detected. The software and test datasets are available from the authors. z.zhang@vu.nl. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  2. Exploring the Roles of Spectral Detail and Intonation Contour in Speech Intelligibility: An fMRI Study

    PubMed Central

    Kyong, Jeong S.; Scott, Sophie K.; Rosen, Stuart; Howe, Timothy B.; Agnew, Zarinah K.; McGettigan, Carolyn

    2014-01-01

    The melodic contour of speech forms an important perceptual aspect of tonal and nontonal languages and an important limiting factor on the intelligibility of speech heard through a cochlear implant. Previous work exploring the neural correlates of speech comprehension identified a left-dominant pathway in the temporal lobes supporting the extraction of an intelligible linguistic message, whereas the right anterior temporal lobe showed an overall preference for signals clearly conveying dynamic pitch information. The current study combined modulations of overall intelligibility (through vocoding and spectral inversion) with a manipulation of pitch contour (normal vs. falling) to investigate the processing of spoken sentences in functional MRI. Our overall findings replicate and extend those of Scott et al., whereas greater sentence intelligibility was predominately associated with increased activity in the left STS, the greatest response to normal sentence melody was found right superior temporal gyrus. These data suggest a spatial distinction between brain areas associated with intelligibility and those involved in the processing of dynamic pitch information in speech. By including a set of complexity-matched unintelligible conditions created by spectral inversion, this is additionally the first study reporting a fully factorial exploration of spectrotemporal complexity and spectral inversion as they relate to the neural processing of speech intelligibility. Perhaps surprisingly, there was no evidence for an interaction between the two factors—we discuss the implications for the processing of sound and speech in the dorsolateral temporal lobes. PMID:24568205

  3. WE-AB-BRA-09: Sensitivity of Plan Re-Optimization to Errors in Deformable Image Registration in Online Adaptive Image-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClain, B; Olsen, J; Green, O

    2015-06-15

    Purpose: Online adaptive therapy (ART) relies on auto-contouring using deformable image registration (DIR). DIR’s inherent uncertainties require user intervention and manual edits while the patient is on the table. We investigated the dosimetric impact of DIR errors on the quality of re-optimized plans, and used the findings to establish regions for focusing manual edits to where DIR errors can Result in clinically relevant dose differences. Methods: Our clinical implementation of online adaptive MR-IGRT involves using DIR to transfer contours from CT to daily MR, followed by a physicians’ edits. The plan is then re-optimized to meet the organs at riskmore » (OARs) constraints. Re-optimized abdomen and pelvis plans generated based on physician edited OARs were selected as the baseline for evaluation. Plans were then re-optimized on auto-deformed contours with manual edits limited to pre-defined uniform rings (0 to 5cm) around the PTV. A 0cm ring indicates that the auto-deformed OARs were used without editing. The magnitude of the variations caused by the non-deterministic optimizer was quantified by repeat re-optimizations on the same geometry to determine the mean and standard deviation (STD). For each re-optimized plan, various volumetric parameters for the PTV, the OARs were extracted along with DVH and isodose evaluation. A plan was deemed acceptable if the variation from the baseline plan was within one STD. Results: Initial results show that for abdomen and pancreas cases, a minimum of 5cm margin around the PTV is required for contour corrections, while for pelvic and liver cases a 2–3 cm margin is sufficient. Conclusion: Focusing manual contour edits to regions of dosimetric relevance can reduce contouring time in the online ART process while maintaining a clinically comparable plan. Future work will further refine the contouring region by evaluating the path along the beams, dose gradients near the target and OAR dose metrics.« less

  4. SU-C-BRA-01: Interactive Auto-Segmentation for Bowel in Online Adaptive MRI-Guided Radiation Therapy by Using a Multi-Region Labeling Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Y; Chen, I; Kashani, R

    Purpose: In MRI-guided online adaptive radiation therapy, re-contouring of bowel is time-consuming and can impact the overall time of patients on table. The study aims to auto-segment bowel on volumetric MR images by using an interactive multi-region labeling algorithm. Methods: 5 Patients with locally advanced pancreatic cancer underwent fractionated radiotherapy (18–25 fractions each, total 118 fractions) on an MRI-guided radiation therapy system with a 0.35 Tesla magnet and three Co-60 sources. At each fraction, a volumetric MR image of the patient was acquired when the patient was in the treatment position. An interactive two-dimensional multi-region labeling technique based on graphmore » cut solver was applied on several typical MRI images to segment the large bowel and small bowel, followed by a shape based contour interpolation for generating entire bowel contours along all image slices. The resulted contours were compared with the physician’s manual contouring by using metrics of Dice coefficient and Hausdorff distance. Results: Image data sets from the first 5 fractions of each patient were selected (total of 25 image data sets) for the segmentation test. The algorithm segmented the large and small bowel effectively and efficiently. All bowel segments were successfully identified, auto-contoured and matched with manual contours. The time cost by the algorithm for each image slice was within 30 seconds. For large bowel, the calculated Dice coefficients and Hausdorff distances (mean±std) were 0.77±0.07 and 13.13±5.01mm, respectively; for small bowel, the corresponding metrics were 0.73±0.08and 14.15±4.72mm, respectively. Conclusion: The preliminary results demonstrated the potential of the proposed algorithm in auto-segmenting large and small bowel on low field MRI images in MRI-guided adaptive radiation therapy. Further work will be focused on improving its segmentation accuracy and lessening human interaction.« less

  5. Micromagnetic recording model of writer geometry effects at skew

    NASA Astrophysics Data System (ADS)

    Plumer, M. L.; Bozeman, S.; van Ek, J.; Michel, R. P.

    2006-04-01

    The effects of the pole-tip geometry at the air-bearing surface on perpendicular recording at a skew angle are examined through modeling and spin-stand test data. Head fields generated by the finite element method were used to record transitions within our previously described micromagnetic recording model. Write-field contours for a variety of square, rectangular, and trapezoidal pole shapes were evaluated to determine the impact of geometry on field contours. Comparing results for recorded track width, transition width, and media signal to noise ratio at 0° and 15° skew demonstrate the benefits of trapezoidal and reduced aspect-ratio pole shapes. Consistency between these modeled results and test data is demonstrated.

  6. Eyeglasses Lens Contour Extraction from Facial Images Using an Efficient Shape Description

    PubMed Central

    Borza, Diana; Darabant, Adrian Sergiu; Danescu, Radu

    2013-01-01

    This paper presents a system that automatically extracts the position of the eyeglasses and the accurate shape and size of the frame lenses in facial images. The novelty brought by this paper consists in three key contributions. The first one is an original model for representing the shape of the eyeglasses lens, using Fourier descriptors. The second one is a method for generating the search space starting from a finite, relatively small number of representative lens shapes based on Fourier morphing. Finally, we propose an accurate lens contour extraction algorithm using a multi-stage Monte Carlo sampling technique. Multiple experiments demonstrate the effectiveness of our approach. PMID:24152926

  7. Effect of Brain Stem and Dorsal Vagus Complex Dosimetry on Nausea and Vomiting in Head and Neck Intensity-Modulated Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciura, Katherine; McBurney, Michelle; Nguyen, Baongoc

    Intensity-modulated radiation therapy (IMRT) is becoming the treatment of choice for many head and neck cancer patients. IMRT reduces some toxicities by reducing radiation dose to uninvolved normal tissue near tumor targets; however, other tissues not irradiated using previous 3D techniques may receive clinically significant doses, causing undesirable side effects including nausea and vomiting (NV). Irradiation of the brainstem, and more specifically, the area postrema and dorsal vagal complex (DVC), has been linked to NV. We previously reported preliminary hypothesis-generating dose effects associated with NV in IMRT patients. The goal of this study is to relate brainstem dose to NVmore » symptoms. We retrospectively studied 100 consecutive patients that were treated for oropharyngeal cancer with IMRT. We contoured the brainstem, area postrema, and DVC with the assistance of an expert diagnostic neuroradiologist. We correlated dosimetry for the 3 areas contoured with weekly NV rates during IMRT. NV rates were significantly higher for patients who received concurrent chemotherapy. Post hoc analysis demonstrated that chemoradiation cases exhibited a trend towards the same dose-response relationship with both brainstem mean dose (p = 0.0025) and area postrema mean dose (p = 0.004); however, both failed to meet statistical significance at the p {<=} 0.002 level. Duration of toxicity was also greater for chemoradiation patients, who averaged 3.3 weeks with reported Common Terminology Criteria for Adverse Events (CTC-AE), compared with an average of 2 weeks for definitive RT patients (p = 0.002). For definitive RT cases, no dose-response trend could be ascertained. The mean brainstem dose emerged as a key parameter of interest; however, no one dose parameter (mean/median/EUD) best correlated with NV. This study does not address extraneous factors that would affect NV incidence, including the use of antiemetics, nor chemotherapy dose schedule specifics before and during RT. A prospective study will be required to depict exactly how IMRT dose affects NV.« less

  8. Introducing etch kernels for efficient pattern sampling and etch bias prediction

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Lutich, Andrey; Schatz, Jirka

    2018-01-01

    Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels, as well as the choice of calibration patterns, is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels-"internal, external, curvature, Gaussian, z_profile"-designed to represent the finest details of the resist geometry to characterize precisely the etch bias at any point along a resist contour. By evaluating the etch kernels on various structures, it is possible to map their etch signatures in a multidimensional space and analyze them to find an optimal sampling of structures. The etch kernels evaluated on these structures were combined with experimental etch bias derived from scanning electron microscope contours to train artificial neural networks to predict etch bias. The method applied to contact and line/space layers shows an improvement in etch model prediction accuracy over standard etch model. This work emphasizes the importance of the etch kernel definition to characterize and predict complex etch effects.

  9. Counteracting Gravitation In Dielectric Liquids

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E.; Jackson, Henry W.; Strayer, Donald M.

    1993-01-01

    Force of gravity in variety of dielectric liquids counteracted by imposing suitably contoured electric fields. Technique makes possible to perform, on Earth, variety of experiments previously performed only in outer space and at great cost. Also used similarly in outer space to generate sort of artificial gravitation.

  10. Efficient Computations and Representations of Visible Surfaces.

    DTIC Science & Technology

    1979-12-01

    position as stated. The smooth contour generator may lie along a sharp ridge, for instance. Richards & Stevens -28- 6m lace contout s ?S ,.......... ceoonec...From understanding computation to understanding neural circuitry. Neurosci. Res. Prog. Bull. 13. 470-488. Metelli, F. 1970 An algebraic development of

  11. Cognitive Load Theory and the Effects of Transient Information on the Modality Effect

    ERIC Educational Resources Information Center

    Leahy, Wayne; Sweller, John

    2016-01-01

    Based on cognitive load theory and the "transient information effect," this paper investigated the "modality effect" while interpreting a contour map. The length and complexity of auditory and visual text instructions were manipulated. Experiment 1 indicated that longer audio text information within a presentation was inferior…

  12. Structure-based Understanding of Binding Affinity and Mode of Estrogen Receptor α Agonists and Antagonists.

    EPA Science Inventory

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interact...

  13. Structure-Based Understanding of Binding Affinity and Mode of Estrogen Receptor α Agonists and Antagonists

    EPA Science Inventory

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interact...

  14. An improved active contour model for glacial lake extraction

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Chen, F.; Zhang, M.

    2017-12-01

    Active contour model is a widely used method in visual tracking and image segmentation. Under the driven of objective function, the initial curve defined in active contour model will evolve to a stable condition - a desired result in given image. As a typical region-based active contour model, C-V model has a good effect on weak boundaries detection and anti noise ability which shows great potential in glacial lake extraction. Glacial lake is a sensitive indicator for reflecting global climate change, therefore accurate delineate glacial lake boundaries is essential to evaluate hydrologic environment and living environment. However, the current method in glacial lake extraction mainly contains water index method and recognition classification method are diffcult to directly applied in large scale glacial lake extraction due to the diversity of glacial lakes and masses impacted factors in the image, such as image noise, shadows, snow and ice, etc. Regarding the abovementioned advantanges of C-V model and diffcults in glacial lake extraction, we introduce the signed pressure force function to improve the C-V model for adapting to processing of glacial lake extraction. To inspect the effect of glacial lake extraction results, three typical glacial lake development sites were selected, include Altai mountains, Centre Himalayas, South-eastern Tibet, and Landsat8 OLI imagery was conducted as experiment data source, Google earth imagery as reference data for varifying the results. The experiment consequence suggests that improved active contour model we proposed can effectively discriminate the glacial lakes from complex backgound with a higher Kappa Coefficient - 0.895, especially in some small glacial lakes which belongs to weak information in the image. Our finding provide a new approach to improved accuracy under the condition of large proportion of small glacial lakes and the possibility for automated glacial lake mapping in large-scale area.

  15. A novel content-based active contour model for brain tumor segmentation.

    PubMed

    Sachdeva, Jainy; Kumar, Vinod; Gupta, Indra; Khandelwal, Niranjan; Ahuja, Chirag Kamal

    2012-06-01

    Brain tumor segmentation is a crucial step in surgical and treatment planning. Intensity-based active contour models such as gradient vector flow (GVF), magneto static active contour (MAC) and fluid vector flow (FVF) have been proposed to segment homogeneous objects/tumors in medical images. In this study, extensive experiments are done to analyze the performance of intensity-based techniques for homogeneous tumors on brain magnetic resonance (MR) images. The analysis shows that the state-of-art methods fail to segment homogeneous tumors against similar background or when these tumors show partial diversity toward the background. They also have preconvergence problem in case of false edges/saddle points. However, the presence of weak edges and diffused edges (due to edema around the tumor) leads to oversegmentation by intensity-based techniques. Therefore, the proposed method content-based active contour (CBAC) uses both intensity and texture information present within the active contour to overcome above-stated problems capturing large range in an image. It also proposes a novel use of Gray-Level Co-occurrence Matrix to define texture space for tumor segmentation. The effectiveness of this method is tested on two different real data sets (55 patients - more than 600 images) containing five different types of homogeneous, heterogeneous, diffused tumors and synthetic images (non-MR benchmark images). Remarkable results are obtained in segmenting homogeneous tumors of uniform intensity, complex content heterogeneous, diffused tumors on MR images (T1-weighted, postcontrast T1-weighted and T2-weighted) and synthetic images (non-MR benchmark images of varying intensity, texture, noise content and false edges). Further, tumor volume is efficiently extracted from 2-dimensional slices and is named as 2.5-dimensional segmentation. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Use of a Three-Dimensional Model to Optimize a MEDPOR Implant for Delayed Reconstruction of a Suprastructure Maxillectomy Defect

    PubMed Central

    Echo, Anthony; Wolfswinkel, Erik M.; Weathers, William; McKnight, Aisha; Izaddoost, Shayan

    2013-01-01

    The use of a three-dimensional (3-D) model has been well described for craniomaxillofacial reconstruction, especially with the preoperative planning of free fibula flaps. This article reports the application of an innovative 3-D model approach for the calculation of the exact contours, angles, length, and general morphology of a prefabricated MEDPOR 2/3 orbital implant for reconstruction of a suprastructure maxillectomy defect. The 3-D model allowed intraoperative modification of the MEDPOR implant which decreased the risk of iatrogenic harm, contamination while also improving aesthetic results and function. With the aid of preoperative 3-D models, porous polypropylene facial implants can be contoured efficiently intraoperatively to precisely reconstruct complex craniomaxillofacial defects. PMID:24436774

  17. Sulci segmentation using geometric active contours

    NASA Astrophysics Data System (ADS)

    Torkaman, Mahsa; Zhu, Liangjia; Karasev, Peter; Tannenbaum, Allen

    2017-02-01

    Sulci are groove-like regions lying in the depth of the cerebral cortex between gyri, which together, form a folded appearance in human and mammalian brains. Sulci play an important role in the structural analysis of the brain, morphometry (i.e., the measurement of brain structures), anatomical labeling and landmark-based registration.1 Moreover, sulcal morphological changes are related to cortical thickness, whose measurement may provide useful information for studying variety of psychiatric disorders. Manually extracting sulci requires complying with complex protocols, which make the procedure both tedious and error prone.2 In this paper, we describe an automatic procedure, employing geometric active contours, which extract the sulci. Sulcal boundaries are obtained by minimizing a certain energy functional whose minimum is attained at the boundary of the given sulci.

  18. What is in a contour map? A region-based logical formalization of contour semantics

    USGS Publications Warehouse

    Usery, E. Lynn; Hahmann, Torsten

    2015-01-01

    This paper analyses and formalizes contour semantics in a first-order logic ontology that forms the basis for enabling computational common sense reasoning about contour information. The elicited contour semantics comprises four key concepts – contour regions, contour lines, contour values, and contour sets – and their subclasses and associated relations, which are grounded in an existing qualitative spatial ontology. All concepts and relations are illustrated and motivated by physical-geographic features identifiable on topographic contour maps. The encoding of the semantics of contour concepts in first-order logic and a derived conceptual model as basis for an OWL ontology lay the foundation for fully automated, semantically-aware qualitative and quantitative reasoning about contours.

  19. A pseudoinverse deformation vector field generator and its applications

    PubMed Central

    Yan, C.; Zhong, H.; Murphy, M.; Weiss, E.; Siebers, J. V.

    2010-01-01

    Purpose: To present, implement, and test a self-consistent pseudoinverse displacement vector field (PIDVF) generator, which preserves the location of information mapped back-and-forth between image sets. Methods: The algorithm is an iterative scheme based on nearest neighbor interpolation and a subsequent iterative search. Performance of the algorithm is benchmarked using a lung 4DCT data set with six CT images from different breathing phases and eight CT images for a single prostrate patient acquired on different days. A diffeomorphic deformable image registration is used to validate our PIDVFs. Additionally, the PIDVF is used to measure the self-consistency of two nondiffeomorphic algorithms which do not use a self-consistency constraint: The ITK Demons algorithm for the lung patient images and an in-house B-Spline algorithm for the prostate patient images. Both Demons and B-Spline have been QAed through contour comparison. Self-consistency is determined by using a DIR to generate a displacement vector field (DVF) between reference image R and study image S (DVFR–S). The same DIR is used to generate DVFS–R. Additionally, our PIDVF generator is used to create PIDVFS–R. Back-and-forth mapping of a set of points (used as surrogates of contours) using DVFR–S and DVFS–R is compared to back-and-forth mapping performed with DVFR–S and PIDVFS–R. The Euclidean distances between the original unmapped points and the mapped points are used as a self-consistency measure. Results: Test results demonstrate that the consistency error observed in back-and-forth mappings can be reduced two to nine times in point mapping and 1.5 to three times in dose mapping when the PIDVF is used in place of the B-Spline algorithm. These self-consistency improvements are not affected by the exchanging of R and S. It is also demonstrated that differences between DVFS–R and PIDVFS–R can be used as a criteria to check the quality of the DVF. Conclusions: Use of DVF and its PIDVF will improve the self-consistency of points, contour, and dose mappings in image guided adaptive therapy. PMID:20384247

  20. Effects of laser-assisted lipolysis on nipple-areola complex.

    PubMed

    Sönmez Ergün, Selma; Kayan, Reşit Burak; Güleş, Mustafa Ekrem; Kuzu, İsmail Melih

    2017-08-01

    Gynecomastia, as a most common benign condition, represents itself as the enlargement of the male breast and also nipple-areola complex as the severity of the condition increases. With this study, we aimed to clarify the effects of 980-nm diode laser on nipple-areola complex (NAC). Although numerous open techniques have been described to correct gynecomastia, nowadays trends have shifted to minimally invasive techniques such as laser-assisted lipolysis (LAL). A total of 25 patients with bilateral gynecomastia treated with LAL by using a 980-nm diode laser. The resultant contour and reduced size of the complex were satisfactory. LAL leads to significant reduction of the size of NAC.

  1. A segmentation editing framework based on shape change statistics

    NASA Astrophysics Data System (ADS)

    Mostapha, Mahmoud; Vicory, Jared; Styner, Martin; Pizer, Stephen

    2017-02-01

    Segmentation is a key task in medical image analysis because its accuracy significantly affects successive steps. Automatic segmentation methods often produce inadequate segmentations, which require the user to manually edit the produced segmentation slice by slice. Because editing is time-consuming, an editing tool that enables the user to produce accurate segmentations by only drawing a sparse set of contours would be needed. This paper describes such a framework as applied to a single object. Constrained by the additional information enabled by the manually segmented contours, the proposed framework utilizes object shape statistics to transform the failed automatic segmentation to a more accurate version. Instead of modeling the object shape, the proposed framework utilizes shape change statistics that were generated to capture the object deformation from the failed automatic segmentation to its corresponding correct segmentation. An optimization procedure was used to minimize an energy function that consists of two terms, an external contour match term and an internal shape change regularity term. The high accuracy of the proposed segmentation editing approach was confirmed by testing it on a simulated data set based on 10 in-vivo infant magnetic resonance brain data sets using four similarity metrics. Segmentation results indicated that our method can provide efficient and adequately accurate segmentations (Dice segmentation accuracy increase of 10%), with very sparse contours (only 10%), which is promising in greatly decreasing the work expected from the user.

  2. Polymer dynamics driven by a helical filament

    NASA Astrophysics Data System (ADS)

    Balin, Andrew; Shendruk, Tyler; Zoettl, Andreas; Yeomans, Julia

    Microbial flagellates typically inhabit complex suspensions of extracellular polymeric material which can impact the swimming speed of motile microbes, filter-feeding of sessile cells, and the generation of biofilms. There is currently a need to better understand how the fundamental dynamics of polymers near active cells or flagella impacts these various phenomena. We study the hydrodynamic and steric influence of a rotating helical filament on suspended polymers using Stokesian Dynamics simulations. Our results show that as a stationary rotating helix pumps fluid along its long axis, nearby polymers migrate radially inwards and are elongated in the process. We observe that the actuation of the helix tends to increase the probability of finding polymeric material within its pervaded volume. At larger Weissenberg numbers, this accumulation of polymers within the vicinity of the helix is greater. Further, we have analysed the stochastic work performed by the helix on the polymers and we show that this quantity is positive on average and increases with polymer contour length. Our results provide a basis for understanding the microscopic interactions that govern cell dynamics in complex media. This work was supported through funding from the ERC Advanced Grant 291234 MiCE and we acknowledge EMBO funding to TNS (ALTF181-2013).

  3. Musicians' working memory for tones, words, and pseudowords.

    PubMed

    Benassi-Werke, Mariana E; Queiroz, Marcelo; Araújo, Rúben S; Bueno, Orlando F A; Oliveira, Maria Gabriela M

    2012-01-01

    Studies investigating factors that influence tone recognition generally use recognition tests, whereas the majority of the studies on verbal material use self-generated responses in the form of serial recall tests. In the present study we intended to investigate whether tonal and verbal materials share the same cognitive mechanisms, by presenting an experimental instrument that evaluates short-term and working memories for tones, using self-generated sung responses that may be compared to verbal tests. This paradigm was designed according to the same structure of the forward and backward digit span tests, but using digits, pseudowords, and tones as stimuli. The profile of amateur singers and professional singers in these tests was compared in forward and backward digit, pseudoword, tone, and contour spans. In addition, an absolute pitch experimental group was included, in order to observe the possible use of verbal labels in tone memorization tasks. In general, we observed that musical schooling has a slight positive influence on the recall of tones, as opposed to verbal material, which is not influenced by musical schooling. Furthermore, the ability to reproduce melodic contours (up and down patterns) is generally higher than the ability to reproduce exact tone sequences. However, backward spans were lower than forward spans for all stimuli (digits, pseudowords, tones, contour). Curiously, backward spans were disproportionately lower for tones than for verbal material-that is, the requirement to recall sequences in backward rather than forward order seems to differentially affect tonal stimuli. This difference does not vary according to musical expertise.

  4. The Effect of Local Orientation Change on the Detection of Contours Defined by Constant Curvature: Psychophysics and Image Statistics.

    PubMed

    Khuu, Sieu K; Cham, Joey; Hayes, Anthony

    2016-01-01

    In the present study, we investigated the detection of contours defined by constant curvature and the statistics of curved contours in natural scenes. In Experiment 1, we examined the degree to which human sensitivity to contours is affected by changing the curvature angle and disrupting contour curvature continuity by varying the orientation of end elements. We find that (1) changing the angle of contour curvature decreased detection performance, while (2) end elements oriented in the direction (i.e., clockwise) of curvature facilitated contour detection regardless of the curvature angle of the contour. In Experiment 2 we further established that the relative effect of end-element orientation on contour detection was not only dependent on their orientation (collinear or cocircular), but also their spatial separation from the contour, and whether the contour shape was curved or not (i.e., C-shaped or S-shaped). Increasing the spatial separation of end-elements reduced contour detection performance regardless of their orientation or the contour shape. However, at small separations, cocircular end-elements facilitated the detection of C-shaped contours, but not S-shaped contours. The opposite result was observed for collinear end-elements, which improved the detection of S- shaped, but not C-shaped contours. These dissociative results confirmed that the visual system specifically codes contour curvature, but the association of contour elements occurs locally. Finally, we undertook an analysis of natural images that mapped contours with a constant angular change and determined the frequency of occurrence of end elements with different orientations. Analogous to our behavioral data, this image analysis revealed that the mapped end elements of constantly curved contours are likely to be oriented clockwise to the angle of curvature. Our findings indicate that the visual system is selectively sensitive to contours defined by constant curvature and that this might reflect the properties of curved contours in natural images.

  5. Dissociable neural correlates of contour completion and contour representation in illusory contour perception.

    PubMed

    Wu, Xiang; He, Sheng; Bushara, Khalaf; Zeng, Feiyan; Liu, Ying; Zhang, Daren

    2012-10-01

    Object recognition occurs even when environmental information is incomplete. Illusory contours (ICs), in which a contour is perceived though the contour edges are incomplete, have been extensively studied as an example of such a visual completion phenomenon. Despite the neural activity in response to ICs in visual cortical areas from low (V1 and V2) to high (LOC: the lateral occipital cortex) levels, the details of the neural processing underlying IC perception are largely not clarified. For example, how do the visual areas function in IC perception and how do they interact to archive the coherent contour perception? IC perception involves the process of completing the local discrete contour edges (contour completion) and the process of representing the global completed contour information (contour representation). Here, functional magnetic resonance imaging was used to dissociate contour completion and contour representation by varying each in opposite directions. The results show that the neural activity was stronger to stimuli with more contour completion than to stimuli with more contour representation in V1 and V2, which was the reverse of that in the LOC. When inspecting the neural activity change across the visual pathway, the activation remained high for the stimuli with more contour completion and increased for the stimuli with more contour representation. These results suggest distinct neural correlates of contour completion and contour representation, and the possible collaboration between the two processes during IC perception, indicating a neural connection between the discrete retinal input and the coherent visual percept. Copyright © 2011 Wiley Periodicals, Inc.

  6. Structural and tectonic setting of the Charleston, South Carolina, region: Evidence from the Tertiary stratigraphic record

    USGS Publications Warehouse

    Weems, R.E.; Lewis, W.C.

    2002-01-01

    Eleven upper Eocene through Pliocene stratigraphic units occur in the subsurface of the region surrounding Charleston, South Carolina. These units contain a wealth of information concerning the long-term tectonic and structural setting of that area. These stratigraphic units have a mosaic pattern of distribution, rather than a simple layered pattern, because deposition, erosion, and tectonic warping have interacted in a complex manner through time. By generating separate structure-contour maps for the base of each stratigraphic unit, an estimate of the original basal surface of each unit can be reconstructed over wide areas. Changes in sea level over geologic time generate patterns of deposition and erosion that are geographically unique for the time of each transgression. Such patterns fail to persist when compared sequentially over time. In some areas, however, there has been persistent, repetitive net downward of upward movement over the past 34 m.y. These repetitive patterns of persistent motion are most readily attributable to tectonism. The spatial pattern of these high and low areas is complex, but it appears to correlate well with known tectonic features of the region. This correlation suggests that the tectonic setting of the Charleston region is controlled by scissors-like compression on a crustal block located between the north-trending Adams Run fault and the northwest-trending Charleston fault. Tectonism is localized in the Charleston region because it lies within a discrete hinge zone that accommodates structural movement between the Cape Fear arch and the Southeast Georgia embayment.

  7. Australasian Gastrointestinal Trials Group (AGITG) Contouring Atlas and Planning Guidelines for Intensity-Modulated Radiotherapy in Anal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Michael, E-mail: mng@radoncvic.com.au; Leong, Trevor; University of Melbourne

    2012-08-01

    Purpose: To develop a high-resolution target volume atlas with intensity-modulated radiotherapy (IMRT) planning guidelines for the conformal treatment of anal cancer. Methods and Materials: A draft contouring atlas and planning guidelines for anal cancer IMRT were prepared at the Australasian Gastrointestinal Trials Group (AGITG) annual meeting in September 2010. An expert panel of radiation oncologists contoured an anal cancer case to generate discussion on recommendations regarding target definition for gross disease, elective nodal volumes, and organs at risk (OARs). Clinical target volume (CTV) and planning target volume (PTV) margins, dose fractionation, and other IMRT-specific issues were also addressed. A steeringmore » committee produced the final consensus guidelines. Results: Detailed contouring and planning guidelines and a high-resolution atlas are provided. Gross tumor and elective target volumes are described and pictorially depicted. All elective regions should be routinely contoured for all disease stages, with the possible exception of the inguinal and high pelvic nodes for select, early-stage T1N0. A 20-mm CTV margin for the primary, 10- to 20-mm CTV margin for involved nodes and a 7-mm CTV margin for the elective pelvic nodal groups are recommended, while respecting anatomical boundaries. A 5- to 10-mm PTV margin is suggested. When using a simultaneous integrated boost technique, a dose of 54 Gy in 30 fractions to gross disease and 45 Gy to elective nodes with chemotherapy is appropriate. Guidelines are provided for OAR delineation. Conclusion: These consensus planning guidelines and high-resolution atlas complement the existing Radiation Therapy Oncology Group (RTOG) elective nodal ano-rectal atlas and provide additional anatomic, clinical, and technical instructions to guide radiation oncologists in the planning and delivery of IMRT for anal cancer.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van de Velde, Joris, E-mail: joris.vandevelde@ugent.be; Department of Radiotherapy, Ghent University, Ghent; Audenaert, Emmanuel

    Purpose: To develop contouring guidelines for the brachial plexus (BP) using anatomically validated cadaver datasets. Magnetic resonance imaging (MRI) and computed tomography (CT) were used to obtain detailed visualizations of the BP region, with the goal of achieving maximal inclusion of the actual BP in a small contoured volume while also accommodating for anatomic variations. Methods and Materials: CT and MRI were obtained for 8 cadavers positioned for intensity modulated radiation therapy. 3-dimensional reconstructions of soft tissue (from MRI) and bone (from CT) were combined to create 8 separate enhanced CT project files. Dissection of the corresponding cadavers anatomically validatedmore » the reconstructions created. Seven enhanced CT project files were then automatically fitted, separately in different regions, to obtain a single dataset of superimposed BP regions that incorporated anatomic variations. From this dataset, improved BP contouring guidelines were developed. These guidelines were then applied to the 7 original CT project files and also to 1 additional file, left out from the superimposing procedure. The percentage of BP inclusion was compared with the published guidelines. Results: The anatomic validation procedure showed a high level of conformity for the BP regions examined between the 3-dimensional reconstructions generated and the dissected counterparts. Accurate and detailed BP contouring guidelines were developed, which provided corresponding guidance for each level in a clinical dataset. An average margin of 4.7 mm around the anatomically validated BP contour is sufficient to accommodate for anatomic variations. Using the new guidelines, 100% inclusion of the BP was achieved, compared with a mean inclusion of 37.75% when published guidelines were applied. Conclusion: Improved guidelines for BP delineation were developed using combined MRI and CT imaging with validation by anatomic dissection.« less

  9. Automated detection of abnormalities in paranasal sinus on dental panoramic radiographs by using contralateral subtraction technique based on mandible contour

    NASA Astrophysics Data System (ADS)

    Mori, Shintaro; Hara, Takeshi; Tagami, Motoki; Muramatsu, Chicako; Kaneda, Takashi; Katsumata, Akitoshi; Fujita, Hiroshi

    2013-02-01

    Inflammation in paranasal sinus sometimes becomes chronic to take long terms for the treatment. The finding is important for the early treatment, but general dentists may not recognize the findings because they focus on teeth treatments. The purpose of this study was to develop a computer-aided detection (CAD) system for the inflammation in paranasal sinus on dental panoramic radiographs (DPRs) by using the mandible contour and to demonstrate the potential usefulness of the CAD system by means of receiver operating characteristic analysis. The detection scheme consists of 3 steps: 1) Contour extraction of mandible, 2) Contralateral subtraction, and 3) Automated detection. The Canny operator and active contour model were applied to extract the edge at the first step. At the subtraction step, the right region of the extracted contour image was flipped to compare with the left region. Mutual information between two selected regions was obtained to estimate the shift parameters of image registration. The subtraction images were generated based on the shift parameter. Rectangle regions of left and right paranasal sinus on the subtraction image were determined based on the size of mandible. The abnormal side of the regions was determined by taking the difference between the averages of each region. Thirteen readers were responded to all cases without and with the automated results. The averaged AUC of all readers was increased from 0.69 to 0.73 with statistical significance (p=0.032) when the automated detection results were provided. In conclusion, the automated detection method based on contralateral subtraction technique improves readers' interpretation performance of inflammation in paranasal sinus on DPRs.

  10. Computer-aided assessment of hepatic contour abnormalities as an imaging biomarker for the prediction of hepatocellular carcinoma development in patients with chronic hepatitis C.

    PubMed

    Goshima, Satoshi; Kanematsu, Masayuki; Kondo, Hiroshi; Watanabe, Haruo; Noda, Yoshifumi; Fujita, Hiroshi; Bae, Kyongtae T

    2015-05-01

    To evaluate whether a hepatic fibrosis index (HFI), quantified on the basis of hepatic contour abnormality, is a risk factor for the development of hepatocellular carcinoma (HCC) in patients with chronic hepatitis C. Our institutional review board approved this retrospective study and written informed consent was waved. During a 14-month period, consecutive 98 patients with chronic hepatitis C who had no medical history of HCC treatment (56 men and 42 women; mean age, 70.7 years; range, 48-91 years) were included in this study. Gadoxetic acid-enhanced hepatocyte specific phase was used to detect and analyze hepatic contour abnormality. Hepatic contour abnormality was quantified and converted to HFI using in-house proto-type software. We compared HFI between patients with (n=54) and without HCC (n=44). Serum levels of albumin, total bilirubin, aspartate transferase, alanine transferase, percent prothrombin time, platelet count, alpha-fetoprotein, protein induced by vitamin K absence-II, and HFI were tested as possible risk factors for the development of HCC by determining the odds ratio with logistic regression analysis. HFIs were significantly higher in patients with HCC (0.58±0.86) than those without (0.36±0.11) (P<0.001). Logistic analysis revealed that only HFI was a significant risk factor for HCC development with an odds ratio (95% confidence interval) of 26.4 (9.0-77.8) using a cutoff value of 0.395. The hepatic fibrosis index, generated using a computer-aided assessment of hepatic contour abnormality, may be a useful imaging biomarker for the prediction of HCC development in patients with chronic hepatitis C. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Entropy reduction via simplified image contourization

    NASA Technical Reports Server (NTRS)

    Turner, Martin J.

    1993-01-01

    The process of contourization is presented which converts a raster image into a set of plateaux or contours. These contours can be grouped into a hierarchical structure, defining total spatial inclusion, called a contour tree. A contour coder has been developed which fully describes these contours in a compact and efficient manner and is the basis for an image compression method. Simplification of the contour tree has been undertaken by merging contour tree nodes thus lowering the contour tree's entropy. This can be exploited by the contour coder to increase the image compression ratio. By applying general and simple rules derived from physiological experiments on the human vision system, lossy image compression can be achieved which minimizes noticeable artifacts in the simplified image.

  12. Contoured-gap coaxial guns for imploding plasma liner experiments

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. D.; Case, A.; Brockington, S.; Cassibry, J. T.; Hsu, S. C.

    2014-10-01

    Arrays of supersonic, high momentum flux plasma jets can be used as standoff compression drivers for generating spherically imploding plasma liners for driving magneto-inertial fusion, hence the name plasma-jet-driven MIF (PJMIF). HyperV developed linear plasma jets for the Plasma Liner Experiment (PLX) at LANL where two guns were successfully tested. Further development at HyperV resulted in achieving the PLX goal of 8000 μg at 50 km/s. Prior work on contoured-gap coaxial guns demonstrated an approach to control the blowby instability and achieved substantial performance improvements. For future plasma liner experiments we propose to use contoured-gap coaxial guns with small Minirailgun injectors. We will describe such a gun for a 60-gun plasma liner experiment. Discussion topics will include impurity control, plasma jet symmetry and topology (esp. related to uniformity and compactness), velocity capability, and techniques planned for achieving gun efficiency of >50% using tailored impedance matched pulse forming networks. Mach2 and UAH SPH code simulations will be included. Work supported by US DOE DE-FG02-05ER54810.

  13. The Dosimetric Consequences of Intensity Modulated Radiotherapy for Cervix Cancer: The Impact of Organ Motion, Deformation and Tumour Regression

    NASA Astrophysics Data System (ADS)

    Lim, Karen Siah Huey

    Hypothesis: In intensity modulated radiotherapy (IMRT) for cervix cancer, the dose received by the tumour target and surrounding normal tissues is significantly different to that indicated by a single static plan. Rationale: The optimal use of IMRT in cervix cancer requires a greater attention to clinical target volume (CTV) definition and tumour & normal organ motion to assure maximum tumour control with the fewest side effects. Research Aims: 1) Generate consensus CTV contouring guidelines for cervix cancer; 2) Evaluate intra-pelvic tumour and organ dynamics during radiotherapy; 3) Analyze the dose consequences of intra-pelvic organ dynamics on different radiotherapy strategies. Results: Consensus CTV definitions were generated using experts-in-the-field. Substantial changes in tumour volume and organ motion, resulted in significant reductions in accumulated dose to tumour targets and variability in accumulated dose to surrounding normal tissues. Significance: Formalized CTV definitions for cervix cancer is important in ensuring consistent standards of practice. Complex and unpredictable tumour and organ dynamics mandates daily soft-tissue image guidance if IMRT is used. To maximize the benefits of IMRT for cervix cancer, a strategy of adaptation is necessary.

  14. Active contour-based visual tracking by integrating colors, shapes, and motions.

    PubMed

    Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen

    2013-05-01

    In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame.

  15. Fractional State Feedback Control of Undamped and Viscoelastically-Damped Structures

    DTIC Science & Technology

    1990-03-01

    and apply the inverse transform to Eq (99) then 0 DaO zt z In t (n -a ) (1)te = r(n-as+) n=O Eq (101) is the fractional derivative of a complex...s)] 2 ( [F(s)] es t d (110) the inverse transform of Eq (109) may be expressed as 40 D a e t ] =13 e at.. s z do t L 7-ZJ 27i = iW 1-i j and Eq...Il) can be evaluated using the residue theorem from the calculus of complex variables. The closed contour of integration for the inverse transform , in

  16. Measurements of the Mechanisms of Laminar-Turbulent Transition in the Mach-6 Quiet Tunnel

    DTIC Science & Technology

    2012-02-28

    fairly complex axisymmetric models could be built on the 2001 CNC lathe in the department machine shop at a very affordable cost, (5) laminar flow seemed...produce laser-induced breakdown plasmas in a test cell, even at atmospheric pressure. Because of this, the contoured window and compensating optical

  17. Identifying Overlapping Language Communities: The Case of Chiriquí and Panamanian Signed Languages

    ERIC Educational Resources Information Center

    Parks, Elizabeth S.

    2016-01-01

    In this paper, I use a holographic metaphor to explain the identification of overlapping sign language communities in Panama. By visualizing Panama's complex signing communities as emitting community "hotspots" through social drama on multiple stages, I employ ethnographic methods to explore overlapping contours of Panama's sign language…

  18. Bilingualism Matters: One Size Does Not Fit All

    ERIC Educational Resources Information Center

    Gathercole, Virginia C. Mueller

    2014-01-01

    The articles in this special issue provide a complex picture of acquisition in bilinguals in which the factors that contribute to patterns of performance in bilingual children's two languages are myriad and diverse. The processes and contours of development in bilingual children are influenced, not only by the quantity, quality, and contexts…

  19. Domain Coloring and the Argument Principle

    ERIC Educational Resources Information Center

    Farris, Frank A.

    2017-01-01

    The "domain-coloring algorithm" allows us to visualize complex-valued functions on the plane in a single image--an alternative to before-and-after mapping diagrams. It helps us see when a function is analytic and aids in understanding contour integrals. The culmination of this article is a visual discovery and subsequent proof of the…

  20. Significant body point labeling and tracking.

    PubMed

    Azhar, Faisal; Tjahjadi, Tardi

    2014-09-01

    In this paper, a method is presented to label and track anatomical landmarks (e.g., head, hand/arm, feet), which are referred to as significant body points (SBPs), using implicit body models. By considering the human body as an inverted pendulum model, ellipse fitting and contour moments are applied to classify it as being in Stand, Sit, or Lie posture. A convex hull of the silhouette contour is used to determine the locations of SBPs. The particle filter or a motion flow-based method is used to predict SBPs in occlusion. Stick figures of various activities are generated by connecting the SBPs. The qualitative and quantitative evaluation show that the proposed method robustly labels and tracks SBPs in various activities of two different (low and high) resolution data sets.

  1. Sensing Device with Whisker Elements

    NASA Technical Reports Server (NTRS)

    Hartmann, Mitra J. (Inventor); Solomon, Joseph H. (Inventor)

    2013-01-01

    A sensing device includes an elongated whisker element having a flexible cantilever region and a base region where a change in moment or curvature is generated by bending of the cantilever region when it contacts an object. One or more sensor elements cooperatively associated with the whisker element provide one or more output signals that is/are representative of two orthogonal components of change in moment or curvature at the whisker base region to permit determination of object distance, fluid velocity profile, or object contour (shape) with accounting for lateral slip of the whisker element and frictional characteristics of the object. Multiple sensing devices can be arranged in arrays in a manner to sense object contour without or with adjustment for lateral slip.

  2. Sensing device with whisker elements

    NASA Technical Reports Server (NTRS)

    Hartmann, Mitra J. (Inventor); Solomon, Joseph H. (Inventor)

    2010-01-01

    A sensing device includes an elongated whisker element having a flexible cantilever region and a base region where a change in moment or curvature is generated by bending of the cantilever region when it contacts an object. One or more sensor elements cooperatively associated with the whisker element provide one or more output signals that is/are representative of two orthogonal components of change in moment or curvature at the whisker base region to permit determination of object distance, fluid velocity profile, or object contour (shape) with accounting for lateral slip of the whisker element and frictional characteristics of the object. Multiple sensing devices can be arranged in arrays in a manner to sense object contour without or with adjustment for lateral slip.

  3. Computations of unsteady multistage compressor flows in a workstation environment

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen L.

    1992-01-01

    High-end graphics workstations are becoming a necessary tool in the computational fluid dynamics environment. In addition to their graphic capabilities, workstations of the latest generation have powerful floating-point-operation capabilities. As workstations become common, they could provide valuable computing time for such applications as turbomachinery flow calculations. This report discusses the issues involved in implementing an unsteady, viscous multistage-turbomachinery code (STAGE-2) on workstations. It then describes work in which the workstation version of STAGE-2 was used to study the effects of axial-gap spacing on the time-averaged and unsteady flow within a 2 1/2-stage compressor. The results included time-averaged surface pressures, time-averaged pressure contours, standard deviation of pressure contours, pressure amplitudes, and force polar plots.

  4. Surface topography of the Greenland Ice Sheet from satellite radar altimetry

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A.; Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.

    1989-01-01

    Surface elevation maps of the southern half of the Greenland subcontinent are produced from radar altimeter data acquired by the Seasat satellite. A summary of the processing procedure and examples of return waveform data are given. The elevation data are used to generate a regular grid which is then computer contoured to provide an elevation contour map. Ancillary maps show the statistical quality of the elevation data and various characteristics of the surface. The elevation map is used to define ice flow directions and delineate the major drainage basins. Regular maps of the Jakobshavns Glacier drainage basin and the ice divide in the vicinity of Crete Station are presented. Altimeter derived elevations are compared with elevations measured both by satellite geoceivers and optical surveying.

  5. Melodic contour identification by cochlear implant listeners.

    PubMed

    Galvin, John J; Fu, Qian-Jie; Nogaki, Geraldine

    2007-06-01

    While the cochlear implant provides many deaf patients with good speech understanding in quiet, music perception and appreciation with the cochlear implant remains a major challenge for most cochlear implant users. The present study investigated whether a closed-set melodic contour identification (MCI) task could be used to quantify cochlear implant users' ability to recognize musical melodies and whether MCI performance could be improved with moderate auditory training. The present study also compared MCI performance with familiar melody identification (FMI) performance, with and without MCI training. For the MCI task, test stimuli were melodic contours composed of 5 notes of equal duration whose frequencies corresponded to musical intervals. The interval between successive notes in each contour was varied between 1 and 5 semitones; the "root note" of the contours was also varied (A3, A4, and A5). Nine distinct musical patterns were generated for each interval and root note condition, resulting in a total of 135 musical contours. The identification of these melodic contours was measured in 11 cochlear implant users. FMI was also evaluated in the same subjects; recognition of 12 familiar melodies was tested with and without rhythm cues. MCI was also trained in 6 subjects, using custom software and melodic contours presented in a different frequency range from that used for testing. Results showed that MCI recognition performance was highly variable among cochlear implant users, ranging from 14% to 91% correct. For most subjects, MCI performance improved as the number of semitones between successive notes was increased; performance was slightly lower for the A3 root note condition. Mean FMI performance was 58% correct when rhythm cues were preserved and 29% correct when rhythm cues were removed. Statistical analyses revealed no significant correlation between MCI performance and FMI performance (with or without rhythmic cues). However, MCI performance was significantly correlated with vowel recognition performance; FMI performance was not correlated with cochlear implant subjects' phoneme recognition performance. Preliminary results also showed that the MCI training improved all subjects' MCI performance; the improved MCI performance also generalized to improved FMI performance. Preliminary data indicate that the closed-set MCI task is a viable approach toward quantifying an important component of cochlear implant users' music perception. The improvement in MCI performance and generalization to FMI performance with training suggests that MCI training may be useful for improving cochlear implant users' music perception and appreciation; such training may be necessary to properly evaluate patient performance, as acute measures may underestimate the amount of musical information transmitted by the cochlear implant device and received by cochlear implant listeners.

  6. Apollo Contour Rocket Nozzle in the Propulsion Systems Laboratory

    NASA Image and Video Library

    1964-07-21

    Bill Harrison and Bud Meilander check the setup of an Apollo Contour rocket nozzle in the Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Propulsion Systems Laboratory contained two 14-foot diameter test chambers that could simulate conditions found at very high altitudes. The facility was used in the 1960s to study complex rocket engines such as the Pratt and Whitney RL-10 and rocket components such as the Apollo Contour nozzle, seen here. Meilander oversaw the facility’s mechanics and the installation of test articles into the chambers. Harrison was head of the Supersonic Tunnels Branch in the Test Installations Division. Researchers sought to determine the impulse value of the storable propellant mix, classify and improve the internal engine performance, and compare the results with analytical tools. A special setup was installed in the chamber that included a device to measure the thrust load and a calibration stand. Both cylindrical and conical combustion chambers were examined with the conical large area ratio nozzles. In addition, two contour nozzles were tested, one based on the Apollo Service Propulsion System and the other on the Air Force’s Titan transtage engine. Three types of injectors were investigated, including a Lewis-designed model that produced 98-percent efficiency. It was determined that combustion instability did not affect the nozzle performance. Although much valuable information was obtained during the tests, attempts to improve the engine performance were not successful.

  7. Optimization of contoured hypersonic scramjet inlets with a least-squares parabolized Navier-Stokes procedure

    NASA Technical Reports Server (NTRS)

    Korte, J. J.; Auslender, A. H.

    1993-01-01

    A new optimization procedure, in which a parabolized Navier-Stokes solver is coupled with a non-linear least-squares optimization algorithm, is applied to the design of a Mach 14, laminar two-dimensional hypersonic subscale flight inlet with an internal contraction ratio of 15:1 and a length-to-throat half-height ratio of 150:1. An automated numerical search of multiple geometric wall contours, which are defined by polynomical splines, results in an optimal geometry that yields the maximum total-pressure recovery for the compression process. Optimal inlet geometry is obtained for both inviscid and viscous flows, with the assumption that the gas is either calorically or thermally perfect. The analysis with a calorically perfect gas results in an optimized inviscid inlet design that is defined by two cubic splines and yields a mass-weighted total-pressure recovery of 0.787, which is a 23% improvement compared with the optimized shock-canceled two-ramp inlet design. Similarly, the design procedure obtains the optimized contour for a viscous calorically perfect gas to yield a mass-weighted total-pressure recovery value of 0.749. Additionally, an optimized contour for a viscous thermally perfect gas is obtained to yield a mass-weighted total-pressure recovery value of 0.768. The design methodology incorporates both complex fluid dynamic physics and optimal search techniques without an excessive compromise of computational speed; hence, this methodology is a practical technique that is applicable to optimal inlet design procedures.

  8. Analysis of magnetic field levels at KSC

    NASA Technical Reports Server (NTRS)

    Christodoulou, Christos G.

    1994-01-01

    The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

  9. Improving contact layer patterning using SEM contour based etch model

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Lutich, Andrey; Schatz, Jirka; Hertzsch, Tino; Moll, Hans-Peter

    2016-10-01

    The patterning of the contact layer is modulated by strong etch effects that are highly dependent on the geometry of the contacts. Such litho-etch biases need to be corrected to ensure a good pattern fidelity. But aggressive designs contain complex shapes that can hardly be compensated with etch bias table and are difficult to characterize with standard CD metrology. In this work we propose to implement a model based etch compensation method able to deal with any contact configuration. With the help of SEM contours, it was possible to get reliable 2D measurements particularly helpful to calibrate the etch model. The selections of calibration structures was optimized in combination with model form to achieve an overall errRMS of 3nm allowing the implementation of the model in production.

  10. Experimental and theoretical investigation of [Al(PCr)(H2O)] complex in aqueous solution

    NASA Astrophysics Data System (ADS)

    Tenório, Thaís; Lopes, Damiana C. N.; Silva, Andréa M.; Ramos, Joanna Maria; Buarque, Camilla D.

    2014-01-01

    Phosphocreatine is a phosphorylated creatine molecule synthesized in the liver and transported to muscle cells where it is used for the temporary storage of energy. In Alzheimer's disease, the capture of glucose by cells is impaired, which negatively affects the Krebs cycle, leading to problems with the generation of phosphocreatine. Furthermore, the creatine-phosphocreatine system, regulated by creatine kinase, is affected in the brains of Alzheimer's disease patients. Aluminum ions are associated with Alzheimer's disease. Al(III) decreases cell viability and increases the fluidity of the plasma membrane, profoundly altering cell morphology. In this study, one of the complexes formed by Al(III) and phosphocreatine in aqueous solution was investigated by potentiometry, 31P and 27Al NMR, Raman spectroscopy and density functional theory (DFT) calculations. The log KAlPCr value was 11.37 ± 0.03. Phosphocreatine should act as a tridentate ligand in this complex. The 27Al NMR peak at 48.92 ppm indicated a tetrahedral molecule. The fourth position in the arrangement was occupied by a coordinated water molecule. Raman spectroscopy, 31P NMR and DFT calculations (DFT:B3LYP/6-311++G**) indicated that the donor atoms are oxygen in the phosphate group, the nitrogen of the guanidine group and the oxygen of the carboxylate group. Mulliken charges, NBO charges, frontier molecular orbitals, electrostatic potential contour surfaces and mapped electrostatic potential were also examined.

  11. Pseudogynecomastia after massive weight loss: detectability of technique, patient satisfaction, and classification.

    PubMed

    Gusenoff, Jeffrey A; Coon, Devin; Rubin, J Peter

    2008-11-01

    An increasing number of male patients are presenting for treatment of male chest deformity after massive weight loss. The authors prefer to preserve the nipple-areola complex on a dermoglandular pedicle. They sought to identify detectability of technique, assess patient satisfaction, and outline a treatment algorithm for this population. Ten male massive weight loss patients underwent chest-contouring procedures over a period of 6 years and were surveyed to identify satisfaction with reconstruction. Preoperative photographs were used to devise a classification system. Twenty-seven medical professionals evaluated and rated digital photographs of the patients. Eight patients had pedicled reconstructions and two had free-nipple grafts. Mean age was 42.9 +/- 9.5 years, mean pre-weight loss body mass index was 54.1 +/- 10.6, post-weight loss body mass index was 29.4 +/- 4.5, and mean change in body mass index was 24.8 +/- 9.7. All patients would have surgery again, nine would recommend it to a friend, six would go shirtless in public, nine reported no loss of nipple sensation, and three reported dysesthesias of the nipple-areola complex. Medical professionals reproducibly associated poor wound healing with free-nipple grafting and rated poorly positioned nipple-areola complexes with low aesthetic scores. Medical professional scores for chest contour and nipple-areola complex aesthetics did not correlate with technique and were lower than scores provided by the patients. Patient satisfaction for treatment of the male chest deformity after massive weight loss is high. In carefully selected patients, preservation of the nipple-areola complex on a dermoglandular pedicle can aid in achieving an optimal aesthetic result.

  12. An evaluation of the contouring abilities of medical dosimetry students for the anatomy of a prostate cancer patient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Kevin S., E-mail: kscollin@siu.edu

    2012-10-01

    Prostate cancer is one of the most common diseases treated in a radiation oncology department. One of the major predictors of the treatment outcome and patient side effects is the accuracy of the anatomical contours for the treatment plan. Therefore, the purpose of this study was to determine which anatomical structures are most often contoured correctly and incorrectly by medical dosimetry students. The author also wanted to discover whether a review of the contouring rules would increase contouring accuracy. To achieve this, a male computed tomography dataset consisting of 72 transverse slices was sent to students for contouring. The studentsmore » were instructed to import this dataset into their treatment planning system and contour the following structures: skin, bladder, rectum, prostate, penile bulb, seminal vesicles, left femoral head, and right femoral head. Upon completion of the contours, the contour file was evaluated against a 'gold standard' contour set using StructSure software (Standard Imaging, Inc). A review of the initial contour results was conducted and then students were instructed to contour the dataset a second time. The results of this study showed significant differences between contouring sessions. These results and the standardization of contouring rules should benefit all individuals who participate in the treatment planning of cancer patients.« less

  13. Anatomical contouring variability in thoracic organs at risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCall, Ross, E-mail: rmccall86@gmail.com; MacLennan, Grayden; Taylor, Matthew

    2016-01-01

    The purpose of this study was to determine whether contouring thoracic organs at risk was consistent among medical dosimetrists and to identify how trends in dosimetrist's education and experience affected contouring accuracy. Qualitative and quantitative methods were used to contextualize the raw data that were obtained. A total of 3 different computed tomography (CT) data sets were provided to medical dosimetrists (N = 13) across 5 different institutions. The medical dosimetrists were directed to contour the lungs, heart, spinal cord, and esophagus. The medical dosimetrists were instructed to contour in line with their institutional standards and were allowed to usemore » any contouring tool or technique that they would traditionally use. The contours from each medical dosimetrist were evaluated against “gold standard” contours drawn and validated by 2 radiation oncology physicians. The dosimetrist-derived contours were evaluated against the gold standard using both a Dice coefficient method and a penalty-based metric scoring system. A short survey was also completed by each medical dosimetrist to evaluate their individual contouring experience. There was no significant variation in the contouring consistency of the lungs and spinal cord. Intradosimetrist contouring was consistent for those who contoured the esophagus and heart correctly; however, medical dosimetrists with a poor metric score showed erratic and inconsistent methods of contouring.« less

  14. Perceptual representation and effectiveness of local figure–ground cues in natural contours

    PubMed Central

    Sakai, Ko; Matsuoka, Shouhei; Kurematsu, Ken; Hatori, Yasuhiro

    2015-01-01

    A contour shape strongly influences the perceptual segregation of a figure from the ground. We investigated the contribution of local contour shape to figure–ground segregation. Although previous studies have reported local contour features that evoke figure–ground perception, they were often image features and not necessarily perceptual features. First, we examined whether contour features, specifically, convexity, closure, and symmetry, underlie the perceptual representation of natural contour shapes. We performed similarity tests between local contours, and examined the contribution of the contour features to the perceptual similarities between the contours. The local contours were sampled from natural contours so that their distribution was uniform in the space composed of the three contour features. This sampling ensured the equal appearance frequency of the factors and a wide variety of contour shapes including those comprised of contradictory factors that induce figure in the opposite directions. This sampling from natural contours is advantageous in order to randomly pickup a variety of contours that satisfy a wide range of cue combinations. Multidimensional scaling analyses showed that the combinations of convexity, closure, and symmetry contribute to perceptual similarity, thus they are perceptual quantities. Second, we examined whether the three features contribute to local figure–ground perception. We performed psychophysical experiments to judge the direction of the figure along the local contours, and examined the contribution of the features to the figure–ground judgment. Multiple linear regression analyses showed that closure was a significant factor, but that convexity and symmetry were not. These results indicate that closure is dominant in the local figure–ground perception with natural contours when the other cues coexist with equal probability including contradictory cases. PMID:26579057

  15. Perceptual representation and effectiveness of local figure-ground cues in natural contours.

    PubMed

    Sakai, Ko; Matsuoka, Shouhei; Kurematsu, Ken; Hatori, Yasuhiro

    2015-01-01

    A contour shape strongly influences the perceptual segregation of a figure from the ground. We investigated the contribution of local contour shape to figure-ground segregation. Although previous studies have reported local contour features that evoke figure-ground perception, they were often image features and not necessarily perceptual features. First, we examined whether contour features, specifically, convexity, closure, and symmetry, underlie the perceptual representation of natural contour shapes. We performed similarity tests between local contours, and examined the contribution of the contour features to the perceptual similarities between the contours. The local contours were sampled from natural contours so that their distribution was uniform in the space composed of the three contour features. This sampling ensured the equal appearance frequency of the factors and a wide variety of contour shapes including those comprised of contradictory factors that induce figure in the opposite directions. This sampling from natural contours is advantageous in order to randomly pickup a variety of contours that satisfy a wide range of cue combinations. Multidimensional scaling analyses showed that the combinations of convexity, closure, and symmetry contribute to perceptual similarity, thus they are perceptual quantities. Second, we examined whether the three features contribute to local figure-ground perception. We performed psychophysical experiments to judge the direction of the figure along the local contours, and examined the contribution of the features to the figure-ground judgment. Multiple linear regression analyses showed that closure was a significant factor, but that convexity and symmetry were not. These results indicate that closure is dominant in the local figure-ground perception with natural contours when the other cues coexist with equal probability including contradictory cases.

  16. A novel vehicle tracking algorithm based on mean shift and active contour model in complex environment

    NASA Astrophysics Data System (ADS)

    Cai, Lei; Wang, Lin; Li, Bo; Zhang, Libao; Lv, Wen

    2017-06-01

    Vehicle tracking technology is currently one of the most active research topics in machine vision. It is an important part of intelligent transportation system. However, in theory and technology, it still faces many challenges including real-time and robustness. In video surveillance, the targets need to be detected in real-time and to be calculated accurate position for judging the motives. The contents of video sequence images and the target motion are complex, so the objects can't be expressed by a unified mathematical model. Object-tracking is defined as locating the interest moving target in each frame of a piece of video. The current tracking technology can achieve reliable results in simple environment over the target with easy identified characteristics. However, in more complex environment, it is easy to lose the target because of the mismatch between the target appearance and its dynamic model. Moreover, the target usually has a complex shape, but the tradition target tracking algorithm usually represents the tracking results by simple geometric such as rectangle or circle, so it cannot provide accurate information for the subsequent upper application. This paper combines a traditional object-tracking technology, Mean-Shift algorithm, with a kind of image segmentation algorithm, Active-Contour model, to get the outlines of objects while the tracking process and automatically handle topology changes. Meanwhile, the outline information is used to aid tracking algorithm to improve it.

  17. Development of the auto-steering software and equipment technology (ASSET)

    NASA Astrophysics Data System (ADS)

    McKay, Mark D.; Anderson, Matthew O.; Wadsworth, Derek C.

    2003-09-01

    The Idaho National Engineering and Environmental Laboratory (INEEL), through collaboration with INSAT Co., has developed a low cost robotic auto-steering system for parallel contour swathing. The capability to perform parallel contour swathing while minimizing "skip" and "overlap" is a necessity for cost-effective crop management within precision agriculture. Current methods for performing parallel contour swathing consist of using a Differential Global Position System (DGPS) coupled with a light bar system to prompt an operator where to steer. The complexity of operating heavy equipment, ensuring proper chemical mixture and application, and steering to a light bar indicator can be overwhelming to an operator. To simplify these tasks, an inexpensive robotic steering system has been developed and tested on several farming implements. This development leveraged research conducted by the INEEL and Utah State University. The INEEL-INSAT Auto-Steering Software and Equipment Technology provides the following: 1) the ability to drive in a straight line within +/- 2 feet while traveling at least 15 mph, 2) interfaces to a Real Time Kinematic (RTK) DGPS and sub-meter DGPS, 3) safety features such as Emergency-stop, steering wheel deactivation, computer watchdog deactivation, etc., and 4) a low-cost, field-ready system that is easily adapted to other systems.

  18. Lymph node segmentation by dynamic programming and active contours.

    PubMed

    Tan, Yongqiang; Lu, Lin; Bonde, Apurva; Wang, Deling; Qi, Jing; Schwartz, Lawrence H; Zhao, Binsheng

    2018-03-03

    Enlarged lymph nodes are indicators of cancer staging, and the change in their size is a reflection of treatment response. Automatic lymph node segmentation is challenging, as the boundary can be unclear and the surrounding structures complex. This work communicates a new three-dimensional algorithm for the segmentation of enlarged lymph nodes. The algorithm requires a user to draw a region of interest (ROI) enclosing the lymph node. Rays are cast from the center of the ROI, and the intersections of the rays and the boundary of the lymph node form a triangle mesh. The intersection points are determined by dynamic programming. The triangle mesh initializes an active contour which evolves to low-energy boundary. Three radiologists independently delineated the contours of 54 lesions from 48 patients. Dice coefficient was used to evaluate the algorithm's performance. The mean Dice coefficient between computer and the majority vote results was 83.2%. The mean Dice coefficients between the three radiologists' manual segmentations were 84.6%, 86.2%, and 88.3%. The performance of this segmentation algorithm suggests its potential clinical value for quantifying enlarged lymph nodes. © 2018 American Association of Physicists in Medicine.

  19. Computer-aided design and rapid prototyping-assisted contouring of costal cartilage graft for facial reconstructive surgery.

    PubMed

    Lee, Shu Jin; Lee, Heow Pueh; Tse, Kwong Ming; Cheong, Ee Cherk; Lim, Siak Piang

    2012-06-01

    Complex 3-D defects of the facial skeleton are difficult to reconstruct with freehand carving of autogenous bone grafts. Onlay bone grafts are hard to carve and are associated with imprecise graft-bone interface contact and bony resorption. Autologous cartilage is well established in ear reconstruction as it is easy to carve and is associated with minimal resorption. In the present study, we aimed to reconstruct the hypoplastic orbitozygomatic region in a patient with left hemifacial microsomia using computer-aided design and rapid prototyping to facilitate costal cartilage carving and grafting. A three-step process of (1) 3-D reconstruction of the computed tomographic image, (2) mirroring the facial skeleton, and (3) modeling and rapid prototyping of the left orbitozygomaticomalar region and reconstruction template was performed. The template aided in donor site selection and extracorporeal contouring of the rib cartilage graft to allow for an accurate fit of the graft to the bony model prior to final fixation in the patient. We are able to refine the existing computer-aided design and rapid prototyping methods to allow for extracorporeal contouring of grafts and present rib cartilage as a good alternative to bone for autologous reconstruction.

  20. Automatic Approach for Lung Segmentation with Juxta-Pleural Nodules from Thoracic CT Based on Contour Tracing and Correction.

    PubMed

    Wang, Jinke; Guo, Haoyan

    2016-01-01

    This paper presents a fully automatic framework for lung segmentation, in which juxta-pleural nodule problem is brought into strong focus. The proposed scheme consists of three phases: skin boundary detection, rough segmentation of lung contour, and pulmonary parenchyma refinement. Firstly, chest skin boundary is extracted through image aligning, morphology operation, and connective region analysis. Secondly, diagonal-based border tracing is implemented for lung contour segmentation, with maximum cost path algorithm used for separating the left and right lungs. Finally, by arc-based border smoothing and concave-based border correction, the refined pulmonary parenchyma is obtained. The proposed scheme is evaluated on 45 volumes of chest scans, with volume difference (VD) 11.15 ± 69.63 cm 3 , volume overlap error (VOE) 3.5057 ± 1.3719%, average surface distance (ASD) 0.7917 ± 0.2741 mm, root mean square distance (RMSD) 1.6957 ± 0.6568 mm, maximum symmetric absolute surface distance (MSD) 21.3430 ± 8.1743 mm, and average time-cost 2 seconds per image. The preliminary results on accuracy and complexity prove that our scheme is a promising tool for lung segmentation with juxta-pleural nodules.

  1. Differential Recognition of Pitch Patterns in Discrete and Gliding Stimuli in Congenital Amusia: Evidence from Mandarin Speakers

    ERIC Educational Resources Information Center

    Liu, Fang; Xu, Yi; Patel, Aniruddh D.; Francart, Tom; Jiang, Cunmei

    2012-01-01

    This study examined whether "melodic contour deafness" (insensitivity to the direction of pitch movement) in congenital amusia is associated with specific types of pitch patterns (discrete versus gliding pitches) or stimulus types (speech syllables versus complex tones). Thresholds for identification of pitch direction were obtained using discrete…

  2. 4D Sommerfeld quantization of the complex extended charge

    NASA Astrophysics Data System (ADS)

    Bulyzhenkov, Igor E.

    2017-12-01

    Gravitational fields and accelerations cannot change quantized magnetic flux in closed line contours due to flat 3D section of curved 4D space-time-matter. The relativistic Bohr-Sommerfeld quantization of the imaginary charge reveals an electric analog of the Compton length, which can introduce quantitatively the fine structure constant and the Plank length.

  3. Automated transformation-invariant shape recognition through wavelet multiresolution

    NASA Astrophysics Data System (ADS)

    Brault, Patrice; Mounier, Hugues

    2001-12-01

    We present here new results in Wavelet Multi-Resolution Analysis (W-MRA) applied to shape recognition in automatic vehicle driving applications. Different types of shapes have to be recognized in this framework. They pertain to most of the objects entering the sensors field of a car. These objects can be road signs, lane separation lines, moving or static obstacles, other automotive vehicles, or visual beacons. The recognition process must be invariant to global, affine or not, transformations which are : rotation, translation and scaling. It also has to be invariant to more local, elastic, deformations like the perspective (in particular with wide angle camera lenses), and also like deformations due to environmental conditions (weather : rain, mist, light reverberation) or optical and electrical signal noises. To demonstrate our method, an initial shape, with a known contour, is compared to the same contour altered by rotation, translation, scaling and perspective. The curvature computed for each contour point is used as a main criterion in the shape matching process. The original part of this work is to use wavelet descriptors, generated with a fast orthonormal W-MRA, rather than Fourier descriptors, in order to provide a multi-resolution description of the contour to be analyzed. In such way, the intrinsic spatial localization property of wavelet descriptors can be used and the recognition process can be speeded up. The most important part of this work is to demonstrate the potential performance of Wavelet-MRA in this application of shape recognition.

  4. Neural Representation of Scale Illusion: Magnetoencephalographic Study on the Auditory Illusion Induced by Distinctive Tone Sequences in the Two Ears

    PubMed Central

    Kuriki, Shinya; Yokosawa, Koichi; Takahashi, Makoto

    2013-01-01

    The auditory illusory perception “scale illusion” occurs when a tone of ascending scale is presented in one ear, a tone of descending scale is presented simultaneously in the other ear, and vice versa. Most listeners hear illusory percepts of smooth pitch contours of the higher half of the scale in the right ear and the lower half in the left ear. Little is known about neural processes underlying the scale illusion. In this magnetoencephalographic study, we recorded steady-state responses to amplitude-modulated short tones having illusion-inducing pitch sequences, where the sound level of the modulated tones was manipulated to decrease monotonically with increase in pitch. The steady-state responses were decomposed into right- and left-sound components by means of separate modulation frequencies. It was found that the time course of the magnitude of response components of illusion-perceiving listeners was significantly correlated with smooth pitch contour of illusory percepts and that the time course of response components of stimulus-perceiving listeners was significantly correlated with discontinuous pitch contour of stimulus percepts in addition to the contour of illusory percepts. The results suggest that the percept of illusory pitch sequence was represented in the neural activity in or near the primary auditory cortex, i.e., the site of generation of auditory steady-state response, and that perception of scale illusion is maintained by automatic low-level processing. PMID:24086676

  5. Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer.

    PubMed

    Bohoudi, O; Bruynzeel, A M E; Senan, S; Cuijpers, J P; Slotman, B J; Lagerwaard, F J; Palacios, M A

    2017-12-01

    To implement a robust and fast stereotactic MR-guided adaptive radiation therapy (SMART) online strategy in locally advanced pancreatic cancer (LAPC). SMART strategy for plan adaptation was implemented with the MRIdian system (ViewRay Inc.). At each fraction, OAR (re-)contouring is done within a distance of 3cm from the PTV surface. Online plan re-optimization is based on robust prediction of OAR dose and optimization objectives, obtained by building an artificial neural network (ANN). Proposed limited re-contouring strategy for plan adaptation (SMART 3CM ) is evaluated by comparing 50 previously delivered fractions against a standard (re-)planning method using full-scale OAR (re-)contouring (FULLOAR). Plan quality was assessed using PTV coverage (V 95% , D mean , D 1cc ) and institutional OAR constraints (e.g. V 33Gy ). SMART 3CM required a significant lower number of optimizations than FULLOAR (4 vs 18 on average) to generate a plan meeting all objectives and institutional OAR constraints. PTV coverage with both strategies was identical (mean V 95% =89%). Adaptive plans with SMART 3CM exhibited significant lower intermediate and high doses to all OARs than FULLOAR, which also failed in 36% of the cases to adhere to the V 33Gy dose constraint. SMART 3CM approach for LAPC allows good OAR sparing and adequate target coverage while requiring only limited online (re-)contouring from clinicians. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Birth-cohort patterns in Crohn's disease and ulcerative colitis.

    PubMed

    Sonnenberg, Amnon

    2014-01-01

    To test the long-term time trends of mortality from inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), for the presence of birth-cohort phenomena. We analyzed mortality data from the national statistical offices of Canada, England and Wales, Italy, the Netherlands, Switzerland, and the USA for the past 60-80 years. Age-specific rates of death were plotted against the period of death, as period-age contours, and against the period of birth, as cohort-age contours. In all six countries alike, the general time trends of IBD have been shaped by an underlying birth-cohort pattern. This pattern was also observed in the data of CD and UC analyzed separately. UC mortality increased in all generations born during the 19th century. It peaked among generations born shortly before the turn of the century and then decreased in all subsequent generations born throughout the 20th century. Compared with UC, the birth-cohort pattern of CD was delayed by 30-50 years. In addition to one risk factor responsible for the general occurrence of IBD and possibly UC alone, there exists at least one additional risk factor responsible for CD. Exposure to both separate risk factors must occur during early life.

  7. Surface- and Contour-Preserving Origamic Architecture Paper Pop-Ups.

    PubMed

    Le, Sang N; Leow, Su-Jun; Le-Nguyen, Tuong-Vu; Ruiz, Conrado; Low, Kok-Lim

    2013-08-02

    Origamic architecture (OA) is a form of papercraft that involves cutting and folding a single sheet of paper to produce a 3D pop-up, and is commonly used to depict architectural structures. Because of the strict geometric and physical constraints, OA design requires considerable skill and effort. In this paper, we present a method to automatically generate an OA design that closely depicts an input 3D model. Our algorithm is guided by a novel set of geometric conditions to guarantee the foldability and stability of the generated pop-ups. The generality of the conditions allows our algorithm to generate valid pop-up structures that are previously not accounted for by other algorithms. Our method takes a novel image-domain approach to convert the input model to an OA design. It performs surface segmentation of the input model in the image domain, and carefully represents each surface with a set of parallel patches. Patches are then modified to make the entire structure foldable and stable. Visual and quantitative comparisons of results have shown our algorithm to be significantly better than the existing methods in the preservation of contours, surfaces and volume. The designs have also been shown to more closely resemble those created by real artists.

  8. Surface and contour-preserving origamic architecture paper pop-ups.

    PubMed

    Le, Sang N; Leow, Su-Jun; Le-Nguyen, Tuong-Vu; Ruiz, Conrado; Low, Kok-Lim

    2014-02-01

    Origamic architecture (OA) is a form of papercraft that involves cutting and folding a single sheet of paper to produce a 3D pop-up, and is commonly used to depict architectural structures. Because of the strict geometric and physical constraints, OA design requires considerable skill and effort. In this paper, we present a method to automatically generate an OA design that closely depicts an input 3D model. Our algorithm is guided by a novel set of geometric conditions to guarantee the foldability and stability of the generated pop-ups. The generality of the conditions allows our algorithm to generate valid pop-up structures that are previously not accounted for by other algorithms. Our method takes a novel image-domain approach to convert the input model to an OA design. It performs surface segmentation of the input model in the image domain, and carefully represents each surface with a set of parallel patches. Patches are then modified to make the entire structure foldable and stable. Visual and quantitative comparisons of results have shown our algorithm to be significantly better than the existing methods in the preservation of contours, surfaces, and volume. The designs have also been shown to more closely resemble those created by real artists.

  9. SU-E-J-220: Evaluation of Atlas-Based Auto-Segmentation (ABAS) in Head-And-Neck Adaptive Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Q; Yan, D

    2014-06-01

    Purpose: Evaluate the accuracy of atlas-based auto segmentation of organs at risk (OARs) on both helical CT (HCT) and cone beam CT (CBCT) images in head and neck (HN) cancer adaptive radiotherapy (ART). Methods: Six HN patients treated in the ART process were included in this study. For each patient, three images were selected: pretreatment planning CT (PreTx-HCT), in treatment CT for replanning (InTx-HCT) and a CBCT acquired in the same day of the InTx-HCT. Three clinical procedures of auto segmentation and deformable registration performed in the ART process were evaluated: a) auto segmentation on PreTx-HCT using multi-subject atlases, b)more » intra-patient propagation of OARs from PreTx-HCT to InTx-HCT using deformable HCT-to-HCT image registration, and c) intra-patient propagation of OARs from PreTx-HCT to CBCT using deformable CBCT-to-HCT image registration. Seven OARs (brainstem, cord, L/R parotid, L/R submandibular gland and mandible) were manually contoured on PreTx-HCT and InTx-HCT for comparison. In addition, manual contours on InTx-CT were copied on the same day CBCT, and a local region rigid body registration was performed accordingly for each individual OAR. For procedures a) and b), auto contours were compared to manual contours, and for c) auto contours were compared to those rigidly transferred contours on CBCT. Dice similarity coefficients (DSC) and mean surface distances of agreement (MSDA) were calculated for evaluation. Results: For procedure a), the mean DSC/MSDA of most OARs are >80%/±2mm. For intra-patient HCT-to-HCT propagation, the Resultimproved to >85%/±1.5mm. Compared to HCT-to-HCT, the mean DSC for HCT-to-CBCT propagation drops ∼2–3% and MSDA increases ∼0.2mm. This Resultindicates that the inferior imaging quality of CBCT seems only degrade auto propagation performance slightly. Conclusion: Auto segmentation and deformable propagation can generate OAR structures on HCT and CBCT images with clinically acceptable accuracy. Therefore, they can be reliably implemented in the clinical HN ART process.« less

  10. Interobserver delineation uncertainty in involved-node radiation therapy (INRT) for early-stage Hodgkin lymphoma: on behalf of the Radiotherapy Committee of the EORTC lymphoma group.

    PubMed

    Aznar, Marianne C; Girinsky, Theodore; Berthelsen, Anne Kiil; Aleman, Berthe; Beijert, Max; Hutchings, Martin; Lievens, Yolande; Meijnders, Paul; Meidahl Petersen, Peter; Schut, Deborah; Maraldo, Maja V; van der Maazen, Richard; Specht, Lena

    2017-04-01

    In early-stage classical Hodgkin lymphoma (HL) the target volume nowadays consists of the volume of the originally involved nodes. Delineation of this volume on a post-chemotherapy CT-scan is challenging. We report on the interobserver variability in target volume definition and its impact on resulting treatment plans. Two representative cases were selected (1: male, stage IB, localization: left axilla; 2: female, stage IIB, localizations: mediastinum and bilateral neck). Eight experienced observers individually defined the clinical target volume (CTV) using involved-node radiotherapy (INRT) as defined by the EORTC-GELA guidelines for the H10 trial. A consensus contour was generated and the standard deviation computed. We investigated the overlap between observer and consensus contour [Sørensen-Dice coefficient (DSC)] and the magnitude of gross deviations between the surfaces of the observer and consensus contour (Hausdorff distance). 3D-conformal (3D-CRT) and intensity-modulated radiotherapy (IMRT) plans were calculated for each contour in order to investigate the impact of interobserver variability on each treatment modality. Similar target coverage was enforced for all plans. The median CTV was 120 cm 3 (IQR: 95-173 cm 3 ) for Case 1, and 255 cm 3 (IQR: 183-293 cm 3 ) for Case 2. DSC values were generally high (>0.7), and Hausdorff distances were about 30 mm. The SDs between all observer contours, providing an estimate of the systematic error associated with delineation uncertainty, ranged from 1.9 to 3.8 mm (median: 3.2 mm). Variations in mean dose resulting from different observer contours were small and were not higher in IMRT plans than in 3D-CRT plans. We observed considerable differences in target volume delineation, but the systematic delineation uncertainty of around 3 mm is comparable to that reported in other tumour sites. This report is a first step towards calculating an evidence-based planning target volume margin for INRT in HL.

  11. Robust and fast-converging level set method for side-scan sonar image segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Qingwu; Huo, Guanying

    2017-11-01

    A robust and fast-converging level set method is proposed for side-scan sonar (SSS) image segmentation. First, the noise in each sonar image is removed using the adaptive nonlinear complex diffusion filter. Second, k-means clustering is used to obtain the initial presegmentation image from the denoised image, and then the distance maps of the initial contours are reinitialized to guarantee the accuracy of the numerical calculation used in the level set evolution. Finally, the satisfactory segmentation is achieved using a robust variational level set model, where the evolution control parameters are generated by the presegmentation. The proposed method is successfully applied to both synthetic image with speckle noise and real SSS images. Experimental results show that the proposed method needs much less iteration and therefore is much faster than the fuzzy local information c-means clustering method, the level set method using a gamma observation model, and the enhanced region-scalable fitting method. Moreover, the proposed method can usually obtain more accurate segmentation results compared with other methods.

  12. An unsteady aerodynamic formulation for efficient rotor tonal noise prediction

    NASA Astrophysics Data System (ADS)

    Gennaretti, M.; Testa, C.; Bernardini, G.

    2013-12-01

    An aerodynamic/aeroacoustic solution methodology for predction of tonal noise emitted by helicopter rotors and propellers is presented. It is particularly suited for configurations dominated by localized, high-frequency inflow velocity fields as those generated by blade-vortex interactions. The unsteady pressure distributions are determined by the sectional, frequency-domain Küssner-Schwarz formulation, with downwash including the wake inflow velocity predicted by a three-dimensional, unsteady, panel-method formulation suited for the analysis of rotors operating in complex aerodynamic environments. The radiated noise is predicted through solution of the Ffowcs Williams-Hawkings equation. The proposed approach yields a computationally efficient solution procedure that may be particularly useful in preliminary design/multidisciplinary optimization applications. It is validated through comparisons with solutions that apply the airloads directly evaluated by the time-marching, panel-method formulation. The results are provided in terms of blade loads, noise signatures and sound pressure level contours. An estimation of the computational efficiency of the proposed solution process is also presented.

  13. Comparison of optical vortex detection methods for use with a Shack-Hartmann wavefront sensor.

    PubMed

    Murphy, Kevin; Dainty, Chris

    2012-02-27

    In this paper we compare experimentally two methods of detecting optical vortices from Shack-Hartmann wavefront sensor (SHWFS) data, the vortex potential and the contour sum methods. The experimental setup uses a spatial light modulator (SLM) to generate turbulent fields with vortices. In the experiment, many fields are generated and detected by a SHWFS, and data is analysed by the two vortex detection methods. We conclude that the vortex potential method is more successful in locating vortices in these fields.

  14. Development of Pavement Temperature Contours for India

    NASA Astrophysics Data System (ADS)

    Nivitha, M. R.; Krishnan, J. M.

    2014-06-01

    The stress-strain response of the bituminous pavements is highly sensitive to temperature. To systematically analyze the pavement performance, it is necessary that one understands the variation of pavement temperature spatially and temporally during the life time of a pavement. In this investigation, historic air temperature data for 37 locations across India was collected. Using this database, pavement temperature data was predicted by an appropriate air temperature-pavement temperature model. High and low temperature pavement temperature contours were generated for the first time for India. It was seen that the locations spanning from Srinagar to Madhya Pradesh and Rajasthan to Orissa were extremely critical. The minimum temperature in these locations was 10 C and the maximum temperature was around 68 C. Clearly such information is necessary when making choice of binder grade and bituminous layer thickness.

  15. Creation of digital contours that approach the characteristics of cartographic contours

    USGS Publications Warehouse

    Tyler, Dean J.; Greenlee, Susan K.

    2012-01-01

    The capability to easily create digital contours using commercial off-the-shelf (COTS) software has existed for decades. Out-of-the-box raw contours are suitable for many scientific applications without pre- or post-processing; however, cartographic applications typically require additional improvements. For example, raw contours generally require smoothing before placement on a map. Cartographic contours must also conform to certain spatial/logical rules; for example, contours may not cross waterbodies. The objective was to create contours that match as closely as possible the cartographic contours produced by manual methods on the 1:24,000-scale, 7.5-minute Topographic Map series. This report outlines the basic approach, describes a variety of problems that were encountered, and discusses solutions. Many of the challenges described herein were the result of imperfect input raster elevation data and the requirement to have the contours integrated with hydrographic features from the National Hydrography Dataset (NHD).

  16. DNA-cisplatin binding mechanism peculiarities studied with single molecule stretching experiments

    NASA Astrophysics Data System (ADS)

    Crisafuli, F. A. P.; Cesconetto, E. C.; Ramos, E. B.; Rocha, M. S.

    2012-02-01

    We propose a method to determine the DNA-cisplatin binding mechanism peculiarities by monitoring the mechanical properties of these complexes. To accomplish this task, we have performed single molecule stretching experiments by using optical tweezers, from which the persistence and contour lengths of the complexes can be promptly measured. The persistence length of the complexes as a function of the drug total concentration in the sample was used to deduce the binding data, from which we show that cisplatin binds cooperatively to the DNA molecule, a point which so far has not been stressed in binding equilibrium studies of this ligand.

  17. Mitigating cutting-induced plasticity in the contour method, Part 2: Numerical analysis

    DOE PAGES

    Muránsky, O.; Hamelin, C. J.; Hosseinzadeh, F.; ...

    2016-02-10

    Cutting-induced plasticity can have a significant effect on the measurement accuracy of the contour method. The present study examines the benefit of a double-embedded cutting configuration that relies on self-restraint of the specimen, relative to conventional edge-crack cutting configurations. A series of finite element analyses are used to simulate the planar sectioning performed during double-embedded and conventional edge-crack contour cutting configurations. The results of numerical analyses are first compared to measured results to validate the cutting simulations. The simulations are then used to compare the efficacy of different cutting configurations by predicting the deviation of the residual stress profile frommore » an original (pre-cutting) reference stress field, and the extent of cutting-induced plasticity. Comparisons reveal that while the double-embedded cutting configuration produces the most accurate residual stress measurements, the highest levels of plastic flow are generated in this process. As a result, this cutting-induced plastic deformation is, however, largely confined to small ligaments formed as a consequence of the sample sectioning process, and as such it does not significantly affect the back-calculated residual stress field.« less

  18. Valley and channel networks extraction based on local topographic curvature and k-means clustering of contours

    NASA Astrophysics Data System (ADS)

    Hooshyar, Milad; Wang, Dingbao; Kim, Seoyoung; Medeiros, Stephen C.; Hagen, Scott C.

    2016-10-01

    A method for automatic extraction of valley and channel networks from high-resolution digital elevation models (DEMs) is presented. This method utilizes both positive (i.e., convergent topography) and negative (i.e., divergent topography) curvature to delineate the valley network. The valley and ridge skeletons are extracted using the pixels' curvature and the local terrain conditions. The valley network is generated by checking the terrain for the existence of at least one ridge between two intersecting valleys. The transition from unchannelized to channelized sections (i.e., channel head) in each first-order valley tributary is identified independently by categorizing the corresponding contours using an unsupervised approach based on k-means clustering. The method does not require a spatially constant channel initiation threshold (e.g., curvature or contributing area). Moreover, instead of a point attribute (e.g., curvature), the proposed clustering method utilizes the shape of contours, which reflects the entire cross-sectional profile including possible banks. The method was applied to three catchments: Indian Creek and Mid Bailey Run in Ohio and Feather River in California. The accuracy of channel head extraction from the proposed method is comparable to state-of-the-art channel extraction methods.

  19. Measuring tongue shapes and positions with ultrasound imaging: a validation experiment using an articulatory model.

    PubMed

    Ménard, Lucie; Aubin, Jérôme; Thibeault, Mélanie; Richard, Gabrielle

    2012-01-01

    The goal of this paper is to assess the validity of various metrics developed to characterize tongue shapes and positions collected through ultrasound imaging in experimental setups where the probe is not constrained relative to the subject's head. Midsagittal contours were generated using an articulatory-acoustic model of the vocal tract. Sections of the tongue were extracted to simulate ultrasound imaging. Various transformations were applied to the tongue contours in order to simulate ultrasound probe displacements: vertical displacement, horizontal displacement, and rotation. The proposed data analysis method reshapes tongue contours into triangles and then extracts measures of angles, x and y coordinates of the highest point of the tongue, curvature degree, and curvature position. Parameters related to the absolute tongue position (tongue height and front/back position) are more sensitive to horizontal and vertical displacements of the probe, whereas parameters related to tongue curvature are less sensitive to such displacements. Because of their robustness to probe displacements, parameters related to tongue shape (especially curvature) are particularly well suited to cases where the transducer is not constrained relative to the head (studies with clinical populations or children). Copyright © 2011 S. Karger AG, Basel.

  20. Mitigating cutting-induced plasticity in the contour method, Part 2: Numerical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muránsky, O.; Hamelin, C. J.; Hosseinzadeh, F.

    Cutting-induced plasticity can have a significant effect on the measurement accuracy of the contour method. The present study examines the benefit of a double-embedded cutting configuration that relies on self-restraint of the specimen, relative to conventional edge-crack cutting configurations. A series of finite element analyses are used to simulate the planar sectioning performed during double-embedded and conventional edge-crack contour cutting configurations. The results of numerical analyses are first compared to measured results to validate the cutting simulations. The simulations are then used to compare the efficacy of different cutting configurations by predicting the deviation of the residual stress profile frommore » an original (pre-cutting) reference stress field, and the extent of cutting-induced plasticity. Comparisons reveal that while the double-embedded cutting configuration produces the most accurate residual stress measurements, the highest levels of plastic flow are generated in this process. As a result, this cutting-induced plastic deformation is, however, largely confined to small ligaments formed as a consequence of the sample sectioning process, and as such it does not significantly affect the back-calculated residual stress field.« less

  1. Fast Virtual Stenting with Active Contour Models in Intracranical Aneurysm

    PubMed Central

    Zhong, Jingru; Long, Yunling; Yan, Huagang; Meng, Qianqian; Zhao, Jing; Zhang, Ying; Yang, Xinjian; Li, Haiyun

    2016-01-01

    Intracranial stents are becoming increasingly a useful option in the treatment of intracranial aneurysms (IAs). Image simulation of the releasing stent configuration together with computational fluid dynamics (CFD) simulation prior to intervention will help surgeons optimize intervention scheme. This paper proposed a fast virtual stenting of IAs based on active contour model (ACM) which was able to virtually release stents within any patient-specific shaped vessel and aneurysm models built on real medical image data. In this method, an initial stent mesh was generated along the centerline of the parent artery without the need for registration between the stent contour and the vessel. Additionally, the diameter of the initial stent volumetric mesh was set to the maximum inscribed sphere diameter of the parent artery to improve the stenting accuracy and save computational cost. At last, a novel criterion for terminating virtual stent expanding that was based on the collision detection of the axis aligned bounding boxes was applied, making the stent expansion free of edge effect. The experiment results of the virtual stenting and the corresponding CFD simulations exhibited the efficacy and accuracy of the ACM based method, which are valuable to intervention scheme selection and therapy plan confirmation. PMID:26876026

  2. Phased-array ultrasonic surface contour mapping system and method for solids hoppers and the like

    DOEpatents

    Fasching, George E.; Smith, Jr., Nelson S.

    1994-01-01

    A real time ultrasonic surface contour mapping system is provided including a digitally controlled phased-array of transmitter/receiver (T/R) elements located in a fixed position above the surface to be mapped. The surface is divided into a predetermined number of pixels which are separately scanned by an arrangement of T/R elements by applying phase delayed signals thereto that produce ultrasonic tone bursts from each T/R that arrive at a point X in phase and at the same time relative to the leading edge of the tone burst pulse so that the acoustic energies from each T/R combine in a reinforcing manner at point X. The signals produced by the reception of the echo signals reflected from point X back to the T/Rs are also delayed appropriately so that they add in phase at the input of a signal combiner. This combined signal is then processed to determine the range to the point X using density-corrected sound velocity values. An autofocusing signal is developed from the computed average range for a complete scan of the surface pixels. A surface contour map is generated in real time form the range signals on a video monitor.

  3. Combination of complex momentum representation and Green's function methods in relativistic mean-field theory

    NASA Astrophysics Data System (ADS)

    Shi, Min; Niu, Zhong-Ming; Liang, Haozhao

    2018-06-01

    We have combined the complex momentum representation method with the Green's function method in the relativistic mean-field framework to establish the RMF-CMR-GF approach. This new approach is applied to study the halo structure of 74Ca. All the continuum level density of concerned resonant states are calculated accurately without introducing any unphysical parameters, and they are independent of the choice of integral contour. The important single-particle wave functions and densities for the halo phenomenon in 74Ca are discussed in detail.

  4. The equivalent internal orientation and position noise for contour integration.

    PubMed

    Baldwin, Alex S; Fu, Minnie; Farivar, Reza; Hess, Robert F

    2017-10-12

    Contour integration is the joining-up of local responses to parts of a contour into a continuous percept. In typical studies observers detect contours formed of discrete wavelets, presented against a background of random wavelets. This measures performance for detecting contours in the limiting external noise that background provides. Our novel task measures contour integration without requiring any background noise. This allowed us to perform noise-masking experiments using orientation and position noise. From these we measure the equivalent internal noise for contour integration. We found an orientation noise of 6° and position noise of 3 arcmin. Orientation noise was 2.6x higher in contour integration compared to an orientation discrimination control task. Comparing against a position discrimination task found position noise in contours to be 2.4x lower. This suggests contour integration involves intermediate processing that enhances the quality of element position representation at the expense of element orientation. Efficiency relative to the ideal observer was lower for the contour tasks (36% in orientation noise, 21% in position noise) compared to the controls (54% and 57%).

  5. Eleven Colors That Are Almost Never Confused

    NASA Astrophysics Data System (ADS)

    Boynton, Robert M.

    1989-08-01

    1.1. Three functions of color vision. Setting aside the complex psychological effects of color, related to esthetics, fashion, and mood, three relatively basic functions of color vision, which can be examined scientifically, are discernable. (1) With the eye in a given state of adaptation, color vision allows the perception of signals that otherwise would be below threshold, and therefore lost to perception. Evidence for this comes from a variety of two-color threshold experiments. (2) Visible contours can be maintained by color differences alone, regardless of the relative radiances of the two parts of the field whose junction defines the border. For achromatic vision, contour disappears at the isoluminant point. (3) Color specifies what seems to be an absolute property of a surface, one that enhances its recognizability and allows a clearer separation and classification of non-contiguous elements in the visual field.

  6. Closed-form summations of Dowker's and related trigonometric sums

    NASA Astrophysics Data System (ADS)

    Cvijović, Djurdje; Srivastava, H. M.

    2012-09-01

    Through a unified and relatively simple approach which uses complex contour integrals, particularly convenient integration contours and calculus of residues, closed-form summation formulas for 12 very general families of trigonometric sums are deduced. One of them is a family of cosecant sums which was first summed in closed form in a series of papers by Dowker (1987 Phys. Rev. D 36 3095-101 1989 J. Math. Phys. 30 770-3 1992 J. Phys. A: Math. Gen. 25 2641-8), whose method has inspired our work in this area. All of the formulas derived here involve the higher-order Bernoulli polynomials. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.

  7. NASCAP user's manual

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Harvey, J. M.; Katz, I.

    1977-01-01

    The NASCAP (NASA Charging Analyzer Program) code simulates the charging process for a complex object in either tenuous plasma or ground test environment. Detailed specifications needed to run the code are presented. The object definition section, OBJDEF, allows the test object to be easily defined in the cubic mesh. The test object is composed of conducting sections which may be wholly or partially covered with thin dielectric coatings. The potential section, POTENT, obtains the electrostatic potential in the space surrounding the object. It uses the conjugate gradient method to solve the finite element formulation of Poisson's equation. The CHARGE section of NASCAP treats charge redistribution among the surface cells of the object as well as charging through radiation bombardment. NASCAP has facilities for extensive graphical output, including several types of object display plots, potential contour plots, space charge density contour plots, current density plots, and particle trajectory plots.

  8. A Novel Method of Aircraft Detection Based on High-Resolution Panchromatic Optical Remote Sensing Images.

    PubMed

    Wang, Wensheng; Nie, Ting; Fu, Tianjiao; Ren, Jianyue; Jin, Longxu

    2017-05-06

    In target detection of optical remote sensing images, two main obstacles for aircraft target detection are how to extract the candidates in complex gray-scale-multi background and how to confirm the targets in case the target shapes are deformed, irregular or asymmetric, such as that caused by natural conditions (low signal-to-noise ratio, illumination condition or swaying photographing) and occlusion by surrounding objects (boarding bridge, equipment). To solve these issues, an improved active contours algorithm, namely region-scalable fitting energy based threshold (TRSF), and a corner-convex hull based segmentation algorithm (CCHS) are proposed in this paper. Firstly, the maximal variance between-cluster algorithm (Otsu's algorithm) and region-scalable fitting energy (RSF) algorithm are combined to solve the difficulty of targets extraction in complex and gray-scale-multi backgrounds. Secondly, based on inherent shapes and prominent corners, aircrafts are divided into five fragments by utilizing convex hulls and Harris corner points. Furthermore, a series of new structure features, which describe the proportion of targets part in the fragment to the whole fragment and the proportion of fragment to the whole hull, are identified to judge whether the targets are true or not. Experimental results show that TRSF algorithm could improve extraction accuracy in complex background, and that it is faster than some traditional active contours algorithms. The CCHS is effective to suppress the detection difficulties caused by the irregular shape.

  9. Clock face drawing test performance in children with ADHD.

    PubMed

    Ghanizadeh, Ahmad; Safavi, Salar; Berk, Michael

    2013-01-01

    The utility and discriminatory pattern of the clock face drawing test in ADHD is unclear. This study therefore compared Clock Face Drawing test performance in children with ADHD and controls. 95 school children with ADHD and 191 other children were matched for gender ratio and age. ADHD symptoms severities were assessed using DSM-IV ADHD checklist and their intellectual functioning was assessed. The participants completed three clock-drawing tasks, and the following four functions were assessed: Contour score, Numbers score, Hands setting score, and Center score. All the subscales scores of the three clock drawing tests of the ADHD group were lower than that of the control group. In ADHD children, inattention and hyperactivity/ impulsivity scores were not related to free drawn clock test scores. When pre-drawn contour test was performed, inattentiveness score was statistically associated with Number score while none of the other variables of age, gender, intellectual functioning, and hand use preference were associated with that kind of score. In pre-drawn clock, no association of ADHD symptoms with any CDT subscales found significant. In addition, more errors are observed with free drawn clock and Pre-drawn contour than pre-drawn clock. Putting Numbers and Hands setting are more sensitive measures to screen ADHD than Contour and Center drawing. Test performance, except Hands setting, may have already reached a developmental plateau. It is probable that Hand setting deficit in children with ADHD may not decrease from age 8 to 14 years. Performance of children with ADHD is associated with complexity of CDT.

  10. Anatomically contoured plates for fixation of rib fractures.

    PubMed

    Bottlang, Michael; Helzel, Inga; Long, William B; Madey, Steven

    2010-03-01

    : Intraoperative contouring of long bridging plates for stabilization of flail chest injuries is difficult and time consuming. This study implemented for the first time biometric parameters to derive anatomically contoured rib plates. These plates were tested on a range of cadaveric ribs to quantify plate fit and to extract a best-fit plating configuration. : Three left and three right rib plates were designed, which accounted for anatomic parameters required when conforming a plate to the rib surface. The length lP over which each plate could trace the rib surface was evaluated on 109 cadaveric ribs. For each rib level 3-9, the plate design with the highest lP value was extracted to determine a best-fit plating configuration. Furthermore, the characteristic twist of rib surfaces was measured on 49 ribs to determine the surface congruency of anatomic plates with a constant twist. : The tracing length lP of the best-fit plating configuration ranged from 12.5 cm to 14.7 cm for ribs 3-9. The corresponding range for standard plates was 7.1-13.7 cm. The average twist of ribs over 8-cm, 12-cm, and 16-cm segments was 8.3 degrees, 20.6 degrees, and 32.7 degrees, respectively. The constant twist of anatomic rib plates was not significantly different from the average rib twist. : A small set of anatomic rib plates can minimize the need for intraoperative plate contouring for fixation of ribs 3-9. Anatomic rib plates can therefore reduce the time and complexity of flail chest stabilization and facilitate spanning of flail segments with long plates.

  11. Contoured Surface Eddy Current Inspection System

    DOEpatents

    Batzinger, Thomas James; Fulton, James Paul; Rose, Curtis Wayne; Perocchi, Lee Cranford

    2003-04-08

    Eddy current inspection of a contoured surface of a workpiece is performed by forming a backing piece of flexible, resiliently yieldable material with a contoured exterior surface conforming in shape to the workpiece contoured surface. The backing piece is preferably cast in place so as to conform to the workpiece contoured surface. A flexible eddy current array probe is attached to the contoured exterior surface of the backing piece such that the probe faces the contoured surface of the workpiece to be inspected when the backing piece is disposed adjacent to the workpiece. The backing piece is then expanded volumetrically by inserting at least one shim into a slot in the backing piece to provide sufficient contact pressure between the probe and the workpiece contoured surface to enable the inspection of the workpiece contoured surface to be performed.

  12. Esophagus segmentation in CT via 3D fully convolutional neural network and random walk.

    PubMed

    Fechter, Tobias; Adebahr, Sonja; Baltas, Dimos; Ben Ayed, Ismail; Desrosiers, Christian; Dolz, Jose

    2017-12-01

    Precise delineation of organs at risk is a crucial task in radiotherapy treatment planning for delivering high doses to the tumor while sparing healthy tissues. In recent years, automated segmentation methods have shown an increasingly high performance for the delineation of various anatomical structures. However, this task remains challenging for organs like the esophagus, which have a versatile shape and poor contrast to neighboring tissues. For human experts, segmenting the esophagus from CT images is a time-consuming and error-prone process. To tackle these issues, we propose a random walker approach driven by a 3D fully convolutional neural network (CNN) to automatically segment the esophagus from CT images. First, a soft probability map is generated by the CNN. Then, an active contour model (ACM) is fitted to the CNN soft probability map to get a first estimation of the esophagus location. The outputs of the CNN and ACM are then used in conjunction with a probability model based on CT Hounsfield (HU) values to drive the random walker. Training and evaluation were done on 50 CTs from two different datasets, with clinically used peer-reviewed esophagus contours. Results were assessed regarding spatial overlap and shape similarity. The esophagus contours generated by the proposed algorithm showed a mean Dice coefficient of 0.76 ± 0.11, an average symmetric square distance of 1.36 ± 0.90 mm, and an average Hausdorff distance of 11.68 ± 6.80, compared to the reference contours. These results translate to a very good agreement with reference contours and an increase in accuracy compared to existing methods. Furthermore, when considering the results reported in the literature for the publicly available Synapse dataset, our method outperformed all existing approaches, which suggests that the proposed method represents the current state-of-the-art for automatic esophagus segmentation. We show that a CNN can yield accurate estimations of esophagus location, and that the results of this model can be refined by a random walk step taking pixel intensities and neighborhood relationships into account. One of the main advantages of our network over previous methods is that it performs 3D convolutions, thus fully exploiting the 3D spatial context and performing an efficient volume-wise prediction. The whole segmentation process is fully automatic and yields esophagus delineations in very good agreement with the gold standard, showing that it can compete with previously published methods. © 2017 American Association of Physicists in Medicine.

  13. Topological Cacti: Visualizing Contour-based Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Gunther H.; Bremer, Peer-Timo; Pascucci, Valerio

    2011-05-26

    Contours, the connected components of level sets, play an important role in understanding the global structure of a scalar field. In particular their nestingbehavior and topology-often represented in form of a contour tree-have been used extensively for visualization and analysis. However, traditional contour trees onlyencode structural properties like number of contours or the nesting of contours, but little quantitative information such as volume or other statistics. Here we use thesegmentation implied by a contour tree to compute a large number of per-contour (interval) based statistics of both the function defining the contour tree as well asother co-located functions. We introducemore » a new visual metaphor for contour trees, called topological cacti, that extends the traditional toporrery display of acontour tree to display additional quantitative information as width of the cactus trunk and length of its spikes. We apply the new technique to scalar fields ofvarying dimension and different measures to demonstrate the effectiveness of the approach.« less

  14. SU-F-T-617: Remotely Pre-Planned Stereotactic Ablative Radiation Therapy: Validation of Treatment Plan Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, T; Bush, K; Loo, B

    Purpose: We propose a workflow to improve access to stereotactic ablative radiation therapy (SABR) for rural patients. When implemented, a separate trip to the central facility for simulation can be eliminated. Two elements are required: (1) Fabrication of custom immobilization devices to match positioning on prior diagnostic CT (dxCT). (2) Remote radiation pre-planning on dxCT, with transfer of contours/plan to simulation CT (simCT) and initiation of treatment same-day or next day. In this retrospective study, we validated part 2 of the workflow using patients already treated with SABR for upper lobe lung tumors. Methods: Target/normal structures were contoured on dxCT;more » a plan was created and approved by the physician. Structures were transferred to simCT using deformable image registration and the plan was re-optimized on simCT. Plan quality was evaluated through comparison to gold-standard structures contoured on simCT and a gold-standard plan based on these structures. Workflow-generated plan quality in this study represents a worst-case scenario as these patients were not treated using custom immobilization to match dxCT position as would be done when the workflow is implemented clinically. Results: 5/6 plans created through the pre-planning workflow were clinically acceptable. For all six plans, the gold-standard GTV received full prescription dose, along with median PTV V95%=95.2% and median PTV D95%=95.4%. Median GTV DSC=0.80, indicating high degree of similarity between the deformed and gold-standard GTV contours despite small GTV sizes (mean=3.0cc). One outlier (DSC=0.49) resulted in inadequate PTV coverage (V95%=62.9%) in the workflow plan; in clinical practice, this mismatch between deformed/gold-standard GTV would be revised by the physician after deformable registration. For all patients, normal tissue doses were comparable to the gold-standard plan and well within constraints. Conclusion: Pre-planning SABR cases on diagnostic imaging generated clinically acceptable plans. Coupled with rapid-prototyped custom immobilization, this workflow may improve treatment access for rural patients.« less

  15. Deciphering the internal complexity of living cells with quantitative phase microscopy: a multiscale approach

    NASA Astrophysics Data System (ADS)

    Martinez-Torres, Cristina; Laperrousaz, Bastien; Berguiga, Lotfi; Boyer-Provera, Elise; Elezgaray, Juan; Nicolini, Franck E.; Maguer-Satta, Veronique; Arneodo, Alain; Argoul, Françoise

    2015-09-01

    The distribution of refractive indices (RIs) of a living cell contributes in a nonintuitive manner to its optical phase image and quite rarely can be inverted to recover its internal structure. The interpretation of the quantitative phase images of living cells remains a difficult task because (1) we still have very little knowledge on the impact of its internal macromolecular complexes on the local RI and (2) phase changes produced by light propagation through the sample are mixed with diffraction effects by the internal cell bodies. We propose to implement a two-dimensional wavelet-based contour chain detection method to distinguish internal boundaries based on their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are the morphological indicators suited for comparing cells of different origins and/or to follow their transformation in pathologic situations. We use this method to compare nonadherent blood cells from primary and laboratory culture origins and to assess the internal transformation of hematopoietic stem cells by the transduction of the BCR-ABL oncogene responsible for the chronic myelogenous leukemia.

  16. Electronic structure of dense Pb overlayers on Si(111) investigated using angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Choi, W. H.; Koh, H.; Rotenberg, E.; Yeom, H. W.

    2007-02-01

    Dense Pb overlayers on Si(111) are important as the wetting layer for anomalous Pb island growth as well as for their own complex “devil’s-staircase” phases. The electronic structures of dense Pb overlayers on Si(111) were investigated in detail by angle-resolved photoemission. Among the series of ordered phases found recently above one monolayer, the low-coverage 7×3 and the high-coverage 14×3 phases are studied; they are well ordered and form reproducibly in large areas. The band dispersions and Fermi surfaces of the two-dimensional (2D) electronic states of these overlayers are mapped out. A number of metallic surface-state bands are identified for both phases with complex Fermi contours. The basic features of the observed Fermi contours can be explained by overlapping 2D free-electron-like Fermi circles. This analysis reveals that the 2D electrons near the Fermi level of the 7×3 and 14×3 phases are mainly governed by strong 1×1 and 3×3 potentials, respectively. The origins of the 2D electronic states and their apparent Fermi surface shapes are discussed based on recent structure models.

  17. Even beyond the Local Community: A Close Look at Latina Youths' Return Trips to Mexico

    ERIC Educational Resources Information Center

    Sanchez, Patricia

    2009-01-01

    Drawing from nearly four years of qualitative research, this article examines the lives of three second-generation mexicanas living in northern California who maintain close ties to their families' natal communities in Mexico. This ethnographic portrait outlines the contours of belonging in these spaces, including the affection and close…

  18. Three-dimensional adult male head and skull contours.

    PubMed

    Lee, Calvin; Loyd, Andre M; Nightingale, Roger; Myers, Barry S; Damon, Andrew; Bass, Cameron R

    2014-01-01

    Traumatic brain injury (TBI) is a major public health issue, affecting millions of people annually. Anthropomorphic test devices (ATDs) and finite element models (FEMs) provide a means of understanding factors leading to TBI, potentially reducing the occurrence. Thus, there is a need to ensure that these tools accurately model humans. For example, the Hybrid III was not based on 3-dimensional human head shape data. The objective of this study is to produce average head and skull contours for an average U.S. male that can be used for ATDs and FEMs. Computed tomography (CT) scans of adult male heads were obtained from a database provided by the University of Virginia Center for Applied Biomechanics. An orthographic viewer was used to extract head and skull contours from the CT scans. Landmarks were measured graphically using HyperMesh (Altair, HyperWorks). To determine the head occipital condyle (OC) centroid, surface meshes of the OCs were made and the centroid of the surfaces was calculated. The Hybrid III contour was obtained using a MicroScribe Digitizer (Solution Technologies, Inc., Oella, MD). Comparisons of the average male and ATD contours were performed using 2 methods: (1) the midsagittal and midcoronal ATD contours relative to the OC centroid were compared to the corresponding 1 SD range of the average male contours; (2) the ATD sagittal contour was translated relative to the average male sagittal contour to minimize the area between the 2 contours. Average male head and skull contours were created. Landmark measurements were made for the dorsum sellae, nasion skin, nasion bone, infraorbital foramen, and external auditory meatus, all relative to the OC centroid. The Hybrid III midsagittal contour was outside the 1 SD range for 15.2 percent of the average male head contour but only by a maximum distance of 1.5 mm, whereas the Hybrid III midcoronal head contour was outside the 1 SD range for 12.2 percent of the average male head contour by a maximum distance of 2 mm. Minimization of the area between the midsagittal contours resulted in only 2.3 mm of translation, corroborating the good correlation between the contours established by initial comparison. Three-dimensional average male head and skull contours were created and measurements of landmark locations were made. It was found that the 50th percentile male Hybrid III corresponds well to the average male head contour and validated its 3D shape. Average adult head and skull contours and landmark data are available for public research use at http://biomechanics.pratt.duke.edu/data .

  19. High performance embedded system for real-time pattern matching

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, C.-L.; Luciano, P.; Gkaitatzis, S.; Citraro, S.; Giannetti, P.; Dell'Orso, M.

    2017-02-01

    In this paper we present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider experiments. A miniaturized version of this complex system is being developed for pattern matching in generic image processing applications. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain. The pattern matching can be executed by a custom designed Associative Memory chip. The reference patterns are chosen by a complex training algorithm implemented on an FPGA device. Post processing algorithms (e.g. pixel clustering) are also implemented on the FPGA. The pattern matching can be executed on a 2D or 3D space, on black and white or grayscale images, depending on the application and thus increasing exponentially the processing requirements of the system. We present the firmware implementation of the training and pattern matching algorithm, performance and results on a latest generation Xilinx Kintex Ultrascale FPGA device.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hai, Yang; Christianson, David W.

    Leishmaniaarginase is a potential drug target for the treatment of leishmaniasis because this binuclear manganese metalloenzyme initiatesde novopolyamine biosynthesis by catalyzing the hydrolysis of L-arginine to generate L-ornithine and urea. The product L-ornithine subsequently undergoes decarboxylation to yield putrescine, which in turn is utilized for spermidine biosynthesis. Polyamines such as spermidine are essential for the growth and survival of the parasite, so inhibition of enzymes in the polyamine-biosynthetic pathway comprises an effective strategy for treating parasitic infections. To this end, two X-ray crystal structures ofL. mexicanaarginase complexed with α,α-disubstituted boronic amino-acid inhibitors based on the molecular scaffold of 2-(S)-amino-6-boronohexanoic acidmore » are now reported. Structural comparisons with human and parasitic arginase complexes reveal interesting differences in the binding modes of the additional α-substituents,i.e.the D side chains, of these inhibitors. Subtle differences in the three-dimensional contours of the outer active-site rims among arginases from different species lead to different conformations of the D side chains and thus different inhibitor-affinity trends. The structures suggest that it is possible to maintain affinity while fine-tuning intermolecular interactions of the D side chain of α,α-disubstituted boronic amino-acid inhibitors in the search for isozyme-specific and species-specific arginase inhibitors.« less

  1. An automated workflow for patient-specific quality control of contour propagation

    NASA Astrophysics Data System (ADS)

    Beasley, William J.; McWilliam, Alan; Slevin, Nicholas J.; Mackay, Ranald I.; van Herk, Marcel

    2016-12-01

    Contour propagation is an essential component of adaptive radiotherapy, but current contour propagation algorithms are not yet sufficiently accurate to be used without manual supervision. Manual review of propagated contours is time-consuming, making routine implementation of real-time adaptive radiotherapy unrealistic. Automated methods of monitoring the performance of contour propagation algorithms are therefore required. We have developed an automated workflow for patient-specific quality control of contour propagation and validated it on a cohort of head and neck patients, on which parotids were outlined by two observers. Two types of error were simulated—mislabelling of contours and introducing noise in the scans before propagation. The ability of the workflow to correctly predict the occurrence of errors was tested, taking both sets of observer contours as ground truth, using receiver operator characteristic analysis. The area under the curve was 0.90 and 0.85 for the observers, indicating good ability to predict the occurrence of errors. This tool could potentially be used to identify propagated contours that are likely to be incorrect, acting as a flag for manual review of these contours. This would make contour propagation more efficient, facilitating the routine implementation of adaptive radiotherapy.

  2. Method: automatic segmentation of mitochondria utilizing patch classification, contour pair classification, and automatically seeded level sets

    PubMed Central

    2012-01-01

    Background While progress has been made to develop automatic segmentation techniques for mitochondria, there remains a need for more accurate and robust techniques to delineate mitochondria in serial blockface scanning electron microscopic data. Previously developed texture based methods are limited for solving this problem because texture alone is often not sufficient to identify mitochondria. This paper presents a new three-step method, the Cytoseg process, for automated segmentation of mitochondria contained in 3D electron microscopic volumes generated through serial block face scanning electron microscopic imaging. The method consists of three steps. The first is a random forest patch classification step operating directly on 2D image patches. The second step consists of contour-pair classification. At the final step, we introduce a method to automatically seed a level set operation with output from previous steps. Results We report accuracy of the Cytoseg process on three types of tissue and compare it to a previous method based on Radon-Like Features. At step 1, we show that the patch classifier identifies mitochondria texture but creates many false positive pixels. At step 2, our contour processing step produces contours and then filters them with a second classification step, helping to improve overall accuracy. We show that our final level set operation, which is automatically seeded with output from previous steps, helps to smooth the results. Overall, our results show that use of contour pair classification and level set operations improve segmentation accuracy beyond patch classification alone. We show that the Cytoseg process performs well compared to another modern technique based on Radon-Like Features. Conclusions We demonstrated that texture based methods for mitochondria segmentation can be enhanced with multiple steps that form an image processing pipeline. While we used a random-forest based patch classifier to recognize texture, it would be possible to replace this with other texture identifiers, and we plan to explore this in future work. PMID:22321695

  3. Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers.

    PubMed

    Zangwill, Linda M; Chan, Kwokleung; Bowd, Christopher; Hao, Jicuang; Lee, Te-Won; Weinreb, Robert N; Sejnowski, Terrence J; Goldbaum, Michael H

    2004-09-01

    To determine whether topographical measurements of the parapapillary region analyzed by machine learning classifiers can detect early to moderate glaucoma better than similarly processed measurements obtained within the disc margin and to improve methods for optimization of machine learning classifier feature selection. One eye of each of 95 patients with early to moderate glaucomatous visual field damage and of each of 135 normal subjects older than 40 years participating in the longitudinal Diagnostic Innovations in Glaucoma Study (DIGS) were included. Heidelberg Retina Tomograph (HRT; Heidelberg Engineering, Dossenheim, Germany) mean height contour was measured in 36 equal sectors, both along the disc margin and in the parapapillary region (at a mean contour line radius of 1.7 mm). Each sector was evaluated individually and in combination with other sectors. Gaussian support vector machine (SVM) learning classifiers were used to interpret HRT sector measurements along the disc margin and in the parapapillary region, to differentiate between eyes with normal and glaucomatous visual fields and to compare the results with global and regional HRT parameter measurements. The area under the receiver operating characteristic (ROC) curve was used to measure diagnostic performance of the HRT parameters and to evaluate the cross-validation strategies and forward selection and backward elimination optimization techniques that were used to generate the reduced feature sets. The area under the ROC curve for mean height contour of the 36 sectors along the disc margin was larger than that for the mean height contour in the parapapillary region (0.97 and 0.85, respectively). Of the 36 individual sectors along the disc margin, those in the inferior region between 240 degrees and 300 degrees, had the largest area under the ROC curve (0.85-0.91). With SVM Gaussian techniques, the regional parameters showed the best ability to discriminate between normal eyes and eyes with glaucomatous visual field damage, followed by the global parameters, mean height contour measures along the disc margin, and mean height contour measures in the parapapillary region. The area under the ROC curve was 0.98, 0.94, 0.93, and 0.85, respectively. Cross-validation and optimization techniques demonstrated that good discrimination (99% of peak area under the ROC curve) can be obtained with a reduced number of HRT parameters. Mean height contour measurements along the disc margin discriminated between normal and glaucomatous eyes better than measurements obtained in the parapapillary region. Copyright Association for Research in Vision and Ophthalmology

  4. Heidelberg Retina Tomograph Measurements of the Optic Disc and Parapapillary Retina for Detecting Glaucoma Analyzed by Machine Learning Classifiers

    PubMed Central

    Zangwill, Linda M.; Chan, Kwokleung; Bowd, Christopher; Hao, Jicuang; Lee, Te-Won; Weinreb, Robert N.; Sejnowski, Terrence J.; Goldbaum, Michael H.

    2010-01-01

    Purpose To determine whether topographical measurements of the parapapillary region analyzed by machine learning classifiers can detect early to moderate glaucoma better than similarly processed measurements obtained within the disc margin and to improve methods for optimization of machine learning classifier feature selection. Methods One eye of each of 95 patients with early to moderate glaucomatous visual field damage and of each of 135 normal subjects older than 40 years participating in the longitudinal Diagnostic Innovations in Glaucoma Study (DIGS) were included. Heidelberg Retina Tomograph (HRT; Heidelberg Engineering, Dossenheim, Germany) mean height contour was measured in 36 equal sectors, both along the disc margin and in the parapapillary region (at a mean contour line radius of 1.7 mm). Each sector was evaluated individually and in combination with other sectors. Gaussian support vector machine (SVM) learning classifiers were used to interpret HRT sector measurements along the disc margin and in the parapapillary region, to differentiate between eyes with normal and glaucomatous visual fields and to compare the results with global and regional HRT parameter measurements. The area under the receiver operating characteristic (ROC) curve was used to measure diagnostic performance of the HRT parameters and to evaluate the cross-validation strategies and forward selection and backward elimination optimization techniques that were used to generate the reduced feature sets. Results The area under the ROC curve for mean height contour of the 36 sectors along the disc margin was larger than that for the mean height contour in the parapapillary region (0.97 and 0.85, respectively). Of the 36 individual sectors along the disc margin, those in the inferior region between 240° and 300°, had the largest area under the ROC curve (0.85–0.91). With SVM Gaussian techniques, the regional parameters showed the best ability to discriminate between normal eyes and eyes with glaucomatous visual field damage, followed by the global parameters, mean height contour measures along the disc margin, and mean height contour measures in the parapapillary region. The area under the ROC curve was 0.98, 0.94, 0.93, and 0.85, respectively. Cross-validation and optimization techniques demonstrated that good discrimination (99% of peak area under the ROC curve) can be obtained with a reduced number of HRT parameters. Conclusions Mean height contour measurements along the disc margin discriminated between normal and glaucomatous eyes better than measurements obtained in the parapapillary region. PMID:15326133

  5. Breast masses in mammography classification with local contour features.

    PubMed

    Li, Haixia; Meng, Xianjing; Wang, Tingwen; Tang, Yuchun; Yin, Yilong

    2017-04-14

    Mammography is one of the most popular tools for early detection of breast cancer. Contour of breast mass in mammography is very important information to distinguish benign and malignant mass. Contour of benign mass is smooth and round or oval, while malignant mass has irregular shape and spiculated contour. Several studies have shown that 1D signature translated from 2D contour can describe the contour features well. In this paper, we propose a new method to translate 2D contour of breast mass in mammography into 1D signature. The method can describe not only the contour features but also the regularity of breast mass. Then we segment the whole 1D signature into different subsections. We extract four local features including a new contour descriptor from the subsections. The new contour descriptor is root mean square (RMS) slope. It can describe the roughness of the contour. KNN, SVM and ANN classifier are used to classify benign breast mass and malignant mass. The proposed method is tested on a set with 323 contours including 143 benign masses and 180 malignant ones from digital database of screening mammography (DDSM). The best accuracy of classification is 99.66% using the feature of root mean square slope with SVM classifier. The performance of the proposed method is better than traditional method. In addition, RMS slope is an effective feature comparable to most of the existing features.

  6. WCPP-THE WOLF PLOTTING AND CONTOURING PACKAGE

    NASA Technical Reports Server (NTRS)

    Masaki, G. T.

    1994-01-01

    The WOLF Contouring and Plotting Package provides the user with a complete general purpose plotting and contouring capability. This package is a complete system for producing line printer, SC4020, Gerber, Calcomp, and SD4060 plots. The package has been designed to be highly flexible and easy to use. Any plot from a quick simple plot (which requires only one call to the package) to highly sophisticated plots (including motion picture plots) can be easily generated with only a basic knowledge of FORTRAN and the plot commands. Anyone designing a software system that requires plotted output will find that this package offers many advantages over the standard hardware support packages available. The WCPP package is divided into a plot segment and a contour segment. The plot segment can produce output for any combination of line printer, SC4020, Gerber, Calcomp, and SD4060 plots. The line printer plots allow the user to have plots available immediately after a job is run at a low cost. Although the resolution of line printer plots is low, the quick results allows the user to judge if a high resolution plot of a particular run is desirable. The SC4020 and SD4060 provide high speed high resolution cathode ray plots with film and hard copy output available. The Gerber and Calcomp plotters provide very high quality (of publishable quality) plots of good resolution. Being bed or drum type plotters, the Gerber and Calcomp plotters are usually slow and not suited for large volume plotting. All output for any or all of the plotters can be produced simultaneously. The types of plots supported are: linear, semi-log, log-log, polar, tabular data using the FORTRAN WRITE statement, 3-D perspective linear, and affine transformations. The labeling facility provides for horizontal labels, vertical labels, diagonal labels, vector characters of a requested size (special character fonts are easily implemented), and rotated letters. The gridding routines label the grid lines according to user specification. Special line features include multiple lines, dashed lines, and tic marks. The contour segment of this package is a collection of subroutines which can be used to produce contour plots and perform related functions. The package can contour any data which can be placed on a grid or data which is regularly spaced, including any general affine or polar grid data. The package includes routines which will grid random data. Contour levels can be specified at any values desired. Input data can be smoothed with undefined points being acceptable where data is unreliable or unknown. Plots which are extremely large or detailed can be automatically output in parts to improve resolution or overcome plotter size limitations. The contouring segment uses the plot segment for actual plotting, thus all the features described for the plotting segment are available to the user of the contouring segment. Included with this package are two data bases for producing world map plots in Mercator projection. One data base provides just continent outlines and another provides continent outlines and national borders in great detail. This package is written in FORTRAN IV and IBM OS ASSEMBLER and has been implemented on an IBM 360 with a central memory requirement of approximately 140K of 8 bit bytes. The ASSEMBLER routines are basic plotter interface routines. The WCPP package was developed in 1972.

  7. Contour scanning of textile preforms using a light-section sensor for the automated manufacturing of fibre-reinforced plastics

    NASA Astrophysics Data System (ADS)

    Schmitt, R.; Niggemann, C.; Mersmann, C.

    2008-04-01

    Fibre-reinforced plastics (FRP) are particularly suitable for components where light-weight structures with advanced mechanical properties are required, e.g. for aerospace parts. Nevertheless, many manufacturing processes for FRP include manual production steps without an integrated quality control. A vital step in the process chain is the lay-up of the textile preform, as it greatly affects the geometry and the mechanical performance of the final part. In order to automate the FRP production, an inline machine vision system is needed for a closed-loop control of the preform lay-up. This work describes the development of a novel laser light-section sensor for optical inspection of textile preforms and its integration and validation in a machine vision prototype. The proposed method aims at the determination of the contour position of each textile layer through edge scanning. The scanning route is automatically derived by using texture analysis algorithms in a preliminary step. As sensor output a distinct stage profile is computed from the acquired greyscale image. The contour position is determined with sub-pixel accuracy using a novel algorithm based on a non-linear least-square fitting to a sigmoid function. The whole contour position is generated through data fusion of the measured edge points. The proposed method provides robust process automation for the FRP production improving the process quality and reducing the scrap quota. Hence, the range of economically feasible FRP products can be increased and new market segments with cost sensitive products can be addressed.

  8. Validation of contour-driven thin-plate splines for tracking fraction-to-fraction changes in anatomy and radiation therapy dose mapping.

    PubMed

    Schaly, B; Bauman, G S; Battista, J J; Van Dyk, J

    2005-02-07

    The goal of this study is to validate a deformable model using contour-driven thin-plate splines for application to radiation therapy dose mapping. Our testing includes a virtual spherical phantom as well as real computed tomography (CT) data from ten prostate cancer patients with radio-opaque markers surgically implanted into the prostate and seminal vesicles. In the spherical mathematical phantom, homologous control points generated automatically given input contour data in CT slice geometry were compared to homologous control point placement using analytical geometry as the ground truth. The dose delivered to specific voxels driven by both sets of homologous control points were compared to determine the accuracy of dose tracking via the deformable model. A 3D analytical spherically symmetric dose distribution with a dose gradient of approximately 10% per mm was used for this phantom. This test showed that the uncertainty in calculating the delivered dose to a tissue element depends on slice thickness and the variation in defining homologous landmarks, where dose agreement of 3-4% in high dose gradient regions was achieved. In the patient data, radio-opaque marker positions driven by the thin-plate spline algorithm were compared to the actual marker positions as identified in the CT scans. It is demonstrated that the deformable model is accurate (approximately 2.5 mm) to within the intra-observer contouring variability. This work shows that the algorithm is appropriate for describing changes in pelvic anatomy and for the dose mapping application with dose gradients characteristic of conformal and intensity modulated radiation therapy.

  9. A probabilistic framework for single-sensor acoustic emission source localization in thin metallic plates

    NASA Astrophysics Data System (ADS)

    Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-09-01

    Tracking edge-reflected acoustic emission (AE) waves can allow the localization of their sources. Specifically, in bounded isotropic plate structures, only one sensor may be used to perform these source localizations. The primary goal of this paper is to develop a three-step probabilistic framework to quantify the uncertainties associated with such single-sensor localizations. According to this framework, a probabilistic approach is first used to estimate the direct distances between AE sources and the sensor. Then, an analytical model is used to reconstruct the envelope of edge-reflected AE signals based on the source-to-sensor distance estimations and their first arrivals. Finally, the correlation between the probabilistically reconstructed envelopes and recorded AE signals are used to estimate confidence contours for the location of AE sources. To validate the proposed framework, Hsu-Nielsen pencil lead break (PLB) tests were performed on the surface as well as the edges of an aluminum plate. The localization results show that the estimated confidence contours surround the actual source locations. In addition, the performance of the framework was tested in a noisy environment simulated by two dummy transducers and an arbitrary wave generator. The results show that in low-noise environments, the shape and size of the confidence contours depend on the sources and their locations. However, at highly noisy environments, the size of the confidence contours monotonically increases with the noise floor. Such probabilistic results suggest that the proposed probabilistic framework could thus provide more comprehensive information regarding the location of AE sources.

  10. Research on detection method of UAV obstruction based on binocular vision

    NASA Astrophysics Data System (ADS)

    Zhu, Xiongwei; Lei, Xusheng; Sui, Zhehao

    2018-04-01

    For the autonomous obstacle positioning and ranging in the process of UAV (unmanned aerial vehicle) flight, a system based on binocular vision is constructed. A three-stage image preprocessing method is proposed to solve the problem of the noise and brightness difference in the actual captured image. The distance of the nearest obstacle is calculated by using the disparity map that generated by binocular vision. Then the contour of the obstacle is extracted by post-processing of the disparity map, and a color-based adaptive parameter adjustment algorithm is designed to extract contours of obstacle automatically. Finally, the safety distance measurement and obstacle positioning during the UAV flight process are achieved. Based on a series of tests, the error of distance measurement can keep within 2.24% of the measuring range from 5 m to 20 m.

  11. An Automatic Segmentation Method Combining an Active Contour Model and a Classification Technique for Detecting Polycomb-group Proteinsin High-Throughput Microscopy Images.

    PubMed

    Gregoretti, Francesco; Cesarini, Elisa; Lanzuolo, Chiara; Oliva, Gennaro; Antonelli, Laura

    2016-01-01

    The large amount of data generated in biological experiments that rely on advanced microscopy can be handled only with automated image analysis. Most analyses require a reliable cell image segmentation eventually capable of detecting subcellular structures.We present an automatic segmentation method to detect Polycomb group (PcG) proteins areas isolated from nuclei regions in high-resolution fluorescent cell image stacks. It combines two segmentation algorithms that use an active contour model and a classification technique serving as a tool to better understand the subcellular three-dimensional distribution of PcG proteins in live cell image sequences. We obtained accurate results throughout several cell image datasets, coming from different cell types and corresponding to different fluorescent labels, without requiring elaborate adjustments to each dataset.

  12. Lagrangian displacement tracking using a polar grid between endocardial and epicardial contours for cardiac strain imaging.

    PubMed

    Ma, Chi; Varghese, Tomy

    2012-04-01

    Accurate cardiac deformation analysis for cardiac displacement and strain imaging over time requires Lagrangian description of deformation of myocardial tissue structures. Failure to couple the estimated displacement and strain information with the correct myocardial tissue structures will lead to erroneous result in the displacement and strain distribution over time. Lagrangian based tracking in this paper divides the tissue structure into a fixed number of pixels whose deformation is tracked over the cardiac cycle. An algorithm that utilizes a polar-grid generated between the estimated endocardial and epicardial contours for cardiac short axis images is proposed to ensure Lagrangian description of the pixels. Displacement estimates from consecutive radiofrequency frames were then mapped onto the polar grid to obtain a distribution of the actual displacement that is mapped to the polar grid over time. A finite element based canine heart model coupled with an ultrasound simulation program was used to verify this approach. Segmental analysis of the accumulated displacement and strain over a cardiac cycle demonstrate excellent agreement between the ideal result obtained directly from the finite element model and our Lagrangian approach to strain estimation. Traditional Eulerian based estimation results, on the other hand, show significant deviation from the ideal result. An in vivo comparison of the displacement and strain estimated using parasternal short axis views is also presented. Lagrangian displacement tracking using a polar grid provides accurate tracking of myocardial deformation demonstrated using both finite element and in vivo radiofrequency data acquired on a volunteer. In addition to the cardiac application, this approach can also be utilized for transverse scans of arteries, where a polar grid can be generated between the contours delineating the outer and inner wall of the vessels from the blood flowing though the vessel.

  13. Anticounterfeiting features of artistic screening

    NASA Astrophysics Data System (ADS)

    Ostromoukhov, Victor; Rudaz, Nicolas; Amidror, Isaac; Emmel, Patrick; Hersch, Roger D.

    1996-12-01

    In a recent publication (Ostromoukhov95), a new image reproduction technique, artistic screening, was presented. It incorporates freely created artistic screen elements for generating halftones. Fixed predefined dot contours associated with given intensity levels determine the screen dot shape's growing behavior. Screen dot contours associated with each intensity level are obtained by interpolation between the fixed predefined dot contours. A user-defined mapping transforms screen elements from screen element definition space to screen element rendition space. This mapping can be tuned to produce various effects such as dilatations, contractions and non-linear deformations of the screen element grid. Although artistic screening has been designed mainly for performing the creation of graphic designs of high artistic quality, it also incorporates several important anti-counterfeiting features. For example, bank notes or other valuable printed matters produced with artistic screening may incorporate both full size and microscopic letters of varying shape into the image halftoning process. Furthermore, artistic screening can be used for generating screen dots at varying frequencies and orientations, which are well known for inducing strong moire effects when scanned by a digital color copier or a desktop scanner. However, it is less known that frequency-modulated screen dots have at each screen element size a different reproduction behavior (dot gain). When trying to reproduce an original by analog means, such as a photocopier, the variations in dot gain induce strong intensity variations at the same original intensity levels. In this paper, we present a method for compensating such variations for the target printer, on which the original security document is to be printed. Potential counterfeiters who would like to reproduce the original with a photocopying device may only be able to adjust the dot gain for the whole image and will therefore be unable to eliminate the undesired intensity variations produced by variable frequency screen elements.

  14. Regional maps of subsurface geopressure gradients of the onshore and offshore Gulf of Mexico basin

    USGS Publications Warehouse

    Burke, Lauri A.; Kinney, Scott A.; Dubiel, Russell F.; Pitman, Janet K.

    2013-01-01

    The U.S. Geological Survey created a comprehensive geopressure-gradient model of the regional pressure system spanning the onshore and offshore Gulf of Mexico basin, USA. This model was used to generate ten maps that included (1) five contour maps characterizing the depth to the surface defined by the first occurrence of isopressure gradients ranging from 0.60 psi/ft to 1.00 psi/ft, in 0.10-psi/ft increments; and (2) five supporting maps illustrating the spatial density of the data used to construct the contour maps. These contour maps of isopressure-gradients at various increments enable the identification and quantification of the occurrence, magnitude, location, and depth of the subsurface pressure system, which allows for the broad characterization of regions exhibiting overpressured, underpressured, and normally pressured strata. Identification of overpressured regions is critical for exploration and evaluation of potential undiscovered hydrocarbon accumulations based on petroleum-generation pressure signatures and pressure-retention properties of reservoir seals. Characterization of normally pressured regions is essential for field development decisions such as determining the dominant production drive mechanisms, evaluating well placement and drainage patterns, and deciding on well stimulation methods such as hydraulic fracturing. Identification of underpressured regions is essential for evaluating the feasibility of geological sequestration and long-term containment of fluids such as supercritical carbon dioxide for alternative disposal methods of greenhouse gases. This study is the first, quantitative investigation of the regional pressure systems of one of the most important petroleum provinces in the United States. Although this methodology was developed for pressure studies in the Gulf of Mexico basin, it is applicable to any basin worldwide.

  15. Technique for identifying, tracing, or tracking objects in image data

    DOEpatents

    Anderson, Robert J [Albuquerque, NM; Rothganger, Fredrick [Albuquerque, NM

    2012-08-28

    A technique for computer vision uses a polygon contour to trace an object. The technique includes rendering a polygon contour superimposed over a first frame of image data. The polygon contour is iteratively refined to more accurately trace the object within the first frame after each iteration. The refinement includes computing image energies along lengths of contour lines of the polygon contour and adjusting positions of the contour lines based at least in part on the image energies.

  16. BOREAS Elevation Contours over the NSA and SSA in ARC/INFO Generate Format

    NASA Technical Reports Server (NTRS)

    Knapp, David; Nickeson, Jaime; Hall, Forrest G. (Editor)

    2000-01-01

    This data set was prepared by BORIS Staff by reformatting the original data into the ARC/INFO Generate format. The original data were received in SIF at a scale of 1:50,000. BORIS staff could not find a format document or commercial software for reading SIF; the BOREAS HYD-08 team pro-vided some C source code that could read some of the SIF files. The data cover the BOREAS NSA and SSA. The original data were compiled from information available in the 1970s and 1980s. The data are available in ARC/INFO Generate format files.

  17. Functional Contour-following via Haptic Perception and Reinforcement Learning.

    PubMed

    Hellman, Randall B; Tekin, Cem; van der Schaar, Mihaela; Santos, Veronica J

    2018-01-01

    Many tasks involve the fine manipulation of objects despite limited visual feedback. In such scenarios, tactile and proprioceptive feedback can be leveraged for task completion. We present an approach for real-time haptic perception and decision-making for a haptics-driven, functional contour-following task: the closure of a ziplock bag. This task is challenging for robots because the bag is deformable, transparent, and visually occluded by artificial fingertip sensors that are also compliant. A deep neural net classifier was trained to estimate the state of a zipper within a robot's pinch grasp. A Contextual Multi-Armed Bandit (C-MAB) reinforcement learning algorithm was implemented to maximize cumulative rewards by balancing exploration versus exploitation of the state-action space. The C-MAB learner outperformed a benchmark Q-learner by more efficiently exploring the state-action space while learning a hard-to-code task. The learned C-MAB policy was tested with novel ziplock bag scenarios and contours (wire, rope). Importantly, this work contributes to the development of reinforcement learning approaches that account for limited resources such as hardware life and researcher time. As robots are used to perform complex, physically interactive tasks in unstructured or unmodeled environments, it becomes important to develop methods that enable efficient and effective learning with physical testbeds.

  18. An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures.

    PubMed

    Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Tian, Yun; Duan, Fuqing; Pan, Yutong

    2016-01-01

    Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels.

  19. Neural Networks for Segregation of Multiple Objects: Visual Figure-Ground Separation and Auditory Pitch Perception.

    NASA Astrophysics Data System (ADS)

    Wyse, Lonce

    An important component of perceptual object recognition is the segmentation into coherent perceptual units of the "blooming buzzing confusion" that bombards the senses. The work presented herein develops neural network models of some key processes of pre-attentive vision and audition that serve this goal. A neural network model, called an FBF (Feature -Boundary-Feature) network, is proposed for automatic parallel separation of multiple figures from each other and their backgrounds in noisy images. Figure-ground separation is accomplished by iterating operations of a Boundary Contour System (BCS) that generates a boundary segmentation of a scene, and a Feature Contour System (FCS) that compensates for variable illumination and fills-in surface properties using boundary signals. A key new feature is the use of the FBF filling-in process for the figure-ground separation of connected regions, which are subsequently more easily recognized. The new CORT-X 2 model is a feed-forward version of the BCS that is designed to detect, regularize, and complete boundaries in up to 50 percent noise. It also exploits the complementary properties of on-cells and off -cells to generate boundary segmentations and to compensate for boundary gaps during filling-in. In the realm of audition, many sounds are dominated by energy at integer multiples, or "harmonics", of a fundamental frequency. For such sounds (e.g., vowels in speech), the individual frequency components fuse, so that they are perceived as one sound source with a pitch at the fundamental frequency. Pitch is integral to separating auditory sources, as well as to speaker identification and speech understanding. A neural network model of pitch perception called SPINET (SPatial PItch NETwork) is developed and used to simulate a broader range of perceptual data than previous spectral models. The model employs a bank of narrowband filters as a simple model of basilar membrane mechanics, spectral on-center off-surround competitive interactions, and a "harmonic sieve" mechanism whereby the strength of a pitch depends only on spectral regions near harmonics. The model is evaluated using data involving mistuned components, shifted harmonics, complex tones with varying phase relationships, and continuous spectra such as rippled noise and narrow noise bands.

  20. An improved spatial contour tree constructed method

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Zhang, Ling; Guilbert, Eric; Long, Yi

    2018-05-01

    Contours are important data to delineate the landform on a map. A contour tree provides an object-oriented description of landforms and can be used to enrich the topological information. The traditional contour tree is used to store topological relationships between contours in a hierarchical structure and allows for the identification of eminences and depressions as sets of nested contours. This research proposes an improved contour tree so-called spatial contour tree that contains not only the topological but also the geometric information. It can be regarded as a terrain skeleton in 3-dimention, and it is established based on the spatial nodes of contours which have the latitude, longitude and elevation information. The spatial contour tree is built by connecting spatial nodes from low to high elevation for a positive landform, and from high to low elevation for a negative landform to form a hierarchical structure. The connection between two spatial nodes can provide the real distance and direction as a Euclidean vector in 3-dimention. In this paper, the construction method is tested in the experiment, and the results are discussed. The proposed hierarchical structure is in 3-demintion and can show the skeleton inside a terrain. The structure, where all nodes have geo-information, can be used to distinguish different landforms and applied for contour generalization with consideration of geographic characteristics.

  1. ACE Design Study and Experiments

    DTIC Science & Technology

    1976-06-01

    orthophoto on off-line printer o Automatically compute contours on UNIVAC 1108 and plot on CALCOMP o Manually trace planimetry and drainage from... orthophoto * o Manually edit and trace plotted contours to obtain completed contour manuscript* - Edit errors - Add missing contour detail - Combine...stereomodels - Contours adjusted to drainage chart and spot elevations - Referring to orthophoto , rectified photos, original photos o Normal

  2. Automatic Contour Extraction of Facial Organs for Frontal Facial Images with Various Facial Expressions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroshi; Suzuki, Seiji; Takahashi, Hisanori; Tange, Akira; Kikuchi, Kohki

    This study deals with a method to realize automatic contour extraction of facial features such as eyebrows, eyes and mouth for the time-wise frontal face with various facial expressions. Because Snakes which is one of the most famous methods used to extract contours, has several disadvantages, we propose a new method to overcome these issues. We define the elastic contour model in order to hold the contour shape and then determine the elastic energy acquired by the amount of modification of the elastic contour model. Also we utilize the image energy obtained by brightness differences of the control points on the elastic contour model. Applying the dynamic programming method, we determine the contour position where the total value of the elastic energy and the image energy becomes minimum. Employing 1/30s time-wise facial frontal images changing from neutral to one of six typical facial expressions obtained from 20 subjects, we have estimated our method and find it enables high accuracy automatic contour extraction of facial features.

  3. Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare).

    PubMed

    Pandey, Bharati; Grover, Abhinav; Sharma, Pradeep

    2018-02-12

    The WRKY transcription factors are a class of DNA-binding proteins involved in diverse plant processes play critical roles in response to abiotic and biotic stresses. Genome-wide divergence analysis of WRKY gene family in Hordeum vulgare provided a framework for molecular evolution and functional roles. So far, the crystal structure of WRKY from barley has not been resolved; moreover, knowledge of the three-dimensional structure of WRKY domain is pre-requisites for exploring the protein-DNA recognition mechanisms. Homology modelling based approach was used to generate structures for WRKY DNA binding domain (DBD) and its variants using AtWRKY1 as a template. Finally, the stability and conformational changes of the generated model in unbound and bound form was examined through atomistic molecular dynamics (MD) simulations for 100 ns time period. In this study, we investigated the comparative binding pattern of WRKY domain and its variants with W-box cis-regulatory element using molecular docking and dynamics (MD) simulations assays. The atomic insight into WRKY domain exhibited significant variation in the intermolecular hydrogen bonding pattern, leading to the structural anomalies in the variant type and differences in the DNA-binding specificities. Based on the MD analysis, residual contribution and interaction contour, wild-type WRKY (HvWRKY46) were found to interact with DNA through highly conserved heptapeptide in the pre- and post-MD simulated complexes, whereas heptapeptide interaction with DNA was missing in variants (I and II) in post-MD complexes. Consequently, through principal component analysis, wild-type WRKY was also found to be more stable by obscuring a reduced conformational space than the variant I (HvWRKY34). Lastly, high binding free energy for wild-type and variant II allowed us to conclude that wild-type WRKY-DNA complex was more stable relative to variants I. The results of our study revealed complete dynamic and structural information about WRKY domain-DNA interactions. However, no structure base information reported to date for WRKY variants and their mechanism of interaction with DNA. Our findings highlighted the importance of selecting a sequence to generate newer transgenic plants that would be increasingly tolerance to stress conditions.

  4. Advanced surface design for logistics analysis

    NASA Astrophysics Data System (ADS)

    Brown, Tim R.; Hansen, Scott D.

    The development of anthropometric arm/hand and tool models and their manipulation in a large system model for maintenance simulation are discussed. The use of Advanced Surface Design and s-fig technology in anthropometrics, and three-dimensional graphics simulation tools, are found to achieve a good balance between model manipulation speed and model accuracy. The present second generation models are shown to be twice as fast to manipulate as the first generation b-surf models, to be easier to manipulate into various configurations, and to more closely approximate human contours.

  5. Unobtrusive Multi-Static Serial LiDAR Imager (UMSLI) First Generation Shape-Matching Based Classifier for 2D Contours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Zheng; Ouyang, Bing; Principe, Jose

    A multi-static serial LiDAR system prototype was developed under DE-EE0006787 to detect, classify, and record interactions of marine life with marine hydrokinetic generation equipment. This software implements a shape-matching based classifier algorithm for the underwater automated detection of marine life for that system. In addition to applying shape descriptors, the algorithm also adopts information theoretical learning based affine shape registration, improving point correspondences found by shape descriptors as well as the final similarity measure.

  6. [Plumage structure and skin weight in nestlings of cranes (Gruidae, Gruiformes)].

    PubMed

    Il'iashenko, V Iu; Chernova, O F

    2008-01-01

    A decrease in the down density and integument relative weight has been demonstrated in the ontogeny of nestlings. Coupled with the differentiation of the down cover (several generations of the down and down plumages with a typical heterochrony), this provides for the development of a multilayer thermal insulation cover evenly distributed over the nestling body and required for homeothermy. Comparative analysis of the structure of natal and mesoptile down, accessory feathers, and downy part of the vane of contour feathers has demonstrated the highest generalization in the mesoptile down generation.

  7. Gas Forming a V-Shape Aluminum Sheet into a Trough of Saddle-Contour

    NASA Astrophysics Data System (ADS)

    Lee, Shyong; Lan, Hsien-Chin; Lee, Jye; Wang, Jian-Yih; Huang, J. C.; Chu, Chun Lin

    2012-11-01

    A sheet metal trough of aluminum alloys is manufactured by gas-forming process at 500 °C. The product with slope walls is of ~1.2 m long and ~260 mm opening width, comprising two conical sinks at two ends. The depth of one sink apex is ~350 mm, which results in the depth/width ratio reaching 1.4. To form such a complex shape with high aspect ratio, a pre-form of V-shape groove is prepared prior to the gas-forming work. When this double concave trough is turned upside down, the convex contour resembles the back of a twin hump camel. The formability of this configuration depends on the gas pressurization rate profile, the working temperature, material's micro-structure, as well as pre-form design. The latter point is demonstrated by comparing two aluminum alloys, AA5182 and SP5083, with nearly same compositions but very different grain sizes.

  8. Mandibular reconstruction using fibula free flap harvested using a customised cutting guide: how we do it.

    PubMed

    Tarsitano, A; Ciocca, L; Cipriani, R; Scotti, R; Marchetti, C

    2015-06-01

    Free fibula flap is routinely used for mandibular reconstructions. For contouring the flap, multiple osteotomies should be shaped to reproduce the native mandibular contour. The bone segments should be fixed using a reconstructive plate. This plate is usually manually bent by the surgeon during surgery. This method is efficient, but during reconstruction it is complicated to reproduce the complex 3D conformation of the mandible and recreate a normal morphology with a mandibular profile as similar as possible to the original; any aberration in its structural alignment may lead to aesthetic and function alterations due to malocclusion or temporomandibular disorders. In order to achieve better morphological and functional outcomes, we have performed a customised flap harvest using cutting guides. This study demonstrates how we have performed customised mandibular reconstruction using CAD-CAM fibular cutting guides in 20 patients undergoing oncological segmental resection.

  9. Segmentation algorithm on smartphone dual camera: application to plant organs in the wild

    NASA Astrophysics Data System (ADS)

    Bertrand, Sarah; Cerutti, Guillaume; Tougne, Laure

    2018-04-01

    In order to identify the species of a tree, the different organs that are the leaves, the bark, the flowers and the fruits, are inspected by botanists. So as to develop an algorithm that identifies automatically the species, we need to extract these objects of interest from their complex natural environment. In this article, we focus on the segmentation of flowers and fruits and we present a new method of segmentation based on an active contour algorithm using two probability maps. The first map is constructed via the dual camera that we can find on the back of the latest smartphones. The second map is made with the help of a multilayer perceptron (MLP). The combination of these two maps to drive the evolution of the object contour allows an efficient segmentation of the organ from a natural background.

  10. Contour integral method for obtaining the self-energy matrices of electrodes in electron transport calculations

    NASA Astrophysics Data System (ADS)

    Iwase, Shigeru; Futamura, Yasunori; Imakura, Akira; Sakurai, Tetsuya; Tsukamoto, Shigeru; Ono, Tomoya

    2018-05-01

    We propose an efficient computational method for evaluating the self-energy matrices of electrodes to study ballistic electron transport properties in nanoscale systems. To reduce the high computational cost incurred in large systems, a contour integral eigensolver based on the Sakurai-Sugiura method combined with the shifted biconjugate gradient method is developed to solve an exponential-type eigenvalue problem for complex wave vectors. A remarkable feature of the proposed algorithm is that the numerical procedure is very similar to that of conventional band structure calculations. We implement the developed method in the framework of the real-space higher-order finite-difference scheme with nonlocal pseudopotentials. Numerical tests for a wide variety of materials validate the robustness, accuracy, and efficiency of the proposed method. As an illustration of the method, we present the electron transport property of the freestanding silicene with the line defect originating from the reversed buckled phases.

  11. Study of complex molecular systems by probe vibrational spectroscopy method

    NASA Astrophysics Data System (ADS)

    Boldeskul, A. E.; Zatsepin, V. M.; Atakhodjaev, A. K.; Shermatov, A. N.; Ashburiev, R.

    1984-03-01

    Experimental study of benzonitril as a probe in aqueous solution of sodium lauril sulphate /SDS/ by Raman spectroscopy technique showed integral moments of √ /C X N/ line to be extremely sensitive to the structural transitions in micellar systems. The central part of the experimental contour was used to determine integral moments with the help of line shape approximant received by Mori method

  12. Fourier descriptor analysis and unification of voice range profile contours: method and applications.

    PubMed

    Pabon, Peter; Ternström, Sten; Lamarche, Anick

    2011-06-01

    To describe a method for unified description, statistical modeling, and comparison of voice range profile (VRP) contours, even from diverse sources. A morphologic modeling technique, which is based on Fourier descriptors (FDs), is applied to the VRP contour. The technique, which essentially involves resampling of the curve of the contour, is assessed and also is compared to density-based VRP averaging methods that use the overlap count. VRP contours can be usefully described and compared using FDs. The method also permits the visualization of the local covariation along the contour average. For example, the FD-based analysis shows that the population variance for ensembles of VRP contours is usually smallest at the upper left part of the VRP. To illustrate the method's advantages and possible further application, graphs are given that compare the averaged contours from different authors and recording devices--for normal, trained, and untrained male and female voices as well as for child voices. The proposed technique allows any VRP shape to be brought to the same uniform base. On this uniform base, VRP contours or contour elements coming from a variety of sources may be placed within the same graph for comparison and for statistical analysis.

  13. Geophysical Data Sets in GeoMapApp

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.

    2017-12-01

    GeoMapApp (http://www.geomapapp.org), a free map-based data tool developed at Lamont-Doherty Earth Observatory, provides access to hundreds of integrated geoscience data sets that are useful for geophysical studies. Examples include earthquake and volcano catalogues, gravity and magnetics data, seismic velocity tomographic models, geological maps, geochemical analytical data, lithospheric plate boundary information, geodetic velocities, and high-resolution bathymetry and land elevations. Users can also import and analyse their own data files. Data analytical functions provide contouring, shading, profiling, layering and transparency, allowing multiple data sets to be seamlessly compared. A new digitization and field planning portal allow stations and waypoints to be generated. Sessions can be saved and shared with colleagues and students. In this eLightning presentation we will demonstrate some of GeoMapApp's capabilities with a focus upon subduction zones and tectonics. In the attached screen shot of the Cascadia margin, the contoured depth to the top of the subducting Juan de Fuca slab is overlain on a shear wave velocity depth slice. Geochemical data coloured on Al2O3 and scaled on MgO content is shown as circles. The stack of data profiles was generated along the white line.

  14. Highway traffic noise prediction based on GIS

    NASA Astrophysics Data System (ADS)

    Zhao, Jianghua; Qin, Qiming

    2014-05-01

    Before building a new road, we need to predict the traffic noise generated by vehicles. Traditional traffic noise prediction methods are based on certain locations and they are not only time-consuming, high cost, but also cannot be visualized. Geographical Information System (GIS) can not only solve the problem of manual data processing, but also can get noise values at any point. The paper selected a road segment from Wenxi to Heyang. According to the geographical overview of the study area and the comparison between several models, we combine the JTG B03-2006 model and the HJ2.4-2009 model to predict the traffic noise depending on the circumstances. Finally, we interpolate the noise values at each prediction point and then generate contours of noise. By overlaying the village data on the noise contour layer, we can get the thematic maps. The use of GIS for road traffic noise prediction greatly facilitates the decision-makers because of GIS spatial analysis function and visualization capabilities. We can clearly see the districts where noise are excessive, and thus it becomes convenient to optimize the road line and take noise reduction measures such as installing sound barriers and relocating villages and so on.

  15. Three-dimensional reconstruction from serial sections in PC-Windows platform by using 3D_Viewer.

    PubMed

    Xu, Yi-Hua; Lahvis, Garet; Edwards, Harlene; Pitot, Henry C

    2004-11-01

    Three-dimensional (3D) reconstruction from serial sections allows identification of objects of interest in 3D and clarifies the relationship among these objects. 3D_Viewer, developed in our laboratory for this purpose, has four major functions: image alignment, movie frame production, movie viewing, and shift-overlay image generation. Color images captured from serial sections were aligned; then the contours of objects of interest were highlighted in a semi-automatic manner. These 2D images were then automatically stacked at different viewing angles, and their composite images on a projected plane were recorded by an image transform-shift-overlay technique. These composition images are used in the object-rotation movie show. The design considerations of the program and the procedures used for 3D reconstruction from serial sections are described. This program, with a digital image-capture system, a semi-automatic contours highlight method, and an automatic image transform-shift-overlay technique, greatly speeds up the reconstruction process. Since images generated by 3D_Viewer are in a general graphic format, data sharing with others is easy. 3D_Viewer is written in MS Visual Basic 6, obtainable from our laboratory on request.

  16. Effects of axisymmetric contractions on turbulence of various scales

    NASA Technical Reports Server (NTRS)

    Tan-Atichat, J.; Nagib, H. M.; Drubka, R. E.

    1980-01-01

    Digitally acquired and processed results from an experimental investigation of grid generated turbulence of various scales through and downstream of nine matched cubic contour contractions ranging in area ratio from 2 to 36, and in length to inlet diameter ratio from 0.25 to 1.50 are reported. An additional contraction with a fifth order contour was also utilized for studying the shape effect. Thirteen homogeneous and nearly isotropic test flow conditions with a range of turbulence intensities, length scales and Reynolds numbers were generated and used to examine the sensitivity of the contractions to upstream turbulence. The extent to which the turbulence is altered by the contraction depends on the incoming turbulence scales, the total strain experienced by the fluid, as well as the contraction ratio and the strain rate. Varying the turbulence integral scale influences the transverse turbulence components more than the streamwise component. In general, the larger the turbulence scale, the lesser the reduction in the turbulence intensity of the transverse components. Best agreement with rapid distortion theory was obtained for large scale turbulence, where viscous decay over the contraction length was negligible, or when a first order correction for viscous decay was applied to the results.

  17. Semantic shape similarity-based contour tracking evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqin; Luo, Wenhan; Zhao, Li; Li, Wei; Hu, Weiming

    2011-10-01

    One major problem of contour-based tracking is how to evaluate the accuracy of tracking results due to nonrigid and deformative properties of contours. We propose a shape context-based evaluation measure that considers the semantic shape similarity between the tracked contour and ground-truth contour. In addition, a pyramid match kernel is introduced for shape histogram matching, which can effectively deal with the contours with different scales. Experimental results demonstrate, compared to two start-of-art evaluation measures, our measure effectively captures the local shape information and thus is more consistent with human vision.

  18. Assessing the Importance of Lexical Tone Contour to Sentence Perception in Mandarin-Speaking Children With Normal Hearing.

    PubMed

    Zhu, Shufeng; Wong, Lena L N; Wang, Bin; Chen, Fei

    2017-07-12

    The aim of the present study was to evaluate the influence of lexical tone contour and age on sentence perception in quiet and in noise conditions in Mandarin-speaking children ages 7 to 11 years with normal hearing. Test materials were synthesized Mandarin sentences, each word with a manipulated lexical contour, that is, normal contour, flat contour, or a tone contour randomly selected from the four Mandarin lexical tone contours. A convenience sample of 75 Mandarin-speaking participants with normal hearing, ages 7, 9, and 11 years (25 participants in each age group), was selected. Participants were asked to repeat the synthesized speech in quiet and in speech spectrum-shaped noise at 0 dB signal-to-noise ratio. In quiet, sentence recognition by the 11-year-old children was similar to that of adults, and misrepresented lexical tone contours did not have a detrimental effect. However, the performance of children ages 9 and 7 years was significantly poorer. The performance of all three age groups, especially the younger children, declined significantly in noise. The present research suggests that lexical tone contour plays an important role in Mandarin sentence recognition, and misrepresented tone contours result in greater difficulty in sentence recognition in younger children. These results imply that maturation and/or language use experience play a role in the processing of tone contours for Mandarin speech understanding, particularly in noise.

  19. Two-layer critical dimensions and overlay process window characterization and improvement in full-chip computational lithography

    NASA Astrophysics Data System (ADS)

    Sturtevant, John L.; Liubich, Vlad; Gupta, Rachit

    2016-04-01

    Edge placement error (EPE) was a term initially introduced to describe the difference between predicted pattern contour edge and the design target for a single design layer. Strictly speaking, this quantity is not directly measurable in the fab. What is of vital importance is the relative edge placement errors between different design layers, and in the era of multipatterning, the different constituent mask sublayers for a single design layer. The critical dimensions (CD) and overlay between two layers can be measured in the fab, and there has always been a strong emphasis on control of overlay between design layers. The progress in this realm has been remarkable, accelerated in part at least by the proliferation of multipatterning, which reduces the available overlay budget by introducing a coupling of overlay and CD errors for the target layer. Computational lithography makes possible the full-chip assessment of two-layer edge to edge distances and two-layer contact overlap area. We will investigate examples of via-metal model-based analysis of CD and overlay errors. We will investigate both single patterning and double patterning. For single patterning, we show the advantage of contour-to-contour simulation over contour to target simulation, and how the addition of aberrations in the optical models can provide a more realistic CD-overlay process window (PW) for edge placement errors. For double patterning, the interaction of 4-layer CD and overlay errors is very complex, but we illustrate that not only can full-chip verification identify potential two-layer hotspots, the optical proximity correction engine can act to mitigate such hotspots and enlarge the joint CD-overlay PW.

  20. Implementation and preliminary evaluation of 'C-tone': A novel algorithm to improve lexical tone recognition in Mandarin-speaking cochlear implant users.

    PubMed

    Ping, Lichuan; Wang, Ningyuan; Tang, Guofang; Lu, Thomas; Yin, Li; Tu, Wenhe; Fu, Qian-Jie

    2017-09-01

    Because of limited spectral resolution, Mandarin-speaking cochlear implant (CI) users have difficulty perceiving fundamental frequency (F0) cues that are important to lexical tone recognition. To improve Mandarin tone recognition in CI users, we implemented and evaluated a novel real-time algorithm (C-tone) to enhance the amplitude contour, which is strongly correlated with the F0 contour. The C-tone algorithm was implemented in clinical processors and evaluated in eight users of the Nurotron NSP-60 CI system. Subjects were given 2 weeks of experience with C-tone. Recognition of Chinese tones, monosyllables, and disyllables in quiet was measured with and without the C-tone algorithm. Subjective quality ratings were also obtained for C-tone. After 2 weeks of experience with C-tone, there were small but significant improvements in recognition of lexical tones, monosyllables, and disyllables (P < 0.05 in all cases). Among lexical tones, the largest improvements were observed for Tone 3 (falling-rising) and the smallest for Tone 4 (falling). Improvements with C-tone were greater for disyllables than for monosyllables. Subjective quality ratings showed no strong preference for or against C-tone, except for perception of own voice, where C-tone was preferred. The real-time C-tone algorithm provided small but significant improvements for speech performance in quiet with no change in sound quality. Pre-processing algorithms to reduce noise and better real-time F0 extraction would improve the benefits of C-tone in complex listening environments. Chinese CI users' speech recognition in quiet can be significantly improved by modifying the amplitude contour to better resemble the F0 contour.

  1. SU-F-J-95: Impact of Shape Complexity On the Accuracy of Gradient-Based PET Volume Delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dance, M; Wu, G; Gao, Y

    2016-06-15

    Purpose: Explore correlation of tumor complexity shape with PET target volume accuracy when delineated with gradient-based segmentation tool. Methods: A total of 24 clinically realistic digital PET Monte Carlo (MC) phantoms of NSCLC were used in the study. The phantom simulated 29 thoracic lesions (lung primary and mediastinal lymph nodes) of varying size, shape, location, and {sup 18}F-FDG activity. A program was developed to calculate a curvature vector along the outline and the standard deviation of this vector was used as a metric to quantify a shape’s “complexity score”. This complexity score was calculated for standard geometric shapes and MC-generatedmore » target volumes in PET phantom images. All lesions were contoured using a commercially available gradient-based segmentation tool and the differences in volume from the MC-generated volumes were calculated as the measure of the accuracy of segmentation. Results: The average absolute percent difference in volumes between the MC-volumes and gradient-based volumes was 11% (0.4%–48.4%). The complexity score showed strong correlation with standard geometric shapes. However, no relationship was found between the complexity score and the accuracy of segmentation by gradient-based tool on MC simulated tumors (R{sup 2} = 0.156). When the lesions were grouped into primary lung lesions and mediastinal/mediastinal adjacent lesions, the average absolute percent difference in volumes were 6% and 29%, respectively. The former group is more isolated and the latter is more surround by tissues with relatively high SUV background. Conclusion: The complexity shape of NSCLC lesions has little effect on the accuracy of the gradient-based segmentation method and thus is not a good predictor of uncertainty in target volume delineation. Location of lesion within a relatively high SUV background may play a more significant role in the accuracy of gradient-based segmentation.« less

  2. Analysis and synthesis of intonation using the Tilt model.

    PubMed

    Taylor, P

    2000-03-01

    This paper introduces the Tilt intonational model and describes how this model can be used to automatically analyze and synthesize intonation. In the model, intonation is represented as a linear sequence of events, which can be pitch accents or boundary tones. Each event is characterized by continuous parameters representing amplitude, duration, and tilt (a measure of the shape of the event). The paper describes an event detector, in effect an intonational recognition system, which produces a transcription of an utterance's intonation. The features and parameters of the event detector are discussed and performance figures are shown on a variety of read and spontaneous speaker independent conversational speech databases. Given the event locations, algorithms are described which produce an automatic analysis of each event in terms of the Tilt parameters. Synthesis algorithms are also presented which generate F0 contours from Tilt representations. The accuracy of these is shown by comparing synthetic F0 contours to real F0 contours. The paper concludes with an extensive discussion on linguistic representations of intonation and gives evidence that the Tilt model goes a long way to satisfying the desired goals of such a representation in that it has the right number of degrees of freedom to be able to describe and synthesize intonation accurately.

  3. Automatic selection of localized region-based active contour models using image content analysis applied to brain tumor segmentation.

    PubMed

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Cepeda-Negrete, Jonathan; Ibarra-Manzano, Mario Alberto; Chalopin, Claire

    2017-12-01

    Brain tumor segmentation is a routine process in a clinical setting and provides useful information for diagnosis and treatment planning. Manual segmentation, performed by physicians or radiologists, is a time-consuming task due to the large quantity of medical data generated presently. Hence, automatic segmentation methods are needed, and several approaches have been introduced in recent years including the Localized Region-based Active Contour Model (LRACM). There are many popular LRACM, but each of them presents strong and weak points. In this paper, the automatic selection of LRACM based on image content and its application on brain tumor segmentation is presented. Thereby, a framework to select one of three LRACM, i.e., Local Gaussian Distribution Fitting (LGDF), localized Chan-Vese (C-V) and Localized Active Contour Model with Background Intensity Compensation (LACM-BIC), is proposed. Twelve visual features are extracted to properly select the method that may process a given input image. The system is based on a supervised approach. Applied specifically to Magnetic Resonance Imaging (MRI) images, the experiments showed that the proposed system is able to correctly select the suitable LRACM to handle a specific image. Consequently, the selection framework achieves better accuracy performance than the three LRACM separately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Using perceptual rules in interactive visualization

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.; Treinish, Lloyd A.

    1994-05-01

    In visualization, data are represented as variations in grayscale, hue, shape, and texture. They can be mapped to lines, surfaces, and glyphs, and can be represented statically or in animation. In modem visualization systems, the choices for representing data seem unlimited. This is both a blessing and a curse, however, since the visual impression created by the visualization depends critically on which dimensions are selected for representing the data (Bertin, 1967; Tufte, 1983; Cleveland, 1991). In modem visualization systems, the user can interactively select many different mapping and representation operations, and can interactively select processing operations (e.g., applying a color map), realization operations (e.g., generating geometric structures such as contours or streamlines), and rendering operations (e.g., shading or ray-tracing). The user can, for example, map data to a color map, then apply contour lines, then shift the viewing angle, then change the color map again, etc. In many systems, the user can vary the choices for each operation, selecting, for example, particular color maps, contour characteristics, and shading techniques. The hope is that this process will eventually converge on a visual representation which expresses the structure of the data and effectively communicates its message in a way that meets the user's goals. Sometimes, however, it results in visual representations which are confusing, misleading, and garish.

  5. Saliency-aware food image segmentation for personal dietary assessment using a wearable computer

    PubMed Central

    Chen, Hsin-Chen; Jia, Wenyan; Sun, Xin; Li, Zhaoxin; Li, Yuecheng; Fernstrom, John D.; Burke, Lora E.; Baranowski, Thomas; Sun, Mingui

    2015-01-01

    Image-based dietary assessment has recently received much attention in the community of obesity research. In this assessment, foods in digital pictures are specified, and their portion sizes (volumes) are estimated. Although manual processing is currently the most utilized method, image processing holds much promise since it may eventually lead to automatic dietary assessment. In this paper we study the problem of segmenting food objects from images. This segmentation is difficult because of various food types, shapes and colors, different decorating patterns on food containers, and occlusions of food and non-food objects. We propose a novel method based on a saliency-aware active contour model (ACM) for automatic food segmentation from images acquired by a wearable camera. An integrated saliency estimation approach based on food location priors and visual attention features is designed to produce a salient map of possible food regions in the input image. Next, a geometric contour primitive is generated and fitted to the salient map by means of multi-resolution optimization with respect to a set of affine and elastic transformation parameters. The food regions are then extracted after contour fitting. Our experiments using 60 food images showed that the proposed method achieved significantly higher accuracy in food segmentation when compared to conventional segmentation methods. PMID:26257473

  6. Inner and outer coronary vessel wall segmentation from CCTA using an active contour model with machine learning-based 3D voxel context-aware image force

    NASA Astrophysics Data System (ADS)

    Sivalingam, Udhayaraj; Wels, Michael; Rempfler, Markus; Grosskopf, Stefan; Suehling, Michael; Menze, Bjoern H.

    2016-03-01

    In this paper, we present a fully automated approach to coronary vessel segmentation, which involves calcification or soft plaque delineation in addition to accurate lumen delineation, from 3D Cardiac Computed Tomography Angiography data. Adequately virtualizing the coronary lumen plays a crucial role for simulating blood ow by means of fluid dynamics while additionally identifying the outer vessel wall in the case of arteriosclerosis is a prerequisite for further plaque compartment analysis. Our method is a hybrid approach complementing Active Contour Model-based segmentation with an external image force that relies on a Random Forest Regression model generated off-line. The regression model provides a strong estimate of the distance to the true vessel surface for every surface candidate point taking into account 3D wavelet-encoded contextual image features, which are aligned with the current surface hypothesis. The associated external image force is integrated in the objective function of the active contour model, such that the overall segmentation approach benefits from the advantages associated with snakes and from the ones associated with machine learning-based regression alike. This yields an integrated approach achieving competitive results on a publicly available benchmark data collection (Rotterdam segmentation challenge).

  7. Level set method for image segmentation based on moment competition

    NASA Astrophysics Data System (ADS)

    Min, Hai; Wang, Xiao-Feng; Huang, De-Shuang; Jin, Jing; Wang, Hong-Zhi; Li, Hai

    2015-05-01

    We propose a level set method for image segmentation which introduces the moment competition and weakly supervised information into the energy functional construction. Different from the region-based level set methods which use force competition, the moment competition is adopted to drive the contour evolution. Here, a so-called three-point labeling scheme is proposed to manually label three independent points (weakly supervised information) on the image. Then the intensity differences between the three points and the unlabeled pixels are used to construct the force arms for each image pixel. The corresponding force is generated from the global statistical information of a region-based method and weighted by the force arm. As a result, the moment can be constructed and incorporated into the energy functional to drive the evolving contour to approach the object boundary. In our method, the force arm can take full advantage of the three-point labeling scheme to constrain the moment competition. Additionally, the global statistical information and weakly supervised information are successfully integrated, which makes the proposed method more robust than traditional methods for initial contour placement and parameter setting. Experimental results with performance analysis also show the superiority of the proposed method on segmenting different types of complicated images, such as noisy images, three-phase images, images with intensity inhomogeneity, and texture images.

  8. Towards molecular design using 2D-molecular contour maps obtained from PLS regression coefficients

    NASA Astrophysics Data System (ADS)

    Borges, Cleber N.; Barigye, Stephen J.; Freitas, Matheus P.

    2017-12-01

    The multivariate image analysis descriptors used in quantitative structure-activity relationships are direct representations of chemical structures as they are simply numerical decodifications of pixels forming the 2D chemical images. These MDs have found great utility in the modeling of diverse properties of organic molecules. Given the multicollinearity and high dimensionality of the data matrices generated with the MIA-QSAR approach, modeling techniques that involve the projection of the data space onto orthogonal components e.g. Partial Least Squares (PLS) have been generally used. However, the chemical interpretation of the PLS-based MIA-QSAR models, in terms of the structural moieties affecting the modeled bioactivity has not been straightforward. This work describes the 2D-contour maps based on the PLS regression coefficients, as a means of assessing the relevance of single MIA predictors to the response variable, and thus allowing for the structural, electronic and physicochemical interpretation of the MIA-QSAR models. A sample study to demonstrate the utility of the 2D-contour maps to design novel drug-like molecules is performed using a dataset of some anti-HIV-1 2-amino-6-arylsulfonylbenzonitriles and derivatives, and the inferences obtained are consistent with other reports in the literature. In addition, the different schemes for encoding atomic properties in molecules are discussed and evaluated.

  9. Keywords image retrieval in historical handwritten Arabic documents

    NASA Astrophysics Data System (ADS)

    Saabni, Raid; El-Sana, Jihad

    2013-01-01

    A system is presented for spotting and searching keywords in handwritten Arabic documents. A slightly modified dynamic time warping algorithm is used to measure similarities between words. Two sets of features are generated from the outer contour of the words/word-parts. The first set is based on the angles between nodes on the contour and the second set is based on the shape context features taken from the outer contour. To recognize a given word, the segmentation-free approach is partially adopted, i.e., continuous word parts are used as the basic alphabet, instead of individual characters or complete words. Additional strokes, such as dots and detached short segments, are classified and used in a postprocessing step to determine the final comparison decision. The search for a keyword is performed by the search for its word parts given in the correct order. The performance of the presented system was very encouraging in terms of efficiency and match rates. To evaluate the presented system its performance is compared to three different systems. Unfortunately, there are no publicly available standard datasets with ground truth for testing Arabic key word searching systems. Therefore, a private set of images partially taken from Juma'a Al-Majid Center in Dubai for evaluation is used, while using a slightly modified version of the IFN/ENIT database for training.

  10. Saliency-aware food image segmentation for personal dietary assessment using a wearable computer

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Chen; Jia, Wenyan; Sun, Xin; Li, Zhaoxin; Li, Yuecheng; Fernstrom, John D.; Burke, Lora E.; Baranowski, Thomas; Sun, Mingui

    2015-02-01

    Image-based dietary assessment has recently received much attention in the community of obesity research. In this assessment, foods in digital pictures are specified, and their portion sizes (volumes) are estimated. Although manual processing is currently the most utilized method, image processing holds much promise since it may eventually lead to automatic dietary assessment. In this paper we study the problem of segmenting food objects from images. This segmentation is difficult because of various food types, shapes and colors, different decorating patterns on food containers, and occlusions of food and non-food objects. We propose a novel method based on a saliency-aware active contour model (ACM) for automatic food segmentation from images acquired by a wearable camera. An integrated saliency estimation approach based on food location priors and visual attention features is designed to produce a salient map of possible food regions in the input image. Next, a geometric contour primitive is generated and fitted to the salient map by means of multi-resolution optimization with respect to a set of affine and elastic transformation parameters. The food regions are then extracted after contour fitting. Our experiments using 60 food images showed that the proposed method achieved significantly higher accuracy in food segmentation when compared to conventional segmentation methods.

  11. A Novel Method of Aircraft Detection Based on High-Resolution Panchromatic Optical Remote Sensing Images

    PubMed Central

    Wang, Wensheng; Nie, Ting; Fu, Tianjiao; Ren, Jianyue; Jin, Longxu

    2017-01-01

    In target detection of optical remote sensing images, two main obstacles for aircraft target detection are how to extract the candidates in complex gray-scale-multi background and how to confirm the targets in case the target shapes are deformed, irregular or asymmetric, such as that caused by natural conditions (low signal-to-noise ratio, illumination condition or swaying photographing) and occlusion by surrounding objects (boarding bridge, equipment). To solve these issues, an improved active contours algorithm, namely region-scalable fitting energy based threshold (TRSF), and a corner-convex hull based segmentation algorithm (CCHS) are proposed in this paper. Firstly, the maximal variance between-cluster algorithm (Otsu’s algorithm) and region-scalable fitting energy (RSF) algorithm are combined to solve the difficulty of targets extraction in complex and gray-scale-multi backgrounds. Secondly, based on inherent shapes and prominent corners, aircrafts are divided into five fragments by utilizing convex hulls and Harris corner points. Furthermore, a series of new structure features, which describe the proportion of targets part in the fragment to the whole fragment and the proportion of fragment to the whole hull, are identified to judge whether the targets are true or not. Experimental results show that TRSF algorithm could improve extraction accuracy in complex background, and that it is faster than some traditional active contours algorithms. The CCHS is effective to suppress the detection difficulties caused by the irregular shape. PMID:28481260

  12. Breast mass segmentation in mammograms combining fuzzy c-means and active contours

    NASA Astrophysics Data System (ADS)

    Hmida, Marwa; Hamrouni, Kamel; Solaiman, Basel; Boussetta, Sana

    2018-04-01

    Segmentation of breast masses in mammograms is a challenging issue due to the nature of mammography and the characteristics of masses. In fact, mammographic images are poor in contrast and breast masses have various shapes and densities with fuzzy and ill-defined borders. In this paper, we propose a method based on a modified Chan-Vese active contour model for mass segmentation in mammograms. We conduct the experiment on mass Regions of Interest (ROI) extracted from the MIAS database. The proposed method consists of mainly three stages: Firstly, the ROI is preprocessed to enhance the contrast. Next, two fuzzy membership maps are generated from the preprocessed ROI based on fuzzy C-Means algorithm. These fuzzy membership maps are finally used to modify the energy of the Chan-Vese model and to perform the final segmentation. Experimental results indicate that the proposed method yields good mass segmentation results.

  13. Cochlear's unique electrode portfolio now and in the future.

    PubMed

    von Wallenberg, E; Briggs, R

    2014-05-01

    To review Cochlear's electrode portfolio and discuss the merits of current and future straight and perimodiolar electrode arrays. To present an update on implant reliability. Performance and hearing preservation data from studies involving the Slim Straight (CI422), Hybrid L24 and Contour Advance electrode array were reviewed. While several studies in past found little difference in performance outcomes between subjects implanted with perimodiolar and straight arrays, recent studies demonstrated that proximity to the modiolus is correlated with better performance. Hearing threshold increase was lowest with the Hybrid L24, closely followed by the slim straight array and was largest with the Contour Advance array. The CI24RE receiver-stimulator used for the three arrays had a cumulative survival of 99% at eight years post implantation. Combining the hearing preservation benefits of slim straight arrays with perimodiolar proximity is the design objective of Cochlear's next generation electrodes.

  14. SOM-based nonlinear least squares twin SVM via active contours for noisy image segmentation

    NASA Astrophysics Data System (ADS)

    Xie, Xiaomin; Wang, Tingting

    2017-02-01

    In this paper, a nonlinear least square twin support vector machine (NLSTSVM) with the integration of active contour model (ACM) is proposed for noisy image segmentation. Efforts have been made to seek the kernel-generated surfaces instead of hyper-planes for the pixels belonging to the foreground and background, respectively, using the kernel trick to enhance the performance. The concurrent self organizing maps (SOMs) are applied to approximate the intensity distributions in a supervised way, so as to establish the original training sets for the NLSTSVM. Further, the two sets are updated by adding the global region average intensities at each iteration. Moreover, a local variable regional term rather than edge stop function is adopted in the energy function to ameliorate the noise robustness. Experiment results demonstrate that our model holds the higher segmentation accuracy and more noise robustness.

  15. Map showing contours on top of the upper Cretaceous Mowry Shale, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Crysdale, B.L.

    1991-01-01

    This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 4,926 of these wells that penetrate the Minnelusa Formation and equivalents.

  16. Map showing structure contours on the top of the upper Jurassic Morrison Formation, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Crysdale, B.L.

    1991-01-01

    This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 2,429 of these wells that penetrate the Minnelusa Formation and equivalents.

  17. Active contour based segmentation of resected livers in CT images

    NASA Astrophysics Data System (ADS)

    Oelmann, Simon; Oyarzun Laura, Cristina; Drechsler, Klaus; Wesarg, Stefan

    2015-03-01

    The majority of state of the art segmentation algorithms are able to give proper results in healthy organs but not in pathological ones. However, many clinical applications require an accurate segmentation of pathological organs. The determination of the target boundaries for radiotherapy or liver volumetry calculations are examples of this. Volumetry measurements are of special interest after tumor resection for follow up of liver regrow. The segmentation of resected livers presents additional challenges that were not addressed by state of the art algorithms. This paper presents a snakes based algorithm specially developed for the segmentation of resected livers. The algorithm is enhanced with a novel dynamic smoothing technique that allows the active contour to propagate with different speeds depending on the intensities visible in its neighborhood. The algorithm is evaluated in 6 clinical CT images as well as 18 artificial datasets generated from additional clinical CT images.

  18. SINGLE INSTITUTION VARIABILITY IN INTENSITY MODULATED RADIATION TARGET DELINEATION FOR CANINE NASAL NEOPLASIA.

    PubMed

    Christensen, Neil I; Forrest, Lisa J; White, Pamela J; Henzler, Margaret; Turek, Michelle M

    2016-11-01

    Contouring variability is a significant barrier to the accurate delivery and reporting of radiation therapy. The aim of this descriptive study was to determine the variation in contouring radiation targets and organs at risk by participants within our institution. Further, we also aimed to determine if all individuals contoured the same normal tissues. Two canine nasal tumor datasets were selected and contoured by two ACVR-certified radiation oncologists and two radiation oncology residents from the same institution. Eight structures were consistently contoured including the right and left eye, the right and left lens, brain, the gross tumor volume (GTV), clinical target volume (CTV), and planning target volume (PTV). Spinal cord, hard and soft palate, and bulla were contoured on 50% of datasets. Variation in contouring occurred in both targets and normal tissues at risk and was particularly significant for the GTV, CTV, and PTV. The mean metric score and dice similarity coefficient were below the threshold criteria in 37.5-50% and 12.5-50% of structures, respectively, quantitatively indicating contouring variation. This study refutes our hypothesis that minimal variation in target and normal tissue delineation occurs. The variation in contouring may contribute to different tumor response and toxicity for any given patient. Our results also highlight the difficulty associated with replication of published radiation protocols or treatments, as even with replete contouring description the outcome of treatment is still fundamentally influenced by the individual contouring the patient. © 2016 American College of Veterinary Radiology.

  19. Projection moire for remote contour analysis

    NASA Technical Reports Server (NTRS)

    Doty, J. L.

    1983-01-01

    Remote projection and viewing of moire contours are examined analytically for a system employing separate projection and viewing optics, with specific attention paid to the practical limitations imposed by the optical systems. It is found that planar contours are possible only when the optics are telecentric (exit pupil at infinity) but that the requirement for spatial separability of the contour fringes from extraneous fringes is independent of the specific optics and is a function only of the angle separating the two optic axes. In the nontelecentric case, the contour separation near the object is unchanged from that of the telecentric case, although the contours are distorted into low-eccentricity (near-circular) ellipses. Furthermore, the minimum contour spacing is directly related to the depth of focus through the resolution of the optics.

  20. Automatic contour propagation using deformable image registration to determine delivered dose to spinal cord in head-and-neck cancer radiotherapy.

    PubMed

    Yeap, P L; Noble, D J; Harrison, K; Bates, A M; Burnet, N G; Jena, R; Romanchikova, M; Sutcliffe, M P F; Thomas, S J; Barnett, G C; Benson, R J; Jefferies, S J; Parker, M A

    2017-07-12

    To determine delivered dose to the spinal cord, a technique has been developed to propagate manual contours from kilovoltage computed-tomography (kVCT) scans for treatment planning to megavoltage computed-tomography (MVCT) guidance scans. The technique uses the Elastix software to perform intensity-based deformable image registration of each kVCT scan to the associated MVCT scans. The registration transform is then applied to contours of the spinal cord drawn manually on the kVCT scan, to obtain contour positions on the MVCT scans. Different registration strategies have been investigated, with performance evaluated by comparing the resulting auto-contours with manual contours, drawn by oncologists. The comparison metrics include the conformity index (CI), and the distance between centres (DBC). With optimised registration, auto-contours generally agree well with manual contours. Considering all 30 MVCT scans for each of three patients, the median CI is [Formula: see text], and the median DBC is ([Formula: see text]) mm. An intra-observer comparison for the same scans gives a median CI of [Formula: see text] and a DBC of ([Formula: see text]) mm. Good levels of conformity are also obtained when auto-contours are compared with manual contours from one observer for a single MVCT scan for each of 30 patients, and when they are compared with manual contours from six observers for two MVCT scans for each of three patients. Using the auto-contours to estimate organ position at treatment time, a preliminary study of 33 patients who underwent radiotherapy for head-and-neck cancers indicates good agreement between planned and delivered dose to the spinal cord.

  1. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldini, Elizabeth H., E-mail: ebaldini@partners.org; Abrams, Ross A.; Bosch, Walter

    Purpose: The purpose of this study was to evaluate the variability in target volume and organ at risk (OAR) contour delineation for retroperitoneal sarcoma (RPS) among 12 sarcoma radiation oncologists. Methods and Materials: Radiation planning computed tomography (CT) scans for 2 cases of RPS were distributed among 12 sarcoma radiation oncologists with instructions for contouring gross tumor volume (GTV), clinical target volume (CTV), high-risk CTV (HR CTV: area judged to be at high risk of resulting in positive margins after resection), and OARs: bowel bag, small bowel, colon, stomach, and duodenum. Analysis of contour agreement was performed using the simultaneousmore » truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results: Ten radiation oncologists contoured both RPS cases, 1 contoured only RPS1, and 1 contoured only RPS2 such that each case was contoured by 11 radiation oncologists. The first case (RPS 1) was a patient with a de-differentiated (DD) liposarcoma (LPS) with a predominant well-differentiated (WD) component, and the second case (RPS 2) was a patient with DD LPS made up almost entirely of a DD component. Contouring agreement for GTV and CTV contours was high. However, the agreement for HR CTVs was only moderate. For OARs, agreement for stomach, bowel bag, small bowel, and colon was high, but agreement for duodenum (distorted by tumor in one of these cases) was fair to moderate. Conclusions: For preoperative treatment of RPS, sarcoma radiation oncologists contoured GTV, CTV, and most OARs with a high level of agreement. HR CTV contours were more variable. Further clarification of this volume with the help of sarcoma surgical oncologists is necessary to reach consensus. More attention to delineation of the duodenum is also needed.« less

  2. Automatic contour propagation using deformable image registration to determine delivered dose to spinal cord in head-and-neck cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Yeap, P. L.; Noble, D. J.; Harrison, K.; Bates, A. M.; Burnet, N. G.; Jena, R.; Romanchikova, M.; Sutcliffe, M. P. F.; Thomas, S. J.; Barnett, G. C.; Benson, R. J.; Jefferies, S. J.; Parker, M. A.

    2017-08-01

    To determine delivered dose to the spinal cord, a technique has been developed to propagate manual contours from kilovoltage computed-tomography (kVCT) scans for treatment planning to megavoltage computed-tomography (MVCT) guidance scans. The technique uses the Elastix software to perform intensity-based deformable image registration of each kVCT scan to the associated MVCT scans. The registration transform is then applied to contours of the spinal cord drawn manually on the kVCT scan, to obtain contour positions on the MVCT scans. Different registration strategies have been investigated, with performance evaluated by comparing the resulting auto-contours with manual contours, drawn by oncologists. The comparison metrics include the conformity index (CI), and the distance between centres (DBC). With optimised registration, auto-contours generally agree well with manual contours. Considering all 30 MVCT scans for each of three patients, the median CI is 0.759 +/- 0.003 , and the median DBC is (0.87 +/- 0.01 ) mm. An intra-observer comparison for the same scans gives a median CI of 0.820 +/- 0.002 and a DBC of (0.64 +/- 0.01 ) mm. Good levels of conformity are also obtained when auto-contours are compared with manual contours from one observer for a single MVCT scan for each of 30 patients, and when they are compared with manual contours from six observers for two MVCT scans for each of three patients. Using the auto-contours to estimate organ position at treatment time, a preliminary study of 33 patients who underwent radiotherapy for head-and-neck cancers indicates good agreement between planned and delivered dose to the spinal cord.

  3. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists

    PubMed Central

    Baldini, Elizabeth H.; Abrams, Ross A.; Bosch, Walter; Roberge, David; Haas, Rick L.M.; Catton, Charles N.; Indelicato, Daniel J.; Olsen, Jeffrey R.; Deville, Curtiland; Chen, Yen-Lin; Finkelstein, Steven E.; DeLaney, Thomas F.; Wang, Dian

    2015-01-01

    Purpose The purpose of this study was to evaluate the variability in target volume and organ at risk (OAR) contour delineation for retroperitoneal sarcoma (RPS) among 12 sarcoma radiation oncologists. Methods and Materials Radiation planning computed tomography (CT) scans for 2 cases of RPS were distributed among 12 sarcoma radiation oncologists with instructions for contouring gross tumor volume (GTV), clinical target volume (CTV), high-risk CTV (HR CTV: area judged to be at high risk of resulting in positive margins after resection), and OARs: bowel bag, small bowel, colon, stomach, and duodenum. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results Ten radiation oncologists contoured both RPS cases, 1 contoured only RPS1, and 1 contoured only RPS2 such that each case was contoured by 11 radiation oncologists. The first case (RPS 1) was a patient with a de-differentiated (DD) liposarcoma (LPS) with a predominant well-differentiated (WD) component, and the second case (RPS 2) was a patient with DD LPS made up almost entirely of a DD component. Contouring agreement for GTV and CTV contours was high. However, the agreement for HR CTVs was only moderate. For OARs, agreement for stomach, bowel bag, small bowel, and colon was high, but agreement for duodenum (distorted by tumor in one of these cases) was fair to moderate. Conclusions For preoperative treatment of RPS, sarcoma radiation oncologists contoured GTV, CTV, and most OARs with a high level of agreement. HR CTV contours were more variable. Further clarification of this volume with the help of sarcoma surgical oncologists is necessary to reach consensus. More attention to delineation of the duodenum is also needed. PMID:26194680

  4. Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer.

    PubMed

    Nestle, Ursula; Schaefer-Schuler, Andrea; Kremp, Stephanie; Groeschel, Andreas; Hellwig, Dirk; Rübe, Christian; Kirsch, Carl-Martin

    2007-04-01

    FDG PET is increasingly used in radiotherapy planning. Recently, we demonstrated substantial differences in target volumes when applying different methods of FDG-based contouring in primary lung tumours (Nestle et al., J Nucl Med 2005;46:1342-8). This paper focusses on FDG-positive mediastinal lymph nodes (LN(PET)). In our institution, 51 NSCLC patients who were candidates for radiotherapy prospectively underwent staging FDG PET followed by a thoracic PET scan in the treatment position and a planning CT. Eleven of them had 32 distinguishable non-confluent mediastinal or hilar nodal FDG accumulations (LN(PET)). For these, sets of gross tumour volumes (GTVs) were generated at both acquisition times by four different PET-based contouring methods (visual: GTV(vis); 40% SUVmax: GTV40; SUV=2.5: GTV2.5; target/background (T/B) algorithm: GTV(bg)). All differences concerning GTV sizes were within the range of the resolution of the PET system. The detectability and technical delineability of the GTVs were significantly better in the late scans (e.g. p = 0.02 for diagnostic application of SUVmax = 2.5; p = 0.0001 for technical delineability by GTV2.5; p = 0.003 by GTV40), favouring the GTV(bg) method owing to satisfactory overall applicability and independence of GTVs from acquisition time. Compared with CT, the majority of PET-based GTVs were larger, probably owing to resolution effects, with a possible influence of lesion movements. For nodal GTVs, different methods of contouring did not lead to clinically relevant differences in volumes. However, there were significant differences in technical delineability, especially after early acquisition. Overall, our data favour a late acquisition of FDG PET scans for radiotherapy planning, and the use of a T/B algorithm for GTV contouring.

  5. Computing retinal contour from optical biometry.

    PubMed

    Faria-Ribeiro, Miguel; López-Gil, Norberto; Navarro, Rafael; Lopes-Ferreira, Daniela; Jorge, Jorge; González-Méijome, Jose Manuel

    2014-04-01

    To describe a new methodology that derives horizontal posterior retinal contours from partial coherence interferometry (PCI) and ray tracing using the corneal topography. Corneal topography and PCI for seven horizontal visual field eccentricities correspondent to the central 60 degrees of the posterior pole were obtained in 55 myopic eyes. A semicustomized eye model based on the subject's corneal topography and the Navarro eye model was generated using Zemax-EE software. The model was used to compute the optical path length in the seven directions where PCI measurements were obtained. Vitreous chamber depth was computed using the PCI values obtained at each of those directions. Matlab software was developed to fit the best conic curve to the set of points previously obtained. We tested the limit in the accuracy of the methodology when the actual cornea of the subject is not used and for two different lens geometries. A standard eye model can induce an error in the retina sagitta estimation of the order of hundreds of micrometers in comparison with the semicustomized eye model. However, the use of a different lens model leads to an error of the order of tens of micrometers. The apical radius and conic constant of the average fit were -11.91 mm and -0.15, respectively. In general, a nasal-temporal asymmetry in the retina contour was found, showing mean larger values of vitreous chamber depth in the nasal side of the eye. The use of a semicustomized eye model, together with optical path length measured by PCI for different angles, can be used to predict the retinal contour within tenths of micrometers. This methodology can be useful in studies trying to understand the effect of peripheral retinal location on myopia progression as well as modeling the optics of the human eye for a wide field.

  6. Individual tree crown delineation using localized contour tree method and airborne LiDAR data in coniferous forests

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Yu, Bailang; Wu, Qiusheng; Huang, Yan; Chen, Zuoqi; Wu, Jianping

    2016-10-01

    Individual tree crown delineation is of great importance for forest inventory and management. The increasing availability of high-resolution airborne light detection and ranging (LiDAR) data makes it possible to delineate the crown structure of individual trees and deduce their geometric properties with high accuracy. In this study, we developed an automated segmentation method that is able to fully utilize high-resolution LiDAR data for detecting, extracting, and characterizing individual tree crowns with a multitude of geometric and topological properties. The proposed approach captures topological structure of forest and quantifies topological relationships of tree crowns by using a graph theory-based localized contour tree method, and finally segments individual tree crowns by analogy of recognizing hills from a topographic map. This approach consists of five key technical components: (1) derivation of canopy height model from airborne LiDAR data; (2) generation of contours based on the canopy height model; (3) extraction of hierarchical structures of tree crowns using the localized contour tree method; (4) delineation of individual tree crowns by segmenting hierarchical crown structure; and (5) calculation of geometric and topological properties of individual trees. We applied our new method to the Medicine Bow National Forest in the southwest of Laramie, Wyoming and the HJ Andrews Experimental Forest in the central portion of the Cascade Range of Oregon, U.S. The results reveal that the overall accuracy of individual tree crown delineation for the two study areas achieved 94.21% and 75.07%, respectively. Our method holds great potential for segmenting individual tree crowns under various forest conditions. Furthermore, the geometric and topological attributes derived from our method provide comprehensive and essential information for forest management.

  7. Clinical validation and applications for CT-based atlas for contouring the lower cranial nerves for head and neck cancer radiation therapy.

    PubMed

    Mourad, Waleed F; Young, Brett M; Young, Rebekah; Blakaj, Dukagjin M; Ohri, Nitin; Shourbaji, Rania A; Manolidis, Spiros; Gámez, Mauricio; Kumar, Mahesh; Khorsandi, Azita; Khan, Majid A; Shasha, Daniel; Blakaj, Adriana; Glanzman, Jonathan; Garg, Madhur K; Hu, Kenneth S; Kalnicki, Shalom; Harrison, Louis B

    2013-09-01

    Radiation induced cranial nerve palsy (RICNP) involving the lower cranial nerves (CNs) is a serious complication of head and neck radiotherapy (RT). Recommendations for delineating the lower CNs on RT planning studies do not exist. The aim of the current study is to develop a standardized methodology for contouring CNs IX-XII, which would help in establishing RT limiting doses for organs at risk (OAR). Using anatomic texts, radiologic data, and guidance from experts in head and neck anatomy, we developed step-by-step instructions for delineating CNs IX-XII on computed tomography (CT) imaging. These structures were then contoured on five consecutive patients who underwent definitive RT for locally-advanced head and neck cancer (LAHNC). RT doses delivered to the lower CNs were calculated. We successfully developed a contouring atlas for CNs IX-XII. The median total dose to the planning target volume (PTV) was 70Gy (range: 66-70Gy). The median CN (IX-XI) and (XII) volumes were 10c.c (range: 8-12c.c) and 8c.c (range: 7-10c.c), respectively. The median V50, V60, V66, and V70 of the CN (IX-XI) and (XII) volumes were (85, 77, 71, 65) and (88, 80, 74, 64) respectively. The median maximal dose to the CN (IX-XI) and (XII) were 72Gy (range: 66-77) and 71Gy (range: 64-78), respectively. We have generated simple instructions for delineating the lower CNs on RT planning imaging. Further analyses to explore the relationship between lower CN dosing and the risk of RICNP are recommended in order to establish limiting doses for these OARs. Published by Elsevier Ltd.

  8. 50 CFR 660.391 - Latitude/longitude coordinates defining the 10-fm (18-m) through 40-fm (73-m) depth contours.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the 10-fm (18-m) through 40-fm (73-m) depth contours. 660.391 Section 660.391 Wildlife and Fisheries.../longitude coordinates defining the 10-fm (18-m) through 40-fm (73-m) depth contours. Boundaries for RCAs are... coordinates for the 10-fm (18-m) through 40-fm (73-m) depth contours. (a) The 10-fm (18-m) depth contour...

  9. 50 CFR 660.71 - Latitude/longitude coordinates defining the 10-fm (18-m) through 40-fm (73-m) depth contours.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the 10-fm (18-m) through 40-fm (73-m) depth contours. 660.71 Section 660.71 Wildlife and Fisheries.../longitude coordinates defining the 10-fm (18-m) through 40-fm (73-m) depth contours. Boundaries for RCAs are... coordinates for the 10-fm (18-m) through 40-fm (73-m) depth contours. (a) The 10-fm (18-m) depth contour...

  10. A Multiphase Validation of Atlas-Based Automatic and Semiautomatic Segmentation Strategies for Prostate MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Spencer; Rodrigues, George, E-mail: george.rodrigues@lhsc.on.ca; Department of Epidemiology/Biostatistics, University of Western Ontario, London

    2013-01-01

    Purpose: To perform a rigorous technological assessment and statistical validation of a software technology for anatomic delineations of the prostate on MRI datasets. Methods and Materials: A 3-phase validation strategy was used. Phase I consisted of anatomic atlas building using 100 prostate cancer MRI data sets to provide training data sets for the segmentation algorithms. In phase II, 2 experts contoured 15 new MRI prostate cancer cases using 3 approaches (manual, N points, and region of interest). In phase III, 5 new physicians with variable MRI prostate contouring experience segmented the same 15 phase II datasets using 3 approaches: manual,more » N points with no editing, and full autosegmentation with user editing allowed. Statistical analyses for time and accuracy (using Dice similarity coefficient) endpoints used traditional descriptive statistics, analysis of variance, analysis of covariance, and pooled Student t test. Results: In phase I, average (SD) total and per slice contouring time for the 2 physicians was 228 (75), 17 (3.5), 209 (65), and 15 seconds (3.9), respectively. In phase II, statistically significant differences in physician contouring time were observed based on physician, type of contouring, and case sequence. The N points strategy resulted in superior segmentation accuracy when initial autosegmented contours were compared with final contours. In phase III, statistically significant differences in contouring time were observed based on physician, type of contouring, and case sequence again. The average relative timesaving for N points and autosegmentation were 49% and 27%, respectively, compared with manual contouring. The N points and autosegmentation strategies resulted in average Dice values of 0.89 and 0.88, respectively. Pre- and postedited autosegmented contours demonstrated a higher average Dice similarity coefficient of 0.94. Conclusion: The software provided robust contours with minimal editing required. Observed time savings were seen for all physicians irrespective of experience level and baseline manual contouring speed.« less

  11. Data integrity systems for organ contours in radiation therapy planning.

    PubMed

    Shah, Veeraj P; Lakshminarayanan, Pranav; Moore, Joseph; Tran, Phuoc T; Quon, Harry; Deville, Curtiland; McNutt, Todd R

    2018-06-12

    The purpose of this research is to develop effective data integrity models for contoured anatomy in a radiotherapy workflow for both real-time and retrospective analysis. Within this study, two classes of contour integrity models were developed: data driven models and contiguousness models. The data driven models aim to highlight contours which deviate from a gross set of contours from similar disease sites and encompass the following regions of interest (ROI): bladder, femoral heads, spinal cord, and rectum. The contiguousness models, which individually analyze the geometry of contours to detect possible errors, are applied across many different ROI's and are divided into two metrics: Extent and Region Growing over volume. After analysis, we found that 70% of detected bladder contours were verified as suspicious. The spinal cord and rectum models verified that 73% and 80% of contours were suspicious respectively. The contiguousness models were the most accurate models and the Region Growing model was the most accurate submodel. 100% of the detected noncontiguous contours were verified as suspicious, but in the cases of spinal cord, femoral heads, bladder, and rectum, the Region Growing model detected additional two to five suspicious contours that the Extent model failed to detect. When conducting a blind review to detect false negatives, it was found that all the data driven models failed to detect all suspicious contours. The Region Growing contiguousness model produced zero false negatives in all regions of interest other than prostate. With regards to runtime, the contiguousness via extent model took an average of 0.2 s per contour. On the other hand, the region growing method had a longer runtime which was dependent on the number of voxels in the contour. Both contiguousness models have potential for real-time use in clinical radiotherapy while the data driven models are better suited for retrospective use. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  12. Digital Holographic Interferometry and Speckle Correlation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Ichirou

    2010-04-01

    Relations and combinations between holographic interferometry and speckle correlation in contouring by phase-shifting digital holography are discussed. Three-dimensional distributions of correlations of the complex amplitudes and intensities before and after the laser wavelength shift are calculated in numerical simulations where a rough surface is modeled with random numbers. Fringe localization related to speckle displacement as well as speckle suppression in phase analysis are demonstrated for general surface shape and recording conditions.

  13. A model for the rapid assessment of the impact of aviation noise near airports.

    PubMed

    Torija, Antonio J; Self, Rod H; Flindell, Ian H

    2017-02-01

    This paper introduces a simplified model [Rapid Aviation Noise Evaluator (RANE)] for the calculation of aviation noise within the context of multi-disciplinary strategic environmental assessment where input data are both limited and constrained by compatibility requirements against other disciplines. RANE relies upon the concept of noise cylinders around defined flight-tracks with the Noise Radius determined from publicly available Noise-Power-Distance curves rather than the computationally intensive multiple point-to-point grid calculation with subsequent ISO-contour interpolation methods adopted in the FAA's Integrated Noise Model (INM) and similar models. Preliminary results indicate that for simple single runway scenarios, changes in airport noise contour areas can be estimated with minimal uncertainty compared against grid-point calculation methods such as INM. In situations where such outputs are all that is required for preliminary strategic environmental assessment, there are considerable benefits in reduced input data and computation requirements. Further development of the noise-cylinder-based model (such as the incorporation of lateral attenuation, engine-installation-effects or horizontal track dispersion via the assumption of more complex noise surfaces formed around the flight-track) will allow for more complex assessment to be carried out. RANE is intended to be incorporated into technology evaluators for the noise impact assessment of novel aircraft concepts.

  14. Collection and Analysis of Ground Truth Infrasound Data in Kazakhstan and Russia

    DTIC Science & Technology

    2006-05-01

    Infrasound signals generated by large mining explosions at Ekibastuz coal mines in Northern Kazakstan have been detected by a 4-element infrasound array ...380 km) and Kokchetav (distance=74 km). Detection of infrasound signals at these distance ranges at mid-latitude (50 degrees N), suggests the... infrasound array , contour plot of beam power and array beam trace .............................. 9 5 Infrasound signals from the

  15. Bridging the Gap in Global Advanced Radiation Oncology Training: Impact of a Web-Based Open-Access Interactive Three-Dimensional Contouring Atlas on Radiation Oncologist Practice in Russia.

    PubMed

    McClelland, Shearwood; Chernykh, Marina; Dengina, Natalia; Gillespie, Erin F; Likhacheva, Anna; Usychkin, Sergey; Pankratov, Alexandr; Kharitonova, Ekaterina; Egorova, Yulia; Tsimafeyeu, Ilya; Tjulandin, Sergei; Thomas, Charles R; Mitin, Timur

    2018-06-25

    Radiation oncologists in Russia face a number of unique professional difficulties including lack of standardized training and continuing medical education. To combat this, under the auspices of the Russian Society of Clinical Oncology (RUSSCO), our group has developed a series of ongoing in-person interactive contouring workshops that are held during the major Russian oncology conferences in Moscow, Russia. Since November 2016 during each workshop, we utilized a web-based open-access interactive three-dimensional contouring atlas as part of our didactics. We sought to determine the impact of this resource on radiation oncology practice in Russia. We distributed an IRB-approved web-based survey to 172 practicing radiation oncologists in Russia. We inquired about practice demographics, RUSSCO contouring workshop attendance, and the clinical use of open-access English language interactive contouring atlas (eContour). The survey remained open for 2 months until November 2017. Eighty radiation oncologists completed the survey with a 46.5% response rate. Mean number of years in practice was 13.7. Sixty respondents (75%) attended at least one RUSSCO contouring workshop. Of those who were aware of eContour, 76% were introduced during a RUSSCO contouring workshop, and 81% continue to use it in their daily practice. The greatest obstacles to using the program were language barrier (51%) and internet access (38%). Nearly 90% reported their contouring practices changed since they started using the program, particularly for delineation of clinical target volumes (57%) and/or organs at risk (46%). More than 97% found the clinical pearls/links to cooperative group protocols in the software helpful in their daily practice. The majority used the contouring program several times per month (43%) or several times per week (41%). Face-to-face contouring instruction in combination with open-access web-based interactive contouring resource had a meaningful impact on perceived quality of radiation oncology contours among Russian practitioners and has the potential to have applications worldwide.

  16. Audio-Visual Biofeedback Does Not Improve the Reliability of Target Delineation Using Maximum Intensity Projection in 4-Dimensional Computed Tomography Radiation Therapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei, E-mail: wlu@umm.edu; Neuner, Geoffrey A.; George, Rohini

    2014-01-01

    Purpose: To investigate whether coaching patients' breathing would improve the match between ITV{sub MIP} (internal target volume generated by contouring in the maximum intensity projection scan) and ITV{sub 10} (generated by combining the gross tumor volumes contoured in 10 phases of a 4-dimensional CT [4DCT] scan). Methods and Materials: Eight patients with a thoracic tumor and 5 patients with an abdominal tumor were included in an institutional review board-approved prospective study. Patients underwent 3 4DCT scans with: (1) free breathing (FB); (2) coaching using audio-visual (AV) biofeedback via the Real-Time Position Management system; and (3) coaching via a spirometer systemmore » (Active Breathing Coordinator or ABC). One physician contoured all scans to generate the ITV{sub 10} and ITV{sub MIP}. The match between ITV{sub MIP} and ITV{sub 10} was quantitatively assessed with volume ratio, centroid distance, root mean squared distance, and overlap/Dice coefficient. We investigated whether coaching (AV or ABC) or uniform expansions (1, 2, 3, or 5 mm) of ITV{sub MIP} improved the match. Results: Although both AV and ABC coaching techniques improved frequency reproducibility and ABC improved displacement regularity, neither improved the match between ITV{sub MIP} and ITV{sub 10} over FB. On average, ITV{sub MIP} underestimated ITV{sub 10} by 19%, 19%, and 21%, with centroid distance of 1.9, 2.3, and 1.7 mm and Dice coefficient of 0.87, 0.86, and 0.88 for FB, AV, and ABC, respectively. Separate analyses indicated a better match for lung cancers or tumors not adjacent to high-intensity tissues. Uniform expansions of ITV{sub MIP} did not correct for the mismatch between ITV{sub MIP} and ITV{sub 10}. Conclusions: In this pilot study, audio-visual biofeedback did not improve the match between ITV{sub MIP} and ITV{sub 10}. In general, ITV{sub MIP} should be limited to lung cancers, and modification of ITV{sub MIP} in each phase of the 4DCT data set is recommended.« less

  17. Impact of Node Negative Target Volume Delineation on Contralateral Parotid Gland Dose Sparing Using IMRT in Head and Neck Cancer.

    PubMed

    Magnuson, William J; Urban, Erich; Bayliss, R Adam; Harari, Paul M

    2015-06-01

    There is considerable practice variation in treatment of the node negative (N0) contralateral neck in patients with head and neck cancer. In this study, we examined the impact of N0 neck target delineation volume on radiation dose to the contralateral parotid gland. Following institutional review board approval, 12 patients with head and neck cancer were studied. All had indications for treatment of the N0 neck, such as midline base of tongue or soft palate extension or advanced ipsilateral nodal disease. The N0 neck volumes were created using the Radiation Therapy Oncology Group head and neck contouring atlas. The physician-drawn N0 neck clinical target volume (CTV) was expanded by 25% to 200% to generate volume variation, followed by a 3-mm planning target volume (PTV) expansion. Surrounding organs at risk were contoured and complete intensity-modulated radiation therapy plans were generated for each N0 volume expansion. The median N0 target volume drawn by the radiation oncologist measured 93 cm(3) (range 71-145). Volumetric expansion of the N0 CTV by 25% to 200% increased the resultant mean dose to the contralateral parotid gland by 1.4 to 8.5 Gray (Gy). For example, a 4.1-mm increase in the N0 neck CTV translated to a 2.0-Gy dose increase to the parotid, 7.4 mm to a 4.5 Gy dose increase, and 12.5 mm to an 8.5 Gy dose increase, respectively. The treatment volume designated for the N0 neck has profound impact on resultant dose to the contralateral parotid gland. Variations of up to 15 mm are routine across physicians in target contouring, reflecting individual preference and training expertise. Depending on the availability of immobilization and image guidance techniques, experts commonly recommend 3 to 10 mm margin expansions to generate the PTV. Careful attention to the original volume of the N0 neck CTV, as well as expansion margins, is important in achieving effective contralateral gland sparing to reduce the resultant xerostomia and dysguesia that may ensue after radiotherapy. © The Author(s) 2014.

  18. Figure-ground assignment to a translating contour: a preference for advancing vs. receding motion.

    PubMed

    Barenholtz, Elan; Tarr, Michael J

    2009-05-28

    Past research on figure-ground assignment to contours has largely considered static stimuli. Here we report a simple and extremely robust dynamic cue to figural assignment, based on whether the bounding region of a contour is growing larger within the field of view ("advancing") rather than smaller ("receding"). Subjects viewed a straight or jagged contour dividing two colored regions translating behind a virtual aperture and had to report which color they had seen "moving in front", effectively assigning figure to that side of the contour. Across three experiments, subjects showed a strong preference to assign figure such that the bounded contour was advancing. This was true regardless of the direction of motion of the contour and regardless of the initial/ending size of the bounded regions (i.e., the motion cue served to override the conventional cue to figure-ground of smaller area). In a fourth, control experiment, subjects showed no such bias when it was the aperture, rather than the contour, that moved, demonstrating that the effect depends on contour motion and not simply an increase in area. We discuss a possible explanation for this bias as well as the general implications regarding dynamic factors in form perception.

  19. Anisotropies in the perceived spatial displacement of motion-defined contours: opposite biases in the upper-left and lower-right visual quadrants.

    PubMed

    Fan, Zhao; Harris, John

    2010-10-12

    In a recent study (Fan, Z., & Harris, J. (2008). Perceived spatial displacement of motion-defined contours in peripheral vision. Vision Research, 48(28), 2793-2804), we demonstrated that virtual contours defined by two regions of dots moving in opposite directions were displaced perceptually in the direction of motion of the dots in the more eccentric region when the contours were viewed in the right visual field. Here, we show that the magnitude and/or direction of these displacements varies in different quadrants of the visual field. When contours were presented in the lower visual field, the direction of perceived contour displacement was consistent with that when both contours were presented in the right visual field. However, this illusory motion-induced spatial displacement disappeared when both contours were presented in the upper visual field. Also, perceived contour displacement in the direction of the more eccentric dots was larger in the right than in the left visual field, perhaps because of a hemispheric asymmetry in attentional allocation. Quadrant-based analyses suggest that the pattern of results arises from opposite directions of perceived contour displacement in the upper-left and lower-right visual quadrants, which depend on the relative strengths of two effects: a greater sensitivity to centripetal motion, and an asymmetry in the allocation of spatial attention. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Application of a Phase-resolving, Directional Nonlinear Spectral Wave Model

    NASA Astrophysics Data System (ADS)

    Davis, J. R.; Sheremet, A.; Tian, M.; Hanson, J. L.

    2014-12-01

    We describe several applications of a phase-resolving, directional nonlinear spectral wave model. The model describes a 2D surface gravity wave field approaching a mildly sloping beach with parallel depth contours at an arbitrary angle accounting for nonlinear, quadratic triad interactions. The model is hyperbolic, with the initial wave spectrum specified in deep water. Complex amplitudes are generated based on the random phase approximation. The numerical implementation includes unidirectional propagation as a special case. In directional mode, it solves the system of equations in the frequency-alongshore wave number space. Recent enhancements of the model include the incorporation of dissipation caused by breaking and propagation over a viscous mud layer and the calculation of wave induced setup. Applications presented include: a JONSWAP spectrum with a cos2s directional distribution, for shore-perpendicular and oblique propagation, a study of the evolution of a single directional triad, and several preliminary comparisons to wave spectra collected at the USACE-FRF in Duck, NC which show encouraging results although further validation with a wider range of beach slopes and wave conditions is needed.

  1. Modality and risk management for orthodontic extrusion procedures in interdisciplinary treatment for generating proper bone and tissue contours for the planned implant: a case report.

    PubMed

    Maeda, Sachiko; Sasaki, Takeshi

    2015-12-01

    In adult interdisciplinary treatments with using dental implants, limited orthodontic treatment, especially orthodontic extrusion (OE), offers many benefits by both correcting teeth alignment and by contributing to the regeneration of periodontal tissues. However, orthodontic procedures carry some risks and unpredictabilities that might compromise tooth and/or periodontal tissue health. Especially in complex cases, it is difficult to decide which orthodontic treatment modalities should be combined, in what sequences they should be applied, and what their force systems and treatment times are.To achieve optimum results, some cases require two or more OEs to the same site being carried out at different times while taking the treatment effects into consideration. Such staged OE offers minimum intervention and maximum efficiency. In this case report, OE was first applied for orthodontic extraction. After bone regeneration followed by an implant placement and another surgical operation, a second OE was applied to align the inclination of an adjacent tooth. As a result, a predictable prognosis of implants as well as greatly improved esthetics and periodontal tissue health were achieved.

  2. Integrating Genetics and Social Science: Genetic Risk Scores

    PubMed Central

    Belsky, Daniel W.; Israel, Salomon

    2014-01-01

    The sequencing of the human genome and the advent of low-cost genome-wide assays that generate millions of observations of individual genomes in a matter of hours constitute a disruptive innovation for social science. Many public-use social science datasets have or will soon add genome-wide genetic data. With these new data come technical challenges, but also new possibilities. Among these, the lowest hanging fruit and the most potentially disruptive to existing research programs is the ability to measure previously invisible contours of health and disease risk within populations. In this article, we outline why now is the time for social scientists to bring genetics into their research programs. We discuss how to select genetic variants to study. We explain how the polygenic architecture of complex traits and the low penetrance of individual genetic loci pose challenges to research integrating genetics and social science. We introduce genetic risk scores as a method of addressing these challenges and provide guidance on how genetic risk scores can be constructed. We conclude by outlining research questions that are ripe for social science inquiry. PMID:25343363

  3. Multi-object segmentation using coupled nonparametric shape and relative pose priors

    NASA Astrophysics Data System (ADS)

    Uzunbas, Mustafa Gökhan; Soldea, Octavian; Çetin, Müjdat; Ünal, Gözde; Erçil, Aytül; Unay, Devrim; Ekin, Ahmet; Firat, Zeynep

    2009-02-01

    We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using training images in a nonparametric multi-variate kernel density estimation framework. The coupled shape prior is obtained by estimating the joint shape distribution of multiple objects and the inter-shape pose priors are modeled via standard moments. Based on such statistical models, we formulate an optimization problem for segmentation, which we solve by an algorithm based on active contours. Our technique provides significant improvements in the segmentation of weakly contrasted objects in a number of applications. In particular for medical image analysis, we use our method to extract brain Basal Ganglia structures, which are members of a complex multi-object system posing a challenging segmentation problem. We also apply our technique to the problem of handwritten character segmentation. Finally, we use our method to segment cars in urban scenes.

  4. Interactive 3D segmentation using connected orthogonal contours.

    PubMed

    de Bruin, P W; Dercksen, V J; Post, F H; Vossepoel, A M; Streekstra, G J; Vos, F M

    2005-05-01

    This paper describes a new method for interactive segmentation that is based on cross-sectional design and 3D modelling. The method represents a 3D model by a set of connected contours that are planar and orthogonal. Planar contours overlayed on image data are easily manipulated and linked contours reduce the amount of user interaction.1 This method solves the contour-to-contour correspondence problem and can capture extrema of objects in a more flexible way than manual segmentation of a stack of 2D images. The resulting 3D model is guaranteed to be free of geometric and topological errors. We show that manual segmentation using connected orthogonal contours has great advantages over conventional manual segmentation. Furthermore, the method provides effective feedback and control for creating an initial model for, and control and steering of, (semi-)automatic segmentation methods.

  5. Deformable medical image registration of pleural cavity for photodynamic therapy by using finite-element based method

    NASA Astrophysics Data System (ADS)

    Penjweini, Rozhin; Kim, Michele M.; Dimofte, Andrea; Finlay, Jarod C.; Zhu, Timothy C.

    2016-03-01

    When the pleural cavity is opened during the surgery portion of pleural photodynamic therapy (PDT) of malignant mesothelioma, the pleural volume will deform. This impacts the delivered dose when using highly conformal treatment techniques. To track the anatomical changes and contour the lung and chest cavity, an infrared camera-based navigation system (NDI) is used during PDT. In the same patient, a series of computed tomography (CT) scans of the lungs are also acquired before the surgery. The reconstructed three-dimensional contours from both NDI and CTs are imported into COMSOL Multiphysics software, where a finite element-based (FEM) deformable image registration is obtained. The CT contour is registered to the corresponding NDI contour by overlapping the center of masses and aligning their orientations. The NDI contour is considered as the reference contour, and the CT contour is used as the target one, which will be deformed. Deformed Geometry model is applied in COMSOL to obtain a deformed target contour. The distortion of the volume at X, Y and Z is mapped to illustrate the transformation of the target contour. The initial assessment shows that FEM-based image deformable registration can fuse images acquired by different modalities. It provides insights into the deformation of anatomical structures along X, Y and Z-axes. The deformed contour has good matches to the reference contour after the dynamic matching process. The resulting three-dimensional deformation map can be used to obtain the locations of other critical anatomic structures, e.g., heart, during surgery.

  6. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b) The...

  7. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b) The...

  8. Optically-initiated silicon carbide high voltage switch with contoured-profile electrode interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, James S.; Hawkins, Steven A.

    An improved photoconductive switch having a SiC or other wide band gap substrate material with opposing contoured profile cavities which have a contoured profile selected from one of Rogowski, Bruce, Chang, Harrison, and Ernst profiles, and two electrodes with matching contoured-profile convex interface surfaces.

  9. Broad band sound from wind turbine generators

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Shepherd, K. P.; Grosveld, F. W.

    1981-01-01

    Brief descriptions are given of the various types of large wind turbines and their sound characteristics. Candidate sources of broadband sound are identified and are rank ordered for a large upwind configuration wind turbine generator for which data are available. The rotor is noted to be the main source of broadband sound which arises from inflow turbulence and from the interactions of the turbulent boundary layer on the blade with its trailing edge. Sound is radiated about equally in all directions but the refraction effects of the wind produce an elongated contour pattern in the downwind direction.

  10. The Mine Working's Roof Stress-strain State Research in the Perspective of Development of New Coal Deposits of Kuzbass

    NASA Astrophysics Data System (ADS)

    Kostyuk, Svetlana; Bedarev, Nikolay; Lyubimov, Oleg; Shaikhislamov, Arthur

    2017-11-01

    The present now normative and information base is regulating of the Kuzbass coal seams treatment but is not considering of the mining-geological and mining-engineering conditions for new coal deposits. The analysis of works for the research of the rock pressure manifestation shows that in many cases numerous results require of the practical confirmation in mine conditions directly, and also confirmation by the physical models. This work reflects one of the stages of research on changing the stress-strain state of the massif with the formation of unloading zones, increased rock pressure, and recovery. As an example, the results of the information analysis obtained by means of contour and depth benchmarks on the ventilation drift in the course of the 34 seam treatment at the "Tagaryshskaya" mine are presented. The differences of the analyzed results from the results obtained in the conditions of other mines are established. The values of the drift's roof stratification on the contour and at the distance from the contour of 1.0 to 4.0 m are given. The revealed maximums of the rock pressure and pressure changes in the hydraulic supports of the complex used for movement are presented. Recommendations on the choice of the anchor's length taking into account the roof stratification size are given. The further research stages on models from equivalent materials at various geometric scales are proposed.

  11. The effect of language experience on perceptual normalization of Mandarin tones and non-speech pitch contours.

    PubMed

    Luo, Xin; Ashmore, Krista B

    2014-06-01

    Context-dependent pitch perception helps listeners recognize tones produced by speakers with different fundamental frequencies (f0s). The role of language experience in tone normalization remains unclear. In this cross-language study of tone normalization, native Mandarin and English listeners were asked to recognize Mandarin Tone 1 (high-flat) and Tone 2 (mid-rising) with a preceding Mandarin sentence. To further test whether context-dependent pitch perception is speech-specific or domain-general, both language groups were asked to identify non-speech flat and rising pitch contours with a preceding non-speech flat pitch contour. Results showed that both Mandarin and English listeners made more rising responses with non-speech than with speech stimuli, due to differences in spectral complexity and listening task between the two stimulus types. English listeners made more rising responses than Mandarin listeners with both speech and non-speech stimuli. Contrastive context effects (more rising responses in the high-f0 context than in the low-f0 context) were found with both speech and non-speech stimuli for Mandarin listeners, but not for English listeners. English listeners' lack of tone experience may have caused more rising responses and limited use of context f0 cues. These results suggest that context-dependent pitch perception in tone normalization is domain-general, but influenced by long-term language experience.

  12. Analyzing the extrusion mould for aluminum profile

    NASA Astrophysics Data System (ADS)

    Yun, Wang; Xu, Zhenying; Dai, Yachun; Dong, Peilong; Yuan, Guoding; Lan, Cai

    2007-12-01

    The die or mould used for extruding aluminum wallboard profile is in serious work conditions, so it is easy to appear drawbacks in the mould such as non-uniform stress and strain distributions, crack initiation and propagation, elastic warp, and even plastic distortion. As we know, the extrusion die or mould is subject to complex loads including the extrusion pressure, friction and thermal load, which make the mould complicated and hard to be designed and analyzed by using conventional analytical method. In this paper, we applied Deform-3D, FEA (Finite Element Analysis) software used frequently in all engineering fields, to simulate three-dimensional extruding process of aluminum profile. The simulation results show that the deformation increases gradually from inside to outside. Exterior deformation contour distribution is relative uniform since the influence of inner holes on deformation is small, and the contour form is regular and similar with the shape of the mould. However, the interior deformation contour is irregular as the influence of holes with basically symmetric equivalent curves. At the middle of the mould, the deformation reaches the largest, it reaches 0.633mm. The deformation of the mould can be reduced by increasing the distance between two holes or increasing thickness of the mould. Experiment result accords with simulation. The simulation process and results ensure the feasibility of finite element method, providing the support for mould design and structural optimization.

  13. Method of the active contour for segmentation of bone systems on bitmap images

    NASA Astrophysics Data System (ADS)

    Vu, Hai Anh; Safonov, Roman A.; Kolesnikova, Anna S.; Kirillova, Irina V.; Kossovich, Leonid U.

    2018-02-01

    It is developed within a method of the active contours the approach, which is allowing to realize separation of a contour of a object of the image in case of its segmentation. This approach exceeds a parametric method on speed, but also does not concede to it on decision accuracy. The approach is offered within this operation will allow to realize allotment of a contour with high accuracy of the image and quicker than a parametric method of the active contours.

  14. Absolute color scale for improved diagnostics with wavefront error mapping.

    PubMed

    Smolek, Michael K; Klyce, Stephen D

    2007-11-01

    Wavefront data are expressed in micrometers and referenced to the pupil plane, but current methods to map wavefront error lack standardization. Many use normalized or floating scales that may confuse the user by generating ambiguous, noisy, or varying information. An absolute scale that combines consistent clinical information with statistical relevance is needed for wavefront error mapping. The color contours should correspond better to current corneal topography standards to improve clinical interpretation. Retrospective analysis of wavefront error data. Historic ophthalmic medical records. Topographic modeling system topographical examinations of 120 corneas across 12 categories were used. Corneal wavefront error data in micrometers from each topography map were extracted at 8 Zernike polynomial orders and for 3 pupil diameters expressed in millimeters (3, 5, and 7 mm). Both total aberrations (orders 2 through 8) and higher-order aberrations (orders 3 through 8) were expressed in the form of frequency histograms to determine the working range of the scale across all categories. The standard deviation of the mean error of normal corneas determined the map contour resolution. Map colors were based on corneal topography color standards and on the ability to distinguish adjacent color contours through contrast. Higher-order and total wavefront error contour maps for different corneal conditions. An absolute color scale was produced that encompassed a range of +/-6.5 microm and a contour interval of 0.5 microm. All aberrations in the categorical database were plotted with no loss of clinical information necessary for classification. In the few instances where mapped information was beyond the range of the scale, the type and severity of aberration remained legible. When wavefront data are expressed in micrometers, this absolute scale facilitates the determination of the severity of aberrations present compared with a floating scale, particularly for distinguishing normal from abnormal levels of wavefront error. The new color palette makes it easier to identify disorders. The corneal mapping method can be extended to mapping whole eye wavefront errors. When refraction data are expressed in diopters, the previously published corneal topography scale is suggested.

  15. TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J; Wu, Q.J.; Yin, F

    2014-06-15

    Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into fivemore » groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH/NCI under grant #R21CA161389 and a master research grant by Varian Medical System.« less

  16. Exploring the roles of spectral detail and intonation contour in speech intelligibility: an FMRI study.

    PubMed

    Kyong, Jeong S; Scott, Sophie K; Rosen, Stuart; Howe, Timothy B; Agnew, Zarinah K; McGettigan, Carolyn

    2014-08-01

    The melodic contour of speech forms an important perceptual aspect of tonal and nontonal languages and an important limiting factor on the intelligibility of speech heard through a cochlear implant. Previous work exploring the neural correlates of speech comprehension identified a left-dominant pathway in the temporal lobes supporting the extraction of an intelligible linguistic message, whereas the right anterior temporal lobe showed an overall preference for signals clearly conveying dynamic pitch information [Johnsrude, I. S., Penhune, V. B., & Zatorre, R. J. Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain, 123, 155-163, 2000; Scott, S. K., Blank, C. C., Rosen, S., & Wise, R. J. Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123, 2400-2406, 2000]. The current study combined modulations of overall intelligibility (through vocoding and spectral inversion) with a manipulation of pitch contour (normal vs. falling) to investigate the processing of spoken sentences in functional MRI. Our overall findings replicate and extend those of Scott et al. [Scott, S. K., Blank, C. C., Rosen, S., & Wise, R. J. Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123, 2400-2406, 2000], where greater sentence intelligibility was predominately associated with increased activity in the left STS, and the greatest response to normal sentence melody was found in right superior temporal gyrus. These data suggest a spatial distinction between brain areas associated with intelligibility and those involved in the processing of dynamic pitch information in speech. By including a set of complexity-matched unintelligible conditions created by spectral inversion, this is additionally the first study reporting a fully factorial exploration of spectrotemporal complexity and spectral inversion as they relate to the neural processing of speech intelligibility. Perhaps surprisingly, there was little evidence for an interaction between the two factors-we discuss the implications for the processing of sound and speech in the dorsolateral temporal lobes.

  17. Comparison of different statistical methods for estimation of extreme sea levels with wave set-up contribution

    NASA Astrophysics Data System (ADS)

    Kergadallan, Xavier; Bernardara, Pietro; Benoit, Michel; Andreewsky, Marc; Weiss, Jérôme

    2013-04-01

    Estimating the probability of occurrence of extreme sea levels is a central issue for the protection of the coast. Return periods of sea level with wave set-up contribution are estimated here in one site : Cherbourg in France in the English Channel. The methodology follows two steps : the first one is computation of joint probability of simultaneous wave height and still sea level, the second one is interpretation of that joint probabilities to assess a sea level for a given return period. Two different approaches were evaluated to compute joint probability of simultaneous wave height and still sea level : the first one is multivariate extreme values distributions of logistic type in which all components of the variables become large simultaneously, the second one is conditional approach for multivariate extreme values in which only one component of the variables have to be large. Two different methods were applied to estimate sea level with wave set-up contribution for a given return period : Monte-Carlo simulation in which estimation is more accurate but needs higher calculation time and classical ocean engineering design contours of type inverse-FORM in which the method is simpler and allows more complex estimation of wave setup part (wave propagation to the coast for example). We compare results from the two different approaches with the two different methods. To be able to use both Monte-Carlo simulation and design contours methods, wave setup is estimated with an simple empirical formula. We show advantages of the conditional approach compared to the multivariate extreme values approach when extreme sea-level occurs when either surge or wave height is large. We discuss the validity of the ocean engineering design contours method which is an alternative when computation of sea levels is too complex to use Monte-Carlo simulation method.

  18. No rescue for the no boundary proposal: Pointers to the future of quantum cosmology

    NASA Astrophysics Data System (ADS)

    Feldbrugge, Job; Lehners, Jean-Luc; Turok, Neil

    2018-01-01

    In recent work [J. Feldbrugge et al. Phys. Rev. D 95, 103508 (2017)., 10.1103/PhysRevD.95.103508 and J. Feldbrugge et al. Phys. Rev. Lett. 119, 171301 (2017)., 10.1103/PhysRevLett.119.171301], we introduced Picard-Lefschetz theory as a tool for defining the Lorentzian path integral for quantum gravity in a systematic semiclassical expansion. This formulation avoids several pitfalls occurring in the Euclidean approach. Our method provides, in particular, a more precise formulation of the Hartle-Hawking no boundary proposal, as a sum over real Lorentzian four-geometries interpolating between an initial three-geometry of zero size, i.e., a point, and a final three-geometry. With this definition, we calculated the no boundary amplitude for a closed universe with a cosmological constant, assuming cosmological symmetry for the background and including linear perturbations. We found the opposite semiclassical exponent to that obtained by Hartle and Hawking for the creation of a de Sitter spacetime "from nothing." Furthermore, we found the linearized perturbations to be governed by an inverse Gaussian distribution, meaning they are unsuppressed and out of control. Recently, Diaz Dorronsoro et al. [Phys. Rev. D 96, 043505 (2017), 10.1103/PhysRevD.96.043505] followed our methods but attempted to rescue the no boundary proposal by integrating the lapse over a different, intrinsically complex contour. Here, we show that, in addition to the desired Hartle-Hawking saddle point contribution, their contour yields extra, nonperturbative corrections which again render the perturbations unsuppressed. We prove there is no choice of complex contour for the lapse which avoids this problem. We extend our discussion to include backreaction in the leading semiclassical approximation, fully nonlinearly for the lowest tensor harmonic and to second order for all higher modes. Implications for quantum de Sitter spacetime and for cosmic inflation are briefly discussed.

  19. Multi-object segmentation framework using deformable models for medical imaging analysis.

    PubMed

    Namías, Rafael; D'Amato, Juan Pablo; Del Fresno, Mariana; Vénere, Marcelo; Pirró, Nicola; Bellemare, Marc-Emmanuel

    2016-08-01

    Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed framework has a wide range of applications especially in the presence of adjacent structures of interest or under intra-structure inhomogeneities giving excellent quantitative results.

  20. Spatially-global integration of closed, fragmented contours by finding the shortest-path in a log-polar representation

    PubMed Central

    Kwon, TaeKyu; Agrawal, Kunal; Li, Yunfeng; Pizlo, Zygmunt

    2015-01-01

    Finding the occluding contours of objects in real 2D retinal images of natural 3D scenes is done by determining, which contour fragments are relevant, and the order in which they should be connected. We developed a model that finds the closed contour represented in the image by solving a shortest path problem that uses a log-polar representation of the image; the kind of representation known to exist in area V1 of the primate cortex. The shortest path in a log-polar representation favors the smooth, convex and closed contours in the retinal image that have the smallest number of gaps. This approach is practical because finding a globally-optimal solution to a shortest path problem is computationally easy. Our model was tested in four psychophysical experiments. In the first two experiments, the subject was presented with a fragmented convex or concave polygon target among a large number of unrelated pieces of contour (distracters). The density of these pieces of contour was uniform all over the screen to minimize spatially-local cues. The orientation of each target contour fragment was randomly perturbed by varying the levels of jitter. Subjects drew a closed contour that represented the target’s contour on a screen. The subjects’ performance was nearly perfect when the jitter-level was low. Their performance deteriorated as jitter-levels were increased. The performance of our model was very similar to our subjects’. In two subsequent experiments, the subject was asked to discriminate a briefly-presented egg-shaped object while maintaining fixation at several different positions relative to the closed contour of the shape. The subject’s discrimination performance was affected by the fixation position in much the same way as the model’s. PMID:26241462

  1. SU-E-J-111: Finite Element-Based Deformable Image Registration of Pleural Cavity for Photodynamic Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penjweini, R; Zhu, T

    Purpose: The pleural volumes will deform during surgery portion of the pleural photodynamic therapy (PDT) of lung cancer when the pleural cavity is opened. This impact the delivered dose when using highly conformal treatment techniques. In this study, a finite element-based (FEM) deformable image registration is used to quantify the anatomical variation between the contours for the pleural cavities obtained in the operating room and those determined from pre-surgery computed tomography (CT) scans. Methods: An infrared camera-based navigation system (NDI) is used during PDT to track the anatomical changes and contour the lung and chest cavity. A series of CTsmore » of the lungs, in the same patient, are also acquired before the surgery. The structure contour of lung and the CTs are processed and contoured in Matlab and MeshLab. Then, the contours are imported into COMSOL Multiphysics 5.0, where the FEM-based deformable image registration is obtained using the deformed mesh - moving mesh (ALE) model. The NDI acquired lung contour is considered as the reference contour, and the CT contour is used as the target one, which will be deformed. Results: The reconstructed three-dimensional contours from both NDI and CT can be converted to COMSOL so that a three-dimensional ALE model can be developed. The contours can be registered using COMSOL ALE moving mesh model, which takes into account the deformation along x, y and z-axes. The deformed contour has good matches to the reference contour after the dynamic matching process. The resulting 3D deformation map can be used to obtain the locations of other critical anatomic structures, e.g., heart, during surgery. Conclusion: Deformable image registration can fuse images acquired by different modalities. It provides insights into the development of phenomenon and variation in normal anatomical structures over time. The initial assessments of three-dimensional registration show good agreement.« less

  2. SU-C-BRB-05: Determining the Adequacy of Auto-Contouring Via Probabilistic Assessment of Ensuing Treatment Plan Metrics in Comparison with Manual Contours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nourzadeh, H; Watkins, W; Siebers, J

    Purpose: To determine if auto-contour and manual-contour—based plans differ when evaluated with respect to probabilistic coverage metrics and biological model endpoints for prostate IMRT. Methods: Manual and auto-contours were created for 149 CT image sets acquired from 16 unique prostate patients. A single physician manually contoured all images. Auto-contouring was completed utilizing Pinnacle’s Smart Probabilistic Image Contouring Engine (SPICE). For each CT, three different 78 Gy/39 fraction 7-beam IMRT plans are created; PD with drawn ROIs, PAS with auto-contoured ROIs, and PM with auto-contoured OARs with the manually drawn target. For each plan, 1000 virtual treatment simulations with different sampledmore » systematic errors for each simulation and a different sampled random error for each fraction were performed using our in-house GPU-accelerated robustness analyzer tool which reports the statistical probability of achieving dose-volume metrics, NTCP, TCP, and the probability of achieving the optimization criteria for both auto-contoured (AS) and manually drawn (D) ROIs. Metrics are reported for all possible cross-evaluation pairs of ROI types (AS,D) and planning scenarios (PD,PAS,PM). Bhattacharyya coefficient (BC) is calculated to measure the PDF similarities for the dose-volume metric, NTCP, TCP, and objectives with respect to the manually drawn contour evaluated on base plan (D-PD). Results: We observe high BC values (BC≥0.94) for all OAR objectives. BC values of max dose objective on CTV also signify high resemblance (BC≥0.93) between the distributions. On the other hand, BC values for CTV’s D95 and Dmin objectives are small for AS-PM, AS-PD. NTCP distributions are similar across all evaluation pairs, while TCP distributions of AS-PM, AS-PD sustain variations up to %6 compared to other evaluated pairs. Conclusion: No significant probabilistic differences are observed in the metrics when auto-contoured OARs are used. The prostate auto-contour needs improvement to achieve clinically equivalent plans.« less

  3. Contour propagation for lung tumor delineation in 4D-CT using tensor-product surface of uniform and non-uniform closed cubic B-splines

    NASA Astrophysics Data System (ADS)

    Jin, Renchao; Liu, Yongchuan; Chen, Mi; Zhang, Sheng; Song, Enmin

    2018-01-01

    A robust contour propagation method is proposed to help physicians delineate lung tumors on all phase images of four-dimensional computed tomography (4D-CT) by only manually delineating the contours on a reference phase. The proposed method models the trajectory surface swept by a contour in a respiratory cycle as a tensor-product surface of two closed cubic B-spline curves: a non-uniform B-spline curve which models the contour and a uniform B-spline curve which models the trajectory of a point on the contour. The surface is treated as a deformable entity, and is optimized from an initial surface by moving its control vertices such that the sum of the intensity similarities between the sampling points on the manually delineated contour and their corresponding ones on different phases is maximized. The initial surface is constructed by fitting the manually delineated contour on the reference phase with a closed B-spline curve. In this way, the proposed method can focus the registration on the contour instead of the entire image to prevent the deformation of the contour from being smoothed by its surrounding tissues, and greatly reduce the time consumption while keeping the accuracy of the contour propagation as well as the temporal consistency of the estimated respiratory motions across all phases in 4D-CT. Eighteen 4D-CT cases with 235 gross tumor volume (GTV) contours on the maximal inhale phase and 209 GTV contours on the maximal exhale phase are manually delineated slice by slice. The maximal inhale phase is used as the reference phase, which provides the initial contours. On the maximal exhale phase, the Jaccard similarity coefficient between the propagated GTV and the manually delineated GTV is 0.881 +/- 0.026, and the Hausdorff distance is 3.07 +/- 1.08 mm. The time for propagating the GTV to all phases is 5.55 +/- 6.21 min. The results are better than those of the fast adaptive stochastic gradient descent B-spline method, the 3D  +  t B-spline method and the diffeomorphic demons method. The proposed method is useful for helping physicians delineate target volumes efficiently and accurately.

  4. The biasing of figure-ground assignment by shading cues for objects and faces in prosopagnosia.

    PubMed

    Hefter, Rebecca; Jerskey, Beth A; Barton, Jason J S

    2008-01-01

    Prosopagnosia is defined by impaired recognition of the identity of specific faces. Whether the perception of faces at the categorical level (recognizing that a face is a face) is also impaired to a lesser degree is unclear. We examined whether prosopagnosia is associated with impaired detection of facial contours in a bistable display, by testing a series of five prosopagnosic patients on a variation of Rubin's vase illusion, in which shading was introduced to bias perception towards either the face or the vase. We also included a control bistable display in which a disc or an aperture were the two possible percepts. With the control disc/aperture test, prosopagnosic patients did not generate a normal sigmoid function, but a U-shaped function, indicating that they perceived the shading but had difficulty in using the shading to make the appropriate figure-ground assignment. While controls still generated a sigmoid function for the vase/face test, prosopagnosic patients showed a severe impairment in using shading to make consistent perceptual assignments. We conclude that prosopagnosic patients have difficulty in using shading to segment figures from background correctly, particularly with complex stimuli like faces. This suggests that a subtler defect in face categorization accompanies their severe defect in face identification, consistent with predictions of computational models and recent data from functional imaging.

  5. Geometric Analysis, Visualization, and Conceptualization of 3D Image Data

    Science.gov Websites

    collection of geometric primitives (points, lines, polygons, etc.) that accurately represent the shape of the different color. The masks mentioned above are human supplied hints as to where to draw these contour lines ) Acquire information about the inside of an object, and generate a 3D image data set (2) Define the regions

  6. Non-invasive therapy of wrinkles and lax skin using a novel multisource phase-controlled radio frequency system.

    PubMed

    Elman, Monica; Vider, Itzhak; Harth, Yoram; Gottfried, Varda; Shemer, Avner

    2010-04-01

    Abstract The last few years have shown an increased demand for non-invasive skin tightening to improve body contour. Since light (lasers or intense pulsed light sources) has a limited ability to penetrate deep into the tissue, radio frequency (RF) modalities were introduced for the reduction of lax skin to achieve skin tightening and body circumference reduction. This study presents the use of the novel 3DEEP technology for body contouring. 3DEEP is a next generation RF technology that provides targeted heating to deeper skin layers without pain or other local or systemic side effects associated with the use of the earlier generation RF systems available today. The study included 30 treatment areas on 23 healthy volunteers at two sites. The treatment protocol included four weekly and two bi-weekly (n= 6) treatments on different body areas. Results were evaluated by standardized photography and by circumference measurements at the treatment area, and were compared to changes in body weight. Significant improvement could be observed in wrinkles and skin laxity, and in the appearance of stretch marks and cellulite. Some changes appeared as early as after a single treatment. Circumference changes of up to 4.3 cm were measured.

  7. Atlas-based segmentation technique incorporating inter-observer delineation uncertainty for whole breast

    NASA Astrophysics Data System (ADS)

    Bell, L. R.; Dowling, J. A.; Pogson, E. M.; Metcalfe, P.; Holloway, L.

    2017-01-01

    Accurate, efficient auto-segmentation methods are essential for the clinical efficacy of adaptive radiotherapy delivered with highly conformal techniques. Current atlas based auto-segmentation techniques are adequate in this respect, however fail to account for inter-observer variation. An atlas-based segmentation method that incorporates inter-observer variation is proposed. This method is validated for a whole breast radiotherapy cohort containing 28 CT datasets with CTVs delineated by eight observers. To optimise atlas accuracy, the cohort was divided into categories by mean body mass index and laterality, with atlas’ generated for each in a leave-one-out approach. Observer CTVs were merged and thresholded to generate an auto-segmentation model representing both inter-observer and inter-patient differences. For each category, the atlas was registered to the left-out dataset to enable propagation of the auto-segmentation from atlas space. Auto-segmentation time was recorded. The segmentation was compared to the gold-standard contour using the dice similarity coefficient (DSC) and mean absolute surface distance (MASD). Comparison with the smallest and largest CTV was also made. This atlas-based auto-segmentation method incorporating inter-observer variation was shown to be efficient (<4min) and accurate for whole breast radiotherapy, with good agreement (DSC>0.7, MASD <9.3mm) between the auto-segmented contours and CTV volumes.

  8. Pseudogap-generated a coexistence of Fermi arcs and Fermi pockets in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Zhao, Huaisong; Gao, Deheng; Feng, Shiping

    2017-03-01

    One of the most intriguing puzzle is why there is a coexistence of Fermi arcs and Fermi pockets in the pseudogap phase of cuprate superconductors? This puzzle is calling for an explanation. Based on the t - J model in the fermion-spin representation, the coexistence of the Fermi arcs and Fermi pockets in cuprate superconductors is studied by taking into account the pseudogap effect. It is shown that the pseudogap induces an energy band splitting, and then the poles of the electron Green's function at zero energy form two contours in momentum space, however, the electron spectral weight on these two contours around the antinodal region is gapped out by the pseudogap, leaving behind the low-energy electron spectral weight only located at the disconnected segments around the nodal region. In particular, the tips of these disconnected segments converge on the hot spots to form the closed Fermi pockets, generating a coexistence of the Fermi arcs and Fermi pockets. Moreover, the single-particle coherent weight is directly related to the pseudogap, and grows linearly with doping. The calculated result of the overall dispersion of the electron excitations is in qualitative agreement with the experimental data. The theory also predicts that the pseudogap-induced peak-dip-hump structure in the electron spectrum is absent from the hot-spot directions.

  9. Effects of a Rotating Aerodynamic Probe on the Flow Field of a Compressor Rotor

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    2008-01-01

    An investigation of distortions of the rotor exit flow field caused by an aerodynamic probe mounted in the rotor is described in this paper. A rotor total pressure Kiel probe, mounted on the rotor hub and extending up to the mid-span radius of a rotor blade channel, generates a wake that forms additional flow blockage. Three types of high-response aerodynamic probes were used to investigate the distorted flow field behind the rotor. These probes were: a split-fiber thermo-anemometric probe to measure velocity and flow direction, a total pressure probe, and a disk probe for in-flow static pressure measurement. The signals acquired from these high-response probes were reduced using an ensemble averaging method based on a once per rotor revolution signal. The rotor ensemble averages were combined to construct contour plots for each rotor channel of the rotor tested. In order to quantify the rotor probe effects, the contour plots for each individual rotor blade passage were averaged into a single value. The distribution of these average values along the rotor circumference is a measure of changes in the rotor exit flow field due to the presence of a probe in the rotor. These distributions were generated for axial flow velocity and for static pressure.

  10. CNC water-jet machining and cutting center

    NASA Astrophysics Data System (ADS)

    Bartlett, D. C.

    1991-09-01

    Computer Numerical Control (CNC) water-jet machining was investigated to determine the potential applications and cost-effectiveness that would result by establishing this capability in the engineering shops of Allied-Signal Inc., Kansas City Division (KCD). Both conductive and nonconductive samples were machined at KCD on conventional machining equipment (a three-axis conversational programmed mill and a wire electrical discharge machine) and on two current-technology water-jet machines at outside vendors. These samples were then inspected, photographed, and evaluated. The current-technology water-jet machines were not as accurate as the conventional equipment. The resolution of the water-jet equipment was only +/- 0.005 inch, as compared to +/- 0.0002 inch for the conventional equipment. The principal use for CNC water-jet machining would be as follows: Contouring to near finished shape those items made from 300 and 400 series stainless steels, titanium, Inconel, aluminum, glass, or any material whose fabrication tolerance is less than the machine resolution of +/- 0.005 inch; and contouring to finished shape those items made from Kevlar, rubber, fiberglass, foam, aluminum, or any material whose fabrication specifications allow the use of a machine with +/- 0.005 inch tolerance. Additional applications are possible because there is minimal force generated on the material being cut and because the water-jet cuts without generating dust.

  11. Remote-Sensing Survey of the Bayou Labranche Wetlands Restoration Borrow Area, St. Charles Parish, Louisiana

    DTIC Science & Technology

    1993-03-01

    55 17. Magnetic contour and survey data collected at Target 1 ............................ 56 18... Magnetic contour and survey data collected at Target 3 ............................ 58 19. Magnetic contour and survey data collected at Target 4...59 20. Magnetic contour and survey data collected at Target 5 ............................ 60 ’ iii LIST OF TABLES 1. South

  12. 27 CFR 9.179 - Southern Oregon.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... approximately 0.5 miles to the 1,000-foot contour line; then (2) Proceed northwest along the 1,000-foot contour... approximately 8 miles to its intersection with the 1,000-foot contour line; then in a southeasterly direction in... approximately 0.33 mile, rejoining the 1,000-foot contour line; then in a northerly and eventually a southerly...

  13. 27 CFR 9.179 - Southern Oregon.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... approximately 0.5 miles to the 1,000-foot contour line; then (2) Proceed northwest along the 1,000-foot contour... approximately 8 miles to its intersection with the 1,000-foot contour line; then in a southeasterly direction in... approximately 0.33 mile, rejoining the 1,000-foot contour line; then in a northerly and eventually a southerly...

  14. 27 CFR 9.179 - Southern Oregon.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... approximately 0.5 miles to the 1,000-foot contour line; then (2) Proceed northwest along the 1,000-foot contour... approximately 8 miles to its intersection with the 1,000-foot contour line; then in a southeasterly direction in... approximately 0.33 mile, rejoining the 1,000-foot contour line; then in a northerly and eventually a southerly...

  15. Distributed Contour Trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, Dmitriy; Weber, Gunther H.

    2014-03-31

    Topological techniques provide robust tools for data analysis. They are used, for example, for feature extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements. We study the parallel analysis of contour trees. After describing a particular representation of a contour tree, called local{global representation, we illustrate how di erent problems that rely on contour trees can be solved in parallel with minimal communication.

  16. Automated segmentation of ultrasonic breast lesions using statistical texture classification and active contour based on probability distance.

    PubMed

    Liu, Bo; Cheng, H D; Huang, Jianhua; Tian, Jiawei; Liu, Jiafeng; Tang, Xianglong

    2009-08-01

    Because of its complicated structure, low signal/noise ratio, low contrast and blurry boundaries, fully automated segmentation of a breast ultrasound (BUS) image is a difficult task. In this paper, a novel segmentation method for BUS images without human intervention is proposed. Unlike most published approaches, the proposed method handles the segmentation problem by using a two-step strategy: ROI generation and ROI segmentation. First, a well-trained texture classifier categorizes the tissues into different classes, and the background knowledge rules are used for selecting the regions of interest (ROIs) from them. Second, a novel probability distance-based active contour model is applied for segmenting the ROIs and finding the accurate positions of the breast tumors. The active contour model combines both global statistical information and local edge information, using a level set approach. The proposed segmentation method was performed on 103 BUS images (48 benign and 55 malignant). To validate the performance, the results were compared with the corresponding tumor regions marked by an experienced radiologist. Three error metrics, true-positive ratio (TP), false-negative ratio (FN) and false-positive ratio (FP) were used for measuring the performance of the proposed method. The final results (TP = 91.31%, FN = 8.69% and FP = 7.26%) demonstrate that the proposed method can segment BUS images efficiently, quickly and automatically.

  17. Technique of semiautomatic surface reconstruction of the visible Korean human data using commercial software.

    PubMed

    Park, Jin Seo; Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Chung, Jinoh

    2007-11-01

    This article describes the technique of semiautomatic surface reconstruction of anatomic structures using widely available commercial software. This technique would enable researchers to promptly and objectively perform surface reconstruction, creating three-dimensional anatomic images without any assistance from computer engineers. To develop the technique, we used data from the Visible Korean Human project, which produced digitalized photographic serial images of an entire cadaver. We selected 114 anatomic structures (skin [1], bones [32], knee joint structures [7], muscles [60], arteries [7], and nerves [7]) from the 976 anatomic images which were generated from the left lower limb of the cadaver. Using Adobe Photoshop, the selected anatomic structures in each serial image were outlined, creating a segmented image. The Photoshop files were then converted into Adobe Illustrator files to prepare isolated segmented images, so that the contours of the structure could be viewed independent of the surrounding anatomy. Using Alias Maya, these isolated segmented images were then stacked to construct a contour image. Gaps between the contour lines were filled with surfaces, and three-dimensional surface reconstruction could be visualized with Rhinoceros. Surface imperfections were then corrected to complete the three-dimensional images in Alias Maya. We believe that the three-dimensional anatomic images created by these methods will have widespread application in both medical education and research. 2007 Wiley-Liss, Inc

  18. DTMs Assessment to the Definition of Shallow Landslides Prone Areas

    NASA Astrophysics Data System (ADS)

    Martins, Tiago D.; Oka-Fiori, Chisato; Carvalho Vieira, Bianca; Montgomery, David R.

    2017-04-01

    Predictive methods have been developed, especially since the 1990s, to identify landslide prone areas. One of the examples it is the physically based model SHALSTAB (Shallow Landsliding Stability Model), that calculate the potential instability for shallow landslides based on topography and physical soil properties. Normally, in such applications in Brazil, the Digital Terrain Model (DTM), is obtained mainly from conventional contour lines. However, recently the LiDAR (Light Detection and Ranging) system has been largely used in Brazil. Thus, this study aimed to evaluate different DTM's, generated from conventional data and LiDAR, and their influence in generating susceptibility maps to shallow landslides using SHALSTAB model. For that were analyzed the physical properties of soil, the response of the model when applying conventional topographical data and LiDAR's in the generation of DTM, and the shallow landslides susceptibility maps based on different topographical data. The selected area is in the urban perimeter of the municipality of Antonina (PR), affected by widespread landslides in March 2011. Among the results, it was evaluated different LiDAR data interpolation, using GIS tools, wherein the Triangulation/Natural Neighbor presented the best performance. It was also found that in one of evaluation indexes (Scars Concentration), the LiDAR derived DTM presented the best performance when compared with the one originated from contour lines, however, the Landslide Potential index, has presented a small increase. Consequently, it was possible to assess the DTM's, and the one derived from LiDAR improved very little the certitude percentage. It is also noted a gap in researches carried out in Brazil on the use of products generated from LiDAR data on geomorphological analysis.

  19. Engineering design of the PLX- α coaxial gun

    NASA Astrophysics Data System (ADS)

    Cruz, Edward; Brockington, Samuel; Case, Andrew; Luna, Marco; Witherspoon, Douglas; Langendorf, Samuel

    2016-10-01

    We describe the engineering and technical aspects of the coaxial gun designed for the 60-gun scaling study of spherically imploding plasma liners as a standoff driver for plasma-jet-driven magneto-inertial fusion. Each coaxial gun incorporates a fast, dense gas injection and triggering system, a compact low-weight pfn with integral sparkgap switching, and a contoured gap designed to suppress the blow-by instability. Alpha1 and Alpha2 guns are compared, with emphasis on the improvements on Alpha2, which include a faster more robust gas valve, an improved electrode contour, a custom 600- μF, 5-kV pfn, and a set of six inline sparkgap switches operated in parallel. The switch and pfn configurations are mounted directly to the back of the gun, and are designed to reduce inductance, cost, and complexity, maximize efficiency and system reliability, and ensure symmetric current flow. We will provide a detailed overview of the design choices made for the PLX- α coaxial gun. This work supported by the ARPA-E ALPHA Program.

  20. Lung segmentation from HRCT using united geometric active contours

    NASA Astrophysics Data System (ADS)

    Liu, Junwei; Li, Chuanfu; Xiong, Jin; Feng, Huanqing

    2007-12-01

    Accurate lung segmentation from high resolution CT images is a challenging task due to various detail tracheal structures, missing boundary segments and complex lung anatomy. One popular method is based on gray-level threshold, however its results are usually rough. A united geometric active contours model based on level set is proposed for lung segmentation in this paper. Particularly, this method combines local boundary information and region statistical-based model synchronously: 1) Boundary term ensures the integrality of lung tissue.2) Region term makes the level set function evolve with global characteristic and independent on initial settings. A penalizing energy term is introduced into the model, which forces the level set function evolving without re-initialization. The method is found to be much more efficient in lung segmentation than other methods that are only based on boundary or region. Results are shown by 3D lung surface reconstruction, which indicates that the method will play an important role in the design of computer-aided diagnostic (CAD) system.

  1. Brain MRI Tumor Detection using Active Contour Model and Local Image Fitting Energy

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel

    2014-03-01

    Automatic abnormality detection in Magnetic Resonance Imaging (MRI) is an important issue in many diagnostic and therapeutic applications. Here an automatic brain tumor detection method is introduced that uses T1-weighted images and K. Zhang et. al.'s active contour model driven by local image fitting (LIF) energy. Local image fitting energy obtains the local image information, which enables the algorithm to segment images with intensity inhomogeneities. Advantage of this method is that the LIF energy functional has less computational complexity than the local binary fitting (LBF) energy functional; moreover, it maintains the sub-pixel accuracy and boundary regularization properties. In Zhang's algorithm, a new level set method based on Gaussian filtering is used to implement the variational formulation, which is not only vigorous to prevent the energy functional from being trapped into local minimum, but also effective in keeping the level set function regular. Experiments show that the proposed method achieves high accuracy brain tumor segmentation results.

  2. Human body motion tracking based on quantum-inspired immune cloning algorithm

    NASA Astrophysics Data System (ADS)

    Han, Hong; Yue, Lichuan; Jiao, Licheng; Wu, Xing

    2009-10-01

    In a static monocular camera system, to gain a perfect 3D human body posture is a great challenge for Computer Vision technology now. This paper presented human postures recognition from video sequences using the Quantum-Inspired Immune Cloning Algorithm (QICA). The algorithm included three parts. Firstly, prior knowledge of human beings was used, the key joint points of human could be detected automatically from the human contours and skeletons which could be thinning from the contours; And due to the complexity of human movement, a forecasting mechanism of occlusion joint points was addressed to get optimum 2D key joint points of human body; And then pose estimation recovered by optimizing between the 2D projection of 3D human key joint points and 2D detection key joint points using QICA, which recovered the movement of human body perfectly, because this algorithm could acquire not only the global optimal solution, but the local optimal solution.

  3. Continuous wavelet transform based time-scale and multifractal analysis of the nonlinear oscillations in a hollow cathode glow discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurujjaman, Md.; Narayanan, Ramesh; Iyengar, A. N. Sekar

    2009-10-15

    Continuous wavelet transform (CWT) based time-scale and multifractal analyses have been carried out on the anode glow related nonlinear floating potential fluctuations in a hollow cathode glow discharge plasma. CWT has been used to obtain the contour and ridge plots. Scale shift (or inversely frequency shift), which is a typical nonlinear behavior, has been detected from the undulating contours. From the ridge plots, we have identified the presence of nonlinearity and degree of chaoticity. Using the wavelet transform modulus maxima technique we have obtained the multifractal spectrum for the fluctuations at different discharge voltages and the spectrum was observed tomore » become a monofractal for periodic signals. These multifractal spectra were also used to estimate different quantities such as the correlation and fractal dimension, degree of multifractality, and complexity parameters. These estimations have been found to be consistent with the nonlinear time series analysis.« less

  4. Speech intonation and melodic contour recognition in children with cochlear implants and with normal hearing.

    PubMed

    See, Rachel L; Driscoll, Virginia D; Gfeller, Kate; Kliethermes, Stephanie; Oleson, Jacob

    2013-04-01

    Cochlear implant (CI) users have difficulty perceiving some intonation cues in speech and melodic contours because of poor frequency selectivity in the cochlear implant signal. To assess perceptual accuracy of normal hearing (NH) children and pediatric CI users on speech intonation (prosody), melodic contour, and pitch ranking, and to determine potential predictors of outcomes. Does perceptual accuracy for speech intonation or melodic contour differ as a function of auditory status (NH, CI), perceptual category (falling versus rising intonation/contour), pitch perception, or individual differences (e.g., age, hearing history)? NH and CI groups were tested on recognition of falling intonation/contour versus rising intonation/contour presented in both spoken and melodic (sung) conditions. Pitch ranking was also tested. Outcomes were correlated with variables of age, hearing history, HINT, and CNC scores. The CI group was significantly less accurate than the NH group in spoken (CI, M = 63.1%; NH, M = 82.1%) and melodic (CI, M = 61.6%; NH, M = 84.2%) conditions. The CI group was more accurate in recognizing rising contour in the melodic condition compared with rising intonation in the spoken condition. Pitch ranking was a significant predictor of outcome for both groups in falling intonation and rising melodic contour; age at testing and hearing history variables were not predictive of outcomes. Children with CIs were less accurate than NH children in perception of speech intonation, melodic contour, and pitch ranking. However, the larger pitch excursions of the melodic condition may assist in recognition of the rising inflection associated with the interrogative form.

  5. Speech Intonation and Melodic Contour Recognition in Children with Cochlear Implants and with Normal Hearing

    PubMed Central

    See, Rachel L.; Driscoll, Virginia D.; Gfeller, Kate; Kliethermes, Stephanie; Oleson, Jacob

    2013-01-01

    Background Cochlear implant (CI) users have difficulty perceiving some intonation cues in speech and melodic contours because of poor frequency selectivity in the cochlear implant signal. Objectives To assess perceptual accuracy of normal hearing (NH) children and pediatric CI users on speech intonation (prosody), melodic contour, and pitch ranking, and to determine potential predictors of outcomes. Hypothesis Does perceptual accuracy for speech intonation or melodic contour differ as a function of auditory status (NH, CI), perceptual category (falling vs. rising intonation/contour), pitch perception, or individual differences (e.g., age, hearing history)? Method NH and CI groups were tested on recognition of falling intonation/contour vs. rising intonation/contour presented in both spoken and melodic (sung) conditions. Pitch ranking was also tested. Outcomes were correlated with variables of age, hearing history, HINT, and CNC scores. Results The CI group was significantly less accurate than the NH group in spoken (CI, M=63.1 %; NH, M=82.1%) and melodic (CI, M=61.6%; NH, M=84.2%) conditions. The CI group was more accurate in recognizing rising contour in the melodic condition compared with rising intonation in the spoken condition. Pitch ranking was a significant predictor of outcome for both groups in falling intonation and rising melodic contour; age at testing and hearing history variables were not predictive of outcomes. Conclusions Children with CIs were less accurate than NH children in perception of speech intonation, melodic contour, and pitch ranking. However, the larger pitch excursions of the melodic condition may assist in recognition of the rising inflection associated with the interrogative form. PMID:23442568

  6. Differential contribution of early visual areas to the perceptual process of contour processing.

    PubMed

    Schira, Mark M; Fahle, Manfred; Donner, Tobias H; Kraft, Antje; Brandt, Stephan A

    2004-04-01

    We investigated contour processing and figure-ground detection within human retinotopic areas using event-related functional magnetic resonance imaging (fMRI) in 6 healthy and naïve subjects. A figure (6 degrees side length) was created by a 2nd-order texture contour. An independent and demanding foveal letter-discrimination task prevented subjects from noticing this more peripheral contour stimulus. The contour subdivided our stimulus into a figure and a ground. Using localizers and retinotopic mapping stimuli we were able to subdivide each early visual area into 3 eccentricity regions corresponding to 1) the central figure, 2) the area along the contour, and 3) the background. In these subregions we investigated the hemodynamic responses to our stimuli and compared responses with or without the contour defining the figure. No contour-related blood oxygenation level-dependent modulation in early visual areas V1, V3, VP, and MT+ was found. Significant signal modulation in the contour subregions of V2v, V2d, V3a, and LO occurred. This activation pattern was different from comparable studies, which might be attributable to the letter-discrimination task reducing confounding attentional modulation. In V3a, but not in any other retinotopic area, signal modulation corresponding to the central figure could be detected. Such contextual modulation will be discussed in light of the recurrent processing hypothesis and the role of visual awareness.

  7. Details of Side Load Test Data and Analysis for a Truncated Ideal Contour Nozzle and a Parabolic Contour Nozzle

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.

    2010-01-01

    Two cold flow subscale nozzles were tested for side load characteristics during simulated nozzle start transients. The two test article contours were a truncated ideal and a parabolic. The current paper is an extension of a 2009 AIAA JPC paper on the test results for the same two nozzle test articles. The side load moments were measured with the strain tube approach in MSFC s Nozzle Test Facility. The processing techniques implemented to convert the strain gage signals into side load moment data are explained. Nozzle wall pressure profiles for separated nozzle flow at many NPRs are presented and discussed in detail. The effect of the test cell diffuser inlet on the parabolic nozzle s wall pressure profiles for separated flow is shown. The maximum measured side load moments for the two contours are compared. The truncated ideal contour s peak side load moment was 45% of that of the parabolic contour. The calculated side load moments, via mean-plus-three-standard-deviations at each nozzle pressure ratio, reproduced the characteristics and absolute values of measured maximums for both contours. The effect of facility vibration on the measured side load moments is quantified and the effect on uncertainty is calculated. The nozzle contour designs are discussed and the impact of a minor fabrication flaw in the nozzle contours is explained.

  8. Active control of wake/blade-row interaction noise through the use of blade surface actuators

    NASA Technical Reports Server (NTRS)

    Kousen, Kenneth A.; Verdon, Joseph M.

    1993-01-01

    A combined analytical/computational approach for controlling of the noise generated by wake/blade-row interaction through the use of anti-sound actuators on the blade surfaces is described. A representative two-dimensional section of a fan stage, composed of an upstream fan rotor and a downstream fan exit guide vane (FEGV), is examined. An existing model for the wakes generated by the rotor is analyzed to provide realistic magnitudes for the vortical excitations imposed at the inlet to the FEGV. The acoustic response of the FEGV is determined at multiples of the blade passing frequency (BPF) by using the linearized unsteady flow analysis, LINFLO. Acoustic field contours are presented at each multiple of BPF illustrating the generated acoustic response disturbances. Anti-sound is then provided by placing oscillating control surfaces, whose lengths and locations are specified arbitrarily, on the blades. An analysis is then conducted to determine the complex amplitudes required for the control surface motions to best reduce the noise. It is demonstrated that if the number of acoustic response modes to be controlled is equal to the number of available independent control surfaces, complete noise cancellation can be achieved. A weighted least squares minimization procedure for the control equations is given for cases in which the number of acoustic modes exceeds the number of available control surfaces. The effectiveness of the control is measured by the magnitude of a propagating acoustic response vector, which is related to the circumferentially averaged sound pressure level (SPL), and is minimized by a standard least-squares minimization procedure.

  9. Active control of wake/blade-row interaction noise through the use of blade surface actuators

    NASA Astrophysics Data System (ADS)

    Kousen, Kenneth A.; Verdon, Joseph M.

    1993-12-01

    A combined analytical/computational approach for controlling of the noise generated by wake/blade-row interaction through the use of anti-sound actuators on the blade surfaces is described. A representative two-dimensional section of a fan stage, composed of an upstream fan rotor and a downstream fan exit guide vane (FEGV), is examined. An existing model for the wakes generated by the rotor is analyzed to provide realistic magnitudes for the vortical excitations imposed at the inlet to the FEGV. The acoustic response of the FEGV is determined at multiples of the blade passing frequency (BPF) by using the linearized unsteady flow analysis, LINFLO. Acoustic field contours are presented at each multiple of BPF illustrating the generated acoustic response disturbances. Anti-sound is then provided by placing oscillating control surfaces, whose lengths and locations are specified arbitrarily, on the blades. An analysis is then conducted to determine the complex amplitudes required for the control surface motions to best reduce the noise. It is demonstrated that if the number of acoustic response modes to be controlled is equal to the number of available independent control surfaces, complete noise cancellation can be achieved. A weighted least squares minimization procedure for the control equations is given for cases in which the number of acoustic modes exceeds the number of available control surfaces. The effectiveness of the control is measured by the magnitude of a propagating acoustic response vector, which is related to the circumferentially averaged sound pressure level (SPL), and is minimized by a standard least-squares minimization procedure.

  10. Ups and Downs in Auditory Development: Preschoolers' Sensitivity to Pitch Contour and Timbre.

    PubMed

    Creel, Sarah C

    2016-03-01

    Much research has explored developing sound representations in language, but less work addresses developing representations of other sound patterns. This study examined preschool children's musical representations using two different tasks: discrimination and sound-picture association. Melodic contour--a musically relevant property--and instrumental timbre, which is (arguably) less musically relevant, were tested. In Experiment 1, children failed to associate cartoon characters to melodies with maximally different pitch contours, with no advantage for melody preexposure. Experiment 2 also used different-contour melodies and found good discrimination, whereas association was at chance. Experiment 3 replicated Experiment 2, but with a large timbre change instead of a contour change. Here, discrimination and association were both excellent. Preschool-aged children may have stronger or more durable representations of timbre than contour, particularly in more difficult tasks. Reasons for weaker association of contour than timbre information are discussed, along with implications for auditory development. Copyright © 2015 Cognitive Science Society, Inc.

  11. Isolating contour information from arbitrary images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1989-01-01

    Aspects of natural vision (physiological and perceptual) serve as a basis for attempting the development of a general processing scheme for contour extraction. Contour information is assumed to be central to visual recognition skills. While the scheme must be regarded as highly preliminary, initial results do compare favorably with the visual perception of structure. The scheme pays special attention to the construction of a smallest scale circular difference-of-Gaussian (DOG) convolution, calibration of multiscale edge detection thresholds with the visual perception of grayscale boundaries, and contour/texture discrimination methods derived from fundamental assumptions of connectivity and the characteristics of printed text. Contour information is required to fall between a minimum connectivity limit and maximum regional spatial density limit at each scale. Results support the idea that contour information, in images possessing good image quality, is (centered at about 10 cyc/deg and 30 cyc/deg). Further, lower spatial frequency channels appear to play a major role only in contour extraction from images with serious global image defects.

  12. Automated contouring error detection based on supervised geometric attribute distribution models for radiation therapy: A general strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsin-Chen; Tan, Jun; Dolly, Steven

    2015-02-15

    Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy basedmore » on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets were separately employed to test the effectiveness of the proposed contouring error detection strategy. Results: An evaluation tool was implemented to illustrate how the proposed strategy automatically detects the radiation therapy contouring errors for a given patient and provides 3D graphical visualization of error detection results as well. The contouring error detection results were achieved with an average sensitivity of 0.954/0.906 and an average specificity of 0.901/0.909 on the centroid/volume related contouring errors of all the tested samples. As for the detection results on structural shape related contouring errors, an average sensitivity of 0.816 and an average specificity of 0.94 on all the tested samples were obtained. The promising results indicated the feasibility of the proposed strategy for the detection of contouring errors with low false detection rate. Conclusions: The proposed strategy can reliably identify contouring errors based upon inter- and intrastructural constraints derived from clinically approved contours. It holds great potential for improving the radiation therapy workflow. ROC and box plot analyses allow for analytically tuning of the system parameters to satisfy clinical requirements. Future work will focus on the improvement of strategy reliability by utilizing more training sets and additional geometric attribute constraints.« less

  13. Topographic Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  14. Multiple two-dimensional versus three-dimensional PTV definition in treatment planning for conformal radiotherapy.

    PubMed

    Stroom, J C; Korevaar, G A; Koper, P C; Visser, A G; Heijmen, B J

    1998-06-01

    To demonstrate the need for a fully three-dimensional (3D) computerized expansion of the gross tumour volume (GTV) or clinical target volume (CTV), as delineated by the radiation oncologist on CT slices, to obtain the proper planning target volume (PTV) for treatment planning according to the ICRU-50 recommendations. For 10 prostate cancer patients two PTVs have been determined by expansion of the GTV with a 1.5 cm margin, i.e. a 3D PTV and a multiple 2D PTV. The former was obtained by automatically adding the margin while accounting in 3D for GTV contour differences in neighbouring slices. The latter was generated by automatically adding the 1.5 cm margin to the GTV in each CT slice separately; the resulting PTV is a computer simulation of the PTV that a radiation oncologist would obtain with (the still common) manual contouring in CT slices. For each patient the two PTVs were compared to assess the deviations of the multiple 2D PTV from the 3D PTV. For both PTVs conformal plans were designed using a three-field technique with fixed block margins. For each patient dose-volume histograms and tumour control probabilities (TCPs) of the (correct) 3D PTV were calculated, both for the plan designed for this PTV and for the treatment plan based on the (deviating) 2D PTV. Depending on the shape of the GTV, multiple 2D PTV generation could locally result in a 1 cm underestimation of the GTV-to-PTV margin. The deviations occurred predominantly in the cranio-caudal direction at locations where the GTV contour shape varies significantly from slice to slice. This could lead to serious underdosage and to a TCP decrease of up to 15%. A full 3D GTV-to-PTV expansion should be applied in conformal radiotherapy to avoid underdosage.

  15. SU-C-213-03: Custom 3D Printed Boluses for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, B; Yang, M; Yan, Y

    2015-06-15

    Purpose: To develop a clinical workflow and to commission the process of creating custom 3d printed boluses for radiation therapy. Methods: We designed a workflow to create custom boluses using a commercial 3D printer. Contours of several patients were deformably mapped to phantoms where the test bolus contours were designed. Treatment plans were created on the phantoms following our institutional planning guideline. The DICOM file of the bolus contours were then converted to stereoLithography (stl) file for the 3d printer. The boluses were printed on a commercial 3D printer using polylactic acid (PLA) material. Custom printing parameters were optimized inmore » order to meet the requirement of bolus composition. The workflow was tested on multiple anatomical sites such as skull, nose and chest wall. The size of boluses varies from 6×9cm2 to 12×25cm2. To commission the process, basic CT and dose properties of the printing materials were measured in photon and electron beams and compared against water and soft superflab bolus. Phantoms were then scanned to confirm the placement of custom boluses. Finally dose distributions with rescanned CTs were compared with those computer-generated boluses. Results: The relative electron density(1.08±0.006) of the printed boluses resemble those of liquid tap water(1.04±0.004). The dosimetric properties resemble those of liquid tap water(1.04±0.004). The dosimetric properties were measured at dmax with an ion chamber in electron and photon open beams. Compared with solid water and soft bolus, the output difference was within 1% for the 3D printer material. The printed boluses fit well to the phantom surfaces on CT scans. The dose distribution and DVH based on the printed boluses match well with those based on TPS generated boluses. Conclusion: 3d printing provides a cost effective and convenient solution for patient-specific boluses in radiation therapy.« less

  16. Topographic Map of Quadrangle 3468, Chak Wardak Syahgerd (509) and Kabul (510) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  17. TH-A-BRF-08: Deformable Registration of MRI and CT Images for MRI-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, H; Wen, N; Gordon, J

    2014-06-15

    Purpose: To evaluate the quality of a commercially available MRI-CT image registration algorithm and then develop a method to improve the performance of this algorithm for MRI-guided prostate radiotherapy. Methods: Prostate contours were delineated on ten pairs of MRI and CT images using Eclipse. Each pair of MRI and CT images was registered with an intensity-based B-spline algorithm implemented in Velocity. A rectangular prism that contains the prostate volume was partitioned into a tetrahedral mesh which was aligned to the CT image. A finite element method (FEM) was developed on the mesh with the boundary constraints assigned from the Velocitymore » generated displacement vector field (DVF). The resultant FEM displacements were used to adjust the Velocity DVF within the prism. Point correspondences between the CT and MR images identified within the prism could be used as additional boundary constraints to enforce the model deformation. The FEM deformation field is smooth in the interior of the prism, and equal to the Velocity displacements at the boundary of the prism. To evaluate the Velocity and FEM registration results, three criteria were used: prostate volume conservation and center consistence under contour mapping, and unbalanced energy of their deformation maps. Results: With the DVFs generated by the Velocity and FEM simulations, the prostate contours were warped from MRI to CT images. With the Velocity DVFs, the prostate volumes changed 10.2% on average, in contrast to 1.8% induced by the FEM DVFs. The average of the center deviations was 0.36 and 0.27 cm, and the unbalance energy was 2.65 and 0.38 mJ/cc3 for the Velocity and FEM registrations, respectively. Conclusion: The adaptive FEM method developed can be used to reduce the error of the MIbased registration algorithm implemented in Velocity in the prostate region, and consequently may help improve the quality of MRI-guided radiation therapy.« less

  18. Topographic Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  19. Topographic Map of Quadrangle 3570, Tagab-E-Munjan (505) and Asmar-Kamdesh (506) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  20. Topographic Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

Top