Science.gov

Sample records for generate reparative dentin

  1. Pulp stem cells: implication in reparative dentin formation.

    PubMed

    Dimitrova-Nakov, Sasha; Baudry, Anne; Harichane, Yassine; Kellermann, Odile; Goldberg, Michel

    2014-04-01

    Many dental pulp stem cells are neural crest derivatives essential for lifelong maintenance of tooth functions and homeostasis as well as tooth repair. These cells may be directly implicated in the healing process or indirectly involved in cell-to-cell diffusion of paracrine messages to resident (pulpoblasts) or nonresident cells (migrating mesenchymal cells). The identity of the pulp progenitors and the mechanisms sustaining their regenerative capacity remain largely unknown. Taking advantage of the A4 cell line, a multipotent stem cell derived from the molar pulp of mouse embryo, we investigated the capacity of these pulp-derived precursors to induce in vivo the formation of a reparative dentin-like structure upon implantation within the pulp of a rodent incisor or a first maxillary molar after surgical exposure. One month after the pulp injury alone, a nonmineralized fibrous matrix filled the mesial part of the coronal pulp chamber. Upon A4 cell implantation, a mineralized osteodentin was formed in the implantation site without affecting the structure and vitality of the residual pulp in the central and distal parts of the pulp chamber. These results show that dental pulp stem cells can induce the formation of reparative dentin and therefore constitute a useful tool for pulp therapies. Finally, reparative dentin was also built up when A4 progenitors were performed by alginate beads, suggesting that alginate is a suitable carrier for cell implantation in teeth.

  2. Characterization of biomodified dentin matrices for potential preventive and reparative therapies

    PubMed Central

    Bedran-Russo, Ana Karina B.; Castellan, Carina. S.; Shinohara, Mirela S.; Hassan, Lina; Antunes, Alberto

    2011-01-01

    Biomodification of existing hard tissue structures, specifically tooth dentin, is an innovative approach proposed to improve the biomechanical and biochemical properties of tissue for potential preventive or reparative/regenerative therapies. The objectives of the study were to systematically characterize dentin matrices biomodified by proanthocyanidin-rich grape seed extract (GSE) and glutaraldehyde (GD). Changes to the biochemistry and biomechanical properties were assessed by several assays to investigate the degree of interactions, biodegradation rates, proteoglycans interaction, and effect of collagen fibril orientation and environmental conditions on the tensile properties. The highest degree of agent-dentin interaction was observed with GSE which exhibited the highest denaturation temperature, regardless of the agent concentration. Biodegradation rates remarkably decreased following biomodification of dentin matrices after 24hs collagenase digestion. A significant decreased in the proteoglycans content of GSE treated samples was observed using a micro-assay for glycosaminoglycans and histological electron microscopy, while no changes were observed for GD and control. Tensile strength properties of GD biomodified dentin matrices were affected by dentin tubule orientation, most likely due to the orientation of the collagen fibrils. Higher and/or increased stability of the tensile properties of GD and GSE-treated samples were observed following exposure to collagenase and 8 month water storage. Biomodification of dentin matrices using chemical agents not only affects the collagen biochemistry; it also involves interaction with proteoglycans. Tissue biomodifiers interact differently with dentin matrices and may provide the tissue with enhanced preventive and restorative/reparative abilities. PMID:21167964

  3. Evaluation of reparative dentin formation of ProRoot MTA, Biodentine and BioAggregate using micro-CT and immunohistochemistry

    PubMed Central

    Kim, Jia; Song, Young-Sang; Min, Kyung-San; Kim, Sun-Hun; Koh, Jeong-Tae

    2016-01-01

    Objectives The purpose of this study was to assess the ability of two new calcium silicate-based pulp-capping materials (Biodentine and BioAggregate) to induce healing in a rat pulp injury model and to compare them with mineral trioxide aggregate (MTA). Materials and Methods Eighteen rats were anesthetized, cavities were prepared and the pulp was capped with either of ProRoot MTA, Biodentine, or BioAggregate. The specimens were scanned using a high-resolution micro-computed tomography (micro-CT) system and were prepared and evaluated histologically and immunohistochemically using dentin sialoprotein (DSP). Results On micro-CT analysis, the ProRoot MTA and Biodentine groups showed significantly thicker hard tissue formation (p < 0.05). On H&E staining, ProRoot MTA showed complete dentin bridge formation with normal pulpal histology. In the Biodentine and BioAggregate groups, a thick, homogeneous hard tissue barrier was observed. The ProRoot MTA specimens showed strong immunopositive reaction for DSP. Conclusions Our results suggest that calcium silicate-based pulp-capping materials induce favorable effects on reparative processes during vital pulp therapy and that both Biodentine and BioAggregate could be considered as alternatives to ProRoot MTA. PMID:26877988

  4. Reparative Curriculum

    ERIC Educational Resources Information Center

    Tarc, Aparna Mishra

    2011-01-01

    Supporting learners' public engagement with traumatic histories of mass human violence can develop and sustain reparative relations across and between strained social collectives. In this article I theorize the intrapersonal and inter-political dynamics of psychical and social reparation through a classroom case of reparative learning. I analyze…

  5. Comparative biomorphologic analysis about three dentinal adhesives of last generations.

    PubMed

    Carini, F; Varia, P; Valenza, V

    2001-01-01

    The aim of this work consists in a comparative biomorphological analysis of the properties of infiltration and of adhesion to dental tissues of three among the more used enamel dentinal adhesives of the last generation known with the commercial name of Syntac, Excite and Prompt. The results have given evidence that Syntac has got short adhesion, Excite has got good capacity of infiltration and moderate adhesion, Prompt seems to possess a capacity of infiltration equal to Excite's one, but a better adhesion besides an easier modality of use.

  6. Microtensile dentin bond strength of fifth with five seventh-generation dentin bonding agents after thermocycling: An in vitro study

    PubMed Central

    Poptani, Bruhvi; Gohil, K. S.; Ganjiwale, Jaishree; Shukla, Manisha

    2012-01-01

    Objectives: The objective of this in vitro study was to compare the microtensile dentin bond strength (μTBS) of five seventh-generation dentin bonding agents (DBA) with fifth-generation DBA before and after thermocycling. Materials and Methods: Ten extracted teeth were assigned to fifth generation control group (optibond solo) and each of the five experimental groups namely, Group I (G-Bond) ,Group II (S3 Clearfil), Group III (One Coat 7.0), Group IV (Xeno V), and Group V (Optibond all in one). The crown portions of the teeth were horizontally sectioned below the central groove to expose the dentin. The adhesive resins from all groups were bonded to the teeth with their respective composites. Specimens of sizes 1 × 1 × 6 mm3 were obtained. Fifty specimens that bonded to dentin from each group were selected. Twenty-five of the specimens were tested for debonding without thermocycling and the remaining were subjected to thermocycling followed by μTBS testing. The data were analyzed with one-way ANOVA and Dunnett's-test for comparison with the reference group(Vth Generation). Results: There was no significant difference (P > 0.05) between the fifth- and seventh-generation adhesives before and after thermocycling. The results of our study showed significantly higher value (P < 0.05) of μTBS of seventh-generation Group II (Clearfil S3) compared to the fifth-generation before and after thermocycling. Conclusion: The study demonstrated that the Clearfil S3 bond had the highest μTBS values. In addition, of the five tested seventh-generation adhesive resins were comparable to the fifth-generation DBA. PMID:23230355

  7. Heat generation during ultrasonic instrumentation of dentin as affected by different irrigation methods.

    PubMed

    Nicoll, B K; Peters, R J

    1998-08-01

    Heat is produced by magnetostrictive ultrasonic scalers which may cause injury to pulpal and periodontal tissues. Water coolant flows around the instrument stack and is directed at the instrument tip to reduce the generation of heat. Sound surgical practice requires the use of a sterile coolant for ultrasonic scaling during surgery. Intermittent bulb irrigation is one way to deliver sterile coolant when using ultrasonic scalers not equipped with a dedicated sterile water reservoir. The purpose of this study was to compare the temperature rise in dentin during ultrasonic scaling using either ultrasonic handpiece irrigation or intermittent bulb irrigation. Twenty dentin/cementum root slabs were prepared for each thickness of 0.5, 1.5, and 2.5 mm. A 3.0 mm x 1.5 mm field was outlined on each slab to indicate the area of intended instrumentation. Each slab was mounted such that a thermocouple placed in contact with dentin opposite the area of instrumentation was shielded from irrigation. Twenty samples of each thickness were ultrasonically scaled during which dentin temperature was recorded every 5 seconds over a 30-second period. All 60 slabs were first treated with dental unit ultrasonic handpiece water irrigation, followed by no irrigation, and finally by bulb irrigation with sterile saline. Repeated measures analysis of variance indicated that there were differences among the three treatment groups for temperature change over the course of the study (P < 0.001). Dentin temperature increased with both decreasing slab thickness and with increasing duration of instrumentation. However, only scaling without irrigation produced a rise in dentin temperature from baseline to a level reported as deleterious to pulpal and periodontal tissues. Bulb syringe irrigation delivered as a continuous drip and ultrasonic unit water spray minimized heat generation to physiologically tolerable levels. Intermittent bulb irrigation appears to be a satisfactory alternative to use of

  8. Comparative Evaluation of Microshear Bond Strength of 5th, 6th and 7th Generation Bonding Agents to Coronal Dentin Versus Dentin at Floor of Pulp Chamber: An In vitro Study

    PubMed Central

    Deepa, Velagala Lakshmi; Damaraju, Bhargavi; Priyadharsini, Bollu Indira; Subbarao, Vummidisetti V; Raju, K Rama Krishna

    2014-01-01

    Background: Lack of seal and adhesion between the final restoration and tooth structure adversely affects the results of root canal treatment. Lots of adhesive bonding agents are marketed to overcome this deficiency and achieve successful restoration. So the study compares and evaluates the micro shear bond strength of coronal dentin and pulp chamber dentin using three different generation dentin bonding systems and to know clinical efficiency for clinical use. Materials and Methods: Different generation dentin bonding systems used were: (1) One bottle total etch system (XP Bond-5th generation), (2) Two-step self-etch system (Clearfil SE Bond-6th generation) and (3) All-in-one system (G Bond-7th generation). Thirty human mandibular molars were collected out of which sixty samples were prepared by sectioning each tooth into coronal dentin and pulpal floor dentin. They were divided into two major groups. Group I: 30 Coronal dentin samples. Group II:30 Pulpal floor dentin samples. Both the groups were further subdivided depending on the bonding agent used. Subgroup Ia:XP Bond, Subgroup Ib:Clearfil SE Bond, Subgroup Ic:G Bond, Subgroup IIa:XP Bond, Subgroup IIb:Clearfil SE Bond, Subgroup IIc:G Bond. Resin composite was bonded to these samples and tested for micro-shear bond strength. The mean bond strengths and standard deviations were calculated and analyzed using one-way ANOVA test and Student’s t-test (unpaired) and honestly significant difference post-hoc tests. Results: Coronal dentin showed higher values of micro shear bond strength than the pulpal floor dentin. All-in-one system (G Bond) showed least bond strength values to both the regions coronal dentin and pulpal floor dentin. Conclusion: Factors affecting the shear bond strength are dependent on material (adhesive system), substrate depth and adhesive/depth interaction. Hence composition and substrate treatment should be considered for good adhesive. Chemical composition of adhesive system determines

  9. Comparative evaluation of self-etching primers with fourth and fifth generation dentin-bonding systems on carious and normal dentin substrates: An in vitro shear bond strength analysis

    PubMed Central

    Giriyappa, Ramesh H; Chandra, B Suresh

    2008-01-01

    Aim: The aim of this study was to test the hypothesis that bonding to caries-affected dentin would yield strengths that are lower than bond strengths achievable when bonded to normal dentin. Dentin-bonding systems used in this study were fourth and fifth generation as well as self-etching primers. Materials and Methods: Forty-eight freshly extracted mandibular and maxillary molars were selected of which 24 were caries-affected teeth and the remaining were noncarious teeth. Random sampling was done with eight teeth in each group based on the bonding system used. In caries-affected teeth, the soft, stainable, caries-infected dentin was excavated using a caries detector dye whereas the hard, caries-affected, nonstainable dentin was retained. All the teeth were subsequently mounted in a suitable acrylic mould. Prepared teeth were restored with a single composite resin, using three different dentin bonding systems. These prepared specimens were transferred to a Hounsfield tensometer to measure the shear bond strength. The results obtained were analyzed using Anova, Student's unpaired t-test, and Student Neuman Keulis test. Results: The results showed that the self-etching primer required the highest mean shear load compared to the fifth and fourth generation dentin-bonding systems in both normal dentin and caries-affected dentin. Conclusion: Bond strength to dentin depends on whether the dentinal tubule is open or occluded. Within the limitations of this study, it was observed that bond strength to caries-affected dentin was low compared to normal dentin. PMID:20351973

  10. In vitro Comparative Evaluation of Tensile Bond Strength of 6th, 7th and 8th Generation Dentin Bonding Agents

    PubMed Central

    Kamble, Suresh S; Kandasamy, Baburajan; Thillaigovindan, Ranjani; Goyal, Nitin Kumar; Talukdar, Pratim; Seal, Mukut

    2015-01-01

    Background: Newer dentin bonding agents were developed to improve the quality of composite restoration and to reduce time consumption in its application. The aim of the present study was to evaluate tensile bond strength of 6th, 7th and 8th generation bonding agents by in vitro method. Materials and Methods: Selected 60 permanent teeth were assigned into 20 in each group (Group I: 6th generation bonding agent-Adper SE plus 3M ESPE, Group II: 7th generation bonding agent-G-Bond GC Corp Japan and Group III: 8th generation dentin adhesives-FuturaBond, DC, Voco, Germany). With high-speed diamond disc, coronal dentin was exposed, and selected dentin bonding agents were applied, followed by composite restoration. All samples were saved in saline for 24 h and tensile bond strength testing was done using a universal testing machine. The obtained data were tabulated and statistically analyzed using ANOVA test. Results: The tensile bond strength readings for 6th generation bonding agent was 32.2465, for 7th generation was 31.6734, and for 8th-generation dentine bonding agent was 34.74431. The highest tensile bond strength was seen in 8th generation bonding agent compared to 6th and 7th generation bonding agents. Conclusion: From the present study it can be conclude that 8th generation dentine adhesive (Futura DC, Voco, Germany) resulted in highest tensile bond strength compared to 6th (Adper SE plus, 3M ESPE) and 7th generation (G-Bond) dentin bonding agents. PMID:26028901

  11. Shear bond strength of seventh generation bonding agents on dentin of primary teeth--an in vitro study.

    PubMed

    Gonzalez, Geoffrey; Rich, Alfred P; Finkelman, Matthew D; Defuria, Catherine

    2012-01-01

    This controlled, randomized, in vitro study evaluated the shear bond strength of several seventh generation bonding agents on the dentin of primary teeth. Six different adhesives were used: Xeno IV, Clearfil S3 Bond, Adper Prompt-L-Pop, AdheSE One, Bond Force, and Optibond (control). Ninety primary teeth were prepared by wet grinding with a 320-grit silicon carbide paper on a polishing wheel running at 110 RPM. After 24 hours of storage in water, shear bond strengths of each group were determined. The mean shear bond strength of the tested adhesive systems to primary dentin was 12.27 MPa. One-way ANOVA testing showed a statistically significant difference between adhesive products (P < 0.001). Tukey HSD post hoc tests were used to assess which means were significantly different from one another. There was no statistically significant difference between the fifth generation adhesive system (Optibond) and the two seventh generation systems (Xeno IV and Bond Force), with Optibond exhibiting a lower mean shear bond strength compared to Bond Force. Within the limitations of this study, there is a significant difference between seventh generation bonding materials. Bond Force and Optibond appear to exhibit higher shear bond strengths than the other products.

  12. Influence of salivary contamination on the dentin bond strength of two different seventh generation adhesive systems: In vitro study

    PubMed Central

    Bhatia, Taranjeet Kaur; Asrani, Hemant; Banga, Harpreet; Jain, Aditi; Rawlani, Sudhir S.

    2015-01-01

    Aim: To investigate the effect of salivary contamination on the bond strength of two different seventh generation adhesive systems. Materials and Methods: Sixty caries-free human premolars with flat dentin surfaces were randomly divided into six groups of 10 teeth each and bonding was done using seventh-generation bonding agents Adper Easy One (3M ESPE) and Xeno V (Dentsply). Following the bonding procedure, resin composite was bonded to the surfaces using a plastic mould. The prepared specimen with composite cylinders attached were placed in 37°C distilled water for 24 h and then subjected to shear bond strength (SBS) with 0 h universal testing machine and the data were subjected to one-way analysis of variance and unpaired t-test. Results: Statistical significant difference between the Groups I, II and III in which Adper Easy One was used and similarly for Groups IV, V, and VI in which Xeno V was used. When an intergroup comparison was made using unpaired t-test Group II and Group V showed the nonsignificant difference. Conclusion: Salivary contamination significantly affects the SBS of both the seventh generation dentin bonding agents. However, 2-hydroxyethyl methacryate based adhesive has higher bond strength. PMID:26752841

  13. A study of the dentinal permeability of the pulp chamber floor of human lower molars with separate roots.

    PubMed

    Pécora, J D; Costa, W F; Maia Campos, G

    1990-01-01

    The permeability of the dentin of the pulp chamber floor of lower molars with separate roots was studied, after instrumentation of the root canals by manual or ultrasonic techniques. The dentinal permeability was evaluated by the degree of penetration of copper ions in the tissue and quantified by methods used in morphometry. None of the combinations of irrigating solution/instrumentation technique caused an increase in the permeability of dentinal tissue in the pulp chamber region, probably because the dentin is reparative dentin, which is more amorphous and less tubular than primary dentin.

  14. Biomaterials and scaffolds in reparative medicine

    NASA Technical Reports Server (NTRS)

    Chaikof, Elliot L.; Matthew, Howard; Kohn, Joachim; Mikos, Antonios G.; Prestwich, Glenn D.; Yip, Christopher M.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Most approaches currently pursued or contemplated within the framework of reparative medicine, including cell-based therapies, artificial organs, and engineered living tissues, are dependent on our ability to synthesize or otherwise generate novel materials, fabricate or assemble materials into appropriate 2-D and 3-D forms, and precisely tailor material-related physical and biological properties so as to achieve a desired clinical response. This paper summarizes the scientific and technological opportunities within the fields of biomaterials science and molecular engineering that will likely establish new enabling technologies for cellular and molecular therapies directed at the repair, replacement, or reconstruction of diseased or damaged organs and tissues.

  15. Biomaterials and scaffolds in reparative medicine.

    PubMed

    Chaikof, Elliot L; Matthew, Howard; Kohn, Joachim; Mikos, Antonios G; Prestwich, Glenn D; Yip, Christopher M

    2002-06-01

    Most approaches currently pursued or contemplated within the framework of reparative medicine, including cell-based therapies, artificial organs, and engineered living tissues, are dependent on our ability to synthesize or otherwise generate novel materials, fabricate or assemble materials into appropriate 2-D and 3-D forms, and precisely tailor material-related physical and biological properties so as to achieve a desired clinical response. This paper summarizes the scientific and technological opportunities within the fields of biomaterials science and molecular engineering that will likely establish new enabling technologies for cellular and molecular therapies directed at the repair, replacement, or reconstruction of diseased or damaged organs and tissues.

  16. The Reparative Motive in Surrogate Mothers.

    ERIC Educational Resources Information Center

    Kanefield, Linda

    1999-01-01

    Explores the motivations of surrogate mothers, focusing on underlying reparative motive--to compensate for or repair an earlier loss or sense of damage. Provides an overview of the typical surrogate's characteristics and personality, discusses the theoretical underpinnings of the reparative motive, and considers the tension between reparation and…

  17. A Fourier Transform Infrared Spectroscopy Analysis of Carious Dentin from Transparent Zone to Normal Zone

    PubMed Central

    Liu, Y.; Yao, X.; Liu, Y.W.; Wang, Y.

    2015-01-01

    It is well known that caries invasion leads to the differentiation of dentin into zones with altered composition, collagen integrity and mineral identity. However, understanding of these changes from the fundamental perspective of molecular structure has been lacking so far. In light of this, the present work aims to utilize Fourier transform infrared spectroscopy (FTIR) to directly extract molecular information regarding collagen's and hydroxyapatite's structural changes as dentin transitions from the transparent zone (TZ) into the normal zone (NZ). Unembedded ultrathin dentin films were sectioned from carious teeth, and an FTIR imaging system was used to obtain spatially resolved FTIR spectra. According to the mineral-to-matrix ratio image generated from large-area low-spectral-resolution scan, the TZ, the NZ and the intermediate subtransparent zone (STZ) were identified. High-spectral-resolution spectra were taken from each zone and subsequently examined with regard to mineral content, carbonate distribution, collagen denaturation and carbonate substitution patterns. The integrity of collagen's triple helical structure was also evaluated based on spectra collected from demineralized dentin films of selected teeth. The results support the argument that STZ is the real sclerotic layer, and they corroborate the established knowledge that collagen in TZ is hardly altered and therefore should be reserved for reparative purposes. Moreover, the close resemblance between the STZ and the NZ in terms of carbonate content, and that between the STZ and the TZ in terms of being A-type carbonate-rich, suggest that the mineral that initially occludes dentin tubules is hydroxyapatite newly generated from odontoblastic activities, which is then transformed into whitlockite in the demineralization/remineralization process as caries progresses. PMID:24556607

  18. Bond Strength of 5th, 6th and 7th Generation Bonding Agents to Intracanal Dentin of Primary Teeth

    PubMed Central

    Afshar, Hossein; Baradaran Nakhjavani, Yahya; Rahro Taban, Sedighe; Baniameri, Zahra; Nahvi, Azam

    2015-01-01

    Objectives: This in-vitro study sought to assess the push-out bond strength of a total etch and 2 self-etch bonding systems to intracanal dentin of primary anterior teeth (PAT). Materials and Methods: Thirty-six primary anterior teeth were randomly divided into 3 groups of 5th generation (Single Bond 2), 6th generation (Clearfil SE) and 7th generation (Single Bond Universal) bonding agents. The canal orifice was restored with composite resin and the push-out test was carried out to assess the bond strength. After applying the push-out load, specimens were evaluated under a light microscope at 40X magnification. One-way ANOVA and log-rank test on Kaplan-Meier curves were applied for the comparison of bond strength among the 3 groups. Results: The mean± standard deviation (SD) bond strength was 13.6±5.33 MPa for Single Bond 2, 13.85±5.86 MPa for Clearfil SE and 12.28±5.24 MPa for Single Bond Universal. The differences in bond strength among the 3 groups were not statistically significant (P>0.05). Conclusion: All three bonding agents are recommended for use with composite posts in PAT. However, due to high technical sensitivity of the Total Etch system, single or two-step self etch systems may be preferred for uncooperative children. PMID:26056518

  19. A feasibility study for the analysis of reparative dentinogenesis in pOBCol3.6GFPtpz transgenic mice

    PubMed Central

    Frozoni, M.; Balic, A.; Sagomonyants, K.; Zaia, A. A.; Line, S. R. P.; Mina, M.

    2012-01-01

    Aim To examine the feasibility of using the pOBCol3.6GFPtpz (3.6-GFP) transgenic mice as an in vivo model for studying the biological sequence of events during pulp healing and reparative dentinogenesis. Methodology Pulp exposures were created in the first maxillary molar of 12-16 week old 3.6-GFP transgenic mice with CD1 and C57/Bl6 genetic background. Direct pulp capping on exposed teeth were performed using mineral trioxide aggregate (MTA) followed by restoration with a light-cured adhesive system (AS) and composite resin. In control teeth, the AS was placed in direct contact with the pulp. Animals were euthanized at various time points after pulp exposure and capping. The maxillary arch was isolated, fixed and processed for histological and epifluorescence analysis to examine reparative dentinogenesis. Results Analysis of teeth immediately after pulp exposure revealed absence of odontoblasts expressing 3.6-GFP at the injury site. Evidence of reparative dentinogenesis was apparent at 4 weeks in 3.6-GFP mice in CD1 background and at 8 weeks in 3.6-GFP mice with C57/Bl6 background. The reparative dentine with both groups contained newly formed atubular-mineralized tissue resembling a dentine bridge and/or osteodentine that was lined by cells expressing 3.6-GFP as well as 3.6-GFP expressing cells embedded within the atubular matrix. Conclusion This study was conducted in a few animals and did not allow statistical analysis. The results revealed that the 3.6-GFP transgenic animals provide a unique model for direct analysis of cellular and molecular mechanisms of pulp repair and tertiary dentinogenesis in vivo. The study also shows the effects of the capping material and the genetic background of the mice in the sequence and timing of reparative dentinogenesis. PMID:22551423

  20. Evaluation of the Morphological Characteristics of Laser-Irradiated Dentin

    PubMed Central

    Lilaj, Bledar; Franz, Alexander; Degendorfer, Daniela; Moritz, Andreas

    2015-01-01

    Abstract Objective: The aim of this study was to investigate the effect of different energy settings of Er:YAG laser irradiation on dentin surface morphology with respect to the number of opened dentinal tubules. Background data: An ideally prepared dentin surface with opened dentinal tubules is a prerequisite for adhesive fixation. No study, however, has yet compared the numbers of opened dentinal tubules with regard to statistical differences. Methods: Conventional preparations using a bur with or without additional acid etching acted as control groups. Dentin specimens were prepared from human third molars and randomly divided into eight groups according to the energy settings of the laser (1, 1.5, 4, 6, 7.5, and 8 W) and two controls (bur and bur plus acid etching). After surface preparation, dentin surfaces were analyzed with a scanning electron microscope, and the number of opened dentinal tubules in a defined area was counted. Results: The control groups showed smooth surfaces with (bur plus acid etching) and without opened dentinal tubules (bur), whereas all laser-irradiated surfaces showed rough surfaces. Using the energy setting of 4 W resulted in significantly more opened dentinal tubules than the conventional preparation technique using the bur with additional acid etching. In contrast, the energy setting of 8 W showed significantly fewer opened dentinal tubules, and also exhibited signs of thermal damage. Conclusions: The Er:YAG laser with an energy setting of 4 W generates a dentin surface with opened dentinal tubules, a prerequisite for adhesive fixation. PMID:26389986

  1. [The inhibition of potato tubers wound reparation].

    PubMed

    Chalenko, G I; Vasiukova, N I; Gerasimova, N G; Ozeretskovskaia, O l

    2009-01-01

    The multiple washing of the wound surface of potato tubers by water adversely affected the protective properties of wound periderm. Immune inhibitor beta-1,3-beta-1,6 glucan had a property of local effect and inhibited the process of wound healing. The pentasaccharide of xyloglucan caused necrosis of potato tuber tissue and prevented the wound reparation process.

  2. Permeability of Dentine

    PubMed Central

    Ghazali, Farid Bin Che

    2003-01-01

    This is an update on the present integrated knowledge regarding dentine permeability that assumed a role in dentine sensitivity and contribute clinically to the effective bonding properties of restorative dental materials. This paper will attempt to refer to in vivo and in vitro studies of dentine permeability and the various interrelated factors governing it. PMID:23365497

  3. Stock Funding of Depot Level Reparable Components.

    DTIC Science & Technology

    1980-05-01

    not be construed as an official Department of the Army position, policy , or decision, unless so designated by other official documentation. Results...Jan 80 MC COY, R. F. CIV DALO-RMI Oct 78 - May 80 GAWORSKI, J. j. CIV DACA- OMO Feb 79 - Aug 79 CRICE, S. CIV DCSLOG, FORSOOM Jul 79 - Aug 79 CLEMENTS...SUPPLY MANAGEMENT CONCEPTS, POLICIES , SYSTEMS OR PROCEDURES WOULD NOT BE REQUIRED BY IMPLEMENTION OF A STOCK FUND APPROACH TO DEPOT REPARABLES

  4. Retinal detachment: is reparative surgery always mandatory?

    PubMed Central

    Jarrett, W H

    1988-01-01

    The author reports 16 cases of rhegmatogenous retinal detachment in which, for a variety of reasons, immediate reparative surgery was not carried out. To date, one-half of these cases have not been operated, and four have been followed for 6 years or longer. No case suffered visual loss because of the delay in surgery, nor has chronic inflammation, glaucoma, or rubeosis been a problem. The clinical characteristics of this group of cases is defined. PMID:2979020

  5. Use of Poly (Amidoamine) Dendrimer for Dentinal Tubule Occlusion: A Preliminary Study

    PubMed Central

    Wang, Tianda; Yang, Sheng; Wang, Lei; Feng, Hailan

    2015-01-01

    The occlusion of dentinal tubules is an effective method to alleviate the symptoms caused by dentin hypersensitivity, a significant health problem in dentistry and daily life. The in situ mineralization within dentinal tubules is a promising treatment for dentin hypersensitivity as it induces the formation of mineral on the sensitive regions and occludes the dentinal tubules. This study was carried out to evaluate the in vitro effect of a whole generation poly(amidoamine) (PAMAM) dendrimer (G3.0) on dentinal tubule occlusion by inducing mineralization within dentinal tubules. Dentin discs were treated with PAMAM dendrimers using two methods, followed by the in vitro characterization using Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). These results showed that G3.0 PAMAM dendrimers coated on dentin surface and infiltrated in dentinal tubules could induce hydroxyapatite formation and resulted in effective dentinal tubule occlusion. Moreover, crosslinked PAMAM dendrimers could induce the remineralization of demineralized dentin and thus had the potential in dentinal tubule occlusion. In this in vitro study, dentinal tubules occlusion could be achieved by using PAMAM dendrimers. This could lead to the development of a new therapeutic technique for the treatment of dentin hypersensitivity. PMID:25885090

  6. Matricellular molecules and odontoblast progenitors as tools for dentin repair and regeneration

    PubMed Central

    Goldberg, M.; Lacerda-Pinheiro, S.; Priam, F.; Jegat, N.; Six, N.; Bonnefoix, M.; Septier, D.; Chaussain-Miller, C.; Veis, A.; Denbesten, P.; Poliard, A.

    2010-01-01

    This review summarizes the in vivo experiments carried out by our group after implantation of bioactive molecules (matricellular molecules) into the exposed pulp of the first maxillary molar of the rat or the mandibular incisor of rats and mice. We describe the cascade of recruitment, proliferation and terminal differentiation of cells involved in the formation of reparative dentin. Cloned immortalized odontoblast progenitors were also implanted in the incisors and in vitro studies aimed at revealing the signaling pathways leading from undifferentiated progenitors to fully differentiated polarized cells. Together, these experimental approaches pave the way for controlled dentin regenerative processes and repair. PMID:18157557

  7. Origins of bone repair in the armour of fossil fish: response to a deep wound by cells depositing dentine instead of dermal bone

    PubMed Central

    Johanson, Zerina; Smith, Moya; Kearsley, Anton; Pilecki, Peter; Mark-Kurik, Elga; Howard, Charles

    2013-01-01

    The outer armour of fossil jawless fishes (Heterostraci) is, predominantly, a bone with a superficial ornament of dentine tubercles surrounded by pores leading to flask-shaped crypts (ampullae). However, despite the extensive bone present in these early dermal skeletons, damage was repaired almost exclusively with dentine. Consolidation of bone, by dentine invading and filling the vascular spaces, was previously recognized in Psammolepis and other heterostracans but was associated with ageing and dermal shield wear (reparative). Here, we describe wound repair by deposition of dentine directly onto a bony scaffold of fragmented bone. An extensive wound response occurred from massive deposition of dentine (reactionary), traced from tubercle pulp cavities and surrounding ampullae. These structures may provide the cells to make reparative and reactionary dentine, as in mammalian teeth today in response to stimuli (functional wear or damage). We suggest in Psammolepis, repair involved mobilization of these cells in response to a local stimulatory mechanism, for example, predator damage. By comparison, almost no new bone is detected in repair of the Psammolepis shield. Dentine infilling bone vascular tissue spaces of both abraded dentine and wounded bone suggests that recruitment of this process has been evolutionarily conserved over 380 Myr and precedes osteogenic skeletal repair. PMID:23925831

  8. Biomimetic remineralization of dentin

    PubMed Central

    Niu, Li-na; Zhang, Wei; Pashley, David H.; Breschi, Lorenzo; Mao, Jing; Chen, Ji-hua; Tay, Franklin R.

    2013-01-01

    Objectives Remineralization of demineralized dentin is important for improving dentin bonding stability and controlling primary and secondary caries. Nevertheless, conventional dentin remineralization strategy is not suitable for remineralizing completely-demineralized dentin within hybrid layers created by etch-and-rinse and moderately aggressive self-etch adhesive systems, or the superficial part of a caries-affected dentin lesion left behind after minimally invasive caries removal. Biomimetic remineralization represents a different approach to this problem by attempting to backfill the demineralized dentin collagen with liquid-like amorphous calcium phosphate nanoprecursor particles that are stabilized by biomimetic analogs of noncollagenous proteins. Methods This paper reviewed the changing concepts in calcium phosphate mineralization of fibrillar collagen, including the recently discovered, non-classical particle-based crystallization concept, formation of polymer-induced liquid- precursors (PILP), experimental collagen models for mineralization, and the need for using phosphate-containing biomimetic analogs for biomimetic mineralization of collagen. Published work on the remineralization of resin-dentin bonds and artificial caries-like lesions by various research groups was then reviewed. Finally, the problems and progress associated with the translation of a scientifically-sound concept into a clinically-applicable approach are discussed. Results and Significance The particle-based biomimetic remineralization strategy based on the PILP process demonstrates great potential in remineralizing faulty hybrid layers or caries-like dentin. Based on this concept, research in the development of more clinically feasible dentin remineralization strategy, such as incorporating poly(anionic) acid-stabilized amorphous calcium phosphate nanoprecursor-containing mesoporous silica nanofillers in dentin adhesives, may provide a promising strategy for increasing of the

  9. Imaging analysis of early DMP1 mediated dentin remineralization

    PubMed Central

    Bedran-Russo, Ana K.; Ravindran, Sriram; George, Anne

    2013-01-01

    Objective This study assessed the micro-morphological changes in demineralized dentin scaffold following incubation with recombinant dentin matrix protein 1 (rDMP1). Design Extracted human molar crowns were sectioned into 6 beams (dimensions: 0.50 × 1.70 × 6.0 mm), demineralized and incubated overnight in 3 different media (n = 4): rDMP1 in bovine serum albumin (BSA), BSA and distilled water. Samples were placed in a chamber with simulated physiological concentrations of calcium and phosphate ions at constant pH 7.4. Samples were immediately processed for transmission electron microscopy (TEM) and field emission-scanning electron microscopy (FE-SEM) after 1 and 2 weeks. Results Analysis of the scaffold showed that decalcification process retained the majority of endogenous proteoglycans and phosphoproteins. rDMP1 treated samples promoted deposition of amorphous calcium phosphate (ACP) precursors and needle shaped hydroxyapatite crystals surrounding collagen fibrils. The BSA group presented ACP bound to collagen with no needle-like apatite crystals. Samples kept in distilled water showed no evidence of ACP and crystal apatite. Results from rDMP1 immobilized on dentin matrix suggests that the acidic protein was able to bind to collagen fibrils and control formation of amorphous calcium phosphate and its subsequent transformation into hydroxyapatite crystals after 2 weeks. Conclusion These findings suggest a possible bio-inspired strategy to promote remineralization of dentin for reparative and regenerative purposes. PMID:23107046

  10. Gross human rights violations and reparation under international law: approaching rehabilitation as a form of reparation

    PubMed Central

    Sveaass, Nora

    2013-01-01

    The strengthening of international criminal law through an increased focus on the right to reparation and rehabilitation for victims of crimes against humanity represents an important challenge to health professionals, particularly to those in the field of trauma research and treatment. A brief outline of some developments in the field of international law and justice for victims of gross human rights violations is presented, with a focus on the right to reparation including the means for rehabilitation. The fulfillment of this right is a complex endeavor which raises many questions. The road to justice and reparation for those whose rights have been brutally violated is long and burdensome. The active presence of trauma-informed health professionals in this process is a priority. Some of the issues raised within the context of states’ obligations to provide and ensure redress and rehabilitation to those subjected to torture and gross human rights violations are discussed, and in particular how rehabilitation can be understood and responded to by health professionals. PMID:23671765

  11. Gross human rights violations and reparation under international law: approaching rehabilitation as a form of reparation.

    PubMed

    Sveaass, Nora

    2013-01-01

    The strengthening of international criminal law through an increased focus on the right to reparation and rehabilitation for victims of crimes against humanity represents an important challenge to health professionals, particularly to those in the field of trauma research and treatment. A brief outline of some developments in the field of international law and justice for victims of gross human rights violations is presented, with a focus on the right to reparation including the means for rehabilitation. The fulfillment of this right is a complex endeavor which raises many questions. The road to justice and reparation for those whose rights have been brutally violated is long and burdensome. The active presence of trauma-informed health professionals in this process is a priority. Some of the issues raised within the context of states' obligations to provide and ensure redress and rehabilitation to those subjected to torture and gross human rights violations are discussed, and in particular how rehabilitation can be understood and responded to by health professionals.

  12. Comparison of silorane and methacrylate-based composites on the polymerization heat generated with different light-curing units and dentin thicknesses.

    PubMed

    Guiraldo, Ricardo Danil; Consani, Simonides; Consani, Rafael Leonardo Xediek; Berger, Sandrine Bittencourt; Correr, Américo Bortolazzo; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço

    2013-01-01

    This study evaluated the temperature variation in the pulp chamber during photoactivation of two restorative composite resins (Filtek P90 silorane-based composite and Heliomolar methacrylate-based composite) with either a quartz-tungsten-halogen (QTH) or light-emitting diodes (LED) light-curing unit (LCU) and using dentin thicknesses (0.5 and 1.0 mm). Standardized cavities (2x2x2 mm) were prepared in 80 bovine incisors, which were randomly assigned to 8 groups according to the photoactivation method and dentin thickness. Filtek P90 and Heliomolar (both in shade A3) were used with their respective adhesive systems (P90 self-etch primer / P90 adhesive bond and Excite adhesive). All experiments were carried out in a controlled environment (37°C). The temperature variations (°C) were recorded using a digital thermometer attached to a K-type thermocouple. The results were analyzed statistically by ANOVA and Tukey's test (α=0.05). For composite/dentin thickness interaction, temperature increase was significantly higher in 0.5 mm dentin thickness (40.07°C) compared with 1.0 mm dentin thickness (39.61°C) for Filtek P90. For composite/LCU interaction, the temperature increase was significantly higher for Filtek P90 (39.21°C - QTH and 40.47°C - LED) compared with Heliomolar (38.40°C - QTH and 39.30°C - LED). The silorane-based composite promoted higher temperature increase in the pulp chamber than the methacrylate-based composite.

  13. Influence of Nonenzymatic Glycation in Dentinal Collagen on Dental Caries.

    PubMed

    Matsuda, Y; Miura, J; Shimizu, M; Aoki, T; Kubo, M; Fukushima, S; Hashimoto, M; Takeshige, F; Araki, T

    2016-12-01

    Advanced glycation end-products (AGEs) are generated via nonenzymatic glycation of dentinal collagen, resulting in accumulation of AGEs in dentin tissue. Since accumulated AGEs cause crosslinking between amino acid polypeptides in the collagen molecule and modify mechanical properties of dentinal collagen, the authors assumed that there would be a significant interaction between the generation of AGEs and progression of caries in dentin. To confirm such an interaction, spectroscopic imaging analyses (i.e., nanosecond fluorescence lifetime imaging and second harmonic generation light imaging) were performed in addition to biochemical and electron microscopic analyses in the present study. Seven carious human teeth were fixed in paraformaldehyde and cut longitudinally into 1-mm sections using a low-speed diamond saw for the following analyses. In transmission electron microscopy (TEM) analysis, nondecalcified specimens were embedded in epoxy resin and sliced into thin sections for observation. For the immunohistochemical analysis, the specimens were paraffin embedded after decalcification for 2 wk and sectioned with a microtome. Resultant sections were stained with anti-AGE and anticollagen antibodies. The demineralized specimens were used for spectroscopic analyses without additional treatment. For Western blotting analysis, specimens were separated into carious and sound dentin. Each specimen was homogenized with a bead crusher and an ultrasonic homogenizer and then treated with hydrochloric acid. In carious dentin, the collagen fibers showed an amorphous structure in the TEM image, and the AGEs were localized in the areas of bacterial invasion in the immunostaining image. The total amount of AGEs in carious dentin was higher than in sound dentin in Western blotting. The ultrastructure of type I collagen and total amount of AGEs varied markedly in the dentinal caries region. The fluorescence lifetime was shorter in the carious area than that in the sound areas

  14. Effects of industrial noise on circumpulpar dentin - a field emission scanning electron microscopy and energy dispersive spectroscopy analysis

    PubMed Central

    Cavacas, Maria Alzira; Tavares, Vitor; Oliveira, Maria João; Oliveira, Pedro; Sezinando, Ana; Martins dos Santos, José

    2013-01-01

    Chronic exposure to Industrial Noise (IN), rich in Low Frequency Noise (LFN), causes systemic fibrotic transformation and sustained stress. Dental wear, significantly increased with exposure to LFN, affects the teeth particularly through the circumpulpar dentin. Our goal is to understand the consequences of IN exposure on the circumpulpar dentin of Wistar rats. 10 Wistar rats were exposed to IN for 4 months, according to an occupationally simulated time schedule and 10 animals were used as age-matched controls. The first and the second upper and lower molars of each animal were processed for observation by Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive Spectroscopy (EDS) analysis was performed. In exposed animals FESEM showed a 2.0 to 6.0 μm-dense mineral band between dentin and the pulp with no regular continuity with the tubules. This structure had a few tubules where the odontoblasts processes could be observed embedded within the band and collagen fibers were trapped inside. EDS analysis revealed that it was hydroxyapatite similar to dentin, with a higher carbon content. FESEM results show that the band may be tertiary reparative dentin formed by odontoblast-like cells, but the increased amount of carbon (EDS) could mean that it is sclerotic dentin. IN should be acknowledge as a strong stimulus, able to cause an injury to odontoblasts and to the formation of reparative tertiary dentin, in a process that may accelerate the aging of the teeth, either by direct impact of acoustic pressure pulsations or by increased stress and dental wear. PMID:24294356

  15. Dentin Caries Zones

    PubMed Central

    Pugach, M.K.; Strother, J.; Darling, C.L.; Fried, D.; Gansky, S.A.; Marshall, S.J.; Marshall, G.W.

    2009-01-01

    Caries Detector staining reveals 4 zones in dentin containing caries lesions, but characteristics of each zone are not well-defined. We therefore investigated the physical and microstructural properties of carious dentin in the 4 different zones to determine important differences revealed by Caries Detector staining. Six arrested dentin caries lesions and 2 normal controls were Caries-Detector-stained, each zone (pink, light pink, transparent, apparently normal) being analyzed by atomic force microscopy (AFM) imaging for microstructure, by AFM nano-indentation for mechanical properties, and by transverse digital microradiography (TMR) for mineral content. Microstructure changes, and nanomechanical properties and mineral content significantly decreased across zones. Hydrated elastic modulus and mineral content from normal dentin to pink Caries-Detector-stained dentin ranged from 19.5 [10.6-25.3] GPa to 1.6 [0.0-5.0] GPa and from 42.9 [39.8-44.6] vol% to 12.4 [9.1-14.2] vol%, respectively. Even the most demineralized pink zone contained considerable residual mineral. PMID:19131321

  16. Giant cell reparative granuloma of the axis.

    PubMed

    Bayar, Mehmet Akif; Erdem, Yavuz; Gokcek, Cevdet; Koktekir, Ender; Kilic, Celal; Yasitli, Ugur; Tekiner, Ayhan

    2009-10-01

    Giant cell reparative granuloma (GCRG) is a rare, benign fibroosseous lesion. It typically arises in the mandible and maxilla, and less frequently in the skull bones. We report a case of GCRG of the axis, which is the first to be reported in the literature. A 35-year-old man was admitted to our clinic with the complaint of pain at his neck. There was no neurological deficit. CT and MRI showed a lesion destructing the body of the axis. Biopsy specimens were taken through the transoral-transpharyngeal route. Histopathological diagnosis was GCRG. The lesion was removed subtotally by the same route. We filled the tumor cavity with a bone graft and the patient was discharged with a halo brace without any neurological deficits. The follow-up CT revealed one year after the surgery showed sclerosis at the tumor site. The etiopathogenesis of GCRG is still controversial and the differential diagnosis, especially from giant cell tumor of bone is quite difficult. The treatment of choice for these lesions is complete surgical removal. Some authors recommend radiotherapy if total removal fails.

  17. [New stimulants of corneal reparative regeneration].

    PubMed

    Egorov, E A; Kalinin, N I; Kiiasov, A P

    1999-01-01

    The efficacy of corneregel, a drug containing pantothenic acid, a component of coenzyme A, in healing of corneal wounds has been evaluated. The study was carried out on 19 rabbits (38 eyes) with standard corneal defect made with a 5-mm trephine for lamellar transplantation of the cornea, divided into 2 groups: 1) instillations of corneregel (10 eyes) and 0.25% levomycetin solution (10 eyes) and 2) 20% solcoseryl gel (9 eyes) and 0.25% levomycetin (9 eyes). Time course of changes were evaluated by biomicroscopy (fluorescent test), histologically (hematoxylin-eosin staining), and immunohistochemically after 1, 2, 4, 7, 30, and 90 days. Proliferative activity was studied by expression of the proliferating cell nuclear antigen and the migration capacity of cells by expression of alpha-smooth muscle actin. The terms of epithelialization were as follows: corneregel 10 +/- 7 h, 20% solcoseryl gel 108 +/- 10 h, levomycetin 124 +/- 6.93 h. Earlier epithelialization in the corneregel group was apparently due to increased expression of alpha-smooth muscle actin and increase in the cell migration capacity. Hence, corneregel is recommended for practical use as a stimulant of reparative regeneration of the cornea.

  18. Evaluation of Shear Bond Strength of Newer Bonding Systems on Superficial and Deep Dentin

    PubMed Central

    Kumari, R Veena; Siddaraju, Kishore; Nagaraj, Hema; Poluri, Ramya Krishna

    2015-01-01

    Background: The purpose of this study was to compare the shear bond strength of nanocomposite resin to superficial dentin and deep dentin using two different dentin bonding systems. Materials and Methods: All teeth were sectioned at various levels (superficial dentin: Dentin within 0.5-1 mm of dentinoenamel junction; deep dentin: Dentin within 0.5 mm of the highest pulp horn) using a Carborundum Disc and embedded in acrylic block of specific size. Selected specimens (60 premolar teeth) were grouped randomly into three groups, the groups were differentiated into superficial dentin, deep dentin, and control group which were further divided into sub Group A and Subgroup B containing 10 teeth each, depending on the bonding agents used. In Subgroup A, Tetric N Bond, and in Subgroup B Single Bond Universal were used. In the control group no bonding agent was used. The specimens were thermocycled for 500 cycles between 5°C and 55°C water bath for 40 s. Finally, the specimens were subjected to shear bond strength study under INSTRON machine (Universal Testing Machine). The maximum shear bond strengths were noted at the time of fracture (de-bonding) of the restorative material. Results were analyzed using ANOVA test, Bonferroni test, and paired t-test. Results: Bond strength values of fifth generation bonding system (Tetric N Bond) showed higher mean shear bond strength compared to seventh generation bonding system (Single Bond Universal). There was a significant fall in bond strength values as one reaches deeper levels of dentin from superficial to deep dentin. Conclusion: There was a significant difference between the bond strength of fifth generation bonding system (Tetric N Bond) and seventh generation bonding system (Single Bond Universal). Decrease in the bond strength values is seen for the deeper level of dentin as compared to superficial dentin. PMID:26435613

  19. 17 CFR 12.407 - Satisfaction of reparation award; enforcement; sanctions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 1 2011-04-01 2011-04-01 false Satisfaction of reparation... Satisfaction of reparation award; enforcement; sanctions. (a) Satisfaction of reparation award—(1) Where... satisfaction of an award (as prescribed in paragraph (a) or (b) of this section) expires, file with...

  20. 17 CFR 12.407 - Satisfaction of reparation award; enforcement; sanctions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Satisfaction of reparation... Satisfaction of reparation award; enforcement; sanctions. (a) Satisfaction of reparation award—(1) Where... satisfaction of an award (as prescribed in paragraph (a) or (b) of this section) expires, file with...

  1. Reparable, high-density microelectronic module provides effective heat sink

    NASA Technical Reports Server (NTRS)

    Carlson, K. J.; Maytone, F. F.

    1967-01-01

    Reparable modular system is used for packaging microelectronic flat packs and miniature discrete components. This three-dimensional compartmented structure incorporates etched phosphor bronze sheets and frames with etched wire conductors. It provides an effective heat sink for electric power dissipation in the absence of convective cooling means.

  2. Analysis of Historical Materiel Return Program (MRP) Credits at the 1st Marine Logistics Group Reparable Issue Point (RIP)

    DTIC Science & Technology

    2011-12-01

    Logistics Agency DLR Depot-Level Reparables DoD Department of Defense DRMO Defense Reutilization Marketing Office DSSC Direct Support Stock Control... DSSC ,12 Set Assembly System (SAS),13 and SASSY.14 MRP also interfaces with the Standard Accounting, Budgeting and Reporting System (SABRS) financial...source of supply; • Provide output to the SASSY, DSSC , and SAS systems causing the reduction of inventory and generation of issue transactions and

  3. Localization of SUMOylation factors and Osterix in odontoblast lineage cells during dentin formation and regeneration.

    PubMed

    Hosoya, Akihiro; Yukita, Akira; Ninomiya, Tadashi; Hiraga, Toru; Yoshiba, Kunihiko; Yoshiba, Nagako; Kasahara, Etsuo; Nakamura, Hiroaki

    2013-08-01

    Small ubiquitin-related modifier (SUMO) conjugation (SUMOylation) is a post-translational modification involved in various cellular processes including the regulation of transcription factors. In this study, to analyze the involvement of SUMOylation in odontoblast differentiation, we examined the immunohistochemical localization of SUMO-1, SUMO-2/3, and Osterix during rat tooth development. At the bud and cap stages, localization of SUMOs and Osterix was hardly detected in the dental mesenchyme. At the bell stage, odontoblasts just beginning dentin matrix secretion and preodontoblasts near these odontoblasts showed intense immunoreactivity for these molecules. However, after the root-formation stage, these immunoreactivities in the odontoblasts decreased in intensity. Next, to examine whether the SUMOylation participates in dentin regeneration, we evaluated the distribution of SUMOs and Osterix in the dental pulp after cavity preparation. In the coronal pulp chamber of an untreated rat molar, odontoblasts and pulp cells showed no immunoreactivity. At 4 days after cavity preparation, positive cells for SUMOs and Osterix appeared on the surface of the dentin beneath the cavity. Odontoblast-like cells forming reparative dentin were immunopositive for SUMOs and Osterix at 1 week, whereas these immunoreactivities disappeared after 8 weeks. Additionally, we further analyzed the capacity of SUMO-1 to bind Osterix by performing an immunoprecipitation assay using C2C12 cells, and showed that Osterix could undergo SUMOylation. These results suggest that SUMOylation might regulate the transcriptional activity of Osterix in odontoblast lineage cells, and thus play important roles in odontoblast differentiation and regeneration.

  4. Resin–Dentin Bonding Interface After Photochemical Surface Treatment

    PubMed Central

    Sano, Kazunobu; Ichinose, Shizuko; Araki, Kouji

    2015-01-01

    Abstract Objective The aim of this study is to elucidate the structure of the resin–dentin interface formed by photochemical dentin treatment using an argon fluoride (ArF) excimer laser. Background data The ArF excimer laser processes material by photochemical reaction without generating heat, while also providing surface conditioning that enhances material adhesion. In the case of bonding between resin and dentin, we demonstrated in a previous study that laser etching using an ArF excimer laser produced bonding strength comparable to that of the traditional bonding process; however, conditions of the bonding interface have not been fully investigated. Methods A dentin surface was irradiated in air with an ArF excimer laser followed by bonding treatment. Cross sections were observed under light microscope, transmission electron microscope (TEM), and scanning electron microscope, then analyzed using an energy dispersive X-ray spectroscope (EDS): EDS line profiles of the elements C, O, Si, Cl, P, and Ca at the resin–dentin interface were obtained. Results The density of C in resin decreased as it approached the interface, reaching its lowest level within the dentin at a depth of 2 μm from the resin–dentin interface on EDS. There was no hybrid layer observed at the interface on TEM. Therefore, it was suggested that the resin monomer infiltrated into the microspaces produced on the dentin surface by laser abrasion. Conclusions The monomer infiltration without hybrid layer is thought to be the adhesion mechanism after laser etching. Therefore, the photochemical processes at the bonding interface achieved using the ArF excimer laser has great potential to be developed into a new bonding system in dentistry. PMID:25555032

  5. The influence of salivary contamination on the shear bond strength of two newer generation dentin bonding agents - An in vitro study

    PubMed Central

    Hegde, Mithra N; Hegde, Priyadarshini; Shetty, Shibani K

    2008-01-01

    Background and Objectives: To investigate whether salivary contamination during various stages of the bonding procedures of Xeno III and Clearfil SE Bond influences shear bond strength. Materials and Methods: The occlusal surfaces of thirty six maxillary premolar teeth were ground and divided into two groups containing eighteen specimens each, which was subdivided into three sub groups: Group I - Xeno III, Group II - Clearfil SE Bond, Subgroup A - Uncontaminated (control), Subgroup B - Contaminated with saliva before application and light curing, Subgroup C - Contaminated with saliva after light curing. Composite resin Filtek Z350 was packed using Teflon mold cured and subjected to shear bond strength analysis using universal Instron machine. Results: Statistical analysis was made using One-way ANOVA and Tukeys HSD test. Clearfil SE Bond showed very high statistically significant reduction in the bond strength, when salivary contamination took place after light curing; whereas, Xeno III showed very high statistically significant reduction when salivary contamination took place before application and light curing. Conclusion: Clearfil SE Bond showed more tolerance to salivary contamination of dentin and higher shear bond strength value, when compared to Xeno III. PMID:20142900

  6. Dentin permeability: determinants of hydraulic conductance.

    PubMed

    Reeder, O W; Walton, R E; Livingston, M J; Pashley, D H

    1978-02-01

    A technique is described which permits measurements of the ease with which fluid permeates dentin. This value, the hydraulic conductance of dentin, increased as surface area increases and/or as dentin thickness decreases. It increased 32-fold when dentin was acid etched due to removal of surface debris occluding the tubules.

  7. Dentin Sialophosphoprotein (DSPP) in Biomineralization

    PubMed Central

    Prasad, Monica; Butler, William T.; Qin, Chunlin

    2010-01-01

    Two of the proteins found in significant quantity in the extracellular matrix (ECM) of dentin are dentin phosphoprotein (DPP) and dentin sialoprotein (DSP). DPP, the most abundant of the non-collagenous proteins in dentin is an unusually polyanionic protein, containing a large number of aspartic acids (Asp) and phosphoserines (Pse) in the repeating sequences of (Asp-Pse)n. and (Asp-Pse-Pse)n. The many negatively charged regions of DPP are thought to promote mineralization by binding calcium and presenting it to collagen fibers at the mineralization front during the formation of dentin. This purported role of DPP is supported by a sizeable pool of in vitro mineralization data showing that DPP is an important initiator and modulator for the formation and growth of hydroxyapatite crystals. Quite differently, DSP is a glycoprotein, with little or no phosphate. DPP and DSP are the cleavage products of dentin sialophosphoprotein (DSPP). Human and mouse genetic studies have demonstrated that mutations in, or knockout of, the Dspp gene result in mineralization defects in dentin and/or bone. The discoveries in the past 40 years with regard to DPP, DSP and DSPP have greatly enhanced our understanding of biomineralization and set a new stage for future studies. In this review, we summarize the important and new developments made in the past four decades regarding the structure and regulation of the DSPP gene, the biochemical characteristics of DSPP, DPP and DSP, as well as the cell/tissue localizations and functions of these molecules. PMID:20367116

  8. Giant cell reparative granuloma presenting as a midline nasal mass.

    PubMed

    Govett, G S; Amedee, R G

    1991-03-01

    Giant cell reparative granuloma (GCRG) is an uncommon entity that has been reported in all areas of the head and neck. It must be distinguished from true giant cell tumors, brown tumors of hyperparathyroidism, aneurysmal bone cysts, and fibrous dysplasia. It responds well to surgical debulking and curettage and has a benign clinical course. We describe a case report of a GCRG presenting as a midline nasal mass and review the pertinent English language literature.

  9. Effects of permafrost microorganisms on skin wound reparation.

    PubMed

    Kalenova, L F; Novikova, M A; Subbotin, A M

    2015-02-01

    Local application of ointment with Bacillus spp. strain MG8 (15,000-20,000 living bacterial cells), isolated from permafrost specimens, on the skin wound of about 60 mm(2) stimulated the reparation processes in experimental mice. A possible mechanism stimulating the regeneration of the damaged tissues under the effect of MG8 could be modulation of the immune system reactivity with more rapid switchover to humoral immunity anti-inflammatory mechanisms aimed at de novo synthesis of protein.

  10. Reparative giant cell granuloma in a pediatric patient.

    PubMed

    Duarte Ruiz, Blanca; Riba García, Francisco de Asís; Navarro Cuéllar, Carlos; Bucci, Tommaso; Cuesta Gil, Matías; Navarro Vila, Carlos

    2007-08-01

    Reparative giant cell granulomas are benign, infrequent tumors, of non-odontogenic origin, that develop at central or peripheral level. Peripherally located lesions are frequently denominated "giant cell epulis", and never correspond to true neoplasia, but rather to inflammatory reactions secondary to another lesion (hemorrhage, etc.). It should be taken into account, that in general, head and neck tumors of infancy usually demonstrate an atypical biological behaviour. Furthermore, the anatomicopathologic diagnosis is often compromised in this type of lesion. We present the case of a 6-year-old boy, who, three weeks after suffering a slight facial trauma, developed a painless, exophytic swelling of approximately 4 cm, with bleeding on palpation, in the ipsilateral hemimaxilla. The lesion demonstrated rapid, progressive and continuous growth. The facial CT and incisional biopsy confirmed the suspected diagnosis of reparative giant cell granuloma. The patient was surgically treated, carrying out a left marginal maxillectomy associated with the extirpation of the soft-tissue lesion. The resultant defect was reconstructed with a Bichat fat-pad providing the patient with optimal esthetic and functional results. The definitive anatomicopathologic report of the surgical piece is compatible with reparative giant cell granuloma.

  11. Inhibitory control and moral emotions: relations to reparation in early and middle childhood.

    PubMed

    Colasante, Tyler; Zuffianò, Antonio; Bae, Na Young; Malti, Tina

    2014-01-01

    This study examined links between inhibitory control, moral emotions (sympathy and guilt), and reparative behavior in an ethnically diverse sample of 4- and 8-year-olds (N = 162). Caregivers reported their children's reparative behavior, inhibitory control, and moral emotions through a questionnaire, and children reported their guilt feelings in response to a series of vignettes depicting moral transgressions. A hypothesized meditation model was tested with inhibitory control relating to reparative behavior through sympathy and guilt. In support of this model, results revealed that high levels of inhibitory control were associated with high levels of reparative behavior through high levels of sympathy and guilt. However, the mediation of inhibitory control to reparation through guilt was significant for 4-year-olds only. Results are discussed in relation to the temperamental, regulatory, and affective-moral precursors of reparative behavior in early and middle childhood.

  12. Polymer Nanocarriers for Dentin Adhesion

    PubMed Central

    Osorio, R.; Osorio, E.; Medina-Castillo, A.L.; Toledano, M.

    2014-01-01

    To obtain more durable adhesion to dentin, and to protect collagen fibrils of the dentin matrix from degradation, calcium- and phosphate-releasing particles have been incorporated into the dental adhesive procedure. The aim of the present study was to incorporate zinc-loaded polymeric nanocarriers into a dental adhesive system to facilitate inhibition of matrix metalloproteinases (MMPs)-mediated collagen degradation and to provide calcium ions for mineral deposition within the resin-dentin bonded interface. PolymP-nActive nanoparticles (nanoMyP) were zinc-loaded through 30-minute ZnCl2 immersion and tested for bioactivity by means of 7 days’ immersion in simulated body fluid solution (the Kokubo test). Zinc-loading and calcium phosphate depositions were examined by scanning and transmission electron microscopy, elemental analysis, and x-ray diffraction. Nanoparticles in ethanol solution infiltrated into phosphoric-acid-etched human dentin and Single Bond (3M/ESPE) were applied to determine whether the nanoparticles interfered with bonding. Debonded sticks were analyzed by scanning electron microscopy. A metalloproteinase collagen degradation assay was also performed in resin-infiltrated dentin with and without nanoparticles, measuring C-terminal telopeptide of type I collagen (ICTP) concentration in supernatants, after 4 wk of immersion in artificial saliva. Numerical data were analyzed by analysis of variance (ANOVA) and Student-Newman-Keuls multiple comparisons tests (p < .05). Nanoparticles were effectively zinc-loaded and were shown to have a chelating effect, retaining calcium regardless of zinc incorporation. Nanoparticles failed to infiltrate demineralized intertubular dentin and remained on top of the hybrid layer, without altering bond strength. Calcium and phosphorus were found covering nanoparticles at the hybrid layer, after 24 h. Nanoparticle application in etched dentin also reduced MMP-mediated collagen degradation. Tested nanoparticles may be

  13. Polymer nanocarriers for dentin adhesion.

    PubMed

    Osorio, R; Osorio, E; Medina-Castillo, A L; Toledano, M

    2014-12-01

    To obtain more durable adhesion to dentin, and to protect collagen fibrils of the dentin matrix from degradation, calcium- and phosphate-releasing particles have been incorporated into the dental adhesive procedure. The aim of the present study was to incorporate zinc-loaded polymeric nanocarriers into a dental adhesive system to facilitate inhibition of matrix metalloproteinases (MMPs)-mediated collagen degradation and to provide calcium ions for mineral deposition within the resin-dentin bonded interface. PolymP- N : Active nanoparticles (nanoMyP) were zinc-loaded through 30-minute ZnCl2 immersion and tested for bioactivity by means of 7 days' immersion in simulated body fluid solution (the Kokubo test). Zinc-loading and calcium phosphate depositions were examined by scanning and transmission electron microscopy, elemental analysis, and x-ray diffraction. Nanoparticles in ethanol solution infiltrated into phosphoric-acid-etched human dentin and Single Bond (3M/ESPE) were applied to determine whether the nanoparticles interfered with bonding. Debonded sticks were analyzed by scanning electron microscopy. A metalloproteinase collagen degradation assay was also performed in resin-infiltrated dentin with and without nanoparticles, measuring C-terminal telopeptide of type I collagen (ICTP) concentration in supernatants, after 4 wk of immersion in artificial saliva. Numerical data were analyzed by analysis of variance (ANOVA) and Student-Newman-Keuls multiple comparisons tests (p < .05). Nanoparticles were effectively zinc-loaded and were shown to have a chelating effect, retaining calcium regardless of zinc incorporation. Nanoparticles failed to infiltrate demineralized intertubular dentin and remained on top of the hybrid layer, without altering bond strength. Calcium and phosphorus were found covering nanoparticles at the hybrid layer, after 24 h. Nanoparticle application in etched dentin also reduced MMP-mediated collagen degradation. Tested nanoparticles may be

  14. Making human enamel and dentin surfaces superwetting for enhanced adhesion

    NASA Astrophysics Data System (ADS)

    Vorobyev, A. Y.; Guo, Chunlei

    2011-11-01

    Good wettability of enamel and dentin surfaces is an important factor in enhancing adhesion of restorative materials in dentistry. In this study, we developed a femtosecond laser surface texturing approach that makes both the enamel and dentine surfaces superwetting. In contrast to the traditional chemical etching that yields random surface structures, this approach produces engineered surface structures. The surface structure engineered and tested here is an array of parallel microgrooves that generates a strong capillary force. Due to the powerful capillary action, water is rapidly sucked into this engineered surface structure and spreads even on a vertical surface.

  15. Sodium hypochlorite alterations of dentin and dentin collagen

    NASA Astrophysics Data System (ADS)

    Marshall, G. W.; Yücel, N.; Balooch, M.; Kinney, J. H.; Habelitz, S.; Marshall, S. J.

    2001-10-01

    NaOCl aq is used as a cleansing and non-specific deproteinizing agent in endodontic treatment, as a component of new chemomechanical caries treatment, and is under study for its alterations of dentin bonding characteristics. We sought to determine the microstructural and nanomechanical changes with such treatments and to test if NaOCl aq removed dentin collagen without microstructural or nanomechanical alteration of underlying mineralized dentin. Polished human dentin disks were prepared with a double reference technique that allowed changes to be determined following 10% citric acid etching for 15 s and subsequent treatment of the etched and unetched portions of the sample with 6.5% NaOCl aq, using atomic force microscopy (AFM) (Nanoscope III, Digital Instruments, Santa Barbara, CA). Images and measurements were made at intervals up to 1800 s. A Triboscope (Hysitron, Minneapolis, MN) on the AFM was used to measure nanohardness and the reduced elastic modulus. The double reference method allowed measurements immediately following etching and at intervals during deproteinization. Etching caused deep peritubular dentin removal and a small depth change of hydrated intertubular dentin as mineral was removed and left a remnant collagen matrix. NaOCl aq removed collagen over time, during which individual fibrils could be resolved; the underlying mineralized dentin was left with a unique porous surface containing numerous channels that are not normally observed in etched or fractured dentin. This could provide an attractive bonding substrate because of the increased surface area and high mineral content, if toughness is not reduced too much. Nanomechanical measurements showed that the reduced elastic modulus and hardness were 75% of original values after removal of the exposed collagen. Current dentin bonding systems rely on hybrid layer formation in which hydrophilic primers/polymers penetrate the opened collagen matrix exposed by etching. However some research suggests

  16. Permeability of dentin to adhesive agents.

    PubMed

    Pashley, D H; Ciucchi, B; Sano, H; Horner, J A

    1993-09-01

    The permeability of dentin to adhesive agents is of crucial importance in obtaining good dentinal bonding. In those systems that remove the smear layer, the opportunity exists for resin to infiltrate both tubules and intertubular dentin. Resin penetration into tubules can effectively seal the tubules and can contribute to bond strength if the resin bonds to the tubule wall. Resin infiltration into intertubular dentin can only occur if the mineral phase of dentin is removed by acidic conditioners or chelators. This is more easily accomplished in fractured dentin than in smear layer-covered dentin because of the residual collagen debris that remains on the surface following acid etching of smear layers. The channels for resin infiltration are the perifibrillar spaces created around the collagen fibers of dentin following removal of apatite mineral by acids. The diffusion of adhesive resins through these narrow, tortuous, long channels in 1 to 2 minutes offers a number of challenges that require further research.

  17. Effectiveness of simplified dentin bonding systems.

    PubMed

    Imai, T; Itoh, K; Tani, C; Manabe, A; Yamashita, T; Hisamitsu, H; Wakumoto, S

    1998-03-01

    The effectiveness of newly developed commercial dentin bonding systems (SB, MB II and KB) was evaluated by measuring the contraction gap width of a resin composite restored into a cylindrical dentin cavity prepared in an extracted human molar and by measuring the tensile bond strength to the flat dentin surface. In addition, calcium loss during dentin conditioning was analyzed using electron microanalyses. An experimental dentin bonding system composed of EDTA conditioning, GM solution priming and a bonding agent containing 10-MDP was employed as a control in which it was presumed that contraction gap formation was prevented completely. However, gap formation was observed using the three commercial simplified dentin bonding systems. SEM observation showed that the gap was formed between the resin composite and the top surface of the dentin cavity wall indicating that the fracture occurred at the adhesive interface, but never inside the dentin nor inside the resin composite.

  18. If a Tree Falls in the Wilderness: Reparations, Academic Silences, and Social Justice

    ERIC Educational Resources Information Center

    Coates, Rodney D.

    2004-01-01

    The history and dynamics of reparations for African Americans are explored. The lack of current research and writing on the subject in sociology and political sciences journals is contended to be a conspiracy of silence in academia on the subject of restitution for 500 years of oppression. A program of reparations of three kinds is suggested: 1)…

  19. Giant Cell Reparative Granuloma of the Petrous Temporal Bone

    PubMed Central

    Williams, Joy C.; Thorell, William E.; Treves, John S.; Fidler, Mary E.; Moore, Gary F.; Leibrock, Lyal G.

    2000-01-01

    Giant cell reparative granuloma (GCRG) is an unusual, benign bone lesion that most commonly affects the maxilla and mandible; skull involvement is rare. The etiology is uncertain but may be related to trauma. GCRG is difficult to distinguish from giant cell tumor of the bone and has a lower recurrence rate. Thirteen reports of temporal bone GCRG in 11 patients have been reported. One report of a petrous GCRG in a 3-year-old girl has been identified. A 38-year-old male presented with a 2-year history of fullness in his left ear, ipsilateral hearing loss, and intermittent cacosmia. Computed tomography and magnetic resonance imaging revealed a large left-sided anterior temporal extradural mass. The patient underwent a left frontotemporal craniotomy and resection of a left temporal fossa tumor that involved the petrous and squamous parts of the temporal bone. The patient's post-operative course was uneventful, except for increased hearing loss secondary to opening of the epitympanum. Follow-up at one month revealed no other problems. Histopathology of the specimen was consistent with a giant cell reparative granuloma. ImagesFigure 1Figure 2p91-aFigure 3 PMID:17171108

  20. Reparative neurogenesis after cerebral ischemia: Clinical application prospects

    SciTech Connect

    Khodanovich, M. Yu.

    2015-11-17

    At the present time two main approaches are in the focus of neurobiological studies of brain recovery after a stroke. One of them is concerned with the infusion of stem cells in damaged brain. The second approach is directed at the stimulation of endogenous reparative processes, in particular, adult neurogenesis. This review considers alterations of adult neurogenesis caused by cerebral ischemia and possible pathways of its regulation. Multiple studies on animal models have shown that adult neurogenesis is mostly increased by cerebral ischemia. In spite of increasing proliferation and moving neural progenitors to infarct zone, most newborn neurons die before reaching maturity. Besides, an increase of neurogenesis in pathological conditions is mainly due to recruitment of new stem cells, but not due to an additional precursor-cells division that results in an overall decline of the regeneration capacity. Thus, the endogenous reparative mechanisms are not sufficient, and the search for new targets to promote proliferation, survival, and maturation of new neurons after a stroke is needed. Neurotransmitter systems and anti-inflammatory drugs are considered as potential regulators of post-ischemic neurogenesis growth factors.

  1. Reparative neurogenesis after cerebral ischemia: Clinical application prospects

    NASA Astrophysics Data System (ADS)

    Khodanovich, M. Yu.

    2015-11-01

    At the present time two main approaches are in the focus of neurobiological studies of brain recovery after a stroke. One of them is concerned with the infusion of stem cells in damaged brain. The second approach is directed at the stimulation of endogenous reparative processes, in particular, adult neurogenesis. This review considers alterations of adult neurogenesis caused by cerebral ischemia and possible pathways of its regulation. Multiple studies on animal models have shown that adult neurogenesis is mostly increased by cerebral ischemia. In spite of increasing proliferation and moving neural progenitors to infarct zone, most newborn neurons die before reaching maturity. Besides, an increase of neurogenesis in pathological conditions is mainly due to recruitment of new stem cells, but not due to an additional precursor-cells division that results in an overall decline of the regeneration capacity. Thus, the endogenous reparative mechanisms are not sufficient, and the search for new targets to promote proliferation, survival, and maturation of new neurons after a stroke is needed. Neurotransmitter systems and anti-inflammatory drugs are considered as potential regulators of post-ischemic neurogenesis growth factors.

  2. Nuestra culpa: collective guilt and shame as predictors of reparation for historical wrongdoing.

    PubMed

    Brown, Rupert; González, Roberto; Zagefka, Hanna; Manzi, Jorge; Cehajic, Sabina

    2008-01-01

    Three studies examined the hypothesis that collective guilt and shame have different consequences for reparation. In 2 longitudinal studies, the ingroup was nonindigenous Chileans (Study 1: N = 124/120, lag = 8 weeks; Study 2: N = 247/137, lag = 6 months), and the outgroup was Chile's largest indigenous group, the Mapuche. In both studies, it was found that collective guilt predicted reparation attitudes longitudinally. Collective shame had only cross-sectional associations with reparation and no direct longitudinal effects. In Study 2, collective shame moderated the longitudinal effects of collective guilt such that the effects of guilt were stronger for low-shame respondents. In Study 3 (N = 193 nonindigenous Chileans), the cross-sectional relationships among guilt, shame, and reparation attitudes were replicated. The relationship between shame and reparation attitudes was mediated by a desire to improve the ingroup's reputation.

  3. Effect of desensitizing toothpastes on dentin.

    PubMed

    Pinto, Shelon Cristina Souza; Silveira, Camila Maggi Maia; Pochapski, Márcia Thaís; Pilatt, Gibson Luiz; Santos, Fábio André

    2012-01-01

    The objective of this study was to analyze the effects of toothbrushing with desensitizing toothpastes on dentin permeability and dentinal tubule occlusion. Fifty rats provided two hundred incisor teeth divided into five groups: DW, brushed with distilled water (control); FT, brushed with fluoride toothpaste; SCT, brushed with strontium chloride toothpaste; PCT, brushed with potassium citrate toothpaste; and PNT, brushed with potassium nitrate toothpaste. Cavities were prepared to expose the dentinal tubules, and the incisor teeth were brushed using the experimental agents. After each treatment, Evans blue dye solution was applied to the teeth. Dentin permeability was analyzed using scanning electron microscopy and energy-dispersive X-rays (EDX). There were significant differences (p < 0.0001, ANOVA) among the groups regarding dentin permeability, number of dentinal tubules, diameter of dentinal tubules, and opened tubular area. In the SCT, PCT and PNT groups, opened and partially occluded tubules, deposits, and a few smear layers were observed. In the DW and FT groups, most of the dentinal tubules were open, with no deposits or smear layers on the dentin. EDX revealed peaks of calcium and phosphorus in all of the groups, as well as traces of strontium in the SCT group and of potassium in the PCT and PNT groups. Desensitizing toothpaste decreased dentin permeability, although it produced only partial dentin tubule occlusion.

  4. Dentin bonding agents and resin cements--current status.

    PubMed

    Woolsey, G; O'Mahony, A; Hansen, P A

    2000-01-01

    Contemporary restorative dentistry is a rapidly evolving science which challenges the progressive clinician with a plethora of "new and improved" products. Sound product choices should be couched in the prudent consideration of well conducted in vitro and in vivo product research. This review shall list the most recent product developments in dentin bonding agents (fifth generation agents), resin-containing dental cements and the newest generation of dental cements i.e., resin-ionomer dental cements.

  5. The permeability of dentine from bovine incisors in vitro.

    PubMed

    Tagami, J; Tao, L; Pashley, D H; Horner, J A

    1989-01-01

    The permeability of coronal dentine was investigated by measuring the hydraulic conductance of dentine discs. Reductions in dentine thickness from the enamel side of disc resulted in a greater increase in permeability than reductions from the pulpal side. Scanning electron microscopy revealed fewer dentinal tubules with smaller diameters in superficial dentine than in deep dentine. The permeability of coronal incisor bovine dentine is six to eight times less than that of unerupted coronal human third molar dentine but similar to that of human root dentine.

  6. Giant cell reparative granuloma of the sphenoid bone.

    PubMed

    Aralasmak, A; Aygun, N; Westra, W H; Yousem, D M

    2006-09-01

    We present 2 patients with giant cell reparative granuloma (GCRG) of the sphenoid bone. The first patient is an 8-year-old boy with involvement of the greater wing, and the second is a 53- year-old man with a lateral pterygoid plate mass. Both patients presented with rapid expansion of lytic bone lesions, which had solid and cystic components and lacked matrix calcification. Biopsies were indeterminate for definitive diagnoses. The radiologic appearance, location, and incidence of the lesions, and the patient's age and medical history are helpful aids in narrowing the differential diagnosis of sphenoid bone lesions. However, the imaging and, occasionally, even the histologic findings may not suggest the specific diagnosis of GCRG, which must be added into the differential diagnosis of rapidly enlarging cystic bone lesions of the sphenoid bone.

  7. Raising the dead: war, reparation, and the politics of memory.

    PubMed Central

    Summerfield, D.

    1995-01-01

    All societies attach a different range of meanings to war than to natural disasters, and questions of societal recognition, reparation, and justice are generally central. Most modern conflict has been grounded in the use of terror to control and silence whole populations. Those abusing power typically refuse to acknowledge their dead victims, as if they had never existed and were mere wraiths in the memories of those left behind. This denial, and the impunity of those who maintain it, must be challenged if survivors are to make sense of their losses and the social fabric is to mend. For the names and fate of the dead to be properly lodged in the public record of their times also illuminates the costs that may flow from the philosophies and practices of the Western led world order, ones which health workers should be in a position to influence. Images p495-a p496-a p496-b PMID:7647648

  8. Reparative resynchronization in ischemic heart failure: an emerging strategy

    PubMed Central

    Yamada, Satsuki; Terzic, Andre

    2014-01-01

    Cardiac dyssynchrony refers to disparity in cardiac wall motion, a serious consequence of myocardial infarction associated with poor outcome. Infarct-induced scar is refractory to device-based cardiac resynchronization therapy, which relies on viable tissue. Leveraging the prospect of structural and functional regeneration, reparative resynchronization has emerged as a potentially achievable strategy. In proof-of-concept studies, stem-cell therapy eliminates contractile deficit originating from infarcted regions and secures long-term synchronization with tissue repair. Limited clinical experience suggests benefit of cell interventions in acute and chronic ischemic heart disease as adjuvant to standard of care. A regenerative resynchronization option for dyssynchronous heart failure thus merits validation. PMID:24840208

  9. Transgenic Expression of Dentin Phosphoprotein Inhibits Skeletal Development

    PubMed Central

    Zhang, H.; Liu, P.; Wang, S.; Liu, C.; Jani, P.; Lu, Y.; Qin, C.

    2016-01-01

    Dentin sialophosphoprotein (DSPP) is proteolytically processed into an NH2-terminal fragment called dentin sialoprotein (DSP) and a COOH-terminal fragment known as dentin phosphoprotein (DPP). These two fragments are believed to perform distinct roles in formation of bone and dentin. To investigate the functions of DPP in skeletal development, we generated transgenic mice to overexpress hemagglutinin (HA)-tagged DPP under the control of a 3.6 kb type I collagen (Col1a1) promoter (designated as Col1a1-HA-DPP). The Col1a1-HA-DPP transgenic mice were significantly smaller by weight, had smaller skeletons and shorter long bones than their wild type littermates, as demonstrated by X-ray radiography. They displayed reduced trabecular bone formation and narrower zones of proliferative and hypertrophic chondrocytes in the growth plates of the long bones. Histological analyses showed that the transgenic mice had reduced cell proliferation in the proliferating zone, but lacked obvious defects in the chondrocyte differentiation. In addition, the transgenic mice with a high level of transgene expression developed spontaneous long bone fractures. In conclusion, overexpressing DPP inhibited skeletal development, suggesting that the balanced actions between the NH2- and COOH-terminal fragments of DSPP may be required for normal skeletal development. PMID:26972716

  10. NANOLEAKAGE PHENOMENON ON DEPROTEINIZED HUMAN DENTIN

    PubMed Central

    Duarte, Patrícia de Britto Pereira Garcia; da Silva, Eduardo Moreira

    2007-01-01

    Objective: The purpose of this study was to evaluate the influence of dentin deproteinization on the nanoleakage phenomenon. Material and Methods: Class V cavities were prepared in 12 human molars with cervical margins located in dentin. The cavities were assigned to 2 groups (n=6) according to dentin treatment: Group I - dentin treated in accordance with the manufacturer’s instructions and Group II - dentin treated following the manufacturer’s instructions + 10% NaOCl. Each group was sub-divided into three groups, according to the DBS (dentin bonding system) used: Scotchbond Multi Purpose (SBMP), Prime & Bond NT (PB) and Clearfil SE Bond (SE), which were applied according to manufacturer’s instructions. The cavities were restored with composite resin, and the specimens were immersed in a tracer agent (AgNO3 50%) for 24 h. The teeth were sectioned buccolingually through the center of the restorations, and nanoleakage pattern was evaluated by scanning electron microscopy (SEM) using the backscattered electron image mode. Results: SEM analysis showed different nanoleakage patterns for each DBS. Irrespective of dentin treatments, all SBMP specimens showed nanoleakage. SE did not show any nanoleakage with both dentin treatments used. PB showed nanoleakage within the hybrid layer only in Group I. Conclusions: The influence of dentin deproteinization on the nanoleakage phenomenon was dependent on dentin bonding system formulation and bonding strategies. PMID:19089146

  11. Case report 207: Giant cell reparative granuloma of left femur arising in polyostatic fibrous dysplasia

    SciTech Connect

    De Smet, A.A.; Travers, H.; Neff, J.R.

    1982-08-01

    Diagnosis and differential diagnosis of lytic lesions in the femur are discussed. Roentgenograms, a tomogram and pathological studies of a giant cell reparative granuloma of left femur arising in polyostotic fibrous dysplasia are presented.

  12. Hereditary dentine disorders: dentinogenesis imperfecta and dentine dysplasia

    PubMed Central

    Barron, Martin J; McDonnell, Sinead T; MacKie, Iain; Dixon, Michael J

    2008-01-01

    The hereditary dentine disorders, dentinogenesis imperfecta (DGI) and dentine dysplasia (DD), comprise a group of autosomal dominant genetic conditions characterised by abnormal dentine structure affecting either the primary or both the primary and secondary dentitions. DGI is reported to have an incidence of 1 in 6,000 to 1 in 8,000, whereas that of DD type 1 is 1 in 100,000. Clinically, the teeth are discoloured and show structural defects such as bulbous crowns and small pulp chambers radiographically. The underlying defect of mineralisation often results in shearing of the overlying enamel leaving exposed weakened dentine which is prone to wear. Currently, three sub-types of DGI and two sub-types of DD are recognised but this categorisation may change when other causative mutations are found. DGI type I is inherited with osteogenesis imperfecta and recent genetic studies have shown that mutations in the genes encoding collagen type 1, COL1A1 and COL1A2, underlie this condition. All other forms of DGI and DD, except DD-1, appear to result from mutations in the gene encoding dentine sialophosphoprotein (DSPP), suggesting that these conditions are allelic. Diagnosis is based on family history, pedigree construction and detailed clinical examination, while genetic diagnosis may become useful in the future once sufficient disease-causing mutations have been discovered. Differential diagnoses include hypocalcified forms of amelogenesis imperfecta, congenital erythropoietic porphyria, conditions leading to early tooth loss (Kostmann's disease, cyclic neutropenia, Chediak-Hegashi syndrome, histiocytosis X, Papillon-Lefevre syndrome), permanent teeth discolouration due to tetracyclines, Vitamin D-dependent and vitamin D-resistant rickets. Treatment involves removal of sources of infection or pain, improvement of aesthetics and protection of the posterior teeth from wear. Beginning in infancy, treatment usually continues into adulthood with a number of options including

  13. Comparison of Cytotoxicity of Three Dentin Bonding Systems with Two Thicknesses of Dentin Barrier on L929 Cell Line

    PubMed Central

    MirMotalebi, Farshid; Nazari, Shahrzad

    2006-01-01

    INTRODUCTION: Along with introduction of dentin bonding agents (DBA), their clinical use as lining materials is increasing rapidly. Since remaining dentinal thickness (RDT) has always been a concern for cytopathic effect of restorative materials, its effect on reduction of cytotoxicity of these materials especially DBAs is critical. The purpose of this study was to evaluate and compare the cytotoxicity of three dentin bonding systems, belonged to the 4th, 5th and 6th generation of DBAs on L929 cell line. MATERIALS AND METHODS: Thirty human premolar teeth were included. Class I cavity preparations were prepared on occlusal surfaces. After crown separation, a flat dentinal surface was provided and RDT (remaining dentinal thickness) was adjusted at 0.5 and 1.5 mm. Then, cavities were treated in three groups with experimental DBAs: Group 1: Scotchbond multipurpose, Group 2: Excite, Group 3: AdheSE. Blue inlay wax sealed the cavities. Crowns were immersed in culture medium for 24 hours and the cytotoxicity of the resultant toxic medium was measured quantitatively with MTT assay in 4 serial dilutions. Data were analyzed with ANOVA and Tukey’s test at 95% significance level. RESULTS: MTT assay determined that only in neat dilution of 0.5 mm RDT, cell changes were significantly different from control. Besides, no significant differences were found between the three experimental DBAs regarding cytotoxic effect on L929 cell line. CONCLUSION: Considering the limitations of an in vitro study, if the RDT is less than 0.5 mm in vivo, regardless of the type of DBA, destructive cellular changes in pulp tissue can be expected. PMID:24454454

  14. Extracellular matrix proteins of dentine.

    PubMed

    Butler, W T; Ritchie, H H; Bronckers, A L

    1997-01-01

    Bone and dentine extracellular matrix proteins are similar, consisting primarily of type I collagen, acidic proteins and proteoglycans. Although collagen forms the lattice for deposition of calcium and phosphate for formation of carbonate apatite, the non-collagenous proteins are believed to control initiation and growth of the crystals. Despite this similarity, dentine contains three unique proteins apparently absent from bone and other tissue: dentine phosphophoryn (DPP), dentine matrix protein 1 (DMP1) and dentine sialoprotein (DSP). DPP and DMP1 are acidic phosphoproteins probably involved in the control of mineralization processes. DPP may localize in gap regions of collagen and initiate apatite crystal formation by binding large quantities of calcium in a conformation that promotes this process. Extensive studies have been conducted in our laboratory on the nature, biosynthesis, localization and gene structure of DSP. Immunolocalization studies showed that rat DSP, a 53 kDa sialic acid-rich glycoprotein, was synthesized by young and mature odontoblasts, and by dental pulp cells and pre-ameloblasts, but not by ameloblasts, osteoblasts, chondrocytes or other cell types. The cDNA sequence indicated that DSP was a 366-residue protein with several potential N-glycosylation sites, as well as phosphorylation sites, but that the amino acid sequence was dissimilar to that of other known proteins. Northern blot analysis detected several mRNA species near 4.6 and 1.5 kb, indicative of alternative splicing events. Evidence for two DSP genes was obtained, further complicating this picture. Recent in situ hybridization studies utilizing rat and mouse molars and incisors indicated that DSP mRNA was expressed by young odontoblasts and odontoblasts in animals of all ages. Transcripts were also observed in pre-ameloblasts. The expression of DSP mRNA ceased when these cells matured to become secretory ameloblasts. DSP transcripts were not detected in osteoblasts or other cell

  15. Performance evaluation of the croissant production line with reparable machines

    NASA Astrophysics Data System (ADS)

    Tsarouhas, Panagiotis H.

    2015-09-01

    In this study, the analytical probability models for an automated serial production system, bufferless that consists of n-machines in series with common transfer mechanism and control system was developed. Both time to failure and time to repair a failure are assumed to follow exponential distribution. Applying those models, the effect of system parameters on system performance in actual croissant production line was studied. The production line consists of six workstations with different numbers of reparable machines in series. Mathematical models of the croissant production line have been developed using Markov process. The strength of this study is in the classification of the whole system in states, representing failures of different machines. Failure and repair data from the actual production environment have been used to estimate reliability and maintainability for each machine, workstation, and the entire line is based on analytical models. The analysis provides a useful insight into the system's behaviour, helps to find design inherent faults and suggests optimal modifications to upgrade the system and improve its performance.

  16. Performance evaluation of the croissant production line with reparable machines

    NASA Astrophysics Data System (ADS)

    Tsarouhas, Panagiotis H.

    2014-09-01

    In this study, the analytical probability models for an automated serial production system, bufferless that consists of n-machines in series with common transfer mechanism and control system was developed. Both time to failure and time to repair a failure are assumed to follow exponential distribution. Applying those models, the effect of system parameters on system performance in actual croissant production line was studied. The production line consists of six workstations with different numbers of reparable machines in series. Mathematical models of the croissant production line have been developed using Markov process. The strength of this study is in the classification of the whole system in states, representing failures of different machines. Failure and repair data from the actual production environment have been used to estimate reliability and maintainability for each machine, workstation, and the entire line is based on analytical models. The analysis provides a useful insight into the system's behaviour, helps to find design inherent faults and suggests optimal modifications to upgrade the system and improve its performance.

  17. Reparable Cell Sonoporation in Suspension: Theranostic Potential of Microbubble

    PubMed Central

    Nejad, S. Moosavi; Hosseini, Hamid; Akiyama, Hidenori; Tachibana, Katsuro

    2016-01-01

    The conjunction of low intensity ultrasound and encapsulated microbubbles can alter the permeability of cell membrane, offering a promising theranostic technique for non-invasive gene/drug delivery. Despite its great potential, the biophysical mechanisms of the delivery at the cellular level remains poorly understood. Here, the first direct high-speed micro-photographic images of human lymphoma cell and microbubble interaction dynamics are provided in a completely free suspension environment without any boundary parameter defect. Our real-time images and theoretical analyses prove that the negative divergence side of the microbubble's dipole microstreaming locally pulls the cell membrane, causing transient local protrusion of 2.5 µm in the cell membrane. The linear oscillation of microbubble caused microstreaming well below the inertial cavitation threshold, and imposed 35.3 Pa shear stress on the membrane, promoting an area strain of 0.12%, less than the membrane critical areal strain to cause cell rupture. Positive transfected cells with pEGFP-N1 confirm that the interaction causes membrane poration without cell disruption. The results show that the overstretched cell membrane causes reparable submicron pore formation, providing primary evidence of low amplitude (0.12 MPa at 0.834 MHz) ultrasound sonoporation mechanism. PMID:26941839

  18. Hydration and dynamic fatigue of dentin.

    PubMed

    Arola, D; Zheng, W

    2006-04-01

    An experimental investigation on the dynamic fatigue response of dentin was conducted to examine the influence of stress rate on the strength and energy to fracture. Rectangular beams were prepared from the coronal dentin of bovine maxillary molars and subjected to four-point flexure to failure. The dentin beams were examined in the fully hydrated and dehydrated condition at stress rates (sigma) ranging from 0.01 to 100 MPa/s. Results for the hydrated dentin showed that the flexure strength, energy to fracture, and flexure modulus all increased with increasing stress rate; the flexure strength increased from 100 MPa ((sigma) = 0.01 MPa/s) to 250 MPa ((sigma) = 100 MPa/s). In contrast, the elastic modulus and strength of the dehydrated dentin decreased with increasing stress rate; the flexural strength of the dehydrated dentin deceased from 170 MPa ((sigma) = 0.01 MPa/s) to 100 MPa ((sigma) = 100 MPa/s). While the hydrated dentin behaved more like a brittle material at low stress rates, the strain to fracture was found to be nearly independent of (sigma). According to the experimental results, restorative conditions that cause development of static stresses within the tooth could promote a decrease in the damage tolerance of dentin.

  19. Interaction between bioactive glasses and human dentin.

    PubMed

    Efflandt, S E; Magne, P; Douglas, W H; Francis, L F

    2002-06-01

    This study explores the interaction between bioactive glasses and dentin from extracted human teeth in simulated oral conditions. Bioactive glasses in the Na(2)O-CaO-P(2)O(5)-SiO(2) and MgO-CaO-P(2)O(5)-SiO(2) systems were prepared as polished disks. Teeth were prepared by grinding to expose dentin and etching with phosphoric acid. A layer of saliva was placed between the two, and the pair was secured with an elastic band and immersed in saliva at 37 degrees C for 5, 21 or 42 days. The bioactive glasses adhered to dentin, while controls showed no such interaction. A continuous interface between the bioactive glass and dentin was imaged using cryogenic-scanning electron microscopy (SEM). However, after alcohol dehydration and critical point drying, fracture occurred due to stresses from dentin shrinkage. SEM investigations showed a microstructurally different material at the fractured interface. Chemical analyses revealed that ions from the glass penetrated into the dentin and that the surface of the glass in contact with the dentin was modified. Microdiffractometry showed the presence of apatite at the interface. Bonding appears to be due to an affinity of collagen for the glass surface and chemical interaction between the dentin and glass, leading to apatite formation at the interface.

  20. Dentinal innervation of impacted human third molars.

    PubMed

    Lilja, J; Fagerberg-Mohlin, B

    1984-12-01

    Five totally impacted third molars were studied in the transmission electron microscope for the presence of nervous structures in the dentin before eruption. In contradiction to earlier studies available, nervous structures were found in the predentin and the dentin of the impacted third molars in different parts of the crown and also in the predentin of the root.

  1. Bioinspired toughening mechanism: lesson from dentin.

    PubMed

    An, Bingbing; Zhang, Dongsheng

    2015-07-09

    Inspired by the unique microstructure of dentin, in which the hard peritubular dentin surrounding the dentin tubules is embedded in the soft intertubular dentin, we explore the crack propagation in the bioinspired materials with fracture process zone possessing a dentin-like microstructure, i.e. the composite structure consisting of a soft matrix and hard reinforcements with cylindrical voids. A micromechanical model under small-scale yielding conditions is developed, and numerical simulations are performed, showing that the rising resistant curve (R-curve) is observed for crack propagation caused by the plastic collapse of the intervoid ligaments in the fracture process zone. The dentin-like microstructure in the fracture process zone exhibits enhanced fracture toughness, compared with the case of voids embedded in the homogeneous soft matrix. Further computational simulations show that the dentin-like microstructure can retard void growth, thereby promoting fracture toughness. The typical fracture mechanism of the bioinspired materials with fracture process zone possessing the dentin-like structure is void by void growth, while it is the multiple void interaction in the case of voids in the homogeneous matrix. Based on the results, we propose a bioinspired material design principle, which is that the combination of a hard inner material encompassing voids and a soft outer material in the fracture process zone can give rise to exceptional fracture toughness, achieving damage tolerance. It is expected that the proposed design principle could shed new light on the development of novel man-made engineering materials.

  2. ON THE STIFFNESS OF DEMINERALIZED DENTIN MATRICES

    PubMed Central

    Ryou, Heonjune; Turco, Gianluca; Breschi, Lorenzo; Tay, Franklin R.; Pashley, David H.; Arola, Dwayne

    2015-01-01

    Resin bonding to dentin requires the use of self-etching primers or acid etching to decalcify the surface and expose a layer of collagen fibrils of the dentin matrix. Acid-etching reduces the stiffness of demineralized dentin from approximately 19 GPa to 1 MPa, requiring that it floats in water to prevent it from collapsing during bonding procedures. Several publications show that crosslinking agents like gluteraladehyde, carbodiimide or grape seed extract can stiffen collagen and improve resin-dentin bond strength. Objective The objective was to assess a new approach for evaluating the changes in stiffness of decalcified dentin by polar solvents and a collagen cross-linker. Methods Fully demineralized dentin beams and sections of etched coronal dentin were subjected to indentation loading using a cylindrical flat indenter in water, and after treatment with ethanol or ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). The stiffness was measured as a function of strain and as a function of loading rate from 1 to 50 µm/sec. Results At a strain of 0.25% the elastic modulus of the fully demineralized dentin was approximately 0.20 MPa. It increased to over 0.90 MPa at strains of 1%. Exposure to ethanol caused an increase in elastic modulus of up to four times. Increasing the loading rate from 1 to 50 µm/sec caused an increase in the apparent modulus of up to three times in both water and ethanol. EDC treatment caused increases in the stiffness in fully demineralized samples and in acid-etched demineralized dentin surfaces in situ. Significance Changes in the mechanical behavior of demineralized collagen matrices can be measured effectively under hydration via indentation with cylindrical flat indenters. This approach can be used for quantifying the effects of bonding treatments on the properties of decalcified dentin after acid etching, as well as to follow the loss of stiffness over time due to enzymatic degradation. PMID:26747822

  3. Tensile bond strength and SEM evaluation of caries-affected dentin using dentin adhesives.

    PubMed

    Nakajima, M; Sano, H; Burrow, M F; Tagami, J; Yoshiyama, M; Ebisu, S; Ciucchi, B; Russell, C M; Pashley, D H

    1995-10-01

    Tensile bond strength measurements are commonly used for the evaluation of dentin adhesive systems. Most tests are performed using extracted non-carious human or bovine dentin. However, the adhesion of resins to caries-affected dentin is still unclear. The objectives of this study were to test the hypothesis that bonding to caries-affected dentin is inferior to bonding to normal dentin, and that the quality of the hybrid layer plays a major role in creating good adhesion. We used a micro-tensile bond strength test to compare test bond strengths made to either caries-affected dentin or normal dentin, using three commercial adhesive systems (All Bond 2, Scotchbond Multi-Purpose, and Clearfil Liner Bond II). For scanning electron microscopy, the polished interfaces between the adhesive bond and dentin were subjected to brief exposure to 10% phosphoric acid solution and 5% sodium hypochlorite, so that the quality of the hybrid layers could be observed. Bonding to normal dentin with either All Bond 2 (26.9 +/- 8.8 MPa) or Clearfil Liner Bond II (29.5 +/- 10.9 MPa) showed tensile bond strengths higher than those to caries-affected dentin (13.0 +/- 3.6 MPa and 14.0 +/- 4.3 MPa, respectively). The tensile bond strengths obtained with Scotchbond Multi-Purpose were similar in normal and caries-affected dentin (20.3 +/- 5.5 MPa and 18.5 +/- 4.0 MPa, respectively). The hybrid layers created by All Bond 2 in normal dentin and by Clearfil Liner Bond II in normal or caries-affected dentin showed phosphoric acid and sodium hypochlorite resistance, whereas the hybrid layers created by All Bond 2 in caries-affected dentin and those created by Scotchbond Multi-Purpose to normal and caries-affected dentin showed partial susceptibility to the acid and sodium hypochlorite treatment. The results indicate that the strength of adhesion to dentin depends upon both the adhesive system used and the type of dentin. Moreover, the quality of the hybrid layer may not always contribute

  4. Dentin bonding: can we make it last?

    PubMed

    Tjäderhane, L

    2015-01-01

    In dentin bonding, contemporary dental adhesive systems rely on formation of the hybrid layer, a biocomposite containing dentin collagen and polymerized resin adhesive. They are usually able to create at least reasonable integrity of the hybrid layer with high immediate bond strength. However, loss of dentin-bonded interface integrity and bond strength is commonly seen after aging both in vitro and in vivo. This is due to endogenous collagenolytic enzymes, matrix metalloproteinases, and cysteine cathepsins, responsible for the time-dependent loss of hybrid layer collagen. In addition, the hydrophilic nature of adhesive systems creates problems that lead to suboptimal hybrid layers. These problems include, for example, insufficient resin impregnation of dentin, phase separation, and a low rate of polymerization, all of which may reduce the longevity of the bonded interface. Preservation of the collagen matrix integrity by inhibition of endogenous dentin proteases is key to improving dentin bonding durability. Several approaches to retain the integrity of the hybrid layer and to improve the long-term dentin bond strength have been tested. These include the use of enzyme inhibitors, either separately or as incorporated into the adhesive resins; increase of collagen resistance to enzymatic degradation; and elimination of water from the interface to slow down or eliminate hydrolytic loss of the hybrid layer components. This review looks at the principles, current status, and future of the different techniques designed to prevent the loss of hybrid layer and bond strength.

  5. Dentine roughness after different surface treatments.

    PubMed

    Mohsen, M M; Shabka, A A

    1993-01-01

    Surface roughness is one of the most influential criteria affecting the durability and strength of the adhesive restorative materials to the dentine. This study was carried out to investigate the roughness of the dentine surface after some of the modalities proposed for its treatment prior to application of the DBA. Dentine surface roughness of the sixty teeth divided into 12 groups were tested where the dentine surfaces were denuded and were brought to a similar 600 grit surface roughness then different treatments were carried out using H2O2, CO2 gas laser at 30 and 48 J/cm2 energy densities, EDTA and polyacrylic acid treatments. The dentine surface roughness was determined using a profilometer and the results were digitized and plotted using an AUTO-CAD software and Rolland plotter to compare the effects of the different treatments on the dentine surface roughness of the tested samples. Results revealed that the laser treatment left smooth dentine surface and added further evidences to the simplicity and reliability of the conventional use of EDTA and the polyacrylic acid according to the type of adhesive to be used.

  6. Modification of the dentin surface by using carbon nanotubes.

    PubMed

    Akasaka, Tsukasa; Nakata, Keiko; Uo, Motohiro; Watari, Fumio

    2009-01-01

    Recent studies have shown that carbon nanotubes (CNTs) can be used as biomedical materials because of their unique properties. CNTs effect nucleation of hydroxyapatite, because of which considerable interest has been generated regarding the use of CNTs in dentistry. However, there are only a few reports on the use of CNTs as dental materials. In this study, we investigated the changes induced in the surfaces of tooth slices by the application of a coating of CNTs by observing CNT-coated tooth slices both macroscopically as well as under a scanning electron microscope. Further, we investigated the effect of CNT coating on the tensile bond strength of dentin adhesives. CNTs adhered easily to the tooth surfaces when tooth slices were suspended in a CNT-dispersed solution. Interestingly, it was observed that CNTs selectively adhered to the surfaces of dentin and cementum, possibly by adhering to their exposed collagen fibers. In addition, the CNT coating did not affect the tensile bond strength of dentin adhesives. These results indicate that coating of the teeth with CNTs can be a possible application of CNTs as dental materials.

  7. Integrated coherent Raman scattering and multiphoton microscopy for label-free imaging of the dentin in the tooth

    NASA Astrophysics Data System (ADS)

    Wang, Zi; Zheng, Wei; Lin, Jian; Hsu, Chin-Ying; Huang, Zhiwei

    2014-02-01

    We report the implementation of a unique multimodal nonlinear optical microscopy (i.e., coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), third harmonic generation (THG) and two photon excitation fluorescence (TPEF)) platform for label-free imaging of dentin. A picosecond tunable laser together with an OPO is used as the excitation source for simultaneously multimodal imaging. CARS shows similar information as TPEF in dentin, but it has a higher sectioning performance than TPEF and thus it is a good alternative for TPEF. Microtubule structure is revealed nearby dentin enamel junction (DEJ) from the multimodal images. This work demonstrates that combining different nonlinear optical imaging modalities can provide new insights into the understanding of morphological structures and biochemical/biomolecular distributions of the dentine without the need of labeling.

  8. The charisma and deception of reparative therapies: when medical science beds religion.

    PubMed

    Grace, André P

    2008-01-01

    In this article, I examine the history and resurgence of interest in sexual reorientation or reparative therapies. I begin with a critique of the contemporary "ex-gay" movement, interrogating Exodus as the prototype of a politico-religious transformational ministry that works to "cure" homosexuals, and examine how Exodus utilizes ex-gay testimony to deceive harried homosexuals looking for escape from the effects of internalized and cultural homophobia. Next, I investigate how reparative therapies function as orthodox treatments that charismatically meld conservative religious perspectives with medical science to produce a pseudoscience promising to treat homosexuality effectively. In this regard, I assess the ongoing debate regarding gay-affirming versus reparative therapies by first looking at the history of medicalizing homosexuality and then surveying the debate spurred by Robert L. Spitzer's research. I conclude with a consideration of research needed to measure whether efficacious change in sexual orientation is possible.

  9. Comparison of the mechanical effects of a toothbrush and standard abrasive on human and bovine dentine in vitro.

    PubMed

    Imfeld, T

    2001-01-01

    Dentine abrasion is an important possible side effect of individually used mechanical oral hygiene products. Since human teeth are sometimes not available in sufficient numbers for research purposes, bovine teeth are often used as a substitute for in vitro tests of dentine abrasion. The aim of the present comparative study was to determine the mechanical effects of a manual toothbrush and a standard abrasive on human and bovine dentine under standardized conditions. Roots of human and bovine teeth were radioactivated and subjected to standardized machine brushing using a manual toothbrush and a standard abrasive slurry. Dentine abrasion was assessed by measuring radioactive phosphorus contained in the slurry after brushing. Non-radioactive human and bovine roots were brushed in the same machine, and the generated surface roughness was assessed using profilometry. Artificially stained human and bovine roots were brushed as described, and the cleaning effect was expressed as the extent of stain-free surfaces after different brushing times. The results for abrasion and surface roughening found with bovine and human dentine suggest that if standardized methods are used, roots of bovine mandibular front teeth can be used in place of human roots for in vitro studies of the mechanical effects of toothbrushes and toothpastes on dentine. The use of bovine dentine for measuring the cleaning effects of these products is, however, not recommended.

  10. Optical Spectroscopy Study of Transparent Non-Carious Human Dentin and Dentin-Enamel Junction

    SciTech Connect

    Marshall, G.W.; Marshall, S.J.; Gallagher, R.R.; Demos, S.

    1999-12-14

    Improving our knowledge of the morphology, composition and properties of the dentin, enamel, and the dentin-enamel junction (DEJ) is vital for the development of improved restorative materials and clinical placement techniques. Most studies of dental tissues have used light microscopy for characterization. In our investigation, the spectroscopic properties of normal and non-carious transparent human root dentin, and the dentin-enamel junction were investigated using emission imaging microscopy, and micro-spectroscopy. Experimental results reveal new information on the structural and biochemical characteristics of these dental tissues.

  11. 46 CFR Exhibit No. 1 to Subpart O... - Reparation Statement To Be Filed Pursuant to Rule 252

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 9 2011-10-01 2011-10-01 false Reparation Statement To Be Filed Pursuant to Rule 252 No. Exhibit No. 1 to Subpart O of Part 502 Shipping FEDERAL MARITIME COMMISSION GENERAL AND ADMINISTRATIVE PROVISIONS RULES OF PRACTICE AND PROCEDURE Reparation Pt. 502, Subpt O, Exh. 1 Exhibit No. 1 to Subpart O...

  12. 46 CFR Exhibit No. 1 to Subpart O... - Reparation Statement To Be Filed Pursuant to Rule 252

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Reparation Statement To Be Filed Pursuant to Rule 252 No. Exhibit No. 1 to Subpart O of Part 502 Shipping FEDERAL MARITIME COMMISSION GENERAL AND ADMINISTRATIVE PROVISIONS RULES OF PRACTICE AND PROCEDURE Reparation Pt. 502, Subpt O, Exh. 1 Exhibit No. 1 to Subpart O...

  13. [The effect of the biopolymer chondroitin sulfate on reparative regeneration of connective tissue].

    PubMed

    Belova, S V; Norkin, I A; Puchinyan, D M

    2015-01-01

    The research objective is a study of an intra-articular method of introduction of the preparation "mukosat" for stimulation of reparative regeneration of connective tissue of knee joints in rabbits with an experimental arthritis. It is ascertained that intra-articular maintenance of chondroitin sulfate (the preparation "mukosat") acts as a stimulus for reparative regeneration of connective tissue thus showing up positive changes in the status of connective tissue elements of joints: decrease in glycosaminoglycan content in blood serum and normalization of the composition of glycosaminoglycan carbohydrate component. It probably depends on stimulation of biosynthesis of autologous normal glycosaminoglycans in tissues of animal knee joints.

  14. [Rational (injection) of calcitonin for stimulation of the mandibular reparative regeneration].

    PubMed

    Shvyrkov, M B

    2011-01-01

    This investigation permit to detect, that first resorption stage of the mandible reparative regeneration terminats after fracture 5 days later. Calcitonine injection during 5 days after fracture i.e. in paratiroid hormone dependent stage distorts normal reparative process. Rats with traumatic osteomielitis become 1.5 times more and rats with normal regeneration become 3 times less. Injection calcitonine in KT-dependent stage, i.e. in 6-11 days after fracture increases quantity of rats with normal regeneration in 7 times and decreases quantity animals with traumatic osteomielitis on 50%. There's recommendation to inject KT from 6 days after trauma.

  15. Leeuwenhoek and the structure of dentine.

    PubMed

    O'Sullivan, R; Flannelly, M

    1990-01-01

    This short paper includes extracts from the original translations of Leeuwenhoek's descriptions of the histology of teeth, investigates his findings and demonstrates that in addition to describing dentinal tubules, he may have identified the presence of calcospherites within that tissue.

  16. MMP Inhibitors on Dentin Stability

    PubMed Central

    Montagner, A.F.; Sarkis-Onofre, R.; Pereira-Cenci, T.; Cenci, M.S.

    2014-01-01

    The aim of this study was to systematically review the literature for in vitro and ex vivo studies that evaluated the effect of matrix metalloproteinase (MMP) inhibitors during the adhesive procedure on the immediate and long-term resin-dentin bond strength. The search was conducted in 6 databases with no publication year or language limits, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. From 1,336 potentially eligible studies, 48 were selected for full-text analysis, and 30 were included for review, with 17 considered in the meta-analysis. Two reviewers independently selected the studies, extracted the data, and assessed the risk of bias. Pooled effect estimates were expressed as the weighted mean difference between groups. The most used MMP inhibitor was chlorhexidine (CHX). Immediate bond strength results showed no difference between 2% CHX and control; however, a difference was found between 0.2% CHX and control at baseline. After aging, CHX presented higher bond strength values compared to control groups (p < .05). However, this was not observed for longer periods of aging. High heterogeneity was found in some comparisons, especially for the water storage aging subgroup. Subgroup analyses showed that self-etching and etch-and-rinse adhesives are benefited by the CHX use. From the studies included, only 1 presented low risk of bias, while the others showed medium or high risk of bias. The use of MMP inhibitors did not affect the immediate bond strength overall, while it influenced the aged bond strength. Aging procedures influenced bond strength values of the dentin adhesion stability. PMID:24935066

  17. Substantivity of Chlorhexidine to Human Dentin

    PubMed Central

    Carrilho, Marcela R.; Carvalho, Ricardo M.; Sousa, Ethan N.; Nicolau, José; Breschi, Lorenzo; Mazzoni, Annalisa; Tjäderhane, Leo; Tay, Franklin R.; Agee, Kelli; Pashley, David H.

    2010-01-01

    Objectives To better comprehend the role of CHX in the preservation of resin-dentin bonds, this study investigated the substantivity of CHX to human dentin. Material and Methods Dentin disks (n= 45) were obtained from the mid-coronal portion of human third molars. One-third of dentin disks were kept mineralized (MD), while the other two-thirds had one of the surfaces partially demineralized with 37% phosphoric acid for 15 s (PDD) or they were totally demineralized with 10% phosphoric acid (TDD). Disks of hydroxyapatite (HA) were also prepared. Specimens were treated with: 1) 10 μL of distilled water (controls), 2) 10 μL of 0.2% chlorhexidine diacetate (0.2% CHX) or 3) 10 μL of 2% chlorhexidine diacetate (2% CHX). Then, they were incubated in 1 mL of PBS (pH 7.4, 37 °C). Substantivity was evaluated as a function of the CHX-applied dose after: 0.5h, 1h, 3h, 6h, 24h, 168h (1wk), 672h (4wks) and 1344h (8wks) of incubation. CHX concentration in eluates was spectrophotometrically analyzed at 260 nm. Results Significant amounts of CHX remained retained in dentin substrates (MD, PPD or TDD), independent on the CHX-applied dose or time of incubation (p<0.05). High amounts of retained CHX onto HA were observed only for specimens treated with the highest concentration of CHX (2%) (p<0.05). Conclusion The outstanding substantivity of CHX to dentin and its reported effect on the inhibition of dentinal proteases may explain why CHX can prolong the durability of resin-dentin bonds. PMID:20472282

  18. Permeability of normal versus carious dentin.

    PubMed

    Pashley, E L; Talman, R; Horner, J A; Pashley, D H

    1991-10-01

    Although a number of reports have been published demonstrating that carious dentin is less permeable than normal dentin, these reports have been qualitative rather than quantitative. The purpose of this in vitro study was to apply a quantitative technique to the study of the permeability of carious human teeth before and after excavation, before and after removal of the smear layer and before and after preparation of a control cavity of similar size and depth in normal dentin subjected to the same measurements, for comparative purposes. Dentin permeability was measured as a hydraulic conductance. The permeability values measured at each step in the protocol were expressed as a percent of the maximum permeability of both cavities, permitting each tooth the serve as its own control. Carious lesions exhibited a slight degree of permeability (2.3 +/- 0.6% of controls) which remained unchanged after excavation of the lesions. Removal of the smear layer in the excavated carious lesions increased the permeability significantly to 6.9 +/- 3.2%. Preparation of a control cavity of the same area and depth increased the permeability slightly. Removal of its smear layer increased the permeability of the dentin 91%. These results confirm previous qualitative studies that carious dentin, even after excavation and removal of the smear layer has a very low permeability.

  19. Remineralization of caries lesions extending into dentin.

    PubMed

    ten Cate, J M

    2001-05-01

    Remineralization is one aspect of the overall process of tooth decay. However, it is primarily studied in shallow lesions. The aim of this study was to explore whether caries lesions in enamel and extending into the dentin can be remineralized. A single-section model was developed for the longitudinal and non-destructive monitoring of changes in enamel and dentin. Lesions at least 200 microm into dentin were formed in undersaturated acetate buffers. Next, the lesions were divided into groups (three treatment and one control) and remineralized. The treatments were: weekly immersion in 1,000 ppm fluoride, single treatment with methanehydroxybisphosphonate, and a constant level of 1 ppm fluoride. De- and remineralization was assessed by transverse microradiography. Remineralization was observed in enamel, but also in dentin, indicating that, deep into dentin, the pores become supersaturated to apatite formation. Treatments affected remineralization only in the outer part of enamel. Both findings are explained by a relatively fast diffusion of mineral ions, with precipitation being rate-limiting. The results suggest that dentin remineralization, underneath enamel, can be achieved and could possibly be used in clinical treatment strategies.

  20. Current status of dentin adhesive systems.

    PubMed

    Leinfelder, K F

    1998-12-01

    Undoubtedly, dentin bonding agents have undergone a major evolution during the last several years. The shear bond strength of composite resin to the surface of dentin is actually greater than the inherent strength of the dentin itself under well-controlled conditions. No longer must the clinician depend only upon the bonding to enamel as the sole bonding mechanism. Bonding to both types of dental structure permits even better reinforcement of the tooth itself. Perhaps even more important than the high level of bonding exhibited by the current dentin adhesives is their ability to seal the dentin. So effective is this sealing capability that it is now possible to protect the pulpal tissue from microbial invasion through the dentinal tubules. Further, by enclosing the odontoblastic processes and preventing fluid flow, the potential for postoperative sensitivity is diminished considerably. In fact, so evolutionary is the concept of bonding that the procedures associated with the restoration of teeth has changed dramatically. Undoubtedly, far greater improvements can be anticipated in the future.

  1. Is bovine dentine an appropriate substitute for human dentine in erosion/abrasion tests?

    PubMed

    Wegehaupt, F; Gries, D; Wiegand, A; Attin, T

    2008-05-01

    The study aimed to compare the dentine wear of primary and permanent human and bovine teeth because of erosion/abrasion and evaluate if bovine dentine is an appropriate substitute for human dentine in further erosion/abrasions tests. Dentine samples from deciduous molars and human third molars as well as from calves' and cattle's lower incisors were prepared and baseline surface profiles were recorded. Each day all samples were demineralized in 1% citric acid, tooth brushed with 100 brushing strokes with toothpaste slurry and stored in artificial saliva for the rest of the day. This cycle was run for 20 days. Afterwards, new surface profiles were recorded and dentine wear was calculated by a customized computer program. Dentine wear because of erosion/abrasion was not statistically, significantly different for human third molars and cattle's lower incisors (P = 0.7002). The dentine wear because of erosion/abrasion of deciduous molars and calves' lower incisors was significantly different (P < 0.0000). No statistically significant difference in the dentine wear of human third molars and cattle's lower incisors was observed, so that the use of cattle's lower incisors as substitute for adult human teeth for further investigations in erosion/abrasion studies could be accepted.

  2. The Role of Host-derived Dentinal Matrix Metalloproteinases in Reducing Dentin Bonding of Resin Adhesives

    PubMed Central

    Zhang, Shan-chuan; Kern, Matthias

    2009-01-01

    Dentin matrix metalloproteinases (MMPs) are a family of host-derived proteolytic enzymes trapped within mineralized dentin matrix, which have the ability to hydrolyze the organic matrix of demineralized dentin. After bonding with resins to dentin there are usually some exposed collagen fibrils at the bottom of the hybrid layer owing to imperfect resin impregnation of the demineralized dentin matrix. Exposed collagen fibrils might be affected by MMPs inducing hydrolytic degradation, which might result in reduced bond strength. Most MMPs are synthesized and released from odontoblasts in the form of proenzymes, requiring activation to degrade extracellular matrix components. Unfortunately, they can be activated by modern self-etch and etch-and-rinse adhesives. The aim of this review is to summarize the current knowledge of the role of dentinal host-derived MMPs in dentin matrix degradation. We also discuss various available MMP inhibitors, especially chlorhexidine, and suggest that they could provide a potential pathway for inhibiting collagen degradation in bonding interfaces thereby increasing dentin bonding durability. PMID:20690420

  3. The role of host-derived dentinal matrix metalloproteinases in reducing dentin bonding of resin adhesives.

    PubMed

    Zhang, Shan-chuan; Kern, Matthias

    2009-12-01

    Dentin matrix metalloproteinases (MMPs) are a family of host-derived proteolytic enzymes trapped within mineralized dentin matrix, which have the ability to hydrolyze the organic matrix of demineralized dentin. After bonding with resins to dentin there are usually some exposed collagen fibrils at the bottom of the hybrid layer owing to imperfect resin impregnation of the demineralized dentin matrix. Exposed collagen fibrils might be affected by MMPs inducing hydrolytic degradation, which might result in reduced bond strength. Most MMPs are synthesized and released from odontoblasts in the form of proenzymes, requiring activation to degrade extracellular matrix components. Unfortunately, they can be activated by modem self-etch and etch-and-rinse adhesives. The aim of this review is to summarize the current knowledge of the role of dentinal host-derived MMPs in dentin matrix degradation. We also discuss various available MMP inhibitors, especially chlorhexidine, and suggest that they could provide a potential pathway for inhibiting collagen degradation in bonding interfaces thereby increasing dentin bonding durability.

  4. Chemical Profile of the Dentin Substrate in Non-Carious Cervical Lesions

    PubMed Central

    Karan, Kunal; Yao, Xiaomei; Xu, Changqi; Wang, Yong

    2009-01-01

    Objective The molecular structural nature of the dentin substrate in non-carious cervical lesions (NCCLs) is poorly understood. This investigation characterized the chemical structure including inhomogeneities, composition, mineral crystallinity, collagen organization of normal dentin and affected dentin substrates within NCCLs using Raman micro-spectroscopic mapping/imaging. Materials and Methods Three extracted human pre-molars affected with NCCLs were selected and cavities matching the natural lesion with respect to size and location were prepared on the lingual/palatal surface of each tooth to serve as controls. The specimens were sectioned to expose the gingival and occlusal margins of the NCCLs and the control cavities. Micro-Raman spectra and imaging acquired at 1.5 micrometer spatial resolution at positions perpendicular to the lesion surfaces. Results The Raman spectra and imaging comparisons showed the distinct compositional and structural alterations in mineral and matrix components of NCCL affected dentin. A heterogeneous hyper-mineralized layer, with characteristic features such as high phosphate/low carbonate content, high degree of crystallinity and partially denatured collagen were revealed in affected dentin substrate of NCCLs. Significance Generating Raman images based on different strategies from the same data set provides a powerful means to study the structural alterations within heterogeneous dental tissues. Direct overlay of the images indicated that the changes in chemical structure and composition are synchronized. Further studies are required to understand the role that these alterations play in response to acid etching and bonding to these clinically-relevant substrates. PMID:19464050

  5. Can Caries-Affected Dentin be Completely Remineralized by Guided Tissue Remineralization?

    PubMed Central

    Dai, Lin; Liu, Yan; Salameh, Ziad; Khan, Sara; Mao, Jing; Pashley, David H.; Tay, Franklin R.

    2011-01-01

    Introduction To date, there is no evidence that conventional remineralization techniques using calcium and phosphate ion- containing media will completely remineralize carious lesions in regions where remnant apatite seed crystallites are absent. Conversely, guided tissue remineralization using biomimetic analogs of dentin matrix proteins is successful in remineralizing thin layers of completely demineralized dentin. The hypothesis Conventional remineralization strategy depends on epitaxial growth over existing apatite crystallites. If there are no or few crystallites, there will be no remineralization. Guided tissue remineralization uses biomimetic analogs of dentin matrix proteins to introduce sequestered amorphous calcium phosphate nanoprecursors into the internal water compartments of collagen fibrils. Attachment of templating analogs of matrix phosphoproteins to the collagen fibrils further guided the nucleation and growth of apatite crystallites within the fibril. Such a strategy is independent of apatite seed crystallites. Our hypothesis is that 250–300 microns thick artificial carious lesions can be completely remineralized in vitro by guide tissue remineralization but not by conventional remineralization techniques. Evaluation of the hypothesis Validation of the hypothesis will address the critical barrier to progress in remineralization of caries- affected dentin and shift existing paradigms by providing a novel method of remineralization based on a nanotechnology-based bottom-up approach. This will also generate important information to support the translation of the proof-of-concept biomimetic strategy into a clinically-relevant delivery system for remineralizing caries-affected dentin created by micro-organisms in the oral cavity. PMID:21909477

  6. [Use of mesenchymal stem cells for reparative processes activation in bone jaw tissue in experimental conditions].

    PubMed

    Volozhin, A I; Vasil'ev, A Iu; Malyginov, N N; Bulanova, I M; Grigor''ian, A S; Kiseleva, E V; Cherniaev, S E; Tarasenko, I V

    2010-01-01

    In experiment on 12 Chinchilla rabbits dynamics of reparative regeneration was studied at the terms 2 and 4 months. Bone defect in mandible corner was closed by osteoplastic material Gapkol which was covered from inside by allogenic or autologic stem cells received from rabbit adipose tissue. The results of the ray tracing methods of study were verified by SEM and histological methods.

  7. Femtosecond laser surface structuring technique for making human enamel and dentin surfaces superwetting

    NASA Astrophysics Data System (ADS)

    Vorobyev, A. Y.; Guo, Chunlei

    2013-12-01

    It is known that good wettability of enamel and dentin surfaces is a key factor in enhancing adhesion of restorative materials in dentistry. Here, we report on a femtosecond laser surface texturing approach that makes both the enamel and dentine surfaces superwetting. In contrast to the traditional chemical etching that yields random surface structures, this new approach produces engineered surface structures. The surface structure engineered and tested here is an array of femtosecond laser-produced parallel microgrooves that generates a strong capillary force. Due to the powerful capillary action, water is rapidly sucked into this engineered surface structure and spreads even on a vertical surface.

  8. Inelastic deformation and microcracking process in human dentin.

    PubMed

    Eltit, Felipe; Ebacher, Vincent; Wang, Rizhi

    2013-08-01

    Dentin is a mineralized collagen tissue with robust mechanical performance. Understanding the mechanical behavior of dentin and its relations to the dentinal structure can provides insight into the design strategies to achieve tooth functions. This study focuses on the inelastic deformation of human dentin and its underlying mechanisms. By combining four-point bending tests with fluorescent staining and laser scanning confocal microscopy, it was found that human dentin, especially root dentin, exhibited significant inelastic deformation and developed extensive microdamage in the form of microcracks prior to fracture. Dense and wavy microcracks spread uniformly across the tensile surface of root dentin, while compressive microcracks formed cross-hatched patterns. The presence of peritubular dentin in coronal dentin dramatically decreased the extent of microcracking, reducing inelasticity. Dentinal tubules were found to be initiation sites of both tensile and compressive microcracks. A unique crack propagation process was observed in root dentin under tension: numerous ring-shaped cracks formed at each dentinal tubule ahead of a growing crack tip. The advance of the tensile microcracks occurred by the merging of those ring-shaped cracks. The current findings on the microcracking process associated with inelastic deformation helps to understand the nature of strength and toughness in dentin, as well as the mechanical significance for structural variations across the whole tooth.

  9. Regulation of reactionary dentin formation by odontoblasts in response to polymicrobial invasion of dentin matrix

    PubMed Central

    Charadram, Nattida; Farahani, Ramin M; Harty, Derek; Rathsam, Catherine; Swain, Michael V; Hunter, Neil

    2011-01-01

    Odontoblast synthesis of dentin proceeds through discrete but overlapping phases characterized by formation of a patterned organic matrix followed by remodelling and active mineralization. Microbial invasion of dentin in caries triggers an adaptive response by odontoblasts, culminating in formation of a structurally altered reactionary dentin, marked by biochemical and architectonic modifications including diminished tubularity. Scanning electron microscopy of the collagen framework in reactionary dentin revealed a radically modified yet highly organized meshwork as indicated by fractal and lacunarity analyses. Immuno-gold labelling demonstrated increased density and regular spatial distribution of dentin sialoprotein (DSP) in reactionary dentin. DSP contributes putative hydroxyapatite nucleation sites on the collagen scaffold. To further dissect the formation of this altered dentin matrix, the associated enzymatic machinery was investigated. Analysis of extracted dentin matrix indicated increased activity of matrix metalloproteinase-2 (MMP-2) in the reactionary zone referenced to physiologic dentin. Likewise, gene expression analysis of micro-dissected odontoblast layer revealed up-regulation of MMP-2. Parallel up-regulation of tissue inhibitor of metalloproteinase-2 (TIMP-2) and membrane type 1- matrix metalloproteinase (MT1-MMP) was observed in response to caries. Next, modulation of odontoblastic dentinogenic enzyme repertoire was addressed. In the odontoblast layer expression of Toll-like receptors was markedly altered in response to bacterial invasion. In carious teeth TLR-2 and the gene encoding the corresponding adaptor protein MyD88 were down-regulated whereas genes encoding TLR-4 and adaptor proteins TRAM and Mal/TIRAP were up-regulated. TLR-4 signalling mediated by binding of bacterial products has been linked to up-regulation of MMP-2. Further, increased expression of genes encoding components of the TGF-β signalling pathway, namely SMAD-2 and SMAD-4

  10. Dentin matrix protein 1 and phosphate homeostasis are critical for postnatal pulp, dentin and enamel formation

    PubMed Central

    Rangiani, Afsaneh; Cao, Zheng-Guo; Liu, Ying; Voisey Rodgers, Anika; Jiang, Yong; Qin, Chun-Lin; Feng, Jian-Quan

    2012-01-01

    Deletion or mutation of dentin matrix protein 1 (DMP1) leads to hypophosphatemic rickets and defects within the dentin. However, it is largely unknown if this pathological change is a direct role of DMP1 or an indirect role of phosphate (Pi) or both. It has also been previously shown that Klotho-deficient mice, which displayed a high Pi level due to a failure of Pi excretion, causes mild defects in the dentinal structure. This study was to address the distinct roles of DMP1 and Pi homeostasis in cell differentiation, apoptosis and mineralization of dentin and enamel. Our working hypothesis was that a stable Pi homeostasis is critical for postnatal tooth formation, and that DMP1 has an antiapoptotic role in both amelogenesis and dentinogenesis. To test this hypothesis, Dmp1-null (Dmp1−/−), Klotho-deficient (kl/kl), Dmp1/Klotho-double-deficient (Dmp1−/−/kl/kl) and wild-type (WT) mice were killed at the age of 6 weeks. Combinations of X-ray, microcomputed tomography (μCT), scanning electron microscopy (SEM), histology, apoptosis and immunohistochemical methods were used for characterization of dentin, enamel and pulp structures in these mutant mice. Our results showed that Dmp1−/− (a low Pi level) or kl/kl (a high Pi level) mice displayed mild dentin defects such as thin dentin and a reduction of dentin tubules. Neither deficient mouse line exhibited any apparent changes in enamel or pulp structure. However, the double-deficient mice (a high Pi level) displayed severe defects in dentin and enamel structures, including loss of dentinal tubules and enamel prisms, as well as unexpected ectopic ossification within the pulp root canal. TUNEL assay showed a sharp increase in apoptotic cells in ameloblasts and odontoblasts. Based on the above findings, we conclude that DMP1 has a protective role for odontoblasts and ameloblasts in a pro-apoptotic environment (a high Pi level). PMID:23258378

  11. How to bond to root canal dentin

    NASA Astrophysics Data System (ADS)

    Nica, Luminita; Todea, Carmen; Furtos, Gabriel; Baldea, Bogdan

    2014-01-01

    Bonding to root canal dentin may be difficult due to various factors: the structural characteristic of the root canal dentin, which is different from that of the coronal dentin; the presence of the organic tissue of the dental pulp inside the root canal, which has to be removed during the cleaning-shaping of the root canal system; the smear-layer resulted after mechanical instrumentation, which may interfere with the adhesion of the filling materials; the type of the irrigants used in the cleaning protocol; the type of the sealer and core material used in the obturation of the endodontic space; the type of the materials used for the restoration of the endodontically treated teeth. The influence of the cleaning protocol, of the root canal filling material, of the type of the adhesive system used in the restoration of the treated teeth and of the region of the root canal, on the adhesion of several filling and restorative materials to root canal dentin was evaluated in the push-out bond strength test on 1-mm thick slices of endodontically treated human teeth. The results showed that all these factors have a statistically significant influence on the push-out bond strength. Formation of resin tags between radicular dentin and the investigated materials was observed in some of the samples at SEM analysis.

  12. Scanning electron microscopy and dentinal permeability analysis of smear layer.

    PubMed

    Prati, C; Mongiorgi, R; Pashley, D H; Riva di Sanseverino, L

    1991-05-01

    The aim of the present study was to evaluate the surface morphology and the permeability of dentine after different acid treatments: polyacrylic acid, maleic acid, phosphoric acid and saline solution as control. Dentine permeability was expressed as hydraulic conductance. All the acid treatments removed the smear layer and increased the dentine permeability.

  13. Plasma treatment of dentin surfaces for improving self-etching adhesive/dentin interface bonding

    PubMed Central

    Dong, Xiaoqing; Li, Hao; Chen, Meng; Wang, Yong; Yu, Qingsong

    2015-01-01

    This study is to evaluate plasma treatment effects on dentin surfaces for improving self-etching adhesive and dentin interface bonding. Extracted unerupted human third molars were used after crown removal to expose dentin. One half of each dentin surface was treated with atmospheric non-thermal argon plasmas, while another half was untreated and used as the same tooth control. Self-etching adhesive and universal resin composite was applied to the dentin surfaces as directed. After restoration, the adhesive-dentin bonding strength was evaluated by micro-tensile bonding strength (μTBS) test. Bonding strength data was analyzed using histograms and Welch’s t-test based on unequal variances. μTBS test results showed that, with plasma treatment, the average μTBS value increased to 69.7±11.5 MPa as compared with the 57.1±17.5 MPa obtained from the untreated controls. After 2 months immersion of the restored teeth in 37 °C phosphate buffered saline (PBS), the adhesive-dentin bonding strengths of the plasma-treated specimens slightly decreased from 69.7±11.5 MPa to 63.9±14.4 MPa, while the strengths of the untreated specimens reduced from 57.1±17.5 MPa to 48.9±14.6 MPa. Water contact angle measurement and scanning electron microscopy (SEM) examination verified that plasma treatment followed by water rewetting could partially open dentin tubules, which could enhance adhesive penetration to form thicker hybrid layer and longer resin tags and consequently improve the adhesive/dentin interface quality. PMID:26273561

  14. Dentine microhardness after different methods for detection and removal of carious dentine tissue

    PubMed Central

    MOLLICA, Fernanda Brandão; TORRES, Carlos Rocha Gomes; GONÇALVES, Sergio Eduardo de Paiva; MANCINI, †Maria Nadir Gasparoto

    2012-01-01

    There are several methods for identifying carious dentinal tissue aiming to avoid removal of healthy dentinal tissue. Objectives The purpose of this study was to test different methods for the detection of carious dentinal tissue regarding the amount of carious tissue removed and the remaining dentin microhardness after caries removal. Material and methods The dentin surfaces of 20 bovine teeth were exposed and half of the surface was protected with nail polish. Cariogenic challenge was performed by immersion in a demineralizing solution for 14 days. After transverse cross-section of the crown, the specimens were divided into four groups (n=10), according to the method used to identify and remove the carious tissue: "Papacárie", Caries-detector dye, DIAGNOdent and Tactile method. After caries removal, the cross-sectional surface was included in acrylic resin and polished. In a microhardness tester, the removed dentin thickness and the Vickers microhardness of the following regions were evaluated: remaining dentin after caries removal and superficial and deep healthy dentin. Results ANOVA and Tukey's test (α=0.05) were performed, except for DIAGNOdent, which did not detect the presence of caries. Results for removed dentin thickness were: "Papacárie" (424.7±105.0; a), Caries-detector dye (370.5±78.3; ab), Tactile method (322.8±51.5; bc). Results for the remaining dentin microhardness were: "Papacárie" (42.2±10.5; bc), Caries-detector dye (44.6±11.8; abc), Tactile method (24.3±9.0; d). Conclusions DIAGNOdent did not detect the presence of carious tissue; Tactile method and "Papacárie" resulted in the least and the most dentinal thickness removal, respectively; Tactile method differed significantly from "Papacárie" and Caries-detector dye in terms of the remaining dentin microhardness, and Tactile method was the one which presented the lowest microhardness values. PMID:23032207

  15. Dentin adhesion and MMPs: a comprehensive review.

    PubMed

    Perdigão, Jorge; Reis, Alessandra; Loguercio, Alessandro D

    2013-08-01

    This review examines the fundamental processes responsible for the aging mechanisms involved in the degradation of resin-bonded interfaces, as well as some potential approaches to prevent and counteract this degradation. Current research in several research centers aims at increasing the resin-dentin bond durability. The hydrophilic and acidic characteristics of current dentin adhesives have made hybrid layers highly prone to water sorption. This, in turn, causes polymer degradation and results in decreased resin-dentin bond strength over time. These unstable polymers inside the hybrid layer may result in denuded collagen fibers, which become vulnerable to mechanical and hydrolytical fatigue, as well as degradation by host-derived proteases with collagenolytic activity. These enzymes, such as matrix metalloproteinases and cysteine cathepsins, have a crucial role in the degradation of type I collagen, the organic component of the hybrid layer. This review will also describe several methods that have been recently advocated to silent the activity of these endogenous proteases.

  16. Dentin Matrix Proteins in Bone Tissue Engineering.

    PubMed

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dentin and bone are mineralized tissue matrices comprised of collagen fibrils and reinforced with oriented crystalline hydroxyapatite. Although both tissues perform different functionalities, they are assembled and orchestrated by mesenchymal cells that synthesize both collagenous and noncollagenous proteins albeit in different proportions. The dentin matrix proteins (DMPs) have been studied in great detail in recent years due to its inherent calcium binding properties in the extracellular matrix resulting in tissue calcification. Recent studies have shown that these proteins can serve both as intracellular signaling proteins leading to induction of stem cell differentiation and also function as nucleating proteins in the extracellular matrix. These properties make the DMPs attractive candidates for bone and dentin tissue regeneration. This chapter will provide an overview of the DMPs, their functionality and their proven and possible applications with respect to bone tissue engineering.

  17. Pulp-dentin Regeneration: Current State and Future Prospects.

    PubMed

    Cao, Y; Song, M; Kim, E; Shon, W; Chugal, N; Bogen, G; Lin, L; Kim, R H; Park, N-H; Kang, M K

    2015-11-01

    The goal of regenerative endodontics is to reinstate normal pulp function in necrotic and infected teeth that would result in reestablishment of protective functions, including innate pulp immunity, pulp repair through mineralization, and pulp sensibility. In the unique microenvironment of the dental pulp, the triad of tissue engineering would require infection control, biomaterials, and stem cells. Although revascularization is successful in resolving apical periodontitis, multiple studies suggest that it alone does not support pulp-dentin regeneration. More recently, cell-based approaches in endodontic regeneration based on pulpal mesenchymal stem cells (MSCs) have demonstrated promising results in terms of pulp-dentin regeneration in vivo through autologous transplantation. Although pulpal regeneration requires the cell-based approach, several challenges in clinical translation must be overcome-including aging-associated phenotypic changes in pulpal MSCs, availability of tissue sources, and safety and regulation involved with expansion of MSCs in laboratories. Allotransplantation of MSCs may alleviate some of these obstacles, although the long-term stability of MSCs and efficacy in pulp-dentin regeneration demand further investigation. For an alternative source of MSCs, our laboratory developed induced MSCs (iMSCs) from primary human keratinocytes through epithelial-mesenchymal transition by modulating the epithelial plasticity genes. Initially, we showed that overexpression of ΔNp63α, a major isoform of the p63 gene, led to epithelial-mesenchymal transition and acquisition of stem characteristics. More recently, iMSCs were generated by transient knockdown of all p63 isoforms through siRNA, further simplifying the protocol and resolving the potential safety issues of viral vectors. These cells may be useful for patients who lack tissue sources for endogenous MSCs. Further research will elucidate the level of potency of these iMSCs and assess their

  18. Growth Factor Liberation and DPSC Response Following Dentine Conditioning.

    PubMed

    Sadaghiani, L; Gleeson, H B; Youde, S; Waddington, R J; Lynch, C D; Sloan, A J

    2016-10-01

    Liberation of the sequestrated bioactive molecules from dentine by the action of applied dental materials has been proposed as an important mechanism in inducing a dentinogenic response in teeth with viable pulps. Although adhesive restorations and dentine-bonding procedures are routinely practiced, clinical protocols to improve pulp protection and dentine regeneration are not currently driven by biological knowledge. This study investigated the effect of dentine (powder and slice) conditioning by etchants/conditioners relevant to adhesive restorative systems on growth factor solubilization and odontoblast-like cell differentiation of human dental pulp progenitor cells (DPSCs). The agents included ethylenediaminetetraacetic acid (EDTA; 10%, pH 7.2), phosphoric acid (37%, pH <1), citric acid (10%, pH 1.5), and polyacrylic acid (25%, pH 3.9). Growth factors were detected in dentine matrix extracts drawn by EDTA, phosphoric acid, and citric acid from powdered dentine. The dentine matrix extracts were shown to be bioactive, capable of stimulating odontogenic/osteogenic differentiation as observed by gene expression and phenotypic changes in DPSCs cultured in monolayer on plastic. Polyacrylic acid failed to solubilize proteins from powdered dentine and was therefore considered ineffective in triggering a growth factor-mediated response in cells. The study went on to investigate the effect of conditioning dentine slices on growth factor liberation and DPSC behavior. Conditioning by EDTA, phosphoric acid, and citric acid exposed growth factors on dentine and triggered an upregulation in genes associated with mineralized differentiation, osteopontin, and alkaline phosphatase in DPSCs cultured on dentine. The cells demonstrated odontoblast-like appearances with elongated bodies and long extracellular processes extending on dentine surface. However, phosphoric acid-treated dentine appeared strikingly less populated with cells, suggesting a detrimental impact on cell

  19. Immunolocalization of dentin matrix protein-1 in human primary teeth treated with different pulp capping materials.

    PubMed

    Lourenço Neto, Natalino; Marques, Nádia C T; Fernandes, Ana Paula; Rodini, Camila O; Sakai, Vivien T; Abdo, Ruy Cesar C; Machado, Maria Aparecida A M; Santos, Carlos F; Oliveira, Thais M

    2016-01-01

    The aim of this study was to evaluate the immunolocalization of dentin matrix protein (DMP)-1 in human primary teeth treated with different pulp capping materials. Twenty-five primary molars were divided into the following groups: formocresol (FC), calcium hydroxide (CH), mineral trioxide aggregate (MTA), corticosteroid/antibiotic solution + CH (O + CH), and Portland cement (PC), and all received conventional pulpotomy treatment. The teeth at the regular exfoliation period were extracted for histological analysis and immunolocalization of DMP-1. Statistical analysis was performed using the χ(2) test (p < 0.05). Histological analysis revealed statistically significant differences in the comparison among the groups through the use of a score system regarding the presence of hard tissue barrier, odontoblastic layer, and internal resorption, but not regarding pulp calcification. Immunohistochemical analysis showed immunostaining for DMP-1 in groups CH, MTA, O + CH, and PC. Internal resorption was observed in the groups FC and CH. MTA and PC showed pulp repair without inflammation and with the presence of hard tissue barrier. DMP-1 immunostaining was higher for MTA and PC, confirming the reparative and bioinductive capacity of these materials.

  20. A multi-item maintenance center inventory model for low-demand reparable items

    NASA Technical Reports Server (NTRS)

    Schaefer, M. K.

    1983-01-01

    In many military and commercial contexts, complex equipment undergoes scheduled maintenance overhauls at regular intervals during which all failed components are replaced. Failure to have replacements on hand for all failed parts requires emergency measures at premium cost. When reparable parts are highly reliable and expensive, both holding and shortage costs are high. This model determines the reparable parts inventory for a maintenance center under three alternative criteria: (1) maximizing job-completion rate subject to constraint on total holding costs, (2) minimizing total holding costs plus expected job noncompletion costs, and (3) minimizing total holding costs subject to a required minimum job-completion rate. Exact solutions may be obtained using dynamic programming. Approximate solutions, found easily by marginal analysis, have readily computed bounds on possible error. The solution methods for the three formulations are illustrated in a simple example.

  1. Effects of chloramines and sodium hypochlorite on carious dentin.

    PubMed

    Tonami, Ken-ichi; Araki, Kouji; Mataki, Shiro; Kurosaki, Norimasa

    2003-06-01

    In chemo-mechanical caries removal procedures, chloramines are typically used for chemical softening of carious dentin. However, the specific effect of chloramines to be compared to sodium hypochlorite has not been sufficiently clarified. In present study, the effect of chloramines used in the Carisolv-system on carious dentin mechanical properties and morphology were investigated, using Vickers hardness test and scanning electron microscopy (SEM). Sections of permanent teeth with dentin caries were treated with chloramines, prepared by mixing amino acids (glutamic acid, lysine, and leucine) with sodium hypochlorite or with sodium hypochlorite alone or with purified water. There was a tendency that the application of the sodium hypochlorite solution softened the sound dentin and/or inner layer of carious dentin more than the application of the chloramines solution did. In SEM observations, the application of chloramines resulted in opening dentinal tubules in the outer layer of carious dentin: Occluded dentinal tubules were seen after sodium hypochlorite application. There is a possibility that the amino acids in the Carisolv-system decrease the aggressive effect of sodium hypochlorite on sound dentin and/or inner layer of carious dentin and also would enhance the disrupting effect on degenerated collagen in carious dentin outer layer.

  2. 75 FR 3371 - Commission Guidance Concerning the Rules of Practice Relating to Reparations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ...The Commodity Futures Trading Commission (``Commission'' or ``CFTC'') is issuing this policy statement to clarify and provide guidance to Commission staff and affected parties that Commission Rule 12.1(a), 17 CFR 12.1(a), requires that all rules of practice relating to reparation proceedings under 17 CFR part 12 ``shall be construed liberally so as to secure the just, speedy and inexpensive......

  3. Effects of Resin Hydrophilicity on Dentin Bond Strength

    PubMed Central

    Nishitani, Y.; Yoshiyama, M.; Donnelly, A.M.; Agee, K.A.; Sword, J.; Tay, F.R.; Pashley, D.H.

    2008-01-01

    The purpose of this study was to determine if hydrophobic resins can be coaxed into dentin wet with ethanol instead of water. The test hypothesis was that dentin wet with ethanol would produce higher bond strengths for hydrophobic resins than would dentin wet with water. This study examined the microtensile bond strength of 5 experimental adhesives (50 wt% ethanol/50% comonomers) of various degrees of hydrophilicity to acid-etched dentin that was left moist with water, moist with ethanol, or air-dried. Following composite buildups, hourglass-shaped slabs were prepared from the bonded teeth for microtensile testing. For all 3 types of dentin surfaces, higher bond strengths were achieved with increased resin hydrophilicity. The lowest bond strengths were obtained on dried dentin, while the highest bond strengths were achieved when dentin was bonded moist with ethanol. Wet-bonding with ethanol achieved higher bond strengths with hydrophobic resins than were possible with water-saturated matrices. PMID:17062742

  4. Removal of dentin matrix proteoglycans by trypsin digestion and its effect on dentin bonding.

    PubMed

    Bedran-Russo, Ana Karina B; Pereira, Patricia N R; Duarte, Wagner R; Okuyama, Katsushi; Yamauchi, Mitsuo

    2008-04-01

    The aim of this study was to investigate the effect of trypsin digestion on removal of chondroitin sulfate proteoglycans (CS-PGs) in demineralized dentin, and subsequent dentin bonding. Bovine dentin fragments were demineralized, treated with or without trypsin, stained with cupromeronic blue, and observed under transmission electron microscopy. Demineralized sections with or without trypsin digestion were also subjected to immunohistochemical analysis with anti-chondroitin-4-sulfate (C4S) monoclonal antibody, 2-B-6. The presence of galactosamine and glucosamine in the trypsin digest was confirmed by amino acid analysis. Bond strength testing was performed on trypsin treated and control specimens where samples were either kept moist or dried and re-wet, then bonded. Bond strength significantly decreased after trypsin treatment (p < 0.05). TEM, immunohistochemical, and amino acid analyses demonstrated that trypsin digestion efficiently removed C4S-PGs from demineralized dentin matrix. This study indicates that the detrimental effects observed on dentin bonding by trypsinization may be due in part to the removal/cleavage of the C4S-PGs, and further underscore the importance of C4S-PGs on dentin bonding.

  5. Effects of endodontic tri-antibiotic paste on bond strengths of dentin adhesives to coronal dentin

    PubMed Central

    Mirzakoucheki, Parvin; Walter, Ricardo; Jahromi, Maryam Zare; Mirsattari, Sanaz; Akbarzadeh, Navid

    2015-01-01

    Objectives The aim of this study was to evaluate the effects of tri-antibiotic paste (TAP) on microtensile bond strengths (MTBS) of dental adhesives to dentin. Materials and Methods Sixty extracted molars had their occlusal surfaces flattened to expose dentin. They were divided into two groups, i.e., control group with no dentin treatment and experimental group with dentin treatment with TAP. After 10 days, specimens were bonded using self-etch (Filtek P90 adhesive) or etch-and-rinse (Adper Single Bond Plus) adhesives and restored with composite resin. Teeth were sectioned into beams, and the specimens were subjected to MTBS test. Data were analyzed using two-way ANOVA and post hoc Tukey tests. Results There was a statistically significant interaction between dentin treatment and adhesive on MTBS to coronal dentin (p = 0.003). Despite a trend towards worse MTBS being noticed in the experimental groups, TAP application showed no significant effect on MTBS (p = 0.064). Conclusions The etch-and-rinse adhesive Adper Single Bond Plus presented higher mean bond strengths than the self-etch adhesive Filtek P90, irrespective of the group. The superior bond performance for Adper Single Bond when compared to Filtek P90 adhesive was confirmed by a fewer number of adhesive failures. The influence of TAP in bond strength is insignificant. PMID:25984475

  6. Dentin Biomodification Potential Depends on Polyphenol Source

    PubMed Central

    Aguiar, T.R.; Vidal, C.M.P.; Phansalkar, R.S.; Todorova, I.; Napolitano, J.G.; McAlpine, J.B.; Chen, S.N.; Pauli, G.F.; Bedran-Russo, A.K.

    2014-01-01

    Although proanthocyanidins (PACs) modify dentin, the effectiveness of different PAC sources and the correlation with their specific chemical composition are still unknown. This study describes the chemical profiling of natural PAC-rich extracts from 7 plants using ultra high pressure/performance liquid chromatography (UHPLC) to determine the overall composition of these extracts and, in parallel, comprehensively evaluate their effect on dentin properties. The total polyphenol content of the extracts was determined (as gallic acid equivalents) using Folin-Ciocalteau assays. Dentin biomodification was assessed by the modulus of elasticity, mass change, and resistance to enzymatic biodegradation. Extracts with a high polyphenol and PAC content from Vitis vinifera, Theobroma cacao, Camellia sinensis, and Pinus massoniana induced a significant increase in modulus of elasticity and mass. The UHPLC analysis showed the presence of multiple types of polyphenols, ranging from simple phenolic acids to oligomeric PACs and highly condensed tannins. Protective effect against enzymatic degradation was observed for all experimental groups; however, statistically significant differences were observed between plant extracts. The findings provide clear evidence that the dentin bioactivities of PACs are source dependent, resulting from a combination of concentration and specific chemical constitution of the complex PAC mixtures. PMID:24574140

  7. Selective excavation of human carious dentin using a nanosecond pulsed laser with a wavelength of 5.85 μm

    NASA Astrophysics Data System (ADS)

    Kita, Tetsuya; Ishii, Katsunori; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    2013-06-01

    Less-invasive treatment of caries has been needed in laser dentistry. Based on the absorption property of dentin substrates, 6 μm wavelength range shows specific absorptions and promising characteristics for the excavation. In our previous study, 5.8 μm wavelength range was found to be effective for selective excavation of carious dentin and restoration treatment using composite resin from the irradiation experiment with bovine sound and demineralized dentin. In this study, the availability of 5.8 μm wavelength range for selective excavation of human carious dentin was investigated for clinical application. A mid-infrared tunable nanosecond pulsed laser by difference-frequency generation was used for revealing the ablation property of human carious dentin. Irradiation experiments indicated that the wavelength of 5.85 μm and the average power density of 30 W/cm2 realized the selective excavation of human carious dentin, but ablation property was different with respect to each sample because of the different caries progression. In conclusion, the wavelength of 5.85 μm could realize the selective excavation of human carious dentin, but it was necessary to evaluate the stage of caries progression in order to control the ablation property.

  8. Bovine and equine peritubular and intertubular dentin.

    PubMed

    Stock, S R; Deymier-Black, A C; Veis, A; Telser, A; Lux, E; Cai, Z

    2014-09-01

    Dentin contains 1-2μm diameter tubules extending from the pulp cavity to near the junction with enamel. Peritubular dentin (PTD) borders the tubule lumens and is surrounded by intertubular dentin (ITD). Differences in PTD and ITD composition and microstructure remain poorly understood. Here, a (∼200nm)(2), 10.1keV synchrotron X-ray beam maps X-ray fluorescence and X-ray diffraction simultaneously around tubules in 15-30μm thick bovine and equine specimens. Increased Ca fluorescence surrounding tubule lumens confirms that PTD is present, and the relative intensities in PTD and ITD correspond to carbonated apatite (cAp) volume fraction of ∼0.8 in PTD vs. 0.65 assumed for ITD. In the PTD near the lumen edges, Zn intensity is strongly peaked, corresponding to a Zn content of ∼0.9mgg(-1) for an assumed concentration of ∼0.4mgg(-1) for ITD. In the equine specimen, the Zn K-edge position indicates that Zn(2+) is present, similar to bovine dentin (Deymier-Black et al., 2013), and the above edge structure is consistent with spectra from macromolecules related to biomineralization. Transmission X-ray diffraction shows only cAp, and the 00.2 diffraction peak (Miller-Bravais indices) width is constant from ITD to the lumen edge. The cAp 00.2 average preferred orientation is axisymmetric (about the tubule axis) in both bovine and equine dentin, and the axisymmetric preferred orientation continues from ITD through the PTD to the tubule lumen. These data indicate that cAp structure does not vary from PTD to ITD.

  9. Phenotypic Variation in Dentinogenesis Imperfecta/Dentin Dysplasia Linked to 4q21

    PubMed Central

    Beattie, M.L.; Kim, J.-W.; Gong, S.-G.; Murdoch-Kinch, C.A.; Simmer, J.P.; Hu, J.C.-C.

    2008-01-01

    Dentinogenesis imperfecta (DGI) and dentin dysplasia (DD) are allelic disorders that primarily affect the formation of tooth dentin. Both conditions are autosomal-dominant and can be caused by mutations in the dentin sialophospho-protein gene (DSPP, 4q21.3). We recruited 23 members of a four-generation kindred, including ten persons with dentin defects, and tested the hypothesis that these defects are linked to DSPP. The primary dentition showed amber discoloration, pulp obliteration, and severe attrition. The secondary dentition showed either pulp obliteration with bulbous crowns and gray discoloration or thistle-tube pulp configurations, normal crowns, and mild gray discoloration. Haplotype analyses showed no recombination between three 4q21-q24 markers and the disease locus. Mutational analyses identified no coding or intron junction sequence variations associated with affection status in DMP1, MEPE, or the DSP portion of DSPP. The defects in the permanent dentition were typically mild and consistent with a diagnosis of DD-II, but some dental features associated with DGI-II were also present. We conclude that DD-II and DGI-II are milder and more severe forms, respectively, of the same disease. PMID:16567553

  10. Effects of CO2 laser energy on dentin permeability.

    PubMed

    Pashley, E L; Horner, J A; Liu, M; Kim, S; Pashley, D H

    1992-06-01

    The effect of a CO2 laser on the structure and permeability of smear layer-covered human dentin was evaluated in vitro. Three different energy levels were used (11, 113, and 566 J/cm2). The lowest exposure to the laser energy increased dentin permeability, measured as a hydraulic conductance, due to partial measured as a hydraulic conductance, due to partial loss of the superficial smear layer and smear plugs. The intermediate energy level also increased dentin permeability by crater formation, making the dentin thinner. The lack of uniform glazing of the surface of the crater, leaving its surface porous and in communication with the underlying dentinal tubules also contributed to the increase in dentin permeability seen with the intermediate laser energy. The highest laser energy produced complete glazing of the crater surfaces and sealed the dentinal tubules beneath the crater. However, it also completely removed the smear layer in a halo zone about 100-microns wide around each crater which increased the permeability of the pericrater dentin at the same time it decreased the permeability of the dentin within the crater. The combined use of scanning electron microscopy and permeability measurements provides important complementary information that is essential in evaluating the effects of lasers on dentin.

  11. Modeling a Reparable Supply Chain and Applying CPFR Concepts

    DTIC Science & Technology

    2006-06-08

    supply chain includes parts required to build, fix, or maintain aircraft delivered to the warfighter to carry out missions. Industry has shown that following Collaborative Planning, Forecasting, and Replenishment (CPFR) concepts, particularly reducing inventory through accurate demand forecasts, has increased profits in part by lowering the holding costs of inventory and increasing sales. This is analogous to the Air Force increasing aircraft availability. There is scant evidence that demand forecasts generated at any level in the Air Force are shared with the intent of

  12. Elemental analysis of caries-affected root dentin and artificially demineralized dentin

    PubMed Central

    Sung, Young-Hye; Son, Ho-Hyun; Yi, Keewook

    2016-01-01

    Objectives This study aimed to analyze the mineral composition of naturally- and artificially-produced caries-affected root dentin and to determine the elemental incorporation of resin-modified glass ionomer (RMGI) into the demineralized dentin. Materials and Methods Box-formed cavities were prepared on buccal and lingual root surfaces of sound human premolars (n = 15). One cavity was exposed to a microbial caries model using a strain of Streptococcus mutans. The other cavity was subjected to a chemical model under pH cycling. Premolars and molars with root surface caries were used as a natural caries model (n = 15). Outer caries lesion was removed using a carbide bur and a hand excavator under a dyeing technique and restored with RMGI (FujiII LC, GC Corp.). The weight percentages of calcium (Ca), phosphate (P), and strontium (Sr) and the widths of demineralized dentin were determined by electron probe microanalysis and compared among the groups using ANOVA and Tukey test (p < 0.05). Results There was a pattern of demineralization in all models, as visualized with scanning electron microscopy. Artificial models induced greater losses of Ca and P and larger widths of demineralized dentin than did a natural caries model (p < 0.05). Sr was diffused into the demineralized dentin layer from RMGI. Conclusions Both microbial and chemical caries models produced similar patterns of mineral composition on the caries-affected dentin. However, the artificial lesions had a relatively larger extent of demineralization than did the natural lesions. RMGI was incorporated into the superficial layer of the caries-affected dentin. PMID:27847746

  13. Human dental pulp stem cells cultured onto dentin derived scaffold can regenerate dentin-like tissue in vivo.

    PubMed

    Tran, Ha Le Bao; Doan, Vu Nguyen

    2015-12-01

    Regeneration of dentin tissues in the pulp space of teeth serves the ultimate goal of preserving teeth via endodontic approaches. In recent times, many studies suggested that human dentin scaffolds combined with dental stem cells was a potential strategy for the complete dentin tissue regeneration. In this study, human dental pulp stem cells (DPSCs) were isolated and cultured. Dentin specimens were prepared from human third molars and treated with ethylene diamine tetra-acetic acid and citric acid to remove the smear layer. Then, DPSCs were cultured onto human treated dentin (hTD) and implanted in mouse model for 4, 6 and 8 weeks. The resulting grafts were assessed by hematoxylin and eosin stain and immunohistochemical stains. As a result, DPSCs were supported and induced to regenerate of dentin-like tissues which expressed specific dentin markers such as dentin sialophosphoprotein and dentin matrix protein 1 by combination with hTD in vivo. Furthermore, cells existed in the newly-formed dentin-like tissues also expressed typical human mitochondria antibodies, demonstrated that new tissues originated from human. In conclusion, the obtain results extend hopefully newly-established therapy to apply in endodontics and traumatic dental hard tissues.

  14. Frameshift mutations in dentin phosphoprotein and dependence of dentin disease phenotype on mutation location.

    PubMed

    Nieminen, Pekka; Papagiannoulis-Lascarides, Lisa; Waltimo-Siren, Janna; Ollila, Päivi; Karjalainen, Sara; Arte, Sirpa; Veerkamp, Jaap; Tallon Walton, Victoria; Chimenos Küstner, Eduard; Siltanen, Tarja; Holappa, Heidi; Lukinmaa, Pirjo-Liisa; Alaluusua, Satu

    2011-04-01

    We describe results from a mutational analysis of the region of the dentin sialophosphoprotein (DSPP) gene encoding dentin phosphoprotein (DPP) in 12 families with dominantly inherited dentin diseases. In eight families (five mutations in the N-terminal third of DPP), the clinical and radiologic features were uniform and compatible with dentin dysplasia type II (DD-II) with major clinical signs in the deciduous dentition. In the other families (four mutations in the more C-terminal part), the permanent teeth also were affected, and the diseases could be classified as variants of dentinogenesis imperfecta. Attrition was not prominent, but periapical infections were common. Discoloring with varying intensity was evident, and pulps and root canals were obliterated in the permanent dentition. All mutations caused a frameshift that replaced the Ser-Ser-Asx repeat by a code for a hydrophobic downstream sequence of approximately original length. We conclude that frameshift mutations in DSPP explain a significant part of dentin diseases. Furthermore, we propose that the location of the mutation is reflected in the phenotypic features as a gradient from DD-II to more severe disease that does not conform to the classic definitions of DI-II.

  15. The microhardness of bleached dentine and its bond strength to a dentine bonding agent.

    PubMed

    Dadoun, M P; Bartlett, D W

    2007-09-01

    The aim of this study was to measure the hardness of a bleached dentine surface and its bond strength to a dentine-bonding agent. Thirty teeth were randomly divided into a test and control group. The teeth were hemi-sectioned, the cut surfaces ground flat and the test surfaces bleached with a 10% aqueous solution of carbamide peroxide continuously for 4 days. Hardness was determined using a Vickers microhardness test. The bond between Coltene 'One Coat Bond' and bleached and unbleached dentine was evaluated by measuring shear bond strength using an Instron machine. The mean hardness of dentine before and after bleaching was 62.5 (10.2) and 53.6 (7.3) and this difference was statistically different (p<0.001). For the controls immersed in water the hardness was before 60.8 (standard deviation: 7.2) and after 59.6 (8.2) respectively. The mean shear bond strength for the unbleached was 5.5MPa (1.6) and for the bleached samples was 3.3MPa (1.8) and this difference was statistically significant (p<0.002). Under these study conditions the Vickers hardness and bond strength to dentine was reduced by bleaching.

  16. Effect of dentin location and long-term water storage on bonding effectiveness of dentin adhesives.

    PubMed

    De Munck, Jan; Mine, Atsushi; Vivan Cardoso, Marcio; De Almeida Neves, Aline; Van Landuyt, Kirsten L; Poitevin, André; Van Meerbeek, Bart

    2011-01-01

    Dentin is a variable substrate with properties that change considerable in a single surface. The purpose of this study was to evaluate the bonding effectiveness to these different dentin locations and evaluate these differences over time. After bonding procedures with five different adhesives, small micro-tensile bond strength (µTBS) beams were prepared and dichotomously divided in 'center' and 'periphery' dentin specimens. After 1 week, 3, 6 and 12 months of water storage the µTBS of specimens of each group was determined, enabling a paired study design. The bond strengths of both etch&rinse adhesives were insensitive to regional variability. For the two-step self-etch adhesives, a marked increase in bond strengths was observed with increasing amount of intertubular dentin. Regional variability did not affect the long-term bonding effectiveness for any of the adhesives tested. In conclusion, only for the mild self-etch adhesives, µTBS to 'periphery' dentin was higher than for the 'center' specimens.

  17. Grape seed extracts inhibit dentin matrix degradation by MMP-3

    PubMed Central

    Khaddam, Mayssam; Salmon, Benjamin; Le Denmat, Dominique; Tjaderhane, Leo; Menashi, Suzanne; Chaussain, Catherine; Rochefort, Gaël Y.; Boukpessi, Tchilalo

    2014-01-01

    Since Matrix metalloproteinases (MMPs) have been suggested to contribute to dentin caries progression, the hypothesis that MMP inhibition would affect the progression of dentin caries is clinically relevant. Grape seed extracts (GSE) have been previously reported to be natural inhibitors of MMPs. Objective: To evaluate the capacity of a GSE mouthrinse to prevent the degradation of demineralized dentin matrix by MMP-3 (stromelysin-1). Materials and Methods: Standardized blocks of dentin obtained from sound permanent teeth extracted for orthodontic reasons were demineralized with Ethylenediaminetetraacetic acid (EDTA) and pretreated either with (A) GSE (0.2% w/v), (B) amine fluoride (AmF) (20% w/v), (C) a mouthrinse which contains both, (D) placebo, (E) sodium fluoride (0.15 mg.ml−1), (F) PBS, (G) Chlorhexidine digluconate (CHX), or (H) zinc chloride (ZnCl2). The dentin blocks were then incubated with activated recombinant MMP-3. The supernatants were analyzed by Western Blot for several dentin matrix proteins known to be MMP-3 substrate. In parallel, scanning electron microscopy (SEM) was performed on resin replica of the dentin blocks. Results: Western blot analysis of the supernatants revealed that MMP-3 released from the dentin matrix small proteoglycans (decorin and biglycan) and dentin sialoprotein (DSP) in the AmF, sodium fluoride, PBS and placebo pretreated groups, but not in the GSE and mouthrinse pretreated groups. SEM examination of resin replica showed that the mouthrinse and its active components not only had an anti-MMP action but also modified the dentin surface accessibility. Conclusion: This study shows that GSE either alone or combined with AmF as in the evaluated mouthrinse limits dentin matrix degradation. This association may be promising to prevent the progression of caries within dentin. However, the procedure should be adapted to clinically relevant durations. PMID:25400590

  18. SEM evaluation of nanoparticulate silver penetration into dentine collagen matrix

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Bilenko, David I.; Venig, Sergey B.

    2014-01-01

    In the present study a novel approach to caries management based on the application of nanoparticles of different nature to increase the mineral phase of demineralized dentin has been developed. Silver nanoparticles have been tested as a material for dentine matrix infiltration. Research findings clearly show that collagen fibers of demineralized dentine could be considered as a scaffold for mineral component delivery and the place where mineral growth can occur.

  19. Distinct decalcification process of dentin by different cariogenic organic acids: Kinetics, ultrastructure and mechanical properties

    PubMed Central

    Chien, Y-C; Burwell, A.K.; Saeki, K.; Fernandez-Martinez, A.; Pugach, M.K.; Nonomura, G.; Habelitz, S.; Ho, S.P.; Rapozo-Hilo, M.; Featherstone, J.D.; Marshall, S.J.; Marshall, G.W.

    2016-01-01

    Objectives We studied artificial dentin lesions in human teeth generated by lactate and acetate buffers (pH 5.0), the two most abundant acids in caries. The objective of this study was to determine differences in mechanical properties, mineral density profiles and ultrastructural variations of two different artificial lesions with the same approximate depth. Methods 0.05 M (pH 5.0) acetate or lactate buffer was used to create 1) 180 μm-deep lesions in non-carious human dentin blocks (acetate 130 h; lactate 14days); (2) demineralized, ~180 μm-thick non-carious dentin discs (3 weeks). We performed nanoindentation to determine mechanical properties across the hydrated lesions, and micro X-ray computed tomography (MicroXCT) to determine mineral profiles. Ultrastructure in lesions was analyzed by TEM/selected area electron diffraction (SAED). Demineralized dentin discs were analyzed by small angle X-ray scattering (SAXS). Results Diffusion-dominated demineralization was shown based on the linearity between lesion depths versus the square root of exposure time in either solution, with faster kinetics in acetate buffer. Nanoindentation revealed lactate induced a significantly sharper transition in reduced elastic modulus across the lesions. MicroXCT showed lactate demineralized lesions had swelling and more disorganized matrix structure, whereas acetate lesions had abrupt X-ray absorption near the margin. At the ultrastructural level, TEM showed lactate was more effective in removing minerals from the collagenous matrix, which was confirmed by SAXS analysis. Conclusions These findings indicated the different acids yielded lesions with different characteristics that could influence lesion formation resulting in their distinct predominance in different caries activities, and these differences may impact strategies for dentin caries remineralization. PMID:26745819

  20. Detection of organochlorine compounds formed during the contact of sodium hypochlorite with dentin and dental pulp.

    PubMed

    Varise, Tiago Gilioli; Estrela, Carlos; Guedes, Débora Fernandes Costa; Sousa-Neto, Manoel Damião; Pécora, Jesus Djalma

    2014-01-01

    This study used gas chromatography-mass spectrometry (GC-MS) to detect the products formed during the contact of sodium hypochlorite (NaOCl) with bovine pulp and dentin. For analysis of the products formed in the volatile phase, 11 mg of bovine pulp tissue were placed in contact with 0.5%, 2.5% and 5.25% NaOCl until complete tissue dissolution occurred. The solid phase microextraction (SPME) fiber was exposed inside the container through the cover membrane and immediately injected into the GC-MS system. 30 mg of the of dentin were kept in contact with NaOCl, and then the SPME fiber was exposed inside the container through the cover membrane for adsorption of the products and injected into the GC-MS system. The same protocol was used for the aqueous phase. For analysis of the volatile compounds, the final solution was extracted using pure ethyl ether. The suspended particulate phase of the mixture was aspirated, and ether was separated from the aqueous phase of the solution. The ether containing the products that resulted from the chemical interaction of dentin and pulp with the NaOCl was filtered and then injected into the GC-MS system for analysis of the aqueous phase. The aqueous and volatile phases of both dentin and pulp showed the formation of chloroform, hexachloroethane, dichloromethylbenzene and benzaldehyde. In conclusion, organochlorine compounds are generated during the contact of dentin and pulp with NaOCl at concentrations of 0.5%, 2.5% and 5.25%.

  1. Nrf2 promotes reparative angiogenesis through regulation of NADPH oxidase-2 in oxygen-induced retinopathy.

    PubMed

    Wei, Yanhong; Gong, Junsong; Xu, Zhenhua; Duh, Elia J

    2016-10-01

    Revascularization of ischemic tissue is a highly desirable outcome in multiple diseases, including cardiovascular diseases and ischemic retinopathies. Oxidative stress and inflammation are both known to play a role in suppressing reparative angiogenesis in ischemic disease models including oxygen-induced retinopathy (OIR), but the regulatory molecules governing these pathophysiologic processes in retinal ischemia are largely unknown. Nrf2 is a major stress-response transcription factor that has been implicated in regulating ischemic angiogenesis in the retina and other tissue beds. Using Nrf2-deficient mice, we investigated the effects of Nrf2 in regulating revascularization and modulating the retinal tissue milieu during ischemia. Strikingly, Nrf2's beneficial effect on reparative angiogenesis only became manifested in the later phase of ischemia in OIR, from postnatal day 14 (P14) to P17. This was temporally associated with a reduction in both oxidative stress and inflammatory mediators in wild-type compared to Nrf2(-/-) mice. Nrf2(-/-) retinas exhibited an increase in VEGF but also induction of anti-angiogenic Dll4/Notch signaling. NADPH oxidase (NOX), and especially NOX2, is a major pathogenic molecule and a particularly important contributor to oxidative stress in multiple retinal disease processes. Nrf2(-/-) mice exhibited a significant exacerbation of NOX2 induction in OIR that manifested in the later phases of ischemia. Pharmacologic inhibition of NADPH oxidase abrogated the adverse effect of Nrf2 deficiency on reparative angiogenesis. Taken together, this suggests that Nrf2 is an important regulator of the retinal milieu during tissue ischemia, and that the Nrf2/NOX2 balance may play a critical role in determining the fate of ischemic revascularization.

  2. Biostability of the Proanthocyanidins-Dentin Complex and Adhesion Studies.

    PubMed

    Leme-Kraus, A A; Aydin, B; Vidal, C M P; Phansalkar, R M; Nam, J W; McAlpine, J; Pauli, G F; Chen, S; Bedran-Russo, A K

    2017-04-01

    Oligomeric proanthocyanidins (OPACs) are potent and renewable natural bioactives possible to be refined into chemically standardized mixtures for biological applications. Herein, we found that multiscale interactions of OPACs with the dentin matrix create tight biointerfaces with hydrophobic methacrylate adhesives on wet surfaces. An enriched mixture of OPACs, with a known phytochemical profile, was produced from grape seed crude extract ( Vitis vinifera; enriched grape seed extract [e-GSE]) and applied to dentin matrices to determine changes to the mechanical properties and biodegradability of the dentin matrix and favorable resin adhesion mechanisms. Methods included a 3-point flexural test, quantification of hydroxyproline (collagen solubilization), static and dynamic nanomechanical analyses, resin-dentin microtensile bond strength, and micropermeability at the adhesive interface. The e-GSE-modified dentin matrix exhibited remarkably low collagen solubilization and sustained the bulk elastic properties over 12 mo. Tan δ findings reveal a more elastic-like behavior of the e-GSE-modified dentin matrix, which was not affected by H-bond destabilization by urea. Dentin-methacrylate biointerfaces with robust and stable adhesion were created on e-GSE-primed dentin surfaces, leading to a dramatic decrease of the interfacial permeability. Standardized OPAC mixtures provide a new mechanism of adhesion to type I collagen-rich tissues that does not rely on hydrophilic monomers. The bioadhesion mechanism involves physicochemical modifications to the dentin matrix, reduced tissue biodegradation, and bridging to methacrylate resins.

  3. Dentin permeability: effects of endodontic procedures on root slabs.

    PubMed

    Fogel, H M; Pashley, D H

    1990-09-01

    The permeability of human radicular dentin was measured as a hydraulic conductance before and after treatment with K files and before and after subsequent treatment of the endodontic smear layer with NaOCl, 50% citric acid, or 3% monopotassium-monohydrogen oxalate. Filing reduced dentin permeability 25 to 49%, respectively, depending upon whether outer or inner root dentin was filed. The permeability of these smear layers was unaffected by 5% NaOCl but increased many times after treatment with 50% citric acid for 2 min. Oxalate treatment lowered root dentin permeability to levels below that produced by creation of smear layers due to the production of a crystalline precipitate.

  4. Mantle dentine in man--a quantitative microradiographic study.

    PubMed

    Herr, P; Holz, J; Baume, L J

    1986-06-01

    50 microradiographs taken in a standardized manner of midsagittal ground sections of teeth of individuals aged 18 to 56 years were densitometrically evaluated along a track passing through enamel, dentine and an aluminium stepwedge. Semi-quantitative analysis of mineral density uniformly showed an irregular platform representing circumpulpal dentine and a peripheral down slope in the region of the amelodentinal junction, representing mantle dentine. The width of this less mineralized peripheral zone measured on densitometric recordings averaged 150 microns (+/- 50). Quantitative analysis of the two dentinal regions permitted the calculation of the mineral content in terms of volume percentage using both a graphic method and an electronic computer method. The sections were also examined by polarized light microscopy which clearly visualized the presence of peripheral mantle dentine. The mean mineral density of circumpulpal dentine was 46% according to both the graphic and the computer methods; mantle dentine yielded means close to 42% according by both methods. The 4% difference in density between circumpulpal dentine and mantle dentine proved to be statistically significant; there was no significant difference between the means obtained graphically and those obtained electronically. The need for further investigation of this region of the amelodentinal junction was stressed.

  5. Effect of UVA-activated riboflavin on dentin bonding.

    PubMed

    Cova, A; Breschi, L; Nato, F; Ruggeri, A; Carrilho, M; Tjäderhane, L; Prati, C; Di Lenarda, R; Tay, F R; Pashley, D H; Mazzoni, A

    2011-12-01

    Recent studies have reported collagen cross-linking after exposure to riboflavin followed by ultraviolet-A (UVA) exposure. This study is the first to investigate the effect of a riboflavin-containing primer on adhesive interface stability and dentinal matrix metalloproteinase activity. Human dentin was etched with 35% phosphoric acid, treated with 0.1% riboflavin, exposed to UVA for 2 min, and bonded with a two-step etch-and-rinse adhesive. Adhesive was applied to control specimens without riboflavin/UVA. Specimens were subjected to microtensile bond strength tests and pulled to failure after storage for 24 hrs, 6 mos, or 1 yr. Interfacial nanoleakage was evaluated by light and transmission electron microscopy. To investigate dentinal matrix metalloproteinase activity, we performed correlative zymographic assays on protein extracts obtained from phosphoric-acid-etched dentin powder with or without riboflavin/UVA treatment and XP Bond. Ultraviolet-activated riboflavin treatment increased the immediate bond strength to dentin at all aging intervals (p < 0.05 vs. control) and decreased interfacial nanoleakage in aged specimens (1 yr; p < 0.05). Zymograms revealed that riboflavin/UVA pre-treatment inhibited dentinal matrix metalloproteinase activity (especially MMP-9). In conclusion, dentinal collagen cross-linking induced by riboflavin/UVA increased immediate bond strength, stabilized the adhesive interface, and inhibited dentin matrix metalloproteinases, thereby increasing the durability of resin-dentin bonds.

  6. Photosensitizer and light diffusion through dentin in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Nogueira, Ana C.; Graciano, Ariane X.; Nagata, Juliana Y.; Fujimaki, Mitsue; Terada, Raquel S. S.; Bento, Antonio C.; Astrath, Nelson G. C.; Baesso, Mauro L.

    2013-05-01

    Photodynamic therapy has been considered a potential antimicrobial modality against oral infections, including dental caries. A model to estimate the penetration of both photosensitizers and light through human dentin, a factor of interest in photodynamic therapy, is proposed. The photoacoustic spectroscopy technique was used to evaluate in vitro dentin permeability of three different photosensitizers. Using the dentin optical absorption and scattering coefficients, it was possible to propose a semi-quantitative model predicting both photosensitizer and light doses within dentin. The graphic illustrations obtained provided guidelines that may be useful in photodynamic therapy protocols used as antimicrobial tools in caries lesions.

  7. Effect of UVA-activated Riboflavin on Dentin Bonding

    PubMed Central

    Cova, A.; Breschi, L.; Nato, F.; Ruggeri, A.; Carrilho, M.; Tjäderhane, L.; Prati, C.; Di Lenarda, R.; Tay, F.R.; Pashley, D.H.; Mazzoni, A.

    2011-01-01

    Recent studies have reported collagen cross-linking after exposure to riboflavin followed by ultraviolet-A (UVA) exposure. This study is the first to investigate the effect of a riboflavin-containing primer on adhesive interface stability and dentinal matrix metalloproteinase activity. Human dentin was etched with 35% phosphoric acid, treated with 0.1% riboflavin, exposed to UVA for 2 min, and bonded with a two-step etch-and-rinse adhesive. Adhesive was applied to control specimens without riboflavin/UVA. Specimens were subjected to microtensile bond strength tests and pulled to failure after storage for 24 hrs, 6 mos, or 1 yr. Interfacial nanoleakage was evaluated by light and transmission electron microscopy. To investigate dentinal matrix metalloproteinase activity, we performed correlative zymographic assays on protein extracts obtained from phosphoric-acid-etched dentin powder with or without riboflavin/UVA treatment and XP Bond. Ultraviolet-activated riboflavin treatment increased the immediate bond strength to dentin at all aging intervals (p < 0.05 vs. control) and decreased interfacial nanoleakage in aged specimens (1 yr; p < 0.05). Zymograms revealed that riboflavin/UVA pre-treatment inhibited dentinal matrix metalloproteinase activity (especially MMP-9). In conclusion, dentinal collagen cross-linking induced by riboflavin/UVA increased immediate bond strength, stabilized the adhesive interface, and inhibited dentin matrix metalloproteinases, thereby increasing the durability of resin-dentin bonds. PMID:21940521

  8. Effect of cleaning dentine with soap and pumice on shear bond strength of dentine-bonding agents.

    PubMed

    Bachmann, M; Paul, S J; Lüthy, H; Schärer, P

    1997-06-01

    This in vitro study reports on the cleaning effect of different soaps on the shear bond strength of various dentine-bonding agents. Human teeth were coated with provisional cements for 24 h or for 14 days. After removing the provisional cements with a scaler, the dentinal surface was cleaned with a cotton pellet and non-fluoridated flour of pumice and soap for 10 sec. Different dentine-bonding agents and a luting resin were bonded to the dentinal surface according to manufacturers' instructions with the bonding agent and the composite material being light-cured at the same time. The bonding agents were tested under intrapulpal pressure and with thermal cycling to imitate physiological conditions. Compared with cleaning the dentine with water and pumice, all soaps investigated in this study decreased the shear bond strength values of the tested dentine-bonding agents considerably.

  9. Chemical treatment of the intra-canal dentin surface: a new approach to modify dentin hydrophobicity

    PubMed Central

    GAITAN-FONSECA, Cesar; COLLART-DUTILLEUL, Pierre-Yves; SEMETEY, Vincent; ROMIEU, Olivier; CRUZ, Roel; FLORES, Hector; CUISINIER, Frédéric; PÉREZ, Elías; POZOS-GUILLEN, Amaury

    2013-01-01

    Objective: This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS). Material and Methods: An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS. After the chemical modification, the dentin hydrophobicity was examined using a water contact angle measurement (WCA). The effectiveness of the modification of hydrophobicity was verified by the fluid permeability test (FPT). Results and Conclusions: Statistically significant differences were found in the values of WCA and FPT between the two groups. After silanization, the hydrophobic intraradicular dentin surface exhibited in vitro properties that limit fluid penetration into the sealed root canal. This chemical treatment is a new approach for improving the sealing of the root canal system. PMID:23559114

  10. [Evaluation of reparative regeneration of the jaw bone by microfocus roentgenography in an experiment].

    PubMed

    Vasil'ev, A Iu; Bulanova, I M; Mal'ginov, N N; Tarasenko, I V; Tarasenko, S V; Kiseleva, E V; Drobyshev, A Iu; Volozhin, A I

    2009-01-01

    In experiment on 16 grown-up chinchilla rabbits the dynamic of reparative regeneration was evaluated by digital microfocal rontgenography in the terms of 1, 2 and 4 months. Bone defect of the 8capital CHE, Cyrillic8 mm size in the region of mandible angle was caused by surgical laser Smart 2940 D+ on the right side and by physiodespenser Surgec XT on the left side. Surgical laser use let to reduce intact mother bone traumatisation and to improve remote results of bone tissue regeneration. After bone defect creation bone tissue regeneration was put into effect by all 3 callus types - endosteal, periosteal and intermediary.

  11. Nondestructive Evaluation (NDE) Results on Sikorsky Aircraft Survivable Affordable Reparable Airframe Program (SARAP) Samples

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Anastasi, Robert F.; Madaras, Eric I.

    2004-01-01

    The Survivable, Affordable, Reparable Airframe Program (SARAP) will develop/produce new structural design concepts with lower structural weight, reduced manufacturing complexity and development time, increased readiness, and improved threat protection. These new structural concepts will require advanced field capable inspection technologies to help meet the SARAP structural objectives. In the area of repair, damage assessment using nondestructive inspection (NDI) is critical to identify repair location and size. The purpose of this work is to conduct an assessment of new and emerging NDI methods that can potentially satisfy the SARAP program goals.

  12. Clinical effectiveness of contemporary dentin bonding agents

    PubMed Central

    Krithikadatta, Jogikalmat

    2010-01-01

    Aim: The purpose of this paper is to review the literature on the clinical effectiveness of contemporary resin-based dentin bonding agents primarily focussing on the longevity of restoration. Materials and Methods: The literature published from June 2004 up to September 2010 was reviewed for clinical trials that tested the effectiveness of dentin bonding agents in the longevity of noncarious class V restoration. Results of each study reported using the USPHS criteria for clinical assessment of restoration were included and tabulated. The American Dental Association guidelines for dentin and enamel adhesives were used as a reference to compare the performance of individual bonding agents. Kruskal–Wallis followed by Mann–Whitney U was done to compare the mean Alfa score percentage for the three categories of bonding systems [etch-and-rinse (ER), self-etch primer (SEP), and self-etch-adhesive (SEA)]. Results: A comparison of the mean Alfa score percentages revealed no difference between the ER, SEP, and SEA categories of bonding systems except for marginal adaptation where ER was found to be superior to SEA. Conclusion: The clinical effectiveness of resin-based bonding agents is comparable among the three categories. PMID:21217944

  13. Chlorhexidine preserves dentin bond in vitro.

    PubMed

    Carrilho, M R O; Carvalho, R M; de Goes, M F; di Hipólito, V; Geraldeli, S; Tay, F R; Pashley, D H; Tjäderhane, L

    2007-01-01

    Loss of hybrid layer integrity compromises resin-dentin bond stability. Matrix metalloproteinases (MMPs) may be partially responsible for hybrid layer degradation. Since chlorhexidine inhibits MMPs, we hypothesized that chlorhexidine would decelerate the loss of resin-dentin bonds. Class I preparations in extracted third molars were sectioned into two halves. One half was customarily restored (etch-and-rinse adhesive/resin composite), and the other was treated with 2% chlorhexidine after being acid-etched before restoration. Specimens were stored in artificial saliva with/without protease inhibitors. Microtensile bond strengths and failure mode distribution under SEM were analyzed immediately after specimens' preparation and 6 months later. With chlorhexidine, significantly better preservation of bond strength was observed after 6 months; protease inhibitors in the storage medium had no effect. Failure analysis showed significantly less failure in the hybrid layer with chlorhexidine, compared with controls after 6 months. In conclusion, this in vitro study suggests that chlorhexidine might be useful for the preservation of dentin bond strength.

  14. Dentin hypersensitivity: Recent trends in management

    PubMed Central

    Miglani, Sanjay; Aggarwal, Vivek; Ahuja, Bhoomika

    2010-01-01

    Dentinal hypersensitivity (DH) is a common clinical condition usually associated with exposed dentinal surfaces. It can affect patients of any age group and most commonly affects the canines and premolars of both the arches. This article concisely reviews the patho-physiology, mechanism and clinical management of the DH. Treatment of DH should start with an accurate diagnosis. Differential diagnosis should be made and all other probable causes should be excluded. An often neglected phase of clinical management of DH is the identification and treatment of the causative factors of DH. By removing the etiological factors, the condition can be even prevented from occurring or recurring. There are various treatment modalities available which can be used at home or may be professionally applied. The “at home” desensitizing agents include toothpastes, mouthwashes or chewing gums and they act by either occluding the dentinal tubules or blocking the neural transmission. This article also discusses the recent treatment options like bioglass, Portland cement, lasers and casein phosphopeptide. PMID:21217949

  15. Caries-resistant bonding layer in dentin

    PubMed Central

    Zhou, Wei; Niu, Li-na; Hu, Lin; Jiao, Kai; Chang, Gang; Shen, Li-juan; Tay, Franklin R.; Chen, Ji-hua

    2016-01-01

    The present study examined the mechanism for caries resistance and the pulp responses in vital teeth following the use of the augmented-pressure adhesive displacement technique. Dentin adhesives were applied to the surface of sound dentin disks in 4 experimental groups: non-antibacterial adhesive and gentle adhesive displacement (N-G), non-antibacterial adhesive and augmented-pressure adhesive displacement (N-H), antibacterial adhesive and gentle adhesive displacement (A-G), antibacterial adhesive and augmented-pressure adhesive displacement (A-H). The depth of demineralization induced by biological or chemical demineralization models was measured using confocal laser scanning microscopy and analyzed with two-way ANOVA. Pulp responses of vital dog’s teeth to the augmented-pressure adhesive displacement technique were evaluated using light microscopy. Depth of demineralization was significantly affected by “adhesive type” and “intensity of adhesive displacement” for biological demineralization. For chemical demineralization, only “intensity of adhesive displacement” showed significant influence on lesion depth. Pulp response of 0.1, 0.2 and 0.3 MPa groups showed only moderate disorganization of the odontoblast layer at 24 hours that completely re-organized after 3 weeks. Augmented-pressure adhesive displacement improves the caries resistance property of bonded dentin and does not cause irreversible pulpal damage to vital teeth when the air pressure employed is equal or smaller than 0.3 MPa. PMID:27599621

  16. Triazine monomers and their adhesion to dentin.

    PubMed

    Lee, C H; Liu, X Q; Gong, X Q

    1986-12-01

    A series of 4,6-dichloro-1,3,5-triazines [e.g., 2-allylamino-(ADT), diallylamino-(DADT), 2-N-p-allyloxyphenylamino-, 2-N-allyl-N-phenylamino-, and 2-N-allyl-N-p-tolylamino-4,6-dichloro-1,3,5-triazine] was synthesized and characterized by IR, NMR, and mass spectrometry. These monomers have chlorine atoms that can react with NH2 or OH groups and double bonds capable of copolymerization. Aniline reacted readily with ADT and DADT, ethanol reacted with ADT, but acetone, H2O, and DMF did not react with either triazine. It appears that ADT or DADT will react with dentinal collagen through NH2 or OH groups in the peptide side-chains. An aprotic solvent should be used for ADT or DADT, but absolute dryness in clinical usage is not essential because of the slow hydrolysis of ADT and DADT. Stability of the N-di-substituted amino derivative (DADT) is greater than that of the mono-substituted compound (ADT), which may isomerize. ADT and methyl methacrylate were copolymerized at 37 degrees C with amine-peroxide. ADT solutions enhanced the adhesive strength of restorative resin to dentin. Thus, monomers such as ADT and DADT appear to be promising dentin-bonding agents.

  17. A Mechanistic study of Plasma Treatment Effects on Demineralized Dentin Surfaces for Improved Adhesive/Dentin Interface Bonding

    PubMed Central

    Dong, Xiaoqing; Chen, Meng; Wang, Yong; Yu, Qingsong

    2014-01-01

    Our previous work has shown that non-thermal plasma treatment of demineralized dentin significantly (p<0.05) improved adhesive/dentin bonding strength for dental composite restoration as compared with the untreated controls. This study is to achieve mechanistic understanding of the plasma treatment effects on dentin surface through investigating the plasma treated dentin surfaces and their interaction with adhesive monomer, 2-Hydroxyethyl methacrylate (HEMA). The plasma treated dentin surfaces from human third molars were evaluated by water contact angle measurements and scanning electron microscopy (SEM). It was found that plasma-treated dentin surface with subsequent HEMA immersion (Plasma/HEMA Treated) had much lower water contact angle compared with only plasma-treated (Plasma Treated) or only HEMA immersed (HEMA Treated) dentin surfaces. With prolong water droplet deposition time, water droplets spread out completely on the Plasma/HEMA Treated dentin surfaces. SEM images of Plasma/HEMA Treated dentin surfaces verified that dentin tubules were opened-up and filled with HEMA monomers. Extracted type I collagen fibrils, which was used as simulation of the exposed dentinal collagen fibrils after acid etching step, were plasma treated and analyzed with Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD) spectra. FT-IR spectra of the Plasma/HEMA Treated collage fibrils showed broadened amide I peak at 1660 cm−1 and amide II at 1550 cm−1, which indicate secondary structure changes of the collagen fibrils. CD spectra indicated that 67.4% collagen helix structures were denatured after plasma treatment. These experimental results demonstrate that non-thermal argon plasma treatment was very effective in loosing collagen structure and enhancing adhesive monomer penetration, which are beneficial to thicker hybrid layer and longer resin tag formation, and consequently enhance adhesive/dentin interface bonding. PMID:25267936

  18. A Mechanistic study of Plasma Treatment Effects on Demineralized Dentin Surfaces for Improved Adhesive/Dentin Interface Bonding.

    PubMed

    Dong, Xiaoqing; Chen, Meng; Wang, Yong; Yu, Qingsong

    2014-07-01

    Our previous work has shown that non-thermal plasma treatment of demineralized dentin significantly (p<0.05) improved adhesive/dentin bonding strength for dental composite restoration as compared with the untreated controls. This study is to achieve mechanistic understanding of the plasma treatment effects on dentin surface through investigating the plasma treated dentin surfaces and their interaction with adhesive monomer, 2-Hydroxyethyl methacrylate (HEMA). The plasma treated dentin surfaces from human third molars were evaluated by water contact angle measurements and scanning electron microscopy (SEM). It was found that plasma-treated dentin surface with subsequent HEMA immersion (Plasma/HEMA Treated) had much lower water contact angle compared with only plasma-treated (Plasma Treated) or only HEMA immersed (HEMA Treated) dentin surfaces. With prolong water droplet deposition time, water droplets spread out completely on the Plasma/HEMA Treated dentin surfaces. SEM images of Plasma/HEMA Treated dentin surfaces verified that dentin tubules were opened-up and filled with HEMA monomers. Extracted type I collagen fibrils, which was used as simulation of the exposed dentinal collagen fibrils after acid etching step, were plasma treated and analyzed with Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD) spectra. FT-IR spectra of the Plasma/HEMA Treated collage fibrils showed broadened amide I peak at 1660 cm(-1) and amide II at 1550 cm(-1), which indicate secondary structure changes of the collagen fibrils. CD spectra indicated that 67.4% collagen helix structures were denatured after plasma treatment. These experimental results demonstrate that non-thermal argon plasma treatment was very effective in loosing collagen structure and enhancing adhesive monomer penetration, which are beneficial to thicker hybrid layer and longer resin tag formation, and consequently enhance adhesive/dentin interface bonding.

  19. Dentin glycoprotein: the protein in the middle of the dentin sialophosphoprotein chimera.

    PubMed

    Yamakoshi, Yasuo; Hu, Jan C-C; Fukae, Makoto; Zhang, Hengmin; Simmer, James P

    2005-04-29

    Dentin sialophosphoprotein (DSPP) is a major secretory product of odontoblasts and is critical for proper dentin formation. DSPP is believed to be processed into only two structural/functional domains: dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). Here we report the isolation and characterization of a third domain of DSPP, designated dentin glycoprotein (DGP). DGP was isolated from a guanidine/EDTA extract of porcine tooth dentin by ion exchange, hydroxyapatite affinity, size exclusion, and RP-HPL chromatography. Endoproteinase lysine C digestion products of DGP were characterized by Edman sequencing and mass spectrometry. The porcine DGP backbone is the 81-amino acid segment of DSPP (Ser392 to Gly472) between the DSP and DPP domains. DGP has four phosphorylated serine residues (Ser453, Ser455, Ser457, and Ser462) and one glycosylated asparagine (Asn397). There are no other post-translational modifications. DGP is a stains-all positive protein with an apparent molecular mass on SDS-PAGE of 19 kDa, which is reduced by glycopeptidase A digestion to 16 kDa. A variety of glycans can be linked to Asn397. All are complex biantennary structures with a common N-linked pentasaccharide core (mannose3-N-acetylglucosamine2), most with a fucosyl residue on the innermost N-acetylglucosamine. The alpha1-3 and alpha1-6 arms are always galactose beta1-4 N-acetylglucosamine beta1-2 mannose, and either or both arms can be unsialidated or monosialidated. The calculated monoisotopic molecular masses of the different glycosylated forms of the DGP phosphoprotein are: unsialidated 10,523 and 10,670, monosialidated 10,815 and 10,961, and disialidated 11,106, and 11,252 Da, with the disialidated forms being the most abundant.

  20. The effect of dentine location and tubule orientation on the bond strengths between resin and dentine.

    PubMed

    Phrukkanon, S; Burrow, M F; Tyas, M J

    1999-05-01

    This study determined the influence of dentine structure on the micro-tensile bond strengths between resin and dentine of two different dentine adhesive systems (Single Bond, 3M Dental Products, St Paul, MN; MF-102 (experimental self-etching primer), GC Corporation, Tokyo, Japan). The study was separated into two main parts: bond strength measurement and investigation of the bonding interface. Twenty-two human premolars were used for the bond strength measurement. Each tooth was cut vertically, separating the tooth into mesio-distal halves. One half of the tooth was used to bond to a surface perpendicular to the dentinal tubules and other half to bond to a surface parallel to the tubules. For each half, six locations of dentine were bonded. Each material was used in accordance to the manufacturer's directions. Cylindrical hourglass-shaped specimens of 1.2 mm diameter at the bonded interface were manufactured. The bonds were stressed in tension at a crosshead speed of 1 mm/min. Mean bond strengths were compared using LSD, one-way ANOVA, and Student's t-test. The fractured surfaces were examined under a scanning electron microscope, and the frequency of fracture modes was compared using the Kruskal-Wallis and Mann-Whitney U tests. For the investigation of the bonded interface, four teeth were prepared by the same procedure used for the bond test specimens. The bonded interfaces were observed after an acid-base treatment or fracturing across the bonded interface, prior to investigation with a field-emission scanning electron microscope. For Single Bond, the bond strengths for mid-root dentine were significantly lower than for other locations (p < 0.05). For MF-102, there was no significant difference for all locations (p > 0.05). MF-102 bonded well to all locations of dentine while Single Bond showed a porous zone at the base of the hybrid layer. The bonds were not influenced by tubule orientation. The results indicate that the bond for Single Bond may be affected by

  1. Regenerative and reparative effects of human chorion-derived stem cell conditioned medium on photo-aged epidermal cells.

    PubMed

    Li, Qiankun; Chen, Yan; Ma, Kui; Zhao, Along; Zhang, Cuiping; Fu, Xiaobing

    2016-01-01

    Epidermal cells are an important regenerative source for skin wound healing. Aged epidermal cells have a low ability to renew themselves and repair skin injury. Ultraviolet (UV) radiation, particularly UVB, can cause photo-aging of the skin by suppressing the viability of human epidermal cells. A chorion-derived stem cell conditioned medium (CDSC-CNM) is thought to have regenerative properties. This study aimed to determine the regenerative effects of CDSC-CNM on UVB-induced photo-aged epidermal cells. Epidermal cells were passaged four times and irradiated with quantitative UVB, and non-irradiated cells served as a control group. Cells were then treated with different concentrations of CDSC-CNM. Compared to the non-irradiated group, the proliferation rates and migration rates of UVB-induced photo-aged epidermal cells significantly decreased (p < 0.05) with increasing intracellular radical oxygen species (ROS) generation and DNA damage. After treatment with CDSC-CNM, photo-aged epidermal cells significantly improved their viability, and their ROS generation and DNA damage decreased. The secretory factors in CDSC-CNM, including epidermal growth factor (EGF), transforming growth factor-β (TGF-β), interleukin (IL)-6, and IL-8 and the related signaling pathway protein levels, increased compared to the control medium (CM). The potential regenerative and reparative effects of CDSC-CNM indicate that it may be a candidate material for the treatment of prematurely aged skin. The functions of the secretory factors and the mechanisms of CDSC-CNM therapy deserve further attention.

  2. Bovine dentine organic matrix down-regulates osteoclast activity.

    PubMed

    Sriarj, Wantida; Aoki, Kazuhiro; Ohya, Keiichi; Takagi, Yuzo; Shimokawa, Hitoyata

    2009-01-01

    Physiological root resorption is a phenomenon that normally takes place in deciduous teeth; root resorption of permanent teeth occurs only under pathological conditions. The molecular mechanisms underlying these processes are still unclear. Our previous study showed that osteoclasts cultured on deciduous dentine exhibited a higher degree of resorption and higher levels of cathepsin K and MMP-9 mRNA than osteoclasts cultured on permanent dentine. These results could be because of different susceptibilities to acid and the different organic matrices between deciduous and permanent dentine. Thus, the purpose of this study was to investigate the effect of dentine extracts from bovine deciduous and permanent dentine on osteoclast activity. Osteoclasts, obtained from mouse bone marrow cells co-cultured with an osteoblast-rich fraction in the presence of 1,25-(OH)(2)-vitamin D3 and PGE2, were incubated with or without 0.6 M HCl extracts from bovine deciduous or permanent dentine for 48 h. TRAP positive cell number, TRAP activity, the areas of resorption pits, and mRNA levels of TRAP, v-ATPase, calcitonin receptor, cathepsin K, and MMP-9 were examined. The results illustrated that TRAP activity, the resorbed area, and the mRNA levels of osteoclast marker genes seemed to be suppressed by both deciduous and permanent dentine extracts. These findings indicate that some factors that suppress osteoclast activity are contained in both deciduous and permanent dentine extracts. Although there was no significant difference in osteoclast activity between deciduous and permanent dentine extracts, osteoclasts incubated with permanent dentine extracts tend to exhibit less resorption activity than those incubated with deciduous dentine extracts. However, we could not clearly explain the causes of this.

  3. Micromorphological Evaluation of Dentin Treated with Different Desensitizing Agents

    PubMed Central

    Osmari, Deise; de Oliveira Ferreira, Ana Carolina; de Carlo Bello, Mariana; Henrique Susin, Alexandre; Cecília Correa Aranha, Ana; Marquezan, Marcela; Lopes da Silveira, Bruno

    2013-01-01

    Introduction: The purpose of a desensitizing agent is a permanent coating or filling of dentin surface. Morphological analysis in vitro of this treated surface is essential to understand the interaction between desensitizing agent and hypersensitive dentin. The aim was to evaluate the morphology of four dentin surface treated with desensitizing agents. Methods: This was an in vitro laboratory study, where fifteen specimens from extracted human premolars were obtained. The enamel was removed to expose the dentin surface, polished with silicon carbide abrasive papers and etched with 6% citric acid for 2 min.The specimens were randomly divided into 5 groups: G1 - without treatment (control) (C), G2 - fluoride varnish (FV), G3 - potassium oxalate (PO), G4 - 2-step self-etching adhesive system (AS), G5 - diode laser (DL). The specimens were cleaved in the lingual buccaldirection, prepared for analysis by Scanning Electron Microscope and the surface and interior of the dentinal tubules were observed at 1500× magnification. Results: In the control group, the dentin etching promoted smear layer removal and exposure of dentinal tubules. In the group of fluoride varnish, a film was observed on the surface, with plugs of varnish into tubules. In the group of oxalate, partial obliteration of the tubular entrances was observed. In the group of the adhesive system, the tubules were obstructed through the formation of hybrid layer and a physical barrier on the surface. In the group of the diode laser, dentin melting and solidification with partial occlusion of dentinal tubules were observed. Conclusions: All desensitizing agents evaluated demonstrated ability to modify the surface of dentin, with partial or total occlusion of dentinal tubules. Thus, it is suggested to do more clinical studies to verify the effectiveness of the findings. PMID:25606322

  4. [Effect of a low-intensity CO2 laser on the process of reparative regeneration of experimental wounds].

    PubMed

    Koshelev, V N; Arkhangel'skiĭ, A V; Glukhov, E I

    1985-03-01

    The authors studied the effect of CO2 laser with an energy density ranging from 0.1 to 300 mVt/cm2 on reparative regeneration of experimental wounds. The criteria of the efficacy of laser therapy were the wound surface area, the surface of the necrotic area, cellular composition and the content of collagen and glycosaminoglycans in the granulation tissue. Laser radiation with an energy density of 0.5 and 4 mVt/cm2 and exposure of 2 min appeared to produce the most beneficial effect on reparative regeneration.

  5. Osteoclasts on bone and dentin in vitro: mechanism of trail formation and comparison of resorption behavior.

    PubMed

    Rumpler, M; Würger, T; Roschger, P; Zwettler, E; Sturmlechner, I; Altmann, P; Fratzl, P; Rogers, M J; Klaushofer, K

    2013-12-01

    The main function of osteoclasts in vivo is the resorption of bone matrix, leaving behind typical resorption traces consisting of pits and trails. The mechanism of pit formation is well described, but less is known about trail formation. Pit-forming osteoclasts possess round actin rings. In this study we show that trail-forming osteoclasts have crescent-shaped actin rings and provide a model that describes the detailed mechanism. To generate a trail, the actin ring of the resorption organelle attaches with one side outside the existing trail margin. The other side of the ring attaches to the wall inside the trail, thus sealing that narrow part to be resorbed next (3–21 lm). This 3D configuration allows vertical resorption layer-by-layer from the surface to a depth in combination with horizontal cell movement. Thus, trails are not just traces of a horizontal translation of osteoclasts during resorption. Additionally, we compared osteoclastic resorption on bone and dentin since the latter is the most frequently used in vitro model and data are extrapolated to bone. Histomorphometric analyses revealed a material-dependent effect reflected by an 11-fold higher resorption area and a sevenfold higher number of pits per square centimeter on dentin compared to bone. An important material-independent aspect was reflected by comparable mean pit area (μm²) and podosome patterns. Hence, dentin promotes the generation of resorbing osteoclasts, but once resorption has started, it proceeds independently of material properties. Thus, dentin is a suitable model substrate for data acquisition as long as osteoclast generation is not part of the analyses.

  6. The Danieli Inventory of Multigenerational Legacies of Trauma, Part II: Reparative Adaptational Impacts.

    PubMed

    Danieli, Yael; Norris, Fran H; Lindert, Jutta; Paisner, Vera; Kronenberg, Sefi; Engdahl, Brian; Richter, Julia

    2015-05-01

    The impacts of the Holocaust on children of survivors have been widely investigated. However, consensus is limited, and no validated measures have been tailored with or to them. We aimed to develop and validate a scale that measures these specific impacts (Part II of the Danieli Inventory of Multigenerational Legacies of Trauma). We studied 484 adult children of survivors who participated in a cross-sectional web-based survey in English or Hebrew; of these, 191 participated in a clinical interview. Exploratory factor analyses of 58 items to reduce and refine the measure yielded a 36-item scale, Reparative Adaptational Impacts, that had excellent internal consistency (α = .91) and congruence between English and Hebrew versions (φ ≥ .95). Associations between impacts and SCID-based diagnoses of major depressive episode, posttraumatic stress disorder, and generalized anxiety disorder were moderate to strong (ds = 0.48-0.89). Strong associations also emerged between severity of offspring's reparative adaptational impacts and intensity of their parents' posttrauma adaptational styles (Multiple R = .72), with intensity of victim style, especially the mother's, having the strongest effect (β = .31-.33). Having both research and clinical relevance for assessing Holocaust survivors' offspring, future studies might investigate the scale's generalizability to other populations affected by mass trauma.

  7. Zinc induces apatite and scholzite formation during dentin remineralization.

    PubMed

    Osorio, R; Osorio, E; Cabello, I; Toledano, M

    2014-01-01

    The aim of this study was to ascertain whether zinc may improve the repair ability of demineralized dentin. Dentin disks were demineralized by phosphoric acid during 15 s and immersed in artificial saliva, remineralizing solution, a zinc chloride solution and a zinc oxide solution. Dentin specimens were analyzed after 24 h and 1 month of storage. Surface morphology was assessed by atomic force and scanning electron microscopy, mechanical properties were analyzed by nanohardness testing in a TriboIndenter, and chemical changes at the surfaces were determined by X-ray diffraction, Raman and energy-dispersive elemental analyses. After phosphoric acid application, dentin was only partially demineralized. Demineralized dentin was remineralized after 24 h of storage in any of the tested solutions (nanohardness increased and hydroxylapatite formation was detected by Raman). Remineralization was maintained up to 1 month in dentin stored in remineralizing solution, zinc chloride and zinc oxide. Zinc and phosphate were important for hydroxylapatite homeostasis. Scholzite formation was encountered in dentin stored in zinc-containing solutions. Zinc might allow to reach the balance between dentin demineralization and remineralization processes.

  8. Tooth dentin defects reflect genetic disorders affecting bone mineralization

    PubMed Central

    Vital, S. Opsahl; Gaucher, C.; Bardet, C.; Rowe, P.S.; George, A.; Linglart, A.; Chaussain, C.

    2012-01-01

    Several genetic disorders affecting bone mineralization may manifest during dentin mineralization. Dentin and bone are similar in several aspects, especially pertaining to the composition of the extracellular matrix (ECM) which is secreted by well-differentiated odontoblasts and osteoblasts, respectively. However, unlike bone, dentin is not remodelled and is not involved in the regulation of calcium and phosphate metabolism. In contrast to bone, teeth are accessible tissues with the shedding of deciduous teeth and the extractions of premolars and third molars for orthodontic treatment. The feasibility of obtaining dentin makes this a good model to study biomineralization in physiological and pathological conditions. In this review, we focus on two genetic diseases that disrupt both bone and dentin mineralization. Hypophosphatemic rickets is related to abnormal secretory proteins involved in the ECM organization of both bone and dentin, as well as in the calcium and phosphate metabolism. Osteogenesis imperfecta affects proteins involved in the local organization of the ECM. In addition, dentin examination permits evaluation of the effects of the systemic treatment prescribed to hypophosphatemic patients during growth. In conclusion, dentin constitutes a valuable tool for better understanding of the pathological processes affecting biomineralization. PMID:22296718

  9. Nanomechanical properties of biochemically modified dentin bonded interfaces

    PubMed Central

    dos Santos, Paulo H; Karol, Sachin; Bedran-Russo, Ana Karina B

    2014-01-01

    Summary The effect of biomodification of dentin matrices using collagen cross-linkers, glutaraldehyde (GD) and grape seed extract (GSE), on the reduced modulus of elasticity (Er) and nanohardness (H) of the hybrid layer and underlying dentin was investigated at the dentin-resin bonded interface. The coronal dentin of nine molars were exposed and divided into groups: 5% GD, 6.5% GSE and control. Control samples were etched, bonded with Adper Single Bond Plus and Premise composite. GD and GSE were applied for 1 hour prior to bonding procedures. After 24 hours, samples were sectioned, and resin-dentin beams were either kept in distilled water or exposed to collagenase treatment for 24 hours. Nano-indentations were performed at the hybrid layer and underlying dentin. GD and GSE treatment increased the Er and H of resin-dentin interface structures when compared to the control group (p < 0.05), particularly the hybrid layer, and may be a promising novel approach to strengthen the dentin-resin bonded interface structures when using these adhesive system and resin-based composite. PMID:21058972

  10. External Dentin Stimulation Induces ATP Release in Human Teeth.

    PubMed

    Liu, X; Wang, C; Fujita, T; Malmstrom, H S; Nedergaard, M; Ren, Y F; Dirksen, R T

    2015-09-01

    ATP is involved in neurosensory processing, including nociceptive transduction. Thus, ATP signaling may participate in dentin hypersensitivity and dental pain. In this study, we investigated whether pannexins, which can form mechanosensitive ATP-permeable channels, are present in human dental pulp. We also assessed the existence and functional activity of ecto-ATPase for extracellular ATP degradation. We further tested if ATP is released from dental pulp upon dentin mechanical or thermal stimulation that induces dentin hypersensitivity and dental pain and if pannexin or pannexin/gap junction channel blockers reduce stimulation-dependent ATP release. Using immunofluorescence staining, we demonstrated immunoreactivity of pannexin 1 and 2 in odontoblasts and their processes extending into the dentin tubules. Using enzymatic histochemistry staining, we also demonstrated functional ecto-ATPase activity within the odontoblast layer, subodontoblast layer, dental pulp nerve bundles, and blood vessels. Using an ATP bioluminescence assay, we found that mechanical or cold stimulation to the exposed dentin induced ATP release in an in vitro human tooth perfusion model. We further demonstrated that blocking pannexin/gap junction channels with probenecid or carbenoxolone significantly reduced external dentin stimulation-induced ATP release. Our results provide evidence for the existence of functional machinery required for ATP release and degradation in human dental pulp and that pannexin channels are involved in external dentin stimulation-induced ATP release. These findings support a plausible role for ATP signaling in dentin hypersensitivity and dental pain.

  11. Effect of Etching Time and Preparation on Push-Out Bond Strength of Composite to Intracanal Dentin of Primary Anterior Teeth

    PubMed Central

    Mosharrafian, Shahram; Afshar, Hossein; Farbod, Maryam; Baniameri, Zahra

    2016-01-01

    Objectives: This in-vitro study aimed to compare the push-out bond strength of composite to prepared and unprepared intracanal dentin using a 5th generation bonding agent in primary anterior teeth after etching for seven and 15 seconds. Materials and Methods: Sixty primary anterior teeth were randomly divided into four groups. In groups one and two, intracanal dentin remained intact while in groups three and four it was prepared using a #5 round bur and low-speed handpiece. Single Bond 2 was used in groups one and three after 15 seconds and in groups two and four after seven seconds of etching with phosphoric acid. After restoring with composite resin and incubation, the specimens were subjected to push-out bond strength test. Data were analyzed using two-way ANOVA and Kaplan Meier curves. Results: The mean bond strength was not significantly different between seven and 15 seconds etching times (P=0.198). Dentin preparation had no significant effect on the mean bond strength (P=0.838). The interaction effect of etching time and dentin preparation was not significant either (P=0.680). Conclusions: Decreasing the etching time from 15 to seven seconds and preparation of intracanal dentin had no significant effect on push-out bond strength of composite to intracanal dentin of primary anterior teeth. PMID:28127329

  12. Cryopreserved dentin matrix as a scaffold material for dentin-pulp tissue regeneration.

    PubMed

    Jiao, Liang; Xie, Li; Yang, Bo; Yu, Mei; Jiang, Zongting; Feng, Lian; Guo, Weihua; Tian, Weidong

    2014-06-01

    Cryopreservation has been identified as an efficient approach to preserve tissue engineered products for a long term. Our prior studies have suggested that the treated dentin matrix (TDM) could be an ideal bioactive scaffold for dental tissue regeneration. In this study, we hypothesize that the cryopreservation could effectively maintain the survival and viability of dentinogenesis-related proteins of TDM and the cryopreserved dentin matrix (CDM) would provide the suitable biological scaffold and inductive microenvironment for the regeneration of dentin-pulp like tissue. CDM-3 and CDM-6 were prepared by cryopreserving TDM in liquid nitrogen (-196 °C) with cryoprotectant for 3 months and 6 months, respectively. Various biological characteristics of CDM, including mechanical properties, cell proliferation, and odontogenesis ability, were investigated. To further evaluate the inductive capacity of CDM, human dental follicle cells were encapsulated within CDM, and implanted the scaffold into a mouse model for 8 weeks, and the grafts were harvested and assessed histologically. The CDM showed superior mechanical properties than TDM. Compared to TDM, CDM can release more dentinogenesis-related proteins due to the larger pore diameter. Cell proliferation with the addition of CDM extract liquid was similar to that of TDM in the first five days. Human dental follicle cells, under the effect of CDM extract liquid, highly expressed bone sialoprotein, collagen-1, alkaline phosphatase, indicating that CDM, regarded as the inductive microenvironment, plays an important role in odontogenesis. Most importantly, in vivo, CDM could induce dental follicle cells to regenerate new dentin-pulp like tissues, such as dentinal tubules, predentin, collagen fibers, nerves, and blood vessels which were positive for dentin sialophosphoprotein, dental matrix protein-1, Tubulin, and collagen-1. In conclusion, CDM is an ideal biological scaffold material for human dentin-pulp like tissue

  13. Effect of periodontal root planing on dentin permeability.

    PubMed

    Fogel, H M; Pashley, D H

    1993-10-01

    The purpose of this study was to quantitate the effects of root planing on the permeability of human root dentin in vitro. Unerupted 3rd molars were used. The crowns were removed and longitudinal slices made of the root. The hydraulic conductance of the root dentin was measured before and after root planing, acid etching and potassium oxalate application using a fluid filtration method. The results showed that root planing creates a smear layer that reduces the permeability of the underlying dentin. However, this smear layer is acid labile. Thus, root planing may ultimately cause increased dentin permeability and the associated sequelae of sensitive dentin, bacterial invasion of tubules, reduced periodontal reattachment and pulpal irritation.

  14. Dentin permeability. Effects of desensitizing dentifrices in vitro.

    PubMed

    Pashley, D H; O'Meara, J A; Kepler, E E; Galloway, S E; Thompson, S M; Stewart, F P

    1984-09-01

    Patients using placebo dentifrices in clinical trials usually show a significant decrease in dentin sensitivity over a 2- to 4-week period. If their sensitivity were due to hydrodynamic fluid movement, then the results suggest that there was a decrease in their dentin permeability. This hypothesis was tested in vitro by measuring the ease with which fluid could flow (i.e., hydraulic conductance) across dentin discs before and after brushing the discs with a variety of dentifrices, including most of the marketed densensitizing dentifrices. All dentifrices decreased the hydraulic conductance of dentin. An experimental dentifrice containing oxalate as the active ingredient was far more effective than any of the marketed dentifrices. The results tend to support the hypothesis that, at least part of the reduction in clinical sensitivity in patients with hypersensitive dentin is due to the abrasive action of the dentifrice.

  15. Water evaporation from substrate tooth surface during dentin treatments.

    PubMed

    Kusunoki, Mizuho; Itoh, Kazuo; Gokan, Yuka; Nagai, Yoshitaka; Tani, Chihiro; Hisamitsu, Hisashi

    2011-01-01

    The purpose of this study was to evaluate changes in the quantity of water evaporation from tooth surfaces. The amount of water evaporation was measured using Multi probe adapter MPA5 and Tewameter TM300 (Courage+Khazaka Electric GmbH, Köln, Germany) after acid etching and GM priming of enamel; and after EDTA conditioning and GM priming of dentin. The results indicated that the amount of water evaporation from the enamel surface was significantly less than that from the dentin. Acid etching did not affect the water evaporation from enamel, though GM priming significantly decreased the evaporation (83.48 ± 15.14% of that before priming). The evaporation from dentin was significantly increased by EDTA conditioning (131.38 ± 42.08% of that before conditioning) and significantly reduced by GM priming (80.26 ± 7.43% of that before priming). It was concluded that dentin priming reduced water evaporation from the dentin surface.

  16. Inhibition of endogenous human dentin MMPs by Gluma

    PubMed Central

    Sabatini, Camila; Scheffel, Débora L.S.; Scheffel, Régis H.; Agee, Kelli A.; Rouch, Katelyn; Takahashi, Masahiro; Breschi, Lorenzo; Mazzoni, Annalisa; Tjäderhane, Leo; Tay, Franklin R.; Pashley, David H.

    2014-01-01

    Objective The objective of this study was to determine if Gluma dentin desensitizer (5.0% glutaraldehyde and 35% HEMA in water) can inhibit the endogenous MMPs of dentin matrices in 60 sec. and to evaluate its effect on dentin matrix stiffness and dry mass weight. Methods Dentin beams of 2×1×6 mm were obtained from extracted human third molars coronal dentin. To measure the influence of Gluma treatment time on total MMP activity of dentin, beams were dipped in 37% phosphoric acid (PA) for 15 sec. and rinsed in water. The acid-etched beams were then dipped in Gluma for 5, 15, 30 or 60 sec., rinsed in water and incubated into SensoLyte generic MMP substrate (AnaSpec, Inc.) for 60 min. Controls were dipped in water for 60 sec. Additional beams of 1×1×6 mm were completely demineralized in 37% PA for 18 h, rinsed and used to evaluate changes on the dry weight and modulus of elasticity (E) after 60 sec. of Gluma treatment followed by incubation in simulated body fluid buffer for zero, one or four weeks. E was measured by 3-pt flexure. Results Gluma treatment inhibited total MMP activity of acid-etched dentin by 44, 50, 84, 86 % after 5, 15, 30 or 60 sec. of exposure, respectively. All completely demineralized dentin beams lost stiffness after one and four weeks, with no significant differences between the control and Gluma-treated dentin. Gluma treatment for 60 sec. yielded significantly less dry mass loss than the control after four weeks. Significance The use of Gluma may contribute to the preservation of adhesive interfaces by its cross-linking and inhibitory properties of endogenous dentin MMPs. PMID:24846803

  17. A Therapeutic Approach to Teaching Poetry: Individual Development, Psychology, and Social Reparation. Psychoanalysis, Education and Social Transformation

    ERIC Educational Resources Information Center

    Williams, Todd O.

    2012-01-01

    A Therapeutic Approach to Teaching Poetry develops a poetry pedagogy that offers significant benefits to students by helping them to achieve a sense of renewal (a deeper awareness of self and potentials) and reparation (a realistic, but positive and proactive worldview). Todd O. Williams offers a thorough examination of the therapeutic potential…

  18. Pulsed HF laser ablation of dentin

    NASA Astrophysics Data System (ADS)

    Papagiakoumou, Eirini I.; Papadopoulos, Dimitris N.; Makropoulou, Mersini I.; Khabbaz, Maruan G.; Serafetinides, Alexander A.

    2005-03-01

    The interaction of a TEA (Transversally Excited Atmospheric pressure) corona preionized oscillator double amplifier HF (hydrogen fluoride) laser beam with dentin tissue is reported. Pulses of 39 ns in the wavelength range of 2.65-3.35 μm and output energies in the range of 10-45 mJ, in a predominantly TEM00 beam were used to interact with dentin tissue. Ablation experiments were conducted with the laser beam directly focused on the tissue. Several samples of freshly extracted human teeth were used, cut longitudinally in facets of about 1mm thick and stored in phosphate buffered saline after being cleaned from the soft tissue remains. The experimental data (ablation thresholds, ablation rates) are discussed with respect to the ablation mechanism(s). Adequate tissue removal was observed and the ablation behavior was, in the greates part of the available fluences, almost linear. From the microscopic examination of teh samples, in a scanning electron microscope (SEM), the irradiated surfaces displayed oval craters (reflecting the laser beam shape) with absence of any melting or carbonization zone. It is suggested that the specific laser removes hard tissue by a combined photothermal and plasma mediated ablation mechanism, leaving a surface free from thermal damage and with a well-shaped crater.

  19. Proanthocyanidins Rapidly Stabilize the Demineralized Dentin Layer

    PubMed Central

    Liu, Y.; Dusevich, V.; Wang, Y.

    2013-01-01

    While proanthocyanidins (PA) are effective in improving collagen’s resistance to collagenolytic degradation, the direct incorporation of PA into an adhesive system is detrimental to the light-curing thereof. Conversely, the use of PA as a primer could circumvent this issue, but little is known about the efficacy of PA in stabilizing collagen when applied in a clinically relevant manner. This study investigated the pre- and post-digestion morphology of an acid-etched dentin collagen layer that underwent PA treatment for time periods on a scale of seconds. The null hypothesis, that there is no difference between the PA-treated and untreated control group, had to be rejected, since it was revealed that the untreated control could not survive 1 hr of exogenous collagenase digestion, while the PA-treated collagen could sustain at least 16 hrs of digestion with no perceptible changes in collagen structure. In addition, the stabilizing effect of the gold-standard cross-linker glutaraldehyde at comparable experimental conditions was found to be almost non-existent within the 5, 15, or 30 sec of cross-linking permitted. Therefore, PA have been proven to be extraordinarily efficient in stabilizing demineralized dentin collagen against enzymatic challenges in a clinically relevant setting, likely due to the non-covalent nature of their interaction with collagen molecules. PMID:23723381

  20. An hypothesis on the influence of the temperature on the telencephalic reparative processes in Lacerta viridis.

    PubMed

    Minelli, G; Del Grande, P

    1980-01-01

    The authors removed a simple plug from the dorsal hippocampus, or from the dorsal hippocampus and part of the medial hippocampus in a telencephalic hemisphere in specimens of Lacerta viridis. The specimens were sacrificed some time after the operation after administration of 6-3 H thymidina. The examination of the emulsified slides showed that in these experimental condition no reparative process is observed, except for an impressive proliferation of cells and fibres which, from the meninx, bridges the cortical gap and, penetrating the telencephalic ventricle, attaches itself to the surrounding nerve tissue. The authors also described a limited cellular proliferation in the ependima of the telencephalic ventricles as a result of resection of the medial hippocampus; this observation is interpreted as a phenomenum connected to compensatory hypertrophy.

  1. Is bovine dentine an appropriate substitute in abrasion studies?

    PubMed

    Wegehaupt, Florian J; Widmer, Raffaella; Attin, Thomas

    2010-04-01

    The study aimed to compare the wear behaviour of human and bovine dentine due to toothbrushing with different relative dentin abrasivity (RDA) toothpastes. Forty human and 40 bovine dentine samples were prepared from bovine lower incisors or human premolars roots, and baseline surface profiles were recorded. The samples were distributed to four groups (each group n = 10 human and 10 bovine samples) and brushed with fluoridated experimental toothpastes with different RDAs (group A: RDA 10, B: RDA 20, C: RDA 50, and D: RDA 100). Toothbrushing was performed in an automatic brushing machine with a brushing frequency of 60 strokes per minute and a brushing force of 2.5 N. After 2, 5, 10, and 25 min of toothbrushing, new surface profiles were recorded, and the dentine wear was calculated with a customized computer programme. The dentine wear of human and bovine dentine within the four groups was compared with unpaired t tests. No statistically significant difference was recorded for the dentine wear of human and bovine samples within the different groups.

  2. Effect of endodontic procedures on root dentin permeability.

    PubMed

    Tao, L; Anderson, R W; Pashley, D H

    1991-12-01

    The purpose of this study was to quantitate the sequential effects of endodontic procedures on the permeability of human root dentin in vitro. Forty single-rooted teeth were used. Both the crown and the apical 2 mm of the root were removed. The hydraulic conductance of the root before and after various endodontic procedures was measured using a fluid filtration method. Measurements were also made of dentin thickness, intracanal diameter changes, and changes in intracanal surface area. The results showed that instrumentation by K files alone or in combination with Gates Glidden drills did not alter radicular dentin permeability when the cementum remained intact. After removing the cementum, the creation of a smear layer and smear plugs on the canal surface tended to offset the expected increase in dentin permeability created by increasing the intracanal surface area and decreasing root dentin thickness. EDTA treatment inside the instrumented canal to remove the smear layer did not increase permeability significantly. The use of K files followed by Gates Glidden drills tended to remove more cervical dentin, increased the intracanal surface area, and increased the hydraulic conductance of root dentin more than the use of K files alone.

  3. Carbodiimide inactivation of MMPs and effect on dentin bonding.

    PubMed

    Mazzoni, A; Apolonio, F M; Saboia, V P A; Santi, S; Angeloni, V; Checchi, V; Curci, R; Di Lenarda, R; Tay, F R; Pashley, D H; Breschi, L

    2014-03-01

    The use of protein cross-linking agents during bonding procedures has been recently proposed to improve bond durability. This study aimed to use zymography and in situ zymography techniques to evaluate the ability of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) cross-linker to inhibit matrix metalloproteinase (MMP) activity. The hypotheses tested were that: (1) bonding procedures increase dentin gelatinolytic activity and (2) EDC pre-treatment prevents this enzymatic activity. The zymographic assay was performed on protein extracts obtained from dentin powder treated with Optibond FL or Scotchbond 1XT with or without 0.3M EDC pre-treatment. For in situ zymography, adhesive/dentin interfaces were created with the same adhesives applied to acid-etched dentin slabs pre-treated or not with EDC conditioner. Zymograms revealed increased expression of dentin endogenous MMP-2 and -9 after adhesive application, while the use of EDC as a primer inactivated dentin gelatinases. Results of in situ zymograpy showed that hybrid layers of tested adhesives exhibited intense collagenolytic activity, while almost no fluorescence signal was detected when specimens were pre-treated with EDC. The correlative analysis used in this study demonstrated that EDC could contribute to inactivate endogenous dentin MMPs within the hybrid layer created by etch-and-rinse adhesives.

  4. Spectroscopic and morphologic characterization of the dentin/adhesive interface

    NASA Astrophysics Data System (ADS)

    Lemor, R. M.; Kruger, Michael B.; Wieliczka, David M.; Swafford, Jim R.; Spencer, Paulette

    1999-01-01

    The potential environmental risks associated with mercury release have forced many European countries to ban the use of dental amalgam. Alternative materials such as composite resins do not provide the clinical function for the length of time characteristically associated with dental amalgam. The weak link in the composite restoration is the dentin/adhesive bond. The purpose of this study was to correlate morphologic characterization of the dentin/adhesive bond with chemical analyses using micro- Fourier transform infrared and micro-Raman spectroscopy. A commercial dental adhesive was placed on dentin substrates cut from extracted, unerupted human third molars. Sections of the dentin/adhesive interface were investigated using infrared radiation produced at the Aladdin synchrotron source; visible radiation from a Kr+ laser was used for the micro-Raman spectroscopy. Sections of the dentin/adhesive interface, differentially stained to identify protein, mineral, and adhesive, were examined using light microscopy. Due to its limited spatial resolution and the unknown sample thickness the infrared results cannot be used quantitatively in determining the extent of diffusion. The results from the micro-Raman spectroscopy and light microscopy indicate exposed protein at the dentin/adhesive interface. Using a laser that reduces background fluorescence, the micro-Raman spectroscopy provides quantitative chemical and morphologic information on the dentin/adhesive interface. The staining procedure is sensitive to sites of pure protein and thus, complements the Raman results.

  5. Carbodiimide Inactivation of MMPs and Effect on Dentin Bonding

    PubMed Central

    Mazzoni, A.; Apolonio, F.M.; Saboia, V.P.A.; Santi, S.; Angeloni, V.; Checchi, V.; Curci, R.; Di Lenarda, R.; Tay, F.R.; Pashley, D.H.; Breschi, L.

    2014-01-01

    The use of protein cross-linking agents during bonding procedures has been recently proposed to improve bond durability. This study aimed to use zymography and in situ zymography techniques to evaluate the ability of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) cross-linker to inhibit matrix metalloproteinase (MMP) activity. The hypotheses tested were that: (1) bonding procedures increase dentin gelatinolytic activity and (2) EDC pre-treatment prevents this enzymatic activity. The zymographic assay was performed on protein extracts obtained from dentin powder treated with Optibond FL or Scotchbond 1XT with or without 0.3M EDC pre-treatment. For in situ zymography, adhesive/dentin interfaces were created with the same adhesives applied to acid-etched dentin slabs pre-treated or not with EDC conditioner. Zymograms revealed increased expression of dentin endogenous MMP-2 and -9 after adhesive application, while the use of EDC as a primer inactivated dentin gelatinases. Results of in situ zymograpy showed that hybrid layers of tested adhesives exhibited intense collagenolytic activity, while almost no fluorescence signal was detected when specimens were pre-treated with EDC. The correlative analysis used in this study demonstrated that EDC could contribute to inactivate endogenous dentin MMPs within the hybrid layer created by etch-and-rinse adhesives. PMID:24334409

  6. Dentin Biomodification: Strategies, Renewable Resources and Clinical Applications

    PubMed Central

    Bedran-Russo, Ana K.; Pauli, Guido F.; Chen, Shao-Nong; McAlpine, James; Castellan, Carina S.; Phansalkar, Rasika S; Aguiar, Thaiane R.; Vidal, Cristina M.P.; Napotilano, José; Nam, Joo-Won; Leme, Ariene A.

    2014-01-01

    Objectives The biomodification of dentin is a biomimetic approach, mediated by bioactive agents, to enhance and reinforce the dentin by locally altering the biochemistry and biomechanical properties. This review provides an overview of key dentin matrix components, targeting effects of biomodification strategies, the chemistry of renewable natural sources, and current research on their potential clinical applications. Methods The PubMed database and collected literature were used as a resource for peer-reviewed articles to highlight the topics of dentin hierarchical structure, biomodification agents, and laboratorial investigations of their clinical applications. In addition, new data is presented on laboratorial methods for the standardization of proanthocyanidin-rich preparations as a renewable source of plant-derived biomodification agents. Results Biomodification agents can be categorized as physical methods and chemical agents. Synthetic and naturally occurring chemical strategies present distinctive mechanism of interaction with the tissue. Initially thought to be driven only by inter- or intra-molecular collagen induced non-enzymatic collagen cross-linking, multiple interactions with other dentin components are fundamental for the long-term biomechanics and biostability of the tissue. Oligomeric proanthocyanidins show promising bioactivity, and their chemical complexity requires systematic evaluation of the active compounds to produce a fully standardized intervention material from renewable resource, prior to their detailed clinical evaluation. Significance Understanding the hierarchical structure of dentin and the targeting effect of the bioactive compounds will establish their use in both dentin-biomaterials interface and caries management. PMID:24309436

  7. Bonding of crown and bridge adhesive resins to dentine.

    PubMed

    Osman, Saad A; McCabe, John F; Walls, Angus W G

    2008-12-01

    The shear bond strength of three adhesives, Panavia 21, Superbond, All Bond C&B Cement, and Variolink (a dual cure resin) to various dentine depths were determined. Fifteen human fully erupted permanent first and second molars were wet ground using 500 and then 800 grit abrasive papers to expose the superficial, middle and the deep dentine, for each adhesive tested. Five samples were prepared for each dentine depth. The adhesives were bonded to the samples using gelatine capsules and were matured for 24 h in water at 37 degrees C. The samples were debonded in shear using tensile testing machine at a cross-head speed of 1 mm/min. The data were analysed using ANOVA and the Tukey test. The fracture surfaces were examined by optical microscopy. The bond strength of Superbond to dentine was significantly higher (P<0.05) than any of the materials tested. The bond strength of all materials tested was shown to be affected by dentine depth, except for Superbond. Fractured dentine specimens showed that the samples of Superbond are almost cohesive (>90%), and the samples of other adhesives are mostly adhesive (>70%). These results confirm that Superbond is capable of forming a bond at various dentine depths.

  8. Limitations in bonding to dentin and experimental strategies to prevent bond degradation.

    PubMed

    Liu, Y; Tjäderhane, L; Breschi, L; Mazzoni, A; Li, N; Mao, J; Pashley, D H; Tay, F R

    2011-08-01

    The limited durability of resin-dentin bonds severely compromises the lifetime of tooth-colored restorations. Bond degradation occurs via hydrolysis of suboptimally polymerized hydrophilic resin components and degradation of water-rich, resin-sparse collagen matrices by matrix metalloproteinases (MMPs) and cysteine cathepsins. This review examined data generated over the past three years on five experimental strategies developed by different research groups for extending the longevity of resin-dentin bonds. They include: (1) increasing the degree of conversion and esterase resistance of hydrophilic adhesives; (2) the use of broad-spectrum inhibitors of collagenolytic enzymes, including novel inhibitor functional groups grafted to methacrylate resins monomers to produce anti-MMP adhesives; (3) the use of cross-linking agents for silencing the activities of MMP and cathepsins that irreversibly alter the 3-D structures of their catalytic/allosteric domains; (4) ethanol wet-bonding with hydrophobic resins to completely replace water from the extrafibrillar and intrafibrillar collagen compartments and immobilize the collagenolytic enzymes; and (5) biomimetic remineralization of the water-filled collagen matrix using analogs of matrix proteins to progressively replace water with intrafibrillar and extrafibrillar apatites to exclude exogenous collagenolytic enzymes and fossilize endogenous collagenolytic enzymes. A combination of several of these strategies should result in overcoming the critical barriers to progress currently encountered in dentin bonding.

  9. Structure and chemical composition of the dentin-enamel junction analyzed by Confocal Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Desoutter, A.; Salehi, H.; Slimani, A.; Marquet, P.; Jacquot, B.; Tassery, H.; Cuisinier, F. J. G.

    2014-02-01

    The structure and chemical composition of the human dentin-enamel junction (DEJ) was studied using confocal Raman microscopy - a chemical imaging technique. Slices of non-fixed, sound teeth were prepared with an Isomet diamond saw and scanned with Witec Alpha300R system. The combination of different characteristics peaks of phosphate, carbonate and organic matrix (respectively 960, 1072 and 1545 cm-1), generates images representing the chemical composition of the DEJ area. Images are also calculated using peak ratios enabling precise determination of the chemical composition across the DEJ. Then, with two characterized peaks, different pictures are calculated to show the ratio of two components. The images of the spatial distribution of mineral phosphate (960cm-1) to organic matrix (1545 cm-1) ratios, mineral carbonates (1072cm-1) to mineral phosphate ratios; and mineral carbonates to organic matrix ratios were reconstructed. Cross sectional and calculated graphic profile show the variations of the different chemical component ratios through the enamel and the dentin. Phosphate to organic ratio shows an accumulation of organic material under the enamel surface. The cross sectional profile of these pictures shows a high phosphate content compared to enamel in the vicinity of the DEJ. The Confocal Raman imaging technique can be used to further provide full chemical imaging of tooth, particularly of the whole DEJ and to study enamel and dentin decay.

  10. Limitations in Bonding to Dentin and Experimental Strategies to Prevent Bond Degradation

    PubMed Central

    Liu, Y.; Tjäderhane, L.; Breschi, L.; Mazzoni, A.; Li, N.; Mao, J.; Pashley, D.H.; Tay, F.R.

    2011-01-01

    The limited durability of resin-dentin bonds severely compromises the lifetime of tooth-colored restorations. Bond degradation occurs via hydrolysis of suboptimally polymerized hydrophilic resin components and degradation of water-rich, resin-sparse collagen matrices by matrix metalloproteinases (MMPs) and cysteine cathepsins. This review examined data generated over the past three years on five experimental strategies developed by different research groups for extending the longevity of resin-dentin bonds. They include: (1) increasing the degree of conversion and esterase resistance of hydrophilic adhesives; (2) the use of broad-spectrum inhibitors of collagenolytic enzymes, including novel inhibitor functional groups grafted to methacrylate resins monomers to produce anti-MMP adhesives; (3) the use of cross-linking agents for silencing the activities of MMP and cathepsins that irreversibly alter the 3-D structures of their catalytic/allosteric domains; (4) ethanol wet-bonding with hydrophobic resins to completely replace water from the extrafibrillar and intrafibrillar collagen compartments and immobilize the collagenolytic enzymes; and (5) biomimetic remineralization of the water-filled collagen matrix using analogs of matrix proteins to progressively replace water with intrafibrillar and extrafibrillar apatites to exclude exogenous collagenolytic enzymes and fossilize endogenous collagenolytic enzymes. A combination of several of these strategies should result in overcoming the critical barriers to progress currently encountered in dentin bonding. PMID:21220360

  11. Nanolayering of phosphoric acid ester monomer on enamel and dentin.

    PubMed

    Yoshihara, Kumiko; Yoshida, Yasuhiro; Hayakawa, Satoshi; Nagaoka, Noriyuki; Irie, Masao; Ogawa, Tatsuyuki; Van Landuyt, Kirsten L; Osaka, Akiyoshi; Suzuki, Kazuomi; Minagi, Shogo; Van Meerbeek, Bart

    2011-08-01

    Following the "adhesion-decalcification" concept, specific functional monomers possess the capacity to primary chemically interact with hydroxyapatite (HAp). Such ionic bonding with synthetic HAp has been demonstrated for 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP), manifest as self-assembled "nanolayering". In continuation of that basic research this study aimed to explore whether nanolayering also occurs on enamel and dentin when a 10-MDP primer is applied following a common clinical application protocol. Therefore, the interaction of an experimental 10-MDP primer and a control, commercially available, 10-MDP-based primer (Clearfil SE Bond primer (C-SE), Kuraray) with enamel and dentin was characterized by X-ray diffraction (XRD), complemented with transmission electron microscopy interfacial ultrastructural data upon their reaction with enamel and dentin. In addition, XRD was used to study the effect of the concentration of 10-MDP on nanolayering on dentin. Finally, the stability of the nanolayers was determined by measuring the bond strength to enamel and dentin when a photoinitiator was added to the experimental primer or when interfacial polymerization depended solely on the photoinitiator supplied with the subsequently applied adhesive resin. XRD confirmed nanolayering on enamel and dentin, which was significantly greater on dentin than on enamel, and also when the surface was actively rubbed with the primer. Nanolayering was also proportional to the concentration of 10-MDP in the primer. Finally, the experimental primer needed the photoinitiator to obtain a tensile bond strength to dentin comparable with that of the control C-SE primer (which also contains a photoinitiator), but not when bonded to enamel. It is concluded that self-assembled nanolayering occurs on enamel and dentin, even when following a clinically used application protocol. The lower bonding effectiveness of mild self-etch adhesives to enamel should be ascribed in part to a lower

  12. Self-etching adhesives increase collagenolytic activity in radicular dentin.

    PubMed

    Tay, Franklin R; Pashley, David H; Loushine, Robert J; Weller, R Norman; Monticelli, Francesca; Osorio, Raquel

    2006-09-01

    Endogenous matrix metalloproteinases (MMPs) release from crown dentin and their activation results in degradation of hybrid layers created by dentin adhesives. This study tested the hypothesis that instrumented intraradicular dentin possesses latent collagenolytic activity that is activated by mild self-etching adhesives. Root dentin shavings were produced from 50 cleaned and shaped, saline-irrigated root canals using Gates Glidden drills and rinsed with sodium azide to prevent bacterial growth. Dried dentin powder aliquots were treated with two clinically-relevant MMP inhibitors, 2% chlorhexidine for 10 minutes and 17% EDTA for 1 minute. Additional dentin powder was mixed with Clearfil Liner Bond 2V or Clearfil Tri-S Bond for 1 minute followed by extracting the adhesives with acetone. Dentin powder was also treated with 2% chlorhexidine for 10 minutes before or after adhesive application. Collagenolytic activities of the nine groups were assayed with a fluorometer in 96-well plates, by recording the changes in fluorescence before and after addition of fluorescein-labeled type I collagen. Epoxy resin-embedded powders were examined with TEM for the extent of demineralization. Instrumented, mineralized intraradicular dentin possessed low but detectable collagenolytic activity that was inhibited by chlorhexidine (p < 0.001) and EDTA (p < 0.001). Both adhesives partially demineralized the dentin powder and activated latent MMPs, with 14- to 15-fold increases in collagenolytic activities (p < 0.001) that were significantly (p < 0.001) but incompletely inactivated after 10 min application of chlorhexidine. Mild self-etching adhesives activate latent MMPs without denaturing these enzymes, and may adversely affect the longevity of bonded root canal fillings and posts.

  13. Role of dentin MMPs in caries progression and bond stability.

    PubMed

    Mazzoni, A; Tjäderhane, L; Checchi, V; Di Lenarda, R; Salo, T; Tay, F R; Pashley, D H; Breschi, L

    2015-02-01

    Dentin can be described as a biological composite with collagen matrix embedded with nanosized hydroxyapatite mineral crystallites. Matrix metalloproteinases (MMPs) and cysteine cathepsins are families of endopeptidases. Enzymes of both families are present in dentin and collectively capable of degrading virtually all extracellular matrix components. This review describes these enzymes and their presence in dentin, mainly focusing on their role in dentin caries pathogenesis and loss of collagen in the adhesive hybrid layer under composite restorations. MMPs and cysteine cathepsins present in saliva, mineralized dentin, and/or dentinal fluid may affect the dentin caries process at the early phases of demineralization. Changes in collagen and noncollagenous protein structure may participate in observed decreases in mechanical properties of caries-affected dentin and reduce the ability of caries-affected dentin to remineralize. These endogenous enzymes also remain entrapped within the hybrid layer during the resin infiltration process, and the acidic bonding agents themselves (irrespective of whether they are etch-and-rinse or self-etch) can activate these endogenous protease proforms. Since resin impregnation is frequently incomplete, denuded collagen matrices associated with free water (which serves as a collagen cleavage reagent for these endogenous hydrolase enzymes) can be enzymatically disrupted, finally contributing to the degradation of the hybrid layer. There are multiple in vitro and in vivo reports showing that the longevity of the adhesive interface is increased when nonspecific enzyme-inhibiting strategies are used. Different chemicals (i.e., chlorhexidine, galardin, and benzalkonium chloride) or collagen cross-linker agents have been successfully employed as therapeutic primers in the bonding procedure. In addition, the incorporation of enzyme inhibitors (i.e., quaternary ammonium methacrylates) into the resin blends has been recently promoted. This

  14. Role of Dentin MMPs in Caries Progression and Bond Stability

    PubMed Central

    Mazzoni, A.; Tjäderhane, L.; Checchi, V.; Di Lenarda, R.; Salo, T.; Tay, F.R.; Pashley, D.H.

    2015-01-01

    Dentin can be described as a biological composite with collagen matrix embedded with nanosized hydroxyapatite mineral crystallites. Matrix metalloproteinases (MMPs) and cysteine cathepsins are families of endopeptidases. Enzymes of both families are present in dentin and collectively capable of degrading virtually all extracellular matrix components. This review describes these enzymes and their presence in dentin, mainly focusing on their role in dentin caries pathogenesis and loss of collagen in the adhesive hybrid layer under composite restorations. MMPs and cysteine cathepsins present in saliva, mineralized dentin, and/or dentinal fluid may affect the dentin caries process at the early phases of demineralization. Changes in collagen and noncollagenous protein structure may participate in observed decreases in mechanical properties of caries-affected dentin and reduce the ability of caries-affected dentin to remineralize. These endogenous enzymes also remain entrapped within the hybrid layer during the resin infiltration process, and the acidic bonding agents themselves (irrespective of whether they are etch-and-rinse or self-etch) can activate these endogenous protease proforms. Since resin impregnation is frequently incomplete, denuded collagen matrices associated with free water (which serves as a collagen cleavage reagent for these endogenous hydrolase enzymes) can be enzymatically disrupted, finally contributing to the degradation of the hybrid layer. There are multiple in vitro and in vivo reports showing that the longevity of the adhesive interface is increased when nonspecific enzyme-inhibiting strategies are used. Different chemicals (i.e., chlorhexidine, galardin, and benzalkonium chloride) or collagen cross-linker agents have been successfully employed as therapeutic primers in the bonding procedure. In addition, the incorporation of enzyme inhibitors (i.e., quaternary ammonium methacrylates) into the resin blends has been recently promoted. This

  15. Adhesive sealing of dentin surfaces in vitro: A review

    PubMed Central

    Abu-Nawareg, Manar M; Zidan, Ahmed Z; Zhou, Jianfeng; Agee, Kelli; Chiba, Ayaka; Tagami, Jungi; Pashley, David H

    2016-01-01

    Purpose The purpose of this review is to describe the evolution of the use of dental adhesives to form a tight seal of freshly prepared dentin to protect the pulp from bacterial products, during the time between crown preparation and final cementum of full crowns. The evolution of these “immediate dentin sealants” follows the evolution of dental adhesives, in general. That is, they began with multiple-step, etch-and-rinse adhesives, and then switched to the use of simplified adhesives. Methods Literature was reviewed for evidence that bacteria or bacterial products diffusing across dentin can irritate pulpal tissues before and after smear layer removal. Smear layers can be solubilized by plaque organisms within 7–10 days if they are directly exposed to oral fluids. It is likely that smear layers covered by temporary restorations may last more than one month. As long as smear layers remain in place, they can partially seal dentin. Thus, many in vitro studies evaluating the sealing ability of adhesive resins use smear layer-covered dentin as a reference condition. Surprisingly, many adhesives do not seal dentin as well as do smear layers. Results Both in vitro and in vivo studies show that resin-covered dentin allows dentinal fluid to cross polymerized resins. The use of simplified single bottle adhesives to seal dentin was a step backwards. Currently, most authorities use either 3-step adhesives such as Scotchbond Multi-Purposea or OptiBond FLb or two-step self-etching primer adhesives, such as Clearfil SEc, Unifil Bondd or AdheSEe, respectfully. PMID:26846037

  16. [Protective action of reactivating factor of Luteococcus japonicus subsp. casei toward cells of Escherichia coli reparation mutants inactivated with UV-light].

    PubMed

    Vorob'eva, L I; Fedotova, A V; Khodzhaev, E Iu

    2010-01-01

    Reactivating factor (RF) from Luteococcus japonicus subsp. casei had a protective action on UV-irradiated cells of Escherichia coli AB1157 with a native reparation system and on cells of isogenic reparation mutants of E. coli UvrA-, RecA-, and PolA-: the effect resulted in multifold increase of survivability. Defense action of L. casei exometabolite is not connected with stimulating reparation systems in E. coli, and, probably, it is mediated by involvement of the exometabolite in the mechanism of cell division. RF did not provoke the reactivation of E. coli cells inactivated by UV-light.

  17. Fatigue of the Resin-Dentin Interface: A New Approach for Evaluating the Durability of Dentin Bonds

    PubMed Central

    Mutluay, Mustafa Murat; Yahyazadefar, Mobin; Ryou, Heonjune; Majd, Hessam; Do, Dominic; Arola, Dwayne

    2013-01-01

    There are concerns regarding the longevity of resin composite restorations and the clinical relevance of in vitro bond strength testing to the durability of dentin bonds in vivo. Objective The objectives of this investigation were to: 1) develop a new method of experimental evaluation for quantifying the durability of dentin bonds, 2) apply this method to characterize the interfacial strength of a selected commercial system under both monotonic and cyclic loading, and 3) distinguish mechanisms contributing to the interface degradation and failure. Methods A new method for fatigue testing the resin-dentin interface was developed based on a four-point flexure arrangement that includes two identical bonded interfaces. Cyclic loading of specimens comprised of coronal dentin bonded to a commercial resin composite and controls of resin composite was performed to failure within a hydrated environment. Scanning electron microscopy and nanoscopic dynamic mechanical analysis were used to evaluate failure mechanisms. Results The fatigue strength of the resin-dentin interface was significantly lower (p≤0.0001) than that of the resin composite and reported for dentin over the entire finite life regime. Defined at 1×107 cycles, the apparent endurance limit of the resin-dentin interface was 13 MPa, in comparison to 48 MPa and 44 MPa for the resin composite and dentin, respectively. The ratio of fully reversed endurance limit to ultimate strength of the interface (0.26) was the lowest of the three materials. Significance The proposed approach for characterizing the fatigue strength of resin-dentin bonds may offer new insights concerning durability of the bonded interface. PMID:23434232

  18. Effects of distance from the pulp and thickness on the hydraulic conductance of human radicular dentin.

    PubMed

    Fogel, H M; Marshall, F J; Pashley, D H

    1988-11-01

    The purposes of this study were: (1) to measure the effect of distance from the pulp on the hydraulic conductance of human radicular dentin; (2) to determine the influence of dentin thickness on the rates of fluid flow; and (3) to attempt to correlate dentinal tubule densities and diameters with root dentin hydraulic conductance. Dentin slabs prepared from extracted, unerupted, human third molar teeth were placed in a split-chamber device to permit quantitation of fluid filtration rate (hydraulic conductance). In the SEM portion of the study, dentinal tubule numbers and diameters were recorded. The results indicated that radicular dentin hydraulic conductance decreased with distance from the pulp and with increasing dentin thickness. Tubule density and diameter correlated well with the measured hydraulic conductances. The relatively low hydraulic conductance of outer root dentin makes it a significant barrier to fluid movement across root structure.

  19. Effect of depth and tubule direction on ultimate tensile strength of human coronal dentin.

    PubMed

    Inoue, Satoshi; Pereira, Patricia N R; Kawamoto, Chiharu; Nakajima, Masatoshi; Koshiro, Kenichi; Tagami, Junji; Carvalho, Ricardo M; Pashley, David H; Sano, Hidehiko

    2003-03-01

    The purpose of this study was to evaluate the effect of dentin depth and tubule direction on the ultimate tensile strength (UTS) of human dentin. Dentin slabs of 0.5-mm thickness were trimmed either from the mesial and distal (for specimens with the tubules parallel to the tensile force; parallel group) or from the occlusal and pulpal surfaces (perpendicular group) to reduce the cross-sectional area of the superficial, middle, and deep regions to 0.25 mm2, and subjected to microtensile testing. From SEM photomicrographs of the fractured specimens of the parallel group, the tubule density was investigated. For both parallel and perpendicular groups, superficial dentin showed a significantly higher UTS than deep dentin. The tubule density of superficial dentin was significantly lower than that of middle and deep dentin. When performing the microtensile bond test to deep dentin, it is possible that cohesive failure of dentin can occur at relatively low tensile stresses.

  20. Morphology of the dentin structure of sloths Bradypus tridactylus: a light and scanning electron microscopy investigation.

    PubMed

    Santana, L N S; Barbosa, L V M; Teixeira, F B; Costa, A M P; Fernandes, L M P; Lima, R R

    2013-12-01

    The aim of this study was to describe the dentine morphology of sloths (Bradypus tridactylus). The sloth teeth were removed and prepared for light microscopy (LM) and scanning electron microscopy analyses (SEM). LM revealed two patterns of tubular dentins: an outer with dentinary tubules over the all tooth length and one in the inner part with larger diameter and more spaced tubules, when compared to those present in the outer dentine. These findings were confirmed by SEM, which revealed a tubular pattern in the outer dentine like in humans. The inner dentine displayed pared grouped tubules that were characterized as vascular channels. It can be concluded that this sloth species present two types of dentins: an inner dentin (ortodentin) and an outer dentin characterized as a vascular dentin. This suggests a partial evolutive/adaptive process of this dental tissue, as compared to other mammalian species.

  1. Dentinal fluid dynamics in human teeth, in vivo.

    PubMed

    Ciucchi, B; Bouillaguet, S; Holz, J; Pashley, D

    1995-04-01

    Cavities were prepared in human premolars scheduled for extraction for orthodontic reasons. The smear layer was removed from the dentin surface by acid etching, and the cavity was sealed using a hollow chamber. The chamber was filled with sterile saline solution and connected via tubing to a hydraulic circuit featuring an adjustable pressure reservoir and a device that measures fluid movement across dentin. In the absence of any exogenous pressure, all cavities exhibited an outward fluid flow rate of 0.36 microliters min-1 cm-2. As exogenous pressure was applied to the cavity, the outward flow slowed. The exogenous pressure that stopped outward fluid flow was taken to be equal to normal pulpal tissue pressure. The mean value was 14.1 cm H2O in five teeth. This simple method permits measurement of dentinal fluid flux, the hydraulic conductance of dentin, and estimates pulpal tissue pressure.

  2. Dentin permeability: effects of temperature on hydraulic conductance.

    PubMed

    Pashley, D H; Thompson, S M; Stewart, F P

    1983-09-01

    The rates of fluid movement across dentin discs, in vitro, were measured at 10, 20, 30, 40, and 50 degrees C in unetched and acid-etched dentin. Increasing the temperature 40 degrees (i.e., from 10 to 50 degrees C) resulted in a 1.8-fold increase in fluid flow in unetched dentin, which was of a magnitude similar to the decrease in viscosity that occurred over the same temperature range. In acid-etched dentin, the 40 degrees C temperature change produced more than a four-fold increase in fluid conductance, more than double that which could be accounted for by changes in viscosity. Analysis of the data suggests that this additional increment in hydraulic conductance is due to thermal expansion-induced increases in tubular diameter.

  3. Role of Alcohol on the Fracture Resistance of Dentin

    SciTech Connect

    Nalla, Ravi K.; Kinney, John H.; Tomsia, Antoni P.; Ritchie,Robert O.

    2006-05-01

    Healthy dentin, the mineralized tissue that makes up the bulk of the tooth, is naturally hydrated in vivo; however, it is known that various chemical reagents including acetone and ethanol can induce dehydration and thereby affect its properties. Here, we seek to investigate this in light of the effect alcohol can have on the mechanical properties of dentin, specifically by measuring the stiffness, strength and toughness of dentin in simulated body fluid and scotch whisky. Results indicate that chemical dehydration induced by the whisky has a significant beneficial effect on the elastic modulus, strength and fracture toughness of dentin. Although this makes teeth more resistant to fracture, the change in properties is fully reversible upon rehydration. This effect is considered to be associated with increased cross-linking of the collagen molecules from intermolecular hydrogen-bonding where water is replaced with weaker hydrogen-bond forming solvents such as alcohol.

  4. Effectiveness of Lasers in the Treatment of Dentin Hypersensitivity

    PubMed Central

    Asnaashari, Mohammad; Moeini, Masoumeh

    2013-01-01

    Dentin hypersensitivity (DH) is a relatively common painful condition among dental problems. Although many studies have been performed regarding the diagnosis and treatment of DH, dental practitioners are still confused about the definite diagnosis and treatment.The use of lasers as a treatment for dentin hypersensitivity was first introduced in 1985.Laser treatment in dentin hypersensitivity is an interesting and controversial issue and many investigations have been done on its mechanism of action, advantages, and unclear points.The present literature review tries to go over the definition, diagnosis, etiology , predisposing factors, various laser types in the treatment of DH alone or in combination with topical desensitizing agents. Since a certain treatment has not yet introduced for dentin hypersensitivity, a combination of laser therapy and topical desensitizing factors ,can increase the success of the treatment compared with either treatments alone. PMID:25606300

  5. Innovative approaches to regenerate enamel and dentin.

    PubMed

    Chatzistavrou, Xanthippi; Papagerakis, Silvana; Ma, Peter X; Papagerakis, Petros

    2012-01-01

    The process of tooth mineralization and the role of molecular control of cellular behavior during embryonic tooth development have attracted much attention the last few years. The knowledge gained from the research in these fields has improved the general understanding about the formation of dental tissues and the entire tooth and set the basis for teeth regeneration. Tissue engineering using scaffold and cell aggregate methods has been considered to produce bioengineered dental tissues, while dental stem/progenitor cells, which can differentiate into dental cell lineages, have been also introduced into the field of tooth mineralization and regeneration. Some of the main strategies for making enamel, dentin, and complex tooth-like structures are presented in this paper. However, there are still significant barriers that obstruct such strategies to move into the regular clinic practice, and these should be overcome in order to have the regenerative dentistry as the important mean that can treat the consequences of tooth-related diseases.

  6. Effects of dentin depth and cavity configuration on bond strength.

    PubMed

    Yoshikawa, T; Sano, H; Burrow, M F; Tagami, J; Pashley, D H

    1999-04-01

    During polymerization of resin composites, shrinkage stresses compete with resin-dentin bonds in a manner that can cause failure of the bond, depending upon the configuration of the cavity, its depth, and the restorative technique. The hypothesis tested in this study was that the effect of cavity configuration (C) and remaining dentin thickness (RDT) influence resin bond strength to the dentin of Class I cavity floors. The occlusal enamel was ground to expose a flat superficial dentin surface as a control (superficial dentin, C-factor = 1) in human extracted third molars. Cavities 3 mm long x 4 mm wide were prepared to a depth 2 mm below the ground dentin surfaces (deep dentin within cavity floor, C-factor = 3). To assess the relationship between C-factor and RDT, we removed the walls of cavities, making a deep flat surface for bonding (deep dentin, C-factor = 1). The teeth were restored with either Clearfil Liner Bond II (LB II), One-Step (OS), or Super-Bond D Liner (DL), followed by Clearfil Photo Posterior resin composite. After 24 hrs' storage in water, the teeth were sectioned vertically into 3 or 4 slabs (0.7 mm thick) and trimmed for the micro-tensile bond test so that we could determine the strength of the resin bonds to the pulpal floor. All groups gave high bond strengths to superficial dentin, but OS and DL gave significantly lower bond strengths to flat deep dentin when the C-factor was 1. When the C-factor was increased to 3 by the creation of a three-dimensional cavity preparation, the bond strengths of all materials fell (range, 21 to 35%), but the difference was significant (p < 0.05) only with DL. SEM observations of failure patterns showed that specimens with high bond strengths tended to exhibit cohesive failures within the hybrid layer, while specimens exhibiting low bond strengths showed failures at the top of the hybrid layer. Some adhesives do not bond well to deep dentin, making them more susceptible to polymerization shrinkage stress that

  7. Regional variability in the permeability of human dentine.

    PubMed

    Pashley, D H; Andringa, H J; Derkson, G D; Derkson, M E; Kalathoor, S R

    1987-01-01

    This was measured qualitatively by using dyes and quantitatively by hydraulic conductance in dentine discs and crown segments in vitro. Both types of preparation demonstrated large regional differences in permeability, with the highest values at the periphery and the lowest in the centre of the disc or crown. As dentine permeability may vary 3-10-fold across a few millimetres, investigators should use as large a surface area as possible to compensate for these regional differences.

  8. Mesenchymal Dental Pulp Cells Attenuate Dentin Resorption in Homeostasis

    PubMed Central

    Zheng, Y.; Chen, M.; He, L.; Marão, H.F.; Sun, D.M.; Zhou, J.; Kim, S.G.; Song, S.; Wang, S.L.

    2015-01-01

    Dentin in permanent teeth rarely undergoes resorption in development, homeostasis, or aging, in contrast to bone that undergoes periodic resorption/remodeling. The authors hypothesized that cells in the mesenchymal compartment of dental pulp attenuate osteoclastogenesis. Mononucleated and adherent cells from donor-matched rat dental pulp (dental pulp cells [DPCs]) and alveolar bone (alveolar bone cells [ABCs]) were isolated and separately cocultured with primary rat splenocytes. Primary splenocytes readily aggregated and formed osteoclast-like cells in chemically defined osteoclastogenesis medium with 20 ng/mL of macrophage colony-stimulating factor (M-CSF) and 50 ng/mL of receptor activator of nuclear factor κB ligand (RANKL). Strikingly, DPCs attenuated osteoclastogenesis when cocultured with primary splenocytes, whereas ABCs slightly but significantly promoted osteoclastogenesis. DPCs yielded ~20-fold lower RANKL expression but >2-fold higher osteoprotegerin (OPG) expression than donor-matched ABCs, yielding a RANKL/OPG ratio of 41:1 (ABCs:DPCs). Vitamin D3 significantly promoted RANKL expression in ABCs and OPG in DPCs. In vivo, rat maxillary incisors were atraumatically extracted (without any tooth fractures), followed by retrograde pulpectomy to remove DPCs and immediate replantation into the extraction sockets to allow repopulation of the surgically treated root canal with periodontal and alveolar bone–derived cells. After 8 wk, multiple dentin/root resorption lacunae were present in root dentin with robust RANKL and OPG expression. There were areas of dentin resoprtion alternating with areas of osteodentin formation in root dentin surface in the observed 8 wk. These findings suggest that DPCs of the mesenchymal compartment have an innate ability to attenuate osteoclastogenesis and that this innate ability may be responsible for the absence of dentin resorption in homeostasis. Mesenchymal attenuation of dentin resorption may have implications in internal

  9. Morphological effects of MMPs inhibitors on the dentin bonding.

    PubMed

    Li, He; Li, Tianbo; Li, Xiuying; Zhang, Zhimin; Li, Penglian; Li, Zhenling

    2015-01-01

    Matrix metalloproteinases (MMPs) have been studied extensively, and MMP inhibitors have been used as dental pretreatment agents prior to dentin bonding because they reduce collagen fiber degradation and improve bonding strength. However, morphologic characteristics of the collagen network after etching and of the post-adhesive dentin hybrid layers (DHL) after MMP inhibitors pretreatment have not been evaluated. Thus, we investigated demineralized dentin pretreated with chlorhexidine (CHX) and minocycline (MI) in an etch- and -rinse adhesive system with field emission scanning electron microscopy (FESEM) and immuno-gold labeling markers to observe the collagen network and DHL. FESEM revealed after CHX and MI, a demineralized dentin surface and improved collagen network formation, reduced collagen degradation, and distinct gold-labeling signals. Applying adhesive after either MMP inhibitor created a better dentin interface as evidenced by immuno-gold staining, better adhesive penetration, and higher DHL quality. With microtensile bond strength tests (µTBS) we estimated bonding strength using µTBS data. Immediate µTBS was enhanced with MMP inhibitor application to the bonding surface, and the CHX group was significantly different than non-treated etched surfaces, but no significant change was detected in the MI group. Surface micromorphology of the fractured dentin resin restoration showed that the CHX group had a better resin and dentin tube combination. Both MMP inhibitors created uniform resin coverage. Thus, morphologic results and µTBS data suggest that CHX and MI can inhibit MMP activity, improve immediate bonding strength, and enhance dentin bonding stability with an etch- and -rinse adhesive system.

  10. Morphological effects of MMPs inhibitors on the dentin bonding

    PubMed Central

    Li, He; Li, Tianbo; Li, Xiuying; Zhang, Zhimin; Li, Penglian; Li, Zhenling

    2015-01-01

    Matrix metalloproteinases (MMPs) have been studied extensively, and MMP inhibitors have been used as dental pretreatment agents prior to dentin bonding because they reduce collagen fiber degradation and improve bonding strength. However, morphologic characteristics of the collagen network after etching and of the post-adhesive dentin hybrid layers (DHL) after MMP inhibitors pretreatment have not been evaluated. Thus, we investigated demineralized dentin pretreated with chlorhexidine (CHX) and minocycline (MI) in an etch- and -rinse adhesive system with field emission scanning electron microscopy (FESEM) and immuno-gold labeling markers to observe the collagen network and DHL. FESEM revealed after CHX and MI, a demineralized dentin surface and improved collagen network formation, reduced collagen degradation, and distinct gold-labeling signals. Applying adhesive after either MMP inhibitor created a better dentin interface as evidenced by immuno-gold staining, better adhesive penetration, and higher DHL quality. With microtensile bond strength tests (µTBS) we estimated bonding strength using µTBS data. Immediate µTBS was enhanced with MMP inhibitor application to the bonding surface, and the CHX group was significantly different than non-treated etched surfaces, but no significant change was detected in the MI group. Surface micromorphology of the fractured dentin resin restoration showed that the CHX group had a better resin and dentin tube combination. Both MMP inhibitors created uniform resin coverage. Thus, morphologic results and µTBS data suggest that CHX and MI can inhibit MMP activity, improve immediate bonding strength, and enhance dentin bonding stability with an etch- and -rinse adhesive system. PMID:26379873

  11. Characterization of riboflavin-modified dentin collagen matrix.

    PubMed

    Fawzy, A; Nitisusanta, L; Iqbal, K; Daood, U; Beng, L T; Neo, J

    2012-11-01

    Crosslinking is considered a possible approach to increasing the mechanical and structural stability and biodegradation resistance of the dentin collagen matrix. The aim of this study was to investigate the mechanical and chemical variations and collagen degradation resistance associated with crosslinking of the dentin collagen matrix with UVA-activated riboflavin. Dentin collagen matrix specimens were treated with 0.1 and 1% riboflavin for 2 min and photo-activated with 7 mW/cm(2) UVA (368 nm) for 2 min. The structural change of the dentin collagen network with collagenase exposure was investigated by AFM and SEM at different time-points. The variations in surface/bulk mechanical properties and biodegradation resistance were characterized by nano-indentation, conventional mechanical testing, and hydroxyproline liberation at different time-points. Chemical changes associated with riboflavin/collagen-matrix interaction were analyzed by micro-Raman spectroscopy. UVA-activated riboflavin increased the mechanical properties, mechanical stability, and biodegradation resistance of the dentin collagen matrix. Higher collagen-network structural resistance against collagenolytic challenges was found with crosslinking. micro-Raman spectroscopy showed a strong dependency, in both intensity and wave-number, of certain Raman bands (1242-1667 cm(-1)) with crosslinking indicating the collagen/riboflavin interactions. UVA-activated riboflavin (1%) more efficiently crosslinked the dentin collagen matrix within a relatively clinically acceptable time-frame compared with 0.1% riboflavin.

  12. Effects of different desensitizing treatments on root dentin permeability.

    PubMed

    Rosa, Raydsa Raíssa Moura; Calazans, Francielle Karoline Santos; Nogueira, Ruchele Dias; Lancellotti, Ailla Carla Rocha Acosta; Gonçalves, Luciano de Sousa; Geraldo-Martins, Vinícius Rangel

    2016-10-10

    The objective of this study was to evaluate the effects of diode laser and a desensitizing dentifrice on dentin permeability. Fifty-two root dentin fragments were obtained (5 × 5mm) and treated with 24% EDTA gel. The samples were divided into 4 groups (n = 13): G1, control (no treatment); G2, diode laser (λ = 908 nm, 1.5 W, continuous mode, 20s); G3, application of abrasive dentifrice for 1 minute (Elmex Sensitive Professional (International Gaba); and G4, application of abrasive dentifrice for 1 minute followed by irradiation with diode laser. Ten samples per group were immersed in 2% methylene blue solution for 4h. The specimens were washed, longitudinally sectioned, observed under optical microscopy, photographed and assessed based on the degree of dye leakage. The remaining samples were observed under scanning electron microscopy (SEM). The leakage data were subjected to ANOVA test, followed by Tukey's t-test (α = 5%). Groups 2, 3 and 4 showed less dye penetration than the control group (p < 0.05), but were similar among each other. SEM images showed that dentinal tubules were open in G1, and fused and occluded in G2. Group 3 showed dentinal tubules that were occluded by the metal ions from the toothpaste. G4 presented similar characteristics to G3, and the presence of fused dentin. The diode laser and the dentifrice were effective in reducing dentinal permeability, and the combination of the two treatments did not show better results than either one used alone.

  13. Analytical method to estimate resin cement diffusion into dentin

    NASA Astrophysics Data System (ADS)

    de Oliveira Ferraz, Larissa Cristina; Ubaldini, Adriana Lemos Mori; de Oliveira, Bruna Medeiros Bertol; Neto, Antonio Medina; Sato, Fracielle; Baesso, Mauro Luciano; Pascotto, Renata Corrêa

    2016-05-01

    This study analyzed the diffusion of two resin luting agents (resin cements) into dentin, with the aim of presenting an analytical method for estimating the thickness of the diffusion zone. Class V cavities were prepared in the buccal and lingual surfaces of molars (n=9). Indirect composite inlays were luted into the cavities with either a self-adhesive or a self-etch resin cement. The teeth were sectioned bucco-lingually and the cement-dentin interface was analyzed by using micro-Raman spectroscopy (MRS) and scanning electron microscopy. Evolution of peak intensities of the Raman bands, collected from the functional groups corresponding to the resin monomer (C-O-C, 1113 cm-1) present in the cements, and the mineral content (P-O, 961 cm-1) in dentin were sigmoid shaped functions. A Boltzmann function (BF) was then fitted to the peaks encountered at 1113 cm-1 to estimate the resin cement diffusion into dentin. The BF identified a resin cement-dentin diffusion zone of 1.8±0.4 μm for the self-adhesive cement and 2.5±0.3 μm for the self-etch cement. This analysis allowed the authors to estimate the diffusion of the resin cements into the dentin. Fitting the MRS data to the BF contributed to and is relevant for future studies of the adhesive interface.

  14. Methods for Biomimetic Remineralization of Human Dentine: A Systematic Review

    PubMed Central

    Cao, Chris Ying; Mei, May Lei; Li, Quan-Li; Lo, Edward Chin Man; Chu, Chun Hung

    2015-01-01

    This study aimed to review the laboratory methods on biomimetic remineralization of demineralized human dentine. A systematic search of the publications in the PubMed, TRIP, and Web of Science databases was performed. Titles and abstracts of initially identified publications were screened. Clinical trials, reviews, non-English articles, resin-dentine interface studies, hybrid layer studies, hybrid scaffolds studies, and irrelevant studies were excluded. The remaining papers were retrieved with full texts. Manual screening was conducted on the bibliographies of remaining papers to identify relevant articles. A total of 716 studies were found, and 690 were excluded after initial screening. Two articles were identified from the bibliographies of the remaining papers. After retrieving the full text, 23 were included in this systematic review. Sixteen studies used analogues to mimic the functions of non-collagenous proteins in biomineralization of dentine, and four studies used bioactive materials to induce apatite formation on demineralized dentine surface. One study used zinc as a bioactive element, one study used polydopamine, and another study constructed an agarose hydrogel system for biomimetic mineralization of dentine. Many studies reported success in biomimetic mineralization of dentine, including the use of non-collagenous protein analogues, bioactive materials, or elements and agarose hydrogel system. PMID:25739078

  15. Effect of solvents on bonding to root canal dentin.

    PubMed

    Erdemir, Ali; Eldeniz, Ayce Unverdi; Belli, Sema; Pashley, David H

    2004-08-01

    The long-term success of resin cementation of post/cores is likely increased with improvement in resin-root canal dentin bonding. The adverse effect of some irrigation constituents (NaOCl, H2O2) or medications (eugenol) on the bond strengths of resins to dentin have been reported. The purpose of this in vitro study was to evaluate the effect of two gutta-percha solvents (chloroform versus halothane) on microtensile bond strength to root canal dentin. Thirty, extracted, human, single-rooted teeth were instrumented to a #70 file and randomly divided into 3 groups of 10 each. The root canals were treated with water, chloroform, or halothane for 60 s. All root canals were obturated using C&B Metabond. After 24 h of storage in distilled water, serial 1-mm-thick cross-sections were cut and trimmed. Microtensile bond strength to apical, middle, and coronal root canal dentin were measured using an Instron machine. Using pooled data, the results indicated that water-treated roots had significantly higher resin-dentin bond strengths compared with chloroform or halothane treatment groups (control: 23.9 MPa; chloroform: 18.3 MPa; halothane: 17 MPa; p < 0.05). Gutta-percha solvents have an adverse effect on bond strengths of adhesive cements to root canal dentin.

  16. Methods for biomimetic remineralization of human dentine: a systematic review.

    PubMed

    Cao, Chris Ying; Mei, May Lei; Li, Quan-Li; Lo, Edward Chin Man; Chu, Chun Hung

    2015-03-02

    This study aimed to review the laboratory methods on biomimetic remineralization of demineralized human dentine. A systematic search of the publications in the PubMed, TRIP, and Web of Science databases was performed. Titles and abstracts of initially identified publications were screened. Clinical trials, reviews, non-English articles, resin-dentine interface studies, hybrid layer studies, hybrid scaffolds studies, and irrelevant studies were excluded. The remaining papers were retrieved with full texts. Manual screening was conducted on the bibliographies of remaining papers to identify relevant articles. A total of 716 studies were found, and 690 were excluded after initial screening. Two articles were identified from the bibliographies of the remaining papers. After retrieving the full text, 23 were included in this systematic review. Sixteen studies used analogues to mimic the functions of non-collagenous proteins in biomineralization of dentine, and four studies used bioactive materials to induce apatite formation on demineralized dentine surface. One study used zinc as a bioactive element, one study used polydopamine, and another study constructed an agarose hydrogel system for biomimetic mineralization of dentine. Many studies reported success in biomimetic mineralization of dentine, including the use of non-collagenous protein analogues, bioactive materials, or elements and agarose hydrogel system.

  17. Inhibition of endogenous dentin matrix metalloproteinases by ethylenediaminetetraacetic acid

    PubMed Central

    Thompson, J.M.; Agee, K.; Sidow, S.; McNally, K.; Lindsey, K.; Borke, J.; Elsalanty, M.; Tay, F.R.; Pashley, D.H.

    2011-01-01

    Introduction Endogenous dentin matrix metalloproteinases (MMPs) contribute to extracellular collagen matrix degradation in hybrid layers following adhesive dentin bonding procedures. Endodontic irrigants, including chlorhexidine (CHX) and ethylenediaminetetraacetic acid (EDTA) may help protect the hybrid layer from this process. The objective of the present study was to determine the exposure time necessary for EDTA to inactivate endogenous MMP activity in human dentin. Methods Dentin beams (2×1×3 mm) were prepared from mid-coronal dentin of extracted third molars. The beams were demineralized in 10 wt% phosphoric acid which also activated endogenous MMPs, and were divided into four experimental groups based on exposure time to 17% EDTA (0, 1, 2 or 5 min). A generic colorimetric MMP assay measured MMP activity via absorbance at 412 nm. Data were evaluated by Kruskal Wallis ANOVA, followed by Dunn’s pair-wise comparisons at α = 0.05. Results All exposure times resulted in significant inhibition (P<0.001) compared to unexposed controls. Specifically, percent inhibition for 1-, 2-, and 5-minute exposure times were 55.1±21.5%, 72.8±11.7%, and 74.7±19.7%, respectively. Conclusions 17% EDTA significantly inhibits endogenous MMP activity of human dentin within 1–2 min. This may minimize hybrid layer degradation following resin bonding procedures in the root canal space. PMID:22152622

  18. The effects of host derived metalloproteinases on dentin bond and the role of MMPs inhibitors on dentin matrix degradation

    PubMed Central

    LONGHI, M.; CERRONI, L.; CONDÒ, S.G.; ARIANO, V.; PASQUANTONIO, G.

    2014-01-01

    SUMMARY Objectives. The work has the objective to analyze the literature on the degradation of the adhesive interface. In particular the study is focused on the role of the metalloproteinase in the hydrolytic degradation of collagen matrix in the bonded interface. The survey will concern also the latest innovations to improve and increase the link between dentin and the restorative materials through the MMPs inhibitors. Methods. The research has been carried out in the MEDLINE database by choosing keywords as “metalloproteinases” and “dentin bond” and “degradation”. In vitro studies were included in the research, excluding studies with no human and deciduous teeth. Language was limited to English. Results. The collagenolytic enzymes in mineralized dentin have been demonstrated to have an important role in dental hard tissue pathologies, including the degradation of the hybrid layer. Conclusion. The preservation of the collagen matrix integrity is a key issue in the attempts to improve the dentin bonding durability. PMID:25992261

  19. Adhesive bond strengths to enamel and dentin using recommended and extended treatment times.

    PubMed

    Kimmes, Nicole S; Barkmeier, Wayne W; Erickson, Robert L; Latta, Mark A

    2010-01-01

    This study examined the effect of different enamel and dentin conditioning times on the shear bond strength of a resin composite using etch-and-rinse and self-etch adhesive systems. Shear bond strengths were determined following treatment of flat ground human enamel and dentin surfaces (4000 grit) with 11 adhesive systems: 1) AdheSE One Viva Pen-(ASE), 2) Adper Prompt L-Pop-(PLP), 3) Adper Single Bond Plus-(SBP), 4) Clearfil SE Bond-(CSE), 5) Clearfil S3 Bond-(CS3), 6) OptiBond All-In-One-(OBA), 7) OptiBond Solo Plus-(OBS), 8) Peak SE-(PSE), 9) Xeno IV-(X4), 10) Xeno V-(X5) and 11) XP Bond-(XPB) using recommended treatment times and an extended treatment time of 60 seconds (n = 10/group). Composite (Z100) to enamel and dentin bond strengths (24 hours) were determined using Ultradent fixtures and debonded with a crosshead speed of 1 mm/minute. The data were analyzed with a three-way Analysis of Variance (ANOVA) and Fisher's LSD post hoc test. The highest shear bond strengths (MPa) to enamel were achieved by the three etch-and-rinse systems at both the recommended treatment time (SBP-40.5 +/- 6.1; XPB-38.7 +/- 3.7; OBS- 35.2 +/- 6.2) and the extended treatment time (SBP-44.5 +/- 8.1; XPB-40.9 +/- 5.7; OBS-35.0 +/- 4.5). Extending the enamel treatment time did not produce a significant change (p > 0.05) in bond strength for the 11 adhesive systems tested. OBS generated the highest (46.2 +/- 7.9) bond strengths to dentin at the recommended treatment time. At the extended treatment time X4 (42.2 +/- 11.7), PSE (42.1 +/- 9.7) and OBS (41.4 +/- 8.0) produced the highest bond strengths to dentin. The bond strength change between recommend and extended treatment times was significant (p < 0.05) for PSE, but the other 10 systems did not exhibit any significant change.

  20. BOND STRENGTH OF RESIN MODIFIED GLASS IONOMER CEMENT TO PRIMARY DENTIN AFTER CUTTING WITH DIFFERENT BUR TYPES AND DENTIN CONDITIONING

    PubMed Central

    Nicoló, Rebeca Di; Shintome, Luciana Keiko; Myaki, Silvio Issáo; Nagayassu, Marcos Paulo

    2007-01-01

    The aim of this in vitro study was to evaluate the effect of different bur types and acid etching protocols on the shear bond strength (SBS) of a resin modified glass ionomer cement (RM-GIC) to primary dentin. Forty-eight clinically sound human primary molars were selected and randomly assigned to four groups (n=12). In G1, the lingual surface of the teeth was cut with a carbide bur until a 2.0-mm-diameter dentin area was exposed, followed by the application of RM-GIC (Vitremer – 3M/ESPE) prepared according to the manufacturer’s instructions. The specimens of G2, received the same treatment of G1, however the dentin was conditioned with phosphoric acid. In groups G3 and G4 the same procedures of G1 and G2 were conducted respectively, nevertheless dentin cutting was made with a diamond bur. The specimens were stored in distilled water at 37°C for 24h, and then tested in a universal testing machine. SBS. data were submitted to 2-way ANOVA (= 5%) and indicated that SBS values of RM-GIC bonded to primary dentin cut with different burs were not statistically different, but the specimens that were conditioned with phosphoric acid presented SBS values significantly higher that those without conditioning. To observe micromorphologic characteristics of the effects of dentin surface cut by diamond or carbide rotary instruments and conditioners treatment, some specimens were examined by scanning electron microscopy. Smear layer was present in all specimens regardless of the type of rotary instrument used for dentin cutting, and specimens etched with phosphoric acid presented more effective removal of smear layer. It was concluded that SBS of a RM-GIC to primary dentin was affected by the acid conditioning but the bur type had no influence. PMID:19089179

  1. The induction of dentin bridge-like structures by constructs of subcultured dental pulp-derived cells and porous HA/TCP in porcine teeth.

    PubMed

    Ando, Yusuke; Honda, Masaki J; Ohshima, Hayato; Tonomura, Akiko; Ohara, Takayuki; Itaya, Toshimitsu; Kagami, Hideaki; Ueda, Minoru

    2009-02-01

    The purpose of this study was to investigate dentin-bridge formation in teeth following the transplantation of dental pulp-derived cells seeded on hydroxyapatite/tricalcium phosphate (HA/TCP) scaffolds. The dental pulp tissues were removed from the extracted first molar teeth of miniature pigs and single cell populations were subcultured. Second-passage cells that had alkaline phosphatase activity were combined with scaffolds. Cell-scaffold constructs were placed in contact with the exposed pulp tissue. The dimensions of the exposed pulp site were approximately 1-2.5 mm in diameter and 2-3 mm in depth from the tooth surface. After placing the constructs, the tooth was restored with composite resin. Six weeks after transplantation, hard tissue formation was observed on the pulp tissue in histology. Dentinal tubule-like structures were observed in most of the hard tissue generated, and columnar cells, which showed positive immunoreactions with dentin sialoprotein (DSP) and heat shock protein (HSP)-25, were aligned beneath the hard tissues. When only scaffolds were placed on the pulp tissues, particles of hard tissue were formed, however dentinal tubule-like structures and odontoblasts were not observed despite the formation of hard tissue. In conclusion, the implantation of dental pulp constructs into pulp exposed stimulates the formation of calcified dentin-like structures.

  2. The effect of IDS (immediate dentin sealing) on dentin bond strength under various thermocycling periods

    PubMed Central

    Leesungbok, Richard; Lee, Sang-Min; Park, Su-Jung; Lee, Suk-Won; Lee, Do Yun; Im, Byung-Jin

    2015-01-01

    PURPOSE The purpose of this study was to find out the effect of immediate dentin sealing (IDS) on bond strength of ceramic restoration under various thermocycling periods with DBA (dentin bonding agent system). MATERIALS AND METHODS Fifty freshly extracted human mandibular third molars were divided into 5 groups (1 control and 4 experimental groups) of 10 teeth. We removed enamel layer of sound teeth and embedded them which will proceed to be IDS, using All Bond II. A thermocycling was applied to experimental groups for 1, 2, 7, 14 days respectively and was not applied to control group. IPS Empress II for ceramic was acid-etched with ceramic etchant (9.5% HF) and silane was applied. Each ceramic disc was bonded to specimens with Duo-link, dual curable resin cement by means of light curing for 100 seconds. After the cementation procedures, shear bond strength measurement and SEM analysis of the fractured surface were done. The data were analyzed with a one-way ANOVA and Tukey multiple comparison test (α=.05). RESULTS There were no statistically significant differences between 4 experimental groups and control group, however the mean value started to decrease in group 7d, and group 14d showed the lowest mean bond strength in all groups. Also, group 7d and 14d showed distinct exposed dentin and collapsed hybrid layer was observed in SEM analysis. CONCLUSION In the present study, it can be concluded that ceramic restorations like a laminate veneer restoration should be bonded using resin cement within one week after IDS procedure. PMID:26140174

  3. Influence of Laser Irradiation Low Intensity on Reparative Osteogenesis and Angiogenesis Under Transosseous Osteosynthesis

    PubMed Central

    Iryanov, Yuri Mikhailovich

    2016-01-01

    Introduction: The use of non-medicinal facilities of correcting processes for various pathological conditions is one of the most urgent problems of modern medicine. The purpose of the work is to study the efficiency of low-intensive of infrared laser irradiation in promoting reparative osteogenesis and angiogenesis during fracture treatment under transosseous osteosynthesis with a qualitative and quantitative morphological analysis. Methods: A tibial fracture was modeled experimentally in rats from control and experimental groups, then repositioning and fixation of fragments performed. The fracture zone of the experimental group animals was exposed to pulsed infrared laser irradiation of low intensity. The animals from control group underwent irradiation simulation. The operated bones were investigated using x-ray, light and electron microscopy, x-ray electron probe microanalysis. Results: The sessions of laser irradiation decreased inflammatory process severity, activated fibrillogenesis and angiogenesis, accelerated the compactization of newly formed bone tissue, and enhanced its maturity degree while primary healing occurred in the fracture. Conclusion: Laser therapy of fracture zone ensures the formation of regenerated bone and fragment union within earlier periods. PMID:28144431

  4. [Reparative regeneration of connective tissue structures of mammals under antioxidant therapy conditions].

    PubMed

    Belova, S V; Norkin, I A; Puchin'ian, D M

    2015-01-01

    The influence of administration of the antioxidant complexes consisting of nonenzymatic antioxidants (alpha-tocopherol acetate preparation) and enzymatic antioxidants (ceruloplasmin) has been studied in rabbits with experimental arthritis. The introduction of alpha-tocopherol acetate (at a daily dose of 4 mg) improved metabolic processes in the organism (decreased in the rate of erythrocyte precipitation, total leukocytes and their stub and segmental forms; increased in erythrocyte count; reduced the glycosaminoglycan content as determined from uronic acid and hexose level; decreased ceruloplasmin activity and malonic dialdehyde level ion blood serum, all at p < 0.05), thus favoring reduction in the total activity of the inflammatory process as judged from hematological and biochemical data. Intra-articular introduction of ceruloplasmin (1.5 mg/kg, once per week) positively influenced the state of joint structures in damaged knee joints of the animals: decreased the activity of ceruloplasmin (from 5.28 ± 0.06 to 3.94 ± 0.01 AU), and malonic dialdehyde level (0.18 ± 0.02 to 0.08 ± 0.01 μM) in the articular fluid (all at p < 0.05). These effects are probably related to the elimination of inefficiency of the antioxidant system in the synovial medium, thus preventing inflammatory destruction of articular tissues, hindering the development of pannus, and assisting the activation of reparative regeneration of connective tissue structures.

  5. Functional and pharmacological characterization of a VEGF mimetic peptide on reparative angiogenesis.

    PubMed

    Finetti, Federica; Basile, Anna; Capasso, Domenica; Di Gaetano, Sonia; Di Stasi, Rossella; Pascale, Maria; Turco, Caterina Maria; Ziche, Marina; Morbidelli, Lucia; D'Andrea, Luca Domenico

    2012-08-01

    Vascular endothelial growth factor (VEGF) is the main regulator of physiological and pathological angiogenesis. Low molecular weight molecules able to stimulate angiogenesis have interesting medical application for example in regenerative medicine, but at present none has reached the clinic. We reported that a VEGF mimetic helical peptide, QK, designed on the VEGF helix sequence 17-25, is able to bind and activate the VEGF receptors, producing angiogenesis. In this study we evaluate the pharmacological properties of peptide QK with the aim to propose it as a VEGF-mimetic drug to be employed in reparative angiogenesis. We show that the peptide QK is able to recapitulate all the biological activities of VEGF in vivo and on endothelial cells. In experiments evaluating sprouting from aortic ring and vessel formation in an in vivo angiogenesis model, the peptide QK showed biological effects comparable with VEGF. At endothelial level, the peptide up-regulates VEGF receptor expression, activates intracellular pathways depending on VEGFR2, and consistently it induces endothelial cell proliferation, survival and migration. When added to angiogenic factors (VEGF and/or FGF-2), QK produces an improved biological action, which resulted in reduced apoptosis and accelerated in vitro wound healing. The VEGF-like activity of the short peptide QK, characterized by lower cost of production and easier handling compared to the native glycoprotein, suggests that it is an attractive candidate to be further developed for application in therapeutic angiogenesis.

  6. What dyadic reparation is meant to do: An association with infant cortisol reactivity

    PubMed Central

    Müller, Mitho; Zietlow, Anna-Lena; Tronick, Ed; Reck, Corinna

    2015-01-01

    Background The latency to reparation of interactive mismatches (interactive repair) is argued to regulate infant distress on a psychobiological level and maternal anxiety disorders might impair infant regulation. Sampling & Methods N = 46 dyads (n = 19 mothers with an anxiety disorder, n = 27 controls) were analyzed for associations between interactive repair and infant cortisol reactivity during the Face-to-Face-Still-Face 3–4 months postpartum. Missing cortisol values (n = 16) were imputed. Analyses were conducted on both the original and the pooled imputed data. Results Interactive repair during the reunion episode was associated with infant cortisol reactivity (original data: p < .01; pooled data: p < .01), but not maternal anxiety disorder (p > .23). Additional stepwise regression analyses found that latency to repair during play (p < .01), an interaction between distress during the first trimester of pregnancy and latency to repair during reunion (p < .01) and infant self-comforting behaviors during the reunion episode (p = .04) made independent contributions to cortisol reactivity in the final regression model. Conclusions & Limitations This is the first study demonstrating that interactive repair is related to infant psychobiological stress reactivity. The lack of a relation to maternal anxiety disorder may be due to the small sample size. However, this result emphasizes that infants respond to what they experience and not to the maternal diagnostic category. PMID:26550998

  7. Shear bond strength of partial coverage restorations to dentin

    PubMed Central

    Agustín-Panadero, Rubén; Alonso-Pérez-Barquero, Jorge; Fons-Font, Antonio; Solá-Ruíz, María-Fernanda

    2015-01-01

    Background When partial coverage restorations (veneers, inlays, onlays…) must be cemented to dentin, bond strength may not reach the same predictable values as to enamel. The purpose of this study was: 1. To compare, with a shear bond test, the bond strength to dentin of a total-etch and a self-etching bonding agent. 2. To determine whether creating microretention improves the bond strength to dentin. Material and Methods Two bonding agents were assayed, Optibond FL® (Kerr), two-bottle adhesive requiring acid etching, and Clearfil SE Bond® (Kuraray), two-bottle self-etching adhesive. The vestibular, lingual, distal and mesial surfaces of ten molars (n=10) were ground to remove all enamel and 40 ceramic samples were cemented with Variolink II® (Ivoclar Vivadent). Half the molar surfaces were treated to create round microretention (pits) to determine whether these could influence bond strength to dentin. The 40 molar surfaces were divided into four groups (n=10): Optibond FL (O); Clearfil SE (C); Optibond FL + microretention (OM); Clearfil SE + micro retention (CM). A shear bond test was performed and the bond failures provoked examined under an optical microscope. Results O=35.27±8.02 MPa; C=36.23±11.23 MPa; OM=28.61±6.27 MPa; CM=27.01±7.57 MPa. No statistically significant differences were found between the adhesives. Optibond FL showed less statistical dispersion than Clearfil SE. The presence of microretentions reduced bond strength values regardless of the adhesive used. Conclusions 1. Clearfil SE self-etching adhesive and Optibond FL acid-etch showed adequate bond strengths and can be recommended for bonding ceramic restorations to dentin. 2. The creation of round microretention pits compromises these adhesives’ bond strength to dentin. Key words:Adhesion to dentin, bonding agent, Optibond FL, Clearfil SE, microretention, shear bond test. PMID:26330937

  8. Influence of handpiece maintenance sprays on resin bonding to dentin

    PubMed Central

    Sugawara, Toyotarou; Kameyama, Atsushi; Haruyama, Akiko; Oishi, Takumi; Kukidome, Nobuyuki; Takase, Yasuaki; Tsunoda, Masatake

    2010-01-01

    Objective To investigate the influence of maintenance spray on resin bonding to dentin. Materials and methods The crown of extracted, caries-free human molars was transversally sectioned with a model trimmer to prepare the dentin surfaces from mid-coronal sound dentin, and then uniformly abraded with #600 silicon carbide paper. The dentin surfaces were randomly divided into three groups: oil-free spray group where maintenance cleaner for air bearing handpieces was sprayed onto the dentin surface for 1 s and rinsed with water spray for 30 s; oil-containing spray group where maintenance cleaner for micro motor handpieces was sprayed onto the dentin surface for 1 s and rinsed with water spray for 30 s; and control group where the surface was rinsed with water spray for 30 s and then air-dried. These surfaces were then bonded with Clearfil SE Bond (Kuraray Medical), and resin composite (Clearfil AP-X, Kuraray Medical) build-up crowns were incrementally constructed on the bonded surfaces. After storage for 24 h in 37°C water, the bonded teeth were sectioned into hour-glass shaped slices (0.7-mm thick) perpendicular to the bonded surfaces. The specimens were then subjected to microtensile bond strength (μTBS) testing at a crosshead speed of 1.0 mm/min. Data were analyzed with one-way ANOVA and the Tukey-Kramer test. Results Maintenance spray-contaminated specimens (oil-free and oil-containing spray groups) showed significantly lower μTBS than control specimens (P < 0.05). However, there was no significant difference between the spray-contaminated groups (P > 0.05). Conclusion Maintenance spray significantly reduces the bond strength of Clearfil SE Bond to dentin. PMID:23662078

  9. Inhibition of dentin demineralization by fluoride in vitro.

    PubMed

    ten Cate, J M; Damen, J J; Buijs, M J

    1998-01-01

    Compared with the knowledge accumulated on enamel-fluoride interactions, relatively little data is available regarding fluoride effects on dentin. This applies to both laboratory and clinical studies into the efficacy of fluoride schemes for the prevention of root surface caries. This study aimed to determine the effects of fluoride and pH on the demineralization of dentin, such as to provide information necessary to develop preventive programmes. Bovine dentin blocks were subjected to undersaturated calcium- and phosphate-containing solutions in the pH range 4.0-6.0 with fluoride added at concentrations between 0.5 and 10 ppm. Non-fluoride solutions served as controls. Mineral loss was assessed chemically and by transversal microradiography. Comparisons were made with similar studies on enamel demineralization. The results showed that demineralization of dentin depends on both pH and fluoride concentration in the demineralizing solution. Inhibition of demineralization that could be relevant from a clinical point of view was found at fluoride values 5-10 times the corresponding values for enamel. Also rapid depletion of fluoride from the solutions was observed, indicating the high uptake capacity of dentin for fluoride. Lesion depth depended on pH of the solution while the fluoride levels were associated with the surface layer, both in mineral content and depth. For dentin we propose a demineralization mechanism where acid penetrates rapidly into the tissue, presumably through the tubules, after which the released calcium and phosphate is partly trapped by the inward diffusing fluoride. This leads to the formation of a surface layer, which may even be hypermineralized compared to sound dentin.

  10. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession.

  11. Effects of air-drying in vitro on human dentine permeability.

    PubMed

    Pashley, D H; Stewart, F P; Galloway, S E

    1984-01-01

    The effects of evaporation produced by air blasts of 0, 0.5, 2 or 5 min to dentine in vitro were evaluated by measuring dentine hydraulic conductance before and after each trial. When the tubules were filled with water, even prolonged evaporation had no effect on dentine permeability. Tubules filled with physiological salt solution produced a time-dependent decrease in dentine permeability. Tubules filled with 1.5 per cent albumin in water gave the largest reductions in dentine permeability. These effects were more marked in unetched as opposed to acid-etched dentine. The results suggest that part of the reduction in dentine sensitivity produced clinically by prolonged air blasts may be due to precipitation of organic and inorganic constituents of dentinal fluid at the surface.

  12. Determination of elastic modulus of the components at dentin-resin interface using the ultrasonic device.

    PubMed

    Watanabe, Tamayo; Miyazaki, Masashi; Inage, Hirohiko; Kurokawa, Hiroyasu

    2004-09-01

    The purpose of this study was to determine the elastic moduli of the components at resin-dentin interface with the use of an ultrasonic device. Dentin plates were obtained from freshly extracted bovine incisors with a shape in rectangular form. Resin composites and bonding agents were polymerized and trimmed in the same shape as the dentin specimens. The ultrasonic equipment employed in this study was comprised of a Pulser-Receiver, transducers, and an oscilloscope. Each elastic modulus was determined by measuring the longitudinal and shear wave sound velocities. The mean elastic modulus of mineralized dentin was 17.4 GPa, while that of demineralized dentin was 1.4 GPa. When the demineralized dentin was immersed in bonding agents, the elastic modulus changed to 3.7-4.7 GPa, and these values were significantly higher than those of demineralized dentin. A gradient in elastic modulus was detected as the analysis shifted from the dentin side to the resin composite.

  13. [The effect of Kaviner and the smear layer on dentin permeability of permanent teeth in children].

    PubMed

    Tadmiscija, H; Kobaslija, S; Ganibegović, M; Jusufagić, H; Huseinbegović, A

    1996-01-01

    The dentin permeability is defined as a moving of fluid, of chemical substances and microbial products as well through the dentin. The clinical protection of children permanent teeth in other words the protection of pulp-dentin complex after their preparation makes a big problem into the restorative stomatology. Caviner is one of the newer means which is used in the protection of pulp-dentin complex which represents the components of powder dispersing within the ethyl-acetate mixture of polystirol. The important variable in this study is the presence or absence of smearing layer which has the important influence onto the dentin permeability. In order to confirm the Caviner and smearing layer working onto the dentin permeability of the children permanent teeth in vitro experiment was designed. We used for it the dentin disks made of the intact first premolar, extracted because of orthodontic reasons at the ten years old children. They were put into the split chamber which represents a part of apparatus made at our Faculty, which is, in fact, a modified apparatus which was formed by prof. D.H. Pashley (Georgia, USA), and it is used for measuring of dentin permeability with the help of hydraulic conductance (Lp) of dentin. The dentin permeability is expressed by the hydraulic conductance term, but the measures are still expressed as the Lp percentage maximum because of better survey of results. Comparing the obtained results with the other authors results we have come to the similar conclusions, and that is in fact, that the smearing layer significantly reduces the dentin permeability, and that the Caviner, as the other layners, reduces the dentin permeability. If we compare the reduction of dentin permeability at the dentin covered with the smearing layer and with the Caviner, it has been noticed that the smearing layer reduces more significantly. It should be accented that the Caviner reduces the dentin permeability less than the most earlier researched means for

  14. Dentin tubule numerical density variations below the CEJ

    PubMed Central

    Komabayashi, T.; Nonomura, G.; Watanabe, L.G.; Marshall, G.W.; Marshall, S.J.

    2008-01-01

    Aim To evaluate dentin tubule numerical density variations below the CEJ. Methodology Three human non-carious permanent canines were sectioned parallel to the CEJ to obtain dentin disks 1 mm thick whose surfaces were 1 mm and 2 mm below the CEJ. Each disk was sectioned into quarters resulting in four segment locations: facial, lingual, mesial, and distal. The outer (PDL side) and inner (pulp side) surfaces of the specimens were shaped to expose dentin with SiC papers and polished. Numerical tubule density was determined from SEM images. All data were statistically analyzed using a three-way ANOVA. Results The dentin tubule density (number/mm2) ranged from 13,700 to 32,300. Dentin tubule density was relatively uniform at 1 and 2 mm below the CEJ and increased by a factor of about two from the outer to the inner surface, which was significantly different (P<0.0001). Conclusions The tubule density variations at the cervical root did not present the marked changes. PMID:18786756

  15. Structural modifications induced in dentin by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-12-01

    The structural and chemical modifications induced in dentin by ultrafast laser ablation were studied. The laser experiments were performed with a Yb:KYW chirped-pulse-regenerative amplification laser system (560-fs pulse duration, 1030-nm radiation wavelength), fluences in the range 2 to 14 J/cm2, 1-kHz pulse repetition rate, and 5-mm/s scanning speed. The ablation surfaces were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The ablation surfaces produced with 2 J/cm2 presented an irregular morphology with exposed dentinal tubules and no evidence of thermal effects. For 7 and 14 J/cm2, the ablation surfaces were covered by a layer of redeposited ablation debris, consisting mainly of amorphous calcium phosphate. This layer is weakly adherent to the underlying tissue and can be easily removed by ultrasonication, revealing a surface with a morphology similar to the one obtained with 2 J/cm2. The constitution of the dentin ablation surfaces is similar to the constitution of pristine dentin, showing that, within this fluence range, the laser treatment does not significantly modify the structure and constitution of dentin. The results achieved suggest an ablation mechanism where collagen is preferentially decomposed by the laser radiation, reducing the tissue cohesive strength and leading, ultimately, to its ablation.

  16. Substitution of bovine dentine sialoprotein with chondroitin sulfate glycosaminoglycan chains.

    PubMed

    Sugars, Rachael V; Olsson, Marie-Louise; Waddington, Rachel; Wendel, Mikael

    2006-02-01

    Dentine sialoprotein (DSP) represents 5-8% of all non-collagenous proteins present in the tooth, but, together with dentine phosphoprotein, has been shown to be vital for correct tooth formation. Recently, the existence of a highly glycosylated form of porcine DSP has been reported and it was shown to possess glycosaminoglycan (GAG) chains. The current investigation confirms that this is also the case for bovine DSP and has further characterized these carbohydrates. Dentine sialoprotein was purified from bovine dentine extracts by anion exchange chromatography and identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), western blotting, and mass spectroscopy. An increase in molecular mass was observed, from 120 kDa to greater than 250 kDa, with a corresponding rise in anionic strength. Cellulose acetate electrophoresis and western blotting indicated the presence of chondroitin sulfate GAG chains within these dentine fractions. Further examination using sequential digestion with chondroitinase AC and N-glycosidase cleaved the samples first to 95 kDa and then to 80 kDa, respectively, confirming a high level of glycosylation. These results support the classification of bovine DSP as a proteoglycan, and that the carbohydrate substitutions may contribute to the functional properties of DSP.

  17. EPR properties of synthetic apatites, deorganified dentine, and enamel.

    PubMed

    Kenner, G H; Haskell, E H; Hayes, R B; Baig, A; Higuchi, W I

    1998-05-01

    Electron paramagnetic resonance spectroscopy (EPR) was used to study synthetic hydroxyapatite and approximately 1, 2, and 6% synthetic carbonated apatites, deorganified dentine, and enamel. The carbonated apatites were synthesized by hydrolysis of dicalcium phosphate. Comparisons were made with spectra from enamel and deorganified dentine. Microwave power saturation and dose responses were determined for the synthetic materials. The Marquardt version of the Levenberg decomposition method was used to extract individual signals from the apatite data. Two samples of dentine were irradiated with 25 and 100 Gy, respectively, from a 60Co source. The first sample was then deorganified at 200 degreesC using the Soxhlet extraction technique. A third sample was irradiated with 100 Gy after deorganification. The resulting EPR spectra were then compared. It was determined that the dosimetric signal of 2% synthetic carbonated apatite was approximately the same as that of enamel. It was also verified that the dosimetric signal saturates at about 2% in synthetic carbonated apatites. The study established that the precenters responsible for the dosimetric signal (g perpendicular = 2.0018, g parallel = 1.9985) are preferentially concentrated in the surface-accessible region of the mineral component, as shown by the approximately 80% attenuation of the dosimetric signal in dentine following deorganification. The precenters responsible are not destroyed by the deorganification since the magnitude of the dosimetric signal from the dentine specimen irradiated following deorganification was approximately twice that of the comparable untreated, irradiated sample. Finally, the dose response of 2 and 6% synthetic carbonated apatites was determined.

  18. Eradication of Enterococcus faecalis Biofilms on Human Dentin

    PubMed Central

    Rosen, Eyal; Tsesis, Igor; Elbahary, Shlomo; Storzi, Nimrod; Kolodkin-Gal, Ilana

    2016-01-01

    Objectives: This work assesses different methods to interfere with Enterococcus faecalis biofilms formed on human dentin slabs. Methods: First, methods are presented that select for small molecule inhibitors of biofilm targets using multi-well polystyrene biofilm plates. Next, we establish methodologies to study and interfere with biofilm formation on a medically relevant model, whereby biofilms are grown on human root dentin slabs. Results: Non-conventional D-amino acid (D-Leucine) can efficiently disperse biofilms formed on dentin slabs without disturbing planktonic growth. Cation chelators interfere with biofilm formation on dentin slabs and polystyrene surfaces, and modestly impact planktonic growth. Strikingly, sodium hypochlorite, the treatment conventionally used to decontaminate infected root canal systems, was extremely toxic to planktonic bacteria, but did not eradicate biofilm cells. Instead, it induced a viable but non-culturable state in biofilm cells when grown on dentin slabs. Conclusion: Sodium hypochlorite may contribute to bacterial persistence. A combination of the methods described here can greatly contribute to the development of biofilm inhibitors and therapies to treat Enterococcus faecalis infections formed in the root canal system. PMID:28082955

  19. Dentine hypersensitivity: a review of its aetiology, pathogenesis and management.

    PubMed

    Sykes, L M

    2007-03-01

    Dentine hypersensitivity (DH) is defined as pain arising from exposed dentine and represents a distinct clinical entity. Reported cases are increasing particularly among the younger age groups and are thought to be due to acidogenic diets, destructive habits, poor tooth brushing techniques, and the increased use of tooth whitening products. Dentine exposure may be due to a number of processes, both physical and chemical, that lead to either loss of enamel/ cementum or loss of gingival tissue. These causative factors seldom act in isolation and include erosion, abrasion, attrition, abfraction, bruxing, bleaching, medication, ageing, genetic conditions, gingival recession, and periodontal disease or procedures. There are diverse range of treatment products available, which aim at either occluding the dentinal tubules or blocking the neural transmission from the pulp. Most reversible options make use of chemical agents such as fluorides, oxalate, strontium or potassium salts, or dentine-bonding agents. Non-reversible options should only be employed after one or more of the reversible options have been attempted. These usually involve placement of permanent restorations, occlusal adjustments or periodontal flap surgery. Careful diagnosis, patient counseling and management strategies are crucial to the success of any intervention.

  20. Machining human dentin by abrasive water jet drilling.

    PubMed

    Kohorst, Philipp; Tegtmeyer, Sven; Biskup, Christian; Bach, Friedrich-Wilhelm; Stiesch, Meike

    2014-01-01

    The aim of this experimental in-vitro study was to investigate the machining of human dentin using an abrasive water jet and to evaluate the influence of different abrasives and water pressures on the removal rate. Seventy-two human teeth had been collected after extraction and randomly divided into six homogeneous groups (n=12). The teeth were processed in the area of root dentin with an industrial water jet device. Different abrasives (saccharose, sorbitol, xylitol) and water pressures (15 or 25 MPa) were used in each group. Dimensions of dentin removal were analysed using a stripe projection microscope and both drilling depth as well as volume of abrasion were recorded. Morphological analyses of the dentin cavities were performed using scanning electron microscopy (SEM). Both drilling depth and volume of abrasion were significantly influenced by the abrasive and the water pressure. Depending on these parameters, the drilling depth averaged between 142 and 378 μm; the volume of abrasion averaged between 0.07 and 0.15 mm3. Microscopic images revealed that all cavities are spherical and with clearly defined margins. Slight differences between the abrasives were found with respect to the microroughness of the surface of the cavities. The results indicate that abrasive water jet machining is a promising technique for processing human dentin.

  1. X-ray microanalysis of dentin: a review

    SciTech Connect

    Hals, E.; Tveit, A.B.; Totdal, B.

    1988-03-01

    The aim of this review was to present a condensed summary of the literature on X-ray microanalysis of dentin, including both energy-dispersive (EDS) and wavelength-dispersive (WDS) analysis. Estimations of concentrations by XMA of dentin should be regarded as semiquantitative values. The Ca level in rat odontoblasts was elevated in the secreting end of the cell body. In predentin Ca accumulated at a concentration of 2% that of mineralized dentin. In coronal dentin the peritubular areas were hypermineralized (Ca, P, Mg). Primary caries lesions showed a decrease of Ca, P, Mg and Cl, and usually an increase of S and Zn. The mineralized surface often present contained especially high concentrations of F and K. Considerable uptake of various ions in cavity walls exposed to filling materials was assessed: from silver amalgam, Zn and Sn, from silicate cement and glassionomer cement F, Al and Zn, and from zinc oxide-eugenol cement, Zn. The highest F concentrations following topical application were found with solutions of TiF4 and with the varnishes Duraphat and Fluor Protector. Dentin wall lesions adjacent to amalgam fillings exhibited considerably reduced Ca and P values, but concomitantly considerable amounts of Zn and Sn, that explained the increased radiopacity seen in some microradiographs. 84 references.

  2. Effects of direct and indirect bleach on dentin fracture toughness.

    PubMed

    Tam, L E; Noroozi, A

    2007-12-01

    There are concerns that tooth-whitening procedures irreversibly damage tooth structure. We investigated the hypothesis that dental bleaches significantly affect dentin structural integrity. The objective was to evaluate the effects of peroxide bleaches on dentin fracture toughness. Compact test specimens, composed of human dentin, were used (n = 10/group). Bleach (16% or 10% carbamide peroxide or 3% hydrogen peroxide) or control material, containing 0.1% sodium fluoride, was applied directly or indirectly to dentin through enamel (6 hrs/day) for 2 or 8 weeks. Fracture toughness results were analyzed by ANOVA and Fisher's LSD test (p < 0.05). There were significant decreases in mean fracture toughness after two- and eight-week direct (19-34% and 61-68%, respectively) and indirect (up to 17% and 37%, respectively) bleach application. The in vitro reduction in dentin fracture toughness caused by the application of peroxide bleaches was greater for the direct application method, longer application time, and higher bleach concentration.

  3. The fracture properties and toughening mechanisms of bone and dentin

    NASA Astrophysics Data System (ADS)

    Koester, Kurt John

    The mechanical properties of bone and dentin and in particular their fracture properties, are the subject of intense research. The relevance of these properties is increasing as our population ages and fracture incidence impacts the lives of a greater portion of the population. A robust framework is needed to understand the fracture properties of bone and dentin to guide researchers as they attempt to characterize the effects of aging, disease, and pharmaceutical treatments on the properties of these mineralized tissues. In the present work, this framework is provided and applied to human bone, human dentin, and animal bone. In situ electron microscopy was also used to identify the salient toughening mechanisms in bone and dentin. It was found that bone and dentin are extrinsically toughened materials and consequently their fracture properties are best characterized utilizing a crack-growth resistance approach. A description of the different mechanical measurements commonly employed when using small animal models (rats and mice) to evaluate the influence of drug therapies on bone fragility is provided. A study where these properties were measured for a large population of wild-type rats and mice was also conducted. Given my findings, it was determined that for the most complete understanding of small animal bone it was necessary to measure strength and toughness. Strength measurements probe the flaw distribution and toughness measurements to evaluate the resistance to facture in the presence of a single dominant worst-case flaw.

  4. The Difference of Structural State and Deformation Behavior between Teenage and Mature Human Dentin

    PubMed Central

    Panfilov, Peter; Zaytsev, Dmitry; Antonova, Olga V.; Alpatova, Victoria; Kiselnikova, Larissa P.

    2016-01-01

    Objective. The cause of considerable elasticity and plasticity of human dentin is discussed in the relationship with its microstructure. Methods. Structural state of teenage and mature human dentin is examined by using XRD and TEM techniques, and their deformation behavior under compression is studied as well. Result. XRD study has shown that crystallographic type of calcium hydroxyapatite in human dentin (calcium hydrogen phosphate hydroxide Ca9HPO4(PO4)5OH; Space Group P63/m (176); a = 9,441 A; c = 6,881 A; c/a = 0,729; Crystallite (Scherrer) 200 A) is the same for these age groups. In both cases, dentin matrix is X-ray amorphous. According to TEM examination, there are amorphous and ultrafine grain phases in teenage and mature dentin. Mature dentin is stronger on about 20% than teenage dentin, while teenage dentin is more elastic on about 20% but is less plastic on about 15% than mature dentin. Conclusion. The amorphous phase is dominant in teenage dentin, whereas the ultrafine grain phase becomes dominant in mature dentin. Mechanical properties of human dentin under compression depend on its structural state, too. PMID:26989416

  5. Anti-proteolytic capacity and bonding durability of proanthocyanidin-biomodified demineralized dentin matrix.

    PubMed

    Liu, Rui-Rui; Fang, Ming; Zhang, Ling; Tang, Cheng-Fang; Dou, Qi; Chen, Ji-Hua

    2014-09-01

    Our previous studies showed that biomodification of demineralized dentin collagen with proanthocyanidin (PA) for a clinically practical duration improves the mechanical properties of the dentin matrix and the immediate resin-dentin bond strength. The present study sought to evaluate the ability of PA biomodification to reduce collagenase-induced biodegradation of demineralized dentin matrix and dentin/adhesive interfaces in a clinically relevant manner. The effects of collagenolytic and gelatinolytic activity on PA-biomodified demineralized dentin matrix were analysed by hydroxyproline assay and gelatin zymography. Then, resin-/dentin-bonded specimens were prepared and challenged with bacterial collagenases. Dentin treated with 2% chlorhexidine and untreated dentin were used as a positive and negative control, respectively. Collagen biodegradation, the microtensile bond strengths of bonded specimens and the micromorphologies of the fractured interfaces were assessed. The results revealed that both collagenolytic and gelatinolytic activity on demineralized dentin were notably inhibited in the PA-biomodified groups, irrespective of PA concentration and biomodification duration. When challenged with exogenous collagenases, PA-biomodified bonded specimens exhibited significantly less biodegradation and maintained higher bond strengths than the untreated control. These results suggest that PA biomodification was effective at inhibiting proteolytic activity on demineralized dentin matrix and at stabilizing the adhesive/dentin interface against enzymatic degradation, is a new concept that has the potential to improve bonding durability.

  6. Anti-proteolytic capacity and bonding durability of proanthocyanidin-biomodified demineralized dentin matrix

    PubMed Central

    Liu, Rui-Rui; Fang, Ming; Zhang, Ling; Tang, Cheng-Fang; Dou, Qi; Chen, Ji-Hua

    2014-01-01

    Our previous studies showed that biomodification of demineralized dentin collagen with proanthocyanidin (PA) for a clinically practical duration improves the mechanical properties of the dentin matrix and the immediate resin–dentin bond strength. The present study sought to evaluate the ability of PA biomodification to reduce collagenase-induced biodegradation of demineralized dentin matrix and dentin/adhesive interfaces in a clinically relevant manner. The effects of collagenolytic and gelatinolytic activity on PA-biomodified demineralized dentin matrix were analysed by hydroxyproline assay and gelatin zymography. Then, resin-/dentin-bonded specimens were prepared and challenged with bacterial collagenases. Dentin treated with 2% chlorhexidine and untreated dentin were used as a positive and negative control, respectively. Collagen biodegradation, the microtensile bond strengths of bonded specimens and the micromorphologies of the fractured interfaces were assessed. The results revealed that both collagenolytic and gelatinolytic activity on demineralized dentin were notably inhibited in the PA-biomodified groups, irrespective of PA concentration and biomodification duration. When challenged with exogenous collagenases, PA-biomodified bonded specimens exhibited significantly less biodegradation and maintained higher bond strengths than the untreated control. These results suggest that PA biomodification was effective at inhibiting proteolytic activity on demineralized dentin matrix and at stabilizing the adhesive/dentin interface against enzymatic degradation, is a new concept that has the potential to improve bonding durability. PMID:24810807

  7. In vitro study of remineralization of dentin: effects of ions on mineral induction by decalcified dentin matrix.

    PubMed

    Saito, Takashi; Toyooka, Hiroki; Ito, Shuichi; Crenshaw, Miles A

    2003-01-01

    We examined the effects of various ions on the mineralization of dentin matrix in vitro. Demineralized dentin matrix was incubated in a metastable calcium phosphate solution with or without silicate, fluoride, calcium, phosphate, magnesium or silver. Insoluble dentin matrix induced mineral formation after incubation for 10.2 h in the metastable solution without added ions. Silicate at 5 microM and fluoride at 40 microM significantly reduced the mineral induction time. At least 200 microM calcium or 100 microM phosphate was required to promote mineral induction. Conversely, magnesium and silver concentrations as low as 10 and 2 microM inhibited mineral induction. The mineral induced by each sample after incubation for 24 h was identified by its X-ray diffraction pattern as apatite. We concluded that silicate is a stronger inducer of remineralization of dentin matrix than fluoride, calcium or phosphate, and that magnesium and silver inhibit the induction of remineralization of dentin matrix.

  8. A New Method to Stabilize C-Kit Expression in Reparative Cardiac Mesenchymal Cells

    PubMed Central

    Wysoczynski, Marcin; Dassanayaka, Sujith; Zafir, Ayesha; Ghafghazi, Shahab; Long, Bethany W.; Noble, Camille; DeMartino, Angelica M.; Brittian, Kenneth R.; Bolli, Roberto; Jones, Steven P.

    2016-01-01

    Cell therapy improves cardiac function. Few cells have been investigated more extensively or consistently shown to be more effective than c-kit sorted cells; however, c-kit expression is easily lost during passage. Here, our primary goal was to develop an improved method to isolate c-kitpos cells and maintain c-kit expression after passaging. Cardiac mesenchymal cells (CMCs) from wild-type mice were selected by polystyrene adherence properties. CMCs adhering within the first hours are referred to as rapidly adherent (RA); CMCs adhering subsequently are dubbed slowly adherent (SA). Both RA and SA CMCs were c-kit sorted. SA CMCs maintained significantly higher c-kit expression than RA cells; SA CMCs also had higher expression endothelial markers. We subsequently tested the relative efficacy of SA vs. RA CMCs in the setting of post-infarct adoptive transfer. Two days after coronary occlusion, vehicle, RA CMCs, or SA CMCs were delivered percutaneously with echocardiographic guidance. SA CMCs, but not RA CMCs, significantly improved cardiac function compared to vehicle treatment. Although the mechanism remains to be elucidated, the more pronounced endothelial phenotype of the SA CMCs coupled with the finding of increased vascular density suggest a potential pro-vasculogenic action. This new method of isolating CMCs better preserves c-kit expression during passage. SA CMCs, but not RA CMCs, were effective in reducing cardiac dysfunction. Although c-kit expression was maintained, it is unclear whether maintenance of c-kit expression per se was responsible for improved function, or whether the differential adherence property itself confers a reparative phenotype independently of c-kit. PMID:27536657

  9. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells

    SciTech Connect

    Duncan, Henry F.; Smith, Anthony J.; Fleming, Garry J.P.; Cooper, Paul R.

    2013-06-10

    Application of histone deacetylase inhibitors (HDACi) to cells epigenetically alters their chromatin structure and induces transcriptional and cellular reparative events. This study investigated the application of two HDACi, valproic acid (VPA) and trichostatin A (TSA) on the induction of repair-associated responses in primary dental pulp cell (DPC) cultures. Flow cytometry demonstrated that TSA (100 nM, 400 nM) significantly increased cell viability. Neither HDACi was cytotoxic, although cell growth analysis revealed significant anti-proliferative effects at higher concentrations for VPA (>0.5 mM) and TSA (>50 nM). While high-content-analysis demonstrated that HDACi did not significantly induce caspase-3 or p21 activity, p53-expression was increased by VPA (3 mM, 5 mM) at 48 h. HDACi-exposure induced mineralization per cell dose-dependently to a plateau level (VPA-0.125 mM and TSA-25 nM) with accompanying increases in mineralization/dentinogenic-associated gene expression at 5 days (DMP-1, BMP-2/-4, Nestin) and 10 days (DSPP, BMP-2/-4). Both HDACis, at a range of concentrations, significantly stimulated osteopontin and BMP-2 protein expression at 10 and 14 days further supporting the ability of HDACi to promote differentiation. HDACi exert different effects on primary compared with transformed DPCs and promote mineralization and differentiation events without cytotoxic effects. These novel data now highlight the potential in restorative dentistry for applying low concentrations of HDACi in vital pulp treatment. -- Highlights: • Valproic acid and trichostatin A promoted mineralization in primary pulp cells. • Cell viability, apoptosis, caspase-3, p21 unaltered; p53 increased by valproic acid. • Trichostatin A increased cell viability at 24 h at selected concentrations. • Altered cell toxicity and differentiation between primary and transformed cells. • HDACi-induced the differentiation marker proteins osteopontin and BMP-2.

  10. Resistance of dentin coating materials against abrasion by toothbrush.

    PubMed

    Gando, Iori; Ariyoshi, Meu; Ikeda, Masaomi; Sadr, Alireza; Nikaido, Toru; Tagami, Junji

    2013-01-01

    Thin-film coating of root dentin surface by all-in-one adhesives has been shown to be an effective option to prevent root surface caries. The purpose of this study was to investigate the wear resistance against toothbrush abrasion of two all-in-one coating materials; Shield Force (SF) and Hybrid Coat (HC). Bovine dentin surfaces were covered with one of the coating materials; SF or HC. After storage in water for 24 h, the testing surface was subjected to the toothbrush abrasion test up to 50,000 cycles either in water or toothpaste slurry. The remaining thickness of the coating material was measured using SEM. Toothpaste slurry significantly increased rate of tooth brush abrasion of the coating materials. While SF and HC wore at a similar pace under toothbrush abrasion, SF had a thicker coat and could protect dentin longer, up to 50,000 cycles.

  11. Amalgam buildups: shear strength and dentin sealing properties.

    PubMed

    Pashley, E L; Comer, R W; Parry, E E; Pashley, D H

    1991-01-01

    The retentive strength and sealing properties of amalgam buildups were compared in vitro in three groups of specimens. All teeth were prepared with flat, nonretentive surfaces. In the first group, the amalgam buildups were retained by four self-threading Minim pins. In the second group, retention was provided by a circumferential slot prepared in the dentin just inside the DEJ. The third group utilized an adhesive resin for retention. Dentin permeability was measured as a hydraulic conductance before and after placement of the amalgam buildups and before and after thermocycling. All methods of retention sealed dentin very well even in the absence of cavity varnish. The 90 degree retentive strength was: pins, 10.3 +/- 0.9 MPa; slots, 4.1 +/- 0.5 MPa; resin, 3.1 +/- 0.8 MPa (mean +/- SEM).

  12. Dentin Hypersensitivity: Etiology, Diagnosis and Treatment; A Literature Review

    PubMed Central

    Davari, AR; Ataei, E; Assarzadeh, H

    2013-01-01

    The objective of this review is to inform practitioners about dentin hypersensitivity (DH); to provide a brief overview of the diagnosis, etiology and clinical management of dentin hypersensitivity and to discuss technical approaches to relieve sensitivity. This clinical information is described in the context of the underlying biology. The author used PUBMED to find relevant English-language literature published in the period 1999 to 2010. The author used combinations of the search terms “dentin*”, “tooth”, “teeth”, “hypersensit*”, “desensitiz*”. Abstracts and also full text articles to identify studies describing etiology, prevalence, clinical features, controlled clinical trials of treatments and relevant laboratory research on mechanisms of action were used. PMID:24724135

  13. A technical report on repair of amalgam-dentin complex.

    PubMed

    Ozcan, M; Salihoğlu-Yener, E

    2011-01-01

    This clinical report describes a repair protocol for cusp fracture of a failed amalgam-dentin complex. A maxillary right first premolar with an amalgam restoration presented a buccal cusp fracture. Chairside repair has been undertaken by conditioning the existing amalgam restoration with silica coating (30 μm CoJet®-Sand), phosphoric acid etching the beveled enamel surface, priming dentin, and application of a bonding agent on both enamel and dentin. Thereafter, the amalgam was silanized (ESPE®-Sil), and opaque resin was applied and polymerized to mask the amalgam. The fractured buccal cusp was modeled using resin composite (Clearfil Photo Posterior) and photo-polymerized. Finally, the amalgam was refinished and refurbished and the composite was finished and polished.

  14. Excimer laser interaction with dentin of the human tooth

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Gilliam, Ruth L.; Baker, George R.

    1989-01-01

    The use an excimer laser produced many unusual conical structures within the dentin of the inner part of the human tooth. By varying the frequency of the laser one can disperse the energy and cause more bleeding in laser surgery, but not destroy the cells associated with the incision. Therefore, the healing process will virtually be without scarring. Whereas, using the infrared laser the blood loss would be less, but the healing process would tend to be longer because cells are being destroyed due to the cauterization effect of the laser. The question is, are these structures produced as an interaction with the laser or are they an intrinsic part of the structure. The effects of the laser interaction upon dentin was studied, and in using electron microscopy the interaction of the excimer laser upon the tooth dentin and other various biological tissue is more clearly understood.

  15. Adhesion of different resin cements to enamel and dentin.

    PubMed

    Naumova, Ella A; Ernst, Saskia; Schaper, Katharina; Arnold, Wolfgang H; Piwowarczyk, Andree

    2016-01-01

    The purpose of this in vitro study was to compare the shear bond strength (SBS) of five different resin cements to human enamel and dentin under different storage conditions. Five resin cements and their dedicated systems were tested. Teeth were embedded, ground flat to expose enamel or dentin and polished with sandpaper. Adhesive systems were applied according to the manufacturers'instructions. V2A steel cylinders with were silicated, coated, and cemented onto the teeth. Specimens were stored at three different conditions and subsequently thermocycled. SBS was measured. Significant differences were observed between the tested resin cements depending on the tooth surface. Different storage conditions influenced the bond strength, independent of the tooth surface, in all test cements. The bond strength of all experimental materials to enamel is higher than that to dentin surfaces. Furthermore, the adhesiveness decreases after wetness (hydro-) and hydrothermal stress, regardless of the tooth surface.

  16. Evaluation of the cavity margins after Er:YAG laser ablation of the enamel and dentin

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Krejsa, Otakar; Jelinkova, Helena; Hamal, Karel

    1994-12-01

    This study investigates the checks of cavity margin after enamel and dentin ablation. The Er:YAG laser enamel and dentin ablation can be directly connected with the danger of cracks originating in the enamel near the cavity. This study evaluates the quality of the enamel edges after Er:YAG laser preparation. The enamel and dentin of buccal surfaces were ablated by the Er:YAG laser radiation. An Erbium:YAG laser system with the energy of 200 mJ was used to generate 200 microsecond(s) long pulses of mid-infrared 2.94 micrometers light in multimode configuration. The laser was operating in a free running mode, the repetition rate being 0.5 Hz with average laser power of 100 mW. Laser radiation was focused on the tooth tissue. Water cooling was used during the procedure in order to prevent tooth tissue destruction. The time of laser preparation was 5 minutes. A cavity of class V was prepared. The teeth were immersed into 0.5% basic fuchsin and then centrifuged at 6000 rev/min for 20 minutes. The microphotographs of the margins stained with 0.5% basic fuchsin were made and then the longitudinal section of the teeth were evaluated. The micrographs of the longitudinal section were checked and measured afterwards. The effect of the investigated laser irradiation on the origin of cracks was analyzed in the scanning electron microscope. Micrographs of each tooth before and after the laser ablation were compared. Micrographs of the intact teeth after extraction present the cracks of the enamel. They depend on the pressure exerted during extraction. The influence of the laser ablation proper is it bears no signs of new cracks. The conclusions of this study demonstrate the non-invasive nature of the Er:YAG laser ablation of the hard dental tissues.

  17. Anacardic acid from brazilian cashew nut trees reduces dentine erosion.

    PubMed

    Silveira, Cintia; Oliveira, Flávia; Dos Santos, Maria Lucilia; de Freitas, Thiago; Imparato, José Carlos; Magalhães, Ana Carolina

    2014-01-01

    The aim of this study was to analyze the effect of solutions containing saturated anacardic acid (AA) on dentine erosion in vitro. AA was chemically isolated from natural cashew nutshell liquid obtained by continuous extraction in a Soxhlet extractor and was fully saturated by catalytic hydrogenation. Matrix metalloproteinase 2 (MMP-2) activity, when exposed to buffers containing 100 µmol/l AA, was analyzed using zymography. Bovine root samples were subjected to erosive demineralization (Sprite Zero™, 4 × 90 s/day) and remineralization with artificial saliva between the erosive cycles for 5 days. The samples were treated as follows, after the first and the last acid exposure (1 min; n = 12/group): (1) 100 µmol/l epigallocatechin-3-gallate (EGCG) (positive control); (2) 0.05% NaF; (3) 100 µmol/l saturated AA; (4) saturated AA and EGCG; (5) saturated AA, EGCG and NaF; (6) untreated (negative control). Dentine erosion was measured using a contact profilometer. Two dentine samples from each group were analyzed using scanning electron microscopy. Saturated AA reduced the activity of MMP-2. ANOVA and Tukey's test revealed that all treatments significantly reduced dentine loss compared to the negative control (6.03 ± 0.98 µm). Solutions containing saturated AA (1.97 ± 1.02 µm) showed the greatest reduction in dentine erosion compared to the NaF (3.93 ± 1.54 µm) and EGCG (3.79 ± 0.83 µm) solutions. Therefore, it may be concluded that AA significantly reduces dentine erosion in vitro, possibly by acting as an MMP-2 inhibitor.

  18. Quantitative microleakage of some dentinal bonding restorative systems.

    PubMed

    Hasegawa, T; Retief, D H

    1993-03-01

    The quantitative microleakage of class V cementum (dentin) cavities restored with six dentinal bonding restorative systems was determined in vitro. Ninety extracted human permanent first and second mandibular and maxillary premolars were used in this study. Class V preparations were made in cementum (dentin) at the root facial surfaces. The preparations were restored with 1) a dentin bonding system containing 2% HEMA and BisGMA and a light-cured microfilled composite; 2) the same materials only substituting META/MMA base and TBB catalyst monomers for the BisGMA sealer; 3) a dentin bonding system containing 35% HEMA with META/MMA base and TBB catalyst, and a light-cured hybrid composite; 5) the same dentin bonding system only substituting the 35% glycerylmethacrylate for the 35% HEMA and using the microfilled composite; and 6) the previously described system with a substitution of 0.5 mol EDTA for the 10% citric acid -3% FeCl3. Fifteen teeth were restored with each procedure. The restorations were finished with 12-bladed carbide burs 15 min after placement, the teeth were stored in saline at 37 degrees C for 24 h, finished with Sof-Lex discs and then thermocycled in 2% methylene blue solution 500 times between 50 degrees C and 8 degrees C with a dwell time of 15 s. Quantitative microleakage was determined by a spectrophotometric dye-recovery method and expressed in microgram/dye/restoration. The data were analyzed by ANOVA, Student-Newman-Keuls and Kruskal-Wallis tests. The quantitative microleakage of the teeth restored with the adhesive systems containing 35% glyceryl methacrylate was significantly reduced. The bonding mechanism of glyceryl methacrylate is not known.

  19. Microtensile bond strength of glass ionomer cements to artificially created carious dentin.

    PubMed

    Choi, Kyungho; Oshida, Yoshiki; Platt, Jeffrey A; Cochran, Michael A; Matis, Bruce A; Yi, Keewook

    2006-01-01

    In this laboratory study, the microtensile bond strengths of a conventional glass ionomer cement (GIC) and a resin modified glass ionomer cement (CRMGIC) to artificially created carious dentin and sound dentin were compared, and the ultrastructural morphology of the fractured interface was examined with a low-vacuum scanning electron microscope (SEM). The specimens were divided into 4 groups: 1) a conventional GIC (Ketac-Fil Plus Aplicap) placed on sound dentin; 2) a conventional GIC placed on artificially created carious dentin; 3) an RMGIC (Photac-Fil Aplicap) placed on sound dentin and 4) an RMGIC placed on artificially created carious dentin. Artificial carious lesions were created using a chemical demineralizing solution of 0.1 M/L lactic acid and 0.2% carbopol. GIC buildups were made on the dentin surfaces according to the manufacturer's directions. After storage in distilled water at 37 degrees C for 24 hours, the teeth were sectioned vertically into 1 x 1 x 8-mm beams for the microtensile bond strength test. The microtensile bond strength of each specimen was measured, and failure mode was determined using an optical microscope (40x). The fractured surfaces were further examined with SEM. Two-way analysis of variance showed that the mean microtensile bond strengths of a GIC and an RMGIC to carious dentin were significantly lower than those to sound dentin, and the mean microtensile bond strengths of Photac-Fil to both sound and carious dentin were significantly higher than those of Ketac-Fil Plus. Chi-square tests indicated that there was a significant difference in failure mode between the sound dentin and carious dentin groups. In sound dentin groups, cohesive failure in GIC was pre- dominant; whereas, mixed failure was predominant in carious dentin groups. SEM examination showed that the specimens determined to be cohesive failures under light microscopy in the Photac-Fil/Sound Dentin group were actually mixed failures under high magnification of SEM.

  20. Evaluation Of The Shear Bond Strength Between Dentin And Dental Luting Cement Following Dentin Surface Treatment By 980 Nm Diode Laser And Desensitizing Agent

    NASA Astrophysics Data System (ADS)

    Ibrahim, T.; Gheith, M.

    2011-09-01

    Dentin hypersensitivity is described clinically as an exaggerated response to non-noxious sensory stimuli. Current treatment is concentrating on two approaches; to occlude the dentinal tubules or to block neural transmission. This is achieved through using dentin desensitizers and low power lasers. Forty eight freshly extracted human molar teeth were used in this study and divided equally into three groups. Group 1) control group, group 2) laser treated dentin surface group, and group 3) desensitizing agent dentin surface group. Scanning electron microscopic analysis of laser treated group showed melted globules, no carbonization, recrystalization and crystal growth of the apatite in some areas. In diode laser dentin surface treated group showed the highest shear bond strength mean value.

  1. Optical properties of human radicular dentin: ATR-FTIR characterization and dentine tubule direction influence on radicular post adhesion

    NASA Astrophysics Data System (ADS)

    Quinto, Jose; Zamataro, Claudia B.; Benetti, Carolina; Dias, Derly A.; Blay, Alberto; Zezell, Denise Maria

    2015-06-01

    Knowledge of dental structures is essential for understanding of laser interaction and its consequences during adhesion processes. Tubule density in dentin ranges from 4.900 to 90.000 per mm2, for diameters from 1 to 3 μm. Light propagation inside the tubules is associated with tubules orientation. To the best of our knowledge, there is no previous work in literature characterizing physical-chemical alterations in dentin. The dentin samples were irradiated with a Er,Cr:YSGG Laser at wavelength 2.78 μm, with an energy density of 9.46 J/cm2 , above the ablation threshold. ATRFTIR at wavenumbers 2000 to 700 cm-1 was used to evaluate the differences among third root region and tubules orientation.

  2. Influence of immediate dentin sealing on the shear bond strength of pressed ceramic luted to dentin with self-etch resin cement.

    PubMed

    Dalby, Robert; Ellakwa, Ayman; Millar, Brian; Martin, F Elizabeth

    2012-01-01

    Objectives. To examine the effect of immediate dentin sealing (IDS), with dentin bonding agents (DBAs) applied to freshly cut dentin, on the shear bond strength of etched pressed ceramic luted to dentin with RelyX Unicem (RXU) cement. Method. Eighty extracted noncarious third molars were ground flat to expose the occlusal dentin surfaces. The teeth were randomly allocated to five groups (A to E) of sixteen teeth each. Groups A to D were allocated a dentin bonding agent (Optibond FL, One Coat Bond, Single Bond, or Go!) that was applied to the dentin surface to mimic the clinical procedure of IDS. These specimen groups then had etched glass ceramic discs (Authentic) luted to the sealed dentin surface using RXU. Group E (control) had etched glass ceramic discs luted to the dentin surface (without a dentin bonding agent) using RXU following the manufacturer's instructions. All specimens were stored for one week in distilled water at room temperature and then shear stressed at a constant cross-head speed of 1 mm per minute until failure. Statistical analysis was performed by ANOVA followed by post hoc Tukey HSD method (P < 0.05) applied for multiple paired comparisons. Results. The shear bond strength results for group A to E ranged from 6.94 ± 1.53 to 10.03 ± 3.50 MPa. One-way ANOVA demonstrated a difference (P < 0.05) between the groups tested and the Tukey HSD demonstrated a significant (P < 0.05) difference between the shear bond strength (SBS) of Optibond FL (Group A) and Go! (Group D). There was no statistical difference (P > 0.05) in the SBS between the test groups (A-D) or the control (group E). Conclusion. IDS using the dentin bonding agents tested does not statistically (P > 0.05) affect the shear bond strength of etched pressed ceramic luted to dentin with RXU when compared to the control.

  3. Mechanisms Regulating the Degradation of Dentin Matrices by Endogenous Dentin Proteases and their Role in Dental Adhesion. A Review

    PubMed Central

    Sabatini, Camila; Pashley, David H.

    2015-01-01

    Purpose This systematic review provides an overview of the different mechanisms proposed to regulate the degradation of dentin matrices bye host-derived dentin proteases, particularly as it relates to their role in dental adhesion. Methods Significant developments have taken place over the last few years that have contributed to a better understanding of all the factors affecting the durability of adhesive resin restorations. The complexity of dentin-resin interfaces mandates a thorough understanding of all the mechanical, physical and biochemical aspects that play a role in the formation of hybrid layers. The ionic and hydrophilic nature of current dental adhesives yields permeable, unstable hybrid layers susceptible to water sorption, hydrolytic degradation and resin leaching. The hydrolytic activity of host-derived proteases also contributes to the degradation of the resin-dentin bonds. Preservation of the collagen matrix is critical to the improvement of resin-dentin bond durability. Approaches to regulate collagenolytic activity of dentin proteases have been the subject of extensive research in the last few years. A shift has occurred from the use of proteases inhibitors to the use of collagen cross-linking agents. Data provided by fifty-one studies published in peer-reviewed journals between January 1999 and December 2013 was compiled in this systematic review. Results Appraisal of the data provided by the studies included in the present review yielded a summary of the mechanisms which have already proven to be clinically successful and those which need further investigation before new clinical protocols can be adopted. PMID:25831604

  4. [Capabilities of digital microfocal x-ray study in the evaluation of reparative regeneration of bone tissue in an experiment].

    PubMed

    Vasil'ev, A Iu; Bulanova, I M; Mal'ginov, N N; Kiseleva, E V; Cherniaev, S E; Nikulina, O M; Tarasenko, I V; Volozhin, A I

    2008-01-01

    Digital microfocal x-ray study was experimentally studied in animals to examine the time course of changes in their bone regeneration. Sixteen Chinchila rabbits whose bone defect in the angle of the mandibular ramus had been closed with the osteoplastic material Gapcol with the applied allogeneic, autologous stem cells isolated from rabbit adipose tissue and human plasma enriched with thrombocytic growth factors were examined. The capabilities of digital microfocal x-ray study versus x-ray computed tomography were compared in the evaluation of reparative regeneration of bone tissue. The results of radiation studies were verified with the data of scanning electron microscopy.

  5. [Morphological features of reparative processes of rat skin excision wounds in old animals under peptides bioregulators influence].

    PubMed

    Kurilov, I N

    2009-01-01

    The data on the effects of peptide bioregulator chondrolux on the healing of excision wounds in older animals have been studied. A comparative study of two groups of animals was carried out--the control group (the process of healing wounds has only repeated dressings) and the experimental group (since the injury and until the complete healing of wounds the applique of peptide bioregulator chondrolux was made). The results show reparative properties of chondrolux in terms of both the acceleration of wound healing in older animals and development of soft elastic scar.

  6. [Morphological characteristics of reparative osteogenesis under the conditions of transosseous osteosynthesis and intramedullary introduction of hydroxyapatite-coated wires].

    PubMed

    Ir'ianov, Iu M; Popkov, A V; Antonov, N I

    2014-01-01

    In the experiments performed on 16 dogs, an open comminuted tibial fracture was modeled, then wires with hydroxyapatite coating were inserted intramedullary, and osteosynthesis was performed using the Ilizarov fixator. Bone regenerates were studied 14-360 days after the surgery using the methods of light microscopy, scanning electron microscopy, and X-ray electron probe microanalysis. It was found that a zone of active reparative osteo- and angiogenesis was formed around the wires, as well as a bone sheath with the properties of osteogenesis conductor and inductor. Fracture consolidation occured early according to the primary type without cartilaginous and connective tissue formation in bone adhesion.

  7. Effects of common dental materials used in preventive or operative dentistry on dentin permeability and remineralization.

    PubMed

    Sauro, Salvatore; Thompson, Ian; Watson, Timothy F

    2011-01-01

    The aim of this study was to evaluate the dentin remineralization induced by bioactive substances contained in common dental materials used in preventive and operative dentistry. Several materials were applied on human dentin segments. Dentin permeability was quantified using a fluid filtration system working at 20 cm H(2)O. Micro-Raman, SEM-EDX, and microhardness calculation were used to evaluate changes in the mineralization of dentin. Dentin treated with the prophylactic materials showed different dentin permeability values, in particular subsequent to immersion in remineralizing solutions (RSS). The bioactive glass (Sylc) was the only substance able to reduce dentin permeability after immersion in remineralizing solution and to show hydroxyapatite precipitation as a sign of dentin remineralization. The reduction in dentin permeability obtained after the application of the other prophylactic materials used in this study was due to the presence of the remnant material in the dentinal tubules, with no remineralization effect after storage in remineralizing solution. In conclusion, the results indicated that bioactive glass prophy powder may induce immediate remineralization of dentin.

  8. Age-related ransparent root dentin: mineral concentration,crystallite size and mechanical properties

    SciTech Connect

    Kinney, John H.; Nalla, Ravi K.; Pople, John A.; Breunig, Tom M.; Ritchie, Robert O.

    2004-12-29

    Many fractures occur in teeth that have been altered, forexample restored or endodontically repaired. It is therefore essential toevaluate the structure and mechanical properties of these altereddentins. One such altered form of dentin is transparent (sometimes calledsclerotic) dentin, which forms gradually with aging. The present studyfocuses on differences in the structure and mechanical properties ofnormal versus transparent dentin. The mineral concentration, as measuredby X-ray computed microtomography, was signifcantly higher in transparentdentin, the elevated concentration being consistent with the closure ofthe tubule lumens. Crystallite size, as measured by small angle X-rayscattering, was slightly smaller in transparent dentin, although theimportance of this ending requires further study. The elastic propertieswere unchanged by transparency; however, transparent dentin, unlikenormal dentin, exhibited almost no yielding before failure. In addition,the fracture toughness was lowered by roughly 20 percent while thefatigue lifetime was deleteriously affected at high stress levels. Theseresults are discussed in terms of the altered microstructure oftransparent dentin.

  9. Effectiveness and efficiency of chemomechanical carious dentin removal.

    PubMed

    Magalhães, Cláudia Silami de; Moreira, Allyson Nogueira; Campos, Wagner Reis da Costa; Rossi, Fernanda Magalhães; Castilho, Guilherme Augusto Alcaraz; Ferreira, Raquel Conceição

    2006-01-01

    The aims of this in vitro study were both to determine the time necessary for removal of carious dentin (efficiency) and the Knoop Hardness Number (KHN) of the remaining dentin (effectiveness), using a chemomechanical method (Carisolv) or hand excavation. Thirty human molars were bisected through occlusal carious lesions into two equal halves. Each half was randomly excavated by hand in circular movements with a spoon excavator or using Carisolv gel according to the manufacturer's instructions. The duration of carious dentin removal was recorded. Tooth sections were resin-embedded, ground flat and polished. Dentin KHN was determined at distances of 100, 200, 300, 400 and 500 microm from the cavity floor. Data were analyzed by Wilcoxon's test (alpha= 0.01), ANOVA and Student's t test (alpha= 0.05). The median of the time necessary for chemomechanical excavation was significantly greater than for hand excavation. KHN means (+/- SD) at 100, 200, 300, 400, 500 microm for chemomechanical method were, respectively: 15.6 (+/- 4.96), 18.0 (+/- 6.22), 21.3 (+/- 9.30), 24.3 (+/- 9.25), 28.5 (+/- 11.80); and for hand excavation were: 21.2 (+/- 10.26), 23.4 (+/- 9.49), 28.2 (+/- 11.62), 31.0 (+/- 12.17), 34.3 (+/- 11.95). It may be concluded that hand excavation presented higher efficiency and effectiveness than chemomechanical excavation.

  10. Compounded PHOSPHO1/ALPL deficiencies reduce dentin mineralization.

    PubMed

    McKee, M D; Yadav, M C; Foster, B L; Somerman, M J; Farquharson, C; Millán, J L

    2013-08-01

    Phosphatases are involved in bone and tooth mineralization, but their mechanisms of action are not completely understood. Tissue-nonspecific alkaline phosphatase (TNAP, ALPL) regulates inhibitory extracellular pyrophosphate through its pyrophosphatase activity to control mineral propagation in the matrix; mice without TNAP lack acellular cementum, and have mineralization defects in dentin, enamel, and bone. PHOSPHO1 is a phosphatase found within membrane-bounded matrix vesicles in mineralized tissues, and double ablation of Alpl and Phospho1 in mice leads to a complete absence of skeletal mineralization. Here, we describe mineralization abnormalities in the teeth of Phospho1(-/-) mice, and in compound knockout mice lacking Phospho1 and one allele of Alpl (Phospho1(-/-);Alpl(+/-) ). In wild-type mice, PHOSPHO1 and TNAP co-localized to odontoblasts at early stages of dentinogenesis, coincident with the early mineralization of mantle dentin. In Phospho1 knockout mice, radiography, micro-computed tomography, histology, and transmission electron microscopy all demonstrated mineralization abnormalities of incisor dentin, with the most remarkable findings being reduced overall mineralization coincident with decreased matrix vesicle mineralization in the Phospho1(-/-) mice, and the almost complete absence of matrix vesicles in the Phospho1(-/-);Alpl(+/-) mice, whose incisors showed a further reduction in mineralization. Results from this study support prominent non-redundant roles for both PHOSPHO1 and TNAP in dentin mineralization.

  11. Mechanical or cold lateral compaction: The incidence of dentinal defects

    PubMed Central

    Hasheminia, Seyed Mohsen; Farhad, Ali Reza; Saatchi, Masoud; Nejad, Hamidreza Sadegh; Sanei, Maryam

    2015-01-01

    Background: The incidence of dentinal defects may influence the outcome of root canal treatment. The aims of this study were to evaluate and compare the incidence of dentinal defects following root canal obturation with two different techniques. Materials and Methods: A total of 110 mesial roots of human mandibular first molars were selected. Twenty-seven roots were left unprepared as negative controls (NCs). The mesiobuccal canals of 83 roots were prepared using rotary instruments. Twenty-seven roots were left unobturated as positive controls (PCs). Twenty-eight roots were obturated with cold lateral compaction (CLC) technique and the others were obturated with mechanical lateral compaction (MLC) technique. In the CLC and MLC groups, spreader penetration depth was measured by an electromechanical testing machine in canals containing master Gutta-percha cones. After root canal obturation, all the roots were sectioned horizontally at four levels from the apex and evaluated under a stereomicroscope at a magnification of ×40. The presence of dentinal defects was noted. Data were analyzed using the Chi-square and t-tests. Results: The number of defects was not significantly different between the CLC, MLC, and PC groups. The CLC, MLC, and PC groups had significantly more defects compared to the NC group. Conclusion: According to the results of this study, the MLC and CLC techniques were the same in producing dentinal defects. PMID:26759586

  12. Nanostructural changes in dentine caused by endodontic irrigants

    PubMed Central

    Barón, Marta; Forner, Leopoldo; Palomares, María; González-García, Cristina; Salmerón-Sánchez, Manuel

    2013-01-01

    Objective: To study nanostructural dentinal changes produced by endodontic irrigants. Study Design: Experimental study. Nanoindentations were performed on peritubular (PD) and intertubular dentine (ID) with an atomic force microscopy. Stiffness and adhesion force were determined before and after application of 5.25% sodium hypochlorite (NaOCl) and 17% ethylenediaminetetraacetic acid (EDTA). Normalized differences before and after treatment for stiffness and adhesion forces were calculated. A paired T-test was used to compare stiffnes and adhesion force before and after irrigants application. Results: After treatment with EDTA there was a 29.80% reduction in stiffness in ID and a 63.53% reduction in PD. Adhesion force was reduced by 21.22% and 8.21% respectively. After treatment with 5.25% NaOCI stiffness was reduced by 2.49% in ID and increased by 15.01% in PD. Adhesion force increased by 25.11% and 23.97% respectively. Conclusions: 17% EDTA reduced stiffness and adhesion force in ID and PD. Treatment with NaOCI at 5.25% had no significant effect on stiffness but did affect adhesion force in ID and PD. Key words:Atomic force microscope, stiffness, adhesion force, peritubular dentine, intertubular dentine. PMID:23524430

  13. Modification of amino acid residues in carious dentin matrix.

    PubMed

    Kleter, G A; Damen, J J; Buijs, M J; Ten Cate, J M

    1998-03-01

    The Maillard reaction between sugar and protein has been postulated as the cause for the browning and arrestment of caries lesions. This reaction has been implicated as the cause for decreased degradability of collagen in vivo. The aim of the present study was to verify the occurrence of the reaction in vivo. Carious and sound dentin samples were taken from extracted human teeth and analyzed for the fluorescence characteristic of the Maillard reaction and oxidation and, by HPLC, for Maillard products. In addition, physiological cross-links were analyzed by HPLC. Oxidation- and Maillard reaction-related fluorescence increased in collagenase digests from carious dentin. Advanced Maillard products (carboxymethyllysine and pentosidine) increased, whereas furosine, a marker for the initial reaction, was not observed consistently. This implies no direct addition of sugars to protein, but rather the addi-tion of smaller metabolites and glycoxidation products. In addition, the physiological cross-links hydroxylysinonorleucine and dihydroxylysinonorleucine decreased in carious dentin. Also for hydroxylysylpyridinoline, a decrease was observed, but not consistently. In conclusion, the caries process modifies amino acids in dentin collagen, which can lead to increased resistance against proteolysis and ultimately to caries arrestment.

  14. Compounded PHOSPHO1/ALPL Deficiencies Reduce Dentin Mineralization

    PubMed Central

    McKee, M.D.; Yadav, M.C.; Foster, B.L.; Somerman, M.J.; Farquharson, C.; Millán, J.L.

    2013-01-01

    Phosphatases are involved in bone and tooth mineralization, but their mechanisms of action are not completely understood. Tissue-nonspecific alkaline phosphatase (TNAP, ALPL) regulates inhibitory extracellular pyrophosphate through its pyrophosphatase activity to control mineral propagation in the matrix; mice without TNAP lack acellular cementum, and have mineralization defects in dentin, enamel, and bone. PHOSPHO1 is a phosphatase found within membrane-bounded matrix vesicles in mineralized tissues, and double ablation of Alpl and Phospho1 in mice leads to a complete absence of skeletal mineralization. Here, we describe mineralization abnormalities in the teeth of Phospho1-/- mice, and in compound knockout mice lacking Phospho1 and one allele of Alpl (Phospho1-/-;Alpl+/-). In wild-type mice, PHOSPHO1 and TNAP co-localized to odontoblasts at early stages of dentinogenesis, coincident with the early mineralization of mantle dentin. In Phospho1 knockout mice, radiography, micro-computed tomography, histology, and transmission electron microscopy all demonstrated mineralization abnormalities of incisor dentin, with the most remarkable findings being reduced overall mineralization coincident with decreased matrix vesicle mineralization in the Phospho1-/- mice, and the almost complete absence of matrix vesicles in the Phospho1-/-;Alpl+/- mice, whose incisors showed a further reduction in mineralization. Results from this study support prominent non-redundant roles for both PHOSPHO1 and TNAP in dentin mineralization. PMID:23694930

  15. [Bond strength to dentin of resin composites associated with filled and unfilled adhesive systems].

    PubMed

    Youssef, J A; Turbino, M L; Youssef, M N; Matson, E

    2001-01-01

    This study analyzed in vitro two brands of one-step adhesive systems of fourth generation (Optisolo--Kerr, filled; and Single Bond--3M, unfilled) and two composite resins (Prodigy--Kerr and Z100--3M), aiming at evaluating their bond strength to dentin. Eighty human extracted molars were embedded in acrylic resin and grounded until dentin was exposed in longitudinal direction. The specimens were divided in 4 groups. Composite resin cones were bonded to the specimens using the mentioned adhesive systems, following the instructions of the manufacturers. The test-specimens were submitted to tensile tests using a 4442 Universal Mini-Instron Machine with the speed of 0.5 mm/min. The results were converted into MPa, according to the area of adhesion, and submitted to statistical analysis with ANOVA. There was significant statistical difference (p < 0.01) between the adhesive systems (F = 7.24). Optisolo (m = 11.03 +/- 4.23) showed better bond strength than Single Bond (m = 8.37 +/- 4.54). There was no significant statistical difference (p > 0.05) between the composites (F = 0.43).

  16. Teachable Moments: When Protests Erupted Following the Publication of an Anti-Reparations Ad in a Campus Newspaper, Brown University President Ruth Simmons Decided Her Community Could Benefit from Taking a Closer Look at the University's Historical Ties to Slavery

    ERIC Educational Resources Information Center

    Hamilton, Kendra

    2005-01-01

    It all started as a rather ran-of-the-mill campus controversy over race and slavery: an anti-reparations ad ran in The Brown Daily Herald; students cried foul, formed human chains and demanded "reparations" in the form of free advertising for the opposing side; still others responded with shouts of "political correctness." But then something…

  17. Reparative Dentinogenesis Induced by Mineral Trioxide Aggregate: A Review from the Biological and Physicochemical Points of View

    PubMed Central

    Okiji, Takashi; Yoshiba, Kunihiko

    2009-01-01

    This paper aims to review the biological and physicochemical properties of mineral trioxide aggregate (MTA) with respect to its ability to induce reparative dentinogenesis, which involves complex cellular and molecular events leading to hard-tissue repair by newly differentiated odontoblast-like cells. Compared with that of calcium hydroxide-based materials, MTA is more efficient at inducing reparative dentinogenesis in vivo. The available literature suggests that the action of MTA is attributable to the natural wound healing process of exposed pulps, although MTA can stimulate hard-tissue-forming cells to induce matrix formation and mineralization in vitro. Physicochemical analyses have revealed that MTA not only acts as a “calcium hydroxide-releasing” material, but also interacts with phosphate-containing fluids to form apatite precipitates. MTA also shows better sealing ability and structural stability, but less potent antimicrobial activity compared with that of calcium hydroxide. The clinical outcome of direct pulp capping and pulpotomy with MTA appears quite favorable, although the number of controled prospective studies is still limited. Attempts are being conducted to improve the properties of MTA by the addition of setting accelerators and the development of new calcium silicate-based materials. PMID:20339574

  18. Maresin-like lipid mediators are produced by leukocytes and platelets and rescue reparative function of diabetes-impaired macrophages.

    PubMed

    Hong, Song; Lu, Yan; Tian, Haibin; Alapure, Bhagwat V; Wang, Quansheng; Bunnell, Bruce A; Laborde, James Monroe

    2014-10-23

    Nonhealing diabetic wounds are associated with impaired macrophage (Mf) function. Leukocytes and platelets (PLT) play crucial roles in wound healing by poorly understood mechanisms. Here we report the identification and characterization of the maresin-like(L) mediators 14,22-dihydroxy-docosa-4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acids, 14S,22-diHDHA (maresin-L1), and 14R,22-diHDHA (maresin-L2) that are produced by leukocytes and PLT and involved in wound healing. We show that 12-lipoxygenase-initiated 14S-hydroxylation or cytochrome P450 catalyzed 14R-hydroxylation and P450-initiated ω(22)-hydroxylation are required for maresin-L biosynthesis. Maresin-L treatment restores reparative functions of diabetic Mfs, suggesting that maresin-Ls act as autocrine/paracrine factors responsible for, at least in part, the reparative functions of leukocytes and PLT in wounds. Additionally, maresin-L ameliorates Mf inflammatory activation and has the potential to suppress the chronic inflammation in diabetic wounds caused by activation of Mfs. These findings provide initial insights into maresin-L biosynthesis and mechanism of action and potentially offer a therapeutic option for better treatment of diabetic wounds.

  19. Viability of imaging structures inside human dentin using dental transillumination

    NASA Astrophysics Data System (ADS)

    Grandisoli, C. L.; Alves-de-Souza, F. D.; Costa, M. M.; Castro, L.; Ana, P. A.; Zezell, D. M.; Lins, E. C.

    2014-02-01

    Dental Transillumination (DT) is a technique for imaging internal structures of teeth by detecting infrared radiation transmitted throughout the specimens. It was successfully used to detect caries even considering dental enamel and dentin scatter infrared radiation strongly. Literature reports enamel's scattering coefficient is 10 to 30 times lower than dentin; this explain why DT is useful for imaging pathologies in dental enamel, but does not disable its using for imaging dental structures or pathologies inside the dentin. There was no conclusive data in the literature about the limitations of using DT to access biomedical information of dentin. The goal in this study was to present an application of DT to imaging internal structures of dentin. Slices of tooth were confectioned varying the thickness of groups from 0.5 mm up to 2,5 mm. For imaging a FPA InGaAs camera Xeva 1.7- 320 (900-1700 nm; Xenics, Inc., Belgium) and a 3W lamp-based broadband light source (Ocean Optics, Inc., USA) was used; bandpass optical filters at 1000+/-10 nm, 1100+/-10 nm, 1200+/-10 nm and 1300+/-50 nm spectral region were also applied to spectral selection. Images were captured for different camera exposure times and finally a computational processing was applied. The best results revealed the viability to imaging dent in tissue with thickness up to 2,5 mm without a filter (900-1700nm spectral range). After these results a pilot experiment of using DT to detect the pulp chamber of an incisive human tooth was made. New data showed the viability to imaging the pulp chamber of specimen.

  20. Molar efficiency study of chlorinated NPG substitutes in dentin bonding.

    PubMed

    Miniotis, N J; Bennett, P S; Johnston, A D

    1993-06-01

    This study evaluated and compared the contributions to dentin adhesive bonding of three N-phenylglycine analogues with electron-withdrawing substituents on the aromatic ring. These electron-deficient "N-compounds" included: N-(4-chlorophenyl)-glycine (NCPG), N-methyl-N-(4-chlorophenyl)-glycine (NMNCPG), and N-(3,4-dichlorophenyl)-glycine (NDCPG). An experimental three-step dentin-bonding protocol that consisted of sequential application of acidic ferric oxalate solution, an N-compound in acetone, and a surface-active comonomer in acetone was used. The first and third steps were held constant throughout the study. Each N-compound (NCPG, NMNCPG, NDCPG) was used in step two at ten concentrations ranging from 0.0 mol/L (pure acetone) to 5 x 10(-1) mol/L, depending on solubility. After overnight storage in distilled water, the dentin-to-composite bonds were broken in tension. The data were analyzed with ANOVA, and multiple comparisons were performed with Duncan's Multiple Range test. All statistical tests were controlled at alpha = 0.05. At 5 x 10(-3) mol/L, the relative effectiveness of the three N-compounds (as measured by tensile bond strengths) was NMNCPG > NCPG > NDCPG. Of all concentrations studied, the mean bond strengths produced with NMNCPG were statistically as good as or better than those produced by the other two compounds, and NCPG was always as good as or better than NDCPG. Increased electron-withdrawing from the nitrogen of the amine group by the substituents narrowed the effective concentration range for dentin bonding and, in general, produced lower mean bond strengths between dentin and composite.

  1. Aging and the reduction in fracture toughness of human dentin.

    PubMed

    Nazari, A; Bajaj, D; Zhang, D; Romberg, E; Arola, D

    2009-10-01

    An evaluation of the crack growth resistance of human coronal dentin was performed on tissue obtained from patients between ages 18 and 83. Stable crack extension was achieved over clinically relevant lengths (0< or = a < or =1mm) under Mode I quasi-static loading and perpendicular to the nominal tubule direction. Results distinguished that human dentin exhibits an increase in crack growth resistance with extension (i.e. rising R-curve) and that there is a significant reduction in both the initiation (K(o)) and plateau (K(p)) components of toughness with patient age. In the young dentin (18< or =age< or =35) there was a 25% increase in the crack growth resistance from the onset of extension (K(o)=1.34 MPa m(0.5)) to the maximum or "plateau" toughness (K(p)=1.65 MPa m(0.5)). In comparison, the crack growth resistance of the old dentin (55< or =age) increased with extension by less than 10% from K(o)=1.08 MPa m(0.5) to K(p)=1.17 MPa m(0.5). In young dentin toughening was achieved by a combination of inelastic deformation of the mineralized collagen matrix and microcracking of the peritubular cuffs. These mechanisms facilitated further toughening via the development of unbroken ligaments of tissue and posterior crack-bridging. Microstructural changes with aging decreased the capacity for near-tip inelastic deformation and microcracking of the tubules, which in turn suppressed the formation of unbroken ligaments and the degree of extrinsic toughening.

  2. AGING AND THE REDUCTION IN FRACTURE TOUGHNESS OF HUMAN DENTIN

    PubMed Central

    Nazari, A.; Bajaj, D.; Zhang, D.; Romberg, E.; Arola, D.

    2009-01-01

    An evaluation of the crack growth resistance of human coronal dentin was performed on tissue obtained from patients between ages 18 and 83. Stable crack extension was achieved over clinically relevant lengths (0 ≤ a ≤1 mm) under Mode I quasi-static loading and perpendicular to the nominal tubule direction. Results distinguished that human dentin exhibits an increase in crack growth resistance with extension (i.e. rising R-curve) and that there is a significant reduction in both the initiation (Ko) and plateau (Kp) components of toughness with patient age. In the young dentin (18≤age≤35) there was a 25 % increase in the crack growth resistance from the onset of extension (Ko =1.34 MPa·m0.5) to the maximum or “plateau” toughness (Kp = 1.65 MPa·m0.5). In comparison, the crack growth resistance of the old dentin (55≤age) increased with extension by less than 10 % from Ko = 1.08 MPa·m0.5 to Kp = 1.17 MPa·m0.5. In young dentin toughening was achieved by a combination of inelastic deformation of the mineralized collagen matrix and microcracking of the peritubular cuffs. These mechanisms facilitated further toughening via the development of unbroken ligaments of tissue and posterior crack-bridging. Microstructural changes with aging decreased the capacity for near-tip inelastic deformation and microcracking of the tubules, which in turn suppressed the formation of unbroken ligaments and the degree of extrinsic toughening. PMID:19627862

  3. Adipose tissue-deprived stem cells acquire cementoblast features treated with dental follicle cell conditioned medium containing dentin non-collagenous proteins in vitro

    SciTech Connect

    Wen, Xiujie; Nie, Xin; Zhang, Li; Liu, Luchuan; Deng, Manjing

    2011-06-10

    Highlights: {yields} In this study we examine the effects of dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs) on differentiation of ADSCs. {yields} We examined that ADSCs treated with dNCPs/DFCCM underwent morphological changes and significantly lost their proliferative capacity. {yields} dNCPs/DFCCM enhanced the mineralization behaviour and mineralization-related marker expression of ADSCs. {yields} ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment. -- Abstract: Adipose tissue-derived stem cells (ADSCs), which are easily harvested and show excellent pluripotency potential, have generated considerable interest in regenerative medicine. In this study, the differentiation of ADSCs was assessed after treatment with dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs). ADSCs exhibited a fibroblast-like morphology and high proliferative capacity. However, after treatment with dNCPs/DFCCM, ADSCs changed from a fibroblast-like to cementoblast-like morphology and significantly lost their proliferative capacity. Alkaline phosphatase activity and in vitro mineralization behaviour of ADSCs were significantly enhanced. Mineralization-related markers including cementum attachment protein, bone sialoprotein, osteocalcin, osteopontin and osteonectin were detected at mRNA or protein levels, whereas dentin sialophosphoprotein and dentin sialoprotein were not detected, implying a cementoblast-like phenotype. These results demonstrate that ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment and could be a potential source of cementogenic cells for periodontal regeneration.

  4. Prevention of water-contamination of ethanol-saturated dentin and hydrophobic hybrid layers

    PubMed Central

    Sauro, Salvatore; Watson, Timothy F; Mannocci, Francesco; Tay, Franklin R; Pashley, David H

    2013-01-01

    SUMMARY Purpose This in vitro study evaluated the amount and the distribution of outward fluid flow that occurred when an experimental etch-and-rinse hydrophobic adhesive was applied to ethanol-saturated dentin before and after oxalate pretreatment. Materials and methods Measurements of dentin permeability were performed under a constant pulpal pressure of 20 cm H2O in deep and middle dentin. A lucifer yellow solution was placed in the pulp chamber to determine the distribution of the water contamination of the hybrid layers. Results The distribution of fluorescence in dentin specimens that were not pretreated with oxalate revealed that the dye permeated around the resin tags and filled the hybrid layer. Dentin specimens pretreated with oxalate prior to resin bonding, showed 80–83% less (p<0.05) water contamination compared to controls. The dentin permeability results obtained before and after oxalate pretreatment showed that oxalate decreased dentin permeability by 98% (p<0.05) compared to acid-etched controls. This prevented outward fluid movement during bonding resulting in better resin sealing of dentin due to the formation of a double seal of resin tags over calcium oxalate crystals in the tubules. Conclusion Outward dentinal fluid flow may contaminate hybrid layers during adhesive bonding procedures. Pretreatment of acid-etched dentin with 3% oxalic acid prior to bonding procedures can prevent outward fluid flow during bonding and water contamination of the hydrophobic hybrid layers. PMID:19701507

  5. The effects of desensitizing agents on the hydraulic conductance of human dentin in vitro.

    PubMed

    Greenhill, J D; Pashley, D H

    1981-03-01

    The hydrodynamic theory of dentin sensitivity states that a stimulus applied at the orifice of exposed dentinal tubules causes movement of tubular fluid which stimulates nerve receptors. The fluid should obey principles of fluid movement through capillary tubes. Any decrease in the functional radius of the dentinal tubules should greatly reduce the rate of fluid flow, thus reducing dentinal sensitivity. The purpose of this study was to evaluate the ability of agents that have been used previously for clinical dentin desensitization to reduce the rate of fluid flow through dentin in vitro. Dentin discs prepared from extracted human third molars were treated with 50% citric acid to remove debris from tubular orifices. After placing the discs in a split chamber device, the rate at which buffer solution could filter across the dentin under 240 cm of water pressure was measured. The occlusal side of the disc was then treated with an agent thought to desensitize dentin to determine if it reduced fluid flow rate. Discs that had more than a 50% reduction in flow rate were examined by scanning electron microscopy to determine if those agents that decreased fluid flow also partially occluded tubular orifices. This in vitro model provided a useful quantitative method for screening a host of preparations that have been used in the past to decrease dentin sensitivity.

  6. In vivo remineralization of dentin using an agarose hydrogel biomimetic mineralization system

    NASA Astrophysics Data System (ADS)

    Han, Min; Li, Quan-Li; Cao, Ying; Fang, Hui; Xia, Rong; Zhang, Zhi-Hong

    2017-02-01

    A novel agarose hydrogel biomimetic mineralization system loaded with calcium and phosphate was used to remineralize dentin and induce the oriented densely parallel packed HA layer on defective dentin surface in vivo in a rabbit model. Firstly, the enamel of the labial surface of rabbits’ incisor was removed and the dentin was exposed to oral environment. Secondly, the hydrogel biomimetic mineralization system was applied to the exposed dentin surface by using a custom tray. Finally, the teeth were extracted and evaluated by scanning electron microscopy, X-ray diffraction, and nanoindentation test after a certain time of mineralization intervals. The regenerated tissue on the dentin surface was composed of highly organised HA crystals. Densely packed along the c axis, these newly precipitated HA crystals were perpendicular to the underlying dental surface with a tight bond. The demineralized dentin was remineralized and dentinal tubules were occluded by the grown HA crystals. The nanohardness and elastic modulus of the regenerated tissue were similar to natural dentin. The results indicated a potential clinical use for repairing dentin-exposed related diseases, such as erosion, wear, and dentin hypersensitivity.

  7. Nano- and micromechanical properties of dentine: investigation of differences with tooth side

    PubMed Central

    Brauer, Delia S.; Hilton, Joan F.; Marshall, Grayson W.; Marshall, Sally J.

    2011-01-01

    The soft zone in dentine beneath the dentino-enamel junction is thought to play an important role in tooth function, strain distribution and fracture resistance during mastication. Recently reported asymmetry in mechanical properties with tooth side may point at a basic property of tooth function. The aim of our study was to test if this asymmetry was reflected in the nano- and micromechanical properties of dentine. We investigated the mechanical properties of dentine on the buccal and lingual side of nine extracted human teeth using nano- and microindentation. Properties were analysed on the natural log scale, using maximum likelihood to estimate the parameters. Two-sided 0.05-level likelihood ratio tests were used to assess the influences of surface (buccal versus lingual) and dentine depth, measured from the DEJ in crown dentine and from the CDJ in root dentine. Results showed the well known gradual increase in mechanical properties with increasing distance from the DEJ. Coronal dentine showed higher elastic modulus and hardness on the lingual side of teeth for all measurements, while root dentine was harder on the buccal side. Due to the subtlety of these effects and the small number of teeth studied, results failed to reach statistical significance. Results suggest that dentine nano- and micromechanical properties vary with tooth side in agreement with recent literature using macroscopic methods. They also reveal that buccal-lingual ratios of hardness are in opposite directions in crown and root dentine, suggesting compensatory functions. PMID:21440894

  8. Influence of sodium chloride content in electrolyte solution on electrochemical impedance measurements of human dentin

    PubMed Central

    Eldarrat, Aziza; High, Alec; Kale, Girish

    2017-01-01

    Background: The aim of this study was to investigate the influence of sodium chloride (NaCl) content in electrolyte solution on electrochemical impedance measurements of human dentin by employing electrochemical impedance spectroscopy. Materials and Methods: Dentin samples were prepared from extracted molars. Electrochemical impedance measurements were carried out over a wide frequency range (0.01Hz-10MHz). After measurements, samples were characterized using scanning electron microscopy. Results: Electrochemical impedance measurements showed that the mean values of dentin electrical resistance were 4284, 2062, 1336, 53 and 48kΩ at different NaCl contents in electrolyte solution. One-way ANOVA test of mean values of dentin electrical resistance revealed a significant difference (P < 0.0001) as a function of NaCl content in electrolyte solution. Comparing electrical resistance values of dentin samples at 0.05% w/v and 0.9% w/v concentrations were found to be significantly different (P < 0.05 at 95% confidence level). Scanning electron microscopy revealed structure of dentin sample with intertubular dentin matrix and distribution of patent dentinal tubules. Conclusion: This in vitro study indicated, through electrochemical impedance spectroscopy measurements, that electrical resistance of dentin was affected by the concentration of NaCl in electrolyte solution. It is clear from the current study that NaCl concentration in electrolyte solution has a marked influence on dentin electrical resistance. Therefore, this baseline data need to be considered in any future study on dental samples. PMID:28348614

  9. In vivo remineralization of dentin using an agarose hydrogel biomimetic mineralization system

    PubMed Central

    Han, Min; Li, Quan-Li; Cao, Ying; Fang, Hui; Xia, Rong; Zhang, Zhi-Hong

    2017-01-01

    A novel agarose hydrogel biomimetic mineralization system loaded with calcium and phosphate was used to remineralize dentin and induce the oriented densely parallel packed HA layer on defective dentin surface in vivo in a rabbit model. Firstly, the enamel of the labial surface of rabbits’ incisor was removed and the dentin was exposed to oral environment. Secondly, the hydrogel biomimetic mineralization system was applied to the exposed dentin surface by using a custom tray. Finally, the teeth were extracted and evaluated by scanning electron microscopy, X-ray diffraction, and nanoindentation test after a certain time of mineralization intervals. The regenerated tissue on the dentin surface was composed of highly organised HA crystals. Densely packed along the c axis, these newly precipitated HA crystals were perpendicular to the underlying dental surface with a tight bond. The demineralized dentin was remineralized and dentinal tubules were occluded by the grown HA crystals. The nanohardness and elastic modulus of the regenerated tissue were similar to natural dentin. The results indicated a potential clinical use for repairing dentin-exposed related diseases, such as erosion, wear, and dentin hypersensitivity. PMID:28167823

  10. Evaluating EDTA as a substitute for phosphoric acid-etching of enamel and dentin.

    PubMed

    Imbery, Terence A; Kennedy, Matthew; Janus, Charles; Moon, Peter C

    2012-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes released when dentin is acid-etched. The enzymes are capable of destroying unprotected collagen fibrils that are not encapsulated by the dentin adhesive. Chlorhexidine applied after etching inhibits the activation of released MMPs, whereas neutral ethylenediamine tetra-acetic acid (EDTA) prevents the release of MMPs. The purpose of this study was to determine if conditioning enamel and dentin with EDTA can be a substitute for treating acid-etching enamel and dentin with chlorhexidine. A column of composite resin was bonded to enamel and dentin after conditioning. Shear bond strengths were evaluated after 48 hours and after accelerated aging for three hours in 12% sodium hypochlorite. Shear bond strengths ranged from 15.6 MP a for accelerated aged EDTA enamel specimens to 26.8 MPa for dentin conditioned with EDTA and tested after 48 hours. A three-way ANOVA and a Tukey HSD test found statistically significant differences among the eight groups and the three independent variables (P < 0.05). EDTA was successfully substituted for phosphoric acid-etched enamel and dentin treated with chlorhexidine. Interactions of conditioning agent and aging were significant for dentin but not for enamel. In an effort to reduce the detrimental effects of MMPs, conditioning enamel and dentin with EDTA is an alternative to treating acid-etched dentin and enamel with chlorhexidine.

  11. In vivo model for microbial invasion of tooth root dentinal tubules

    PubMed Central

    BRITTAN, Jane L; SPRAGUE, Susan V; MACDONALD, Emma L; LOVE, Robert M; JENKINSON, Howard F; WEST, Nicola X

    2016-01-01

    ABSTRACT Objective Bacterial penetration of dentinal tubules via exposed dentine can lead to root caries and promote infections of the pulp and root canal system. The aim of this work was to develop a new experimental model for studying bacterial invasion of dentinal tubules within the human oral cavity. Material and Methods Sections of human root dentine were mounted into lower oral appliances that were worn by four human subjects for 15 d. Roots were then fixed, sectioned, stained and examined microscopically for evidence of bacterial invasion. Levels of invasion were expressed as Tubule Invasion Factor (TIF). DNA was extracted from root samples, subjected to polymerase chain reaction amplification of 16S rRNA genes, and invading bacteria were identified by comparison of sequences with GenBank database. Results All root dentine samples with patent tubules showed evidence of bacterial cell invasion (TIF value range from 5.7 to 9.0) to depths of 200 mm or more. A spectrum of Gram-positive and Gram-negative cell morphotypes were visualized, and molecular typing identified species of Granulicatella, Streptococcus, Klebsiella, Enterobacter, Acinetobacter, and Pseudomonas as dentinal tubule residents. Conclusion A novel in vivo model is described, which provides for human root dentine to be efficiently infected by oral microorganisms. A range of bacteria were able to initially invade dentinal tubules within exposed dentine. The model will be useful for testing the effectiveness of antiseptics, irrigants, and potential tubule occluding agents in preventing bacterial invasion of dentine. PMID:27119760

  12. Effects of a Dicalcium and Tetracalcium Phosphate-Based Desensitizer on In Vitro Dentin Permeability.

    PubMed

    Zhou, Jianfeng; Chiba, Ayaka; Scheffel, Debora L S; Hebling, Josimeri; Agee, Kelli; Niu, Li-Na; Tay, Franklin R; Pashley, David H

    2016-01-01

    The present study evaluated the effectiveness of a dicalcium and tetracalcium phosphate-based desensitizer in reducing dentin permeability in vitro. Dentin fluid flow was measured before and after treatment of dentin with patent dentinal tubules using 1 or 3 applications of the dicalcium and tetracalcium phosphate containing agent TeethmateTM (TM) and comparing the results with two sodium fluoride varnishes VellaTM (VLA) and VanishTM (VAN), after storage in artificial saliva for 24 h, 48 h and 7 days. Significant differences were observed among the 4 methods employed for reducing dentin permeability (p < 0.001) and the 3 post-treatment times (p < 0.001). VLA and VAN never achieved 50% permeability reductions consistently in any of the 3 time periods. Only the calcium phosphate-based desensitizer applied for 3 times consistently reduced dentin permeability by 50% after 24 h. When applied once, the permeability reduction of TM increased progressively over the 3 time periods. After 7 days, only one and three applications of the calcium phosphate-based desensitizer consistently reduced dentin permeability by more than 50%. Permeability reductions corresponded well with scanning electron microscopy examination of dentinal tubule orifice occlusion in dentin specimens treated with the agents. Overall, the dicalcium and tetracalcium phosphate-based desensitizer is effective in reducing dentin permeability via a tubule occlusion mechanism. The ability of the agent to reduce dentin permeability renders it to be potentially useful as a clinical dentin desensitizing agent, which has to be confirmed in future clinical studies. By contrast, the two sodium fluoride varnishes are not effective in dentin permeability reduction and should be considered as topical fluoride delivering agents rather than tubular orifice-blocking agents.

  13. Effects of a Dicalcium and Tetracalcium Phosphate-Based Desensitizer on In Vitro Dentin Permeability

    PubMed Central

    Zhou, Jianfeng; Chiba, Ayaka; Scheffel, Debora L. S.; Hebling, Josimeri; Agee, Kelli; Niu, Li-na; Tay, Franklin R.; Pashley, David H.

    2016-01-01

    The present study evaluated the effectiveness of a dicalcium and tetracalcium phosphate-based desensitizer in reducing dentin permeability in vitro. Dentin fluid flow was measured before and after treatment of dentin with patent dentinal tubules using 1 or 3 applications of the dicalcium and tetracalcium phosphate containing agent TeethmateTM (TM) and comparing the results with two sodium fluoride varnishes VellaTM (VLA) and VanishTM (VAN), after storage in artificial saliva for 24 h, 48 h and 7 days. Significant differences were observed among the 4 methods employed for reducing dentin permeability (p < 0.001) and the 3 post-treatment times (p < 0.001). VLA and VAN never achieved 50% permeability reductions consistently in any of the 3 time periods. Only the calcium phosphate-based desensitizer applied for 3 times consistently reduced dentin permeability by 50% after 24 h. When applied once, the permeability reduction of TM increased progressively over the 3 time periods. After 7 days, only one and three applications of the calcium phosphate-based desensitizer consistently reduced dentin permeability by more than 50%. Permeability reductions corresponded well with scanning electron microscopy examination of dentinal tubule orifice occlusion in dentin specimens treated with the agents. Overall, the dicalcium and tetracalcium phosphate-based desensitizer is effective in reducing dentin permeability via a tubule occlusion mechanism. The ability of the agent to reduce dentin permeability renders it to be potentially useful as a clinical dentin desensitizing agent, which has to be confirmed in future clinical studies. By contrast, the two sodium fluoride varnishes are not effective in dentin permeability reduction and should be considered as topical fluoride delivering agents rather than tubular orifice-blocking agents. PMID:27359118

  14. Tooth root dentin mineralization defects in a mouse model of hypophosphatasia

    PubMed Central

    Foster, B.L.; Nagatomo, K.J.; Tso, H.W.; Tran, A.B.; Nociti, F.H.; Narisawa, S.; Yadav, M.C.; McKee, M.D.; Millán, J.L.; Somerman, M.J.

    2012-01-01

    Tissue-nonspecific alkaline phosphatase (TNAP) is expressed in mineralizing tissues and functions to reduce pyrophosphate (PPi), a potent inhibitor of mineralization. Loss of TNAP function causes hypophosphatasia (HPP), a heritable disorder marked by increased PPi, resulting in rickets and osteomalacia. Tooth root cementum defects are well described in both HPP patients and in Alpl−/− mice, a model for infantile HPP. In Alpl−/− mice, dentin mineralization is specifically delayed in the root, however, reports from human HPP patients are variable and inconsistent regarding dentin defects. In the present study, we aimed to define the molecular basis for changes in dentinogenesis observed in Alpl−/− mice. TNAP was found to be highly expressed by mature odontoblasts, and Alpl−/− molar and incisor roots featured defective dentin mineralization, ranging from a mild delay to severely disturbed root dentinogenesis. Lack of mantle dentin mineralization was associated with disordered and dysmorphic odontoblasts having disrupted expression of marker genes osteocalcin and dentin sialophosphoprotein. The formation of, initiation of mineralization within, and rupture of matrix vesicles in Alpl−/− dentin matrix was not affected. Osteopontin (OPN), an inhibitor of mineralization that contributes to the skeletal pathology in Alpl−/− mice, was present in the generally unmineralized Alpl−/− mantle dentin at ruptured mineralizing matrix vesicles, as detected by immunohistochemistry and by immunogold labeling. However, ablating the OPN-encoding Spp1 gene in Alpl−/− mice was insufficient to rescue the dentin mineralization defect. Administration of bioengineered mineral-targeting human TNAP (ENB-0040) to Alpl−/− mice corrected defective dentin mineralization in the molar roots. These studies reveal that TNAP participates in root dentin formation and confirm that reduction of PPi during dentinogenesis is necessary for odontoblast differentiation, dentin

  15. An evaluation and comparison of shear bond strength of composite resin to dentin, using newer dentin bonding agents

    PubMed Central

    Hegde, Mithra N; Bhandary, Shruti

    2008-01-01

    The purpose of this study was to assess the shear bond strength of Total etch Prime and Bond NT and self etch newer dentin bonding agents Clearfil S3, Xeno III Bond, Clearfil Protect Bond and G Bond used to bond composite resin to dentin, and to compare the difference in the shear bond strengths of the self etch newer dentin bonding agents. Hundred freshly extracted noncarious human maxillary premolar teeth were selected. The occlusal surfaces of each tooth were ground to prepare flat dentin surfaces at a depth of 1.5 mm and were randomly grouped, with twenty specimens in each: Group I - Prime and Bond NT, Group II - Clearfil Protect Bond, Group III - Xeno III Bond, Group IV - Clearfil S3 Bond, Group V - G Bond. Each group was treated with its respective bonding agents, as per the manufacturers' instructions Clearfill – Kuraray, Japan, G bond – GC Tokyo, Japan, Xeno- De Trey Densply, Germany. Blocks or Cylinders of composite resin were built up using Teflon mold and cured. Shear bond strengths were tested using Instron Universal testing machine and recorded in Mpa. The results were statistically analyzed using One-way anova and Tukeys HSD test. The total etch adhesive showed higher shear bond strength than self etching adhesives (P < 0.001). Within the limitations of this in vitro study, it can be concluded that all the adhesive agents evaluated showed optimal shear bond strength 17-20 Mpa, except G bond. However, shear bond strength of composite resin to dentin is better with one bottle total etch adhesive than with the newer self etching bonding agents. PMID:20142888

  16. Effects of Citric Acid and Desensitizing Agent Application on Nonfluorosed and Fluorosed Dentin: An In Vitro Sem Study

    PubMed Central

    Neha, Mahajan; Vandana, Laxman K

    2015-01-01

    Fluorosis is one of the factors which bring about mineralisation changes in a dentinal structure leading to dentin. The purpose of the present study was to compare and evaluate the dentinal tubular changes in fluorosed and nonfluorosed teeth subsequent to the application of citric acid,strontium acetate based sodium fluoride (SAF) using scanning electron microscopy (SEM). Dentin specimens from healthy fluorosed and nonfluorosed teeth were included in the study. Each of them was grouped into acid treated and SAF treatment groups. Using SEM, the photomicrographs (3500x) of dentin specimens were evaluated. Results showed while there was a significant difference in tubular width of partial occlusion ≤ 25%, being more in fluorosed group compared to nonfluorosed group after application SAF. Application of desensitising agents demonstrated higher number of dentinal tubular occlusion and diameter reduction in nonfluorosed dentin compared to fluorosed dentin. Summary: Root biomodification and desensitising agent procedure brings in definite difference between fluorosed and non-fluorosed dentin specimens. PMID:25870716

  17. Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin

    PubMed Central

    Shinno, Yuko; Ishimoto, Takuya; Saito, Mitsuru; Uemura, Reo; Arino, Masumi; Marumo, Keishi; Nakano, Takayoshi; Hayashi, Mikako

    2016-01-01

    In clinical dentistry, since fracture is a major cause of tooth loss, better understanding of mechanical properties of teeth structures is important. Dentin, the major hard tissue of teeth, has similar composition to bone. In this study, we investigated the mechanical properties of human dentin not only in terms of mineral density but also using structural and quality parameters as recently accepted in evaluating bone strength. Aged crown and root dentin (age ≥ 40) exhibited significantly lower flexural strength and toughness than young dentin (age < 40). Aged dentin, in which the dentinal tubules were occluded with calcified material, recorded the highest mineral density; but showed significantly lower flexural strength than young dentin. Dentin with strong alignment of the c-axis in hydroxyapatite exhibited high fracture strength, possibly because the aligned apatite along the collagen fibrils may reinforce the intertubular dentin. Aged dentin, showing a high advanced glycation end-products (AGEs) level in its collagen, recorded low flexural strength. We first comprehensively identified significant factors, which affected the inferior mechanical properties of aged dentin. The low mechanical strength of aged dentin is caused by the high mineral density resulting from occlusion of dentinal tubules and accumulation of AGEs in dentin collagen. PMID:26797297

  18. Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin

    NASA Astrophysics Data System (ADS)

    Shinno, Yuko; Ishimoto, Takuya; Saito, Mitsuru; Uemura, Reo; Arino, Masumi; Marumo, Keishi; Nakano, Takayoshi; Hayashi, Mikako

    2016-01-01

    In clinical dentistry, since fracture is a major cause of tooth loss, better understanding of mechanical properties of teeth structures is important. Dentin, the major hard tissue of teeth, has similar composition to bone. In this study, we investigated the mechanical properties of human dentin not only in terms of mineral density but also using structural and quality parameters as recently accepted in evaluating bone strength. Aged crown and root dentin (age ≥ 40) exhibited significantly lower flexural strength and toughness than young dentin (age < 40). Aged dentin, in which the dentinal tubules were occluded with calcified material, recorded the highest mineral density; but showed significantly lower flexural strength than young dentin. Dentin with strong alignment of the c-axis in hydroxyapatite exhibited high fracture strength, possibly because the aligned apatite along the collagen fibrils may reinforce the intertubular dentin. Aged dentin, showing a high advanced glycation end-products (AGEs) level in its collagen, recorded low flexural strength. We first comprehensively identified significant factors, which affected the inferior mechanical properties of aged dentin. The low mechanical strength of aged dentin is caused by the high mineral density resulting from occlusion of dentinal tubules and accumulation of AGEs in dentin collagen.

  19. Dentin bonding-variables related to the clinical situation and the substrate treatment.

    PubMed

    Perdigão, Jorge

    2010-02-01

    The wetness of dentin surfaces, the presence of pulpal pressure, and the thickness of dentin are extremely important variables during bonding procedures, especially when testing bond strength of adhesive materials in vitro with the intention of simulating in vivo conditions. The ultimate goal of a bonded restoration is to attain an intimate adaptation of the restorative material with the dental substrate. This task is difficult to achieve as the bonding process is different for enamel and for dentin-dentin is more humid and more organic than enamel. While enamel is predominantly mineral, dentin contains a significant amount of water and organic material, mainly type I collagen. This humid and organic nature of dentin makes this hard tissue very challenging to bond to. Several other substrate-related variables may affect the clinical outcome of bonded restorations. Bonding to caries-affected dentin is hampered by its lower hardness and presence of mineral deposits in the tubules. Non-carious cervical areas contain hypermineralized dentin and denatured collagen, which is not the ideal combination for a bonding substrate. Physiological transparent root dentin forms without trauma or caries lesion as a natural part of aging. Similar to the transparent dentin observed underneath caries lesions, the tubule lumina become filled with mineral from passive chemical precipitation, making resin hybridization difficult. An increase in number of tubules with depth and, consequently, increase in dentin wetness, make bonding to deeper dentin more difficult than to superficial dentin. While the application of acidic agents open the pathway for the diffusion of monomers into the collagen network, it also facilitates the outward seepage of tubular fluid from the pulp to the dentin surface, deteriorating the bonding for some of the current adhesives. Some dentin desensitizers have shown some promise as they can block dentinal tubules to treat and prevent sensitivity and simultaneously

  20. Effects of a ferric chloride primer on collagen-depleted dentin bonding between tri-n-butylborane initiated self-curing resin and dentin.

    PubMed

    Soeno, Kohyoh; Taira, Yohsuke; Ito, Shuichi; Atsuta, Mitsuru; Pashley, David H

    2007-11-01

    This study was designed to evaluate the micro-tensile bond strength between a carboxylic resin and dentin, when the dentin surface was modified with an experimental dentin primer. The three primers tested were ED primer II (ED), 0.3% ferric chloride aqueous solution (FE), and ED containing 0.3% ferric chloride (ED/FE). Three commercial dentin conditioners [40% phosphoric acid, 10% NaOCl, and 10% citric acid with 3% ferric chloride (10-3)] were also used. The coronal surfaces of extracted human molars were ground flat to dentin. The dentin surfaces were treated with phosphoric acid, NaOCl, or with one of the primers. The 10-3 was used without phosphoric acid or NaOCl as a control. A composite material rod was bonded to the dentin surface with 4-META/MMA-TBB resin. After 24-h immersion in 37 degrees C distilled water, 0.9 mm x 0.9 mm composite-dentin beams cut from the bonded specimens were stressed to failure in tension at 0.6 mm/min. The bond strengths were also evaluated after 5000 thermocycles. The bond strength of the group ED/FE was significantly higher than those of the 10-3, ED, and FE. After 5000 thermocycling, 10-3, ED and FE showed significant decrease in bond strength, although no significant decrease was seen for ED/FE. It was concluded that dentin surface treatment with phosphoric acid, NaOCl, and the ED/FE primer improved the bonding (p < 0.05) between 4-META/MMA-TBB resin and dentin, with or without thermocycling, while the bond strengths in the control group fell 34% following 5000 thermocycles.

  1. Review of methyl methacrylate (MMA)/tributylborane (TBB)-initiated resin adhesive to dentin.

    PubMed

    Taira, Yohsuke; Imai, Yohji

    2014-01-01

    This review, focusing mainly on research related to methyl methacrylate/tributylborane (MMA/TBB) resin, presents the early history of dentin bonding and MMA/TBB adhesive resin, followed by characteristics of resin bonding to dentin. Bond strengths of MMA/TBB adhesive resin to different adherends were discussed and compared with other bonding systems. Factors affecting bond strength (such as conditioners, primers, and medicaments used for dental treatment), bonding mechanism, and polymerization characteristics of MMA/TBB resin were also discussed. This review further reveals the unique adhesion features between MMA/TBB resin and dentin: in addition to monomer diffusion into the demineralized dentin surface, graft polymerization of MMA onto dentin collagen and interfacial initiation of polymerization at the resin-dentin interface provide the key bonding mechanisms.

  2. Influence of dentinal fluid and stress on marginal adaptation of resin composites.

    PubMed

    Krejci, I; Kuster, M; Lutz, F

    1993-02-01

    The influence of dentinal fluid and of a number of stress procedures on the quality of the margins of class V restorations located in both enamel and dentin was quantitatively assessed in vitro with the aid of a scanning electron microscope. The materials tested were GLUMA 2000 experimental, Prisma Universal Bond 3, and Syntac, together with the fine hybrid composites supplied by the respective manufacturers (Pekafill, AP.H, and Tetric). All materials achieved over 95% of "continuous margin" in enamel before and after stressing. In dentin, the initial values, with as well as without dentinal fluid simulation, were situated between 93.2 and 98.2%. With GLUMA 2000 experimental after stressing, a "continuous margin" occurred in only 50.2%, but with Prisma Universal Bond 3 and Syntac, the value was 79.0%. The influence of dentinal fluid simulation was dependent on the dentinal adhesive used. The effects of the various stress procedures were not significantly different.

  3. Homing and reparative effect of intra-articular injection of autologus mesenchymal stem cells in osteoarthritic animal model

    PubMed Central

    2011-01-01

    Background This work aimed to study the homing evidence and the reparative effect of mesenchymal stem cells (MSCs) in the healing process of induced osteoarthritis in experimental animal model (donkeys). Methods Twenty-seven donkeys were equally divided into 3 groups based on the observation period after induction of arthritis (3, 6 and 9 weeks) to achieve different degrees of osteoarthritis. Each group was subdivided into three subgroups of three animals each based on the follow-up period (1, 2 and 6 months) after treatment. The induction was done through intra-articular (IA) injection of 2 ml of Amphotericin-B in both carpal joints. MSCs were harvested in a separate procedure, labeled with green fluorescent protein (GFP) using monster GFP vector and suspended in hyaluronic acid for IA injection. Treatment approaches consisted of cell-treatment using MSCs suspended in 3 ml of hyaluronic acid (HA) for the right carpal joint; and using the same amount of (HA) but without MSCs for the left contralateral carpal joint to serve as a control. Animals were assessed clinically and radiologically before and after treatment. Synovial fluid was also evaluated. Histopathologically; articular cartilage structural changes, reduction of articular cartilage matrix staining, osteophyte formation, and subchondral bone plate thickening were graded. Data was summarized using median and percentile for scores of histopathologic grading. Comparison between groups was done using non-parametric Mann Whitney test. Results The reparative effect of MSCs was significant both clinically and radiologically in all treated groups (P < 0.05) compared to the control groups. Fluorescence microscopy of sections of the cell-treated joints of all animals indicated that the GFP-transduced injected cells have participated effectively in the reparative process of the damaged articular surface and have integrated within the existing articular cartilage. The cells were associated with the surface of the

  4. [Bonding of glass ionomer cement to dentin. An in vitro study].

    PubMed

    Gonzalez Lopez, S; Perez Gutierrez, I; Navajas Rodriguez de Mondelo, J M

    1991-01-01

    It's been studied "in vitro" the influence of the "Smear Layer" on the cement adhesión of the glass ionomer to the dentin. Using phosphoric acid at 37% and poliacrylic in the dentin during short periods of time, the adhesion between the cement and the dentin is improved because the Smear Layer is removed totally in the case of phosphoric acid and partially in the case of polyacrylic acid.

  5. Composite resin bond strength to primary dentin prepared with Er, Cr:YSSG laser.

    PubMed

    Sung, Eric C; Chenard, Torin; Caputo, Angelo A; Amodeo, Michael; Chung, Evelyn M; Rizoiu, Ioana M

    2005-01-01

    This in vitro study evaluated the shear bond strength of a hybrid composite resin bonded to primary dentin prepared with an Er, Cr:YSGG hydrokinetic laser compared to conventional bur prepared primary dentin. The results suggest that primary dentin surfaces treated with the Er, Cr:YSGG laser, with or without etching, may provide comparable or increased composite resin bond strengths depending upon bonding agent used.

  6. Inhibition of matrix metalloproteinase activity in human dentin via novel antibacterial monomer

    PubMed Central

    Li, Fang; Majd, Hessam; Weir, Michael D.; Arola, Dwayne D.; Xu, Hockin H.K.

    2015-01-01

    Objectives Dentin-composite bond failure is caused by factors including hybrid layer degradation, which in turn can be caused by hydrolysis and enzymatic degradation of the exposed collagen in the dentin. The objectives of this study were to investigate a new antibacterial monomer (dimethylaminododecyl methacrylate, DMADDM) as an inhibitor for matrix metalloproteinases (MMPs), and to determine the effects of DMADDM on both soluble recombinant human MMPs (rhMMPs) and dentin matrix-bound endogenous MMPs. Methods Inhibitory effects of DMADDM at six mass% (0.1% to 10%) on soluble rhMMP-8 and rhMMP-9 were measured using a colorimetic assay. Matrix-bound endogenous MMP activity was evaluated in demineralized human dentin. Dentin beams were divided into four groups (n = 10) and incubated in calcium- and zinc-containing media (control medium); or control medium + 0.2% chlorhexidine (CHX); 5% 12-methacryloyloxydodecylpyridinium bromide (MDPB); or 5% DMADDM. Dissolution of dentin collagen peptides was evaluated by mechanical testing in three-point flexure, loss of dentin mass, and a hydroxyproline assay. Results Use of 0.1% to 10% DMADDM exhibited a strong concentration-dependent anti-MMP effect, reaching 90% of inhibition on rhMMP-8 and rhMMP-9 at 5% DMADDM concentration. Dentin beams in medium with 5% DMADDM showed 34% decrease in elastic modulus (vs. 73% decrease for control), 3% loss of dry dentin mass (vs. 28% loss for control), and significantly less solubilized hydroxyproline when compared with control (p < 0.05). Significance The new antibacterial monomer DMADDM was effective in inhibiting both soluble rhMMPs and matrix-bound human dentin MMPs. These results, together with previous studies showing that adhesives containing DMADDM inhibited biofilms without compromising dentin bond strength, suggest that DMADDM is promising for use in adhesives to prevent collagen degradation in hybrid layer and protect the resin-dentin bond. PMID:25595564

  7. Antimicrobial effect of ozonated water on bacteria invading dentinal tubules.

    PubMed

    Nagayoshi, Masato; Kitamura, Chiaki; Fukuizumi, Takaki; Nishihara, Tatsuji; Terashita, Masamichi

    2004-11-01

    Ozone is known to act as a strong antimicrobial agent against bacteria, fungi, and viruses. In the present study, we examined the effect of ozonated water against Enterococcus faecalis and Streptcoccus mutans infections in vitro in bovine dentin. After irrigation with ozonated water, the viability of E. faecalis and S. mutans invading dentinal tubules significantly decreased. Notably, when the specimen was irrigated with sonication, ozonated water had nearly the same antimicrobial activity as 2.5% sodium hypochlorite (NaOCl). We also compared the cytotoxicity against L-929 mouse fibroblasts between ozonated water and NaOCl. The metabolic activity of fibroblasts was high when the cells were treated with ozonated water, whereas that of fibroblasts significantly decreased when the cells were treated with 2.5% NaOCl. These results suggest that ozonated water application may be useful for endodontic therapy.

  8. Laser-assisted treatment of dentinal hypersensitivity: a literature review

    PubMed Central

    Biagi, Roberto; Cossellu, Gianguido; Sarcina, Michele; Pizzamiglio, Ilaria Tina; Farronato, Giampietro

    2015-01-01

    Summary The purpose of this literature review was to evaluate the effectiveness of the laser-assisted treatment of dentinal hypersensitivity. A review with inclusion and exclusion criteria was performed from January 2009 to December 2014 with electronic data-bases: MedLine via PubMed, Science Direct and Cochrane Library. Research of paper magazines by hand was not considered. Forty-three articles were selected between literature reviews, in vitro studies, clinical trials, pilot and preliminary studies. The items were divided into laser-used groups for an accurate description, and then the reading of results into various typologies. Laser-assisted treatment reduces dentinal hypersensitivity-related pain, but also a psychosomatic component must be considered, so further studies and more suitable follow-ups are necessary. PMID:26941892

  9. Early dentine lead levels and educational outcomes at 18 years.

    PubMed

    Fergusson, D M; Horwood, L J; Lynskey, M T

    1997-05-01

    The associations between early dentine lead levels measured at the age of 6-8 years and educational outcomes measured at 18 years were examined in a birth cohort of 1265 New Zealand children. Analyses showed significant (p < .005) dose/response relationships between early dentine lead levels and later outcomes: at age 18 children with early elevated lead levels had poorer reading abilities, had more often left school early, had more often left school without qualifications, and had lower levels of success in school examinations. These associations persisted after statistical control for a range of social and familial confounding factors. A number of potential threats to the validity of the findings are examined, including sample selection bias, statistical undercontrol of covariates, and errors of measurement. It is concluded that the findings are consistent with the view that early mildly elevated lead levels have modest but detectable effects on individual achievement, with these effects extending to late adolescence.

  10. Dentine sealing provided by smear layer/smear plugs vs. adhesive resins/resin tags.

    PubMed

    Carrilho, Marcela R; Tay, Franklin R; Sword, Jeremy; Donnelly, Adam M; Agee, Kelli A; Nishitani, Yoshihiro; Sadek, Fernanda T; Carvalho, Ricardo M; Pashley, David H

    2007-08-01

    The aim of this study was to evaluate the ability of five experimental resins, which ranged from hydrophobic to hydrophilic blends, to seal acid-etched dentine saturated with water or ethanol. The experimental resins (R1, R2, R3, R4, and R5) were evaluated as neat bonding agents (100% resin) or as solutions solvated with absolute ethanol (70% resin/30% ethanol). Fluid conductance was measured at 20 cm H(2)O hydrostatic pressure after sound dentine surfaces were: (i) covered with a smear layer; (ii) acid-etched; or (iii) bonded with neat or solvated resins, which were applied to acid-etched dentine saturated with water or ethanol. In general, the fluid conductance of resin-bonded dentine was significantly higher than that of smear layer-covered dentine. However, when the most hydrophobic neat resins (R1 and R2) were applied to acid-etched dentine saturated with ethanol, the fluid conductance was as low as that produced by smear layers. The fluid conductance of resin-bonded dentine saturated with ethanol was significantly lower than for resin bonded to water-saturated dentine, except for resin R4. Application of more hydrophobic resins may provide better sealing of acid-etched dentine if the substrate is saturated with ethanol instead of with water.

  11. Chitosan/Riboflavin-modified demineralized dentin as a potential substrate for bonding.

    PubMed

    Fawzy, Amr S; Nitisusanta, Lorraine I; Iqbal, Kulsum; Daood, Umer; Beng, Lu Thong; Neo, Jennifer

    2013-01-01

    Previous studies have suggested different approaches to modify dentin collagen for potential improvement in bonding to dentin. Here, we are proposing a new approach to reinforce dentin collagen fibrils network by chitosan as a reinforcement phase and UVA-activated riboflavin as crosslinking agent within clinically acceptable time-frame as potential substrate for bonding. The effect of modifying demineralized dentin substrates with chitosan/riboflavin, with a gradual increase in chitosan content, was investigated by SEM, nano-indentation, conventional-mechanical testing and hydroxyproline (HYP) release at collagenolytic and/or hydrolytic challenges. The resin/dentin interface morphology, immediate bond strength and short-term bond durability were also investigated using etch-and-rinse dentin adhesive. Modification with chitosan/riboflavin increased the mechanical properties, enhanced the mechanical stability of demineralized dentin substrates against hydrolytic and/or collagenolytic degradation challenges and decreased HYP release with collagenase exposure. When chitosan was added to riboflavin at 20%v/v ratio, significant improvement in bond strength at 24 h and 6 months in distilled water was found indicating the positive dual effect on bonding to dentin. With the gradual increase in chitosan content, obliteration of interfibrillar-spaces that might adversely affect bonding to dentin was found. Although it has a synergetic effect, chitosan content is crucial for any subsequent application in adhesive dentistry.

  12. Co-distribution of cysteine cathepsins and matrix metalloproteases in human dentin.

    PubMed

    Scaffa, Polliana Mendes Candia; Breschi, Lorenzo; Mazzoni, Annalisa; Vidal, Cristina de Mattos Pimenta; Curci, Rosa; Apolonio, Fabianni; Gobbi, Pietro; Pashley, David; Tjäderhane, Leo; Tersariol, Ivarne Luis Dos Santos; Nascimento, Fábio Dupart; Carrilho, Marcela Rocha

    2017-02-01

    It has been hypothesized that cysteine cathepsins (CTs) along with matrix metalloproteases (MMPs) may work in conjunction in the proteolysis of mature dentin matrix. The aim of this study was to verify simultaneously the distribution and presence of cathepsins B (CT-B) and K (CT-K) in partially demineralized dentin; and further to evaluate the activity of CTs and MMPs in the same tissue. The distribution of CT-B and CT-K in sound human dentin was assessed by immunohistochemistry. A double-immunolabeling technique was used to identify, at once, the occurrence of those enzymes in dentin. Activities of CTs and MMPs in dentin extracts were evaluated spectrofluorometrically. In addition, in situ gelatinolytic activity of dentin was assayed by zymography. The results revealed the distribution of CT-B and CT-K along the dentin organic matrix and also indicated co-occurrence of MMPs and CTs in that tissue. The enzyme kinetics studies showed proteolytic activity in dentin extracts for both classes of proteases. Furthermore, it was observed that, at least for sound human dentin matrices, the activity of MMPs seems to be predominant over the CTs one.

  13. Matrix metalloproteinases and other matrix proteinases in relation to cariology: the era of 'dentin degradomics'.

    PubMed

    Tjäderhane, Leo; Buzalaf, Marília Afonso Rabelo; Carrilho, Marcela; Chaussain, Catherine

    2015-01-01

    Dentin organic matrix, with type I collagen as the main component, is exposed after demineralization in dentinal caries, erosion or acidic conditioning during adhesive composite restorative treatment. This exposed matrix is prone to slow hydrolytic degradation by host collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins. Here we review the recent findings demonstrating that inhibition of salivary or dentin endogenous collagenolytic enzymes may provide preventive means against progression of caries or erosion, just as they have been shown to retain the integrity and improve the longevity of resin composite filling bonding to dentin. This paper also presents the case that the organic matrix in caries-affected dentin may not be preserved as intact as previously considered. In partially demineralized dentin, MMPs and cysteine cathepsins with the ability to cleave off the terminal non-helical ends of collagen molecules (telopeptides) may lead to the gradual loss of intramolecular gap areas. This would seriously compromise the matrix ability for intrafibrillar remineralization, which is considered essential in restoring the dentin's mechanical properties. More detailed data of the enzymes responsible and their detailed function in dentin-destructive conditions may not only help to find new and better preventive means, but better preservation of demineralized dentin collagenous matrix may also facilitate true biological remineralization for the better restoration of tooth structural and mechanical integrity and mechanical properties.

  14. Effect of dentin etching and chlorhexidine application on metalloproteinase-mediated collagen degradation.

    PubMed

    Osorio, Raquel; Yamauti, Mónica; Osorio, Estrella; Ruiz-Requena, María E; Pashley, David; Tay, Franklin; Toledano, Manuel

    2011-02-01

    Dentin matrix metalloproteinases (MMPs) are involved in the degradation of collagen in resin-dentin interfaces. This study evaluated whether collagen degradation can be prevented by chlorhexidine digluconate (CHX) after different dentin demineralization procedures. The demineralization of human dentin was performed with phosphoric acid (PA), EDTA or acidic monomers (Clearfil SE Bond and Xeno V). Specimens were stored (for 24 h, or for 1 or 3 wk) in the presence or absence of CHX. In half of the groups, active MMP-2 was incorporated into the storage solution. At the end of each storage period, the C-terminal telopeptide (ICTP) concentration (which indicates the amount of collagen degradation) was measured in the storage solution. Collagen degradation was higher in PA- and EDTA-demineralized dentin. Chlorhexidine digluconate reduced collagen degradation in these groups only for 24 h. When dentin was demineralized with Clearfil SE Bond or Xeno V, collagen degradation was reduced by up to 30%, but the addition of exogenous MMP-2 significantly increased collagen degradation. In self-etchant-treated dentin, the inhibitory effect of CHX on MMPs lasted for up to 3 wk. Treating dentin with EDTA, PA or self-etching agents produces enough demineralization to permit cleavage of the exposed collagen. Monomer infiltration may exert protection on demineralized collagen, probably through immobilization of MMPs. The partial inhibitory action of CHX on MMP activity produced by self-etching adhesives was prolonged compared with the short-acting PA- or EDTA-treated dentin.

  15. Effect of erbium:yttrium-aluminum-garnet laser energies on superficial and deep dentin microhardness.

    PubMed

    Chinelatti, Michelle Alexandra; Raucci-Neto, Walter; Corona, Silmara Aparecida Milori; Palma-Dibb, Regina Guenka

    2010-05-01

    This study evaluated the microhardness of superficial and deep dentin irradiated with different erbium:yttrium-aluminum-garnet (Er:YAG) laser energies. Seventy-two molars were bisected and randomly assigned to two groups (superficial dentin or deep dentin) and into six subgroups (160 mJ, 200 mJ, 260 mJ, 300 mJ, 360 mJ, and control). After irradiation, the cavities were longitudinally bisected. Microhardness was measured at six points (20 microm, 40 microm, 60 microm, 80 microm, 100 microm, and 200 microm) under the cavity floor. Data were submitted to analysis of variance (ANOVA) and Fisher's tests (alpha = 0.05). Superficial dentin presented higher microhardness than deep dentin; energy of 160 mJ resulted in the highest microhardness and 360 mJ the lowest one. Values at all points were different, exhibiting increasing microhardness throughout; superficial dentin microhardness was the highest at 20 microm with 160 mJ energy; for deep dentin, microhardness after irradiation at 160 mJ and 200 mJ was similar to that of the control. The lowest energy increased superficial dentin microhardness at the closest extent under the cavity; deep dentin microhardness was not altered by energies of 160 mJ and 200 mJ.

  16. Developmental defects of enamel and dentine: challenges for basic science research and clinical management.

    PubMed

    Seow, W K

    2014-06-01

    Abnormalities of enamel and dentine are caused by a variety of interacting factors ranging from genetic defects to environmental insults. The genetic changes associated with some types of enamel and dentine defects have been mapped, and many environmental influences, including medical illnesses that can damage enamel and dentine have been identified. Developmental enamel defects may present as enamel hypoplasia or hypomineralization while dentine defects frequently demonstrate aberrant calcifications and abnormalities of the dentine-pulp complex. Clinically, developmental enamel defects often present with problems of discolouration and aesthetics, tooth sensitivity, and susceptibility to caries, wear and erosion. In contrast, dentine defects are a risk for endodontic complications resulting from dentine hypomineralization and pulpal abnormalities. The main goals of managing developmental abnormalities of enamel and dentine are early diagnosis and improvement of appearance and function by preserving the dentition and preventing complications. However, despite major advances in scientific knowledge regarding the causes of enamel and dentine defects, further research is required in order to translate the knowledge gained in the basic sciences research to accurate clinical diagnosis and successful treatment of the defects.

  17. Morphology and chemical composition of dentin in permanent first molars with the diagnose MIH.

    PubMed

    Heijs, Suzanne C B; Dietz, Wolfram; Norén, Jörgen G; Blanksma, Nynke G; Jälevik, Birgitta

    2007-01-01

    The purpose of this investigation was to study the morphology and distribution of some inorganic elements in dentin in first permanent molars from children with Molar-Incisor Hypomineralization (MIH). Sixty four tooth sections from thirty two children were examined in polarized light. Fifteen representative sections were selected for SEM/XRMA analysis; 5 were used for SEM analysis and 10 for XRMA analysis. No morphological changes in the dentin were revealed in polarized light microscopy (PLM). However, in all but two sections interglobular dentin was found. The SEM analyzes confirmed the findings of the PLM with no structural changes to be found in the dentin. The XRMA results showed a difference in the concentration of elements between dentin below normal and dentin below carious or hypomineralized enamel. Elements related to organic matter appeared with higher values in dentin below hypomineralized and carious enamel. The morphological and chemical findings in dentin below hypomineralized enamel imply that the odontoblasts are not affected in cases of MIH, but may be affected by hypocalcemia, reflected by the presence of interglobular dentin.

  18. Influence of matrix metalloproteinase synthetic inhibitors on dentin microtensile bond strength of resin cements.

    PubMed

    Stape, T H S; Menezes, M S; Barreto, B C F; Aguiar, F H B; Martins, L R; Quagliatto, P S

    2012-01-01

    This study evaluated the effect of dentin pretreatment with 2% chlorhexidine (CHX) or 24% ethylenediamine tetra-acetic acid gel (EDTA) on the dentin microtensile bond strength (μTBS) of resin cements. Composite blocks were luted to superficial noncarious human dentin (n=10) using two resin cements (RelyX ARC [ARC] and RelyX U100 [U100]) and three dentin pretreatments (without pretreatment-control, CHX, and EDTA). CHX was applied for 60 seconds on the acid-etched dentin in the ARC/CHX group, and for the same time on smear layer-covered dentin in the U100/CHX group. EDTA was applied for 45 seconds on smear-covered dentin in the U100/EDTA group, and it replaced phosphoric acid conditioning in the ARC/EDTA group for 60 seconds. After storage in water for 24 hours, specimens were prepared for microtensile bond strength testing. The results were submitted to two-way analysis of variance (ANOVA) followed by Tukey test. ARC produced significantly higher μTBS (p<0.05) compared to the U100, except when EDTA was used. For ARC, no pretreatment and CHX produced higher μTBS than EDTA. For U100, EDTA produced higher μTBS; no statistical difference occurred between CHX pretreatment and when no pretreatment was performed. While CHX did not affect immediate dentin bond strength of both cements, EDTA improved bond strength of U100, but it reduced dentin bond strength of ARC.

  19. The importance of size-exclusion characteristics of type I collagen in bonding to dentin matrices

    PubMed Central

    M, Takahashi; M, Nakajima; J, Tagami; DLS, Scheffel; RM, Carvalho; A, Mazzoni; M, Carrilho; A, Tezvergil-Mutluay; L, Breschi; L, Tjäderhane; SS, Jang; FR, Tay; KA, Agee; DH, Pashley

    2013-01-01

    The mineral phase of dentin is located primarily within collagen fibrils. During development, bone or dentin collagen fibrils are formed first and then water within the fibril is replaced with apatite crystallites. Mineralized collagen contains very little water. During dentin bonding, acid-etching of mineralized dentin solubilizes the mineral crystallites and replaces them with water. During the infiltration phase of dentin bonding, adhesive comonomers are supposed to replace all of the collagen water with adhesive monomers that are then polymerized into copolymers. The authors of a recently published review suggested that dental monomers were too large to enter and displace water from collagen fibrils. If that were true, the endogenous proteases bound to dentin collagen could be responsible for unimpeded collagen degradation that is responsible for the poor durability of resin-dentin bonds. The current work studied the size-exclusion characteristics of dentin collagen, using a gel-filtration-like column chromatography technique, using dentin powder instead of Sephadex. The elution volumes of test molecules, including adhesive monomers, revealed that adhesive monomers smaller than about 1000 Da can freely diffuse into collagen water, while molecules of 10,000 Da begin to be excluded, and bovine serum albumin (66,000 Da) was fully excluded. These results validate the concept that dental monomers can permeate between collagen molecules during infiltration by etch-and-rinse adhesives. PMID:23928333

  20. Cross-linked demineralized dentin maintains its mechanical stability when challenged by bacterial collagenase

    PubMed Central

    Xu, Changqi; Wang, Yong

    2014-01-01

    The molecular structure, weight loss and mechanical properties of demineralized dentin of non-crosslinked/crosslinked by glutaraldehyde (GA) were investigated when being challenged by bacterial collagenase solution over time in the present study. Raman spectra proved that cross-linking occurred in demineralized dentin matrices after being treated with GA. Meanwhile, the weight of the cross-linked demineralized dentin matrices didn’t change after being challenged by bacterial collagenase solution up to one week. However, the weight of non-crosslinked dentin collagen fell by almost 45% after degradation for 5 hr, and up to 100% after 19 hr. The tensile strength of demineralized dentin matrices didn’t show a significant change after being crosslinked, while the stiffness of demineralized dentin matrices showed more improvement than that of non-crosslinked collagen. The toughness of demineralized dentin matrices decreased slightly after being crosslinked. Importantly, neither the tensile strength of GA-crosslinked demineralized dentin nor its stiffness changed over time in either control buffer or collagenase solution compared to that of noncrosslinked controls. These results suggested that improving the degree of cross-linking in dentin collagen could be one method to inhibit its biodegradation and further to increase the durability of dental restorations. PMID:21210503

  1. Effect of dentin etching and chlorhexidine application on metalloproteinase-mediated collagen degradation

    PubMed Central

    Raquel, Osorio; Mónica, Yamauti; Estrella, Osorio; Estrella, Ruiz-Requena María; David, Pashley; Franklin, Tay; Manuel, Toledano

    2013-01-01

    Dentin matrix metalloproteinases (MMPs) are involved in collagen degradation of resin-dentin interfaces. This study evaluated if collagen degradation can be prevented by chlorhexidine after different dentin demineralization procedures. Human dentin demineralization was performed with phosphoric acid (PA), EDTA, or acidic monomers (ClearfilSEBond and XENOV). Specimens were stored (24 h, 1 wk or 3 wk) in the presence or absence of chlorhexidine. In half of the groups, active MMP-2 was incorporated into the storing solution. C-terminal telopeptide determination (ICTP) was performed in the supernatants. Collagen degradation was higher in PA and EDTA-demineralized dentin. Chlorhexidine reduced collagen degradation in these groups only for 24 h. When dentin was demineralized with SEBond or Xeno, collagen degradation was reduced up to 30%, but addition of exogenous MMP-2 significantly increased collagen degradation. In self-etchant treated dentin the inhibitory effect of chlorhexidine on MMPs lasted up to 3 wk. Treating dentin with EDTA, PA or self-etching agents produces enough demineralization to permit cleavage of the exposed collagen. Monomers infiltration may exert protection on demineralized collagen, probably through immobilization of MMPs. The partial inhibitory action of CHX on MMP activity produced by self-etching adhesives was prolonged compared to the short-acting in PA or EDTA-treated dentin. PMID:21244516

  2. Treatment of dentinal tubules by Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Chmelíčkova, Hana; Zapletalova, Zdeňka; Peřina, Jan, Jr.; Novotný, Radko; Kubínek, Roman; Stranyánek, Martin

    2005-08-01

    Symptom of cervical dentine hypersensitivity attacks from 10% to 15% of population and causes an uncomfortable pain during contact with any matter. Sealing of open dentinal tubules is one of the methods to reach insensibility. Laser as a source of coherent radiation is used to melt dentine surface layers. Melted dentine turns to hard mass with a smooth, non-porous surface. Simulation of this therapy was made in vitro by means of LASAG Nd:YAG pulsed laser system KLS 246-102. Eighty human extracted teeth were cut horizontally to obtain samples from 2 mm to 3 mm thick. First experiments were done on cross section surfaces to find an optimal range of laser parameters. A wide range of energies from 30 mJ to 210 mJ embedded in 0,3 ms long pulse was tested. Motion in X and Y axes was ensured by a CNC driven table and the pulse frequency 15 Hz was chosen to have a suitable overlap of laser spots. Some color agents were examined with the aim to improve surface absorption. Scanning Electron Microscopy was used to evaluate all samples and provided optimal values of energies around 50 J.cm-2. Next experiments were done with the beam oriented perpendicularly to a root surface, close to the real situation. Optical fibers with the diameter of 0,6 mm and 0,2 mm were used to guide a laser beam to teeth surfaces. Laser processing heads with lens F = 100 mm and F = 50 mm were used. The best samples were investigated by means of the Atomic Force Microscopy.

  3. Critical appraisal. Options for dentin/enamel bonding: part IV.

    PubMed

    Swift, Edward J

    2010-08-01

    Four categories of resin-based dentin/enamel adhesives are currently available. These include the three-step etch-&-rinse, "one-bottle" etch-&-rinse, two-step self-etch primer systems, and "all-in-one" self-etch adhesives. In consecutive issues of the Journal, the Critical Appraisal series is presenting salient publications on research in each of the categories. This final installment of the series focuses on the all-in-one self-etch adhesives.

  4. Critical appraisal. Options for dentin/enamel bonding: Part I.

    PubMed

    Swift, Edward J

    2010-02-01

    Four categories of resin-based dentin/enamel adhesives are currently available. These include the three-step etch-and-rinse, "one-bottle" etch-and-rinse, two-step self-etch primer systems, and "all-in-one" self-etch adhesives. In consecutive issues of the Journal, the Critical Appraisal series will present salient publications on research in each of the categories, beginning with this issue's piece on the three-step etch-and-rinse systems.

  5. Dentinal sensitivity: a natural mineral dietary supplement study.

    PubMed

    Rogo, E; Hodges, K; Herzog, A

    2006-08-01

    The purpose of the investigation was to determine the effect of drinking a natural mineral dietary supplement (NMDS) on gingival health and dentinal hypersensitivity. The NMDS product was from a geothermal source and contained 3.6 mg l(-1) of fluoride and other minerals. Sample selection included subjects with gingival inflammation and sensitivity as well as screening for exclusion factors. A double-blind randomized parallel approach was used. The investigation was a quasi-experimental pre/post-test design. The experimental group ingested and swished twice a day with the NMDS (1 l) and the control group followed the same regimen with a placebo containing de-ionized water (DIW). Clinical measurements of gingival inflammation and dentinal sensitivity were taken at baseline, 4 and 8 weeks. Gingival inflammation was measured using the Gingival Index. Dentinal hypersensitivity was measured using a tactile stimulus and an evaporative stimulus. After each stimulus was applied, the subjects rated the amount of discomfort on a visual analogue scale from 0 to 10. Each set of data was analysed using anova and a post hoc probing technique to determine within- and between-group differences (P = 0.05). The experimental and control groups (n = 70) experienced a statistically significant decrease in tactile and evaporative sensitivity scores over time; however, the between-group differences were not significant. The gingival inflammation data were not statistically significant with regard to the within- and between-group differences. Therefore the NMDS and DIW were equally effective in reducing dentinal hypersensitivity and neither product effectively reduced gingival inflammation.

  6. Application of Diode Laser in the Treatment of Dentine Hypersensitivity

    PubMed Central

    Gojkov-Vukelic, Mirjana; Hadzic, Sanja; Zukanovic, Amila; Pasic, Enes; Pavlic, Veriva

    2016-01-01

    Introduction: Dentine hypersensitivity is characterized by acute, sharp pain arising from the exposed dentine, most commonly in response to thermal, tactile, or chemical stimuli, and which cannot be linked to any other pathological changes in the tooth or the environment. Therapy uses various impregnating agents in the form of solutions or gels and, in more recent times, laser. Aim: The aim of this research was to examine the effects of treatment of hypersensitive dental cervix with diode laser. Materials and Methods: The study included 18 patients with 82 sensitive teeth. The degree of dentine hypersensitivity was evaluated by visual analogue scale (VAS), and the treatment was carried out by application of low-power diode laser over the span of three visits, which depended on the initial sensitivity. Results: There is a significant difference in VAS values measured at the onset of treatment (baseline) and immediately after the first laser treatment (t=9.275; p=0.000), after 7 days, after the second laser treatment (14 days) (t=7.085, p=0.000), as well as after 14 days and the third laser treatment (t=5.517, p=0.000), which confirms the effectiveness of this therapeutic procedure. The results showed a reduction of hypersensitivity in response to tactile stimulus with a probe after the third treatment, even with teeth whose value on the VAS was very high at the beginning of treatment (baseline). Conclusion: Within the scope of the conducted study, laser therapy has provided extremely safe and effective results in the treatment of cervical dentine hypersensitivity. PMID:28210023

  7. Effect of two desensitizing agents on dentin permeability in vitro

    PubMed Central

    ISHIHATA, Hiroshi; KANEHIRA, Masafumi; FINGER, Werner J.; TAKAHASHI, Hidekazu; TOMITA, Makoto; SASAKI, Keiichi

    2017-01-01

    Abstract Objective The aim of this in vitro study was to investigate the effect of two desensitizing agents and water on hydraulic conductance in human dentin. Material and Methods GLUMA Desensitizer PowerGel (GLU) contains glutaraldehyde (GA) and 2-hydroxyethyl methacrylate (HEMA), and Teethmate Desensitizer (TD) is a powder comprising tetracalcium phosphate (TTCP) and dicalcium phosphate anhydrous (DCPA) that is mixed with water. Deionized water was used as a negative control (CTR). Thirty discs with a thickness of 1.2 mm were cut from the coronal dentin of the third molars and cleaned with 0.5 M EDTA (pH 7.4). After being mounted in a split-chamber device, the discs were pressurized with water at 1 kPa and 3 kPa in order to measure flow rates with a highly sensitive micro-flow sensor and to calculate hydraulic conductance as a baseline value (BL). Following the application of GLU, TD, and CTR (n=10), hydraulic conductance was remeasured with intermittent storage in water after 15 min, 1 d, 1 w, and 1 m. Reduction in permeability (PR%) was calculated from hydraulic conductance. Data were statistically analyzed using nonparametric methods (α<0.05). Representative discs were inspected by SEM. Results PR% for GLU and TD were 30-50% 15 min and 1 m after their application. Post hoc tests indicated that PR% of CTR was significantly greater than those of GLU and TD at all time points tested. The PR% of GLU and TD were not significantly different. SEM examinations showed noncollapsed collagen meshes at the tubular entrances after GLU, and crystalline precipitates occluding the tubular orifices after TD, whereas CTR specimens showed typical patterns of etched dentin. Conclusions The present study on hydraulic conductance in dentin discs treated with two chemically different desensitizing agents and water as a control demonstrated that both products may be characterized as effective. PMID:28198974

  8. [Effect of weightlessness on the course of the reparative process in the muscles of the biosatellite Kosmos-2044 rats].

    PubMed

    Il'ina-Kakueva, E I; Burkovskaia, T E

    1991-01-01

    The repair process in the soleus and gastrocnemius muscles of SPF Wistar rats flown for 14 days on the biosatellite Cosmos-2044 was investigated. The muscles were injured 2 days before launch by means of clamp forceps. The exposure inhibited the process but did not impair its phasic development. As a result, the reparative field diminished and took the size of an atrophic muscle; thinner myofibers appeared that originated from the ends of injured atrophic fibers and fibers that underwent splitting. It is postulated that repair inhibition is caused by the same mechanisms that produce muscle atrophy in microgravity. It is suggested that both repair inhibition and muscle atrophy are induced by disorders in the neurotrophic regulation of metabolism due to partial disuse.

  9. Ultrastructural examination of one-step self-etch adhesive bonded primary sound and caries-affected dentin

    PubMed Central

    HOSOYA, YUMIKO; TAY, FRANKLIN R.; GARCÍA-GODOY, FRANKLIN; PASHLEY, DAVID H.

    2013-01-01

    Purpose This study examined the ultrastructure and silver nanoleakage of the resin-dentin interfaces in sound and caries-affected primary tooth dentin bonded with a 4-META one-step self-etch adhesive. Materials and Methods Each of five sound and carious primary molars was bonded with Hybrid Bond. Resin-dentin interfaces were observed with TEM micrographs obtained from silver-impregnated, unstained and undemineralized sections of bonded sound and caries-affected primary dentin, and stained and demineralized sections of bonded sound primary dentin with silver impregnation. Results For sound dentin, silver nanoleakage was observed extensively in the patent dentinal tubules, within the dentin beneath the hybrid layer, within the hybrid layer in some specimens, and as water trees that partially protruded into the overlying adhesive layer. The hybrid layer was about 1 μm thick. Smear plugs in the dentinal tubules and smear on the ground dentin protruded in the hybrid layer. Remnants of demineralized smear were observed overlying adhesive layer. For caries-affected dentin, the hybrid layer was obscure. Dentinal tubules were occluded with mineral deposits. There were no water trees or nanoleakage in the adhesive layer or hybrid layer. However, smear remnants were observed in adhesive layer and heavily silver deposits were observed in the highly porous underlying caries-affected dentin. PMID:19146129

  10. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy.

    PubMed

    Chakravarthy, Harshini; Beli, Eleni; Navitskaya, Svetlana; O'Reilly, Sandra; Wang, Qi; Kady, Nermin; Huang, Chao; Grant, Maria B; Busik, Julia V

    2016-01-01

    Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM) pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs). We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy.

  11. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy

    PubMed Central

    Navitskaya, Svetlana; O’Reilly, Sandra; Wang, Qi; Kady, Nermin; Huang, Chao; Grant, Maria B.; Busik, Julia V.

    2016-01-01

    Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM) pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs). We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy. PMID:26760976

  12. Aging and Fracture of Human Cortical Bone and Tooth Dentin

    SciTech Connect

    Ager, Joel; Koester, Kurt J.; Ager III, Joel W.; Ritchie, Robert O.

    2008-05-07

    Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms which function primarily behind the tip, such as crack bridging in ceramics. Bone and dentin derive their resistance to fracture principally from extrinsic toughening mechanisms which have their origins in the hierarchical microstructure of these mineralized tissues. Experimentally, quantification of these toughening mechanisms requires a crack-growth resistance approach, which can be achieved by measuring the crack-driving force, e.g., the stress intensity, as a function of crack extension ("R-curve approach"). Here this methodology is used to study of the effect of aging on the fracture properties of human cortical bone and human dentin in order to discern the microstructural origins of toughness in these materials.

  13. Inhibition of enzymatic degradation of adhesive-dentin interfaces.

    PubMed

    De Munck, J; Van den Steen, P E; Mine, A; Van Landuyt, K L; Poitevin, A; Opdenakker, G; Van Meerbeek, B

    2009-12-01

    Adhesive procedures activate dentin-associated matrix metalloproteinases (MMPs), and so iatrogenically initiate bond degradation. We hypothesized that adding MMP inhibitors to adhesive primers may prevent this endogenous enzymatic degradation, thereby improving bond durability. A non-specific MMP inhibitor (chlorhexidine) and a MMP-2/9-specific inhibitor (SB-3CT) were admixed to the primers of an etch & rinse and a self-etch adhesive, both considered as gold-standard adhesives within their respective categories. For dentin powder exposed to the adhesives under clinical application conditions, gelatin zymography revealed the release of MMP-2 (not of MMP-9) by the etch & rinse adhesive, while no release of enzymes could be detected for the mild self-etch adhesive, most likely because of its limited dentin demineralization effect. The built-in MMP inhibitors appeared effective in reducing bond degradation only for the etch & rinse adhesive, and not for the self-etch adhesive. Water sorption of adhesive interfaces most likely remains the principal mechanism of bond degradation, while endogenous enzymes appear to contribute to bond degradation of only etch & rinse adhesives.

  14. Wnt signaling regulates pulp volume and dentin thickness

    PubMed Central

    Lim, Won Hee; Liu, Bo; Cheng, Du; Hunter, Daniel J; Zhong, Zhendong; Ramos, Daniel M; Williams, Bart O; Sharpe, Paul T; Bardet, Claire; Mah, Su-jung; Helms, Jill A

    2015-01-01

    Odontoblasts, cementoblasts, ameloblasts and osteoblasts all form mineralized tissues in the craniofacial complex, and all these cell types exhibit active Wnt signaling during postnatal life. We set out to understand the functions of this Wnt signaling, by evaluating the phenotypes of mice in which the essential Wnt chaperone protein, Wingless was eliminated. The deletion of Wls was restricted to cells expressing Osteocalcin, which in addition to osteoblasts includes odontoblasts, cementoblasts, and ameloblasts. Dentin, cementum, enamel, and bone all formed in OCN-Cre;Wlsfl/fl mice but their homeostasis was dramatically affected. The most notable feature was a significant increase in dentin volume and density. We attribute this gain in dentin volume to a Wnt-mediated mis-regulation of Runx2. Normally, Wnt signaling stimulates Runx2, which in turn inhibits DSP; this inhibition must be relieved for odontoblasts to differentiate. In OCN-Cre;Wlsfl/fl mice, Wnt pathway activation is reduced and Runx2 levels decline. The Runx2-mediated repression of DSP is relieved and odontoblast differentiation is accordingly enhanced. This study demonstrates the importance of Wnt signaling in the homeostasis of mineralized tissues of the craniofacial complex. PMID:23996396

  15. Fracture mechanics analysis of the dentine-luting cement interface.

    PubMed

    Ryan, A K; Mitchell, C A; Orr, J F

    2002-01-01

    The objectives of this study were to determine the fracture toughness of adhesive interfaces between dentine and clinically relevant, thin layers of dental luting cements. Cements tested included a conventional glass-ionomer, F (Fuji 1), a resin-modified glass-ionomer, FP (Fuji Plus) and a compomer cement, D (DyractCem). Ten miniature short-bar chevron notch specimens were manufactured for each cement, each comprising a 40 microm thick chevron of lute, between two 1.5 mm thick blocks of bovine dentine, encased in resin composite. The interfacial K(IC) results (MN/m3/2) were median (range): F; 0.152 (0.14-0.16), FP; 0.306 (0.27-0.37), D; 0.351 (0.31-0.37). Non-parametric statistical analysis showed that the fracture toughness of F was significantly lower (p <0.05) than those of FP or D, and all were significantly lower than values for monolithic cement specimens. Scanning electron microscopy of the specimens suggested crack propagation along the interface. However, energy dispersive X-ray analysis indicated that failure was cohesive within the cement. It is concluded that the fracture toughness of luting cement was lowered by cement-dentine interactions.

  16. Dentin mid-infrared laser ablation at various lasing parameters

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Dimitris N.; Papagiakoumou, Eirini I.; Makropoulou, Mersini I.; Khabbaz, Marouan G.; Serafetinides, Alexander A.

    2005-01-01

    In this study a frustrated total internal reflection (FTIR) Q-switched and free-running Er:YAG laser, as well as a novel design transversally excited atmospheric pressure (TEA) oscillator-double amplifier corona preionised high beam quality Hydrogen-Fluoride (HF) laser system, all developed in our lab, were used in dentin ablation experiments. In the case of the Er:YAG laser, pulses of 190 ns in Q-switched operation and of 80 μs pulse width in free-running operation at 2.94 μm were used, while HF laser pulses of 39 ns in the wavelength range of 2.6-3.1 μm in a predominantly TEM00 beam were also used to interact in vitro with dentin tissue. Several samples of freshly extracted human teeth were used, cut longitudinally in facets of 0.4-1.5 mm thick. Ablation experiments were conducted with the laser beam directly focused on the tissue or after being waveguided through suitable mid-IR fiber/waveguide alternatively ended with quartz end-sealing caps. The correlation between the various laser beam parameters, as wavelength, pulse duration, repetition rate, energy and spatial distribution of the beam profile and the ablative characteristics (ablation rates, tissue surface morphology) of dentin surface were investigated.

  17. Adsorption and interactions of dentine phosphoprotein with hydroxyapatite and collagen.

    PubMed

    Milan, Anna M; Sugars, Rachael V; Embery, Graham; Waddington, Rachel J

    2006-06-01

    Dentine phosphoprotein (DPP) has been proposed to both promote and inhibit mineral deposition during dentinogenesis. The present study aimed to investigate the molecular interactions of DPP and dephosphorylated DPP (DPP-p) with hydroxyapatite (HAP). Bovine DPP was purified and dephosphorylated by alkaline phosphatase to obtain DPP-p. DPP and DPP-p adsorption to HAP was determined along with their ability, when free in solution or bound to collagen, to influence HAP-induced crystal growth. Absorption isotherms suggested that lower DPP concentrations (1.5-6.25 microg ml(-1)) demonstrated a reduced affinity for HAP compared with higher protein concentrations (12.5-50.0 microg ml(-1)). Dephosphorylated DPP had a much reduced affinity for HAP compared with DPP. Dentine phosphoprotein inhibited seeded HAP crystal growth, in a dose-dependent manner, whilst removal of the phosphate groups reduced this inhibition. When bound to collagen fibrils, DPP significantly promoted the rate of HAP crystal growth over 0-8 min. Conversely, DPP-p and collagen significantly decreased the rate of crystal growth over 0-18 min. These results indicate a major role for the phosphate groups present on DPP in HAP crystal growth. In addition, concentration-dependent conformational changes to DPP, and the interaction with other matrix components, such as collagen, are important in predicting its dual role in the mineralization of dentine.

  18. Soft dentin results in unique flexible teeth in scraping catfishes.

    PubMed

    Geerinckx, Tom; Huysseune, Ann; Boone, Matthieu; Claeys, Myriam; Couvreur, Marjolein; De Kegel, Barbara; Mast, Peter; Van Hoorebeke, Luc; Verbeken, Kim; Adriaens, Dominique

    2012-01-01

    Teeth are generally used for actions in which they experience mainly compressive forces acting toward the base. The ordered tooth enamel(oid) and dentin structures contribute to the high compressive strength but also to the minor shear and tensile strengths. Some vertebrates, however, use their teeth for scraping, with teeth experiencing forces directed mostly normal to their long axis. Some scraping suckermouth catfishes (Loricariidae) even appear to have flexible teeth, which have not been found in any other vertebrate taxon. Considering the mineralized nature of tooth tissues, the notion of flexible teeth seems paradoxical. We studied teeth of five species, testing and measuring tooth flexibility, and investigating tooth (micro)structure using transmission electron microscopy, staining, computed tomography scanning, and scanning electron microscopy-energy-dispersive spectrometry. We quantified the extreme bending capacity of single teeth (up to 180°) and show that reorganizations of the tooth (micro)structure and extreme hypomineralization of the dentin are adaptations preventing breaking by allowing flexibility. Tooth shape and internal structure appear to be optimized for bending in one direction, which is expected to occur frequently when feeding (scraping) under natural conditions. Not all loricariid catfishes possess flexible teeth, with the trait potentially having evolved more than once. Flexible teeth surely rank among the most extreme evolutionary novelties in known mineralized biological materials and might yield a better understanding of the processes of dentin formation and (hypo)mineralization in vertebrates, including humans.

  19. Influence of olive oil emulsions on dentin demineralization in vitro.

    PubMed

    Buchalla, W; Attin, T; Roth, P; Hellwig, E

    2003-01-01

    The effect of two different concentrations of olive oil emulsions on development of artificial caries-like dentin lesions under severe demineralizing conditions was investigated. Bovine dentin samples (n = 180) were ground flat, polished, divided into four groups, and subjected to three demineralization cycles per day. Samples were stored in one of the following solutions for 5 min prior to demineralization in a buffer solution (pH 5): Group 1: 50% oil emulsion (olive oil and distilled water); group 2: 5% oil emulsion; group 3: distilled water; and group 4: 1,500 ppm sodium fluoride. Daily up to 9 days, lesion depth (ld) and mineral loss (deltaZ) were determined by means of microradiography and analyzed by ANOVA and Tukey's studentized range test (p < or = 0.05). Lesion depth increased with time for all groups. Mineral loss increased in groups 1-3. A small but significant decrease in mineral loss was observed following treatment with lipid emulsions as compared to treatment with distilled water, but fluoride treatment was considerably more effective. Mean mineral loss (means +/- SD in vol% x microm) averaged over the study period was 4,368 +/- 1,599, 4,536 +/- 1,823, 4,849 +/- 1,798, and 789 +/- 177 for group 1, 2, 3, and 4, respectively. Ratio (deltaZ/ld) remained constant around 30 vol% for groups 1-3, but decreased for group 4. In conclusion, externally provided lipids have the potential to reduce dentin demineralization in vitro.

  20. Aging and fracture of human cortical bone and tooth dentin

    NASA Astrophysics Data System (ADS)

    Koester, Kurt J.; Ager, Joel W.; Ritchie, Robert O.

    2008-06-01

    Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms, which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms, which function primarily behind the tip, such as crack bridging in ceramics. Bone and dentin derive their resistance to fracture principally from extrinsic toughening mechanisms, which have their origins in the hierarchical microstructure of these mineralized tissues. Experimentally, quantification of these toughening mechanisms requires a crack-growth resistance approach, which can be achieved by measuring the crack-driving force (e.g., the stress intensity) as a function of crack extension (“R-curve approach”). Here this methodology is used to study the effect of aging on the fracture properties of human cortical bone and human dentin in order to discern the microstructural origins of toughness in these materials.

  1. Preventive effect of a high fluoride toothpaste and arginine-carbonate toothpaste on dentinal tubules exposure followed by acid challenge: a dentine permeability evaluation

    PubMed Central

    2014-01-01

    Background Considering the current high use of high fluoride toothpastes, the aim of the study was to quantify alterations in the root dentine permeability submitted to treatment with a high fluoride toothpaste and 8% arginine, calcium carbonate, sodium monofluorophosphate toothpaste as a preventive treatment for dentinal tubules exposure followed by acid challenge. Methods Thirty-third molars were sectioned below the cementoenamel. The root segments were connected to a hydraulic pressure apparatus to measure dentine permeability after the following sequential steps (n = 10 per group): I) Baseline; II) treatment with phosphoric acid for 30 s (maximum permeability); III) Toothbrushing (1 min) according to the experimental groups (G1- control; G2- 5000 ppm fluoride toothpaste; G3- 8% arginine-calcium carbonate toothpaste); IV) acid challenge for 5 min (orange juice). The data were converted into percentage, considering stage II as 100%. Results The results have shown a statistically significant decreasing on dentine permeability after treatment with toothpaste (Friedman test and Dunn’s post hoc test). Comparison among groups demonstrated a high increasing on dentine permeability when acid challenge was performed after toothbrushing with distilled water (control group) (Kruskal-Wallis and Dunn’s post hoc test). Conclusion The toothpaste treatment may provide sufficient resistance on dentine surface, preventing dentinal tubules exposure after acid challenge. PMID:24958423

  2. Influence of pulse repetition rate of Er:YAG laser and dentin depth on tensile bond strength of dentin-resin interface.

    PubMed

    Gonçalves, Mariane; Corona, Silmara Aparecida Milori; Palma-Dibb, Regina Guenka; Pécora, Jesus Djalma

    2008-08-01

    The study evaluated the in vitro influence of pulse-repetition rate of Er:YAG laser and dentin depth on tensile bond strength of dentin-resin interface. Dentin surfaces of buccal or lingual surfaces from human third molars were submitted to tensile test in different depths (superficial, 1.0 and 1.5 mm) of the same dental area, using the same sample. Surface treatments were acid conditioning solely (control) and Er:YAG laser irradiation (80 mJ) followed by acid conditioning, with different pulse-repetition rates (1, 2, 3, or 4 Hz). Single bond/Z-250 system was used. The samples were stored in distilled water at 37 degrees C for 24 h, and then the first test (superficial dentine) was performed. The bond failures were analyzed. Following, the specimens were identified, grounded until 1.0- and 1.5-mm depths, submitted again to the treatments and to the second and, after that, to third-bond tests on a similar procedure and failure analysis. ANOVA and Tukey test demonstrated a significant difference (p < 0.001) for treatment and treatment x depth interaction (p < 0.05). The tested depths did not show influence (p > 0.05) on the bond strength of dentin-resin interface. It may be concluded that Er:YAG laser with 1, 2, 3, or 4 Hz combined with acid conditioning did not increase the resin tensile bond strength to dentin, regardless of dentin depth.

  3. Molecular evolution of dentin phosphoprotein among toothed and toothless animals

    PubMed Central

    2009-01-01

    Background Dentin sialophosphoprotein (DSPP) is the largest member of the SIBLING family and is the most abundant noncollagenous protein in dentin. DSPP is also expressed in non-mineralized tissues including metabolically active ductal epithelia and some cancers. Its function, however, is poorly defined. The carboxy-terminal fragment, dentin phosphoprotein (DPP) is encoded predominantly by a large repetitive domain that requires separate cloning/sequencing reactions and is, therefore, often incomplete in genomic databases. Comparison of DPP sequences from at least one member of each major branch in the mammalian evolutionary tree (including some "toothless" mammals) as well as one reptile and bird may help delineate its possible functions in both dentin and ductal epithelia. Results The BMP1-cleavage and translation-termination domains were sufficiently conserved to permit amplification/cloning/sequencing of most species' DPP. While the integrin-binding domain, RGD, was present in about half of species, only vestigial remnants of this tripeptide were identified in the others. The number of tandem repeats of the nominal SerSerAsp phosphorylation motif in toothed mammals (including baleen whale and platypus which lack teeth as adults), ranged from ~75 (elephant) to >230 (human). These repeats were not perfect, however, and patterns of intervening sequences highlight the rapidity of changes among even closely related species. Two toothless anteater species have evolved different sets of nonsense mutations shortly after their BMP1 motifs suggesting that while cleavage may be important for DSPP processing in other tissues, the DPP domain itself may be required only in dentin. The lizard DSPP had an intact BMP1 site, a remnant RGD motif, as well as a distinctly different Ser/Asp-rich domain compared to mammals. Conclusions The DPP domain of DSPP was found to change dramatically within mammals and was lost in two truly toothless animals. The defining aspect of DPP, the

  4. Bonding of adhesives to Er:YAG laser-treated dentin

    PubMed Central

    Koliniotou-Koumpia, Eugenia; Kouros, Pantelis; Zafiriadis, Lazaros; Koumpia, Effimia; Dionysopoulos, Pavlos; Karagiannis, Vassilis

    2012-01-01

    Objective: The shear bond strength of adhesives applied to dentin was investigated after irradiation with an erbium-doped yttrium aluminum garnet (Er:YAG) laser. Methods: Superficial and deep dentin specimens from human molars were treated either with carbide bur or an Er:YAG laser. Two etch and rinse adhesives (Single Bond and XP Bond) and two self-etch adhesives (Prompt L-Pop and Xeno III) were employed to bond the composite. Shear bond strength (SBS) was determined after storage in water for 24 h using a universal testing machine with a crosshead speed of 0.5 mm/min. Failure patterns and modes were analyzed and evaluated using a stereomicroscope. In addition, samples were processed for Scanning Electron Microscopy SEM evaluation. A linear mixed model was used, and pairwise comparisons were made using the Bonferroni test. Results: Results showed significant differences between the levels of dentin treatment (p=.01) in carbide bur-cut dentin and lased dentin, as well as significant interaction effects due to the depth of dentin and the bonding system used. The etch and rinse adhesives bonded less effectively with lased dentin than with carbide bur-cut dentin, while self-etch adhesives bonded equally well with lased and bur-cut superficial dentin but much less effectively with lased deep dentin than with bur-cut deep dentin. SEM revealed a predominantly adhesive failure mode in laser-ablated fractured specimens, while a mixed failure mode was apparent in the bur-cut fractured specimens. Conclusions: Cavities prepared by laser seem less receptive to adhesive procedures than conventional bur-cut cavities. PMID:22229003

  5. Topical Application of Lithium Chloride on the Pulp Induces Dentin Regeneration

    PubMed Central

    Ishimoto, Kazuya; Hayano, Satoru; Yanagita, Takeshi; Kurosaka, Hiroshi; Kawanabe, Noriaki; Itoh, Shinsuke; Ono, Mitsuaki; Kuboki, Takuo; Kamioka, Hiroshi; Yamashiro, Takashi

    2015-01-01

    We herein describe a novel procedure for dentin regeneration that mimics the biological processes of tooth development in nature. The canonical Wnt signaling pathway is an important regulator of the Dentin sialophosphoprotein (Dspp) expression. Our approach mimics the biological processes underlying tooth development in nature and focuses on the activation of canonical Wnt signaling to trigger the natural process of dentinogenesis. The coronal portion of the dentin and the underlying pulp was removed from the first molars. We applied lithium chloride (LiCl), an activator of canonical Wnt signaling, on the amputated pulp surface to achieve transdifferentiation toward odontoblasts from the surrounding pulpal cells. MicroCT and microscopic analyses demonstrated that the topical application of LiCl induced dentin repair, including the formation of a complete dentin bridge. LiCl-induced dentin is a tubular dentin in which the pulp cells are not embedded within the matrix, as in primary dentin. In contrast, a dentin bridge was not induced in the control group treated with pulp capping with material carriers alone, although osteodentin without tubular formation was induced at a comparatively deeper position from the pulp exposure site. We also evaluated the influence of LiCl on differentiation toward odontoblasts in vitro. In the mDP odontoblast cell line, LiCl activated the mRNA expression of Dspp, Axin2 and Kallikrein 4 (Klk4) and downregulated the Osteopontin (Osp) expression. These results provide a scientific basis for the biomimetic regeneration of dentin using LiCl as a new capping material to activate dentine regeneration. PMID:25812134

  6. Topical application of lithium chloride on the pulp induces dentin regeneration.

    PubMed

    Ishimoto, Kazuya; Hayano, Satoru; Yanagita, Takeshi; Kurosaka, Hiroshi; Kawanabe, Noriaki; Itoh, Shinsuke; Ono, Mitsuaki; Kuboki, Takuo; Kamioka, Hiroshi; Yamashiro, Takashi

    2015-01-01

    We herein describe a novel procedure for dentin regeneration that mimics the biological processes of tooth development in nature. The canonical Wnt signaling pathway is an important regulator of the Dentin sialophosphoprotein (Dspp) expression. Our approach mimics the biological processes underlying tooth development in nature and focuses on the activation of canonical Wnt signaling to trigger the natural process of dentinogenesis. The coronal portion of the dentin and the underlying pulp was removed from the first molars. We applied lithium chloride (LiCl), an activator of canonical Wnt signaling, on the amputated pulp surface to achieve transdifferentiation toward odontoblasts from the surrounding pulpal cells. MicroCT and microscopic analyses demonstrated that the topical application of LiCl induced dentin repair, including the formation of a complete dentin bridge. LiCl-induced dentin is a tubular dentin in which the pulp cells are not embedded within the matrix, as in primary dentin. In contrast, a dentin bridge was not induced in the control group treated with pulp capping with material carriers alone, although osteodentin without tubular formation was induced at a comparatively deeper position from the pulp exposure site. We also evaluated the influence of LiCl on differentiation toward odontoblasts in vitro. In the mDP odontoblast cell line, LiCl activated the mRNA expression of Dspp, Axin2 and Kallikrein 4 (Klk4) and downregulated the Osteopontin (Osp) expression. These results provide a scientific basis for the biomimetic regeneration of dentin using LiCl as a new capping material to activate dentine regeneration.

  7. Effect of propolis gel on the in vitro reduction of dentin permeability

    PubMed Central

    SALES-PERES, Silvia Helena de Carvalho; de CARVALHO, Flávia Negreiros; MARSICANO, Juliane Avansini; MATTOS, Maria Cecília; PEREIRA, José Carlos; FORIM, Moacir Rossi; da SILVA, Maria Fatima das Graças Fernandes

    2011-01-01

    Objective The aim of this study was to evaluate the capacity of potassium oxalate, fluoride gel and two kinds of propolis gel to reduce the hydraulic conductance of dentin, in vitro. Material and Methods The methodology used for the measurement of hydraulic conductance of dentin in the present study was based on a model proposed in literature. Thirty-six 1-mm-thick dentin discs, obtained from extracted human third molars were divided into 4 groups (n=9). The groups corresponded to the following experimental materials: GI-10% propolis gel, pH 4.1; GII-30% propolis gel; GIII-3% potassium oxalate gel, pH 4,1; and GIV-1.23% fluoride gel, pH 4.1, applied to the dentin under the following surface conditions: after 37% phosphoric acid and before 6% citric acid application. The occluding capacity of the dentin tubules was evaluated using scanning electron microscopy (SEM) at ×500, ×1,000 and ×2,000 magnifications. Data were analyzed statistically by two-way ANOVA and Tukey's test at 5% significance level. Results Groups I, II, III, IV did not differ significantly from the others in any conditions by reducing in hydraulic conductance. The active agents reduced dentin permeability; however they produced the smallest reduction in hydraulic conductance when compared to the presence of smear layer (P<0.05). The effectiveness in reducing dentin permeability did not differ significantly from 10% or 30% propolis gels. SEM micrographs revealed that dentin tubules were partially occluded after treatment with propolis. Conclusions Under the conditions of this study, the application of 10% and 30% propolis gels did not seem to reduce the hydraulic conductance of dentin in vitro, but it showed capacity of partially obliterating the dentin tubules. Propolis is used in the treatment of different oral problems without causing significant great collateral effects, and can be a good option in the treatment of patients with dentin sensitivity. PMID:21956588

  8. Third-harmonic generation microscopy reveals dental anatomy in ancient fossils.

    PubMed

    Chen, Yu-Cheng; Lee, Szu-Yu; Wu, Yana; Brink, Kirstin; Shieh, Dar-Bin; Huang, Timothy D; Reisz, Robert R; Sun, Chi-Kuang

    2015-04-01

    Fossil teeth are primary tools in the study of vertebrate evolution, but standard imaging modalities have not been capable of providing high-quality images in dentin, the main component of teeth, owing to small refractive index differences in the fossilized dentin. Our first attempt to use third-harmonic generation (THG) microscopy in fossil teeth has yielded significant submicrometer level anatomy, with an unexpectedly strong signal contrasting fossilized tubules from the surrounding dentin. Comparison between fossilized and extant teeth of crocodilians reveals a consistent evolutionary signature through time, indicating the great significance of THG microscopy in the evolutionary studies of dental anatomy in fossil teeth.

  9. Immediate and delayed micro-tensile bond strength of different luting resin cements to different regional dentin.

    PubMed

    Ali, Abdelraheem Mohamed; Hamouda, Ibrahim Mohamed; Ghazy, Mohamed Hamed; Abo-Madina, Manal Mohamed

    2013-03-01

    We sought to evaluate immediate and delayed micro-tensile bond strength of Panavia F2.0 and Multilink Sprint resin cement to superficial, deep and cervical dentin. Thirty-six freshly extracted non-carious human molars were sectioned in the mesiodistal direction to expose three different dentin regions including superficial dentin (1 mm below the dentine-enamel junction), deep dentin (1 mm above the highest pulp horn) and cervical dentin (0.5 mm above the cemento-enamel junction and 0.5 mm below the dentine-enamel junction). Resin cements were applied on dentin surfaces and composite blocks were luted under constant seating pressure. Each group was divided into three subgroups according to time intervals. Specimens were sectioned to obtain sticks of 1 mm(2) in diameter and subjected to microtensile bond strength testing at a cross head speed of 1 mm/min. Both resin cements showed higher micro-tensile bond strength to superficial dentin than that to deep or cervical dentin (P < 0.001). Micro-tensile bond strengths of Panavia F2.0 were higher than those of Multilink Sprint at different dentin regions (P < 0.001). Immediate micro-tensile bond strengths were higher than those of delayed micro-tensile bond strengths for both resin cements (P < 0.001). It was concluded that resin cements with different chemical formulations and applications yield significantly different micro-tensile bond strengths to different dentin regions.

  10. Microbiome of Deep Dentinal Caries Lesions in Teeth with Symptomatic Irreversible Pulpitis

    PubMed Central

    Rôças, Isabela N.; Rachid, Caio T. C. C.; Lima, Kenio C.; Assunção, Isauremi V.; Gomes, Patrícia N.; Siqueira, José F.

    2016-01-01

    This study used a next-generation sequencing approach to identify the bacterial taxa occurring in the advanced front of caries biofilms associated with pulp exposure and irreversible pulpitis. Samples were taken from the deepest layer of dentinal caries lesions associated with pulp exposure in 10 teeth diagnosed with symptomatic irreversible pulpitis. DNA was extracted and the microbiome was characterized on the basis of the V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. Bacterial taxa were mapped to 14 phyla and 101 genera composed by 706 different OTUs. Three phyla accounted for approximately 98% of the sequences: Firmicutes, Actinobacteria and Proteobacteria. These phyla were also the ones with most representatives at the species level. Firmicutes was the most abundant phylum in 9/10 samples. As for genera, Lactobacillus accounted for 42.3% of the sequences, followed by Olsenella (13.7%), Pseudoramibacter (10.7%) and Streptococcus (5.5%). Half of the samples were heavily dominated by Lactobacillus, while in the other half lactobacilli were in very low abundance and the most dominant genera were Pseudoramibacter, Olsenella, Streptococcus, and Stenotrophomonas. High bacterial diversity occurred in deep dentinal caries lesions associated with symptomatic irreversible pulpitis. The microbiome could be classified according to the relative abundance of Lactobacillus. Except for Lactobacillus species, most of the highly prevalent and abundant bacterial taxa identified in this study have been commonly detected in infected root canals. The detected taxa can be regarded as candidate pathogens for irreversible pulpitis and possibly the pioneers in pulp invasion to initiate endodontic infection. PMID:27135405

  11. Microbiome of Deep Dentinal Caries Lesions in Teeth with Symptomatic Irreversible Pulpitis.

    PubMed

    Rôças, Isabela N; Alves, Flávio R F; Rachid, Caio T C C; Lima, Kenio C; Assunção, Isauremi V; Gomes, Patrícia N; Siqueira, José F

    2016-01-01

    This study used a next-generation sequencing approach to identify the bacterial taxa occurring in the advanced front of caries biofilms associated with pulp exposure and irreversible pulpitis. Samples were taken from the deepest layer of dentinal caries lesions associated with pulp exposure in 10 teeth diagnosed with symptomatic irreversible pulpitis. DNA was extracted and the microbiome was characterized on the basis of the V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. Bacterial taxa were mapped to 14 phyla and 101 genera composed by 706 different OTUs. Three phyla accounted for approximately 98% of the sequences: Firmicutes, Actinobacteria and Proteobacteria. These phyla were also the ones with most representatives at the species level. Firmicutes was the most abundant phylum in 9/10 samples. As for genera, Lactobacillus accounted for 42.3% of the sequences, followed by Olsenella (13.7%), Pseudoramibacter (10.7%) and Streptococcus (5.5%). Half of the samples were heavily dominated by Lactobacillus, while in the other half lactobacilli were in very low abundance and the most dominant genera were Pseudoramibacter, Olsenella, Streptococcus, and Stenotrophomonas. High bacterial diversity occurred in deep dentinal caries lesions associated with symptomatic irreversible pulpitis. The microbiome could be classified according to the relative abundance of Lactobacillus. Except for Lactobacillus species, most of the highly prevalent and abundant bacterial taxa identified in this study have been commonly detected in infected root canals. The detected taxa can be regarded as candidate pathogens for irreversible pulpitis and possibly the pioneers in pulp invasion to initiate endodontic infection.

  12. Dual Role of the Trps1 Transcription Factor in Dentin Mineralization*

    PubMed Central

    Kuzynski, Maria; Goss, Morgan; Bottini, Massimo; Yadav, Manisha C.; Mobley, Callie; Winters, Tony; Poliard, Anne; Kellermann, Odile; Lee, Brendan; Millan, Jose Luis; Napierala, Dobrawa

    2014-01-01

    TRPS1 (tricho-rhino-phalangeal syndrome) is a unique GATA-type transcription factor that acts as a transcriptional repressor. TRPS1 deficiency and dysregulated TRPS1 expression result in skeletal and dental abnormalities implicating TRPS1 in endochondral bone formation and tooth development. Moreover, patients with tricho-rhino-phalangeal syndrome frequently present with low bone mass indicating TRPS1 involvement in bone homeostasis. In addition, our previous data demonstrated accelerated mineralization of the perichondrium in Trps1 mutant mice and impaired dentin mineralization in Col1a1-Trps1 transgenic mice, implicating Trps1 in the mineralization process. To understand the role of Trps1 in the differentiation and function of cells producing mineralized matrix, we used a preodontoblastic cell line as a model of dentin mineralization. We generated both Trps1-deficient and Trps1-overexpressing stable cell lines and analyzed the progression of mineralization by alkaline phosphatase and alizarin red staining. As predicted, based on our previous in vivo data, delayed and decreased mineralization of Trps1-overexpressing odontoblastic cells was observed when compared with control cells. This was associated with down-regulation of genes regulating phosphate homeostasis. Interestingly, Trps1-deficient cells lost the ability to mineralize and demonstrated decreased expression of several genes critical for initiating the mineralization process, including Alpl and Phospho1. Based on these data, we have concluded that Trps1 serves two critical and context-dependent functions in odontoblast-regulated mineralization as follows: 1) Trps1 is required for odontoblast maturation by supporting expression of genes crucial for initiating the mineralization process, and 2) Trps1 represses the function of mature cells and, consequently, restricts the extent of extracellular matrix mineralization. PMID:25128529

  13. In Vitro Ability of a Novel Nanohydroxyapatite Oral Rinse to Occlude Dentine Tubules

    PubMed Central

    Hill, Robert G.; Chen, Xiaohui; Gillam, David G.

    2015-01-01

    Objectives. The aim of the study was to investigate the ability of a novel nanohydroxyapatite (nHA) desensitizing oral rinse to occlude dentine tubules compared to selected commercially available desensitizing oral rinses. Methods. 25 caries-free extracted molars were sectioned into 1 mm thick dentine discs. The dentine discs (n = 25) were etched with 6% citric acid for 2 minutes and rinsed with distilled water, prior to a 30-second application of test and control oral rinses. Evaluation was by (1) Scanning Electron Microscopy (SEM) of the dentine surface and (2) fluid flow measurements through a dentine disc. Results. Most of the oral rinses failed to adequately cover the dentine surface apart from the nHa oral rinse. However the hydroxyapatite, 1.4% potassium oxalate, and arginine/PVM/MA copolymer oral rinses, appeared to be relatively more effective than the nHA test and negative control rinses (potassium nitrate) in relation to a reduction in fluid flow measurements. Conclusions. Although the novel nHA oral rinse demonstrated the ability to occlude the dentine tubules and reduce the fluid flow measurements, some of the other oral rinses appeared to demonstrate a statistically significant reduction in fluid flow through the dentine disc, in particular the arginine/PVM/MA copolymer oral rinse. PMID:26161093

  14. [Is amalgam stained dentin a proper substrate for bonding resin composite?].

    PubMed

    Scholtanus, J D

    2016-06-01

    After the removal of amalgam restorations, black staining of dentin is often observed, which is attributed to the penetration of corrosion products from amalgam. A study was carried out to determine whether this amalgam stained dentin is a proper substrate for bonding resin composites. A literature study and an in vitro study showed that Sn and Zn in particular are found in amalgam stained dentin, and this was the case only in demineralised dentin. In vitro, demineralised dentin acted as porte d'entrÈe for amalgam corrosion products. Bond strength tests with 5 adhesive strategies showed no differences between bond strengths to amalgam stained and to sound dentin, but did show different failure types. A clinical study showed good survival of extensive cusp replacing resin composite restorations. No failures were attributed to inadequate adhesion. It is concluded that staining of dentin by amalgam corrosion products has no negative effect upon bond strength of resin composite. It is suggested that Sn and Zn may have a beneficial effect upon dentin, thus compensating the effects of previous carious attacks, preparation trauma and physico-chemical challenges during clinical lifetime.

  15. Prevalence of dentine hypersensitivity: A cross-sectional study in rural Punjabi Indians

    PubMed Central

    Dhaliwal, Jagjit Singh; Palwankar, Pooja; Khinda, Paramjit K.; Sodhi, Sachinjeet K.

    2012-01-01

    Aims and Objectives: To study the prevalence of dentine hypersensitivity and related risk factors in rural population of Punjab, India. Materials and Methods: A total of 650 subjects reporting dentine sensitivity were included in the study comprising of 270 males and 380 females. All the subjects completed an interview and the subjects reporting dentine hypersensitivity were examined further using air syringe to put a blast of air to confirm the diagnosis of dentine hypersensitivity. Periodontal attachment loss and gingival recession of all the sensitive teeth were examined and recorded. Results: The prevalence of dentine hypersensitivity was 25% in the oral test. The subjects receiving the treatment of hypersensitivity were only 15.1%. The older group in the 50-59 years had the highest number (98%) of subjects with dentine hypersensitivity. Most commonly affected teeth were mandibular incisors. The other factors related to dentine hypersensitivity were the socioeconomic status, lower education level, and access to dental care. The periodontal factors related to hypersensitivity were gingival recession and poor oral hygiene. Conclusions: The prevalence of dentine hypersensitivity was 25% in the rural population of Punjab. PMID:23162341

  16. Long-term nano-mechanical properties of biomodified dentin-resin interface components.

    PubMed

    Dos Santos, Paulo Henrique; Karol, Sachin; Bedran-Russo, Ana Karina

    2011-06-03

    Failures of dental composite restorative procedures are largely attributed to the degradation of dentin-resin interface components. Biomodification of dentin using bioactive agents may improve the quality and durability of the dentin-resin bonds. The aim of this study was to nanomechanically assess the reduced modulus of elasticity (Er) and nano-hardness (H) of major components of the dentin-resin interface (hybrid layer, adhesive layer and underlying dentin) biomodified by collagen cross-linkers at 24h, 3 and 6 months following restorative procedure. Demineralized dentin surfaces were biomodified with 5% glutaraldehyde (GD) or 6.5% grape seed extract (GSE) prior to placement of adhesive systems and composite resin. Nano-measurements of the interface components in a fluid cell showed that both agents increased the Er and H of underlying dentin after 3 and 6 months when compared to a control. The mechanical properties of the adhesive and hybrid layers decreased over time. Biomodification of the dentin-resin interface structures using GD and GSE can increase the mechanical properties of the interface over time and may contribute to the long-term quality of adhesive restorations.

  17. Effect of carbodiimide on the structural stability of resin/dentin interface.

    PubMed

    Singh, Payal; Nagpal, Rajni; Singh, Udai Pratap; Manuja, Naveen

    2016-01-01

    Clinical longevity of composite resin restorations is a significant problem in adhesive dentistry. Most of the current simplified adhesives present good immediate bonding, but the bond strength gradually falls over a period due to biodegradation at the resin-dentin interface. Various strategies have been proposed to improve the durability of resin-dentin bond including the use of matrix metalloproteinases inhibitors and collagen cross-linkers, biomimetic remineralization, ethanol wet bonding, to improve the physical and mechanical properties of the bonding substrate, i.e., dentin. However, all are under preliminary research and without any conclusive evidence. Therefore, this paper addresses the current challenge in dental adhesion, i.e., poor durability of resin-dentin bond and introduces the concept of dentin biomodification as an alternative way for improving the long-term bonding effectiveness of current adhesives to dentin and also provides an overview of a synthetic collagen cross-linking agent carbodiimide (EDC) including its mechanism of action, literature review of studies evaluating EDC, variables associated with its use and its cytotoxicity. Search was performed across the electronic databases (PubMed, Ebsco host, and Google search engine) to identify manuscripts for inclusion, using the keywords: carbodiimide, dentin bonding, durability, resin-dentin interface, and collagen cross-linking. Thirty-five articles were finally included, and the last search was made in February 2016.

  18. Analysis of the Color and Fluorescence Alterations of Enamel and Dentin Treated With Hydrogen Peroxide.

    PubMed

    Caneppele, Taciana Marco Ferraz; Rocha Gomes Torres, Carlos; Bresciani, Eduardo

    2015-10-01

    The aim of this study was to evaluate the effect of hydrogen peroxide whitening on fluorescence and color of bovine enamel and dentin. Twenty five dentin discs and 25 enamel discs, with 6 mm diameter and 1 mm thick, were obtained. Direct fluorescence (spectrofluorophotometry) and color (spectrophotometry) were assessed. After fluorescence and color baseline measurements, specimens were immersed in a 35% hydrogen peroxide (HP) solution for 1 h. This procedure was repeated after 7 days. Final fluorescence and color measurements were performed after the second immersion. Chemical characterization of 5 additional specimens was also performed. Data were submitted to repeated analysis of variance and Tukey's test for fluorescence and unpaired t-test for color and chemical components (p<0.05). Fluorescence decreased significantly in dentin specimens after whitening. Enamel presented lower fluorescence than dentin at baseline, but this parameter did not decrease after whitening. Color changes were observed for both substrates, with significantly greater whitening effect in dentin (ΔE=10.37) (p<0.001). Whitening by hydrogen peroxide induced significant decrease in fluorescence of tooth dentin and promoted significant color changes in dentin and enamel with more accentuated outcomes in dentin.

  19. Effect of carbodiimide on the structural stability of resin/dentin interface

    PubMed Central

    Singh, Payal; Nagpal, Rajni; Singh, Udai Pratap; Manuja, Naveen

    2016-01-01

    Clinical longevity of composite resin restorations is a significant problem in adhesive dentistry. Most of the current simplified adhesives present good immediate bonding, but the bond strength gradually falls over a period due to biodegradation at the resin-dentin interface. Various strategies have been proposed to improve the durability of resin-dentin bond including the use of matrix metalloproteinases inhibitors and collagen cross-linkers, biomimetic remineralization, ethanol wet bonding, to improve the physical and mechanical properties of the bonding substrate, i.e., dentin. However, all are under preliminary research and without any conclusive evidence. Therefore, this paper addresses the current challenge in dental adhesion, i.e., poor durability of resin-dentin bond and introduces the concept of dentin biomodification as an alternative way for improving the long-term bonding effectiveness of current adhesives to dentin and also provides an overview of a synthetic collagen cross-linking agent carbodiimide (EDC) including its mechanism of action, literature review of studies evaluating EDC, variables associated with its use and its cytotoxicity. Search was performed across the electronic databases (PubMed, Ebsco host, and Google search engine) to identify manuscripts for inclusion, using the keywords: carbodiimide, dentin bonding, durability, resin-dentin interface, and collagen cross-linking. Thirty-five articles were finally included, and the last search was made in February 2016. PMID:27994309

  20. Morphological interface between hybrid ionomers and dentin with and without smear-layer removal.

    PubMed

    Abdalla, A I

    2000-09-01

    To evaluate the micromorphological interface between dentin and several hybrid ionomer restoratives, a flat dentin surface was obtained on the occlusal surfaces of extracted human molar teeth after sectioning the enamel with an Isomet saw. Three poly-acid-modified composite resins, Compoglass, Dyract and F2000, and two resin-modified glass-ionomer cements, Fuji II LC and Photac-Fil were applied to the dentin surface. A second section, 2 mm apical from the first one, was made to produce a dentin segment containing the tested materials. Each disc was then split fractured along the dentin/material interface. For the poly-acid-modified composites, one half of the disc was stored in 6 mol/L HCl for 48 h to remove the dentin. The other was gently decalcified and deprotenized at the interface between the hybrid ionomer and the dentin. Both halves were then sputtered with gold and examined using SEM. For resin-modified glass-ionomer, samples were only evaluated at the interface. The three poly-acid-modified composite resins showed the formation of hybrid layers and resin tags at the interface to the dentin. Removal of the smear layer significantly improves hybridization of these materials. Also, Fuji II LC produced a hybrid layer while the Photac-Fil showed no evidence of hybridization.

  1. Eroded dentin does not jeopardize the bond strength of adhesive restorative materials.

    PubMed

    Cruz, Janaina Barros; Lenzi, Tathiane Larissa; Tedesco, Tamara Kerber; Guglielmi, Camila de Almeida Brandão; Raggio, Daniela Prócida

    2012-01-01

    This in vitro study evaluated the bond strength of adhesive restorative materials to sound and eroded dentin. Thirty-six bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated in 2 groups: sound dentin (immersion in artificial saliva) and eroded dentin (pH cycling model - 3× / cola drink for 7 days). Specimens were then reassigned according to restorative material: glass ionomer cement (KetacTM Molar Easy Mix), resin-modified glass ionomer cement (VitremerTM) or adhesive system with resin composite (Adper Single Bond 2 + Filtek Z250). Polyethylene tubes with an internal diameter of 0.76 mm were placed over the dentin and filled with the material. The microshear bond test was performed after 24 h of water storage at 37ºC. The failure mode was evaluated using a stereomicroscope (400×). Bond strength data were analyzed with two-way ANOVA and Tukey's post hoc tests (α = 0.05). Eroded dentin showed bond strength values similar to those for sound dentin for all materials. The adhesive system showed the highest bond strength values, regardless of the substrate (p < 0.0001). For all groups, the adhesive/mixed failure prevailed. In conclusion, adhesive materials may be used in eroded dentin without jeopardizing the bonding quality. It is preferable to use an etch-and-rinse adhesive system because it shows the highest bond strength values compared with the glass ionomer cements tested.

  2. Essential role of Osterix for tooth root but not crown dentin formation

    PubMed Central

    Zhang, Hua; Jiang, Yong; Qin, Chunlin; Liu, Ying; Ho, Sunita P.; Feng, Jian Q.

    2015-01-01

    Tooth is made of crown and root. It is widely believed that dentin formation in crown and root uses the same regulatory mechanism. However, identification of NFIC’s unique function in determining root but not crown dentin formation challenges the old thought. In searching for the target molecules downstream of NFIC, we unexpectedly found a sharp reduction of OSX (osterix), the key transcription factor in skeleton formation, in the Nfic knockout (KO) tooth root. We then demonstrated a dose-dependent increase of Osx in the odontoblast cell line due to a transient transfection of Nfic expression plasmid. Studies of global and conditional Osx KO mice revealed no apparent changes in the crown dentin tubules and dentin matrix. However, the OSX conditional KO mice (crossed to the 2.3 kb Col 1-Cre) displayed an increase in cell proliferation but great decreases in expressions of root dentin matrix proteins (DMP1 and DSPP), leading to an inhibition in odontoblast differentiation, and short thin root dentin with few dentin tubules. Compared to the Nfic KO tooth, which contains essentially no dentin tubules and remains in a “root-less” status at adult stages, the Osx cKO root phenotype had partially improved at the late stage, indicating that other factors can compensate for OSX function. Thus, we conclude that OSX, one of the key downstream molecules of NFIC, plays a critical role in root, but not crown, formation. PMID:25349111

  3. Young's modulus of peritubular and intertubular human dentin by nano-indentation tests.

    PubMed

    Ziskind, Daniel; Hasday, Moran; Cohen, Sidney R; Wagner, H Daniel

    2011-04-01

    The local Young modulus of dry dentin viewed as a hierarchical composite was measured by nano-indentation using two types of experiments, both in a continuous stiffness measurement mode. First, tests were performed radially along straight lines running across highly mineralized peritubular dentin sections and through less mineralized intertubular dentin areas. These tests revealed a gradual decrease in Young's modulus from the bulk of the peritubular dentin region where modulus values of up to ∼40-42GPa were observed, down to approximately constant values of ∼17GPa in the intertubular dentin region. A second set of nano-indentation experiments was performed on the facets of an irregular polyhedron specimen cut from the intertubular dentin region, so as to probe the modulus of intertubular dentin specimens at different orientations relative to the tubular direction. The results demonstrated that the intertubular dentin region may be considered to be quasi-isotropic, with a slightly higher modulus value (∼22GPa) when the indenting tip axis is parallel to the tubular direction, compared to the values (∼18GPa) obtained when the indenting tip axis is perpendicular to the tubule direction.

  4. Shear bond strength of dentin and deproteinized enamel of AI mouse incisors

    PubMed Central

    Pugach, M.K.; Ozer, F.; Mulmadgi, R.; Li, Y.; Suggs, C.; Wright, J.T.; Bartlett, J.D.; Gibson, C.W.; Lindemeyer, R.G.

    2014-01-01

    Purpose To investigate the adhesion through shear bond strength (SBS) testing of a resin composite bonded with a self-etching bonding system (SEB) to amelogenesis imperfecta (AI)-affected deproteinized mouse enamel or dentin; and to compare wild-type (WT), amelogenin null (AmelxKO) and matrix metalloproteinase-20 null (Mmp20KO) enamel and dentin phenotypes using microCT and nanoindentation. Methods Enamel incisor surfaces of WT, AmelxKO and Mmp20KO mice were treated with SEB with and without NaOCl and tested for SBS. Incisor dentin was also treated with SEB and tested for SBS. These surfaces were further examined by SEM. MicroCT and nanoindentation analyses were performed on mouse dentin and enamel. Data were analyzed for significance by ANOVA. Results Deproteinization did not improve SBS of SEB to these AI-affected enamel surfaces. SBS of AmelxKO teeth was similar in dentin and enamel; however, it was higher in Mmp20KO dentin. The nanohardness of knockout enamel was significantly lower than WT, while knockout dentin nanohardness was not different from WT. Conclusions Using animal AI models, it was demonstrated that enamel NaOCl deproteinization of hypoplastic and hypoplastic-hypomaturation enamel did not increase shear bond strength while removal of the defective enamel allowed optimal dentin bonding. PMID:25303500

  5. Clinical effect of photodynamic therapy on primary carious dentin after partial caries removal.

    PubMed

    Neves, Pierre Adriano Moreno; Lima, Leonardo Abrantes; Rodrigues, Fernanda Cristina Nogueira; Leitão, Tarcisio Jorge; Ribeiro, Cecília Cláudia Costa

    2016-05-20

    This study was conducted to assess the clinical effect of photodynamic therapy (PDT) in the decontamination of the deep dentin of deciduous molars submitted to partial removal of carious tissue. After cavity preparation, dentin samples were taken from the pulp wall of nineteen deciduous molars before and after PDT application. Remaining dentin was treated with 0.01% methylene blue dye followed by irradiation with an InGaAlP diode laser (λ - 660 nm; 40 mW; 120 J/cm2; 120 s). Dentin samples were microbiologically assessed for the enumeration of total microorganisms, Lactobacillus spp. and mutans streptococci. There was no significant difference in the number of colony-forming units (CFU) for any of the microorganisms assessed (p > 0.05). Photodynamic therapy, using 0.01% methylene blue dye at a dosimetry of 120 J/cm2 would not be a viable clinical alternative to reduce bacterial contamination in deep dentin.

  6. Dentin matrix degradation by host matrix metalloproteinases: inhibition and clinical perspectives toward regeneration

    PubMed Central

    Chaussain, Catherine; Boukpessi, Tchilalo; Khaddam, Mayssam; Tjaderhane, Leo; George, Anne; Menashi, Suzanne

    2013-01-01

    Bacterial enzymes have long been considered solely accountable for the degradation of the dentin matrix during the carious process. However, the emerging literature suggests that host-derived enzymes, and in particular the matrix metalloproteinases (MMPs) contained in dentin and saliva can play a major role in this process by their ability to degrade the dentin matrix from within. These findings are important since they open new therapeutic options for caries prevention and treatment. The possibility of using MMP inhibitors to interfere with dentin caries progression is discussed. Furthermore, the potential release of bioactive peptides by the enzymatic cleavage of dentin matrix proteins by MMPs during the carious process is discussed. These peptides, once identified, may constitute promising therapeutical tools for tooth and bone regeneration. PMID:24198787

  7. Essential role of osterix for tooth root but not crown dentin formation.

    PubMed

    Zhang, Hua; Jiang, Yong; Qin, Chunlin; Liu, Ying; Ho, Sunita P; Feng, Jian Q

    2015-04-01

    Tooth is made of crown and root. It is widely believed that dentin formation in crown and root uses the same regulatory mechanism. However, identification of nuclear factor 1 C (NFIC)'s unique function in determining root but not crown dentin formation challenges the old thinking. In searching for the target molecules downstream of NFIC, we unexpectedly found a sharp reduction of osterix (OSX), the key transcription factor in skeleton formation, in the Nfic knockout (Nfic-KO) tooth root. We then demonstrated a dose-dependent increase of Osx in the odontoblast cell line due to a transient transfection of Nfic expression plasmid. Studies of global and conditional Osx-KO mice revealed no apparent changes in the crown dentin tubules and dentin matrix. However, the OSX conditional KO (cKO) mice (crossed to the 2.3-kb collagen type 1 [Col1]-Cre) displayed an increase in cell proliferation but great decreases in expressions of root dentin matrix proteins (dentin matrix protein 1 [DMP1] and dentin sialophosphoprotein [DSPP]), leading to an inhibition in odontoblast differentiation, and short, thin root dentin with few dentin tubules. Compared to the Nfic-KO tooth, which contains essentially no dentin tubules and remains in a "root-less" status at adult stages, the Osx-cKO root phenotype had partially improved at the late stage, indicating that other factors can compensate for OSX function. Thus, we conclude that OSX, one of the key downstream molecules of NFIC, plays a critical role in root, but not crown, formation.

  8. Characterization of the elastic and viscoelastic properties of dentin by a nanoindentation creep test.

    PubMed

    Chuang, Shu-Fen; Lin, Shih-Yun; Wei, Pal-Jen; Han, Chang-Fu; Lin, Jen-Fin; Chang, Hsien-Chang

    2015-07-16

    Dentin is the main supporting structure of teeth, but its mechanical properties may be adversely affected by pathological demineralization. The purposes of this study were to develop a quantitative approach to characterize the viscoelastic properties of dentin after de- and re-mineralization, and to examine the elastic properties using a nanoindentation creep test. Dentin specimens were prepared to receive both micro- and nano-indentation tests at wet and dry states. These tests were repeatedly performed after demineralization (1% citric acid for 3 days) and remineralization (artificial saliva immersion for 28 days). The nanoindentation test was executed in a creep mode, and the resulting displacement-time responses were disintegrated into primary (transient) and secondary (viscous) creep. The structural changes and mineral densities of dentin were also examined under SEM and microCT, respectively. The results showed that demineralization removed superficial minerals of dentin to the depth of 400 μm, and affected its micro- and nano-hardness, especially in the hydrate state. Remineralization only repaired the minerals at the surface layer, and partially recovered the nanohardness. Both the primary the secondary creep increased in the demineralized dentin, while the hydration further enhanced creep deformation of untreated and remineralized dentin. Remineralization reduced the primary creep of dentin, but did not effectively increase the viscosity. In conclusion, water plasticization increases the transient and viscous creep strains of demineralized dentin and reduces load sustainability. The nanoindentation creep test is capable of analyzing the elastic and viscoelastic properties of dentin, and reveals crucial information about creep responses.

  9. Milk as Desensitizing Agent for Treatment of Dentine Hypersensitivity Following Periodontal Treatment Procedures

    PubMed Central

    Sabir, Mohammad

    2015-01-01

    Background Dentinal hypersensitivity is a commonly observed problem after periodontal treatment procedures in periodontal patients. This further complicates preventive oral hygiene procedures by patients which jeopardize periodontal treatment, or even may aid in periodontal treatment failure. Aims and Objectives The aims and objectives of present study were to assess the problem of dentine hypersensitivity after non-surgical periodontal treatment and selection of cases for evaluation of commercially available milk at room temperature as mouth rinse for the treatment of dentinal hypersensitivity caused by periodontal treatment. Materials and Methods Patients were selected randomly for nonsurgical periodontal treatment and then were assessed for dentine hypersensitivity. Those having dentine hypersensitivity were assigned in two groups. Group one patients were advised to rinse with commercially available milk at room temperature, group two patients were advised to rinse with luke warm water as control. A four point Verbal Rating Score (VRS) was designed to record the numerical value of dentine hypersensitivity. Results The results show incidence of 42.5% and prevalence of 77.5% for dentine hypersensitivity after periodontal treatment procedures. After rinsing with milk following periodontal treatment procedures, there was found a significant reduction of dentine hypersensitivity with probability by unpaired t-test as 0.0007 and 0.0001 at tenth and fifteenth day post periodontal treatment procedures respectively. Conclusion This study demonstrated that the milk rinse is a suitable, cheaper, fast acting, home-use and easily available solution to the problem of dentine hypersensitivity after non-surgical periodontal treatment. Milk can be used as desensitizing agent and rinsing with milk for few days is effective in quick reduction of dentine hypersensitivity due to periodontal treatment procedures. PMID:26674005

  10. Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration.

    PubMed

    Chen, Gang; Chen, Jinlong; Yang, Bo; Li, Lei; Luo, Xiangyou; Zhang, Xuexin; Feng, Lian; Jiang, Zongting; Yu, Mei; Guo, Weihua; Tian, Weidong

    2015-06-01

    In tissue engineering, scaffold materials provide effective structural support to promote the repair of damaged tissues or organs through simulating the extracellular matrix (ECM) microenvironments for stem cells. This study hypothesized that simulating the ECM microenvironments of periodontium and dental pulp/dentin complexes would contribute to the regeneration of tooth root. Here, aligned PLGA/Gelatin electrospun sheet (APES), treated dentin matrix (TDM) and native dental pulp extracellular matrix (DPEM) were fabricated and combined into APES/TDM and DPEM/TDM for periodontium and dental pulp regeneration, respectively. This study firstly examined the physicochemical properties and biocompatibilities of both APES and DPEM in vitro, and further investigated the degradation of APES and revascularization of DPEM in vivo. Then, the potency of APES/TDM and DPEM/TDM in odontogenic induction was evaluated via co-culture with dental stem cells. Finally, we verified the periodontium and dental pulp/dentin complex regeneration in the jaw of miniature swine. Results showed that APES possessed aligned fiber orientation which guided cell proliferation while DPEM preserved the intrinsic fiber structure and ECM proteins. Importantly, both APES/TDM and DPEM/TDM facilitated the odontogenic differentiation of dental stem cells in vitro. Seeded with stem cells, the sandwich composites (APES/TDM/DPEM) generated tooth root-like tissues after being transplanted in porcine jaws for 12 w. In dental pulp/dentin complex-like tissues, columnar odontoblasts-like layer arranged along the interface between newly-formed predentin matrix and dental pulp-like tissues in which blood vessels could be found; in periodontium complex-like tissues, cellular cementum and periodontal ligament (PDL)-like tissues were generated on the TDM surface. Thus, above results suggest that APES and DPEM exhibiting appropriate physicochemical properties and well biocompatibilities, in accompany with TDM, could

  11. Chelating and antibacterial properties of chitosan nanoparticles on dentin

    PubMed Central

    Bramante, Clovis Monteiro; Duarte, Marco Antonio Hungaro; de Moura, Marcia Regina; Aouada, Fauze Ahmad; Kishen, Anil

    2015-01-01

    Objectives The use of chitosan nanoparticles (CNPs) in endodontics is of interest due to their antibiofilm properties. This study was to investigate the ability of bioactive CNPs to remove the smear layer and inhibit bacterial recolonization on dentin. Materials and Methods One hundred bovine dentin sections were divided into five groups (n = 20 per group) according to the treatment. The irrigating solutions used were 2.5% sodium hypochlorite (NaOCl) for 20 min, 17% ethylenediaminetetraacetic acid (EDTA) for 3 min and 1.29 mg/mL CNPs for 3 min. The samples were irrigated with either distilled water (control), NaOCl, NaOCl-EDTA, NaOCl-EDTA-CNPs or NaOCl-CNPs. After the treatment, half of the samples (n = 50) were used to assess the chelating effect of the solutions using portable scanning electronic microscopy, while the other half (n = 50) were infected intra-orally to examine the post-treatment bacterial biofilm forming capacity. The biovolume and cellular viability of the biofilms were analysed under confocal laser scanning microscopy. The Kappa test was performed for examiner calibration, and the non-parametric Kruskal-Wallis and Dunn tests (p < 0.05) were used for comparisons among the groups. Results The smear layer was significantly reduced in all of the groups except the control and NaOCl groups (p < 0.05). The CNPs-treated samples were able to resist biofilm formation significantly better than other treatment groups (p < 0.05). Conclusions CNPs could be used as a final irrigant during root canal treatment with the dual benefit of removing the smear layer and inhibiting bacterial recolonization on root dentin. PMID:26295022

  12. Evaluation of dentin permeability after light activated internal dental bleaching.

    PubMed

    Carrasco, Laise Daniela; Zanello Guerisoli, Danilo M; Pécora, Jesus Djalma; Fröner, Izabel Cristina

    2007-02-01

    The aim of this in vitro study was to assess quantitatively the dentin permeability of human teeth after intracoronal bleaching therapy with 35% hydrogen peroxide activated by LEDs, halogen lamp or using the walking bleach technique. Forty human maxillary central incisors had standard access cavities performed and the cervical thirds of the canals were prepared with Gates-Glidden drills up to a size 130. Roots were resected between the coronal and middle thirds and the apical portions were discarded. A glass ionomer, 2 mm thick cervical plug was placed inside the canal, at the cement-enamel junction level. Group I received 35% hydrogen peroxide gel activated by LEDs. Group II was submitted to 35% hydrogen peroxide gel activated by halogen lamp. Group III received 35% hydrogen peroxide gel and the walking bleach technique was followed. Group IV (control) received a dry cotton pellet inside the pulp chamber with temporary restoration. Dentinal permeability was quantified by copper ion penetration. Linear measurements were obtained by analysis of digital images under x 5 magnification. Mean values and SD for the experimental groups were: I, 7.1% (+/-3.2%); II, 8.4% (+/-3.0%); III, 9.1% (+/-3.0%); IV, 1.3% (+/-2.8%). One-way ANOVA was used to analyze the results. Results showed an increase of permeability values for groups I, II and III when compared to group IV (control); however, no statistical differences were found between the three tested bleaching techniques. It can be concluded that 35% hydrogen peroxide activated by LED, halogen lamp or used following the walking bleach technique produced similar increase in dentinal permeability.

  13. Bonding of restorative materials to dentin with various luting agents.

    PubMed

    Peutzfeldt, A; Sahafi, A; Flury, S

    2011-01-01

    The aim was to compare eight types of luting agents when used to bond six indirect, laboratory restorative materials to dentin. Cylinders of the six restorative materials (Esteticor Avenir [gold alloy], Tritan [titanium], NobelRondo [feldspathic porcelain], Finesse All-Ceramic [leucite-glass ceramic], Lava [zirconia], and Sinfony [resin composite]) were ground and air-abraded. Cylinders of feldspathic porcelain and glass ceramic were additionally etched with hydrofluoric acid and were silane-treated. The cylinders were luted to ground human dentin with eight luting agents (DeTrey Zinc [zinc phosphate cement], Fuji I [conventional glass ionomer cement], Fuji Plus [resin-modified glass ionomer cement], Variolink II [conventional etch-and-rinse resin cement], Panavia F2.0 and Multilink [self-etch resin cements], and RelyX Unicem Aplicap and Maxcem [self-adhesive resin cements]). After water storage at 37°C for one week, the shear bond strength of the specimens (n=8/group) was measured, and the fracture mode was stereomicroscopically examined. Bond strength data were analyzed with two-factorial analysis of variance (ANOVA) followed by Newman-Keuls' Multiple Range Test (α=0.05). Both the restorative material and the luting agent had a significant effect on bond strength, and significant interaction was noted between the two variables. Zinc phosphate cement and glass ionomer cements produced the lowest bond strengths, whereas the highest bond strengths were found with the two self-etch and one of the self-adhesive resin cements. Generally, the fracture mode varied markedly with the restorative material. The luting agents had a bigger influence on bond strength between restorative materials and dentin than was seen with the restorative material.

  14. Microshear bond strength according to dentin cleansing methods before recementation

    PubMed Central

    Taşar, Simge; Ulusoy, Mutahhar Muhammed

    2014-01-01

    PURPOSE The aim of this study was to determine the efficiency of Erbium, Chromium: Yttrium-Scandium-Gallium-Garnet laser in different output powers for removing permanent resin cement residues and therefore its influence on microshear bond strength compared to other cleaning methods. MATERIALS AND METHODS 90 extracted human molars were sectioned in 1 mm thickness. Resin cement was applied to surface of sliced teeth. After the removal of initial cement, 6 test groups were prepared by various dentin surface treatment methods as follows: no treatment (Group 1), ethylene diamine tetra acetic acid application (Group 2), Endosolv R application (Group 3), 1.25 W Erbium, Chromium:Yttrium-Scandium-Gallium-Garnet laser irradiation (Group 4), 2 W Erbium, Chromium:Yttrium-Scandium-Gallium-Garnet laser irradiation (Group 5) and 3.5 W Erbium, Chromium:Yttrium-Scandium-Gallium-Garnet laser irradiation (Group 6). The topography and morphology of the treated dentin surfaces were investigated by scanning electron microscopy (n=2 for each group). Following the repetitive cementation, microshear bond strength between dentin and cement (n=26 in per group) were measured with universal testing machine and the data were analyzed by Kruskal Wallis H Test with Bonferroni correction (P<.05). Fracture patterns were investigated by light microscope. RESULTS Mean microshear bond strength ± SD (MPa) for each group was 34.9 ± 17.7, 32.1 ± 15.8, 37.8 ± 19.3, 31.3 ± 12.7, 44.4 ± 13.6, 40.2 ± 13.2 respectively. Group 5 showed significantly difference from Group 1, Group 2 and Group 4. Also, Group 6 was found statistically different from Group 4. CONCLUSION 2 W and 3.5 W Erbium, Chromium: Yttrium-Scandium-Gallium-Garnet laser application were found efficient in removing resin residues. PMID:24843391

  15. The behavior of different types of polytetrafluoroethylene (PTFE) prostheses in the reparative scarring process of abdominal wall defects.

    PubMed

    Buján, J; Contreras, L A; Carrera-San Martín, A; Bellón, J M

    1997-07-01

    Currently one of the most widely used prosthetic materials in the repair of abdominal wall defects, is expanded polytetrafluoroethylene (ePTFE). It has been suggested that its behavior with respect to the reparative process may depend on its structure. The aim of the present study was to evaluate the effect of the structure of 3 ePTFE prostheses on the scarring process in an abdominal-wall-defect experimental model. The prostheses employed were the Soft Tissue Patch (STP) which is laminar in structure, Mycro Mesh (MM) which is multilaminar with perforations, and the Dual Mesh (DM) prosthesis which has one non-porous surface. Abdominal wall defects (7 x 5 cm) were created in 36 New Zealand rabbits and repaired using fragments of STP, MM and DM. Follow-up periods were 14, 30, 60 and 90 days post-implant. At these times prostheses were macroscopically examined for the presence of infection and/or rejection and the formation of adhesions to abdominal viscera. Specimens were also taken for microscopic analysis (optical and scanning electron) and for immunohistochemical analysis using the rabbit macrophage-specific monoclonal antibody RAM-11. Labelled macrophage counts were performed at each follow-up session. No cases of infection or rejection were found. Loose adhesions between prosthesis and underlying viscera were observed in 2 of the STP, 4 of the MM and 2 of the DM implants. STP and DM implants were progressively encapsulated by organized connective tissue on both peritoneal and subcutaneous surfaces. Cellular colonization was observed on both STP surfaces and on the porous surface of the DM although no more than a third of the biomaterial was penetrated by cells in either case. Colonization was very slight at prosthesis anchorage points. MM implants differed only in the formation of connective tissue bridges in perforated areas, and cellular infiltration in interlaminar spaces. Macrophage response was similar in the 3 prostheses with a reduction in RAM-11 labelled

  16. Critical appraisal. Options for dentin/enamel bonding: part III.

    PubMed

    Swift, Edward J

    2010-06-01

    Four categories of resin-based dentin/enamel adhesives are currently available. These include the three-step etch-&-rinse, "one-bottle" etch-&-rinse, two-step self-etch primer systems, and "all-in-one" self-etch adhesives. In consecutive issues of the Journal, the Critical Appraisal series is presenting salient publications on research in each of the categories. The first two installments focused on the etch-&-rinse systems. The series continues with this review of papers on the two-step self-etch primer systems.

  17. Dentin-enamel adhesives in pediatric dentistry: an update.

    PubMed

    García-Godoy, Franklin; Donly, Kevin J

    2015-01-01

    Adhesives and composite technology have made composite resins and polyacid-modified resin-based composites (compomers) very popular as materials to restore primary and permanent anterior and posterior teeth. More conservative preparations can be performed that maintain more tooth structure due to the adhesive properties of the adhesives used with composites and compomers. Meticulous care in the placement of adhesives and, subsequently, resin-based composites and compomers is necessary to produce long-term satisfactory results. The purpose of this paper is to update the current status in regards to dentin-enamel adhesives in primary teeth.

  18. Water distribution in dentin matrices: bound vs. unbound water

    PubMed Central

    Agee, Kelli A.; Prakki, Anuradha; Abu-Haimed, Tariq; Naguib, Ghada H.; Nawareg, Manar Abu; Tezvergil-Mutluay, Arzu; Scheffel, Debora L.S.; Chen, Chen; Jang, Seung Soon; Hwang, Hyea; Brackett, Martha; Grégoire, Geneviéve; Tay, Franklin R.; Breschi, Lorenzo; Pashley, David H.

    2015-01-01

    Objectives This work measured the amount of bound versus unbound water in completely-demineralized dentin. Methods Dentin beams prepared from extracted human teeth were completely demineralized, rinsed and dried to constant mass. They were rehydrated in 41% relative humidity (RH), while gravimetrically measuring their mass increase until the first plateau was reached at 0.064 (vacuum) or 0.116 g H2O/g dry mass (Drierite). The specimens were then exposed to 60% RH until attaining the second plateau at 0.220 (vacuum) or 0.191 g H2O/g dry mass (Drierite), and subsequently exposed to 99% RH until attaining the third plateau at 0.493 (vacuum) or 0.401 g H2O/g dry mass (Drierite). Results Exposure of the first layer of bound water to 0% RH for 5 min produced a −0.3% loss of bound water; in the second layer of bound water it caused a −3.3% loss of bound water; in the third layer it caused a −6% loss of bound water. Immersion in 100% ethanol or acetone for 5 min produced a 2.8 and 1.9% loss of bound water from the first layer, respectively; it caused a −4 and −7% loss of bound water in the second layer, respectively; and a −17 and −23% loss of bound water in the third layer.. Bound water represented 21–25% of total dentin water. Chemical dehydration of water-saturated dentin with ethanol/acetone for 1 min only removed between 25 to 35% of unbound water, respectively. Significance Attempts to remove bound water by evaporation were not very successful. Chemical dehydration with 100% acetone was more successful than 100% ethanol especially the third layer of bound water. Since unbound water represents between 75–79% of total matrix water, the more such water can be removed, the more resin can be infiltrated. PMID:25612786

  19. The Effects of Variability in Demand and Time Parameters for Multi-Item, Multi-Echelon, Multi-Indenture Reparable Inventory Systems

    DTIC Science & Technology

    2007-11-02

    REPARABLE INVENTORY SYSTEMS THESIS Roberto Carlos Borges de Abreu, Captain, Brazilian Air Force AFIT/GLM/ENS/02-01 DEPARTMENT OF THE...AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE...Grant Number Program Element Number Author(s) Capt Roberto C.B. Abreu, Brazilian Air Force Project Number Task Number Work Unit Number Performing

  20. Immediate dentin sealing of onlay preparations: thickness of pre-cured Dentin Bonding Agent and effect of surface cleaning.

    PubMed

    Stavridakis, Minos M; Krejci, Ivo; Magne, Pascal

    2005-01-01

    This study evaluated the thickness of Dentin Bonding Agent (DBA) used for "immediate dentin sealing" of onlay preparations prior to final impression making for indirect restorations. In addition, the amount of DBA that is removed when the adhesive surface is cleaned with polishing or air abrasion prior to final cementation was evaluated. For this purpose, a standardized onlay preparation was prepared in 12 extracted molars, and either OptiBond FL (Kerr) or Syntac Classic (Vivadent) was applied to half of the teeth and cured in the absence of oxygen (air blocking). Each tooth was bisected in a bucco-lingual direction into two sections, and the thickness of the DBA was measured under SEM on gold sputtered epoxy resin replicas at 11 positions. The DBA layer of each half tooth was treated with either air abrasion or polishing. The thickness of the DBAs was then re-measured on the replicas at the same positions. The results were statistically analyzed with non-parametric statistics (Mann-Whitney U test and Kruskal-Wallis test) at a confidence level of 95% (p=0.05). The film thickness of the DBA was not uniform across the adhesive interface (121.13 +/- 107.64 microm), and a great range of values was recorded (0 to 500 microm). Statistically significant differences (p<0.05) were noted, which were both material (OptiBond FL or Syntac Classic) and position (1 to 11) dependent. Syntac Classic presented a higher thickness of DBA (142.34 +/- 125.10 microm) than OptiBond FL (87.99 +/- 73.76 microm). The higher film thickness of both DBAs was at the deepest part of the isthmus (the most concave part of the preparation), while the lowest was at the line angles of the dentinal crest (the most convex part of the preparation). OptiBond FL presented a more uniform thickness around the dentinal crest of preparation; Syntac Classic pooled at the lower parts of the preparation. The amount of DBA that was removed with air abrasion or polishing was not uniform (11.94 +/- 16.46 microm

  1. Digital moiré interferometric analysis on the effect of nanoparticle conditioning on the mechanical deformation in dentin

    NASA Astrophysics Data System (ADS)

    Li, Fang Chi; Kishen, Anil

    2016-02-01

    Dentin is a biological composite that forms the major bulk of tooth structure. Understanding the biomechanical response of dentin structure to forces is essential to restore the loss of mechanical integrity associated with dentin loss during disease or treatment procedures. Moiré interferometry is an optical interferometry based method, which allows wholefield, real-time analysis of dental structures with high-sensitivity. The aim of this study was to investigate the deformation gradients in dentin during function and subsequent to surface conditioning with bioactive biopolymeric nanoparticle. Slab shaped dentin specimens were prepared and a customized loading jig was used to compressively load the specimens from 10 N to 50 N. Specific regions of interest was chosen on the dentin specimens for strain analysis. The digital moiré interferometry experiments showed a distinct deformation pattern in dentin in the direction perpendicular to the dentinal tubules, which increased with increase in dentin loss. The dentin conditioned with nanoparticles did not display marked increase in strain gradients with loads. The current photomechanical experiment highlighted the impact of nanoparticle treatment to improve the mechanical integrity of dentin.

  2. Comparison of the microhardness of enamel, primary and regular secondary dentine of the incisors of donkeys and horses.

    PubMed

    Toit, N Du; Bezensek, B; Dixon, P M

    2008-03-01

    The microhardness of the enamel, primary dentine and regular secondary dentine of seven donkey and six horse incisors was determined with a Knoop indenter at the subocclusal and mid-tooth level. The mean microhardnesses of the donkey incisor enamel, primary dentine and secondary dentine were 264.6 63.00 and 53.6 Knoop Hardness Number, respectively. There was no significant difference between the microhardness of the enamel and primary dentine on the incisors of the donkeys and horses, but the microhardness of the regular secondary dentine of the donkeys' incisors at the mid-tooth level was slightly but significantly less than that of the horses. There was also a difference in the microhardness of the secondary dentine between the subocclusal and mid-tooth levels in both donkey and horse incisors.

  3. Laser-based technique for controlled damage of mesenchymal cell spheroids: a first step in studying reparation in vitro

    PubMed Central

    Ilina, I. V.; Zurina, I. M.; Roskova, A. E.; Gorkun, A. A.; Ovchinnikov, A. V.; Agranat, M. B.; Saburina, I. N.

    2016-01-01

    ABSTRACT Modern techniques of laser microsurgery of cell spheroids were used to develop a new simple reproducible model for studying repair and regeneration in vitro. Nanosecond laser pulses (wavelength 355 nm, frequency 100 Hz, pulse duration 2 ns) were applied to perform a microdissection of the outer and the inner zones of human bone marrow multipotent mesenchymal stromal cells (BM MMSC) spheroids. To achieve effective dissection and preservation of spheroid viability, the energy of laser pulses was optimized and adjusted in the range 7-9 μJ. After microdissection, the edges of the wound surface opened and the angular opening reached a value of more than 180°. The destruction of the initial spheroid structure was observed in the wound area, with surviving cells changing their shape into a round one. Partial restoration of a spheroid form took place in the first six hours. The complete structure restoration accompanying the reparative processes occurred gradually over seven days due to remodelling of surviving cells. PMID:27334698

  4. Clinical implications of gene polymorphisms in venous leg ulcer: a model in tissue injury and reparative process.

    PubMed

    Zamboni, Paolo; Gemmati, Donato

    2007-07-01

    Wound healing is a multi-step process involving complex pathways at cell and molecular level. Lack of understanding of the molecular mechanisms and pathogenesis of impaired healing in chronic leg ulcers limits clinical assessment and management. In addition, individual genetic background certainly affects the response to treatment and specifically modulates the unfavourable lesion environment. Although the number of actors involved in the aetiology of chronic wounds is extremely high, the ability to find out groups of candidate genes on the basis of clinical and physio-pathological findings is a crucial step. The present review demonstrates how recognition of functional gene variants, mostly single nucleotide polymorphisms (SNPs), significantly involved in wound healing and venous ulcer establishment, extraordinarily helps prognosis, diagnosis and treatment of chronic wounds. We deal with on how one can manage SNPs in coagulation factor XIII (FXIII) and hemochromatosis (HFE) genes as molecular markers or prognostic tools. In this fashion, we could pave the way for strategies aimed to single out in advance categories of patients at increased risk to develop severe complications of chronic venous disorders, or to predict the healing time after surgical intervention. Because of its relevant epidemiology and its easily visualized lesions, venous leg ulcer is an ideal model for investigating, the mechanisms of tissue injury and reparative process, as well as the influence of different genetic backgrounds.

  5. The effects of enoxaparin on the reparative processes in experimental osteonecrosis of the femoral head of the rat.

    PubMed

    Norman, Doron; Miller, Yoav; Sabo, Edmund; Misselevich, Ines; Peskin, Bezalel; Zinman, Chaim; Levin, Daniel; Reis, Daniel N; Boss, Jochanan H

    2002-03-01

    The blood supply of one femoral head of 6-month-old rats was severed by incising the periosteum of the neck and cutting the ligamentum teres. The rats were killed on the 30th postoperative day and the femoral bones were obtained for semiquantification of the reparative processes in the necrotic heads. Fourteen rats were treated with enoxaparin and 14 untreated animals served as controls. Statistically, the amounts of necrotic bone in the epiphysis were less, the extent of remodeling of the femoral heads was milder, and the articular cartilage degeneration was slighter in the enoxaparin-treated than untreated rats. There was no significant difference in the quantities of newly formed bone in femoral heads of treated and untreated rats. These findings are in agreement with the known effects of unfractionated and low-molecular-weight heparins which enhance osteoclastic bone resorption and angiogenesis and decrease osteoblastic bone formation. The former activities, operative in minimizing the structural distortion of the femoral head, oppose the crucial event in the pathogenesis of post-osteonecrotic osteoarthritis.

  6. Adipose Derived-Mesenchymal Stem Cells Viability and Differentiating Features for Orthopaedic Reparative Applications: Banking of Adipose Tissue

    PubMed Central

    Alotto, Daniela; Belisario, Dimas Carolina; Casarin, Stefania; Fumagalli, Mara; Cambieri, Irene; Piana, Raimondo; Stella, Maurizio; Ferracini, Riccardo; Castagnoli, Carlotta

    2016-01-01

    Osteoarthritis is characterized by loss of articular cartilage also due to reduced chondrogenic activity of mesenchymal stem cells (MSCs) from patients. Adipose tissue is an attractive source of MSCs (ATD-MSCs), representing an effective tool for reparative medicine, particularly for treatment of osteoarthritis, due to their chondrogenic and osteogenic differentiation capability. The treatment of symptomatic knee arthritis with ATD-MSCs proved effective with a single infusion, but multiple infusions could be also more efficacious. Here we studied some crucial aspects of adipose tissue banking procedures, evaluating ATD-MSCs viability, and differentiation capability after cryopreservation, to guarantee the quality of the tissue for multiple infusions. We reported that the presence of local anesthetic during lipoaspiration negatively affects cell viability of cryopreserved adipose tissue and cell growth of ATD-MSCs in culture. We observed that DMSO guarantees a faster growth of ATD-MSCs in culture than trehalose. At last, ATD-MSCs derived from fresh and cryopreserved samples at −80°C and −196°C showed viability and differentiation ability comparable to fresh samples. These data indicate that cryopreservation of adipose tissue at −80°C and −196°C is equivalent and preserves the content of ATD-MSCs in Stromal Vascular Fraction (SVF), guaranteeing the differentiation ability of ATD-MSCs. PMID:28018432

  7. Antimicrobial properties and dentin bonding strength of magnesium phosphate cements.

    PubMed

    Mestres, G; Abdolhosseini, M; Bowles, W; Huang, S-H; Aparicio, C; Gorr, S-U; Ginebra, M-P

    2013-09-01

    The main objective of this work was to assess the antimicrobial properties and the dentin-bonding strength of novel magnesium phosphate cements (MPC). Three formulations of MPC, consisting of magnesium oxide and a phosphate salt, NH4H2PO4, NaH2PO4 or a mixture of both, were evaluated. As a result of the setting reaction, MPC transformed into either struvite (MgNH4PO4·6H2O) when NH4H2PO4 was used or an amorphous magnesium sodium phosphate when NaH2PO4 was used. The MPC had appropriate setting times for hard tissue applications, high early compressive strengths and higher strength of bonding to dentin than commercial mineral trioxide aggregate cement. Bacteriological studies were performed with fresh and aged cements against three bacterial strains, Escherichia coli, Pseudomonas aeruginosa (planktonic and in biofilm) and Aggregatibacter actinomycetemcomitans. These bacteria have been associated with infected implants, as well as other frequent hard tissue related infections. Extracts of different compositions of MPC had bactericidal or bacteriostatic properties against the three bacterial strains tested. This was associated mainly with a synergistic effect between the high osmolarity and alkaline pH of the MPC. These intrinsic antimicrobial properties make MPC preferential candidates for applications in dentistry, such as root fillers, pulp capping agents and cavity liners.

  8. Root dentine and endodontic instrumentation: cutting edge microscopic imaging.

    PubMed

    Atmeh, Amre R; Watson, Timothy F

    2016-06-06

    Cutting of the dental hard tissues is an integral part of restorative dentistry. Cutting of the root dentine is also needed in preparation prior to endodontic treatment, with significant commercial investment for the development of flexible cutting instruments based around nickel titanium (NiTi) alloys. This paper describes the evolution of endodontic cutting instruments, both in materials used, e.g. the transition from stainless steel to NiTi, and the design of the actual instruments themselves and their method of activation-by hand or motor driven. We have been examining tooth-cutting interactions microscopically for over 25 years using a variety of microscopic techniques; in particular, video-rate confocal microscopy. This has given a unique insight into how many of the procedures that we take for granted are achieved in clinical practice, by showing microscopic video images of the cutting as it occurs within the tooth. This technology has now been extended to allow imaging of the endodontic instrument and the root canal wall for the first time. We are able to image dentine distortion and crack propagation during endodontic filing of the root canal space. We are also able to visualize the often claimed, but seldom seen action of contemporary endodontic instruments.

  9. Performance of four dentine excavation methods in deciduous teeth.

    PubMed

    Celiberti, P; Francescut, P; Lussi, A

    2006-01-01

    This in vitro study aimed to assess the speed and caries removal effectiveness of four different new and conventional dentine excavation methods. Eighty deciduous molars were assigned to four groups. Teeth were sectioned longitudinally through the lesion centre. Images of one half per tooth were captured by light microscope and confocal laser scanning microscopy (CLSM) to assess the caries extension. The halves were then reassembled and caries removed using round carbide bur (group 1), Er:YAG laser (group 2), hand excavator (group 3) and a polymer bur (group 4). The time needed for the whole excavation in each tooth was registered. After excavation, the halves were photographed by light microscope. Caries extension obtained from CLSM images were superimposed on the post-excavation images, allowing comparison between caries extension and removal. The regions where caries and preparation limits coincided, as well as the areas of over- and underpreparation, were measured. Steel bur was the fastest method, followed by the polymer bur, hand excavator and laser. Steel bur exhibited also the largest overpreparation area, followed by laser, hand excavator and polymer bur. The largest underpreparation area was found using polymer bur, followed by laser, hand excavator and steel bur. Hand excavator presented the longest coincidence line, followed by polymer and steel burs and laser. Overall, hand excavator seemed to be the most suitable method for carious dentine excavation in deciduous teeth, combining good excavation time with effective caries removal.

  10. Biomimetic Scaffold with Aligned Microporosity Designed for Dentin Regeneration

    PubMed Central

    Panseri, Silvia; Montesi, Monica; Dozio, Samuele Maria; Savini, Elisa; Tampieri, Anna; Sandri, Monica

    2016-01-01

    Tooth loss is a common result of a variety of oral diseases due to physiological causes, trauma, genetic disorders, and aging and can lead to physical and mental suffering that markedly lowers the individual’s quality of life. Tooth is a complex organ that is composed of mineralized tissues and soft connective tissues. Dentin is the most voluminous tissue of the tooth and its formation (dentinogenesis) is a highly regulated process displaying several similarities with osteogenesis. In this study, gelatin, thermally denatured collagen, was used as a promising low-cost material to develop scaffolds for hard tissue engineering. We synthetized dentin-like scaffolds using gelatin biomineralized with magnesium-doped hydroxyapatite and blended it with alginate. With a controlled freeze-drying process and alginate cross-linking, it is possible to obtain scaffolds with microscopic aligned channels suitable for tissue engineering. 3D cell culture with mesenchymal stem cells showed the promising properties of the new scaffolds for tooth regeneration. In detail, the chemical–physical features of the scaffolds, mimicking those of natural tissue, facilitate the cell adhesion, and the porosity is suitable for long-term cell colonization and fine cell–material interactions. PMID:27376060

  11. Biodentine-a novel dentinal substitute for single visit apexification

    PubMed Central

    Hasan, Mohammad Faiz

    2014-01-01

    Use of an apical plug in management of cases with open apices has gained popularity in recent years. Biodentine, a new calcium silicate-based material has recently been introduced as a dentine substitute, whenever original dentine is damaged. This case report describes single visit apexification in a maxillary central incisor with necrotic pulp and open apex using Biodentine as an apical barrier, and a synthetic collagen material as an internal matrix. Following canal cleaning and shaping, calcium hydroxide was placed as an intracanal medicament for 1 mon. This was followed by placement of small piece of absorbable collagen membrane beyond the root apex to serve as matrix. An apical plug of Biodentine of 5 mm thickness was placed against the matrix using pre-fitted hand pluggers. The remainder of canal was back-filled with thermoplasticized gutta-percha and access cavity was restored with composite resin followed by all-ceramic crown. One year follow-up revealed restored aesthetics and function, absence of clinical signs and symptoms, resolution of periapical rarefaction, and a thin layer of calcific tissue formed apical to the Biodentine barrier. The positive clinical outcome in this case is encouraging for the use of Biodentine as an apical plug in single visit apexification procedures. PMID:24790925

  12. SYNERGISTIC DEGRADATION OF DENTIN BY CYCLIC STRESS AND BUFFER AGITATION

    PubMed Central

    Orrego, Santiago; Romberg, Elaine; Arola, Dwayne

    2015-01-01

    Secondary caries and non-carious lesions develop in regions of stress concentrations and oral fluid movement. The objective of this study was to evaluate the influence of cyclic stress and fluid movement on material loss and subsurface degradation of dentin within an acidic environment. Rectangular specimens of radicular dentin were prepared from caries-free unrestored 3rd molars. Two groups were subjected to cyclic cantilever loading within a lactic acid solution (pH=5) to achieve compressive stresses on the inner (pulpal) or outer sides of the specimens. Two additional groups were evaluated in the same solution, one subjected to movement only (no stress) and the second held stagnant (control: no stress or movement). Exterior material loss profiles and subsurface degradation were quantified on the two sides of the specimens. Results showed that under cyclic stress material loss was significantly greater (p≤0.0005) on the pulpal side than on the outer side and significantly greater (p≤0.05) under compression than tension. However, movement only caused significantly greater material loss (p≤0.0005) than cyclic stress. Subsurface degradation was greatest at the location of highest stress, but was not influenced by stress state or movement. PMID:25637823

  13. Effects of dentin on the antimicrobial properties of endodontic medicaments.

    PubMed

    Haapasalo, Markus; Qian, Wei; Portenier, Isabelle; Waltimo, Tuomas

    2007-08-01

    Successful treatment of apical periodontitis is dependent on the elimination of the infective microflora from the necrotic root canal system. Antimicrobial irrigating solutions and other locally used disinfecting agents and medicaments have a key role in the eradication of the microbes. While most if not all presently used disinfecting agents rapidly kill even the resistant microbes when tested in vitro in a test tube, the effectiveness of the same agents is clearly weaker in the in vivo conditions. Recent studies have given valuable information about the interaction of endodontic disinfecting agents with dentin and other compounds present in the necrotic root canal. As a result of such interactions the antimicrobial effectiveness of several of our key disinfectants may be weakened, or even eliminated under certain circumstances. Different disinfectants show different sensitivity to the action by the various potential inactivators, such as dentin, serum proteins, hydroxyapatite, collagen derived from different sources, and microbial biomass. This review is a summary of our present knowledge of the mostly negative interactions between endodontic disinfecting agents and the various compounds present in the root canal environment.

  14. Accelerated fatigue of dentin with exposure to lactic acid.

    PubMed

    Do, Dominic; Orrego, Santiago; Majd, Hessam; Ryou, Heonjune; Mutluay, Mustafa M; Xu, Hockin H K; Arola, Dwayne D

    2013-11-01

    Composite restorations accumulate more biofilm than other dental materials. This increases the likelihood for the hard tissues supporting a restoration (i.e. dentin and enamel) to be exposed to acidic conditions beyond that resulting from dietary variations. In this investigation the fatigue strength and fatigue crack growth resistance of human coronal dentin were characterized within a lactic acid solution (with pH = 5) and compared to that of controls evaluated in neutral conditions (pH = 7). A comparison of the fatigue life distributions showed that the lactic acid exposure resulted in a significant reduction in the fatigue strength (p ≤ 0.001), and nearly 30% reduction in the apparent endurance limit (from 44 MPa to 32 MPa). The reduction in pH also caused a significant decrease (p ≤ 0.05) in the threshold stress intensity range required for the initiation of cyclic crack growth, and significant increase in the incremental rate of crack extension. Exposure of tooth structure to lactic acid may cause demineralization, but it also increases the likelihood of restored tooth failures via fatigue, and after short time periods.

  15. Microorganism penetration in dentinal tubules of instrumented and retreated root canal walls. In vitro SEM study

    PubMed Central

    Al-Sulaiman, Alaa; Al-Rasheed, Fellwa; Alnajjar, Fatimah; Al-Abdulwahab, Bander; Al-Badah, Abdulhakeem

    2014-01-01

    Objectives This in vitro study aimed to investigate the ability of Candida albicans (C. albicans) and Enterococcus faecalis (E. faecalis) to penetrate dentinal tubules of instrumented and retreated root canal surface of split human teeth. Materials and Methods Sixty intact extracted human single-rooted teeth were divided into 4 groups, negative control, positive control without canal instrumentation, instrumented, and retreated. Root canals in the instrumented group were enlarged with endodontic instruments, while root canals in the retreated group were enlarged, filled, and then removed the canal filling materials. The teeth were split longitudinally after canal preparation in 3 groups except the negative control group. The teeth were inoculated with both microorganisms separately and in combination. Teeth specimens were examined by scanning electron microscopy (SEM), and the depth of penetration into the dentinal tubules was assessed using the SMILE view software (JEOL Ltd). Results Penetration of C. albicans and E. faecalis into the dentinal tubules was observed in all 3 groups, although penetration was partially restricted by dentin debris of tubules in the instrumented group and remnants of canal filling materials in the retreated group. In all 3 groups, E. faecalis penetrated deeper into the dentinal tubules by way of cell division than C. albicans which built colonies and penetrated by means of hyphae. Conclusions Microorganisms can easily penetrate dentinal tubules of root canals with different appearance based on the microorganism size and status of dentinal tubules. PMID:25383343

  16. Comparative assessment of hardening of demineralized dentin under lining materials using an ultramicroindentation system.

    PubMed

    Schmidlin, Patrick R; Zehnder, Matthias; Imfeld, Thomas; Swain, Michael V

    2007-10-01

    The aim of the current in vitro study was to evaluate the influence of three lining materials with a reported mineralizing capacity on hardness and elasticity of demineralized dentin. Four standardized microcavities were prepared in exposed dentin surfaces of 16 extracted human molars each. Dentin was demineralized in 0.5M EDTA for 2 h. One microcavity was left empty. The others were filled with a resin-modified glass ionomer cement (RMGIC), a bioactive glass S53P4 suspension, and a prototype Ca-PO(4) cement. Teeth were then immersed in deionized water or simulated oral fluid. After 3 weeks, hardness and composite elastic modulus of the dentin subjacent to the microcavities were assessed under wet conditions using the ultramicroindentation system (UMIS). After immersion in deionized water, there was no significant improvement of the mechanical properties of dentin irrespective of the material applied beforehand, indicating a lack of direct material effects. Exposure to simulated oral fluid resulted in significantly (p < 0.05) higher hardness and composite elastic modulus values of the dentin subjacent to empty microcavities and counterparts lined with bioactive glass compared to corresponding dentin under the RMGIC. UMIS profiles showed little variance.

  17. Evaluation of the Diode laser (810nm,980nm) on dentin tubule diameter following internal bleaching

    PubMed Central

    Kiomarsi, Nazanin; Salim, Soheil; Sarraf, Pegah; Javad-Kharazifard, Mohammad

    2016-01-01

    Background The aim of this study was to evaluate the effect of diode laser irradiation and bleaching materials on the dentinal tubule diameter after laser bleaching. Material and Methods The dentin discs of 40 extracted third molar were used in this experiment. Each disc surface was divided into two halves by grooving. Half of samples were laser bleached at different wavelengths with two different concentrations of hydrogen peroxide. Other half of each disc with no laser bleaching remained as a negative control. Dentin discs were assigned randomly into four groups (n=10) with following hydrogen peroxide and diode laser wavelength specifications; Group 1 (30% - 810 nm), group 2 (30% - 980 nm), group 3 (46% - 810 nm) and group 4 (46% - 980 nm). All specimens were sent for scanning electron microscopic (SEM) analysis in order to measure tubular diameter in laser treated and control halves. Data were analyzed by ANOVA and Tukey test (p<0.05). Results A significant reduction in dentin tubule diameter was observed in groups 1, 2 and 4. There was no significant difference between groups 1 and 2 and between groups 3 and 4 after bleaching. Conclusions The SEM results showed that diode laser was able to reduce dentin tubule diameter and its effect on dentin was dependent on chemical action of bleaching material. Key words:Laser, diode, dentin, tubule, diameter. PMID:27398172

  18. Remineralization of artificial dentinal caries lesions by biomimetically modified Mineral Trioxide Aggregate

    PubMed Central

    Qi, Yi-pin; Li, Nan; Niu, Li-na; Primus, Carolyn M.; Ling, Jun-Qi; Pashley, David H.; Tay, Franklin R.

    2011-01-01

    Fluoride-releasing restorative materials are available for remineralization of enamel and root caries. However, dentin remineralization is more difficult than enamel remineralization due to the paucity of apatite seed crystallites along the lesion surface for heterogeneous crystal growth. Extracellular matrix proteins play critical roles in controlling apatite nucleation/growth in collagenous tissues. This study examined the remineralization efficacy of mineral trioxide aggregate (MTA) in phosphate-containing simulated body fluid (SBF) by incorporating polyacrylic acid and sodium tripolyphosphate as biomimetic analogs of matrix proteins for remineralizing caries-like dentin. Artificial caries-like dentin lesions incubated in SBF were remineralized over a 6-week period using MTA or MTA containing biomimetic analogs in the absence or presence of dentin adhesive application. Lesion depths and integrated mineral loss were monitored with micro-computed tomography. Ultrastructure of baseline and remineralized lesions were examined by transmission electron microscopy. Dentin remineralization was best achieved using MTA containing biomimetic analogs regardless of whether an adhesive was applied; dentinal tubules within the remineralized dentin were occluded by apatite. It is concluded that the MTA version employed in the study may be doped with biomimetic analogs for remineralization of unbonded and bonded artificial caries-like lesions in the presence of SBF. PMID:22085925

  19. Effect of a one-step self-etch adhesive on endogenous dentin matrix metalloproteinases.

    PubMed

    Apolonio, Fabianni M; Mazzoni, Annalisa; Angeloni, Valeria; Scaffa, Polliana M C; Santi, Spartaco; Saboia, Vicente de Paulo A; Tay, Franklin R; Pashley, David H; Breschi, Lorenzo

    2017-04-01

    Degradation of the hybrid layer created in dentin by dentin adhesives is caused by enzyme activities present within the dentin matrix that destroy unprotected collagen fibrils. The aim of the present study was to evaluate the effect of a one-step self-etch adhesive system on dentinal matrix metalloproteinases 2 and 4 (MMP-2 and MMP-9, respectively) using in situ zymography and an enzymatic activity assay. The null hypothesis tested was that there are no differences in the activities of dentinal MMPs before and after treatment with a one-step adhesive system. The MMP-2 and MMP-9 activities in dentin treated with the one-step adhesive, Adper Easy Bond, were quantified using an enzymatic activity assay system. The MMP activities within the hybrid layer created by the one-step adhesive tested were also evaluated using in situ zymography. The enzymatic assay revealed an increase in MMP-2 and MMP-9 activities after treatment with adhesive. In situ zymography indicated that gelatinolytic activity is present within the hybrid layer created with the one-step self-etch adhesive. The host-derived gelatinases were localized within the hybrid layer and remained active after the bonding procedure. It is concluded that the one-step self-etch adhesive investigated activates endogenous MMP-2 and MMP-9 with the dentin matrix, which may cause collagen degradation over time.

  20. Desensitizing Agent Reduces Dentin Hypersensitivity During Ultrasonic Scaling: A Pilot Study

    PubMed Central

    Suda, Tomonari; Akiyama, Toshiharu; Takano, Takuya; Gokyu, Misa; Sudo, Takeaki; Khemwong, Thatawee; Izumi, Yuichi

    2015-01-01

    Background Dentin hypersensitivity can interfere with optimal periodontal care by dentists and patients. The pain associated with dentin hypersensitivity during ultrasonic scaling is intolerable for patient and interferes with the procedure, particularly during supportive periodontal therapy (SPT) for patients with gingival recession. Aim This study proposed to evaluate the desensitizing effect of the oxalic acid agent on pain caused by dentin hypersensitivity during ultrasonic scaling. Materials and Methods This study involved 12 patients who were incorporated in SPT program and complained of dentin hypersensitivity during ultrasonic scaling. We examined the availability of the oxalic acid agent to compare the degree of pain during ultrasonic scaling with or without the application of the dentin hypersensitivity agent. Evaluation of effects on dentin hypersensitivity was determined by a questionnaire and visual analog scale (VAS) pain scores after ultrasonic scaling. The statistical analysis was performed using the paired Student t-test and Spearman rank correlation coefficient. Results The desensitizing agent reduced the mean VAS pain score from 69.33 ± 16.02 at baseline to 26.08 ± 27.99 after application. The questionnaire revealed that >80% patients were satisfied and requested the application of the desensitizing agent for future ultrasonic scaling sessions. Conclusion This study shows that the application of the oxalic acid agent considerably reduces pain associated with dentin hypersensitivity experienced during ultrasonic scaling. This pain control treatment may improve patient participation and treatment efficiency. PMID:26501012

  1. Effect of in vitro chewing and bruxism events on remineralization, at the resin-dentin interface.

    PubMed

    Toledano, Manuel; Cabello, Inmaculada; Aguilera, Fátima S; Osorio, Estrella; Osorio, Raquel

    2015-01-02

    The purpose of this study was to evaluate if different in vitro functional and parafunctional habits promote mineralization at the resin-dentin interface after bonding with three different adhesive approaches. Dentin surfaces were subjected to distinct treatments: demineralization by (1) 37% phosphoric acid (PA) followed by application of an etch-and-rinse dentin adhesive, Single Bond (SB) (PA+SB); (2) 0.5 M ethylenediaminetetraacetic acid (EDTA) followed by SB (EDTA+SB); (3) application of a self-etch dentin adhesive, Clearfil SE Bond (SEB). Different loading waveforms were applied: No cycling (I), cycled in sine (II) or square (III) waves, sustained loading hold for 24 h (IV) or sustained loading hold for 72 h (V). Remineralization at the bonded interfaces was assessed by AFM imaging/nano-indentation, Raman spectroscopy and Masson's trichrome staining. In general, in vitro chewing and parafunctional habits, promoted an increase of nano-mechanical properties at the resin-dentin interface. Raman spectroscopy through cluster analysis demonstrated an augmentation of the mineral-matrix ratio in loaded specimens. Trichrome staining reflected a narrow demineralized dentin matrix after loading in all groups except in PA+SB and EDTA+SB samples after sustained loading hold for 72 h, which exhibited a strong degree of mineralization. In vitro mechanical loading, produced during chewing and bruxism (square or hold 24 and 72 h waveforms), induced remineralization at the resin-dentin bonded interface.

  2. Influence of EDTA and dentine in tissue dissolution ability of sodium hypochlorite.

    PubMed

    de Almeida, Luiza Helena Silva; Leonardo, Natália Gomes e Silva; Gomes, Ana Paula Neutzling; Souza, Erick Miranda; Pappen, Fernanda Geraldes

    2015-04-01

    This study verified whether ethylenediaminetetraacetic acid (EDTA) influences the pulp tissue dissolution capability of different concentrations of NaOCl, in the presence of dentine. NaOCl and EDTA solutions were simultaneously mixed in flasks either containing a dentine disc or those not containing a dentine disc. Previously weighed bovine pulp tissues were immersed in the solutions for 5, 15 and 30 min. The weight loss was measured. The dissolution tests were performed in triplicate. Univariate analysis of variance, along with further Tukey's honestly significant difference pairwise comparisons, was used to verify the effect of EDTA, different concentrations of NaOCl, dentine and time of incubation on the tissue dissolution. Higher concentrations of NaOCl increased the tissue dissolution. EDTA reduced the capacity of NaOCl to dissolve pulp tissue, even in presence of dentine. Dentine negatively affects the capacity of NaOCl to dissolve pulp tissue. In conclusion, the presence of EDTA and dentine negatively affects the tissue dissolution ability of NaOCl.

  3. Influence of previous acid etching on bond strength of universal adhesives to enamel and dentin.

    PubMed

    Torres, Carlos Rocha Gomes; Zanatta, Rayssa Ferreira; Silva, Tatiane Josefa; Huhtala, Maria Filomena Rocha Lima; Borges, Alessandra Bühler

    2017-01-01

    The objective of this study was to evaluate the effect of acid pretreatment on the bond strength of composite resin bonded to enamel and dentin with 2 different universal self-etching adhesives. The null hypothesis was that the acid treatment performed prior to adhesive application would not significantly change the bond strength to enamel or dentin for either universal adhesive tested. A sample of 112 bovine incisors were selected and embedded in acrylic resin. Half were ground until a flat enamel surface was obtained, and the other half were polished until a 6 × 6-mm area of dentin was exposed, resulting into 2 groups (n = 56). The enamel and dentin groups were divided into 2 subgroups according to the adhesive system applied: Futurabond U or Scotchbond Universal. Each of these subgroups was divided into 2 additional subgroups (n = 14); 1 subgroup received phosphoric acid pretreatment, and 1 subgroup did not. The bond strength was assessed with a microtensile test. Data from enamel and dentin specimens were analyzed separately using 1-way analysis of variance. The acid pretreatment did not significantly change the bond strength of the adhesives tested, either to enamel (P = 0.4161) or to dentin (P = 0.4857). The acid etching pretreatment did not affect the bond strength to dentin and enamel when the tested universal multipurpose adhesive systems were used.

  4. Dentin Morphology of Root Canal Surface: A Quantitative Evaluation Based on a Scanning Electronic Microscopy Study

    PubMed Central

    Lo Giudice, Giuseppe; Cutroneo, Giuseppina; Centofanti, Antonio; Artemisia, Alessandro; Bramanti, Ennio; Militi, Angela; Rizzo, Giuseppina; Favaloro, Angelo; Irrera, Alessia; Lo Giudice, Roberto; Cicciù, Marco

    2015-01-01

    Dentin is a vital, hydrated composite tissue with structural components and properties that vary in the different topographic portions of the teeth. These variations have a significant implication for biomechanical teeth properties and for the adhesive systems utilized in conservative dentistry. The aim of this study is to analyse the root canal dentin going from coronal to apical zone to find the ratio between the intertubular dentin area and the surface occupied by dentin tubules varies. Observations were conducted on 30 healthy premolar teeth extracted for orthodontic reasons in patients aged between 10 and 14. A SEM analysis of the data obtained in different canal portions showed that, in the coronal zone, dentinal tubules had a greater diameter (4.32 μm) than the middle zone (3.74 μm) and the apical zone (1.73 μm). The average number of dentinal tubules (in an area of 1 mm2) was similar in coronal zone (46,798 ± 10,644) and apical zone (45,192 ± 10,888), while in the middle zone they were lower in number (30,940 ± 7,651). However, intertubular dentin area was bigger going from apical to coronal portion. The differences between the analysed areas must be considered for the choice of the adhesive system. PMID:26413504

  5. Dental Pulp and Dentin Tissue Engineering and Regeneration – Advancement and Challenge

    PubMed Central

    Huang, George T.-J.

    2012-01-01

    Hard tissue is difficult to repair especially dental structures. Tooth enamel is incapable of self-repairing whereas dentin and cememtum can regenerate with limited capacity. Enamel and dentin are commonly under the attack by caries. Extensive forms of caries destroy enamel and dentin and can lead to dental pulp infection. Entire pulp amputation followed by the pulp space disinfection and filled with an artificial rubber-like material is employed to treat the infection --commonly known as root canal or endodontic therapy. Regeneration of dentin relies on having vital pulps; however, regeneration of pulp tissue has been difficult as the tissue is encased in dentin without collateral blood supply except from the root apical end. With the advent of modern tissue engineering concept and the discovery of dental stem cells, regeneration of pulp and dentin has been tested. This article will review the recent endeavor on pulp and dentin tissue engineering and regeneration. The prospective outcome of the current advancement and challenge in this line of research will be discussed. PMID:21196351

  6. Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins

    PubMed Central

    Tjäderhane, Leo; Nascimento, Fabio D.; Breschi, Lorenzo; Mazzoni, Annalisa; Tersariol, Ivarne L.S.; Geraldeli, Saulo; Tezvergil-Mutluay, Arzu; Carrilho, Marcela R.; Carvalho, Ricardo M.; Tay, Franklin R.; Pashley, David H.

    2012-01-01

    Objectives Contemporary adhesives lose their bond strength to dentin regardless of the bonding system used. This loss relates to the hydrolysis of collagen matrix of the hybrid layers. The preservation of the collagen matrix integrity is a key issue in the attempts to improve the dentin bonding durability. Methods Dentin contains collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, which are responsible for the hydrolytic degradation of collagen matrix in the bonded interface. Results The identities, roles and function of collagenolytic enzymes in mineralized dentin has been gathered only within last 15 years, but they have already been demonstrated to have an important role in dental hard tissue pathologies, including the degradation of the hybrid layer. Identifying responsible enzymes facilitates the development of new, more efficient methods to improve the stability of dentin-adhesive bond and durability of bond strength. Significance Understanding the nature and role of proteolytic degradation of dentin-adhesive interfaces has improved immensely and has practically grown to a scientific field of its own within only 10 years, holding excellent promise that stable resin-dentin bonds will be routinely available in a daily clinical setting already in a near future. PMID:22901826

  7. Mineral density, morphology and bond strength of natural versus artificial caries-affected dentin.

    PubMed

    Joves, Gerardo José; Inoue, Go; Nakashima, Syozi; Sadr, Alireza; Nikaido, Toru; Tagami, Junji

    2013-01-01

    This study aimed to investigate an artificial caries-affected dentin (ACAD) model for in vitro bonding studies in comparison to natural caries-affected dentin (NCAD) of human teeth. ACAD was created over 7 days in a demineralizing solution. Mineral density (MD) at different depth levels (0-150 µm) was compared between NCAD and ACAD by transverse microradiography. Micro-tensile bond strengths (µTBS) of two two-step self-etch adhesives to sound dentin, NCAD and ACAD were evaluated. Caries-affected dentin type was not a significant factor when comparing MD at different lesion levels (p>0.05). Under SEM, the dentinal tubules appeared occluded with crystal logs 1-2 µm in thickness in the NCAD; whereas they remained open in the ACAD. The µTBS to caries-affected dentin was lower than sound dentin, but was not affected by the type of caries (p>0.05). In spite of their different morphologies, the ACAD model showed similar MD and µTBS compared to NCAD.

  8. Visualization and quantification of healthy and carious dentin structure using confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Kimura, Yuichi; Wilder-Smith, Petra B. B.; Krasieva, Tatiana B.; Arrastia-Jitosho, Anna-Marie A.; Liaw, Lih-Huei L.; Matsumoto, Koukichi; Berns, Michael W.

    1996-04-01

    In this study, a fluorescence technique was developed for visualization of dentin using confocal laser scanning microscopy (CLSM). Eighteen extracted human teeth were used: 13 showing no clinical signs of caries and 5 with visually apparent decay. Preliminary study: All teeth were horizontally sectioned to approx. 200 micrometers thickness and pre-treated as follows: no pretreatment; vacuum only; ultrasonication only; sodium hypochlorite (NaOCl) only; vacuum and NaOCl; ultrasonication and NaOCl; or vacuum, ultrasonication and NaOCl. Samples were stained with Rhodamine 123 fluorescent dye at a concentration of 10-5 M in phosphate buffer saline for 1 to 24 hours. Caries study: Dentin surfaces, some with pre-existing caries, were visualized using CLSM. Most dentin tubules in sound dentin appeared open using CLSM, but most dentin tubules in carious dentin appeared closed or narrowed. Surface images obtained using CLSM were similar to those seen by SEM, but additional subsurface imaging was possible using CLSM at depth intervals of 1 micrometers to a depth of 30 - 50 micrometers . This technique shows good potential for non-invasive surface and subsurface imaging of dentin structures.

  9. Nanoscopic dynamic mechanical analysis of resin-infiltrated dentine, under in vitro chewing and bruxism events.

    PubMed

    Toledano, Manuel; Osorio, Estrella; Cabello, Inmaculada; Aguilera, Fátima S; López-López, Modesto T; Toledano-Osorio, Manuel; Osorio, Raquel

    2016-02-01

    The aim of this study was to evaluate the induced changes in mechanical behavior and bonding capability of resin-infiltrated dentine interfaces, after application of mechanical stimuli. Dentine surfaces were subjected to partial demineralization through 37% phosphoric acid etching followed by the application of an etch-and-rinse dentine adhesive, Single Bond (3M/ESPE). Bonded interfaces were stored in simulated body fluid during 24h, and then tested or submitted to the mechanical loading challenge. Different loading waveforms were applied: No cycling (I), 24h cycled in sine (II) or square (III) waves, sustained loading held for 24h (IV) or sustained loading held for 72h (V). Microtensile bond strength (MTBS) was assessed for the different groups. Debonded dentine surfaces were studied by field emission scanning electron microscopy (FESEM). At the resin-dentine interface, both the hybrid layer (HL) and the bottom of the hybrid layer (BHL), and both peritubular and intertubular were evaluated using a nanoindenter in scanning mode. The load and displacement responses were used to perform the nano-Dynamic Mechanical analysis and to estimate the complex and storage modulus. Dye assisted Confocal Microscopy Evaluation was used to assess sealing ability. Load cycling increased the percentage of adhesive failures in all groups. Specimens load cycled in held 24h attained the highest complex and storage moduli at HL and BHL. The storage modulus was maximum in specimens load cycled in held 24h at peritubular dentine, and the lowest values were attained at intertubular dentine. The storage modulus increased in all mechanical tests, at peritubular dentine. An absence of micropermeability and nanoleakage after loading in sine and square waveforms were encountered. Porosity of the resin-dentine interface was observed when specimens were load cycled in held 72h. Areas of combined sealing and permeability were discovered at the interface of specimens load cycled in held 24h. Crack

  10. TGF-β in dentin matrix extract induces osteoclastogenesis in vitro.

    PubMed

    Sriarj, Wannakorn; Aoki, Kazuhiro; Ohya, Keiichi; Takahashi, Mariko; Takagi, Yuzo; Shimokawa, Hitoyata

    2015-01-01

    Previously, we have demonstrated that the extracellular matrix from dentin affects osteoclastic activity in co-culture between osteoclast and osteoblast-rich fraction from mouse marrow cells. In the present study, we aimed to investigate the mechanisms of dentin matrix extract-induced osteoclastogenesis in mouse bone marrow macrophages (BMMs). Dentin proteins were extracted from bovine incisor root dentin using 0.6 M HCl. BMMs were cultured in α-MEM containing macrophage colony-stimulating factor/receptor activator of nuclear factor kappa-B ligand in the presence or absence of dentin matrix extract. Tartrate-resistant acid phosphatase (TRAP)-positive cell number, total TRAP activity, and the mRNA levels of osteoclast-related genes, assayed by real-time RT-PCR, were determined as markers of osteoclastogenesis. A neutralizing antibody against transforming growth factor-β1 (TGF-β1), SB431542, a TGF-β receptor inhibitor, and ELISA were used to determine the role of TGF-β1. We observed increases in TRAP-positive cell number, TRAP activity, and the mRNA levels of osteoclast-related genes of BMMs cultured with dentin extract. The use of a neutralizing antibody against TGF-β1 or SB431542 inhibited the inductive effect of dentin extract, suggesting TGF-β1 involvement. The addition of exogenous TGF-β1, but not bone morphogenic protein-2, also increased osteoclastogenesis, corresponding to the ELISA determination of TGF-β1 in the dentin extract. In conclusion, our results indicate that proteins from dentin matrix have an inductive effect in osteoclastogenesis, which is mediated, in part, by TGF-β1.

  11. Differences in the Microstructure and Fatigue Properties of Dentin Between Residents of North and South America

    PubMed Central

    Ivancik, J.; Naranjo, M.; Correa, S.; Ossa, A.; Tay, F.R.; Pashley, D.H.; Arola, D.

    2014-01-01

    Spatial variations in the microstructure of dentin contribute to its mechanical behavior. Objective The objective of this investigation was to compare the microstructure and fatigue behavior of dentin from donors of two different countries. Methods Caries-free third molars were obtained from dental practices in Colombia, South America and the US to assemble two age-matched samples. The microstructure of the coronal dentin was evaluated at three characteristic depths (i.e. deep, middle and superficial dentin) using scanning electron microscopy and image processing techniques. The mechanical behavior of dentin in these three regions was evaluated by the fatigue crack growth resistance. Cyclic crack growth was achieved in-plane with the dentin tubules and the fatigue crack growth behavior was characterized in terms of the stress intensity threshold and the Paris Law parameters. Results There was no difference in the tubule density between the dentin of patients from the two countries. However, there were significant differences (p≤0.05) in the tubule lumen diameters between the two groups in the deep and peripheral regions. In regards to the fatigue resistance, there was a significant increase (p≤0.05) in threshold stress intensity range, and a significant decrease in fatigue crack growth coefficient with increasing distance from the pulp in teeth from the US donors. In contrast, these properties were independent of location for the dentin of teeth from the Colombian donors. Conclusions The microstructure of dentin and its mechanical behavior appear to be a function of patient background, which may include environmental factors and/or ethnicity. PMID:24960115

  12. Bonding efficacy of an acetone/based etch-and-rinse adhesive after dentin deproteinization

    PubMed Central

    Aguilera, Fátima S.; Osorio, Raquel; Osorio, Estrella; Moura, Pedro

    2012-01-01

    Objectives: to evaluate the effect of sodium hypochlorite (NaOCl) treatment on dentin bonding by means of shear bond strength (SBS) measurements when using Prime&Bond NT (PB NT) adhesive. Ultrastructure of the interfaces was examined by scanning electron microscopy (SEM). Study design: Extracted human third molars were sectioned and ground to expose flat surfaces of superficial or deep dentin. Specimens were randomly assigned to two equal groups, and bonded as follows: (1) according to the manufacturers’ directions, after 35% H3PO4 etching, (2) 5% NaOCl treated for 2 minutes, after 35% H3PO4 etching. Each sample was embedded in a Watanabe shear test assembly for a single plane lap shear. After PB NT bonding, specimens were stored in water for 24 h at 37ºC and thermocycled (500x). Samples were tested in shear to failure using a universal testing machine at 0.75 mm/min. Data were analyzed with ANOVA and Newman-Keuls multiple comparison test procedures. Two samples of each group were randomly selected to investigate the morphologic aspect of the resin/dentin interface with SEM. Results: After etching and after aqueous sodium hypochlorite (NaOClaq) application, SBS values were similar on superficial than deep dentin (p>0.05). SEM findings shows for H3PO4 etching conditioned samples a detectable hybrid layer and long resin tags; for NaOCl treated specimens, it may be observed a non apparent hybrid layer, and the adhesive contact directly with the neck of the cylindrical resin tags. Conclusions: The use of 5% NaOCl for 2 min after dentin demineralization when PB NT was employed did not improve the bond strength to dentin, probably due to nanofiller content and/or oxidative changes on collagen-depleted dentin. Key words:Sodium hypochlorite, shear bond strength, SEM, Prime&Bond NT, superficial dentin, deep dentin. PMID:22322501

  13. Effect of Different Bonding Strategies on Adhesion to Deep and Superficial Permanent Dentin

    PubMed Central

    Pegado, Rafael Eduardo Fernandes; do Amaral, Flávia Lucisano Botelho; Flório, Flávia Martão; Basting, Roberta Tarkany

    2010-01-01

    Objectives: To evaluate the effect of different bonding strategies on the microtensile bond strength to deep and superficial permanent dentin. Methods: Forty-eight teeth were randomly flattened according to the dentin depth: superficial dentin (SD) and deep dentin (DD). Subsequently, three adhesive systems were applied (n=8): an etch-and-rinse (Adper Single Bond 2 - SB), a “mild” two-step self-etching (Clearfil SE Bond - SE) and a one-step self-etching adhesive system (Futurabond – FB). Each specimen was restored with a composite resin and sectioned into 1.0-mm2 thick slabs. After 24 hours, resin-dentin sticks were submitted to tensile stress in a universal testing machine (0.5 mm/min). Data were submitted to two-way ANOVA and Tukey’s test at a level of 0.05%. Results: Superficial dentin showed the highest microtensile bond strength values, which differed statistically from those obtained in the deep dentin, irrespective of the adhesive system used. FB yielded the highest bond strength values, which were statistically similar to the bond strength values of SE, but statistically different from those obtained when the SB adhesive was used. Conclusions: Bond strength obtained in superficial dentin was significantly higher than in deep dentin, for all adhesive systems tested. Adhesion was affected by the different bonding strategies: the one-step, low pH, acetone-based self-etching adhesive promoted the higher bond strength values, which were statistically similar to those obtained with the two-step, water-based self-etching adhesive. PMID:20396440

  14. Dentinal hypersensitivity: A comparative clinical evaluation of CPP-ACP F, sodium fluoride, propolis, and placebo

    PubMed Central

    Madhavan, Souparna; Nayak, Moksha; Shenoy, Amarnath; Shetty, Rajesh; Prasad, Krishna

    2012-01-01

    Background: Dentine hypersensitivity is a transient condition that often resolves with the natural sclerotic obturation of dentinal tubules. A potent topically applied in-office desensitizing treatment is indicated as the choice of treatment when dentine hypersensitivity is localized to one or two teeth. Aim: The present study aimed to evaluate and compare the clinical efficiency of CPP-ACP F, sodium fluoride, propolis, and distilled water that was used as placebo in treating dentinal hypersensitivity. Materials and Methods: 120 patients aged 20–40 years reporting with dentinal hypersensitivity in relation to canine, premolar and molars with erosion, abrasion, and gingival recession were randomly assigned to four groups of 30 patients each. Response to air jet and tactile stimuli were measured using visual analogue scale initially on 1st, 7th, 15th, 28th, 60th, and final assessment was done on the 90th day. Statistical Analysis: A statistical analysis was done using Anova test (Fischer's test) and Tukey HSD test for multicomparison. Results: The teeth treated with the test group showed decrease in the mean hypersensitivity values compared to control group, over a period of three months. The results showed propolis to be most efficient in treating dentinal hypersensitivity and CPP- ACPF showed to be the least efficient. Conclusion: All test groups were effective in reducing dentinal hypersensitivity, although they differed in rapidity of action over the period of 3 months. Further studies can be done using advanced materials and techniques. Multiple therapeutic modalities have been developed to treat dentinal hypersensitivity including products that impede nerve conduction of pain stimulus, products that mechanically occlude dentinal tubules, and calcium containing products designed to create plugs in the tubules utilizing a demineralization mechanism. PMID:23112475

  15. X-ray microdiffraction, TEM characterization and texture analysis of human dentin and enamel.

    PubMed

    Xue, J; Zavgorodniy, A V; Kennedy, B J; Swain, M V; Li, W

    2013-08-01

    Human tooth is a complex bioceramic composite, which consists of enamel, dentin and the interface, the dentin-enamel junction (DEJ). The crystal properties and ultrastructure of the inorganic phase through the thickness of healthy human molar teeth were investigated using X-ray microdiffraction (μXRD), electron diffraction and transmission electron microscopy (TEM) techniques. The XRD data were analysed using the Le Bail profile fitting approach. The size and the texture of the crystallites forming enamel and dentin in the crown part of teeth were measured using both techniques and then compared. Results showed that the thickness of dentin crystallites was found to decrease towards the DEJ, whereas the thickness of the enamel crystallites increased from the DEJ towards the outer layers. It was demonstrated that enamel exhibited an increase of texture in 002 lattice planes from the DEJ towards the outer layers. Texture was also detected in 102 lattice planes. The texture effect in 002 planes at the scale of less than 1 μm was also demonstrated in dentin. The variation of lattice parameters as a function of the position within the thickness of dentin and enamel was also observed. The values of the nonuniform microstrain in the dentin and enamel crystallites were from 1.40 × 10(-6) % to 4.44 × 10(-5) %. The good correlation between XRD and TEM indicated that μXRD is a useful technique to study crystallography and microstructure of heterogeneous enamel and dentin. The observed gradient characteristics of texture and crystallite size in enamel and dentin maybe an evolutionary outcome to resist wear and fracture, thereby contributing to the excellent mechanical properties of teeth.

  16. Degradation in the Fatigue Strength of Dentin by Cutting, Etching and Adhesive Bonding

    PubMed Central

    Lee, H.-H.; Majd, H.; Orrego, S.; Majd, B.; Romberg, E.; Mutluay, M.M.; Arola, D.

    2014-01-01

    The processes involved in placing resin composite restorations may degrade the fatigue strength of dentin and increase the likelihood of fractures in restored teeth. Objective The objective of this study was to evaluate the relative changes in strength and fatigue behavior of dentin caused by bur preparation, etching and resin bonding procedures using a 3-step system. Methods Specimens of dentin were prepared from the crowns of unrestored 3rd molars and subjected to either quasi-static or cyclic flexural loading to failure. Four treated groups were prepared including dentin beams subjected to a burr treatment only with a conventional straight-sided bur, or etching treatment only. An additional treated group received both bur and etching treatments, and the last was treated by bur treatment and etching, followed by application of a commercial resin adhesive. The control group consisted of “as sectioned” dentin specimens. Results Under quasi-static loading to failure there was no significant difference between the strength of the control group and treated groups. Dentin beams receiving only etching or bur cutting treatments exhibited fatigue strengths that were significantly lower (p≤0.0001) than the control; there was no significant difference in the fatigue resistance of these two groups. Similarly, the dentin receiving bur and etching treatments exhibited significantly lower (p≤0.0001) fatigue strength than that of the control, regardless of whether an adhesive was applied. Significance The individual steps involved in the placement of bonded resin composite restorations significantly decrease the fatigue strength of dentin, and application of a bonding agent does not increase the fatigue strength of dentin. PMID:24985539

  17. Distribution and relative activity of matrix metalloproteinase-2 in human coronal dentin

    PubMed Central

    Boushell, Lee W; Kaku, Masaru; Mochida, Yoshiyuki; Yamauchi, Mitsuo

    2011-01-01

    The presence of matrix metalloproteinase-2 (MMP-2) in dentin has been reported, but its distribution and activity level in mature human coronal dentin are not well understood. The purpose of this study was to determine the MMP-2 distribution and relative activity in demineralized dentin. Crowns of twenty eight human molars were sectioned into inner (ID), middle (MD), and outer dentin (OD) regions and demineralized. MMP-2 was extracted with 0.33 mol·L−1 EDTA/2 mol·L−1 guanidine-HCl, pH 7.4, and MMP-2 concentration was estimated with enzyme-linked immunoabsorbant assay (ELISA). Further characterization was accomplished by Western blotting analysis and gelatin zymography. The mean concentrations of MMP-2 per mg dentin protein in the dentin regions were significantly different (P=0.043): 0.9 ng (ID), 0.4 ng (MD), and 2.2 ng (OD), respectively. The pattern of MMP-2 concentration was OD>ID>MD. Western blotting analysis detected ∼66 and ∼72 kDa immunopositive proteins corresponding to pro- and mature MMP-2, respectively, in the ID and MD, and a ∼66 kDa protein in the OD. Gelatinolytic activity consistent with MMP-2 was detected in all regions. Interestingly, the pattern of levels of Western blot immunodetection and gelatinolytic activity was MD>ID>OD. The concentration of MMP-2 in human coronal dentin was highest in the region of dentin that contains the dentinoenamel junction and least in the middle region of dentin. However, levels of Western blot immunodetection and gelatinolytic activity did not correlate with the estimated regional concentrations of MMP-2, potentially indicating region specific protein interactions. PMID:22010577

  18. Primer containing dimethylaminododecyl methacrylate kills bacteria impregnated in human dentin blocks

    PubMed Central

    Chen, Chen; Cheng, Lei; Weir, Michael D; Lin, Nancy J; Lin-Gibson, Sheng; Zhou, Xue-Dong; Xu, Hockin HK

    2016-01-01

    Antibacterial dimethylaminododecyl methacrylate (DMADDM) was recently synthesized. The objectives of this study were to: (1) investigate antibacterial activity of DMADDM-containing primer on Streptococcus mutans impregnated into dentin blocks for the first time, and (2) compare the antibacterial efficacy of DMADDM with a previous quaternary ammonium dimethacrylate (QADM). Scotchbond Multi-Purpose (SBMP) bonding agent was used. DMADDM and QADM were mixed into SBMP primer. Six primers were tested: SBMP control primer P, P+2.5% DMADDM, P+5% DMADDM, P+7.5% DMADDM, P+10% DMADDM, and P+10% QADM. S. mutans were impregnated into human dentin blocks, and each primer was applied to dentin to test its ability to kill bacteria in dentinal tubules. Bacteria in dentin were collected via a sonication method, and the colony-forming units (CFU) and inhibition zones were measured. The bacterial inhibition zone of P+10% DMADDM was 10 times that of control primer (P<0.05). CFU in dentin with P+10% DMADDM was reduced by three orders of magnitude, compared with control. DMADDM had a much stronger antibacterial effect than QADM, and antibacterial efficacy increased with increasing DMADDM concentration. Dentin shear bond strengths were similar among all groups (P>0.1). In conclusion, antibacterial DMADDM-containing primer was validated to kill bacteria inside dentin blocks, possessing a much stronger antibacterial potency than the previous QADM. DMADDM-containing bonding agent was effective in eradicating bacteria in dentin, and its efficacy was directly proportional to DMADDM mass fraction. Therefore, DMADDM may be promising for use in bonding agents as well as in other restorative and preventive materials to inhibit bacteria. PMID:27811846

  19. Influence of eugenol-containing temporary cement on efficacy of dentin-bonding systems.

    PubMed

    Peutzfeldt, A; Asmussen, E

    1999-02-01

    Zinc oxide-eugenol (ZOE) cements are widely used as temporary filling materials. However, eugenol has earlier been shown to have a detrimental effect on both resin composites and dentin-bonding systems. The aim of the present in vitro study was to examine whether ZOE cement would also reduce the efficacy of relatively new dentin-bonding systems. This was done by determination of gap formation around resin composite fillings in dentin cavities and of bond strength of resin composite to enamel and dentin. The tooth surfaces involved were either freshly cut, or had been exposed to a ZOE cement (IRM) or to a non-ZOE cement (Cavit) for 7 d before application of a dentin-bonding system (Gluma CPS or Scotchbond Multi-Purpose Plus) and a resin composite (Z100). Gap formation was assessed in a light microscope on 20-min-old fillings and expressed as wall-to-wall contraction (the width of the maximum marginal gap in % of the cavity diameter). Bond strength was measured in shear on 1-d-old specimens. The mean values of wall-to-wall contraction were 0.06-0.09% with Scotchbond Multi-Purpose Plus and 0.20-0.24% with Gluma CPS. The mean values of bond strength to enamel were 22-25 MPa for Scotchbond Multi-Purpose Plus and 20-23 MPa for Gluma CPS, and to dentin were 20-22 MPa for Scotchbond Multi-Purpose Plus and 13-14 MPa for Gluma CPS. The use of Scotchbond Multi-Purpose Plus resulted in higher bond strength to dentin and less wall-to-wall contraction than did Gluma CPS. No differences were found in either wall-to-wall contraction or in bond strength between the three groups for either dentin-bonding system. Thus, the ZOE cement did not influence the efficacy of two relatively new dentin-bonding systems.

  20. Evaluation of the Shear Bond Strength of Composite Resin to Wet and Dry Enamel Using Dentin Bonding Agents Containing Various Solvents

    PubMed Central

    Ramarao, Sathyanarayanan; John, Bindu Meera; Rajesh, Praveen; Swatha, S

    2017-01-01

    Introduction Bonding of composite resin to dentin mandates a wet substrate whereas, enamel should be dry. This may not be easily achievable in intracoronal preparations where enamel and dentin are closely placed to each other. Therefore, Dentin Bonding Agents (DBA) are recommended for enamel and dentinal bonding, where enamel is also left moist. A research question was raised if the “enamel-only” preparations will also benefit from wet enamel bonding and contemporary DBA. Aim The aim of this study was to compare the shear bond strengths of composite resin, bonded to dry and wet enamel using fifth generation DBA (etch and rinse system) containing various solvents such as ethanol/water, acetone and ethanol. Materials and Methods The crowns of 120 maxillary premolars were split into buccal and lingual halves. They were randomly allocated into four groups of DBA: Group 1-water/ethanol based, Group 2-acetone based, Group 3-ethanol based, Group 4-universal bonding agent (control group). The buccal halves and lingual halves were bonded using the wet bonding and dry bonding technique respectively. After application of the DBAs and composite resin build up, shear bond strength testing was done. Results Group 1 (ethanol/water based ESPE 3M, Adper Single Bond) showed highest bond strength of (23.15 MPa) in dry enamel. Group 2 (acetone based Denstply, Prime and Bond NT, showed equal bond strength in wet and dry enamel condition (18.87 MPa and 18.02 MPa respectively). Conclusion Dry enamel bonding and ethanol/water based etch and rinse DBA can be recommended for “enamel-only” tooth preparations. PMID:28274042

  1. [Dentin bonding of cements. The bonding of cements with dentin in combination with various indirect restorative materials].

    PubMed

    Peutzfeldt, Anne; Sahafi, Alireza; Flury, Simon

    2011-01-01

    The number of both luting agents and restorative materials available on the market has rapidly increased. This study compared various types of luting agents when used to bond different indirect, laboratory restorative materials to dentin. Cylinders were produced of six restorative materials (gold alloy, titanium, feldspathic porcelain, leucite-glass ceramic, zirconia, and an indirect resin composite). Following relevant pretreatment, the end surface of the cylinders were luted to ground, human dentin with eight different luting agents (DeTrey Zinc [zinc phosphate cement], Fuji I [conventional glass ionomer cement], Fuji Plus [resin-modified glass ionomer cement], Variolink II [conventional etch-and-rinse resin cement], Panavia F2.0 and Multilink [self-etch resin cements], RelyX Unicem Aplicap and Maxcem [self-adhesive resin cements]). After water storage at 37 °C for one week, the shear bond strength of the specimens was measured and the fracture mode was examined stereo-microscopically. Restorative material and luting agent both had a significant effect on bond strength and there was a significant interaction between the two variables. The zinc phosphate cement and the glass ionomer cements resulted in the lowest bond strengths, whereas the highest bond strengths were found with the two self-etch and one of the self-adhesive resin cements.

  2. Effects of ozone and sodium hypochlorite on caries-like lesions in dentin.

    PubMed

    Zaura, E; Buijs, M J; ten Cate, J M

    2007-01-01

    The hypothesis that ozone promotes remineralization of dentinal lesions was tested in vitro. Artificial caries-like lesions in dentin were treated with ozone gas, with another potent oxidizer (sodium hypochlorite, NaOCl, 10%) or with water. The specimens were then remineralized and subsequently demineralized again. Mineral content was assessed by transverse microradiography. NaOCl-treated samples showed damaged surface and, after being remineralized, demineralized significantly more than water- or ozone-treated groups. No difference was found between ozone and water groups. The exposure to ozone had thus no effect on remineralization and subsequent demineralization of remineralized dentinal lesions.

  3. Clinical and radiographic diagnosis of underlying dark shadow from dentin (ICDAS 4) in permanent molars.

    PubMed

    Bertella, N; Moura, Dos S; Alves, L S; Damé-Teixeira, N; Fontanella, V; Maltz, M

    2013-01-01

    This study investigated the radiographic pattern of underlying dark shadow from dentin (ICDAS 4) in permanent molars and assessed the association between enamel breakdown and radiographic features. Ninety-five teeth (54 patients) were clinically and radiographically assessed. The majority of ICDAS 4 caries lesions presented enamel breakdown (n = 78, 82.1%) and no radiographic image (n = 64, 67.4%) or a radiolucent zone restricted to the enamel-dentin junction (n = 17, 17.9%). No association was found between enamel breakdown and radiographic features. This study suggests that a radiographic examination is needed prior to the decision making process for underlying dark shadows from dentin.

  4. Efficacy of a self-etching dentin primer composed of TEGMA and phenyl-P.

    PubMed

    Yoshimoto, Shinichiro; Itoh, Kazuo; Manabe, Atsufumi; Inoue, Mitsuko; Hisamitsu, Hisashi; Sasa, Ryuuji

    2004-01-01

    The purpose of the present study was to evaluate the efficacy of an experimental self-etching dentin primer composed of TEGMA and phenyl-P using primary and young permanent teeth. The efficacy of the self-etching dentin primer was evaluated by measuring the wall-to-wall polymerization contraction gap width and the shear bond strength to the flat dentin surface. The contraction gap formation was prevented completely in the specimens primed with the 35 vol% TEGMA and 20% phenyl-P for 30 sec.

  5. Regeneration of the dentine-pulp complex with revitalization/revascularization therapy: challenges and hopes.

    PubMed

    Lin, L M; Ricucci, D; Huang, G T-J

    2014-08-01

    The concept of regenerative endodontics has gained much attention in clinical endodontics in the past decade. One aspect of this discipline is the application of revitalization/revascularization therapies for infected and/or necrotic immature pulps in permanent teeth. Following the publication of a case report (Iwaya et al. ), investigators have been rigorously examining the types of tissues formed in the canals as well as exploring strategies to regenerate the pulp-dentine complex in revitalized teeth. This review will provide an update on the types of tissues generated in the canals after revitalization/revascularization therapy in both animal and human studies. The understanding of the role of stem cells and microenvironment in the process of wound healing resulting in either regeneration or repair will be thoroughly discussed. Stem cells and microenvironmental cues introduced into the canal during revitalization/revascularization procedures will be examined. In addition, requirement of a sterile microenvironment in the canal and vital tissue generation in revitalization/revascularization therapy will be emphasized. The challenges that we face and the hopes that we have in revitalization/revascularization therapy for regenerative endodontics will be presented.

  6. Comparison of the Effect of Dentin Bonding, Dentin Sealing Agents on the Microleakage of Provisional Crowns Fabricated with Direct and Indirect Technique-An Invitro Study

    PubMed Central

    Muthukumar, B; Kumar, M Vasantha

    2015-01-01

    Background Postoperative sensitivity after temporization is a common complaint in Fixed Partial Denture patients. It is caused by weak and ill fitting temporary restorations which results in microleakage. This can be controlled by providing good temporary restorations and by coating the exposed dentinal tubules of the prepared tooth with dentin bonding agent or dental varnish. Aim The purpose of the study was to determine the effect of dentin-bonding, dentin sealing agents on the microleakage of temporary crowns made by tooth colored auto polymerizing resin fabricated with direct and indirect technique. Materials and Methods Thirty premolar and molar human teeth were collected which were extracted recently was used for the study. The teeth were marked and divided into 3 groups each containing 10 nos. They were individually mounted with self-cure acrylic resin. It was then mounted on a milling machine and crown preparations done. Temporary crowns were fabricated by direct and indirect method with two types of materials. In group A (Control group), the temporary crowns fabricated with both direct and indirect method were cemented directly with temporary luting cement. In group B dentine-bonding agent (solobond M) was applied once to the prepared surface of each tooth specimen before the cementation of temporary crowns where as in case of group C a single layer of dental varnish is applied prior to crown cementation. The entire specimens were immersed in 1% methylene blue and allowed to undergo thermal treatment. It was then sectioned in a hard tissue microtome. Each section was evaluated for dye penetration into the dentin tubules by comparing it with a visual scale. Statistical Analysis SPSS Version 13 software was used for non-parametric data analysis by a qualified statistician. P-values less than 0.05 (p-value<0.05) were considered to be statistically significant. Results Group B (Dentin Bonding Agent) specimens cemented with crowns fabricated in direct technique

  7. Magnesium-Containing Nanostructured Hybrid Scaffolds for Enhanced Dentin Regeneration

    PubMed Central

    Qu, Tiejun; Jing, Junjun; Jiang, Yong; Taylor, Robert J.; Feng, Jian Q.; Geiger, Benjamin

    2014-01-01

    Dental caries is one of the most prevalent chronic diseases in the United States, affecting 92% of adults aged 20–64 years. Scaffold-based tissue engineering represents a promising strategy to replace damaged dental structures and restore their biological functions. Current single-component scaffolding materials used for dental tissue regeneration, however, cannot provide the proper microenvironment for dental stem/progenitor cell adhesion, proliferation, and differentiation; new biomimetic hybrid scaffolds are needed to promote better dental tissue formation. In this work, we developed a biomimetic approach to prepare three-dimensional (3D) nanofibrous gelatin/magnesium phosphate (NF-gelatin/MgP) hybrid scaffolds. These scaffolds not only mimic the nanostructured architecture and the chemical composition of natural dentin matrices but also constantly present favorable chemical signals (Mg ions) to dental pulp stem cells (DPSCs), thus providing a desirable microenvironment to facilitate DPSC proliferation, differentiation, and biomineralization. Synthesized hybrid NF-gelatin/MgP possesses natural extracellular matrix (ECM)-like architecture, high porosity, high pore interconnectivity, well-defined pore size, and controlled Mg ion release from the scaffold. Adding MgP into NF-gelatin also increased the mechanical strength of the hybrid scaffold. The sustained release of Mg ions from the NF-gelatin/MgP (MgP=10% wt/wt) scaffold significantly enhanced the proliferation, differentiation, and biomineralization of human DPSCs in vitro. The alkaline phosphatase (ALP) activity and the gene expressions for odontogenic differentiation (collagen I [Col I], ALP, osteocalcin [OCN], dentin sialophosphoprotein [DSPP], and dentin matrix protein 1 [DMP1]) were all significantly higher (p<0.05) in the NF-gelatin/MgP group than in the NF-gelatin group. Those results were further confirmed by hematoxylin and eosin (H&E) and von Kossa staining, as shown by greater ECM secretion and

  8. Mineral element analysis of carious and sound rat dentin by electron probe microanalyzer combined with back-scattered electron image.

    PubMed

    Tjäderhane, L; Hietala, E L; Larmas, M

    1995-11-01

    We recently demonstrated the advantages of back-scattered electron images (COMPO) in the visualization of dentinal caries, and the relationship of the change in the dentin fluorescence pattern in caries lesions. However, the exact nature of these changes is not known. In this paper, the nature of the changes in the areas with reduced mineral content in COMPO images was investigated. We examined the relation of changes in mineral elements and the appearance of soft carious and sound dentin in COMPO images using a scanning electron microscope (SEM) equipped with an electron probe microanalyzer (EPMA). Rat molars with small dentinal caries lesions just under the DEJ were chosen for the study. The Ca, P, Na, Mg, Zn, F, and total contents were determined by EPMA from five different dentin sites, and the Ca/P and Mg/Ca ratios were calculated. Generally, the lowest contents were found in caries lesions and highest in mantle dentin, with the exceptions of Mg and Zn. The Ca/P ratio was lowest in mantle dentin and highest in carious dentin. The results confirm that the change in fluorescence in the dentinal caries lesion is correlated with the very initial changes in mineral content, and that EPMA used in combination with COMPO images is a useful tool for determining small changes in mineral elements in the carious and adjacent areas of dentin.

  9. Effect of 2-hydroxyethyl methacrylate pre-treatment on micro-tensile bond strength of resin composite to demineralized dentin.

    PubMed

    Doi, J; Itota, T; Torii, Y; Nakabo, S; Yoshiyama, M

    2004-11-01

    The purpose of this study was to evaluate the effect of 2-hydroxyethyl methacrylate (HEMA) application on the micro-tensile bond strength of resin composite to demineralized dentin. Artificially demineralized lesions were formed on bovine dentin surfaces and treated with 10, 30, 50, 70 and 100 wt% HEMA aqueous solution. The surfaces were then applied and covered with SE Bond and AP-X according to the manufacturer's instruction. After immersion in 37 degrees C water for 24 h, bond strength were measured using a universal testing machine. Bond strengths to both demineralized dentin and normal dentin, without HEMA application, were also measured. Scanning electron microscopic (SEM) observation and confocal laser scanning microscopy (CLSM) analysis at the resin-dentin interface were also performed. The bond strength data were statistically compared with anova and Scheffe's test (P < 0.05). Bond strength to demineralized dentin treated with over 30 wt% HEMA aqueous solution were significantly higher than that to demineralized dentin without HEMA application, but significantly lower than that to normal dentin. SEM observation revealed that the hybrid layer and resin-tags thickened and lengthened with HEMA application. In CLSM, the diffusion of adhesive primer into demineralized dentin increased with HEMA application. These results indicated that HEMA application might increase the bond strength to demineralized dentin by the enhancement of resin monomer penetration of HEMA.

  10. The comparison between two irrigation regimens on the dentine wettability for an epoxy resin based sealer by measuring its contact angle formed to the irrigated dentine

    PubMed Central

    Mohan, Rayapudi Phani; Pai, Annappa Raghavendra Vivekananda

    2015-01-01

    Aim: The aim was to assess the influence of two irrigation regimens having ethylenediaminetetraacetic acid (EDTA) and ethylenediaminetetraacetic acid with cetrimide (EDTAC) as final irrigants, respectively, on the dentine wettability for AH Plus sealer by comparing its contact angle formed to the irrigated dentine. Materials and Methods: Study samples were divided into two groups (n = 10). The groups were irrigated with 3% sodium hypochlorite (NaOCl) solution followed by either 17% EDTA or 17% EDTAC solution. AH Plus was mixed, and controlled volume droplet (0.1 mL) of the sealer was placed on the dried samples. The contact angle was measured using a Dynamic Contact Angle Analyzer and results were analyzed using SPSS 21.0 and 2 sample t-test. Results: There was a significant difference in the contact angle of AH Plus formed to the dentine irrigated with the above two regimens. AH Plus showed significantly lower contact angle with the regimen having EDTAC as a final irrigant than the one with EDTA (P < 0.05). Conclusion: An irrigation regimen consisting of NaOCl with either EDTA or EDTAC solution as a final irrigant influences the dentine wettability and contact angle of a sealer. EDTAC as a final irrigant facilitates better dentin wettability than EDTA for AH Plus to promote its better flow and adhesion. PMID:26180409

  11. Structural and thermal behaviour of carious and sound powders of human tooth enamel and dentine

    NASA Astrophysics Data System (ADS)

    Tiznado-Orozco, Gaby E.; García-García, R.; Reyes-Gasga, J.

    2009-12-01

    Powder from carious human tooth enamel and dentine were structurally, chemically and thermally analysed and compared against those from sound (healthy) teeth. Structural and chemical analyses were performed using x-ray diffraction, energy-dispersive x-ray spectroscopy and transmission electron microscopy. Thermal analysis was carried out by thermogravimetric analysis, Fourier transform infrared spectroscopy and x-ray diffraction. Results demonstrate partially dissolved crystals of hydroxyapatite (HAP) with substitutions of Na, Mg, Cl and C, and a greater weight loss in carious dentine as compared with carious enamel. A greater amount of thermal decomposition is observed in carious dentine as compared with sound dentine, with major variations in the a-axis of the HAP unit cell than in the c-axis. Variations in shape and intensity of the OH-, CO_{3}^{2-} and PO_{4}^{3-} FTIR bands were also found.

  12. CO2 laser improves 45S5 bioglass interaction with dentin.

    PubMed

    Bakry, A S; Takahashi, H; Otsuki, M; Sadr, A; Yamashita, K; Tagami, J

    2011-02-01

    Bioglass 45S5 is a bioactive glass that can create a layer of calcium-phosphate crystals on mineralized hard tissues. In this study, 45S5 bioglass was mixed with phosphoric acid and irradiated with CO(2) laser and examined as a possible aid in the treatment of dentin hypersensitivity. The dentinal surface modified by the aforementioned technique was chemically and micro-morphologically examined with a field emission scanning electron microscope (FE-SEM) equipped with an energy-dispersive x-ray spectroscope (EDS), and the crystalline structures of the examined dentinal surfaces were examined by x-ray diffraction (XRD). Moreover, the mechanical properties of the newly formed layer were examined by nanoindentation. The results showed that 45S5 bioglass could occlude the dentinal tubule orifices with calcium-phosphate crystals. The application of CO(2) laser potentially improved the mechanical organization of these crystals.

  13. Degradation in the Fatigue Resistance of Dentin by Bur and Abrasive Air-jet Preparations

    PubMed Central

    Majd, H.; Viray, J.; Porter, J.A.; Romberg, E.; Arola, D.

    2012-01-01

    The objective of this investigation was to distinguish whether the instruments commonly used for cutting dentin cause degradation in strength or fatigue behavior. Beams of coronal dentin were obtained from unrestored 3rd molars and subjected to either quasi-static or cyclic flexural loading to failure. The surfaces of selected beams were treated with a conventional straight-sided bur or with an abrasive air jet laden with glass particles. Under monotonic loading, there was no difference in the strength or Weibull parameters obtained for the control or treated beams. However, the fatigue strength of dentin receiving bur and air-jet treatments was significantly lower (p ≤ 0.0001) than that of the control. The bur treatment resulted in the largest overall degree of degradation, with nearly 40% reduction in the endurance limit and even more substantial decrease in the fatigue life. The methods currently used for cavity preparations substantially degrade the durability of dentin. PMID:22851284

  14. Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration.

    PubMed

    Kruzic, J J; Nalla, R K; Kinney, J H; Ritchie, R O

    2003-12-01

    Few studies have focused on a description of the fracture toughness properties of dentin in terms of resistance-curve (R-curve) behavior, i.e., fracture resistance increasing with crack extension, particularly in light of the relevant toughening mechanisms involved. Accordingly, in the present study, fracture mechanics based experiments were conducted on elephant dentin in order to determine such R-curves, to identify the salient toughening mechanisms and to discern how hydration may affect their potency. Crack bridging by uncracked ligaments, observed directly by microscopy and X-ray tomography, was identified as a major toughening mechanism, with further experimental evidence provided by compliance-based experiments. In addition, with hydration, dentin was observed to display significant crack blunting leading to a higher overall fracture resistance than in the dehydrated material. The results of this work are deemed to be of importance from the perspective of modeling the fracture behavior of dentin and in predicting its failure in vivo.

  15. Triclosan-loaded poly(amido amine) dendrimer for simultaneous treatment and remineralization of human dentine.

    PubMed

    Zhou, Yan; Yang, Jiaojiao; Lin, Zaifu; Li, Jiyao; Liang, Kunneng; Yuan, He; Li, Sheyu; Li, Jianshu

    2014-03-01

    In order to treat dental caries of damaged dentine, triclosan-loaded carboxyl-terminated poly(amido amine) dendrimer (PAMAM-COOH) is prepared and characterized. While being incubated in artificial saliva, triclosan-loaded PAMAM-COOH formulation can induce in situ remineralization of hydroxyapatite (HA) on etched dentine, and the regenerated HA has a similar crystal structure with natural dentine. It can also release the encapsulated triclosan for a long period. The interesting drug release profiles are controlled by both dendrimer encapsulation capability and the mineralization degree, which are ideal to obtain multifunctional properties of long-term release of anti-bacterial drug for local treatment during the remineralization process. The triclosan-loaded G4-COOH provides a general strategy to cure dental caries and repair damaged dentine at the same time, which forms a potential restorative material for dental repair.

  16. The effect of endodontic regeneration medicaments on mechanical properties of radicular dentin

    NASA Astrophysics Data System (ADS)

    Yassen, Ghaeth H.

    Endodontic regeneration treatment of necrotic immature teeth has gained popularity in recent years. The approach suggests a biological alternative to induce a continuous root development. In this project, three in vitro experiments were conducted to investigate the effect of three medicaments used in endodontic regeneration on mechanical properties and chemical structure of radicular dentin. In the first experiment, we investigated longitudinally the effect of medicaments on the indentation properties of the root canal surface of immature teeth using a novel BioDent reference point indenter. A significant difference in the majority of indentation parameters between all groups was found after one-week and one-month application of medicaments (p double antibiotic paste (DAP) > control > calcium hydroxide [Ca(OH)2]. The four-week exposure of dentin to TAP and DAP caused 43% and 31% increase in total indentation distance outcome, respectively. In the second experiment, we investigated longitudinally the effect of medicaments on the chemical structure of immature radicular dentin by measuring the phosphate/amide I ratios of dentin using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy. Phosphate/amide I ratios were significantly different between the four groups after one week, two weeks and four week application of medicaments (p untreated dentin > DAP-treated dentin > TAP-treated dentin. In the third experiment, we investigated longitudinally the effect of medicaments on root fracture resistance and microhardness of radicular dentin. For the microhardness, the two-way interaction between group and time was significant (p<0.001). TAP and DAP caused a significant and continuous decrease in dentin microhardness after one and three month application, respectively. The three-month intracanal application of Ca(OH)2 significantly increased the microhardness of root dentin. The time factor had a significant effect on fracture resistance (p<0.001). All

  17. Temperature transmission of high-output light-curing units through dentin.

    PubMed

    Loney, R W; Price, R B

    2001-01-01

    Light-curing units used for polymerizing restorative resins produce heat during operation. Newer curing units with concentrating light guides or different light sources may require shorter curing times, however, the effect of such modifications on temperature transfer to the pulp is unknown. This study examined the effect of high output light-curing units on temperature transfer through resin composite and dentin. Temperature rise was measured for 40 seconds for one curing light (Optilux 401 Curing Light) with either a standard 8 mm light guide tip or a light-concentrating tip (Turbo Light Guide), and for three seconds with a plasma arc lamp (Apollo 95E Curing Light). Temperatures were directly recorded at the tip of the light guide and through a sandwich composed of a 1 mm thick pre-cured cylinder of resin composite and dentin (dentin thickness either 0.58 mm or 1.45 mm). The mean temperature rise ranged from 1.8degrees C, measured through the sandwich of 1 mm of composite and 1.45 mm of dentin with the plasma are unit, to 26.4degrees C measured directly on the Turbo light guide. For each light guide, the temperature increase was greatest when measured directly on the curing tip and least when measured through the composite and 1.45 mm dentin specimens. When measured through the composite/dentin sandwich, the plasma arc unit produced the lowest temperature increase (0.58 mm thick dentin specimen = 5.1 degrees C; 1.45 mm thick dentin specimen = 1.8 degrees C). For a given thickness of resin, the differences in temperature change for all comparisons among the three curing unit/light guides were significant at the 95% level of confidence. Also, for a given light, the differences in temperature for all comparisons among the dentin thicknesses were significant at the 95% level of confidence. However, there were three comparisons of light unit and dentin thickness interaction that were not significant at the 95% leyel of confidence. For all other comparisons of

  18. Does immediate dentin sealing influence the polymerization of impression materials?

    PubMed Central

    Ghiggi, Paula Cristine; Steiger, Arno Kieling; Marcondes, Maurem Leitão; Mota, Eduardo Gonçalves; Burnett, Luiz Henrique; Spohr, Ana Maria

    2014-01-01

    Objectives: The objective of the following study is to evaluate the interaction between the resin materials used in immediate dentin sealing (IDS) techniques and impression materials with two different techniques to eliminate the oxygen-inhibition layer. Materials and Methods: The occlusal dentin surface of 35 human molars was exposed. The teeth were used in two Groups: Group 1 – Impression with Express XT; Group 2 – Impression with Impregum. Groups 1 and 2 were divided into 14 subgroups: Groups 1a and 2a – Control groups; 1b and 2b – IDS with Clearfil SE Bond (CSE); 1c and 2c – IDS with CSE + additional polymerization with glycerin jelly; 1d and 2d – IDS with CSE + alcohol; 1e and 2e – IDS with CSE and Protect Liner F (PLF); 1f and 2f – IDS with CSE and PLF + additional polymerization with glycerin jelly; and 1g and 2g – IDS with CSE and PLF + alcohol. Five teeth were used in each experimental group, and the tooth surface was photographed using a digital camera. Results: Small quantity of unpolymerized impression material remained attached to the CSE or to the PLF in Groups 1b and 1e. Groups 1c and 1d prevented the interaction. Small quantity of polymerized impression material remained attached to the CSE or to the PLF for Groups 2b and 2e. The same interaction was observed for Groups 2c and 2d. For Groups 2c and 2f, no interactions were observed. Conclusion: Resin materials interacted with impression materials. The application of glycerin jelly and alcohol prevented the interaction of CSE with Express XT and PLF with Impregum; however, these treatments were not completely effective in preventing the interaction of CSE with Impregum and PLF with Express XT. PMID:25202218

  19. Zoledronate and Ion-releasing Resins Impair Dentin Collagen Degradation

    PubMed Central

    Tezvergil-Mutluay, A.; Seseogullari-Dirihan, R.; Feitosa, V.P.; Tay, F.R.; Watson, T.F.; Pashley, D.H.; Sauro, S.

    2014-01-01

    This study analyzed the amounts of solubilized telopeptides cross-linked carboxyterminal telopeptide of type I collagen (ICTP) and C-terminal crosslinked telopeptide of type I collagen (CTX) derived from matrix-metalloproteinases (MMPs) and cysteine cathepsins (CTPs) subsequent to application of a filler-free (Res.A) or an ion-releasing resin (Res.B) to ethylenediaminetetraacetic acid (EDTA)-demineralized dentin with or without zoledronate-containing primer (Zol-primer) pre-treatment. The chemical modification induced following treatments and artificial saliva (AS) storage was also analyzed through attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Totally EDTA-demineralized specimens were infiltrated with Res.A or Res.B with or without Zol-primer pre-treatment, light-cured, and immersed in AS for up to 4 wk. ICTP release was reduced following infiltration with Res.B and further reduced when Res.B was used with Zol-primer; remarkable phosphate mineral uptake was attained after AS storage. CTX release was increased in Res.A- and Res.B-treated dentin. However, when Zol-primer was used with Res.A, the CTX release fell significantly compared to the other tested resin-infiltration methods. In conclusion, zoledronate offers an additional inhibitory effect to the ion-releasing resins in MMP-mediated collagen degradation. However, Zol-primer induces a modest reduction in CTX release only when used with resin-based systems containing no ion-releasing fillers. PMID:25074494

  20. Dentine deproteinization and microleakage around gingival third resin restorations

    PubMed Central

    Shetty, Sowmya; B, Mithra; B, Sureshchandra

    2008-01-01

    Objectives: A significant factor in achieving satisfactory adhesion of restorative resins to dentine substrate is the method by which the dentine surface is treated before an adhesive is applied. The aim of this study was to evaluate the effect of deproteinization on microleakage around gingival third resin restorations. Materials and Methods: Standardised Class V preparations were made on randomly selected intact upper and lower human molars. These were treated in one of five ways (no treatment, enamel etch only, total etch, total etch followed by deproteinization, and deproteinization only) and then adhesively bonded using either an acetone or ethanol based bonding system. The samples were first immersed in 2% methylene blue dye and then 35% nitric acid, for 72 hours each. The solutions were filtered and centrifuged, and the supernatant was used to determine absorbance in a spectrophotometer at 670 nm. The results were recorded as a measure of transmission of light of the test solutions. Results: The results were subjected to multiple comparisons amongst groups, using anova. There was a statistically significant difference between all treatment groups for the two different bonding systems used. The experimental groups, total etch alone and total etch followed by deproteinization showed statistically significant differences, as compared to all other groups. However, although the total etch group showed a decrease in microleakage, when compared to the total etch followed by deproteinization group, this was not statistically significant. Conclusion: Within the limitations of this study, collagen removal may be important to reduce microleakage whilst using acetone based adhesive systems and it may not influence the amount of microleakage for ethanol or water based adhesive systems. PMID:20142878

  1. Microleakage and Resin-to-Dentin Interface Morphology of Pre-Etching versus Self-Etching Adhesive Systems

    PubMed Central

    Waldman, G.L; Vaidyanathan, T.K; Vaidyanathan, J

    2008-01-01

    The purpose of this study was to compare the microleakage and tissue-adhesive interface morphology from Class V restorations using different systems of dentin adhesives. Class V cavities were prepared on buccal surfaces of 27 extracted caries-free molars and premolars. Teeth were randomly assigned to one of three groups: (1) Prime & Bond NT, a 5th generation system using an initial step of total etch followed by a second step of application of a self bonding primer (2) Clearfil SE Bond, a 5th generation adhesive system employing two separate steps of self-etch priming and subsequent bonding (3) One-up Bond F, a 6th generation one step self-etching, self-priming and self-bonding adhesive. Microleakage and interface morphology of teeth restored with these adhesives and a composite resin were evaluated. Kruskal-Wallis Test (p = 0.05) was used to analyze the results. SEM analysis was used to relate interface morphology to microleakage. The mean and (SD) values of microleakage were: Prime and Bond NT: 0.15 (0.33), Clearfil SE Bond: 0.06 (0.17) and One-up Bond F: 2.96 (0.63). The mean microleakage for One-up Bond was significantly higher than for the other groups (p<0.05). Protruding tags in dentin channels were observed in Prime and Bond and Clearfil systems, but not in One-up Bond. The single step adhesive system, although more convenient for the clinician, uses a low viscosity formulation difficult to keep in place on cavity walls. It also tends to be too aggressive and hydrophilic to create an impermeable hybridized tissue-adhesive interfacial layer resistant to microleakage. Two-step adhesive systems, on the other hand, were retained on all segments of the cavosurface during application, and formed a hybridized interfacial layer resistant to microleakage. PMID:19444319

  2. Effect of intracanal medicaments used in endodontic regeneration procedures on microhardness and chemical structure of dentin

    PubMed Central

    Eckert, George Joseph; Platt, Jeffrey Allen

    2015-01-01

    Objectives This study was performed to investigate the effects of different intracanal medicaments on chemical structure and microhardness of dentin. Materials and Methods Fifty human dentin discs were obtained from intact third molars and randomly assigned into two control groups and three treatment groups. The first control group received no treatment. The second control group (no medicament group) was irrigated with sodium hypochlorite (NaOCl), stored in humid environment for four weeks and then irrigated with ethylenediaminetetraacetic acid (EDTA). The three treatment groups were irrigated with NaOCl, treated for four weeks with either 1 g/mL triple antibiotic paste (TAP), 1 mg/mL methylcellulose-based triple antibiotic paste (DTAP), or calcium hydroxide [Ca(OH)2] and finally irrigated with EDTA. After treatment, one half of each dentin disc was subjected to Vickers microhardness (n = 10 per group) and the other half was used to evaluate the chemical structure (phosphate/amide I ratio) of treated dentin utilizing attenuated total reflection Fourier transform infrared spectroscopy (n = 5 per group). One-way ANOVA followed by Fisher's least significant difference were used for statistical analyses. Results Dentin discs treated with different intracanal medicaments and those treated with NaOCl + EDTA showed significant reduction in microhardness (p < 0.0001) and phosphate/amide I ratio (p < 0.05) compared to no treatment control dentin. Furthermore, dentin discs treated with TAP had significantly lower microhardness (p < 0.0001) and phosphate/amide I ratio (p < 0.0001) compared to all other groups. Conclusions The use of DTAP or Ca(OH)2 medicaments during endodontic regeneration may cause significantly less microhardness reduction and superficial demineralization of dentin compared to the use of TAP. PMID:25984471

  3. Effect of rotatory instrument speed on its capacity to remove demineralized and sound dentin

    PubMed Central

    Cortes, Mariana; Pecorari, Vanessa Galego Arias; Basting, Roberta Tarkany; França, Fabiana Mantovani Gomes; Turssi, Cecília Pedroso; do Amaral, Flávia Lucisano Botelho

    2013-01-01

    Objectives: The aim of this study was to evaluate the capacity of two rotatory instruments (controlled speed electric motor [CSEM] – 300 rpm; conventional slow handpiece [CSHP] – 18,000 rpm) to remove sound and demineralized dentin, by examining prepared cavity walls using the scanning electron microscopy (SEM) and assessing loss of mass. Materials and Methods: A total of 40 blocks of human occlusal dentin, measuring 5 mm × 5 mm × 4 mm (L × W × H), were divided into two groups according to the substrate type in which the cavity preparation was performed: D - demineralized dentin; and S - sound dentin (control group). The groups were subdivided according to the rotatory instrument used for cavity preparation (n = 10): CSEM (300 rpm); and CSHP (18,000 rpm). In half of the dentin blocks, caries lesion induction was performed for 6 weeks. The preparation of the cavities was performed on a standardizing machine, using a cylindrical tungsten carbide burr. Before and after the preparation, specimens were dehydrated in an incubator at 60°C for 30 min. The initial and final mass (in mg) of each dentin block was measured 3 times using the digital precision balance to obtain the mean weight Following cavity preparation, all specimens were hemisected and SEM was used to blindly assess each half so that the lateral walls of the prepared cavity were measured in μm, accepting the average of two measurements as the total depth of the preparation. Non-parametric Mann-Whitney analysis was performed with a 5% of significance level. Results: Regarding the weight difference (mg), no significance was detected between the groups. Regarding depth (μm), a significant difference was found between the groups, so that the CSRM showed lower cavity depth when compared with CSHP, both in sound and demineralized dentin. Conclusions: Controlled speed rotatory instruments were found to be more conservative in removing both sound and demineralized dentin, in terms of preparation and depth

  4. Effect of various laser irradiations on the mineral content of dentin

    PubMed Central

    Dilber, Erhan; Malkoc, Meral Arslan; Ozturk, A. Nilgun; Ozturk, Firat

    2013-01-01

    Objective: The aim of this study was to evaluate the mineral content of dentin irradiation with Erbium: yttrium-aliminum-garnet (Er:YAG), Neodmiyum:yttrium-aliminum garnet (Nd:YAG) and potassium titanium phosphate (KTP) laser used for in the treatment of dentin hypersensitivity. Methods: Six extracted wisdom, unerupted molar teeth were used in this study. The enamel of the teeth was removed with a conventional bur under water cooling to expose the dentin surface. The teeth were mounted in a slow-speed, diamond-saw, sectioning machine. Two dentin slabs were obtained from each tooth and each slab was sectioned so that 4 slabs were made from each teeth. Then dentin slabs were randomly divided into four groups. Group A: Control Group, Group B: Er:YAG laser, Group C: Nd:YAG laser, Group D: KTP laser. The levels of Ca, K, Mg, Na,P and Ca/P mineral ratio in each dentin slab were measured by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Data were analysed by one way analysis of variance (ANOVA) and Tukey HSD tests. One sample from each group was prepared for scanning electron microscopy (SEM). Results: There were no significant differences between the groups for Ca, K, Mg, Na,P and Ca/P mineral ratio (P>.05). SEM photographs indicated that there were melted areas around the exposed dentin tubules in groups treated with Er:YAG and KTP lasers. Conclusion: This study demonstrated that laser etching with the Er:YAG, Nd:YAG, KTP laser systems did not affect the compositional structure of the dentin surfaces. PMID:23407579

  5. Ions-modified nanoparticles affect functional remineralization and energy dissipation through the resin-dentin interface.

    PubMed

    Toledano, Manuel; Osorio, Raquel; Osorio, Estrella; Medina-Castillo, Antonio Luis; Toledano-Osorio, Manuel; Aguilera, Fátima S

    2017-04-01

    The aim of this study was to evaluate changes in the mechanical and chemical behavior, and bonding ability at dentin interfaces infiltrated with polymeric nanoparticlesstandard deviations and modes of failure are (NPs) prior to resin application. Dentin surfaces were treated with 37% phosphoric acid followed by application of an ethanol suspension of NPs, Zn-NPs or Ca-NPs followed by the application of an adhesive, Single Bond (SB). Bonded interfaces were stored for 24h, submitted to microtensile bond strength test, and evaluated by scanning electron microscopy. After 24h and 21 d of storage, the whole resin-dentin interface adhesive was evaluated using a Nano-DMA. Complex modulus, storage modulus and tan delta (δ) were assessed. AFM imaging and Raman analysis were performed. Bond strength was not affected by NPs infiltration. After 21 d of storage, tan δ generally decreased at Zn-NPs/resin-dentin interface, and augmented when Ca-NPs or non-doped NPs were used. When both Zn-NPs and Ca-NPs were employed, the storage modulus and complex modulus decreased, though both moduli increased at the adhesive and at peritubular dentin after Zn-NPs infiltration. The phosphate and the carbonate peaks, and carbonate substitution, augmented more at interfaces promoted with Ca-NPs than with Zn-NPs after 21 d of storage, but crystallinity did not differ at created interfaces with both ions-doped NPs. Crosslinking of collagen and the secondary structure of collagen improved with Zn-NPs resin-dentin infiltration. Ca-NPs-resin dentin infiltration produced a favorable dissipation of energy with minimal stress concentration trough the crystalline remineralized resin-dentin interface, causing minor damage at this structure.

  6. The prevalence of dentin hypersensitivity in general dental practices in the northwest United States

    PubMed Central

    Cunha-Cruz, Joana; Wataha, John C.; Heaton, Lisa J.; Rothen, Marilynn; Sobieraj, Martin; Scott, JoAnna; Berg, Joel

    2013-01-01

    Background The prevalence of dentin hypersensitivity is uncertain, yet appropriate diagnosis and treatment of dentin hypersensitivity require accurate knowledge regarding its prevalence. The authors conducted a study to estimate the prevalence of dentin hypersensitivity in general dental practices and to investigate associated risk factors. Methods The authors conducted a cross-sectional survey of 787 adult patients from 37 general dental practices within Northwest Practice-based Research Collaborative in Evidence-based DENTistry (PRECEDENT). Dentin hypersensitivity was diagnosed by means of participants’ responses to a question regarding pain in their teeth and gingivae, and practitioner-investigators conducted a clinical examination to rule out alternative causes of pain. Participants recorded their pain level on a visual analog scale and the Seattle Scales in response to a one-second air blast. The authors used generalized estimating equation log-linear models to estimate the prevalence and the prevalence ratios. Results The prevalence of dentin hypersensitivity was 12.3 percent; patients with hypersensitivity had, on average, 3.5 hypersensitive teeth. The prevalence of dentin hypersensitivity was higher among 18- to 44-year olds than among participants 65 years or older; it also was higher in women than in men, in participants with gingival recession than in those without gingival recession and in participants who underwent at-home tooth whitening than in those who did not. Hypersensitivity was not associated with obvious occlusal trauma, noncarious cervical lesions or aggressive toothbrushing habits. Conclusions One in eight participants from general practices had dentin hypersensitivity, which was a chronic condition causing intermittent, low-level pain. Patients with hypersensitivity were more likely to be younger, to be female and to have a high prevalence of gingival recession and at-home tooth whitening. Practical Implications Given dentin

  7. Resin Adaptation of Radicular Dentin Tubules after Endodontic Instrumentation and Acid Etching.

    DTIC Science & Technology

    1983-02-01

    the manuscript. DISCLAIMERS The statements, opinions, and advertisements in the Journal of Endodontics are solely those of the individual authors...I RD-Ai26 872 RESIN ADAPTATION OF RADICULAR DENTIN TUBULES AFTER / I ENDODONTIC INSTRUMENTATION AND ACID ETCHING(U) WALTER I REED ARMY INST OF...Adaptation to Radicular Dentin Tubules SbisoofpeAfter Endodontic Instrumentation and Acid Etching 1982-1983 6. PERFORMING ORG. REPORTNUMBER -, AUTHOR(a) S

  8. Enamel and dentin mineralization in familial hypophosphatemic rickets: a micro-CT study

    PubMed Central

    Costa, F W G; Soares, E C S; Williams, J R; Fonteles, C S R

    2015-01-01

    Objectives: The aim of the present study was to analyse the mineralization pattern of enamel and dentin in patients affected by X-linked hypophosphatemic rickets (XLHR) using micro-CT (µCT), and to associate enamel and dentin mineralization in primary and permanent teeth with tooth position, gender and the presence/absence of this disease. Methods: 19 teeth were collected from 5 individuals from the same family, 1 non-affected by XLHR and 4 affected by XLHR. Gender, age, tooth position (anterior/posterior) and tooth type (deciduous/permanent) were recorded for each patient. Following collection, teeth were placed in 0.1% thymol solution until µCT scan. Projection images were reconstructed and analysed. A plot profile describing the greyscale distance relationship in µCT images was achieved through a line bisecting each tooth in a region with the presence of enamel and dentin. The enamel and dentin mineralization densities were measured and compared. Univariate ANOVA and post hoc Tukey tests were used for all comparisons. Results: Teeth of all affected patients presented dentin with a different mineralization pattern compared with the teeth of healthy patients with dentin defects observed next to the pulp chambers. Highly significant differences were found for gray values between anterior and posterior teeth (p < 0.05), affected and non-affected (p < 0.05), as well as when position and disease status were considered (p < 0.05). Conclusions: In conclusion, the mineralization patterns of dentin differed when comparing teeth from patients with and without FHR, mainly next to pulp chambers where areas with porosity and consequently lower mineral density and dentin defects were found. PMID:25651274

  9. The effect of fluoride toothpaste on root dentine demineralization progression: a pilot study.

    PubMed

    Botelho, Juliana Nunes; Del Bel Cury, Altair Antoninha; Silva, Wander Jose da; Tenuta, Livia Maria Andalo; Cury, Jaime Aparecido

    2014-01-01

    The anticaries effect of fluoride (F) toothpaste containing 1100 µg F/g in reducing enamel demineralization is well established, but its effect on dentine has not been extensively studied. Furthermore, it has been shown that toothpaste containing a high F concentration is necessary to remineralize root dentine lesions, suggesting that a 1100 µg F/g concentration might not be high enough to reduce root dentine demineralization, particularly when dentine is subjected to a high cariogenic challenge. Thus, the aim of this pilot study was to evaluate in situ the effect of F toothpaste, at a concentration of 1100 µg F/g, on dentine demineralization. In a crossover and double-blind study, conducted in two phases of 14 days, six volunteers wore a palatal appliance containing four slabs of bovine root dentine whose surface hardness (SH) was previously determined and to which a 10% sucrose solution was applied extra-orally 8×/day. Volunteers used a non-F toothpaste (negative control) or F toothpaste (1100 µg F/g, NaF/SiO2) three times a day. On the 10th and 14th days of each phase, two slabs were collected and SH was determined again. Dentine demineralization was assessed as percentage of SH loss (%SHL). The effect of toothpaste was significant, showing lower %SHL for the F toothpaste group (42.0 ± 9.7) compared to the non-F group (62.0 ± 6.4; p < 0.0001), but the effect of time was not significant (p > 0.05). This pilot study suggests that F toothpaste at 1100 µg F/g is able to decrease dentine caries even under a high cariogenic challenge of biofilm accumulation and sugar exposure.

  10. Influence of the direction of tubules on bond strength to dentin.

    PubMed

    Ogata, M; Okuda, M; Nakajima, M; Pereira, P N; Sano, H; Tagami, J

    2001-01-01

    This study investigated the influence of the direction of dentinal tubules on resin-dentin tensile bond strength (mu TBS) using four commercially available bonding systems and observed the resin-dentin interfaces with an SEM. The dentin bonding systems used in this study were Clearfil Liner Bond II (LB, Kuraray), Imperva Fluoro Bond (FB, Shofu), Single Bond (SB, 3M) and One-Step (OS, BISCO). Thirty-six extracted caries-free human molars were used for micro tensile bond testing and eight additional teeth were used for scanning electron microscopy (SEM). The teeth were divided into two groups according to the direction of the dentinal tubules at the resin-dentin interface: a perpendicular group, in which the occlusal enamel was removed perpendicular to the long axis of the tooth, and a parallel group, in which the mesial half of the tooth was removed parallel to the long axis of the tooth, and the coronal dentin surface was used for bonding. After the flat dentin surfaces were polished with #600 silicon carbide paper, each surface was treated with one of the four adhesive systems according to the manufacturer's recommendation, then covered with resin composite (Clearfil AP-X, Kuraray) to provide sufficient bulk for micro-tensile bond testing. After 24 hours in 37 degrees C water, the resin-bonded teeth were serially sliced perpendicular to the adhesive surface, the adhesive interface trimmed to a cross sectional area of 1 mm2 and subjected to tensile forces at a crosshead speed of 1 mm/min. Statistical analysis of the tensile bond strengths were performed using two-way ANOVA and Fisher's PLSD test at 95% level of confidence. The tensile bond strength of the group with tubules parallel to the bonded interface was higher than that of tubules cut perpendicularly. This tendency reached statistical significance using SB and OS.

  11. Effects of dental bleaching on the color, translucency and fluorescence properties of enamel and dentin.

    PubMed

    Caneppele, Taciana M; Borges, Alessandra B; Torres, Carlos R

    2013-01-01

    The objective of this study was to evaluate the color, translucency and fluorescence of bovine enamel and dentin submitted to different bleaching modalities. Pairs of enamel and dentin discs (3 mm in diameter) were obtained from 150 bovine teeth. In 75 of the pairs, one specimen had the enamel removed (Dentin Group). The dentin was removed from one specimen of the remaining 75 pairs (Enamel Group) and the other specimen was left unaltered (Enamel + Dentin). The evaluation of color, translucency and fluorescence was performed with a spectrophotometer using the CIE L* a* b*. Each group was subdivided into three subgroups: Control, composed of specimens that were not bleached, and two experimental subgroups, bleached with either 10% carbamide peroxide (CP10%) or 35% hydrogen peroxide (HP35%). The CP10% bleaching gel was applied 2 h/day for 14 days. The HP35% bleaching agent was applied using two applications of 30 min each, with a one week interval between each application. When not being bleached, the specimens were immersed in artificial saliva. The color, translucency and fluorescence ratings were assessed using spectrophotometry 7 days after the treatment. Regarding color, significant differences were found between bleaching techniques in the groups Enamel and Enamel + Dentin, with a higher color difference for HP35%. Bleaching did not change the translucency of the dental tissues. There were significant differences for fluorescence for the HP35% subgroups of Dentin and Enamel + Dentin, and for the CP10% subgroup of Enamel. Dental bleaching changed the color and fluorescence of the dental tissues, however translucency was not affected.

  12. Study on the potential inhibition of root dentine wear adjacent to fluoride-containing restorations.

    PubMed

    Turssi, Cecilia Pedroso; Hara, Anderson Takeo; Domiciano, Silvia Jorge; Serra, Mônica Campos

    2008-01-01

    The purpose of this in vitro study was to determine whether the vicinity of root dentine that had been restored with fluoride-releasing materials was at reduced risk for erosive/abrasive wear compared to root dentine restored with a non-fluoride-containing material. According to a randomized complete block design, standardized cavities prepared on the surface of 150 bovine root dentine slabs were restored with glass-ionomer cement, resin-modified glass ionomer, polyacid-modified resin composite, fluoride-containing or conventional composite. Specimens were coated with two layers of an acid-resistant nail varnish exposing half of the dentine surface and half of the restoration. Subsequently, specimens were either eroded in an acidic drink or left uneroded, then exposed to artificial saliva and abraded in a toothbrushing machine. Wear depth in the vicinity of restorations was quantified by a stylus profilometer, based on the nonabraded areas surrounding the erosion/abrasion region. Two-way ANOVA did not demonstrate significant interaction between restoratives and eroded-uneroded dentine (p=0.5549) nor significant difference among restorative materials (p=0.8639). Tukey's test ascertained that the wear depth was higher for eroded than for uneroded groups. Fluoride-releasing materials seemed to negligibly inhibit wear in the vicinity of restored root dentine subjected to erosive/abrasive challenges.

  13. Fluid shifts across human dentine in vitro in response to hydrodynamic stimuli.

    PubMed

    Pashley, D H; Matthews, W G; Zhang, Y; Johnson, M

    1996-11-01

    Most authorities agree that the hydrodynamic theory of dentine sensitivity best explains the stimulus-response relations of most painful stimuli. However, as the usual hydrodynamic stimuli are so different, it has been impossible to compare them. The equivalency of hydrodynamic stimuli can be evaluated from measurements of the fluid movement induced in vitro and relating this to the hydraulic conductance (Lp) of the same dentine specimen. From this determination, a common denominator is obtained which is equivalent to the hydrostatic pressure that would be required to cause the same magnitude of fluid movement. The purpose of this study was to measure the direction and magnitude of fluid shifts across dentine in extracted human crown segments with a flat, dentine occlusal surface in response to the following hydrodynamic stimuli; air blast, 56 degrees C water, 2 degrees C water, tactile and osmotic. In acid-etched superficial dentine, which simulates hypersensitive dentine, the largest to the smallest fluid flows obtained were: hot > cold > air blast > osmotic > tactile. When these were converted to equivalency units, the ranking of stimuli from strongest to weakest was hot > cold > air blast > osmotic > tactile. This new approach to comparing hydrodynamic stimuli should be verified in vivo.

  14. Diffusion of peroxides through dentine in vitro with and without prior use of a desensitizing varnish.

    PubMed

    Hannig, Christian; Weinhold, Hans Christian; Becker, Klaus; Attin, Thomas

    2011-12-01

    Different bleaching regimens are used in dentistry possibly penetrating the dentine and affecting the pulp. The aim of the present study was to investigate peroxide diffusion through dentine pre-treated with a desensitizing varnish (Vivasens®) in a standardized in vitro setup during application of different bleaching materials. The penetration was tested using 1.3-mm-thick bovine dentine slabs. The following bleaching materials were tested with and without prior application of the desensitizing varnish on the external side of the dentine slabs: Vivastyle, Whitestrips, Simply White, Opalescence (external bleaching), and sodium perborate (internal bleaching, only tested without varnish; n = 8 samples per subgroup). The penetration of peroxides was measured photometrically using 4-aminoantipyrin as a substrate, the penetration of peroxides was monitored over 240 min. All bleaching agents yielded a diffusion of peroxides through the dentine, the kinetics of penetration were approximately linear for all materials tested. The significantly highest diffusion of peroxides was observed with Opalescence, the lowest with sodium perborate. The adoption of the desensitizing varnish reduced the diffusion of peroxides significantly for all external bleaching materials. Peroxides penetrated the dentine during application of bleaching materials; the penetration of peroxides can be reduced by application of a desensitizing agent.

  15. Reduction in dentin permeability using a slurry containing dicalcium phosphate and calcium hydroxide.

    PubMed

    Cherng, Aishuan Maria; Takagi, Shozo; Chow, Laurence

    2006-08-01

    Treatments that obdurate dentin tubules have been used for reducing dentin hypersensitivity. The purpose of this study was to determine the effect of a treatment with a slurry of micron sized calcium phosphate on the hydraulic conductance (L(p)) of etched dentin discs in vitro. The treatment slurry was prepared by mixing a powder mixture of dicalcium phosphate anhydrous and calcium hydroxide with a solution that contained sodium fluoride and carboxymethyl cellulose. The mean baseline L(p) (in mL cm(-2) s(-1) H(2)O cm(-1)) was 2.07 +/- 1.45 (mean +/- SD; n = 13)). After one treatment and 2, 4, and 7 days of incubation in a protein-free saliva-like solution (SLS), the mean relative L(p), presented as % of baseline, were 65 +/- 16, 42 +/- 27, 36 +/- 26, and 33 +/- 27 (n = 13), respectively. The L(p) values of the baseline and treatment after incubation in the SLS were significantly (p < 0.05) different. Scanning electron microscopic examination showed partial obturation of dentin tubules in the treated dentin. X-ray diffraction and chemical analyses indicated the major product formed from the slurry was a fluoride-containing hydroxyapatite. Treatment appeared effective in further reducing L(p) of dentin discs after incubation in the SLS.

  16. Er:YAG laser irradiation of human dentin: Raman study of collagen

    NASA Astrophysics Data System (ADS)

    Soares, Luis E. S.; Martin, Airton A.; Brugnera, Aldo, Jr.; Zanin, Fatima; Arisawa, Emilia A.; Pacheco, Marcos T. T.

    2004-05-01

    Raman Spectroscopy was used to examine the distribution of the organic components in the human dentin before and after the chemical and thermal etching process. Polished dentin disks (n = 6/group) with 4mm thickness from twelve third molars were irradiated with Er:YAG laser. The dentin disks were prepared by polishing through a series of SiO2 papers with water and cleaned by ultrasonic system. Four pretreatment were performed. The disks were etched with 37% phoshporic acid for 15 s (group 1), Er:YAG laser 80 mJ, 3Hz, 30s. (group II), Er:YAG laser 120 mJ, 3Hz, 30s. (group III) and Er:YAG laser 180mJ, 3Hz, 30s. (group IV). The Raman spectra obtained from normal and treated dentin were analyzed. Attention was paid to the organic component (1453cm-1). Raman spectroscopy showed that the organic dentin content were more affected in autoclaved teeth than in the specimens treated by Thymol. Peak area reduction in the specimens treated by Thymol in group I and II showed to be the most conservative procedures regarding to changes in organic dentin components. Pulse energies of 120 and 180 mJ showed to preduce more reduction in the organic content associated with more reduction in the peak areas at 1453 cm-1.

  17. Low-level laser therapy of dentin hypersensitivity: a short-term clinical trial.

    PubMed

    Orhan, Kaan; Aksoy, Umut; Can-Karabulut, Deniz C; Kalender, Atakan

    2011-09-01

    The aim of this study was to evaluate low-level laser therapy in cervical dentin hypersensitivity. A randomized controlled clinical trial was conducted with a total of 64 teeth. Dentin desensitizer and diode laser were applied on the cervical dentin surfaces. Distilled water and placebo laser was used as the placebo groups. The irradiance used was 4 J/cm(2) per treatment site. The baseline measurement of hypersensitivity was made by using visual analog scale (VAS). Twenty-four hours and 7 days after the application of desensitizer, diode laser and placebo groups, a new VAS analysis was conducted for the patients' sensitivity level. The mean pain scores of placebo groups were significantly higher than the desensitizer's and diode laser's mean scores (ANOVA, p < 0.05). The VAS analysis revealed a significant decrease in dentin hypersensitivity in 7 days with the use of the desensitizer and low-level laser therapy and no statistically significant difference was observed between these two treatments (p > 0.05). Although low-level laser and glutaraldehyde containing desensitizer present distinct modes of action, experimental agents caused a significant reduction of dentin hypersensitivity without showing secondary effects, not irritating the pulp or causing pain, not discoloring or staining the teeth, and not irritating the soft tissues at least for a period of 1 week with no drawbacks regarding handling and/or ease of application. Low-level laser therapy and desensitizer application had displayed similar effectiveness in reducing moderate dentin hypersensitivity.

  18. Effects of the Er, Cr:YSGG laser irradiation on dentin bond strength

    NASA Astrophysics Data System (ADS)

    Piccioni, M. A. R. V.; Neves, T. P. C.; Kubo, C. S.; Saad, J. R. C.; Campos, E. A.

    2016-02-01

    The aim of this study is to evaluate the influence of Er,Cr:YSGG laser irradiation and bur on the bond strength of different single step self-etch adhesive systems in normal and artificially hypermineralized dentin. In total, 112 human molars were selected. The specimens were randomly divided into two different groups according to the type of dentin. The teeth from each group were randomly divided into two subgroups according to the adhesive system used: Clearfil S3 Bond and Optibond All in One. Each subgroup received different treatments: (1) conditioning conventional; (2) conditioning of the dentin surface with Er,Cr:YSGG  +  application of the adhesive system; (3) ‘surface roughening’ dentin with 3098 diamond bur  +  application of the adhesive system. The matrices were positioned, filled with composite resin and photoactivated for 40 s. After a storage period of 24 h in a humid environment, the specimens were submitted to microshear bond strength testing. Subsequently, the fracture pattern of each sample was determined. One specimen per group was prepared in order to evaluate the interface and/or appearance of resin tags. The data of the microshear bond strength (μSBS) were analyzed by two-way ANOVA and Tukey’s (p  <0.05). In the hypermineralized dentin, there was no significant statistical difference between all the treatments employed, enhancing the option of employing single step self-etch adhesives in dentin sclerotic.

  19. Chondroitin sulfate is involved in the hypercalcification of the organic matrix of bovine peritubular dentin

    PubMed Central

    Dorvee, Jason R.; Gerkowicz, Lauren; Bahmanyar, Sara; Deymier-Black, Alix; Veis, Arthur

    2015-01-01

    Apatitic mineral of dentin forms within the collagenous matrix (intertubular dentin, ITD) secreted from the odontoblastic processes (OP). Highly calcified mineral (peritubular dentin, PTD) is deposited at the interface between the ITD and each process membrane, creating a tubular system penetrating the dentin that extends from the dentino-enamel junction to the predentin-dentin junction. We focus on determining the composition of the PTD both with regard to its organic matrix and the inorganic phase. A laser capture technique has been adapted for isolation of the mineralized PTD free of the ITD, and for the analysis of the PTD by SEM, TEM, and energy dispersive spectrometry (EDS), and comparison with similar analyses of intact dentin slices containing ITD bounded-PTD annuli. Elemental line scans clearly marked the boundaries between ITD, PTD, and OP components, and revealed differences in composition, and topographical surface roughness. The organic matrix of the PTD was shown to be sulfur rich, and further antibody labeling showed the sulfated organic component to be chondroitin sulfate B. In this organic matrix the Ca/P ratio was distinctly higher than in the ITD and intact PTD, indicating that polysaccharide bound S supplies the anionic counterion facilitating the formation of the apatitic PTD mineral. PMID:26656507

  20. Effect of Phosphoric Acid on the Degradation of Human Dentin Matrix

    PubMed Central

    Tezvergil-Mutluay, A.; Mutluay, M.; Seseogullari-Dirihan, R.; Agee, K.A.; Key, W.O.; Scheffel, D.L.S.; Breschi, L.; Mazzoni, A.; Tjäderhane, L.; Nishitani, Y.; Tay, F.R.; Pashley, D.H.

    2013-01-01

    This study determined if dentin proteases are denatured by phosphoric acid (PA) used in etch-and-rinse dentin adhesives. Dentin beams were completely demineralized with EDTA for 30 days. We “acid-etched” experimental groups by exposing the demineralized dentin beams to 1, 10, or 37 mass% PA for 15 sec or 15 min. Control beams were not exposed to PA but were incubated in simulated body fluid for 3 days to assay their total endogenous telopeptidase activity, by their ability to solubilize C-terminal crosslinked telopeptides ICTP and CTX from insoluble dentin collagen. Control beams released 6.1 ± 0.8 ng ICTP and 0.6 ± 0.1 ng CTX/mg dry-wt/3 days. Positive control beams pre-incubated in p-aminophenylmercuric acetate, a compound known to activate proMMPs, released about the same amount of ICTP peptides, but released significantly less CTX. Beams immersed in 1, 10, or 37 mass% PA for 15 sec or 15 min released amounts of ICTP and CTX similar to that released by the controls (p > 0.05). Beams incubated in galardin, an MMP inhibitor, or E-64, a cathepsin inhibitor, blocked most of the release of ICTP and CTX, respectively. It is concluded that PA does not denature endogenous MMP and cathepsin activities of dentin matrices. PMID:23103634