NASA Technical Reports Server (NTRS)
Medvedev, A. S.
1987-01-01
Numerous experiments on the detection of atmospheric waves in the frequency range from acoustic to planetary at meteor heights have revealed that important wave sources are meteorological processes in the troposphere (cyclones, atmospheric fronts, jet streams, etc.). A dynamical theory based on the others work include describing the adaptation of meteorological fields to the geostropic equilibrium state. According to this theory, wave motions appear as a result of constant competition between the maladjustment of the wind and pressure fields due to nonlinear effects and the tendency of the atmosphere to establish a quasi-geostrophic equilibrium of these fields. These meteorological fields are discussed.
NASA Astrophysics Data System (ADS)
Medvedev, A. S.
1987-08-01
Numerous experiments on the detection of atmospheric waves in the frequency range from acoustic to planetary at meteor heights have revealed that important wave sources are meteorological processes in the troposphere (cyclones, atmospheric fronts, jet streams, etc.). A dynamical theory based on the others work include describing the adaptation of meteorological fields to the geostropic equilibrium state. According to this theory, wave motions appear as a result of constant competition between the maladjustment of the wind and pressure fields due to nonlinear effects and the tendency of the atmosphere to establish a quasi-geostrophic equilibrium of these fields. These meteorological fields are discussed.
Analysis of Surface Electric Field Measurements from an Array of Electric Field Mills
NASA Astrophysics Data System (ADS)
Lucas, G.; Thayer, J. P.; Deierling, W.
2016-12-01
Kennedy Space Center (KSC) has operated an distributed array of over 30 electric field mills over the past 18 years, providing a unique data set of surface electric field measurements over a very long timespan. In addition to the electric field instruments there are many meteorological towers around KSC that monitor the local meteorological conditions. Utilizing these datasets we have investigated and found unique spatial and temporal signatures in the electric field data that are attributed to local meteorological effects and the global electric circuit. The local and global scale influences on the atmospheric electric field will be discussed including the generation of space charge from the ocean surf, local cloud cover, and a local enhancement in the electric field that is seen at sunrise.
Since most of the primary atmospheric pollutants are emitted inside the roughness sub-layer (RSL) and consequently the first chemical reactions and dispersion occur in this layer, it is necessary to generate detailed meteorological fields inside the RSL to perform air quality m...
NASA Astrophysics Data System (ADS)
Sunwoo, Y.; Park, J.; Kim, S.; Ma, Y.; Chang, I.
2010-12-01
Northeast Asia hosts more than one third of world population and the emission of pollutants trends to increase rapidly, because of economic growth and the increase of the consumption in high energy intensity. In case of air pollutants, especially, its characteristics of emissions and transportation become issued nationally, in terms of not only environmental aspects, but also long-range transboundary transportation. In meteorological characteristics, westerlies area means what air pollutants that emitted from China can be delivered to South Korea. Therefore, considering meteorological factors can be important to understand air pollution phenomena. In this study, we used MM5(Fifth-Generation Mesoscale Model) and WRF(Weather Research and Forecasting Model) to produce the meteorological fields. We analyzed the feature of physics option in each model and the difference due to characteristic of WRF and MM5. We are trying to analyze the uncertainty of source-receptor relationships for total nitrate according to meteorological fields in the Northeast Asia. We produced the each meteorological fields that apply the same domain, same initial and boundary conditions, the best similar physics option. S-R relationships in terms of amount and fractional number for total nitrate (sum of N from HNO3, nitrate and PAN) were calculated by EMEP method 3.
Dispersion Modeling Using Ensemble Forecasts Compared to ETEX Measurements.
NASA Astrophysics Data System (ADS)
Straume, Anne Grete; N'dri Koffi, Ernest; Nodop, Katrin
1998-11-01
Numerous numerical models are developed to predict long-range transport of hazardous air pollution in connection with accidental releases. When evaluating and improving such a model, it is important to detect uncertainties connected to the meteorological input data. A Lagrangian dispersion model, the Severe Nuclear Accident Program, is used here to investigate the effect of errors in the meteorological input data due to analysis error. An ensemble forecast, produced at the European Centre for Medium-Range Weather Forecasts, is then used as model input. The ensemble forecast members are generated by perturbing the initial meteorological fields of the weather forecast. The perturbations are calculated from singular vectors meant to represent possible forecast developments generated by instabilities in the atmospheric flow during the early part of the forecast. The instabilities are generated by errors in the analyzed fields. Puff predictions from the dispersion model, using ensemble forecast input, are compared, and a large spread in the predicted puff evolutions is found. This shows that the quality of the meteorological input data is important for the success of the dispersion model. In order to evaluate the dispersion model, the calculations are compared with measurements from the European Tracer Experiment. The model manages to predict the measured puff evolution concerning shape and time of arrival to a fairly high extent, up to 60 h after the start of the release. The modeled puff is still too narrow in the advection direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luetzow, H.B.v.
1983-08-01
Following an introduction, the paper discusses in section 2 the collection or generation of final geodetic data from conventional surveys, satellite observations, satellite altimetry, the Global Positioning System, and moving base gravity gradiometers. Section 3 covers data utilization and accuracy aspects including gravity programmed inertial positioning and subterraneous mass detection. Section 4 addresses the usefulness and limitation of the collocation method of physical geodesy. Section 5 is concerned with the computation of classical climatological data. In section 6, meteorological data assimilation is considered. Section 7 deals with correlated aspects of initial data generation with emphasis on initial wind field determination,more » parameterized and classical hydrostatic prediction models, non-hydrostatic prediction, computational networks, and computer capacity. The paper concludes that geodetic and meteorological data are expected to become increasingly more diversified and voluminous both regionally and globally, that its general availability will be more or less restricted for some time to come, that its quality and quantity are subject to change, and that meteorological data generation, accuracy and density have to be considered in conjunction with advanced as well as cost-effective numerical weather prediction models and associated computational efforts.« less
NASA Astrophysics Data System (ADS)
Weaver, Robert J.; Taeb, Peyman; Lazarus, Steven; Splitt, Michael; Holman, Bryan P.; Colvin, Jeffrey
2016-12-01
In this study, a four member ensemble of meteorological forcing is generated using the Weather Research and Forecasting (WRF) model in order to simulate a frontal passage event that impacted the Indian River Lagoon (IRL) during March 2015. The WRF model is run to provide high and low, spatial (0.005° and 0.1°) and temporal (30 min and 6 h) input wind and pressure fields. The four member ensemble is used to force the Advanced Circulation model (ADCIRC) coupled with Simulating Waves Nearshore (SWAN) and compute the hydrodynamic and wave response. Results indicate that increasing the spatial resolution of the meteorological forcing has a greater impact on the results than increasing the temporal resolution in coastal systems like the IRL where the length scales are smaller than the resolution of the operational meteorological model being used to generate the forecast. Changes in predicted water elevations are due in part to the upwind and downwind behavior of the input wind forcing. The significant wave height is more sensitive to the meteorological forcing, exhibited by greater ensemble spread throughout the simulation. It is important that the land mask, seen by the meteorological model, is representative of the geography of the coastal estuary as resolved by the hydrodynamic model. As long as the temporal resolution of the wind field captures the bulk characteristics of the frontal passage, computational resources should be focused so as to ensure that the meteorological model resolves the spatial complexities, such as the land-water interface, that drive the land use responsible for dynamic downscaling of the winds.
NASA Technical Reports Server (NTRS)
Peters, L. K.; Yamanis, J.
1981-01-01
Objective procedures to analyze data from meteorological and space shuttle observations to validate a three dimensional model were investigated. The transport and chemistry of carbon monoxide and methane in the troposphere were studied. Four aspects were examined: (1) detailed evaluation of the variational calculus procedure, with the equation of continuity as a strong constraint, for adjustment of global tropospheric wind fields; (2) reduction of the National Meteorological Center (NMC) data tapes for data input to the OSTA-1/MAPS Experiment; (3) interpolation of the NMC Data for input to the CH4-CO model; and (4) temporal and spatial interpolation procedures of the CO measurements from the OSTA-1/MAPS Experiment to generate usable contours of the data.
Sulfate and Pb-210 Simulated in a Global Model Using Assimilated Meteorological Fields
NASA Technical Reports Server (NTRS)
Chin, Mian; Rood, Richard; Lin, S.-J.; Jacob, Daniel; Muller, Jean-Francois
1999-01-01
This report presents the results of distributions of tropospheric sulfate, Pb-210 and their precursors from a global 3-D model. This model is driven by assimilated meteorological fields generated by the Goddard Data Assimilation Office. Model results are compared with observations from surface sites and from multiplatform field campaigns of Pacific Exploratory Missions (PEM) and Advanced Composition Explorer (ACE). The model generally captures the seasonal variation of sulfate at the surface sites, and reproduces well the short-term in-situ observations. We will discuss the roles of various processes contributing to the sulfate levels in the troposphere, and the roles of sulfate aerosol in regional and global radiative forcing.
Mesoscale atmospheric modeling for emergency response
NASA Astrophysics Data System (ADS)
Osteen, B. L.; Fast, J. D.
Atmospheric transport models for emergency response have traditionally utilized meteorological fields interpolated from sparse data to predict contaminant transport. Often these fields are adjusted to satisfy constraints derived from the governing equations of geophysical fluid dynamics, e.g. mass continuity. Gaussian concentration distributions or stochastic models are then used to represent turbulent diffusion of a contaminant in the diagnosed meteorological fields. The popularity of these models derives from their relative simplicity, ability to make reasonable short-term predictions, and, most important, execution speed. The ability to generate a transport prediction for an accidental release from the Savannah River Site in a time frame which will allow protective action to be taken is essential in an emergency response operation.
REGIONAL-SCALE WIND FIELD CLASSIFICATION EMPLOYING CLUSTER ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glascoe, L G; Glaser, R E; Chin, H S
2004-06-17
The classification of time-varying multivariate regional-scale wind fields at a specific location can assist event planning as well as consequence and risk analysis. Further, wind field classification involves data transformation and inference techniques that effectively characterize stochastic wind field variation. Such a classification scheme is potentially useful for addressing overall atmospheric transport uncertainty and meteorological parameter sensitivity issues. Different methods to classify wind fields over a location include the principal component analysis of wind data (e.g., Hardy and Walton, 1978) and the use of cluster analysis for wind data (e.g., Green et al., 1992; Kaufmann and Weber, 1996). The goalmore » of this study is to use a clustering method to classify the winds of a gridded data set, i.e, from meteorological simulations generated by a forecast model.« less
Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain
NASA Astrophysics Data System (ADS)
Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.
2014-12-01
High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields resulting from the proposed downscaling strategy have significantly improved spatiotemporal variance compared to those from the operational forecasts, and any time series generated from the downscaled fields do not suffer from discontinuities due to switching between the consecutive forecasts.
NASA Astrophysics Data System (ADS)
Tamura, Tetsuro; Kawaguchi, Masaharu; Kawai, Hidenori; Tao, Tao
2017-11-01
The connection between a meso-scale model and a micro-scale large eddy simulation (LES) is significant to simulate the micro-scale meteorological problem such as strong convective events due to the typhoon or the tornado using LES. In these problems the mean velocity profiles and the mean wind directions change with time according to the movement of the typhoons or tornadoes. Although, a fine grid micro-scale LES could not be connected to a coarse grid meso-scale WRF directly. In LES when the grid is suddenly refined at the interface of nested grids which is normal to the mean advection the resolved shear stresses decrease due to the interpolation errors and the delay of the generation of smaller scale turbulence that can be resolved on the finer mesh. For the estimation of wind gust disaster the peak wind acting on buildings and structures has to be correctly predicted. In the case of meteorological model the velocity fluctuations have a tendency of diffusive variation without the high frequency component due to the numerically filtering effects. In order to predict the peak value of wind velocity with good accuracy, this paper proposes a LES-based method for generating the higher frequency components of velocity and temperature fields obtained by meteorological model.
Meteorological conditions during the summer 1986 CITE 2 flight series
NASA Technical Reports Server (NTRS)
Shipham, Mark C.; Cahoon, Donald R.; Bachmeier, A. Scott
1990-01-01
An overview of meteorological conditions during the NASA Global Tropospheric Experiment/Chemical Instrumentation Testing and Evaluation (GTE/CITE 2) summer 1986 flight series is presented. Computer-generated isentropic trajectories are used to trace the history of air masses encountered along each aircraft flight path. The synoptic-scale wind fields are depicted based on Montgomery stream function analyses. Time series of aircraft-measured temperature, dew point, ozone, and altitude are shown to depict air mass variability. Observed differences between maritime tropical and maritime polar air masses are discussed.
Improving the Horizontal Transport in the Lower Troposphere with Four Dimensional Data Assimilation
The physical processes involved in air quality modeling are governed by dynamically-generated meteorological model fields. This research focuses on reducing the uncertainty in the horizontal transport in the lower troposphere by improving the four dimensional data assimilation (F...
APPLICATION OF THE URBANIZED VERSION OF MM5 FOR HOUSTON
Since most of the primary atmospheric pollutants are emitted inside the roughness sub-layer (RSL) and consequently the first chemical reactions and dispersion occur in this layer, it is necessary to generate detailed meteorological fields inside the RSL to perform air quality m...
Methodologies for evaluating performance and assessing uncertainty of atmospheric dispersion models
NASA Astrophysics Data System (ADS)
Chang, Joseph C.
This thesis describes methodologies to evaluate the performance and to assess the uncertainty of atmospheric dispersion models, tools that predict the fate of gases and aerosols upon their release into the atmosphere. Because of the large economic and public-health impacts often associated with the use of the dispersion model results, these models should be properly evaluated, and their uncertainty should be properly accounted for and understood. The CALPUFF, HPAC, and VLSTRACK dispersion modeling systems were applied to the Dipole Pride (DP26) field data (˜20 km in scale), in order to demonstrate the evaluation and uncertainty assessment methodologies. Dispersion model performance was found to be strongly dependent on the wind models used to generate gridded wind fields from observed station data. This is because, despite the fact that the test site was a flat area, the observed surface wind fields still showed considerable spatial variability, partly because of the surrounding mountains. It was found that the two components were comparable for the DP26 field data, with variability more important than uncertainty closer to the source, and less important farther away from the source. Therefore, reducing data errors for input meteorology may not necessarily increase model accuracy due to random turbulence. DP26 was a research-grade field experiment, where the source, meteorological, and concentration data were all well-measured. Another typical application of dispersion modeling is a forensic study where the data are usually quite scarce. An example would be the modeling of the alleged releases of chemical warfare agents during the 1991 Persian Gulf War, where the source data had to rely on intelligence reports, and where Iraq had stopped reporting weather data to the World Meteorological Organization since the 1981 Iran-Iraq-war. Therefore the meteorological fields inside Iraq must be estimated by models such as prognostic mesoscale meteorological models, based on observational data from areas outside of Iraq, and using the global fields simulated by the global meteorological models as the initial and boundary conditions for the mesoscale models. It was found that while comparing model predictions to observations in areas outside of Iraq, the predicted surface wind directions had errors between 30 to 90 deg, but the inter-model differences (or uncertainties) in the predicted surface wind directions inside Iraq, where there were no onsite data, were fairly constant at about 70 deg. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Christidis, Z. D.; Spar, J.
1980-01-01
Spherical harmonic analysis was used to analyze the observed climatological (C) fields of temperature at 850 mb, geopotential height at 500 mb, and sea level pressure. The spherical harmonic method was also applied to the corresponding "model climatological" fields (M) generated by a general circulation model, the "GISS climate model." The climate model was initialized with observed data for the first of December 1976 at 00. GMT and allowed to generate five years of meteorological history. Monthly means of the above fields for the five years were computed and subjected to spherical harmonic analysis. It was found from the comparison of the spectral components of both sets, M and C, that the climate model generated reasonable 500 mb geopotential heights. The model temperature field at 850 mb exhibited a generally correct structure. However, the meridional temperature gradient was overestimated and overheating of the continents was observed in summer.
NASA Astrophysics Data System (ADS)
Ngan, Fong; Byun, Daewon; Kim, Hyuncheol; Lee, Daegyun; Rappenglück, Bernhard; Pour-Biazar, Arastoo
2012-07-01
To achieve more accurate meteorological inputs than was used in the daily forecast for studying the TexAQS 2006 air quality, retrospective simulations were conducted using objective analysis and 3D/surface analysis nudging with surface and upper observations. Model ozone using the assimilated meteorological fields with improved wind fields shows better agreement with the observation compared to the forecasting results. In the post-frontal conditions, important factors for ozone modeling in terms of wind patterns are the weak easterlies in the morning for bringing in industrial emissions to the city and the subsequent clockwise turning of the wind direction induced by the Coriolis force superimposing the sea breeze, which keeps pollutants in the urban area. Objective analysis and nudging employed in the retrospective simulation minimize the wind bias but are not able to compensate for the general flow pattern biases inherited from large scale inputs. By using an alternative analyses data for initializing the meteorological simulation, the model can re-produce the flow pattern and generate the ozone peak location closer to the reality. The inaccurate simulation of precipitation and cloudiness cause over-prediction of ozone occasionally. Since there are limitations in the meteorological model to simulate precipitation and cloudiness in the fine scale domain (less than 4-km grid), the satellite-based cloud is an alternative way to provide necessary inputs for the retrospective study of air quality.
Upper-Tropospheric Winds Derived from Geostationary Satellite Water Vapor Observations
NASA Technical Reports Server (NTRS)
Velden, Christopher S.; Hayden, Christopher M.; Nieman, Steven J.; Menzel, W. Paul; Wanzong, Steven; Goerss, James S.
1997-01-01
The coverage and quality of remotely sensed upper-tropospheric moisture parameters have improved considerably with the deployment of a new generation of operational geostationary meteorological satellites: GOES-8/9 and GMS-5. The GOES-8/9 water vapor imaging capabilities have increased as a result of improved radiometric sensitivity and higher spatial resolution. The addition of a water vapor sensing channel on the latest GMS permits nearly global viewing of upper-tropospheric water vapor (when joined with GOES and Meteosat) and enhances the commonality of geostationary meteorological satellite observing capabilities. Upper-tropospheric motions derived from sequential water vapor imagery provided by these satellites can be objectively extracted by automated techniques. Wind fields can be deduced in both cloudy and cloud-free environments. In addition to the spatially coherent nature of these vector fields, the GOES-8/9 multispectral water vapor sensing capabilities allow for determination of wind fields over multiple tropospheric layers in cloud-free environments. This article provides an update on the latest efforts to extract water vapor motion displacements over meteorological scales ranging from subsynoptic to global. The potential applications of these data to impact operations, numerical assimilation and prediction, and research studies are discussed.
Assessing uncertainty in radar measurements on simplified meteorological scenarios
NASA Astrophysics Data System (ADS)
Molini, L.; Parodi, A.; Rebora, N.; Siccardi, F.
2006-02-01
A three-dimensional radar simulator model (RSM) developed by Haase (1998) is coupled with the nonhydrostatic mesoscale weather forecast model Lokal-Modell (LM). The radar simulator is able to model reflectivity measurements by using the following meteorological fields, generated by Lokal Modell, as inputs: temperature, pressure, water vapour content, cloud water content, cloud ice content, rain sedimentation flux and snow sedimentation flux. This work focuses on the assessment of some uncertainty sources associated with radar measurements: absorption by the atmospheric gases, e.g., molecular oxygen, water vapour, and nitrogen; attenuation due to the presence of a highly reflecting structure between the radar and a "target structure". RSM results for a simplified meteorological scenario, consisting of a humid updraft on a flat surface and four cells placed around it, are presented.
A climatological description of the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, C.H.
1990-05-22
This report provides a general climatological description of the Savannah River Site. The description provides both regional and local scale climatology. The regional climatology includes a general regional climatic description and presents information on occurrence frequencies of the severe meteorological phenomena that are important considerations in the design and siting of a facility. These phenomena include tornadoes, thunderstorms, hurricanes, and ice/snow storms. Occurrence probabilities given for extreme tornado and non-tornado winds are based on previous site specific studies. Local climatological conditions that are significant with respect to the impact of facility operations on the environment are described using on-site ormore » near-site meteorological data. Summaries of wind speed, wind direction, and atmospheric stability are primarily based on the most recently generated five-year set of data collected from the onsite meteorological tower network (1982--86). Temperature, humidity, and precipitation summaries include data from SRL's standard meteorological instrument shelter and the Augusta National Weather Service office at Bush Field through 1986. A brief description of the onsite meteorological monitoring program is also provided. 24 refs., 15 figs., 22 tabs.« less
Uncertainties in Episodic Ozone Modeling Stemming from Uncertainties in the Meteorological Fields.
NASA Astrophysics Data System (ADS)
Biswas, Jhumoor; Trivikrama Rao, S.
2001-02-01
This paper examines the uncertainty associated with photochemical modeling using the Variable-Grid Urban Airshed Model (UAM-V) with two different prognostic meteorological models. The meteorological fields for ozone episodes that occurred during 17-20 June, 12-15 July, and 30 July-2 August in the summer of 1995 were derived from two meteorological models, the Regional Atmospheric Modeling System (RAMS) and the Fifth-Generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5). The simulated ozone concentrations from the two photochemical modeling systems, namely, RAMS/UAM-V and MM5/UAM-V, are compared with each other and with ozone observations from several monitoring sites in the eastern United States. The overall results indicate that neither modeling system performs significantly better than the other in reproducing the observed ozone concentrations. The results reveal that there is a significant variability, about 20% at the 95% level of confidence, in the modeled 1-h ozone concentration maxima from one modeling system to the other for a given episode. The model-to-model variability in the simulated ozone levels is for most part attributable to the unsystematic type of errors. The directionality for emission controls (i.e., NOx versus VOC sensitivity) is also evaluated with UAM-V using hypothetical emission reductions. The results reveal that not only the improvement in ozone but also the VOC-sensitive and NOx-sensitive regimes are influenced by the differences in the meteorological fields. Both modeling systems indicate that a large portion of the eastern United States is NOx limited, but there are model-to-model and episode-to-episode differences at individual grid cells regarding the efficacy of emission reductions.
Uncertainty in predictions of forest carbon dynamics: separating driver error from model error.
Spadavecchia, L; Williams, M; Law, B E
2011-07-01
We present an analysis of the relative magnitude and contribution of parameter and driver uncertainty to the confidence intervals on estimates of net carbon fluxes. Model parameters may be difficult or impractical to measure, while driver fields are rarely complete, with data gaps due to sensor failure and sparse observational networks. Parameters are generally derived through some optimization method, while driver fields may be interpolated from available data sources. For this study, we used data from a young ponderosa pine stand at Metolius, Central Oregon, and a simple daily model of coupled carbon and water fluxes (DALEC). An ensemble of acceptable parameterizations was generated using an ensemble Kalman filter and eddy covariance measurements of net C exchange. Geostatistical simulations generated an ensemble of meteorological driving variables for the site, consistent with the spatiotemporal autocorrelations inherent in the observational data from 13 local weather stations. Simulated meteorological data were propagated through the model to derive the uncertainty on the CO2 flux resultant from driver uncertainty typical of spatially extensive modeling studies. Furthermore, the model uncertainty was partitioned between temperature and precipitation. With at least one meteorological station within 25 km of the study site, driver uncertainty was relatively small ( 10% of the total net flux), while parameterization uncertainty was larger, 50% of the total net flux. The largest source of driver uncertainty was due to temperature (8% of the total flux). The combined effect of parameter and driver uncertainty was 57% of the total net flux. However, when the nearest meteorological station was > 100 km from the study site, uncertainty in net ecosystem exchange (NEE) predictions introduced by meteorological drivers increased by 88%. Precipitation estimates were a larger source of bias in NEE estimates than were temperature estimates, although the biases partly compensated for each other. The time scales on which precipitation errors occurred in the simulations were shorter than the temporal scales over which drought developed in the model, so drought events were reasonably simulated. The approach outlined here provides a means to assess the uncertainty and bias introduced by meteorological drivers in regional-scale ecological forecasting.
NASA Technical Reports Server (NTRS)
Kidd, Chris; Chapman, Lee
2012-01-01
Meteorological measurements within urban areas are becoming increasingly important due to the accentuating effects of climate change upon the Urban Heat Island (UHI). However, ensuring that such measurements are representative of the local area is often difficult due to the diversity of the urban environment. The evaluation of sites is important for both new sites and for the relocation of established sites to ensure that long term changes in the meteorological and climatological conditions continue to be faithfully recorded. Site selection is traditionally carried out in the field using both local knowledge and visual inspection. This paper exploits and assesses the use of lidar-derived digital surface models (DSMs) to quantitatively aid the site selection process. This is acheived by combining the DSM with a solar model, first to generate spatial maps of sky view factors and sun-hour potential and second, to generate site-specific views of the horizon. The results show that such a technique is a useful first-step approach to identify key sites that may be further evaluated for the location of meteorological stations within urban areas.
NASA Astrophysics Data System (ADS)
Karki, S.; Sultan, M.; Elkadiri, R.; Chouinard, K.
2017-12-01
Numerous occurrences of harmful algal blooms (Karenia Brevis) were reported from Southwest Florida along the coast of Charlotte County, Florida. We are developing data-driven (remote sensing, field, and meteorological data) models to accomplish the following: (1) identify the factors controlling bloom development, (2) forecast bloom occurrences, and (3) make recommendations for monitoring variables that are found to be most indicative of algal bloom occurrences and for identifying optimum locations for monitoring stations. To accomplish these three tasks we completed/are working on the following steps. Firstly, we developed an automatic system for downloading and processing of ocean color data acquired through MODIS Terra and MODIS Aqua products using SeaDAS ocean color processing software. Examples of extracted variables include: chlorophyll a (OC3M), chlorophyll a Generalized Inherent Optical Property (GIOP), chlorophyll a Garver-Siegel- Maritorena (GSM), sea surface temperature (SST), Secchi disk depth, euphotic depth, turbidity index, wind direction and speed, colored dissolved organic material (CDOM). Secondly we are developing a GIS database and a web-based GIS to host the generated remote sensing-based products in addition to relevant meteorological and field data. Examples of the meteorological and field inputs include: precipitation amount and rates, concentrations of nitrogen, phosphorous, fecal coliform and Dissolved Oxygen (DO). Thirdly, we are constructing and validating a multivariate regression model and an artificial neural network model to simulate past algal bloom occurrences using the compiled archival remote sensing, meteorological, and field data. The validated model will then be used to predict the timing and location of algal bloom occurrences. The developed system, upon completion, could enhance the decision making process, improve the citizen's quality of life, and strengthen the local economy.
Yerramilli, Anjaneyulu; Srinivas, Challa Venkata; Dasari, Hari Prasad; Tuluri, Francis; White, Loren D.; Baham, Julius M.; Young, John H.; Hughes, Robert; Patrick, Chuck; Hardy, Mark G.; Swanier, Shelton J.
2009-01-01
Atmospheric dispersion calculations are made using the HYSPLIT Particle Dispersion Model for studying the transport and dispersion of air-borne releases from point elevated sources in the Mississippi Gulf coastal region. Simulations are performed separately with three meteorological data sets having different spatial and temporal resolution for a typical summer period in 1–3 June 2006 representing a weak synoptic condition. The first two data are the NCEP global and regional analyses (FNL, EDAS) while the third is a meso-scale simulation generated using the Weather Research and Forecasting model with nested domains at a fine resolution of 4 km. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of the combined influences of the land-sea breeze circulation, the large scale flow field and diurnal alteration in the mixing depth across the coast. The model predicted SO2 concentrations showed that the trajectory and the concentration distribution varied in the three cases of input data. While calculations with FNL data show an overall higher correlation, there is a significant positive bias during daytime and negative bias during night time. Calculations with EDAS fields are significantly below the observations during both daytime and night time though plume behavior follows the coastal circulation. The diurnal plume behavior and its distribution are better simulated using the mesoscale WRF meteorological fields in the coastal environment suggesting its suitability for pollution dispersion impact assessment in the local scale. Results of different cases of simulation, comparison with observations, correlation and bias in each case are presented. PMID:19440433
NASA Astrophysics Data System (ADS)
Rodríguez-Rincón, J. P.; Pedrozo-Acuña, A.; Breña-Naranjo, J. A.
2015-07-01
This investigation aims to study the propagation of meteorological uncertainty within a cascade modelling approach to flood prediction. The methodology was comprised of a numerical weather prediction (NWP) model, a distributed rainfall-runoff model and a 2-D hydrodynamic model. The uncertainty evaluation was carried out at the meteorological and hydrological levels of the model chain, which enabled the investigation of how errors that originated in the rainfall prediction interact at a catchment level and propagate to an estimated inundation area and depth. For this, a hindcast scenario is utilised removing non-behavioural ensemble members at each stage, based on the fit with observed data. At the hydrodynamic level, an uncertainty assessment was not incorporated; instead, the model was setup following guidelines for the best possible representation of the case study. The selected extreme event corresponds to a flood that took place in the southeast of Mexico during November 2009, for which field data (e.g. rain gauges; discharge) and satellite imagery were available. Uncertainty in the meteorological model was estimated by means of a multi-physics ensemble technique, which is designed to represent errors from our limited knowledge of the processes generating precipitation. In the hydrological model, a multi-response validation was implemented through the definition of six sets of plausible parameters from past flood events. Precipitation fields from the meteorological model were employed as input in a distributed hydrological model, and resulting flood hydrographs were used as forcing conditions in the 2-D hydrodynamic model. The evolution of skill within the model cascade shows a complex aggregation of errors between models, suggesting that in valley-filling events hydro-meteorological uncertainty has a larger effect on inundation depths than that observed in estimated flood inundation extents.
METEOROLOGICAL AND TRANSPORT MODELING
Advanced air quality simulation models, such as CMAQ, as well as other transport and dispersion models, require accurate and detailed meteorology fields. These meteorology fields include primary 3-dimensional dynamical and thermodynamical variables (e.g., winds, temperature, mo...
Global meteorological data facility for real-time field experiments support and guidance
NASA Technical Reports Server (NTRS)
Shipham, Mark C.; Shipley, Scott T.; Trepte, Charles R.
1988-01-01
A Global Meteorological Data Facility (GMDF) has been constructed to provide economical real-time meteorological support to atmospheric field experiments. After collection and analysis of meteorological data sets at a central station, tailored meteorological products are transmitted to experiment field sites using conventional ground link or satellite communication techniques. The GMDF supported the Global Tropospheric Experiment Amazon Boundary Layer Experiment (GTE-ABLE II) based in Manaus, Brazil, during July and August 1985; an arctic airborne lidar survey mission for the Polar Stratospheric Clouds (PSC) experiment during January 1986; and the Genesis of Atlantic Lows Experiment (GALE) during January, February and March 1986. GMDF structure is similar to the UNIDATA concept, including meteorological data from the Zephyr Weather Transmission Service, a mode AAA GOES downlink, and dedicated processors for image manipulation, transmission and display. The GMDF improved field experiment operations in general, with the greatest benefits arising from the ability to communicate with field personnel in real time.
Meteorological and air pollution modeling for an urban airport
NASA Technical Reports Server (NTRS)
Swan, P. R.; Lee, I. Y.
1980-01-01
Results are presented of numerical experiments modeling meteorology, multiple pollutant sources, and nonlinear photochemical reactions for the case of an airport in a large urban area with complex terrain. A planetary boundary-layer model which predicts the mixing depth and generates wind, moisture, and temperature fields was used; it utilizes only surface and synoptic boundary conditions as input data. A version of the Hecht-Seinfeld-Dodge chemical kinetics model is integrated with a new, rapid numerical technique; both the San Francisco Bay Area Air Quality Management District source inventory and the San Jose Airport aircraft inventory are utilized. The air quality model results are presented in contour plots; the combined results illustrate that the highly nonlinear interactions which are present require that the chemistry and meteorology be considered simultaneously to make a valid assessment of the effects of individual sources on regional air quality.
Birch, Gabriel C.; Woo, Bryana L.; Sanchez, Andres L.; ...
2017-08-24
The evaluation of optical system performance in fog conditions typically requires field testing. This can be challenging due to the unpredictable nature of fog generation and the temporal and spatial nonuniformity of the phenomenon itself. We describe the Sandia National Laboratories fog chamber, a new test facility that enables the repeatable generation of fog within a 55 m×3 m×3 m (L×W×H) environment, and demonstrate the fog chamber through a series of optical tests. These tests are performed to evaluate system image quality, determine meteorological optical range (MOR), and measure the number of particles in the atmosphere. Relationships between typical opticalmore » quality metrics, MOR values, and total number of fog particles are described using the data obtained from the fog chamber and repeated over a series of three tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birch, Gabriel C.; Woo, Bryana L.; Sanchez, Andres L.
The evaluation of optical system performance in fog conditions typically requires field testing. This can be challenging due to the unpredictable nature of fog generation and the temporal and spatial nonuniformity of the phenomenon itself. We describe the Sandia National Laboratories fog chamber, a new test facility that enables the repeatable generation of fog within a 55 m×3 m×3 m (L×W×H) environment, and demonstrate the fog chamber through a series of optical tests. These tests are performed to evaluate system image quality, determine meteorological optical range (MOR), and measure the number of particles in the atmosphere. Relationships between typical opticalmore » quality metrics, MOR values, and total number of fog particles are described using the data obtained from the fog chamber and repeated over a series of three tests.« less
NASA Astrophysics Data System (ADS)
Winnicki, I.; Jasinski, J.; Kroszczynski, K.; Pietrek, S.
2009-04-01
The paper presents elements of research conducted in the Faculty of Civil Engineering and Geodesy of the Military University of Technology, Warsaw, Poland, concerning application of mesoscale models and remote sensing data to determining meteorological conditions of aircraft flight directly related with atmospheric instabilities. The quality of meteorological support of aviation depends on prompt and effective forecasting of weather conditions changes. The paper presents a computer module for detecting and monitoring zones of cloud cover, precipitation and turbulence along the aircraft flight route. It consists of programs and scripts for managing, processing and visualizing meteorological and remote sensing databases. The application was developed in Matlab® for Windows®. The module uses products of COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) mesoscale non-hydrostatic model of the atmosphere developed by the US Naval Research Laboratory, satellite images acquisition system from the MSG-2 (Meteosat Second Generation) of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and meteorological radars data acquired from the Institute of Meteorology and Water Management (IMGW), Warsaw, Poland. The satellite images acquisition system and the COAMPS model are run operationally in the Faculty of Civil Engineering and Geodesy. The mesoscale model is run on an IA64 Feniks multiprocessor 64-bit computer cluster. The basic task of the module is to enable a complex analysis of data sets of miscellaneous information structure and to verify COAMPS results using satellite and radar data. The research is conducted using uniform cartographic projection of all elements of the database. Satellite and radar images are transformed into the Lambert Conformal projection of COAMPS. This facilitates simultaneous interpretation and supports decision making process for safe execution of flights. Forecasts are based on horizontal distributions and vertical profiles of meteorological parameters produced by the module. Verification of forecasts includes research of spatial and temporal correlations of structures generated by the model, e.g.: cloudiness, meteorological phenomena (fogs, precipitation, turbulence) and structures identified on current satellite images. The developed module determines meteorological parameters fields for vertical profiles of the atmosphere. Interpolation procedures run at user selected standard (pressure) or height levels of the model enable to determine weather conditions along any route of aircraft. Basic parameters of the procedures determining e.g. flight safety include: cloud base, visibility, cloud cover, turbulence coefficient, icing and precipitation intensity. Determining icing and turbulence characteristics is based on standard and new methods (from other mesoscale models). The research includes also investigating new generation mesoscale models, especially remote sensing data assimilation. This is required by necessity to develop and introduce objective methods of forecasting weather conditions. Current research in the Faculty of Civil Engineering and Geodesy concerns validation of the mesoscale module performance.
Owen-Joyce, Sandra J.; Brown, Paul W.
1995-01-01
Data were collected at temporary meteorological stations installed in agricultural fields in Pinal County, Arizona, to evaluate the spatial and temporal variability of point data and to examine how station location affects ground-based meteorological data and the resulting values of evapotranspiration calculated using remotely sensed multispectral data from satellites. Time-specific data were collected to correspond with satellite overpasses from April to October 1989, and June 27-28, 1990. Meteorological data consisting of air temperature, relative humidity, wind speed, solar radiation, and net radiation were collected at each station during all periods of the project. Supplementary measurements of soil temperature, soil heat flux density, and surface or canopy temperature were obtained at some locations during certain periods of the project. Additional data include information on data-collection periods, station positions, instrumentation, sensor heights, and field dimensions. Other data, which correspond to the extensive field measurements made in con- junction with satellite overpasses in 1989 and 1990, include crop type, canopy cover, canopy height, irrigation, cultivation, and orientation of rows. Field boundaries and crop types were mapped in a 2- to 3-square-kilometer area surrounding each meteorological station. Field data are presented in tabular and graphic form. Meteorological and supplementary data are available, upon request, in digital form.
SCALES: SEVIRI and GERB CaL/VaL area for large-scale field experiments
NASA Astrophysics Data System (ADS)
Lopez-Baeza, Ernesto; Belda, Fernando; Bodas, Alejandro; Crommelynck, Dominique; Dewitte, Steven; Domenech, Carlos; Gimeno, Jaume F.; Harries, John E.; Jorge Sanchez, Joan; Pineda, Nicolau; Pino, David; Rius, Antonio; Saleh, Kauzar; Tarruella, Ramon; Velazquez, Almudena
2004-02-01
The main objective of the SCALES Project is to exploit the unique opportunity offered by the recent launch of the first European METEOSAT Second Generation geostationary satellite (MSG-1) to generate and validate new radiation budget and cloud products provided by the GERB (Geostationary Earth Radiation Budget) instrument. SCALES" specific objectives are: (i) definition and characterization of a large reasonably homogeneous area compatible to GERB pixel size (around 50 x 50 km2), (ii) validation of GERB TOA radiances and fluxes derived by means of angular distribution models, (iii) development of algorithms to estimate surface net radiation from GERB TOA measurements, and (iv) development of accurate methodologies to measure radiation flux divergence and analyze its influence on the thermal regime and dynamics of the atmosphere, also using GERB data. SCALES is highly innovative: it focuses on a new and unique space instrument and develops a new specific validation methodology for low resolution sensors that is based on the use of a robust reference meteorological station (Valencia Anchor Station) around which 3D high resolution meteorological fields are obtained from the MM5 Meteorological Model. During the 1st GERB Ground Validation Campaign (18th-24th June, 2003), CERES instruments on Aqua and Terra provided additional radiance measurements to support validation efforts. CERES instruments operated in the PAPS mode (Programmable Azimuth Plane Scanning) focusing the station. Ground measurements were taken by lidar, sun photometer, GPS precipitable water content, radiosounding ascents, Anchor Station operational meteorological measurements at 2m and 15m., 4 radiation components at 2m, and mobile stations to characterize a large area. In addition, measurements during LANDSAT overpasses on June 14th and 30th were also performed. These activities were carried out within the GIST (GERB International Science Team) framework, during GERB Commissioning Period.
Large-scale derived flood frequency analysis based on continuous simulation
NASA Astrophysics Data System (ADS)
Dung Nguyen, Viet; Hundecha, Yeshewatesfa; Guse, Björn; Vorogushyn, Sergiy; Merz, Bruno
2016-04-01
There is an increasing need for spatially consistent flood risk assessments at the regional scale (several 100.000 km2), in particular in the insurance industry and for national risk reduction strategies. However, most large-scale flood risk assessments are composed of smaller-scale assessments and show spatial inconsistencies. To overcome this deficit, a large-scale flood model composed of a weather generator and catchments models was developed reflecting the spatially inherent heterogeneity. The weather generator is a multisite and multivariate stochastic model capable of generating synthetic meteorological fields (precipitation, temperature, etc.) at daily resolution for the regional scale. These fields respect the observed autocorrelation, spatial correlation and co-variance between the variables. They are used as input into catchment models. A long-term simulation of this combined system enables to derive very long discharge series at many catchment locations serving as a basic for spatially consistent flood risk estimates at the regional scale. This combined model was set up and validated for major river catchments in Germany. The weather generator was trained by 53-year observation data at 528 stations covering not only the complete Germany but also parts of France, Switzerland, Czech Republic and Australia with the aggregated spatial scale of 443,931 km2. 10.000 years of daily meteorological fields for the study area were generated. Likewise, rainfall-runoff simulations with SWIM were performed for the entire Elbe, Rhine, Weser, Donau and Ems catchments. The validation results illustrate a good performance of the combined system, as the simulated flood magnitudes and frequencies agree well with the observed flood data. Based on continuous simulation this model chain is then used to estimate flood quantiles for the whole Germany including upstream headwater catchments in neighbouring countries. This continuous large scale approach overcomes the several drawbacks reported in traditional approaches for the derived flood frequency analysis and therefore is recommended for large scale flood risk case studies.
Meteorological satellite products support for project COHMEX
NASA Technical Reports Server (NTRS)
Velden, Christopher S.; Goodman, Brian M.; Smith, William L.
1988-01-01
The first year effort focussed on real-time support and satellite data collection during the field phase of COHMEX. Work efforts following the field phase of COHMEX concentrated on post-processing of the real-time data sets, and generation of enhanced, research-quality satellite data sets for selected COHMEX core days. These satellite-derived data sets will augment the special COHMEX conventional data base with high horizontal and temporal resolution information. The data sets will be examined for their usefulness in delineating important elements in the meteorological environment leading to convective activity. In addition, a limited research effort was conducted using the Cooperative Institute for Meteorological Satellite Studies (CIMSS) 4-d data assimilation system in conjunction with evaluating VISSR Atmospheric Sounder (VAS) and His-resolution Interferometer Sounder (HIS) data. The need to address the characteristics of the data types, and the problems they introduce into 4-d assimilation procedures is evident. The HIS instrument was flown aboard an ER-2 aircraft on several occasions during COHMEX. One of the flights was chosen for further study. Processed VAS soundings and COHMEX radiosonde data were also collected for this day. The case study included an evaluation of the HIS and VAS data and an impact study of the data on the assimilation system analysis.
The Mars Climate Database (MCD version 5.2)
NASA Astrophysics Data System (ADS)
Millour, E.; Forget, F.; Spiga, A.; Navarro, T.; Madeleine, J.-B.; Montabone, L.; Pottier, A.; Lefevre, F.; Montmessin, F.; Chaufray, J.-Y.; Lopez-Valverde, M. A.; Gonzalez-Galindo, F.; Lewis, S. R.; Read, P. L.; Huot, J.-P.; Desjean, M.-C.; MCD/GCM development Team
2015-10-01
The Mars Climate Database (MCD) is a database of meteorological fields derived from General Circulation Model (GCM) numerical simulations of the Martian atmosphere and validated using available observational data. The MCD includes complementary post-processing schemes such as high spatial resolution interpolation of environmental data and means of reconstructing the variability thereof. We have just completed (March 2015) the generation of a new version of the MCD, MCD version 5.2
2012-09-30
improving forecast performance over cloudy regions using the Ozone Monitoring Instrument (OMI) Aerosol Index; and 2) preparing for the post-MODIS...meteorological fields, the International Geosphere-Biosphere Programme (IGBP) SW and LW surface characteristics, and an ozone climatology are used as...The primary impact of CALIOP assimilation on the model is the redistribution of mass toward the boundary layer from the free troposphere . For high
Monitoring, modeling and mitigating impacts of wind farms on local meteorology
NASA Astrophysics Data System (ADS)
Baidya Roy, Somnath; Traiteur, Justin; Kelley, Neil
2010-05-01
Wind power is one of the fastest growing sources of energy. Most of the growth is in the industrial sector comprising of large utility-scale wind farms. Recent modeling studies have suggested that such wind farms can significantly affect local and regional weather and climate. In this work, we present observational evidence of the impact of wind farms on near-surface air temperatures. Data from perhaps the only meteorological field campaign in an operational wind farm shows that downwind temperatures are lower during the daytime and higher at night compared to the upwind environment. Corresponding radiosonde profiles at the nearby Edwards Air Force Base WMO meteorological station show that the diurnal environment is unstable while the nocturnal environment is stable during the field campaign. This behavior is consistent with the hypothesis proposed by Baidya Roy et al. (JGR 2004) that states that turbulence generated in the wake of rotors enhance vertical mixing leading to a warming/cooling under positive/negative potential temperature lapse rates. We conducted a set of 306 simulations with the Regional Atmospheric Modeling System (RAMS) to test if regional climate models can capture the thermal effects of wind farms. We represented wind turbines with a subgrid parameterization that assumes rotors to be sinks of momentum and sources of turbulence. The simulated wind farms consistently generated a localized warming/cooling under positive/negative lapse rates as hypothesized. We found that these impacts are inversely correlated with background atmospheric boundary layer turbulence. Thus, if the background turbulence is high due to natural processes, the effects of additional turbulence generated by wind turbine rotors are likely to be small. We propose the following strategies to minimize impacts of wind farms: • Engineering solution: design rotors that generate less turbulence in their wakes. Sensitivity simulations show that these turbines also increase the productivity of wind farms and reduce damages to downwind rotors. • Siting solution: develop wind farms in regions where ABL turbulence is naturally high. Since, turbulence data is not widely recorded, we use surface KE dissipation rate as a proxy for ABL turbulence. Indeed, in our simulations, these 2 parameters are strongly positively correlated (P<0.99). Using the JRA25 dataset, comprising of 25-year long 6-hourly global meteorological data, we identify such regions in the world. These regions that include the Midwest and Great Plains as well as large parts of northern Europe and western China are appropriate sites for low-impact wind farms.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Rong, Z.; Min, M.; Hao, X.; Yang, H.
2017-12-01
Meteorological satellites have become an irreplaceable weather and ocean-observing tool in China. These satellites are used to monitor natural disasters and improve the efficiency of many sectors of Chinese national economy. It is impossible to ignore the space-derived data in the fields of meteorology, hydrology, and agriculture, as well as disaster monitoring in China, a large agricultural country. For this reason, China is making a sustained effort to build and enhance its meteorological observing system and application system. The first Chinese polar-orbiting weather satellite was launched in 1988. Since then China has launched 14 meteorological satellites, 7 of which are sun synchronous and 7 of which are geostationary satellites; China will continue its two types of meteorological satellite programs. In order to achieve the in-orbit absolute radiometric calibration of the operational meteorological satellites' thermal infrared channels, China radiometric calibration sites (CRCS) established a set of in-orbit field absolute radiometric calibration methods (FCM) for thermal infrared channels (TIR) and the uncertainty of this method was evaluated and analyzed based on TERRA/AQUA MODIS observations. Comparisons between the MODIS at pupil brightness temperatures (BTs) and the simulated BTs at the top of atmosphere using radiative transfer model (RTM) based on field measurements showed that the accuracy of the current in-orbit field absolute radiometric calibration methods was better than 1.00K (@300K, K=1) in thermal infrared channels. Therefore, the current CRCS field calibration method for TIR channels applied to Chinese metrological satellites was with favorable calibration accuracy: for 10.5-11.5µm channel was better than 0.75K (@300K, K=1) and for 11.5-12.5µm channel was better than 0.85K (@300K, K=1).
Optimal Interpolation scheme to generate reference crop evapotranspiration
NASA Astrophysics Data System (ADS)
Tomas-Burguera, Miquel; Beguería, Santiago; Vicente-Serrano, Sergio; Maneta, Marco
2018-05-01
We used an Optimal Interpolation (OI) scheme to generate a reference crop evapotranspiration (ETo) grid, forcing meteorological variables, and their respective error variance in the Iberian Peninsula for the period 1989-2011. To perform the OI we used observational data from the Spanish Meteorological Agency (AEMET) and outputs from a physically-based climate model. To compute ETo we used five OI schemes to generate grids for the five observed climate variables necessary to compute ETo using the FAO-recommended form of the Penman-Monteith equation (FAO-PM). The granularity of the resulting grids are less sensitive to variations in the density and distribution of the observational network than those generated by other interpolation methods. This is because our implementation of the OI method uses a physically-based climate model as prior background information about the spatial distribution of the climatic variables, which is critical for under-observed regions. This provides temporal consistency in the spatial variability of the climatic fields. We also show that increases in the density and improvements in the distribution of the observational network reduces substantially the uncertainty of the climatic and ETo estimates. Finally, a sensitivity analysis of observational uncertainties and network densification suggests the existence of a trade-off between quantity and quality of observations.
NASA Astrophysics Data System (ADS)
Stauffer, R. M.; Thompson, A. M.
2017-12-01
Previous studies employing the self-organizing map (SOM) clustering technique to US ozonesonde data proved valuable for quantifying UT/LS O3 variability, and linking meteorological and chemical drivers to the shape of the ozone (O3) profile from the troposphere to the lower stratosphere. Focus has thus far been limited to specific geographical regions, but SOM has demonstrated the advantages of clustering over monthly climatological O3 averages, which mask day-to-day variability in the O3 profile and the correspondence between O3 and meteorology. We expand SOM to a global set of ozonesonde profiles, mostly from WOUDC, spanning 1980-present from 30 sites to evaluate global O3 climatologies and quantify links to geophysical processes for various meteorological regimes. Four clusters of O3 mixing ratio profiles are generated for each site, which show dominant profile shapes that correspond to site latitude. Offsets among O3 profile clusters and monthly O3 climatologies are 100s of ppbv in the UT/LS at higher latitude sites with active dynamics. Examination of meteorological reanalyses reveals a clear relationship among SOM clusters and covarying meteorological fields (geopotential height, potential vorticity, and tropopause height) for most sites. Tropical SOM clusters show marked dependence on velocity potential anomalies calculated from reanalysis winds, with low UT/LS O3 amounts corresponding to enhanced upper-level divergence, and vice versa. In addition to creating SOM cluster-based O3 climatologies, these results are meant to inform future approaches to validation of chemical transport models and satellite retrievals, which often struggle in the UT/LS region.
NASA Astrophysics Data System (ADS)
Sommer, Philipp S.; Kaplan, Jed O.
2017-10-01
While a wide range of Earth system processes occur at daily and even subdaily timescales, many global vegetation and other terrestrial dynamics models historically used monthly meteorological forcing both to reduce computational demand and because global datasets were lacking. Recently, dynamic land surface modeling has moved towards resolving daily and subdaily processes, and global datasets containing daily and subdaily meteorology have become available. These meteorological datasets, however, cover only the instrumental era of the last approximately 120 years at best, are subject to considerable uncertainty, and represent extremely large data files with associated computational costs of data input/output and file transfer. For periods before the recent past or in the future, global meteorological forcing can be provided by climate model output, but the quality of these data at high temporal resolution is low, particularly for daily precipitation frequency and amount. Here, we present GWGEN, a globally applicable statistical weather generator for the temporal downscaling of monthly climatology to daily meteorology. Our weather generator is parameterized using a global meteorological database and simulates daily values of five common variables: minimum and maximum temperature, precipitation, cloud cover, and wind speed. GWGEN is lightweight, modular, and requires a minimal set of monthly mean variables as input. The weather generator may be used in a range of applications, for example, in global vegetation, crop, soil erosion, or hydrological models. While GWGEN does not currently perform spatially autocorrelated multi-point downscaling of daily weather, this additional functionality could be implemented in future versions.
NASA Technical Reports Server (NTRS)
Pierce, E. T.
1969-01-01
The properties of sferics (the electric and magnetic fields generated by electrified clouds and lightning flashes) are briefly surveyed; the source disturbance and the influence of propagation being examined. Methods of observing sferics and their meteorological implications are discussed. It is concluded that close observations of electrostatic and radiation fields are very informative, respectively, upon the charge distribution and spark processes in a cloud; that ground-level sferics stations can accurately locate the positions of individual lightning flashes and furnish valuable knowledge on the properties of the discharges; but that satellite measurements only provide general information on the level of thundery activity over large geographical regions.
NASA Astrophysics Data System (ADS)
Aoyama, T.; Iyemori, T.; Nakanishi, K.
2014-12-01
We present case studies of small-scale magnetic fluctuations above typhoons, hurricanes and cyclones as observed by the swarm constellation. It is reported lately that AGWs(atmospheric gravity waves) generated by meteorological phenomena in the troposphere such as typhoons and tornadoes, large earthquakes and volcanic eruptions propagate to the mesosphere and thermosphere. We observe them in various forms(e.g. airglows, ionospheric disturbances and TEC variations). We are proposing the following model. AGWs caused by atmospheric disturbances in the troposphere propagate to the ionospheric E-layer, drive dynamo action and generate field-aligned currents. The satellites observe magnetic fluctuations above the ionosphere. In this presentation, we focus on cases of tropical cyclone(hurricanes in North America, typhoons in North-West Pacific).
Trace Gas/Aerosol Interactions and GMI Modeling Support
NASA Technical Reports Server (NTRS)
Penner, Joyce E.; Liu, Xiaohong; Das, Bigyani; Bergmann, Dan; Rodriquez, Jose M.; Strahan, Susan; Wang, Minghuai; Feng, Yan
2005-01-01
Current global aerosol models use different physical and chemical schemes and parameters, different meteorological fields, and often different emission sources. Since the physical and chemical parameterization schemes are often tuned to obtain results that are consistent with observations, it is difficult to assess the true uncertainty due to meteorology alone. Under the framework of the NASA global modeling initiative (GMI), the differences and uncertainties in aerosol simulations (for sulfate, organic carbon, black carbon, dust and sea salt) solely due to different meteorological fields are analyzed and quantified. Three meteorological datasets available from the NASA DAO GCM, the GISS-II' GCM, and the NASA finite volume GCM (FVGCM) are used to drive the same aerosol model. The global sulfate and mineral dust burdens with FVGCM fields are 40% and 20% less than those with DAO and GISS fields, respectively due to its heavier rainfall. Meanwhile, the sea salt burden predicted with FVGCM fields is 56% and 43% higher than those with DAO and GISS, respectively, due to its stronger convection especially over the Southern Hemispheric Ocean. Sulfate concentrations at the surface in the Northern Hemisphere extratropics and in the middle to upper troposphere differ by more than a factor of 3 between the three meteorological datasets. The agreement between model calculated and observed aerosol concentrations in the industrial regions (e.g., North America and Europe) is quite similar for all three meteorological datasets. Away from the source regions, however, the comparisons with observations differ greatly for DAO, FVGCM and GISS, and the performance of the model using different datasets varies largely depending on sites and species. Global annual average aerosol optical depth at 550 nm is 0.120-0.131 for the three meteorological datasets.
NASA Technical Reports Server (NTRS)
Rodriquez, J. M.; Yoshida, Y.; Duncan, B. N.; Bucsela, E. J.; Gleason, J. F.; Allen, D.; Pickering, K. E.
2007-01-01
We present simulations of the tropospheric composition for the years 2004 and 2005, carried out by the GMI Combined Stratosphere-Troposphere (Combo) model, at a resolution of 2degx2.5deg. The model includes a new parameterization of lightning sources of NO(x) which is coupled to the cloud mass fluxes in the adopted meteorological fields. These simulations use two different sets of input meteorological fields: a)late-look assimilated fields from the Global Modeling and Assimilation Office (GMAO), GEOS-4 system and b) 12-hour forecast fields initialized with the assimilated data. Comparison of the forecast to the assimilated fields indicates that the forecast fields exhibit less vigorous convection, and yield tropical precipitation fields in better agreement with observations. Since these simulations include a complete representation of the stratosphere, they provide realistic stratosphere-tropospheric fluxes of O3 and NO(y). Furthermore, the stratospheric contribution to total columns of different troposheric species can be subtracted in a consistent fashion, and the lightning production of NO(y) will depend on the adopted meteorological field. We concentrate here on the simulated tropospheric columns of NO2, and compare them to observations by the OM1 instrument for the years 2004 and 2005. The comparison is used to address these questions: a) is there a significant difference in the agreement/disagreement between simulations for these two different meteorological fields, and if so, what causes these differences?; b) how do the simulations compare to OMI observations, and does this comparison indicate an improvement in simulations with the forecast fields? c) what are the implications of these simulations for our understanding of the NO2 emissions over continental polluted regions?
NASA Astrophysics Data System (ADS)
Gedzelman, Stanley David
William L. Donn, Professor Emeritus of the Department of Earth and Planetary Sciences, City College of New York, and Special Research Scientist at Lamont-Doherty Geological Observatory (LDGO) of Columbia University (Palisades, N.Y.), died at his home on June 30, 1987, at the age of 69. Bill demonstrated expertise in a wide range of fields, with a highly productive and creative research and writing career that included geology, oceanography, climatology, atmospheric physics, and meteorology.Donn was born in Brooklyn, N.Y., on March 2, 1918. At the tender age of 10 years, he demonstrated his love and talent for science by building a telescope with his brother, Bertram. During his undergraduate years at Brooklyn College, he switched his major from astronomy to geology. He was largely selftrained in both meteorology and oceanography, serving as head of the Meteorology Section, U.S. Merchant Marine Academy during World War II . One by-product of these years was the textbook Meteorology—With Marine Applications, first published in 1946. This widely adopted text became a standard for a generation of mariners and college students.
Charles Bachman Moore (1920-2010)
NASA Astrophysics Data System (ADS)
Winn, William; Krehbiel, Paul
2011-02-01
Charles B. Moore passed away 2 March 2010 at the age of 89, following a long and varied scientific career in meteorology and the atmospheric sciences. He will be remembered best for his substantial contributions in the field of atmospheric electricity and for the students and faculty he guided as chairman of Langmuir Laboratory for Atmospheric Research and professor of physics at the New Mexico Institute of Mining and Technology. He possessed a unique sense of humor and an excellent memory that served as a reservoir of scientific and historical knowledge. Like many of his generation, Charlie's career was profoundly influenced by the Second World War. Following Pearl Harbor, he interrupted his undergraduate studies in chemical engineering at Georgia Institute of Technology to enlist in the Army Air Corps, where he became the chief weather equipment officer in the 10th Weather Squadron, setting up and operating remote meteorological stations behind enemy lines in the China-Burma-India theater. He served with distinction alongside Athelstan Spilhaus Sr., who had been one of Charlie's instructors in the Army meteorology program.
NASA Astrophysics Data System (ADS)
Liu, Junjie; Fung, Inez; Kalnay, Eugenia; Kang, Ji-Sun; Olsen, Edward T.; Chen, Luke
2012-03-01
This study is our first step toward the generation of 6 hourly 3-D CO2 fields that can be used to validate CO2 forecast models by combining CO2 observations from multiple sources using ensemble Kalman filtering. We discuss a procedure to assimilate Atmospheric Infrared Sounder (AIRS) column-averaged dry-air mole fraction of CO2 (Xco2) in conjunction with meteorological observations with the coupled Local Ensemble Transform Kalman Filter (LETKF)-Community Atmospheric Model version 3.5. We examine the impact of assimilating AIRS Xco2 observations on CO2 fields by comparing the results from the AIRS-run, which assimilates both AIRS Xco2 and meteorological observations, to those from the meteor-run, which only assimilates meteorological observations. We find that assimilating AIRS Xco2 results in a surface CO2 seasonal cycle and the N-S surface gradient closer to the observations. When taking account of the CO2 uncertainty estimation from the LETKF, the CO2 analysis brackets the observed seasonal cycle. Verification against independent aircraft observations shows that assimilating AIRS Xco2 improves the accuracy of the CO2 vertical profiles by about 0.5-2 ppm depending on location and altitude. The results show that the CO2 analysis ensemble spread at AIRS Xco2 space is between 0.5 and 2 ppm, and the CO2 analysis ensemble spread around the peak level of the averaging kernels is between 1 and 2 ppm. This uncertainty estimation is consistent with the magnitude of the CO2 analysis error verified against AIRS Xco2 observations and the independent aircraft CO2 vertical profiles.
Air Quality and Meteorological Boundary Conditions during the MCMA-2003 Field Campaign
NASA Astrophysics Data System (ADS)
Sosa, G.; Arriaga, J.; Vega, E.; Magaña, V.; Caetano, E.; de Foy, B.; Molina, L. T.; Molina, M. J.; Ramos, R.; Retama, A.; Zaragoza, J.; Martínez, A. P.; Márquez, C.; Cárdenas, B.; Lamb, B.; Velasco, E.; Allwine, E.; Pressley, S.; Westberg, H.; Reyes, R.
2004-12-01
A comprehensive field campaign to characterize photochemical smog in the Mexico City Metropolitan Area (MCMA) was conducted during April 2003. An important number of equipment was deployed all around the urban core and its surroundings to measure gas and particles composition from the various sources and receptor sites. In addition to air quality measurements, meteorology variables were also taken by regular weather meteorological stations, tethered balloons, radiosondes, sodars and lidars. One important issue with regard to the field campaign was the characterization of the boundary conditions in order to feed meteorological and air quality models. Four boundary sites were selected to measure continuously criteria pollutants, VOC and meteorological variables at surface level. Vertical meteorological profiles were measured at three other sites : radiosondes in Tacubaya site were launched every six hours daily; tethered balloons were launched at CENICA and FES-Cuautitlan sites according to the weather conditions, and one sodar was deployed at UNAM site in the south of the city. Additionally to these measurements, two fixed meteorological monitoring networks deployed along the city were available to complement these measurements. In general, we observed that transport of pollutants from the city to the boundary sites changes every day, according to the coupling between synoptic and local winds. This effect were less important at elevated sites such as Cerro de la Catedral and ININ, where synoptic wind were more dominant during the field campaign. Also, local sources nearby boundary sites hide the influence of pollution coming from the city some days, particularly at the La Reforma site.
Carbonaceous aerosols and Impacts on regional climate over South Asia
NASA Astrophysics Data System (ADS)
Pathak, B.; Parottil, A.
2017-12-01
A comprehensive assessment on the effects of carbonaceous aerosols over regional climate of South Asia CORDEX Domain is carried out using the ICTP developed Regional climate model version 4 (RegCM 4.4). Five different simulations considering (a) Carbonaceous aerosols with feedback to meteorological field (EXP1), (b) Carbonaceous aerosols without feedback to meteorological field (c) only Black Carbon with feed back to meteorological field (EXP3) and (d) only Black Carbon without feed back to meteorological field (EXP4) and only meteorology simulation (CNTL) are performed. All the five experiments are integrated from 01 January 2008 to 01 January 2012 continuously with a horizontal resolution of 50 km with first one year as spin up time. The simulated meteorology for all the simulations is validated by comparing with observations. The influence of carbonaceous aerosols on Direct Radiative Forcing (DRF) at the top of the atmosphere (TOA) and within the atmosphere (ATM) over the South Asian region with focus on Indian subcontinent is carried out. The contribution of black carbon to the total DRF and its significance is analyzed. Modulation in precipitation and temperature with the aerosol-climate feedback is studied by comparing the meteorological parameters in CNTL with CARB/BC with and without feedback simulations. In general, black carbon is found to reduce the precipitation, wind over the region more strongly than total carbonaceous aerosols. Role of black carbon in warming the surface is investigated by comparing the RegCM simulation considering both biomass burning and anthropogenic emissions with simulations considering only anthropogenic simulations.
NASA Astrophysics Data System (ADS)
Heckmann, G.; Route, G.
2009-12-01
The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD. The NPOESS satellites carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground data processing segment for NPOESS is the Interface Data Processing Segment (IDPS), developed by Raytheon Intelligence and Information Systems. The IDPS processes NPOESS satellite data to provide environmental data products (aka, Environmental Data Records or EDRs) to NOAA and DoD processing centers operated by the United States government. The IDPS will process EDRs beginning with the NPOESS Preparatory Project (NPP) and continuing through the lifetime of the NPOESS system. IDPS also provides the software and requirements for the Field Terminal Segment (FTS). NPOESS provides support to deployed field terminals by providing mission data in the Low Rate and High Rate downlinks (LRD/HRD), mission support data needed to generate EDRs and decryption keys needed to decrypt mission data during Selective data Encryption (SDE). Mission support data consists of globally relevant data, geographically constrained data, and two line element sets. NPOESS provides these mission support data via the Internet accessible Mission Support Data Server and HRD/LRD downlinks. This presentation will illustrate and describe the NPOESS capabilities in support of Field Terminal users. This discussion will include the mission support data available to Field Terminal users, content of the direct broadcast HRD and LRD downlinks identifying differences between the direct broadcast downlinks including the variability of the LRD downlink and NPOESS management and distribution of decryption keys to approved field terminals using Public Key Infrastructure (PKI) AES standard with 256 bit encryption and elliptical curve cryptography.
Aircraft measurements of the atmospheric electrical global circuit during the period 1971-1984
NASA Technical Reports Server (NTRS)
Markson, R.
1985-01-01
This report will update an investigation of the global circuit conducted over the last 14 years through aircraft measurements of the variation of ionospheric potential and associated parameters. The data base included electric field, conductivity, and air-earth current density profiles from the tropics (25 deg N) to the Arctic (79 deg N). Almost all of the data have been obtained over the ocean to reduce noise associated with local generators, aerosols, and convection. Recently, two aircraft have been utilized to obtain, for the first time, quasi-periodic sets of simultaneous ionospheric potential (VI) soundings at remote locations and extending over time spans sufficiently long so that the universal time diurnal variation (Carnegie curve) could be observed. In additon, these measurements provided the first detection of the modulation of electric fields in the troposphere caused by the double vortex ionospheric convection pattern. Besides summarizing these measurements and comparing them to similar data obtained by other groups, this report discusses meteorological sources of error and criteria for determining if the global circuit is being measured rather than variations caused by local meteorological processes.
What do you want to be in ten years? - Advising meteorology students in the post-Twister era
NASA Astrophysics Data System (ADS)
Snow, J. T.; Hempe, M.
2012-12-01
"What do you want to be in ten years?' This is a question we ask our students, freshmen and transfer, when they first arrive in the College student services center. Often the answer is "I don't know. I just want to be in meteorology." This response leads to a discussion of career opportunities in meteorology and related fields, including what might be called faux-careers, such as professional storm chasing and weather tour operations. (Students often have been misled by what they have seen in television shows.) Many students arrive on our doorstep with their heart set on a degree in meteorology, but lack knowledge of what the field is about or how challenging a meteorology degree program really is. We find ourselves spending a great deal of time convincing students that they need to explore the real opportunities in meteorology and related fields, which are many. Fortunately, because of the concentration of University and federal weather organizations in the National Weather Center and private sector weather companies in adjacent buildings, we are able to show concrete examples of real careers by means of tours, job shadowing, and introductions to alumni employed in these organizations. Also, as the students' progress in their studies, they discover the many opportunities for undergraduate employment, research experiences, and internships in these same organizations, through which they gain an appreciation for what constitutes a real career in modern meteorology. Further, many of today's careers in meteorology require a broad, global perspective. Unfortunately, many meteorology students have not traveled widely, but again have only seen what the media provides about distant lands and peoples. Accordingly, we encourage our undergraduate students to take advantage of our unique opportunities for overseas experiences in meteorology. Through arrangements with the met programs at the University of Reading (England), Monash University (Australia), and University of Hamburg (Germany), we are able to offer a one-semester international experience structured so that there are no delays in a participating student's graduation date. The student who takes advantage of this opportunity gains a broad perspective of the field and learns a great deal about themselves and the world.
Evaluation of low wind modeling approaches for two tall-stack databases.
Paine, Robert; Samani, Olga; Kaplan, Mary; Knipping, Eladio; Kumar, Naresh
2015-11-01
The performance of the AERMOD air dispersion model under low wind speed conditions, especially for applications with only one level of meteorological data and no direct turbulence measurements or vertical temperature gradient observations, is the focus of this study. The analysis documented in this paper addresses evaluations for low wind conditions involving tall stack releases for which multiple years of concurrent emissions, meteorological data, and monitoring data are available. AERMOD was tested on two field-study databases involving several SO2 monitors and hourly emissions data that had sub-hourly meteorological data (e.g., 10-min averages) available using several technical options: default mode, with various low wind speed beta options, and using the available sub-hourly meteorological data. These field study databases included (1) Mercer County, a North Dakota database featuring five SO2 monitors within 10 km of the Dakota Gasification Company's plant and the Antelope Valley Station power plant in an area of both flat and elevated terrain, and (2) a flat-terrain setting database with four SO2 monitors within 6 km of the Gibson Generating Station in southwest Indiana. Both sites featured regionally representative 10-m meteorological databases, with no significant terrain obstacles between the meteorological site and the emission sources. The low wind beta options show improvement in model performance helping to reduce some of the over-prediction biases currently present in AERMOD when run with regulatory default options. The overall findings with the low wind speed testing on these tall stack field-study databases indicate that AERMOD low wind speed options have a minor effect for flat terrain locations, but can have a significant effect for elevated terrain locations. The performance of AERMOD using low wind speed options leads to improved consistency of meteorological conditions associated with the highest observed and predicted concentration events. The available sub-hourly modeling results using the Sub-Hourly AERMOD Run Procedure (SHARP) are relatively unbiased and show that this alternative approach should be seriously considered to address situations dominated by low-wind meander conditions. AERMOD was evaluated with two tall stack databases (in North Dakota and Indiana) in areas of both flat and elevated terrain. AERMOD cases included the regulatory default mode, low wind speed beta options, and use of the Sub-Hourly AERMOD Run Procedure (SHARP). The low wind beta options show improvement in model performance (especially in higher terrain areas), helping to reduce some of the over-prediction biases currently present in regulatory default AERMOD. The SHARP results are relatively unbiased and show that this approach should be seriously considered to address situations dominated by low-wind meander conditions.
Structure and Dynamics of Fluid Planets
NASA Astrophysics Data System (ADS)
Houben, H.
2014-12-01
Attention to conservation laws gives a comprehensive picture of the structure and dynamics of gas giants: Atmospheric differential rotation is generated by tidal torques (dependent on tropospheric static stability) and is dragged into the interior by turbulent viscosity. The consequent heat dissipation generates baroclinicity and approximate thermal wind balance, not Taylor-Proudman conditions. Magnetic Lorentz forces have no effect on the zonal wind, but generate a meridional wind approximately parallel to field lines. Thus, magnetic field generation in the interior is dominated by the ω-effect (zonal field wound up by differential rotation), with the α-effect (meridional field generated by turbulence) severely limited by the β-effect (turbulence-enhanced resistivity). The meridional circulation quenches the ω-effect so that a steady state is reached and also limits the magnitude of the non-axisymmetric field under certain circumstances. The stability of the steady state requires further study. The magnetic field travels with the E X B drift, rather than the fluid velocity. Work by the fluid on the magnetic field balances work by the magnetic field on the fluid, so the global heat flux is little changed. In conducting regions the meridional density distribution (and gravity field) is most sensitive to the total pressure (gas + magnetic) and the ω-effect. In nonconducting regions, the gas pressure, centrifugal force, and differential rotation dominate. The differential rotation varies at least as fast as r³, so the gravitational signal is small compared to that for differential rotation on cylinders. The entropy minimum near the tropopause allows meteorology to be dominated by (relatively) long-lived, closed potential temperature surfaces, usually called spots, which conserve potential vorticity. All of the above must be taken into account to properly assimilate any available observational data to further specify the interior properties of fluid planets.
New generation of meteorology cameras
NASA Astrophysics Data System (ADS)
Janout, Petr; Blažek, Martin; Páta, Petr
2017-12-01
A new generation of the WILLIAM (WIde-field aLL-sky Image Analyzing Monitoring system) camera includes new features such as monitoring of rain and storm clouds during the day observation. Development of the new generation of weather monitoring cameras responds to the demand for monitoring of sudden weather changes. However, new WILLIAM cameras are ready to process acquired image data immediately, release warning against sudden torrential rains, and send it to user's cell phone and email. Actual weather conditions are determined from image data, and results of image processing are complemented by data from sensors of temperature, humidity, and atmospheric pressure. In this paper, we present the architecture, image data processing algorithms of mentioned monitoring camera and spatially-variant model of imaging system aberrations based on Zernike polynomials.
Field test of an autonomous wind-diesel power plant
NASA Astrophysics Data System (ADS)
Fritzsche, A.; Knoebel, U.; Ruckert, W.
1985-09-01
An autonomous power plant composed of a wind energy converter and a diesel generator was tested in laboratory and in the field to assess the wind energy supply as a noninfluenceable parameter in the regulation of the mono and bivalent operation of the power plant, for control of the dynamic behavior of the electrical components, for tuning of the regulation expenditure with comfort requirements, and for model evaluation of energy cost analysis. The interaction between meteorological, technical, economic and energy policy aspects was assessed. The relationship between economical use and comfort limits technical improvement. Development of the concept of a bivalent power supply with wind and diesel is recommended.
Meteosat third generation: preliminary imagery and sounding mission concepts and performances
NASA Astrophysics Data System (ADS)
Aminou, Donny M.; Bézy, Jean-Loup; Bensi, Paolo; Stuhlmann, Rolf; Rodriguez, Antonio
2017-11-01
The operational deployment of MSG-1 at the beginning of 2004, the first of a series of four Meteosat Second Generation (MSG) satellites, marks the start of a new era in Europe for the meteorological observations from the geostationary orbit. This new system shall be the backbone of the European operational meteorological services up to at least 2015. The time required for the definition and the development of new space systems as well as the approval process of such complex programs implies to plan well ahead for the future missions. EUMETSAT have initiated in 2001, with ESA support, a User Consultation Process aiming at preparing for a future operational geostationary meteorological satellite system in the post-MSG era, named Meteosat Third Generation (MTG). The first phase of the User Consultation Process was devoted to the definition and consolidation of end user requirements and priorities in the field of Nowcasting and Very Short Term Weather Forecasting (NWC), Medium/Short Range global and regional Numerical Weather Prediction (NWP), Climate and Air Composition Monitoring and to the definition of the relevant observation techniques. After an initial post-MSG mission study (2003-2004) where preliminary instrument concepts were investigated allowing in the same time to consolidate the technical requirements for the overall system study, a MTG pre-phase A study has been performed for the overall system concept, architecture and programmatic aspects during 2004-2005 time frame. This paper provides an overview of the outcome of the MTG sensor concept studies conducted in the frame of the pre-phase A. It namely focuses onto the Imaging and Sounding Missions, highlights the resulting instrument concepts, establishes the critical technologies and introduces the study steps towards the implementation of the MTG development programme.
NASA Astrophysics Data System (ADS)
Lee, Jangho; Kim, Kwang-Yul
2018-02-01
CSEOF analysis is applied for the springtime (March, April, May) daily PM10 concentrations measured at 23 Ministry of Environment stations in Seoul, Korea for the period of 2003-2012. Six meteorological variables at 12 pressure levels are also acquired from the ERA Interim reanalysis datasets. CSEOF analysis is conducted for each meteorological variable over East Asia. Regression analysis is conducted in CSEOF space between the PM10 concentrations and individual meteorological variables to identify associated atmospheric conditions for each CSEOF mode. By adding the regressed loading vectors with the mean meteorological fields, the daily atmospheric conditions are obtained for the first five CSEOF modes. Then, HYSPLIT model is run with the atmospheric conditions for each CSEOF mode in order to back trace the air parcels and dust reaching Seoul. The K-means clustering algorithm is applied to identify major source regions for each CSEOF mode of the PM10 concentrations in Seoul. Three main source regions identified based on the mean fields are: (1) northern Taklamakan Desert (NTD), (2) Gobi Desert and (GD), and (3) East China industrial area (ECI). The main source regions for the mean meteorological fields are consistent with those of previous study; 41% of the source locations are located in GD followed by ECI (37%) and NTD (21%). Back trajectory calculations based on CSEOF analysis of meteorological variables identify distinct source characteristics associated with each CSEOF mode and greatly facilitate the interpretation of the PM10 variability in Seoul in terms of transportation route and meteorological conditions including the source area.
Final Report: Update of the Glossary of Meteorology, September 1, 1994 - August 3, 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
American Meteorological Society
2000-01-24
The American Meteorological Society has updated the Glossary of Meteorology from the first addition which was published in 1959. The second edition contains over 12,000 entries in meteorology and related fields. The glossary will be made available in both book and CD-ROM formats. DOE was one of six federal agencies that provided support for this project.
NASA Astrophysics Data System (ADS)
Lindsey, Charles G.; Chen, Jun; Dye, Timothy S.; Willard Richards, L.; Blumenthal, Donald L.
1999-08-01
During the 1990 Navajo Generating Station (NGS) Winter Visibility Study, a network of surface and upper-air meteorological measurement systems was operated in and around Grand Canyon National Park to investigate atmospheric processes in complex terrain that affected the transport of emissions from the nearby NGS. This network included 15 surface monitoring stations, eight balloon sounding stations (equipped with a mix of rawinsonde, tethersonde, and Airsonde sounding systems), three Doppler radar wind profilers, and four Doppler sodars. Measurements were made from 10 January through 31 March 1990. Data from this network were used to prepare objectively analyzed wind fields, trajectories, and streak lines to represent transport of emissions from the NGS, and to prepare isentropic analyses of the data. The results of these meteorological analyses were merged in the form of a computer animation that depicted the streak line analyses along with measurements of perfluorocarbon tracer, SO2, and sulfate aerosol concentrations, as well as visibility measurements collected by an extensive surface monitoring network. These analyses revealed that synoptic-scale circulations associated with the passage of low pressure systems followed by the formation of high pressure ridges accompanied the majority of cases when NGS emittants appeared to be transported to the Grand Canyon. The authors' results also revealed terrain influences on transport within the topography of the study area, especially mesoscale flows inside the Lake Powell basin and along the plain above the Marble Canyon.
NASA Technical Reports Server (NTRS)
Howle, R. E.; Krause, M. C.; Craven, C. E.; Gorzynski, E. J.; Edwards, B. B.
1976-01-01
The first detailed velocity profile data on thermally induced dust vortices are presented. These dust devils will be analyzed and studied to determine their flow fields and origin in an effort to correlate this phenomena with the generation and characteristics of tornadoes. A continuing effort to increase mankind's knowledge of vortex and other meteorological phenomena will hopefully allow the prediction of tornado occurrence, their path, and perhaps eventually even lead to some technique for their destruction.
Computer-generated imagery for 4-D meteorological data
NASA Technical Reports Server (NTRS)
Hibbard, William L.
1986-01-01
The University of Wisconsin-Madison Space Science and Engineering Center is developing animated stereo display terminals for use with McIDAS (Man-computer Interactive Data Access System). This paper describes image-generation techniques which have been developed to take maximum advantage of these terminals, integrating large quantities of four-dimensional meteorological data from balloon and satellite soundings, satellite images, Doppler and volumetric radar, and conventional surface observations. The images have been designed to use perspective, shading, hidden-surface removal, and transparency to augment the animation and stereo-display geometry. They create an illusion of a moving three-dimensional model of the atmosphere. This paper describes the design of these images and a number of rules of thumb for generating four-dimensional meteorological displays.
NASA Astrophysics Data System (ADS)
Landry, R. G.; Anderson, P. C.
2017-12-01
Subauroral ion drifts (SAID) are a phenomenon sometimes observed in the subauroral ionosphere in dusk to post-midnight magnetic local time sectors during magnetically active periods characterized by strong poleward electric fields that drive westward ion drifts greater than 1 km/s. SAIDs typically will span 1-2 degrees magnetic latitude and several hours in magnetic local time. SAIDs are often observed colocated with the midlatitude trough. The strong electric field can act to reduce the ionospheric conductivity further through enhanced recombination and vertical transport. The theory that SAIDs are generated by ionospheric Pedersen currents fed by ring current driven field-aligned currents (FAC) requires the decreased conductance associated with the midlatitude trough to produce the latitudinally narrow, large amplitude SAID electric field. Using Dynamics Explorer 2 (DE 2) plasma measurements of SAIDs from altitudes of 200 to 1000 km, we investigate the statistical variation of the ionospheric composition, temperature, and vertical ion drifts as a function of altitude. Using Defense Meteorological Satellite Program (DMSP) measurements from 1987-2012, we extend the empirical study at the DMSP altitude of 830 km to investigate how season, longitude, and any ionospheric preconditioning before SAID formation affect the likelihood of SAID occurrence and coincidence with FACs and ion density troughs.
NASA Astrophysics Data System (ADS)
Guo, Danlu; Westra, Seth; Maier, Holger R.
2017-11-01
Scenario-neutral approaches are being used increasingly for assessing the potential impact of climate change on water resource systems, as these approaches allow the performance of these systems to be evaluated independently of climate change projections. However, practical implementations of these approaches are still scarce, with a key limitation being the difficulty of generating a range of plausible future time series of hydro-meteorological data. In this study we apply a recently developed inverse stochastic generation approach to support the scenario-neutral analysis, and thus identify the key hydro-meteorological variables to which the system is most sensitive. The stochastic generator simulates synthetic hydro-meteorological time series that represent plausible future changes in (1) the average, extremes and seasonal patterns of rainfall; and (2) the average values of temperature (Ta), relative humidity (RH) and wind speed (uz) as variables that drive PET. These hydro-meteorological time series are then fed through a conceptual rainfall-runoff model to simulate the potential changes in runoff as a function of changes in the hydro-meteorological variables, and runoff sensitivity is assessed with both correlation and Sobol' sensitivity analyses. The method was applied to a case study catchment in South Australia, and the results showed that the most important hydro-meteorological attributes for runoff were winter rainfall followed by the annual average rainfall, while the PET-related meteorological variables had comparatively little impact. The high importance of winter rainfall can be related to the winter-dominated nature of both the rainfall and runoff regimes in this catchment. The approach illustrated in this study can greatly enhance our understanding of the key hydro-meteorological attributes and processes that are likely to drive catchment runoff under a changing climate, thus enabling the design of tailored climate impact assessments to specific water resource systems.
An Assessment of the Level of Mathematics in Introductory Meteorology Textbooks.
NASA Astrophysics Data System (ADS)
Ulanski, Stan L.
1992-10-01
A review of introductory meteorology textbooks shows a wide difference in the level of mathematical treatment of atmospheric principles-from virtually none to fairly high. Particular deficiencies include lack of equations integrated into the text, problem-solving examples, and paucity of end-of-chapter questions requiring mathematical reasoning. These issues are raised in order to generate discussion among the meteorological community with regard to the degree of interaction between mathematics and meteorology in introductory courses.
In this study, techniques typically used for future air quality projections are applied to a historical 11-year period to assess the performance of the modeling system when the driving meteorological conditions are obtained using dynamical downscaling of coarse-scale fields witho...
The generation of spring peak flows by short-term meteorological events
Harold F. Haupt
1968-01-01
Spring peak flows recorded over a 25-year period in Benton Creek, a small forested watershed in northern Idaho, were studied in their relation to meteorological events. More peak flows were generated by rain-on-snow than by clear-weather snowmelt; the two types of peaks differ in magnitude and in other characteristics. Two rather simple techniques were used to...
A next generation air quality modeling system is being developed at the U.S. EPA to enable modeling of air quality from global to regional to (eventually) local scales. We envision that the system will have three configurations: 1. Global meteorology with seamless mesh refinemen...
USAF bioenvironmental noise data handbook. Volume 161: A/M32A-86 generator set, diesel engine driven
NASA Astrophysics Data System (ADS)
Rau, T. H.
1982-05-01
The A/M32A-86 generator set is a diesel engine driven source of electrical power used for the starting of aircraft, and for ground maintenance. This report provides measured and extrapolated data defining the bioacoustic environments produced by this unit operating outdoors on a concrete apron at normal rated/loaded conditions. Near-field data are reported for 37 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Far-field data measured at 36 locations are normalized to standard meteorological conditions and extrapolated from 10 - 1600 meters to derive sets of equal-value contours for these same seven acoustic measures as functions of angle and distance from the source.
Forecast of Antarctic Sea Ice and Meteorological Fields
NASA Astrophysics Data System (ADS)
Barreira, S.; Orquera, F.
2017-12-01
Since 2001, we have been forecasting the climatic fields of the Antarctic sea ice (SI) and surface air temperature, surface pressure and precipitation anomalies for the Southern Hemisphere at the Meteorological Department of the Argentine Naval Hydrographic Service with different techniques that have evolved with the years. Forecast is based on the results of Principal Components Analysis applied to SI series (S-Mode) that gives patterns of temporal series with validity areas (these series are important to determine which areas in Antarctica will have positive or negative SI anomalies based on what happen in the atmosphere) and, on the other hand, to SI fields (T-Mode) that give us the form of the SI fields anomalies based on a classification of 16 patterns. Each T-Mode pattern has unique atmospheric fields associated to them. Therefore, it is possible to forecast whichever atmosphere variable we decide for the Southern Hemisphere. When the forecast is obtained, each pattern has a probability of occurrence and sometimes it is necessary to compose more than one of them to obtain the final result. S-Mode and T-Mode are monthly updated with new data, for that reason the forecasts improved with the increase of cases since 2001. We used the Monthly Polar Gridded Sea Ice Concentrations database derived from satellite information generated by NASA Team algorithm provided monthly by the National Snow and Ice Data Center of USA that begins in November 1978. Recently, we have been experimenting with multilayer Perceptron (neuronal network) with supervised learning and a back-propagation algorithm to improve the forecast. The Perceptron is the most common Artificial Neural Network topology dedicated to image pattern recognition. It was implemented through the use of temperature and pressure anomalies field images that were associated with a the different sea ice anomaly patterns. The variables analyzed included only composites of surface air temperature and pressure anomalies to simplify the density of input data and avoid a non-converging solution. Sea ice and atmospheric variables forecast can be checked every month at our web page http://www.hidro.gob.ar/smara/sb/sb.asp and at World Meteorological web page (Global Cryosphere Watch) http://globalcryospherewatch.org/state_of_cryo/seaice/.
NASA Technical Reports Server (NTRS)
Koren, Ilan; Feingold, Graham; Remer, Lorraine A.
2010-01-01
Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case that the aerosol does play a role in invigorating convective clouds.
NASA Astrophysics Data System (ADS)
Singh, Ajit; Bloss, William J.; Pope, Francis D.
2017-02-01
Reduced visibility is an indicator of poor air quality. Moreover, degradation in visibility can be hazardous to human safety; for example, low visibility can lead to road, rail, sea and air accidents. In this paper, we explore the combined influence of atmospheric aerosol particle and gas characteristics, and meteorology, on long-term visibility. We use visibility data from eight meteorological stations, situated in the UK, which have been running since the 1950s. The site locations include urban, rural and marine environments. Most stations show a long-term trend of increasing visibility, which is indicative of reductions in air pollution, especially in urban areas. Additionally, the visibility at all sites shows a very clear dependence on relative humidity, indicating the importance of aerosol hygroscopicity on the ability of aerosol particles to scatter radiation. The dependence of visibility on other meteorological parameters, such as wind speed and wind direction, is also investigated. Most stations show long-term increases in temperature which can be ascribed to climate change, land-use changes (e.g. urban heat island effects) or a combination of both; the observed effect is greatest in urban areas. The impact of this temperature change upon local relative humidity is discussed. To explain the long-term visibility trends and their dependence on meteorological conditions, the measured data were fitted to a newly developed light-extinction model to generate predictions of historic aerosol and gas scattering and absorbing properties. In general, an excellent fit was achieved between measured and modelled visibility for all eight sites. The model incorporates parameterizations of aerosol hygroscopicity, particle concentration, particle scattering, and particle and gas absorption. This new model should be applicable and is easily transferrable to other data sets worldwide. Hence, historical visibility data can be used to assess trends in aerosol particle properties. This approach may help constrain global model simulations which attempt to generate aerosol fields for time periods when observational data are scarce or non-existent. Both the measured visibility and the modelled aerosol properties reported in this paper highlight the success of the UK's Clean Air Act, which was passed in 1956, in cleaning the atmosphere of visibility-reducing pollutants.
NASA Astrophysics Data System (ADS)
Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.
2014-12-01
Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal resolution.
Meteorological needs of the aviation community
NASA Technical Reports Server (NTRS)
Luers, J. K.
1977-01-01
A study was conducted to determine the important meteorological needs of the aviation community and to recommend research in those areas judged most beneficial. The study was valuable in that it provided a comprehensive list of suspected meteorological deficiencies and ideas for research programs relative to these deficiencies. The list and ideas were generated from contacts with various pilots, air traffic controllers, and meteorologists.
NASA Astrophysics Data System (ADS)
Ahmadov, R.; Grell, G. A.; James, E.; Freitas, S.; Pereira, G.; Csiszar, I. A.; Tsidulko, M.; Pierce, R. B.; McKeen, S. A.; Saide, P.; Alexander, C.; Benjamin, S.; Peckham, S.
2016-12-01
Wildfires can have huge impact on air quality and visibility over large parts of the US. It is quite challenging to accurately predict wildfire air quality given significant uncertainties in modeling of biomass burning (BB) emissions, fire size, plume rise and smoke transport. We developed a new smoke modeling system (HRRR-Smoke) based on the coupled meteorology-chemistry model WRF-Chem. The HRRR-Smoke modeling system uses fire radiative power (FRP) data measured by the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership satellite. Using the FRP data enables predicting fire emissions, fire size and plume rise more accurately. Another advantage of the VIIRS data is the fire detection and characterization at high spatial resolution during both day and nighttime. The HRRR-Smoke model is run in real-time for summer 2016 on 3km horizontal grid resolution over CONUS domain by NOAA/ESRL Global Systems Division (GSD). The model simulates advection and mixing of fine particulate matter (PM2.5 or smoke) emitted by calculated BB emissions. The BB emissions include both smoldering and flaming fractions. Fire plume rise is parameterized in an online mode during the model integration. In addition to smoke, anthropogenic emissions of PM2.5 are transported in an inline mode as a passive tracer by HRRR-Smoke. The HRRR-Smoke real-time runs use meteorological fields for initial and lateral boundary conditions from the experimental real-time HRRR(X) numerical weather prediction model also run at NOAA/ESRL/GSD. The model is initialized every 6 hours (00, 06, 12 and 18UTC) daily using newly generated meteorological fields and FRP data obtained during previous 24 hours. Then the model produces meteorological and smoke forecasts for next 36 hours. The smoke fields are cycled from one forecast to the next one. Predicted near-surface and vertically integrated smoke concentrations are visualized online on a web-site: http://rapidrefresh.noaa.gov/HRRRsmoke/In this talk, we discuss the major components of the HRRR-Smoke modeling system. We present modeled smoke fields for some major wildfire cases over the western US in 2016 and discuss the model performance for those cases.
Meteorological data fields 'in perspective'
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Pierce, H.; Morris, K. R.; Dodge, J.
1985-01-01
Perspective display techniques can be applied to meteorological data sets to aid in their interpretation. Examples of a perspective display procedure applied to satellite and aircraft visible and infrared image pairs and to stereo cloud-top height analyses are presented. The procedure uses a sophisticated shading algorithm that produces perspective images with greatly improved comprehensibility when compared with the wire-frame perspective displays that have been used in the past. By changing the 'eye-point' and 'view-point' inputs to the program in a systematic way, movie loops that give the impression of flying over or through the data field have been made. This paper gives examples that show how several kinds of meteorological data fields are more effectively illustrated using the perspective technique.
IDC Re-Engineering Phase 2 Iteration E2 Use Case Realizations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, James M.; Burns, John F.; Hamlet, Benjamin R.
2016-06-01
This architecturally significant use case describes how the System acquires meteorological data to build atmospheric models used in automatic and interactive processing of infrasound data. The System requests the latest available high-resolution global meteorological data from external data centers and puts it into the correct formats for generation of infrasound propagation models. The system moves the meteorological data from Data Acquisition Partition to the Data Processing Partition and stores the meteorological data. The System builds a new atmospheric model based on the meteorological data. This use case is architecturally significant because it describes acquiring meteorological data from various sources andmore » creating dynamic atmospheric transmission model to support the prediction of infrasonic signal detection« less
NASA Astrophysics Data System (ADS)
Chen, A. B.; Chiu, C.; Lai, S.; Chen, C.; Kuo, C.; Su, H.; Hsu, R.
2012-12-01
The vertical electric field above thundercloud plays an important role in the generation and modeling of transient luminous events. For example, Pasko [1995] proposed that the high quasi-static E-field following the positive cloud-to-ground lightning could accelerate and input energy to ambient electrons; as they collide and excite nitrogen and oxygen molecules in upper atmosphere, sprites may be induced. A series of balloon experiments led by Holzworth have investigated the temporal and spatial fluctuations of the electric field and conductivity in the upper atmosphere at different sites [Holzworth 2005, and references in]. But the strength and variation of the vertical electric field above thundercloud, especially oceanic ones, are not well documented so far. A lightweight, low-cost measurement system including an electric field meter and the associated aviation electronics are developed to carry out the in-situ measurement of the vertical electric field and the inter-cloud charge distribution. Our measuring system was first deployed using a meteorological sounding balloon from Taitung, Taiwan in May 2012. The measured electric field below 3km height shows an exponential decay and it is consistent with the expected potential gradient variation between ionosphere and the Earth surface. But the background strength of the measured E-field grows up exponentially and a violent fluctuations is also observed when the balloon flew over a developing oceanic convection cell. The preliminary results from this flight will be reported and discussed. This low-cost electric field meter is developed within one year. In the coming months, more flights will be performed with the aim to measure the rapid variation of the electric field above thundercloud as well as the E-field that may induce transient luminous events. Our ground campaigns show that the occurrence rates of blue and gigantic jet are relatively high in the vicinity of Taiwan. Our experiment can be used to diagnose the dynamics of the E-field associated with blue and gigantic jets.
Meteorological satellite product support and research for project GALE
NASA Technical Reports Server (NTRS)
Velden, Christopher S.; Smith, William L.; Achtor, Thomas H.; Menzel, W. Paul
1988-01-01
This participation in the Genesis of Atlantic Lows Experiment (GALE) focused on three main areas: (1) real-time support of the field phase, centered on a McIDAS workstation; (2) satellite data collection, archive, product generation, and dissemination; and (3) research into satellite rainfall estimation and data assimilation. Accomplishments include production of a videotape of animated GOES satellite imagery, production of an atlas of GOES satellite imagery, production of a set of 12-hour interval analyses; research into 4-D data assimilation, and production of a set of satellite-estimated rainfall maps.
NASA Astrophysics Data System (ADS)
Kustas, William P.; Alfieri, Joseph G.; Anderson, Martha C.; Colaizzi, Paul D.; Prueger, John H.; Evett, Steven R.; Neale, Christopher M. U.; French, Andrew N.; Hipps, Lawrence E.; Chávez, José L.; Copeland, Karen S.; Howell, Terry A.
2012-12-01
Application and validation of many thermal remote sensing-based energy balance models involve the use of local meteorological inputs of incoming solar radiation, wind speed and air temperature as well as accurate land surface temperature (LST), vegetation cover and surface flux measurements. For operational applications at large scales, such local information is not routinely available. In addition, the uncertainty in LST estimates can be several degrees due to sensor calibration issues, atmospheric effects and spatial variations in surface emissivity. Time differencing techniques using multi-temporal thermal remote sensing observations have been developed to reduce errors associated with deriving the surface-air temperature gradient, particularly in complex landscapes. The Dual-Temperature-Difference (DTD) method addresses these issues by utilizing the Two-Source Energy Balance (TSEB) model of Norman et al. (1995) [1], and is a relatively simple scheme requiring meteorological input from standard synoptic weather station networks or mesoscale modeling. A comparison of the TSEB and DTD schemes is performed using LST and flux observations from eddy covariance (EC) flux towers and large weighing lysimeters (LYs) in irrigated cotton fields collected during BEAREX08, a large-scale field experiment conducted in the semi-arid climate of the Texas High Plains as described by Evett et al. (2012) [2]. Model output of the energy fluxes (i.e., net radiation, soil heat flux, sensible and latent heat flux) generated with DTD and TSEB using local and remote meteorological observations are compared with EC and LY observations. The DTD method is found to be significantly more robust in flux estimation compared to the TSEB using the remote meteorological observations. However, discrepancies between model and measured fluxes are also found to be significantly affected by the local inputs of LST and vegetation cover and the representativeness of the remote sensing observations with the local flux measurement footprint.
A gap analysis of meteorological requirements for commercial space operators
NASA Astrophysics Data System (ADS)
Stapleton, Nicholas James
Commercial space companies will soon be the primary method of launching people and supplies into orbit. Among the critical aspects of space launches are the meteorological concerns. Laws and regulations pertaining to meteorological considerations have been created to ensure the safety of the space industry and those living around spaceports; but, are they adequate? Perhaps the commercial space industry can turn to the commercial aviation industry to help answer that question. Throughout its history, the aviation industry has dealt with lessons learned from mishaps due to failures in understanding the significance of weather impacts on operations. Using lessons from the aviation industry, the commercial space industry can preempt such accidents and maintain viability as an industry. Using Lanicci's Strategic Planning Model, this study identified the weather needs of the commercial space industry by conducting three gap analyses. First, a comparative analysis was done between laws and regulations in commercial aviation and those in the commercial space industry pertaining to meteorological support, finding a "legislative gap" between the two industries, as no legal guarantee is in place to ensure weather products remain available to the commercial space industry. A second analysis was conducted between the meteorological services provided for the commercial aviation industry and commercial space industry, finding a gap at facilities not located at an established launch facility or airport. At such facilities, many weather observational technologies would not be present, and would need to be purchased by the company operating the spaceport facility. A third analysis was conducted between the meteorological products and regulations that are currently in existence, and those needed for safe operations within the commercial space industry, finding gaps in predicting lightning, electric field charge, and space weather. Recommendations to address these deficiencies have been generated for the Federal Aviation Administration, U.S. Congress, commercial space launch companies, and areas are identified for further research.
NASA Astrophysics Data System (ADS)
Moran, Michael D.; Pielke, Roger A.
1996-03-01
The Colorado State University mesoscale atmospheric dispersion (MAD) numerical modeling system, which consists of a prognostic mesoscale meteorological model coupled to a mesoscale Lagrangian particle dispersion model, has been used to simulate the transport and diffusion of a perfluorocarbon tracer-gas cloud for one afternoon surface release during the July 1980 Great Plains mesoscale tracer field experiment. Ground-level concentration (GLC) measurements taken along arcs of samplers 100 and 600 km downwind of the release site at Norman, Oklahoma, up to three days after the tracer release were available for comparison. Quantitative measures of a number of significant dispersion characteristics obtained from analysis of the observed tracer cloud's moving GLC `footprint' have been used to evaluate the modeling system's skill in simulating this MAD case.MAD is more dependent upon the spatial and temporal structure of the transport wind field than is short-range atmospheric dispersion. For the Great Plains mesoscale tracer experiment, the observations suggest that the Great Plains nocturnal low-level jet played an important role in transporting and deforming the tracer cloud. A suite of ten two- and three-dimensional numerical meteorological experiments was devised to investigate the relative contributions of topography, other surface inhomogeneities, atmospheric baroclinicity, synoptic-scale flow evolution, and meteorological model initialization time to the structure and evolution of the low-level mesoscale flow field and thus to MAD. Results from the ten mesoscale meteorological simulations are compared in this part of the paper. The predicted wind fields display significant differences, which give rise in turn to significant differences in predicted low-level transport. The presence of an oscillatory ageostrophic component in the observed synoptic low-level winds for this case is shown to complicate initialization of the meteorological model considerably and is the likely cause of directional errors in the predicted mean tracer transport. A companion paper describes the results from the associated dispersion simulations.
NASA Astrophysics Data System (ADS)
Hoover, R. H.; Gaylord, D. R.; Cooper, C. M.
2018-05-01
The St. Anthony Dune Field (SADF) is a 300 km2 expanse of active to stabilized transverse, barchan, barchanoid, and parabolic sand dunes located in a semi-arid climate in southeastern Idaho. The northeastern portion of the SADF, 16 km2, was investigated to examine meteorological influences on dune mobility. Understanding meteorological predictors of sand-dune migration for the SADF informs landscape evolution and impacts assessment of eolian activity on sensitive agricultural lands in the western United States, with implications for semi-arid environments globally. Archival aerial photos from 1954 to 2011 were used to calculate dune migration rates which were subsequently compared to regional meteorological data, including temperature, precipitation and wind speed. Observational analyses based on aerial photo imagery and meteorological data indicate that dune migration is influenced by weather for up to 5-10 years and therefore decadal weather patterns should be taken into account when using dune migration rates as proxies from climate fluctuation. Statistical examination of meteorological variables in this study indicates that 24% of the variation of sand dune migration rates is attributed to temperature, precipitation and wind speed, which is increased to 45% when incorporating lag time.
The Chinese FY-1 Meteorological Satellite Application in Observation on Oceanic Environment
NASA Astrophysics Data System (ADS)
Weimin, S.
meteorological satellite is stated in this paper. exploration of the ocean resources has been a very important question of global strategy in the world. The exploration of the ocean resources includes following items: Making full use of oceanic resources and space, protecting oceanic environment. to observe the ocean is by using of satellite. In 1978, US successfully launched the first ocean observation satellite in the world --- Sea Satellite. It develops ancient oceanography in to advanced space-oceanography. FY-1 B and FY- IC respectively. High quality data were acquired at home and abroad. FY-1 is Chinese meteorological satellite, but with 0.43 ~ 0.48 μm ,0.48 ~ 0.53 μm and 0.53 ~ 0.58 μm three ocean color channels, actually it is a multipurpose remote sensing satellite of meteorology and oceanography. FY-1 satellite's capability of observation on ocean partly, thus the application field is expanded and the value is increased. With the addition of oceanic channels on FY-1, the design of the satellite is changed from the original with meteorological observation as its main purpose into remote sensing satellite possessing capability of observing meteorology and ocean as well. Thus, the social and economic benefit of FY-1 is increased. the social and economic benefit of the development of the satellite is the key technique in the system design of the satellite. technically feasible but also save the funds in researching and manufacturing of the satellite, quicken the tempo of researching and manufacturing satellite. the scanning radiometer for FY-1 is conducted an aviation experiment over Chinese ocean. This experiment was of vital importance to the addition of oceanic observation channel on FY-1. FY-1 oceanic channels design to be correct. detecting ocean color. This is the unique character of Chinese FY-1 meteorological satellite. meteorological remote sensing channel on FY-1 to form detecting capability of three visible channels: red, yellow and blue spectrum bands. Thus FY-1 satellite can be used for observation on ocean color experiment. This experiment is successful, a lot of data were acquired. Good application results were obtained in the field of oceanic science research. Therefore, it makes FY-1 a remote sensing satellite used for observation on meteorology and ocean. This is the unique character of Chinese FY-1 meteorological satellite, it is widely noticed all over the world. Chinese meteorological satellite has been realized the aim of using one satellite for multipurpose applications and brought more and more social and economic benefit. oceanic channel in Chinese meteorological satellites is also foreseen to expand the application field in Chinese meteorological satellites. Key Word : Meteorological Satellite Oceanic Remote Sensing
Small-Scale Tropopause Dynamics and TOMS Total Ozone
NASA Technical Reports Server (NTRS)
Stanford, John L.
2002-01-01
This project used Earth Probe Total Ozone Mapping Spectrometer (EP TOMS) along-track ozone retrievals, in conjunction with ancillary meteorological fields and modeling studies, for high resolution investigations of upper troposphere and lower stratosphere dynamics. Specifically, high resolution along-track (Level 2) EP TOMS data were used to investigate the beautiful fine-scale structure in constituent and meteorological fields prominent in the evolution of highly non-linear baroclinic storm systems. Comparison was made with high resolution meteorological models. The analyses provide internal consistency checks and validation of the EP TOMS data which are vital for monitoring ozone depletion in both polar and midlatitude regions.
NASA Astrophysics Data System (ADS)
Yu, Wansik; Nakakita, Eiichi; Kim, Sunmin; Yamaguchi, Kosei
2016-08-01
The use of meteorological ensembles to produce sets of hydrological predictions increased the capability to issue flood warnings. However, space scale of the hydrological domain is still much finer than meteorological model, and NWP models have challenges with displacement. The main objective of this study to enhance the transposition method proposed in Yu et al. (2014) and to suggest the post-processing ensemble flood forecasting method for the real-time updating and the accuracy improvement of flood forecasts that considers the separation of the orographic rainfall and the correction of misplaced rain distributions using additional ensemble information through the transposition of rain distributions. In the first step of the proposed method, ensemble forecast rainfalls from a numerical weather prediction (NWP) model are separated into orographic and non-orographic rainfall fields using atmospheric variables and the extraction of topographic effect. Then the non-orographic rainfall fields are examined by the transposition scheme to produce additional ensemble information and new ensemble NWP rainfall fields are calculated by recombining the transposition results of non-orographic rain fields with separated orographic rainfall fields for a generation of place-corrected ensemble information. Then, the additional ensemble information is applied into a hydrologic model for post-flood forecasting with a 6-h interval. The newly proposed method has a clear advantage to improve the accuracy of mean value of ensemble flood forecasting. Our study is carried out and verified using the largest flood event by typhoon 'Talas' of 2011 over the two catchments, which are Futatsuno (356.1 km2) and Nanairo (182.1 km2) dam catchments of Shingu river basin (2360 km2), which is located in the Kii peninsula, Japan.
Tropospheric transport differences between models using the same large-scale meteorological fields
NASA Astrophysics Data System (ADS)
Orbe, Clara; Waugh, Darryn W.; Yang, Huang; Lamarque, Jean-Francois; Tilmes, Simone; Kinnison, Douglas E.
2017-01-01
The transport of chemicals is a major uncertainty in the modeling of tropospheric composition. A common approach is to transport gases using the winds from meteorological analyses, either using them directly in a chemical transport model or by constraining the flow in a general circulation model. Here we compare the transport of idealized tracers in several different models that use the same meteorological fields taken from Modern-Era Retrospective analysis for Research and Applications (MERRA). We show that, even though the models use the same meteorological fields, there are substantial differences in their global-scale tropospheric transport related to large differences in parameterized convection between the simulations. Furthermore, we find that the transport differences between simulations constrained with the same-large scale flow are larger than differences between free-running simulations, which have differing large-scale flow but much more similar convective mass fluxes. Our results indicate that more attention needs to be paid to convective parameterizations in order to understand large-scale tropospheric transport in models, particularly in simulations constrained with analyzed winds.
NASA Technical Reports Server (NTRS)
Fuelberg, Henry E.
2003-01-01
The Florida State University (FSU) team participated extensively in the pre-mission planning for TRACE-P through meetings, telephone calls, and e-mails. During Spring 2001, Prof. Fuelberg served as DC-8 Mission Meteorologist during the field campaign. He prepared meteorological guidance for each flight of the DC-8 and flew on each mission. After the field phase, FSU prepared various meteorological products, included backward air trajectories, for each flight of the DC-8 and P-3B. These were posted on the FSU and NASA-GTE web sites for use by all the Science Team. During the two-year post mission period, FSU conducted research relating meteorology to atmospheric chemistry during TRACE-P. This led to three journal articles in the Journal of Geophysical Research. FSU personnel were the lead authors on each of these articles. Abstracts of these articles are attached. In addition, the FSU team collaborated with other members of the TRACE-P Science Team to incorporate meteorological factors into their research. A list of publications resulting from these interactions is included.
Meteorological Sensor Array (MSA)-Phase I. Volume 3 (Pre-Field Campaign Sensor Calibration)
2015-07-01
turbulence impact of the WSMR solar array. 4) Designing , developing, testing , and evaluating integrated Data Acquisition System (DAS) hardware and...ARL-TR-7362 ● JULY 2015 US Army Research Laboratory Meteorological Sensor Array (MSA)–Phase I, Volume 3 (Pre-Field Campaign...NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by
Spoilt for choice - A comparison of downscaling approaches for hydrological impact studies
NASA Astrophysics Data System (ADS)
Rössler, Ole; Fischer, Andreas; Kotlarski, Sven; Keller, Denise; Liniger, Mark; Weingartner, Rolf
2017-04-01
With the increasing number of available climate downscaling approaches, users are often faced with the luxury problem of which downscaling method to apply in a climate change impact assessment study. In Switzerland, for instance, the new generation of local scale climate scenarios CH2018 will be based on quantile mapping (QM), replacing the previous delta change (DC) method. Parallel to those two methods, a multi-site weather generator (WG) was developed to meet specific user needs. The question poses which downscaling method is the most suitable for a given application. Here, we analyze the differences of the three approaches in terms of hydro-meteorological responses in the Swiss pre-Alps in terms of mean values as well as indices of extremes. The comparison of the three different approaches was carried out in the frame of a hydrological impact assessment study that focused on different runoff characteristics and their related meteorological indices in the meso-scale catchment of the river Thur ( 1700 km2), Switzerland. For this purpose, we set up the hydrological model WaSiM-ETH under present (1980-2009) and under future conditions (2070-2099), assuming the SRES A1B emission scenario. Input to the three downscaling approaches were 10 GCM-RCM simulations of the ENSEMBLES project, while eight meteorological station observations served as the reference. All station data, observed and downscaled, were interpolated to obtain meteorological fields of temperature and precipitation required by the hydrological model. For the present-day reference period we evaluated the ability of each downscaling method to reproduce today's hydro-meteorological patterns. In the scenario runs, we focused on the comparison of change signals for each hydro-meteorological parameter generated by the three downscaling techniques. The evaluation exercise reveals that QM and WG perform equally well in representing present day average conditions, but that QM outperforms WG in reproducing indices related to extreme conditions like the number of drought events or multi-day rain sums. In terms of mean monthly discharge changes, the three downscaling methods reveal notable differences: DC shows the strongest (in summer) and less pronounced (in winter) change signal. Regarding some extreme features of runoff like frequency of droughts and the low flow level, DC shows similar change signals compared to QM and WG. This was unexpected as DC is commonly reported to fail in terms of projecting extreme changes. In contrast, QM mostly shows the strongest change signals for the 10 different extreme related indices, due to its ability to pick up more features of the climate change signals from the RCM. This indicates that DC and also WG miss some aspects, especially for flood related indices. Hence, depending on the target variable of interest, DC and QM typically provide the full range of change signals, while WG mostly lies in between both method. However, it offers the great advantage of multiple realizations combined with inter-variable consistency.
Design of extensible meteorological data acquisition system based on FPGA
NASA Astrophysics Data System (ADS)
Zhang, Wen; Liu, Yin-hua; Zhang, Hui-jun; Li, Xiao-hui
2015-02-01
In order to compensate the tropospheric refraction error generated in the process of satellite navigation and positioning. Temperature, humidity and air pressure had to be used in concerned models to calculate the value of this error. While FPGA XC6SLX16 was used as the core processor, the integrated silicon pressure sensor MPX4115A and digital temperature-humidity sensor SHT75 are used as the basic meteorological parameter detection devices. The core processer was used to control the real-time sampling of ADC AD7608 and to acquire the serial output data of SHT75. The data was stored in the BRAM of XC6SLX16 and used to generate standard meteorological parameters in NEMA format. The whole design was based on Altium hardware platform and ISE software platform. The system was described in the VHDL language and schematic diagram to realize the correct detection of temperature, humidity, air pressure. The 8-channel synchronous sampling characteristics of AD7608 and programmable external resources of FPGA laid the foundation for the increasing of analog or digital meteorological element signal. The designed meteorological data acquisition system featured low cost, high performance, multiple expansions.
NASA's aviation safety - meteorology research programs
NASA Technical Reports Server (NTRS)
Winblade, R. L.
1983-01-01
The areas covering the meteorological hazards program are: severe storms and the hazards to flight generated by severe storms; clear air turbulence; icing; warm fog dissipation; and landing systems. Remote sensing of ozone by satellites, and the use of satellites as data relays is also discussed.
NASA Astrophysics Data System (ADS)
Laban, S.; Oue, H.; Rampisela, D. A.
2018-05-01
Evapotranspiration and water balance in a hot pepper (Capsicum frutescens L.) field during the 2nd dry season were analyzed in this study. Actual evapotranspiration (ET) was estimated by Bowen Ratio Energy Budget (BREB) method, potential evaporation (EP) was calculated by Penman method, and irrigation volume of water was measured manually. Meteorological instruments were installed in the experimental field during hot pepper cultivation. Leaf area index increased during the growing stages where the highest LAI of 1.65 in the generative stage. The daily average of ET was 1.94 and EP was 6.71 mm resulting in low Kc. The Kc values were significantly different between stage to stage under T-test analysis (α = 0.05). Moreover, Kc in every stage could be related to soil water content (SWC) in logarithmic function. Totally, ET during hot pepper cultivation was 179.19 mm, while rainfall was 180.0 mm and irrigation water was 27.42 mm. However, there was a water shortages during vegetative and generative stages. This study suggested that consumptive water of hot pepper was complimented by soil and groundwater under the condition of water shortages in the vegetative and generative stages during the 2nd dry season.
Development of a Greek solar map based on solar model estimations
NASA Astrophysics Data System (ADS)
Kambezidis, H. D.; Psiloglou, B. E.; Kavadias, K. A.; Paliatsos, A. G.; Bartzokas, A.
2016-05-01
The realization of Renewable Energy Sources (RES) for power generation as the only environmentally friendly solution, moved solar systems to the forefront of the energy market in the last decade. The capacity of the solar power doubles almost every two years in many European countries, including Greece. This rise has brought the need for reliable predictions of meteorological data that can easily be utilized for proper RES-site allocation. The absence of solar measurements has, therefore, raised the demand for deploying a suitable model in order to create a solar map. The generation of a solar map for Greece, could provide solid foundations on the prediction of the energy production of a solar power plant that is installed in the area, by providing an estimation of the solar energy acquired at each longitude and latitude of the map. In the present work, the well-known Meteorological Radiation Model (MRM), a broadband solar radiation model, is engaged. This model utilizes common meteorological data, such as air temperature, relative humidity, barometric pressure and sunshine duration, in order to calculate solar radiation through MRM for areas where such data are not available. Hourly values of the above meteorological parameters are acquired from 39 meteorological stations, evenly dispersed around Greece; hourly values of solar radiation are calculated from MRM. Then, by using an integrated spatial interpolation method, a Greek solar energy map is generated, providing annual solar energy values all over Greece.
NASA Astrophysics Data System (ADS)
Villasenor, R.; Magdaleno, M.; Quintanar, A.; Gallardo, J. C.; López, M. T.; Jurado, R.; Miranda, A.; Aguilar, M.; Melgarejo, L. A.; Palmerín, E.; Vallejo, C. J.; Barchet, W. R.
An air quality screening study was performed to assess the impacts of emissions from the offshore operations of the oil and gas exploration and production by Mexican industry in the Campeche Sound, which includes the states of Tabasco and Campeche in southeast Mexico. The major goal of this study was the compilation of an emission inventory (EI) for elevated, boom and ground level flares, processes, internal combustion engines and fugitive emissions. This inventory is so far the most comprehensive emission register that has ever been developed for the Mexican petroleum industry in this area. The EI considered 174 offshore platforms, the compression station at Atasta, and the Maritime Ports at Dos Bocas and Cayo Arcas. The offshore facilities identified as potential emitters in the area were the following: (1) trans-shipment stations, (2) a maritime floating port terminal, (3) drilling platforms, (4) crude oil recovering platforms, (5) crude oil production platforms, (6) linking platforms, (7) water injection platforms, (8) pumping platforms, (9) shelter platforms, (10) telecommunication platforms, (11) crude oil measurement platforms, and (12) flaring platforms. Crude oil storage tanks, helicopters and marine ship tankers were also considered to have an EI accurate enough for air quality regulations and mesoscale modeling of atmospheric pollutants. Historical ambient data measure at two onshore petroleum facilities were analyzed to measure air quality impacts on nearby inhabited coastal areas, and a source-receptor relationship for flares at the Ixtoc marine complex was performed to investigate health-based standards for offshore workers. A preliminary air quality model simulation was performed to observe the transport and dispersion patterns of SO 2, which is the main pollutant emitted from the offshore platforms. The meteorological wind and temperature fields were generated with CALMET, a diagnostic meteorological model that used surface observations and upper air soundings from a 4-day field campaign conducted in February of 1999. The CALMET meteorological output and the generated EI drove the transport and dispersion model, CALPUFF. Model results were compared with SO 2 measurements taken from the monitoring network at Dos Bocas.
NASA Technical Reports Server (NTRS)
da Silva, Arlindo
2010-01-01
A challenge common to many constituent data assimilation applications is the fact that one observes a much smaller fraction of the phase space that one wishes to estimate. For example, remotely sensed estimates of the column average concentrations are available, while one is faced with the problem of estimating 3D concentrations for initializing a prognostic model. This problem is exacerbated in the case of aerosols because the observable Aerosol Optical Depth (AOD) is not only a column integrated quantity, but it also sums over a large number of species (dust, sea-salt, carbonaceous and sulfate aerosols. An aerosol transport model when driven by high-resolution, state-of-the-art analysis of meteorological fields and realistic emissions can produce skillful forecasts even when no aerosol data is assimilated. The main task of aerosol data assimilation is to address the bias arising from inaccurate emissions, and Lagrangian misplacement of plumes induced by errors in the driving meteorological fields. As long as one decouples the meteorological and aerosol assimilation as we do here, the classic baroclinic growth of error is no longer the main order of business. We will describe an aerosol data assimilation scheme in which the analysis update step is conducted in observation space, using an adaptive maximum-likelihood scheme for estimating background errors in AOD space. This scheme includes e explicit sequential bias estimation as in Dee and da Silva. Unlikely existing aerosol data assimilation schemes we do not obtain analysis increments of the 3D concentrations by scaling the background profiles. Instead we explore the Lagrangian characteristics of the problem for generating local displacement ensembles. These high-resolution state-dependent ensembles are then used to parameterize the background errors and generate 3D aerosol increments. The algorithm has computational complexity running at a resolution of 1/4 degree, globally. We will present the result of assimilating AOD retrievals from MODIS (on both Aqua and TERRA satellites) from AERONET for validation. The impact on the GEOS-5 Aerosol Forecasting will be fully documented.
The meta-Gaussian Bayesian Processor of forecasts and associated preliminary experiments
NASA Astrophysics Data System (ADS)
Chen, Fajing; Jiao, Meiyan; Chen, Jing
2013-04-01
Public weather services are trending toward providing users with probabilistic weather forecasts, in place of traditional deterministic forecasts. Probabilistic forecasting techniques are continually being improved to optimize available forecasting information. The Bayesian Processor of Forecast (BPF), a new statistical method for probabilistic forecast, can transform a deterministic forecast into a probabilistic forecast according to the historical statistical relationship between observations and forecasts generated by that forecasting system. This technique accounts for the typical forecasting performance of a deterministic forecasting system in quantifying the forecast uncertainty. The meta-Gaussian likelihood model is suitable for a variety of stochastic dependence structures with monotone likelihood ratios. The meta-Gaussian BPF adopting this kind of likelihood model can therefore be applied across many fields, including meteorology and hydrology. The Bayes theorem with two continuous random variables and the normal-linear BPF are briefly introduced. The meta-Gaussian BPF for a continuous predictand using a single predictor is then presented and discussed. The performance of the meta-Gaussian BPF is tested in a preliminary experiment. Control forecasts of daily surface temperature at 0000 UTC at Changsha and Wuhan stations are used as the deterministic forecast data. These control forecasts are taken from ensemble predictions with a 96-h lead time generated by the National Meteorological Center of the China Meteorological Administration, the European Centre for Medium-Range Weather Forecasts, and the US National Centers for Environmental Prediction during January 2008. The results of the experiment show that the meta-Gaussian BPF can transform a deterministic control forecast of surface temperature from any one of the three ensemble predictions into a useful probabilistic forecast of surface temperature. These probabilistic forecasts quantify the uncertainty of the control forecast; accordingly, the performance of the probabilistic forecasts differs based on the source of the underlying deterministic control forecasts.
NASA Astrophysics Data System (ADS)
Haupt, Sue Ellen; Beyer-Lout, Anke; Long, Kerrie J.; Young, George S.
Assimilating concentration data into an atmospheric transport and dispersion model can provide information to improve downwind concentration forecasts. The forecast model is typically a one-way coupled set of equations: the meteorological equations impact the concentration, but the concentration does not generally affect the meteorological field. Thus, indirect methods of using concentration data to influence the meteorological variables are required. The problem studied here involves a simple wind field forcing Gaussian dispersion. Two methods of assimilating concentration data to infer the wind direction are demonstrated. The first method is Lagrangian in nature and treats the puff as an entity using feature extraction coupled with nudging. The second method is an Eulerian field approach akin to traditional variational approaches, but minimizes the error by using a genetic algorithm (GA) to directly optimize the match between observations and predictions. Both methods show success at inferring the wind field. The GA-variational method, however, is more accurate but requires more computational time. Dynamic assimilation of a continuous release modeled by a Gaussian plume is also demonstrated using the genetic algorithm approach.
A Methodological Inter-Comparison of Gridded Meteorological Products
NASA Astrophysics Data System (ADS)
Newman, A. J.; Clark, M. P.; Longman, R. J.; Giambelluca, T. W.; Arnold, J.
2017-12-01
Here we present a gridded meteorology inter-comparison using the state of Hawaíi as a testbed. This inter-comparison is motivated by two general goals: 1) the broad user community of gridded observation based meteorological fields should be aware of inter-product differences and the reasons they exist, which allows users to make informed choices on product selection to best meet their specific application(s); 2) we want to demonstrate the utility of inter-comparisons to meet the first goal, yet highlight that they are limited to mostly generic statements regarding attribution of differences that limits our understanding of these complex algorithms and obscures future research directions. Hawaíi is a useful testbed because it is a meteorologically complex region with well-known spatial features that are tied to specific physical processes (e.g. the trade wind inversion). From a practical standpoint, there are now several monthly climatological and daily precipitation and temperature datasets available that are being used for impact modeling. General conclusions that have emerged are: 1) differences in input station data significantly influence product differences; 2) prediction of precipitation occurrence is crucial across multiple metrics; 3) derived temperature statistics (e.g. diurnal temperature range) may have large spatial differences across products; and 4) attribution of differences to methodological choices is difficult and may limit the outcomes of these inter-comparisons, particularly from a development viewpoint. Thus, we want to continue to move the community towards frameworks that allow for multiple options throughout the product generation chain and allow for more systematic testing.
[Historical overview of medical meteorology - the new horizon in medical prevention].
Boussoussou, Nora; Boussoussou, Melinda; Nemes, Attila
2017-02-01
The aim of this article is to draw attention to the medical meteorology from the perspective of the history of science. Unfortunately medical meteorology is not part of the daily medical practice. The climate change is a new challenge for health care worldwide. It concerns millions of people a higher morbidity and mortality rate. Knowing the effects of the meteorological parameters as risk factors can allow us to create new prevention strategies. These new strategies could help to decrease the negative health effects of the meteorological parameters. Nowadays on the field of the medical prevention the medical meteorology is a new horizon and in the future it could play an important role. Health care professionals have the most important role to fight against the negative effects of the global climate change. Orv. Hetil., 2017, 158(5), 187-191.
The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, volume 1
NASA Technical Reports Server (NTRS)
1991-01-01
The proceedings of the 1991 International Aerospace and Ground Conference on Lightning and Static Electricity are reported. Some of the topics covered include: lightning, lightning suppression, aerospace vehicles, aircraft safety, flight safety, aviation meteorology, thunderstorms, atmospheric electricity, warning systems, weather forecasting, electromagnetic coupling, electrical measurement, electrostatics, aircraft hazards, flight hazards, meteorological parameters, cloud (meteorology), ground effect, electric currents, lightning equipment, electric fields, measuring instruments, electrical grounding, and aircraft instruments.
Shen, Xiao-jun; Sun, Jing-sheng; Li, Ming-si; Zhang, Ji-yang; Wang, Jing-lei; Li, Dong-wei
2015-02-01
It is important to improve the real-time irrigation forecasting precision by predicting real-time water consumption of cotton mulched with plastic film under drip irrigation based on meteorological data and cotton growth status. The model parameters for calculating ET0 based on Hargreaves formula were determined using historical meteorological data from 1953 to 2008 in Shihezi reclamation area. According to the field experimental data of growing season in 2009-2010, the model of computing crop coefficient Kc was established based on accumulated temperature. On the basis of crop water requirement (ET0) and Kc, a real-time irrigation forecast model was finally constructed, and it was verified by the field experimental data in 2011. The results showed that the forecast model had high forecasting precision, and the average absolute values of relative error between the predicted value and measured value were about 3.7%, 2.4% and 1.6% during seedling, squaring and blossom-boll forming stages, respectively. The forecast model could be used to modify the predicted values in time according to the real-time meteorological data and to guide the water management in local film-mulched cotton field under drip irrigation.
Representing urban terrain characteristics in mesoscale meteorological and dispersion models is critical to produce accurate predictions of wind flow and temperature fields, air quality, and contaminant transport. A key component of the urban terrain representation is the charac...
SASS wind forecast impact studies using the GLAS and NEPRF systems: Preliminary conclusions
NASA Technical Reports Server (NTRS)
Kalnay, E.; Atlas, R.; Baker, W. E.; Duffy, D.; Halem, M.; Helfand, M.
1984-01-01
For this project, a version of the GLAS Analysis/Forecast System was developed that includes an objective dealiasing scheme as an integral part of the analysis cycle. With this system the (100 sq km) binned SASS wind data generated by S. Peteherych of AER, Canada corresponding of the period 0000 GMT 7 September 1978 to 1200 GMT 13 September 1978 was objectively dealiased. The dealiased wind fields have been requested and received by JPL, NMC and the British Meteorological Office. The first 3.5 days of objectively dealiased fields were subjectively enhanced on the McIDAS system. Approximately 20% of the wind directions were modified, and of these, about 70% were changed by less than 90 deg. Two SASS forecast impact studies, were performed using the dealiased fields, with the GLAS and the NEPRF (Navy Environmental Prediction Research Facility) analysis/forecast systems.
NASA Astrophysics Data System (ADS)
Mohammed, A.; LeBlanc, F.; Cey, E. E.; Hayashi, M.
2016-12-01
Snowmelt infiltration and vadose zone fluxes in seasonally frozen soils are strongly affected by meteorological and soil moisture dynamics occurring during the preceding fall and winter, and complex processes controlling soil hydraulic and thermal regimes. In order to predict their effects on hydrologic processes such as run-off generation, groundwater recharge and plant-water availability in cold regions, an improved understanding of the mechanisms governing coupled water and heat fluxes in the unsaturated zone is needed. Field and laboratory studies were conducted to investigate snowmelt infiltration and groundwater recharge through partially frozen ground over a range of climate and soil conditions in the Canadian Prairies. Meteorological and subsurface field measurements at three sites were combined with laboratory infiltration experiments on frozen undisturbed soil-columns to provide insights into the hydraulic and thermal processes governing water movement. Analysis reveals that antecedent moisture content and thermal profiles both strongly affect subsurface dynamics during infiltration of snowmelt. Preferential flow is also a critical parameter, as both thermal and hydraulic responses were observed at depth prior to complete ground thaw in the field; as well as drainage outflow from the frozen soil column experiments under certain conditions. Results indicate that both diffuse (matrix) and preferential (macropore) flow play significant roles in the infiltration and redistribution of snowmelt water under frozen soil conditions, and shallow groundwater recharge. This study highlights the critical subsurface factors and processes that control infiltration and groundwater recharge in these seasonally frozen landscapes.
The US EPA has a plan to leverage recent advances in meteorological modeling to develop a "Next-Generation" air quality modeling system that will allow consistent modeling of problems from global to local scale. The meteorological model of choice is the Model for Predic...
USING MM5 VERSION 2 WITH CMAQ AND MODELS-3, A USER'S GUIDE AND TUTORIAL
Meteorological data are important in many of the processes simulated in the Community Multi-Scale Air Quality (CMAQ) model and the Models-3 framework. The first meteorology model that has been selected and evaluated with CMAQ is the Fifth-Generation Pennsylvania State University...
Viking-2 Seismometer Measurements on Mars: PDS Data Archive and Meteorological Applications
NASA Astrophysics Data System (ADS)
Lorenz, Ralph D.; Nakamura, Yosio; Murphy, James R.
2017-11-01
A data product has been generated and archived on the NASA Planetary Data System (Geosciences Node), which presents the seismometer readings of Viking Lander 2 in an easy-to-access form, for both the raw ("high rate") waveform records and the compressed ("event mode") amplitude and frequency records. In addition to the records themselves, a separate summary file for each instrument mode lists key statistics of each record together with the meteorological measurements made closest in time to the seismic record. This juxtaposition facilitates correlation of the seismometer instrument response to different meteorological conditions, or the selection of seismic data during which wind disturbances can be expected to be small. We summarize data quality issues and also discuss lander-generated seismic signals, due to operation of the sampling arm or other systems, which may be of interest for prospective missions to other bodies. We review wind-seismic correlation, the "Martian solar day (sol) 80" candidate seismic event, and identify the seismic signature of a probable dust devil vortex on sol 482 : the seismometer data allow an estimate of the peak wind, occurring between coarsely spaced meteorology measurements. We present code to generate the plots in this paper to illustrate use of the data product.
NASA Astrophysics Data System (ADS)
Jain, Rahul; Vaughan, Joseph; Heitkamp, Kyle; Ramos, Charleston; Claiborn, Candis; Schreuder, Maarten; Schaaf, Mark; Lamb, Brian
The post-harvest burning of agricultural fields is commonly used to dispose of crop residue and provide other desired services such as pest control. Despite careful regulation of burning, smoke plumes from field burning in the Pacific Northwest commonly degrade air quality, particularly for rural populations. In this paper, ClearSky, a numerical smoke dispersion forecast system for agricultural field burning that was developed to support smoke management in the Inland Pacific Northwest, is described. ClearSky began operation during the summer through fall burn season of 2002 and continues to the present. ClearSky utilizes Mesoscale Meteorological Model version 5 (MM5v3) forecasts from the University of Washington, data on agricultural fields, a web-based user interface for defining burn scenarios, the Lagrangian CALPUFF dispersion model and web-served animations of plume forecasts. The ClearSky system employs a unique hybrid source configuration, which treats the flaming portion of a field as a buoyant line source and the smoldering portion of the field as a buoyant area source. Limited field observations show that this hybrid approach yields reasonable plume rise estimates using source parameters derived from recent field burning emission field studies. The performance of this modeling system was evaluated for 2003 by comparing forecast meteorology against meteorological observations, and comparing model-predicted hourly averaged PM 2.5 concentrations against observations. Examples from this evaluation illustrate that while the ClearSky system can accurately predict PM 2.5 surface concentrations due to field burning, the overall model performance depends strongly on meteorological forecast error. Statistical evaluation of the meteorological forecast at seven surface stations indicates a strong relationship between topographical complexity near the station and absolute wind direction error with wind direction errors increasing from approximately 20° for sites in open areas to 70° or more for sites in very complex terrain. The analysis also showed some days with good forecast meteorology with absolute mean error in wind direction less than 30° when ClearSky correctly predicted PM 2.5 surface concentrations at receptors affected by field burns. On several other days with similar levels of wind direction error the model did not predict apparent plume impacts. In most of these cases, there were no reported burns in the vicinity of the monitor and, thus, it appeared that other, non-reported burns were responsible for the apparent plume impact at the monitoring site. These cases do not provide information on the performance of the model, but rather indicate that further work is needed to identify all burns and to improve burn reports in an accurate and timely manner. There were also a number of days with wind direction errors exceeding 70° when the forecast system did not correctly predict plume behavior.
Meteorological interpretation of transient LOD changes
NASA Astrophysics Data System (ADS)
Masaki, Y.
2008-04-01
The Earth’s spin rate is mainly changed by zonal winds. For example, seasonal changes in global atmospheric circulation and episodic changes accompanied with El Nĩ os are clearly detected n in the Length-of-day (LOD). Sub-global to regional meteorological phenomena can also change the wind field, however, their effects on the LOD are uncertain because such LOD signals are expected to be subtle and transient. In our previous study (Masaki, 2006), we introduced atmospheric pressure gradients in the upper atmosphere in order to obtain a rough picture of the meteorological features that can change the LOD. In this presentation, we compare one-year LOD data with meteorological elements (winds, temperature, pressure, etc.) and make an attempt to link transient LOD changes with sub-global meteorological phenomena.
NASA Technical Reports Server (NTRS)
Merrill, John T.; Rodriguez, Jose M.
1991-01-01
Trajectory and photochemical model calculations based on retrospective meteorological data for the operations areas of the NASA Pacific Exploratory Mission (PEM)-West mission are summarized. The trajectory climatology discussed here is intended to provide guidance for flight planning and initial data interpretation during the field phase of the expedition by indicating the most probable path air parcels are likely to take to reach various points in the area. The photochemical model calculations which are discussed indicate the sensitivity of the chemical environment to various initial chemical concentrations and to conditions along the trajectory. In the post-expedition analysis these calculations will be used to provide a climatological context for the meteorological conditions which are encountered in the field.
NASA Astrophysics Data System (ADS)
Sommer, Philipp; Kaplan, Jed
2016-04-01
Accurate modelling of large-scale vegetation dynamics, hydrology, and other environmental processes requires meteorological forcing on daily timescales. While meteorological data with high temporal resolution is becoming increasingly available, simulations for the future or distant past are limited by lack of data and poor performance of climate models, e.g., in simulating daily precipitation. To overcome these limitations, we may temporally downscale monthly summary data to a daily time step using a weather generator. Parameterization of such statistical models has traditionally been based on a limited number of observations. Recent developments in the archiving, distribution, and analysis of "big data" datasets provide new opportunities for the parameterization of a temporal downscaling model that is applicable over a wide range of climates. Here we parameterize a WGEN-type weather generator using more than 50 million individual daily meteorological observations, from over 10'000 stations covering all continents, based on the Global Historical Climatology Network (GHCN) and Synoptic Cloud Reports (EECRA) databases. Using the resulting "universal" parameterization and driven by monthly summaries, we downscale mean temperature (minimum and maximum), cloud cover, and total precipitation, to daily estimates. We apply a hybrid gamma-generalized Pareto distribution to calculate daily precipitation amounts, which overcomes much of the inability of earlier weather generators to simulate high amounts of daily precipitation. Our globally parameterized weather generator has numerous applications, including vegetation and crop modelling for paleoenvironmental studies.
NASA Astrophysics Data System (ADS)
Zhao, Chang; Song, Guojun
2017-08-01
Air pollution is one of the important reasons for restricting the current economic development. PM2.5 which is a vital factor in the measurement of air pollution is defined as a kind of suspended particulate matter with its equivalent diameter less than 25μm, which may enter the alveoli and therefore make a great impact on the human body. Meteorological factors are also one of the main factors affecting the production of PM2.5, therefore, it is essential to establish the model between meteorological factors and PM2.5 for the prediction. Data mining is a promising approach to model PM2.5 change, Shenyang which is one of the most important industrial city in Northeast China with severe air pollutions is set as the case city. Meteorological data (wind direction, wind speed, temperature, humidity, rainfall, etc.) from 2013 to 2015 and PM2.5 concentration data are used for this prediction. As to the requirements of the World Health Organization (WHO), three data mining models, whereby the predictions of PM2.5 are directly generated by the meteorological data. After assessment, the random forest model is appeared to offer better prediction performance than the other two. At last, the accuracy of the generated models are analysed.
NASA Astrophysics Data System (ADS)
Revuelto, Jesús; Azorin-Molina, Cesar; Alonso-González, Esteban; Sanmiguel-Vallelado, Alba; Navarro-Serrano, Francisco; Rico, Ibai; López-Moreno, Juan Ignacio
2017-12-01
This work describes the snow and meteorological data set available for the Izas Experimental Catchment in the Central Spanish Pyrenees, from the 2011 to 2017 snow seasons. The experimental site is located on the southern side of the Pyrenees between 2000 and 2300 m above sea level, covering an area of 55 ha. The site is a good example of a subalpine environment in which the evolution of snow accumulation and melt are of major importance in many mountain processes. The climatic data set consists of (i) continuous meteorological variables acquired from an automatic weather station (AWS), (ii) detailed information on snow depth distribution collected with a terrestrial laser scanner (TLS, lidar technology) for certain dates across the snow season (between three and six TLS surveys per snow season) and (iii) time-lapse images showing the evolution of the snow-covered area (SCA). The meteorological variables acquired at the AWS are precipitation, air temperature, incoming and reflected solar radiation, infrared surface temperature, relative humidity, wind speed and direction, atmospheric air pressure, surface temperature (snow or soil surface), and soil temperature; all were taken at 10 min intervals. Snow depth distribution was measured during 23 field campaigns using a TLS, and daily information on the SCA was also retrieved from time-lapse photography. The data set (https://doi.org/10.5281/zenodo.848277) is valuable since it provides high-spatial-resolution information on the snow depth and snow cover, which is particularly useful when combined with meteorological variables to simulate snow energy and mass balance. This information has already been analyzed in various scientific studies on snow pack dynamics and its interaction with the local climatology or topographical characteristics. However, the database generated has great potential for understanding other environmental processes from a hydrometeorological or ecological perspective in which snow dynamics play a determinant role.
Adding Four- Dimensional Data Assimilation (aka grid ...
Adding four-dimensional data assimilation (a.k.a. grid nudging) to MPAS.The U.S. Environmental Protection Agency is investigating the use of MPAS as the meteorological driver for its next-generation air quality model. To function as such, MPAS needs to operate in a diagnostic mode in much the same manner as the current meteorological driver, the Weather Research and Forecasting (WRF) model. The WRF operates in diagnostic mode using Four-Dimensional Data Assimilation, also known as "grid nudging". MPAS version 4.0 has been modified with the addition of an FDDA routine to the standard physics drivers to nudge the state variables for wind, temperature and water vapor towards MPAS initialization fields defined at 6-hour intervals from GFS-derived data. The results to be shown demonstrate the ability to constrain MPAS simulations to known historical conditions and thus provide the U.S. EPA with a practical meteorological driver for global-scale air quality simulations. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use bo
NASA Astrophysics Data System (ADS)
Sassi, F.; McDonald, S. E.; McCormack, J. P.; Tate, J.; Liu, H.; Kuhl, D.
2017-12-01
The 2015-2016 boreal winter and spring is a dynamically very interesting time in the lower atmosphere: a minor high latitude stratospheric warming occurred in February 2016; an interrupted descent of the QBO was found in the tropical stratosphere; and a large warm ENSO took place in the tropical Pacific Ocean. The stratospheric warming, the QBO and ENSO are known to affect in different ways the meteorology of the upper atmosphere in different ways: low latitude solar tides and high latitude planetary-scale waves have potentially important implications on the structure of the ionosphere. In this study, we use global atmospheric analyses from a high-altitude version of the High-Altitude Navy Global Environmental Model (HA-NAVGEM) to constrain the meteorology of numerical simulations of the Specified Dynamics Whole Atmosphere Community Climate Model, extended version (SD-WACCM-X). We describe the large-scale behavior of tropical tides and mid-latitude planetary waves that emerge in the lower thermosphere. The effect on the ionosphere is captured by numerical simulations of the Navy Highly Integrated Thermosphere Ionosphere Demonstration System (Navy-HITIDES) that uses the meteorology generated by SD-WACCM-X to drive ionospheric simulations during this time period. We will analyze the impact of various dynamical fields on the zonal behavior of the ionosphere by selectively filtering the relevant dynamical modes.
This paper addresses the need to increase the temporal and spatial resolution of meteorological data currently used in air quality simulation models, AQSMs. ransport and diffusion parameters including mixing heights and stability used in regulatory air quality dispersion models a...
Causal mechanisms of seismo-EM phenomena during the 1965-1967 Matsushiro earthquake swarm.
Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo
2017-03-21
The 1965-1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO 2 /water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO 2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO 2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart's law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities.
Causal mechanisms of seismo-EM phenomena during the 1965–1967 Matsushiro earthquake swarm
Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo
2017-01-01
The 1965–1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO2/water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart’s law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities. PMID:28322263
Causal mechanisms of seismo-EM phenomena during the 1965-1967 Matsushiro earthquake swarm
NASA Astrophysics Data System (ADS)
Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo
2017-03-01
The 1965-1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO2/water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart’s law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities.
Benchmarking of Typical Meteorological Year datasets dedicated to Concentrated-PV systems
NASA Astrophysics Data System (ADS)
Realpe, Ana Maria; Vernay, Christophe; Pitaval, Sébastien; Blanc, Philippe; Wald, Lucien; Lenoir, Camille
2016-04-01
Accurate analysis of meteorological and pyranometric data for long-term analysis is the basis of decision-making for banks and investors, regarding solar energy conversion systems. This has led to the development of methodologies for the generation of Typical Meteorological Years (TMY) datasets. The most used method for solar energy conversion systems was proposed in 1978 by the Sandia Laboratory (Hall et al., 1978) considering a specific weighted combination of different meteorological variables with notably global, diffuse horizontal and direct normal irradiances, air temperature, wind speed, relative humidity. In 2012, a new approach was proposed in the framework of the European project FP7 ENDORSE. It introduced the concept of "driver" that is defined by the user as an explicit function of the pyranometric and meteorological relevant variables to improve the representativeness of the TMY datasets with respect the specific solar energy conversion system of interest. The present study aims at comparing and benchmarking different TMY datasets considering a specific Concentrated-PV (CPV) system as the solar energy conversion system of interest. Using long-term (15+ years) time-series of high quality meteorological and pyranometric ground measurements, three types of TMY datasets generated by the following methods: the Sandia method, a simplified driver with DNI as the only representative variable and a more sophisticated driver. The latter takes into account the sensitivities of the CPV system with respect to the spectral distribution of the solar irradiance and wind speed. Different TMY datasets from the three methods have been generated considering different numbers of years in the historical dataset, ranging from 5 to 15 years. The comparisons and benchmarking of these TMY datasets are conducted considering the long-term time series of simulated CPV electric production as a reference. The results of this benchmarking clearly show that the Sandia method is not suitable for CPV systems. For these systems, the TMY datasets obtained using dedicated drivers (DNI only or more precise one) are more representative to derive TMY datasets from limited long-term meteorological dataset.
Synoptic Meteorology during the SNOW-ONE-A Field Experiment.
1983-05-01
AD ,34 888 SYNOPTIC METEOROLOGY DURING tHE SNOW-ONE A FIELD I EXPERIMENTIUP COLD REGIONS RESEARCH AND ENGINEERING LABHANOVER NN M A BILELLO MAY 83...PROGRAM ELEMENT. PROJECT. TASK U. S. Army Cold Regions Research and AREA & WORK UNIT NUMBERS Engineering Laboratory DA Project 4A762730AT42- Hanover, New...Hampshire 03755 B-El-5 It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Office of the Ch ief of Engineers May 1983 Washington, D.C. 20314 13
Agricultural Meteorology in China.
NASA Astrophysics Data System (ADS)
Rosenberg, Norman J.
1982-03-01
During nearly five weeks in China (May-June 1981), the author visited scientific institutions and experiment stations engaged in agricultural meterology and climatology research and teaching. The facilities, studies, and research programs at each institution are described and the scientific work in these fields is evaluated. Agricultural meteorology and climatology are faced with some unique problems and opportunities in China and progress in these fields may be of critical importance to that nation in coming years. The author includes culinary notes and comments on protocol in China.
NASA Technical Reports Server (NTRS)
Chao, B. F.; Au, A. Y.; Johnson, T.; Smith, David E. (Technical Monitor)
2001-01-01
Interannual meteorological oscillations (ENSO, QBO, NAO, etc.) have demonstrable influences on Earth's rotation. Here we study their effects on global gravitational field, whose temporal variations are being studied using SLR (satellite laser ranging) data and in anticipation of the new space mission GRACE. The meteorological oscillation modes are identified using the EOF (empirical orthogonal function)/PC (principal component) decomposition of surface fields (in which we take care of issues associated with the area-weighting and non-zero mean). We examine two fields, one for the global surface pressure field for the atmosphere obtained from the NCEP reanalysis (for the past 40 years), one for the surface topography field for the ocean from the Topex/Poseidon (T/P) data (for the past 8 years). We use monthly maps, and remove the mean-monthly ("climatology") values from each grid point, hence focusing only on non-seasonal signals. The T/P data were first subject to a steric correction where the steric contribution to the ocean surface topography was removed according to output of the numerical POCM model. The respective atmospheric and oceanic contributions to the gravitational variation, in terms of harmonic Stokes coefficients, are then combined mode-by-mode. Since the T/P data already contain the oceanic response to overlying atmospheric pressure, no regards to the inverted-barometer behavior for the ocean need be considered. Results for the lowest-degree Stokes coefficients can then be compared with space geodetic observations including the Earth's rotation and the SLR data mentioned above, to identify the importance of each meteorological oscillations in gravitational variation signals.
An Introduction to Air Chemistry.
ERIC Educational Resources Information Center
Butcher, Samuel S.; Charlson, Robert J.
Designed for those with no previous experience in the field, this book synthesizes the areas of chemistry and meteorology required to bring into focus some of the complex problems associated with the atmospheric environment. Subject matter moves from a review of the relevant chemical and meteorological principles to a discussion of the general…
The four-dimensional data assimilation (FDDA) technique in the Weather Research and Forecasting (WRF) meteorological model has recently undergone an important update from the original version. Previous evaluation results have demonstrated that the updated FDDA approach in WRF pr...
Pattern recognition of satellite cloud imagery for improved weather prediction
NASA Technical Reports Server (NTRS)
Gautier, Catherine; Somerville, Richard C. J.; Volfson, Leonid B.
1986-01-01
The major accomplishment was the successful development of a method for extracting time derivative information from geostationary meteorological satellite imagery. This research is a proof-of-concept study which demonstrates the feasibility of using pattern recognition techniques and a statistical cloud classification method to estimate time rate of change of large-scale meteorological fields from remote sensing data. The cloud classification methodology is based on typical shape function analysis of parameter sets characterizing the cloud fields. The three specific technical objectives, all of which were successfully achieved, are as follows: develop and test a cloud classification technique based on pattern recognition methods, suitable for the analysis of visible and infrared geostationary satellite VISSR imagery; develop and test a methodology for intercomparing successive images using the cloud classification technique, so as to obtain estimates of the time rate of change of meteorological fields; and implement this technique in a testbed system incorporating an interactive graphics terminal to determine the feasibility of extracting time derivative information suitable for comparison with numerical weather prediction products.
Potential sources of precipitation in Lake Baikal basin
NASA Astrophysics Data System (ADS)
Shukurov, K. A.; Mokhov, I. I.
2017-11-01
Based on the data of long-term measurements at 23 meteorological stations in the Russian part of the Lake Baikal basin the probabilities of daily precipitation with different intensity and their contribution to the total precipitation are estimated. Using the trajectory model HYSPLIT_4 for each meteorological station for the period 1948-2016 the 10-day backward trajectories of air parcels, the height of these trajectories and distribution of specific humidity along the trajectories are calculated. The average field of power of potential sources of daily precipitation (less than 10 mm) for all meteorological stations in the Russian part of the Lake Baikal basin was obtained using the CWT (concentration weighted trajectory) method. The areas have been identified from which within 10 days water vapor can be transported to the Lake Baikal basin, as well as regions of the most and least powerful potential sources. The fields of the mean height of air parcels trajectories and the mean specific humidity along the trajectories are compared with the field of mean power of potential sources.
Puerto Rico - 2002 : field studies to resolve aerosol processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaffney, J. S.; Marley, N. A.; Ravelo, R.
1999-10-05
A number of questions remain concerning homogeneous aerosol formation by natural organics interacting with anthropogenic pollutants. For example, chlorine has been proposed as a potential oxidant in the troposphere because of its very high reactivity with a wide range of organics (Finlayson-Pitts, 1993). Indeed, sea salt aerosol in the presence of ozone has been shown to produce chlorine atoms in heterogeneous photochemical reactions under laboratory conditions. Whether chlorine can initiate oxidation of natural organics such as monoterpene hydrocarbons and can generate homogeneous nucleation or condensable material that contributes to aerosol loadings needs to be assessed. The nighttime reactions of ozonemore » and nitrate radical can also result in monoterpene reactions that contribute to aerosol mass. We are currently planning field studies in Puerto Rico to assess these aerosol issues and other atmospheric chemistry questions. Puerto Rico has a number of key features that make it very attractive for a field study of this sort. The principal feature is the island's very regular meteorology and its position in the Caribbean Sea relative to the easterly trade winds. This meteorology and the island's rectangular shape (100 x 35 miles) make it highly suitable for simplification of boundary layer conditions. In addition, the long stretch between Puerto Rico and the nearest pollution sources in Africa and southern Europe make the incoming background air relatively clean and constant. Furthermore, Puerto Rico has approximately 3.5 million people with a very well defined source region and a central area of rain forest vegetation. These features make Puerto Rico an ideal locale for assessing aerosol processes. The following sections describe specific areas of atmospheric chemistry that can be explored during the proposed field study.« less
Towards a climate service for the Tunisian tourism industry
NASA Astrophysics Data System (ADS)
Henia, Latifa; Hlaoui, Zouhaier
2013-04-01
Until today's Tunisia, there is little communication between generators of meteorological or climatological data and stakeholders in the tourism sector. However: - A recent survey shows that professionals in the tourism sector are aware of the importance of integrating relevant climate information in their tourism management and development strategies. - Tunisia has expertise in the field of meteorology and climatology which meets the demand of the tourism sector in relevant climate information. The program CLIM RUN has created a framework allowing the introduction of a climate service in the Tunisian tourism sector. It identified the needs of the sector in climate information as well as examined together with specialized services and trained researchers the possibility of responding to these needs. The "GREVACHOT" research unit based at the University of Tunis and partner of the CLIM RUN program has developed one of the products for which great demand was formulated by tourism stakeholders: this is climate-tourism comfort indices (ICT) at regional and local scales. We here present: - The Tunisian experience in identifying climate information needs of the tourism sector, - The approach method to the development, study, mapping of ICT and results.
Non-seismic tsunamis: filling the forecast gap
NASA Astrophysics Data System (ADS)
Moore, C. W.; Titov, V. V.; Spillane, M. C.
2015-12-01
Earthquakes are the generation mechanism in over 85% of tsunamis. However, non-seismic tsunamis, including those generated by meteorological events, landslides, volcanoes, and asteroid impacts, can inundate significant area and have a large far-field effect. The current National Oceanographic and Atmospheric Administration (NOAA) tsunami forecast system falls short in detecting these phenomena. This study attempts to classify the range of effects possible from these non-seismic threats, and to investigate detection methods appropriate for use in a forecast system. Typical observation platforms are assessed, including DART bottom pressure recorders and tide gauges. Other detection paths include atmospheric pressure anomaly algorithms for detecting meteotsunamis and the early identification of asteroids large enough to produce a regional hazard. Real-time assessment of observations for forecast use can provide guidance to mitigate the effects of a non-seismic tsunami.
Academic Librarians in Data Information Literacy Instruction: A Case Study in Meteorology
ERIC Educational Resources Information Center
Frank, Emily P.; Pharo, Nils
2016-01-01
E-science has reshaped meteorology due to the rate data is generated, collected, analyzed, and stored and brought data skills to a new prominence. Data information literacy--the skills needed to understand, use, manage, share, work with, and produce data--reflects the confluence of data skills with information literacy competencies. This research…
NASA Astrophysics Data System (ADS)
Rockwell, A.; Clark, R. D.; Stevermer, A.
2017-12-01
The National Center for Atmospheric Research Earth Observing Laboratory, Millersville University and The COMET Program are collaborating to produce a series of nine online modules on the the topic of meteorological instrumentation and measurements. These interactive, multimedia educational modules can be integrated into undergraduate and graduate meteorology courses on instrumentation, measurement science, and observing systems to supplement traditional pedagogies and enhance blended instruction. These freely available and open-source training tools are designed to supplement traditional pedagogies and enhance blended instruction. Three of the modules are now available and address the theory and application of Instrument Performance Characteristics, Meteorological Temperature Instrumentation and Measurements, and Meteorological Pressure Instrumentation and Measurements. The content of these modules is of the highest caliber as it has been developed by scientists and engineers who are at the forefront of the field of observational science. Communicating the availability of these unique and influential educational resources with the community is of high priority. These modules will have a profound effect on the atmospheric observational sciences community by fulfilling a need for contemporary, interactive, multimedia guided education and training modules integrating the latest instructional design and assessment tools in observational science. Thousands of undergraduate and graduate students will benefit, while course instructors will value a set of high quality modules to use as supplements to their courses. The modules can serve as an alternative to observational research training and fill the void between field projects or assist those schools that lack the resources to stage a field- or laboratory-based instrumentation experience.
Spatial clustering and meteorological drivers of summer ozone in Europe
NASA Astrophysics Data System (ADS)
Carro-Calvo, Leopoldo; Ordóñez, Carlos; García-Herrera, Ricardo; Schnell, Jordan L.
2017-10-01
We have applied the k-means clustering technique on a maximum daily 8-h running average near-surface ozone (MDA8 O3) gridded dataset over Europe at 1° × 1° resolution for summer 1998-2012. This has resulted in a spatial division of nine regions where ozone presents coherent spatiotemporal patterns. The role of meteorology in the variability of ozone at different time scales has been investigated by using daily meteorological fields from the NCEP-NCAR meteorological reanalysis. In the five regions of central-southern Europe ozone extremes (exceedances of the summer 95th percentile) occur mostly under anticyclonic circulation or weak sea level pressure gradients which trigger elevated temperatures and the recirculation of air masses. In the four northern regions extremes are associated with high-latitude anticyclones that divert the typical westerly flow at those latitudes and cause the advection of aged air masses from the south. The impact of meteorology on the day-to-day variability of ozone has been assessed by means of two different types of multiple linear models. These include as predictors meteorological fields averaged within the regions (;region-based; approach) or synoptic indices indicating the degree of resemblance between the daily meteorological fields over a large domain (25°-70° N, 35° W - 35° E) and their corresponding composites for extreme ozone days (;index-based; approach). With the first approach, a reduced set of variables, always including daily maximum temperature within the region, explains 47-66% of the variability (adjusted R2) in central-southern Europe, while more complex models are needed to explain 27-49% of the variability in the northern regions. The index-based approach yields better results for the regions of northern Europe, with adjusted R2 = 40-57%. Finally, both methodologies have also been applied to reproduce the interannual variability of ozone, with the best models explaining 66-88% of the variance in central-southern Europe and 45-66% in the north. Thus, the regionalisation carried out in this work has allowed establishing clear distinctions between the meteorological drivers of ozone in northern Europe and in the rest of the continent. These drivers are consistent across the different time scales examined (extremes, day-to-day and interannual), which gives confidence in the robustness of the results.
Information of urban morphological features at high resolution is needed to properly model and characterize the meteorological and air quality fields in urban areas. We describe a new project called National Urban Database with Access Portal Tool, (NUDAPT) that addresses this nee...
Meteorological support to the West German-United States Barium Ion Cloud Project.
NASA Technical Reports Server (NTRS)
Westfall, R. R.; Chamberlain, L. W.
1972-01-01
The objective of the Barium Ion Cloud Project was to study a barium ionized cloud released at an altitude of 5 earth radii. Accurate forecasting of weather conditions to prevail during the experiment period was critical to the project success. Good seeing conditions were required at all optical sites during the experiment. All meteorological support was the responsibility of the National Weather Service at Wallops Station, Virginia. Preliminary results confirm the scientists' theories of the magnetic fields and the existence of electric fields in the magnetosphere.
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Kanemaru, A.; Okumura, M.; Tohno, S.
2008-12-01
Biogenic VOC (BVOC) has comparably large contribution to generation of secondary air pollutants, such as photochemical oxidant or urban aerosol. In this study a BVOC emission inventory in the Kansai area, which is located in the central part of Japan, based on the field observation was developed. Some validations of the inventory were conducted by estimating the concentration distribution of oxidants with this developed and an existing BVOC emission inventory in Kansai area by meteorological model MM5 and atmospheric chemical transport model CMAQ. In the development of BVOC emission, the vegetation map by the Biodiversity Center of Japan which had been arranged as basic information on natural environmental preservation in a regional standard mesh (the third mesh) in 1999 was used. In this study isoprene and the mono-terpene were taken up as BVOC. Quercus crispula and Quercus serrata were selected as the source of isoprene, and Cryptomeria japonica, Chamaecyparis obtuse, Quercus phillyraeoides, Pinus densiflora, and Pinus thunbergii were selected as sources of mono-terpene. The parameter of the basic emission rate included in the model was decided by arranging the result of the observation in Kansai Research Center of Forestry and Forest Products Research Institute in each season. This emission flux from each species were calculated by G93 model by Guenther et al. and meteorological fields for the model, such as temperatures and sunlight intensities, were renewed hour by hour, therefore, this emission inventory has a high time resolution according to the season and time. In calculating meteorological fields, meteorological model MM5 Ver.3.7 was conducted in Japanese standard mesh in the selected five days of April, July, and October in 2004, and January 2005 respectively, and taking out the result of wind velocities and temperatures for substituting to the G93 model. Then atmospheric chemical transport model CMAQ Ver.4.6 with the emission inventories and meteorological fields was used for estimating secondary produced compounds concentration in the Kansai region. While the emission amount data of BVOC is also included in the EAGrid-Japan database, constructed by A. Kannari et al., another simulation with this existing BVOC emission inventory was conducted. As for other emission inventories of precursors, EAGrid-Japan was also used in both simulations. According to the result of estimation of BVOC emission, the total amount of BVOC is almost same as that of EAGrid-Japan, however, the ratio of isoprene to total BVOC emission is quite low in our estimation, due to the used vegetation map in this study, and the configuration of basic emission parameter in Autumn and Winter which is set to zero. According to the result of atmospheric chemical transport simulation with this developed BVOC inventory, oxidant concentrations are lower than observed values. This result suggests that the amount of isoprene emission strongly affected on the concentrations of oxidants, therefore, more accurate vegetation map data as a basis of BVOC emissions should be developed.
NASA Technical Reports Server (NTRS)
Jones, Alun R; Lewis, William
1949-01-01
Meteorological conditions conducive to aircraft icing are arranged in four classifications: three are associated with cloud structure and the fourth with freezing rain. The range of possible meteorological factors for each classification is discussed and specific values recommended for consideration in the design of ice-prevention equipment for aircraft are selected and tabulated. The values selected are based upon a study of the available observational data and theoretical considerations where observations are lacking. Recommendations for future research in the field are presented.
A review of the meteorological parameters which affect aerial application
NASA Technical Reports Server (NTRS)
Christensen, L. S.; Frost, W.
1979-01-01
The ambient wind field and temperature gradient were found to be the most important parameters. Investigation results indicated that the majority of meteorological parameters affecting dispersion were interdependent and the exact mechanism by which these factors influence the particle dispersion was largely unknown. The types and approximately ranges of instrumented capabilities for a systematic study of the significant meteorological parameters influencing aerial applications were defined. Current mathematical dispersion models were also briefly reviewed. Unfortunately, a rigorous dispersion model which could be applied to aerial application was not available.
Hur, Sun-Kyong; Oh, Hye-Ryun; Ho, Chang-Hoi; Kim, Jinwon; Song, Chang-Keun; Chang, Lim-Seok; Lee, Jae-Bum
2016-11-01
As of November 2014, the Korean Ministry of Environment (KME) has been forecasting the concentration of particulate matter with diameters ≤ 10 μm (PM 10 ) classified into four grades: low (PM 10 ≤ 30 μg m -3 ), moderate (30 < PM 10 ≤ 80 μg m -3 ), high (80 < PM 10 ≤ 150 μg m -3 ), and very high (PM 10 > 150 μg m -3 ). The KME operational center generates PM 10 forecasts using statistical and chemistry-transport models, but the overall performance and the hit rate for the four PM 10 grades has not previously been evaluated. To provide a statistical reference for the current air quality forecasting system, we have developed a neural network model based on the synoptic patterns of several meteorological fields such as geopotential height, air temperature, relative humidity, and wind. Hindcast of the four PM 10 grades in Seoul, Korea was performed for the cold seasons (October-March) of 2001-2014 when the high and very high PM 10 grades are frequently observed. Because synoptic patterns of the meteorological fields are distinctive for each PM 10 grade, these fields were adopted and quantified as predictors in the form of cosine similarities to train the neural network model. Using these predictors in conjunction with the PM 10 concentration in Seoul from the day before prediction as an additional predictor, an overall hit rate of 69% was achieved; the hit rates for the low, moderate, high, and very high PM 10 grades were 33%, 83%, 45%, and 33%, respectively. Our findings also suggest that the synoptic patterns of meteorological variables are reliable predictors for the identification of the favorable conditions for each PM 10 grade, as well as for the transboundary transport of PM 10 from China. This evaluation of PM 10 predictability can be reliably used as a statistical reference and further, complement to the current air quality forecasting system. Copyright © 2016 Elsevier Ltd. All rights reserved.
This paper presents a comparison of the operational performance of two Community Multiscale Air Quality (CMAQ) model v4.7 simulations that utilize input data from the 5th generation Mesoscale Model MM5 and the Weather Research and Forecasting (WRF) meteorological models.
NASA Astrophysics Data System (ADS)
Sheng, Jie; Zhu, Qiaoming; Cao, Shijie; You, Yang
2017-05-01
This paper helps in study of the relationship between the photovoltaic power generation of large scale “fishing and PV complementary” grid-tied photovoltaic system and meteorological parameters, with multi-time scale power data from the photovoltaic power station and meteorological data over the same period of a whole year. The result indicates that, the PV power generation has the most significant correlation with global solar irradiation, followed by diurnal temperature range, sunshine hours, daily maximum temperature and daily average temperature. In different months, the maximum monthly average power generation appears in August, which related to the more global solar irradiation and longer sunshine hours in this month. However, the maximum daily average power generation appears in October, this is due to the drop in temperature brings about the improvement of the efficiency of PV panels. Through the contrast of monthly average performance ratio (PR) and monthly average temperature, it is shown that, the larger values of monthly average PR appears in April and October, while it is smaller in summer with higher temperature. The results concluded that temperature has a great influence on the performance ratio of large scale grid-tied PV power system, and it is important to adopt effective measures to decrease the temperature of PV plant properly.
Weathering the empire: meteorological research in the early British Straits Settlements.
Williamson, Fiona
2015-09-01
This article explores meteorological interest and experimentation in the early history of the Straits Settlements. It centres on the establishment of an observatory in 1840s Singapore and examines the channels that linked the observatory to a global community of scientists, colonial officers and a reading public. It will argue that, although the value of overseas meteorological investigation was recognized by the British government, investment was piecemeal and progress in the field often relied on the commitment and enthusiasm of individuals. In the Straits Settlements, as elsewhere, these individuals were drawn from military or medical backgrounds, rather than trained as dedicated scientists. Despite this, meteorology was increasingly recognized as of fundamental importance to imperial interests. Thus this article connects meteorology with the history of science and empire more fully and examines how research undertaken in British dependencies is revealing of the operation of transnational networks in the exchange of scientific knowledge.
The utility of atmospheric analyses for the mitigation of artifacts in InSAR
Foster, James; Kealy, John; Cherubini, Tiziana; Businger, S.; Lu, Zhong; Murphy, Michael
2013-01-01
The numerical weather models (NWMs) developed by the meteorological community are able to provide accurate analyses of the current state of the atmosphere in addition to the predictions of the future state. To date, most attempts to apply the NWMs to estimate the refractivity of the atmosphere at the time of satellite synthetic aperture radar (SAR) data acquisitions have relied on predictive models. We test the hypothesis that performing a final assimilative routine, ingesting all available meteorological observations for the times of SAR acquisitions, and generating customized analyses of the atmosphere at those times will better mitigate atmospheric artifacts in differential interferograms. We find that, for our study area around Mount St. Helens (Amboy, Washington, USA), this approach is unable to model the refractive changes and provides no mean benefit for interferogram analysis. The performance is improved slightly by ingesting atmospheric delay estimates derived from the limited local GPS network; however, the addition of water vapor products from the GOES satellites reduces the quality of the corrections. We interpret our results to indicate that, even with this advanced approach, NWMs are not a reliable mitigation technique for regions such as Mount St. Helens with highly variable moisture fields and complex topography and atmospheric dynamics. It is possible, however, that the addition of more spatially dense meteorological data to constrain the analyses might significantly improve the performance of weather modeling of atmospheric artifacts in satellite radar interferograms.
NASA Astrophysics Data System (ADS)
Mel, Riccardo; Viero, Daniele Pietro; Carniello, Luca; Defina, Andrea; D'Alpaos, Luigi
2014-09-01
Providing reliable and accurate storm surge forecasts is important for a wide range of problems related to coastal environments. In order to adequately support decision-making processes, it also become increasingly important to be able to estimate the uncertainty associated with the storm surge forecast. The procedure commonly adopted to do this uses the results of a hydrodynamic model forced by a set of different meteorological forecasts; however, this approach requires a considerable, if not prohibitive, computational cost for real-time application. In the present paper we present two simplified methods for estimating the uncertainty affecting storm surge prediction with moderate computational effort. In the first approach we use a computationally fast, statistical tidal model instead of a hydrodynamic numerical model to estimate storm surge uncertainty. The second approach is based on the observation that the uncertainty in the sea level forecast mainly stems from the uncertainty affecting the meteorological fields; this has led to the idea to estimate forecast uncertainty via a linear combination of suitable meteorological variances, directly extracted from the meteorological fields. The proposed methods were applied to estimate the uncertainty in the storm surge forecast in the Venice Lagoon. The results clearly show that the uncertainty estimated through a linear combination of suitable meteorological variances nicely matches the one obtained using the deterministic approach and overcomes some intrinsic limitations in the use of a statistical tidal model.
NASA Astrophysics Data System (ADS)
Bae, Young-Ho; Jo, Jung Hyun; Yim, Hong-Suh; Park, Young-Sik; Park, Sun-Youp; Moon, Hong Kyu; Choi, Young-Jun; Jang, Hyun-Jung; Roh, Dong-Goo; Choi, Jin; Park, Maru; Cho, Sungki; Kim, Myung-Jin; Choi, Eun-Jung; Park, Jang-Hyun
2016-06-01
The correlation between meteorological data collected at the optical wide-field patrol network (OWL-Net) Station No. 1 and the seeing of satellite optical observation data was analyzed. Meteorological data and satellite optical observation data from June 2014 to November 2015 were analyzed. The analyzed meteorological data were the outdoor air temperature, relative humidity, wind speed, and cloud index data, and the analyzed satellite optical observation data were the seeing full-width at half-maximum (FWHM) data. The annual meteorological pattern for Mongolia was analyzed by collecting meteorological data over four seasons, with data collection beginning after the installation and initial set-up of the OWL-Net Station No. 1 in Mongolia. A comparison of the meteorological data and the seeing of the satellite optical observation data showed that the seeing degrades as the wind strength increases and as the cloud cover decreases. This finding is explained by the bias effect, which is caused by the fact that the number of images taken on the less cloudy days was relatively small. The seeing FWHM showed no clear correlation with either temperature or relative humidity.
NASA Technical Reports Server (NTRS)
Spar, J.; Cohen, C.; Wu, P.
1981-01-01
A coarse mesh (8 by 10) 7 layer global climate model was used to compute 15 months of meteorological history in two perpetual January experiments on a water planet (without continents) with a zonally symmetric climatological January sea surface temperature field. In the first of the two water planet experiments the initial atmospheric state was a set of zonal mean values of specific humidity, temperature, and wind at each latitude. In the second experiment the model was initialized with globally uniform mean values of specific humidity and temperature on each sigma level surface, constant surface pressure (1010 mb), and zero wind everywhere. A comparison was made of the mean January climatic states generated by the two water planet experiments. The first two months of each 15 January run were discarded, and 13 month averages were computed from months 3 through 15.
Stochastic Watershed Models for Risk Based Decision Making
NASA Astrophysics Data System (ADS)
Vogel, R. M.
2017-12-01
Over half a century ago, the Harvard Water Program introduced the field of operational or synthetic hydrology providing stochastic streamflow models (SSMs), which could generate ensembles of synthetic streamflow traces useful for hydrologic risk management. The application of SSMs, based on streamflow observations alone, revolutionized water resources planning activities, yet has fallen out of favor due, in part, to their inability to account for the now nearly ubiquitous anthropogenic influences on streamflow. This commentary advances the modern equivalent of SSMs, termed `stochastic watershed models' (SWMs) useful as input to nearly all modern risk based water resource decision making approaches. SWMs are deterministic watershed models implemented using stochastic meteorological series, model parameters and model errors, to generate ensembles of streamflow traces that represent the variability in possible future streamflows. SWMs combine deterministic watershed models, which are ideally suited to accounting for anthropogenic influences, with recent developments in uncertainty analysis and principles of stochastic simulation
Development of an Aircraft Approach and Departure Atmospheric Profile Generation Algorithm
NASA Technical Reports Server (NTRS)
Buck, Bill K.; Velotas, Steven G.; Rutishauser, David K. (Technical Monitor)
2004-01-01
In support of NASA Virtual Airspace Modeling and Simulation (VAMS) project, an effort was initiated to develop and test techniques for extracting meteorological data from landing and departing aircraft, and for building altitude based profiles for key meteorological parameters from these data. The generated atmospheric profiles will be used as inputs to NASA s Aircraft Vortex Spacing System (AVOLSS) Prediction Algorithm (APA) for benefits and trade analysis. A Wake Vortex Advisory System (WakeVAS) is being developed to apply weather and wake prediction and sensing technologies with procedures to reduce current wake separation criteria when safe and appropriate to increase airport operational efficiency. The purpose of this report is to document the initial theory and design of the Aircraft Approach Departure Atmospheric Profile Generation Algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-02-01
The preliminary assessment included the following activities: (1) An on-site visit, including interviews and field surveys; (2) Acquisition and analysis of information on past hazardous materials use, waste generation, and waste disposal at the Station; (3) Acquisition and analysis of available geological surveys, hydrological data, meteorological data, and environmental data; and (4) The identification and assessment of sites where contamination of soils, ground water and/or surface water may have occurred. Operations that have involved the use of hazardous materials and the disposal of hazardous wastes include vehicle maintenance and aerospace ground equipment (AGE) maintenance. The hazardous wastes disposed fo throughmore » these operations include varying quantities of petroleum-oil-lubricant (POL) products, acids, paints, thinners, strippers, and solvents. The field surveys and interviews resulted in the identification of three sites that exhibit the potential for migration of contaminants.« less
Local magnetic fields, uplift, gravity, and dilational strain changes in Southern California ( USA).
Johnston, M.J.S.
1986-01-01
Measurements of regional magnetic field near the San Andreas fault at Cajon, Palmdale and Tejon are strongly correlated with changes in gravity, areal strain, and uplift in these regions during the period 1977-1984. Because the inferred relationships between these parameters are in approximate agreement with those obtained from simple deformation models, the preferred explanation appeals to short-term strain episodes independently detected in each data set. Transfer functions from magnetic to strain, gravity, and uplift perturbations, obtained by least-square linear fits to the data, are -0.98 nT/ppm, -0.03 nT/mu Gal, and 9.1 nT/m respectively. Tectonomagnetic model calculations underestimate the observed changes and those reported previously for dam loading and volcano-magnetic observations. A less likely alternative explanation of the observed data appeals to a common source of meteorologically generated crustal or instrumental noise in the strain, gravity, magnetic, and uplift data.-from Author
USAF bioenvironmental noise data handbook. Volume 163: GPC-28 compressor
NASA Astrophysics Data System (ADS)
Rau, T. H.
1982-05-01
The GPC-28 is a gasoline engine-driven compressor with a 120 volt 60 Hz generator used for general purpose maintenance. This report provides measured and extrapolated data defining the bioacoustic environments produced by this unit operating outdoors on a concrete apron at a normal rated condition. Near-field data are reported for 37 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Far-field data measured at 36 locations are normalized to standard meteorological conditions and extrapolated from 10 - 1600 meters to derive sets of equal-value contours for these same seven acoustic measures as functions of angle and distance from the source.
Simplification of the Kalman filter for meteorological data assimilation
NASA Technical Reports Server (NTRS)
Dee, Dick P.
1991-01-01
The paper proposes a new statistical method of data assimilation that is based on a simplification of the Kalman filter equations. The forecast error covariance evolution is approximated simply by advecting the mass-error covariance field, deriving the remaining covariances geostrophically, and accounting for external model-error forcing only at the end of each forecast cycle. This greatly reduces the cost of computation of the forecast error covariance. In simulations with a linear, one-dimensional shallow-water model and data generated artificially, the performance of the simplified filter is compared with that of the Kalman filter and the optimal interpolation (OI) method. The simplified filter produces analyses that are nearly optimal, and represents a significant improvement over OI.
Development and testing of meteorology and air dispersion models for Mexico City
NASA Astrophysics Data System (ADS)
Williams, M. D.; Brown, M. J.; Cruz, X.; Sosa, G.; Streit, G.
Los Alamos National Laboratory and Instituto Mexicano del Petróleo are completing a joint study of options for improving air quality in Mexico City. We have modified a three-dimensional, prognostic, higher-order turbulence model for atmospheric circulation (HOTMAC) and a Monte Carlo dispersion and transport model (RAPTAD) to treat domains that include an urbanized area. We used the meteorological model to drive models which describe the photochemistry and air transport and dispersion. The photochemistry modeling is described in a separate paper. We tested the model against routine measurements and those of a major field program. During the field program, measurements included: (1) lidar measurements of aerosol transport and dispersion, (2) aircraft measurements of winds, turbulence, and chemical species aloft, (3) aircraft measurements of skin temperatures, and (4) Tethersonde measurements of winds and ozone. We modified the meteorological model to include provisions for time-varying synoptic-scale winds, adjustments for local wind effects, and detailed surface-coverage descriptions. We developed a new method to define mixing-layer heights based on model outputs. The meteorology and dispersion models were able to provide reasonable representations of the measurements and to define the sources of some of the major uncertainties in the model-measurement comparisons.
Processing of meteorological data with ultrasonic thermoanemometers
NASA Astrophysics Data System (ADS)
Telminov, A. E.; Bogushevich, A. Ya.; Korolkov, V. A.; Botygin, I. A.
2017-11-01
The article describes a software system intended for supporting scientific researches of the atmosphere during the processing of data gathered by multi-level ultrasonic complexes for automated monitoring of meteorological and turbulent parameters in the ground layer of the atmosphere. The system allows to process files containing data sets of temperature instantaneous values, three orthogonal components of wind speed, humidity and pressure. The processing task execution is done in multiple stages. During the first stage, the system executes researcher's query for meteorological parameters. At the second stage, the system computes series of standard statistical meteorological field properties, such as averages, dispersion, standard deviation, asymmetry coefficients, excess, correlation etc. The third stage is necessary to prepare for computing the parameters of atmospheric turbulence. The computation results are displayed to user and stored at hard drive.
Utility of NCEP Operational and Emerging Meteorological Models for Driving Air Quality Prediction
NASA Astrophysics Data System (ADS)
McQueen, J.; Huang, J.; Huang, H. C.; Shafran, P.; Lee, P.; Pan, L.; Sleinkofer, A. M.; Stajner, I.; Upadhayay, S.; Tallapragada, V.
2017-12-01
Operational air quality predictions for the United States (U. S.) are provided at NOAA by the National Air Quality Forecasting Capability (NAQFC). NAQFC provides nationwide operational predictions of ozone and particulate matter twice per day (at 06 and 12 UTC cycles) at 12 km resolution and 1 hour time intervals through 48 hours and distributed at http://airquality.weather.gov. The NOAA National Centers for Environmental Prediction (NCEP) operational North American Mesoscale (NAM) 12 km weather prediction is used to drive the Community Multiscale Air Quality (CMAQ) model. In 2017, the NAM was upgraded in part to reduce a warm 2m temperature bias in Summer (V4). At the same time CMAQ was updated to V5.0.2. Both versions of the models were run in parallel for several months. Therefore the impact of improvements from the atmospheric chemistry model versus upgrades with the weather prediction model could be assessed. . Improvements to CMAQ were related to improvements to improvements in NAM 2 m temperature bias through increasing the opacity of clouds and reducing downward shortwave radiation resulted in reduced ozone photolysis. Higher resolution operational NWP models have recently been introduced as part of the NCEP modeling suite. These include the NAM CONUS Nest (3 km horizontal resolution) run four times per day through 60 hours and the High Resolution Rapid Refresh (HRRR, 3 km) run hourly out to 18 hours. In addition, NCEP with other NOAA labs has begun to develop and test the Next Generation Global Prediction System (NGGPS) based on the FV3 global model. This presentation also overviews recent developments with operational numerical weather prediction and evaluates the ability of these models for predicting low level temperatures, clouds and capturing boundary layer processes important for driving air quality prediction in complex terrain. The assessed meteorological model errors could help determine the magnitude of possible pollutant errors from CMAQ if used for driving meteorology. The NWP models will be evaluated against standard and mesonet fields averaged for various regions during the summer 2017. An evaluation of meteorological fields important to air quality modeling (eg: near surface winds, temperatures, moisture and boundary layer heights, cloud cover) will be reported on.
NASA Astrophysics Data System (ADS)
Fatichi, S.; Ivanov, V. Y.; Caporali, E.
2013-04-01
This study extends a stochastic downscaling methodology to generation of an ensemble of hourly time series of meteorological variables that express possible future climate conditions at a point-scale. The stochastic downscaling uses general circulation model (GCM) realizations and an hourly weather generator, the Advanced WEather GENerator (AWE-GEN). Marginal distributions of factors of change are computed for several climate statistics using a Bayesian methodology that can weight GCM realizations based on the model relative performance with respect to a historical climate and a degree of disagreement in projecting future conditions. A Monte Carlo technique is used to sample the factors of change from their respective marginal distributions. As a comparison with traditional approaches, factors of change are also estimated by averaging GCM realizations. With either approach, the derived factors of change are applied to the climate statistics inferred from historical observations to re-evaluate parameters of the weather generator. The re-parameterized generator yields hourly time series of meteorological variables that can be considered to be representative of future climate conditions. In this study, the time series are generated in an ensemble mode to fully reflect the uncertainty of GCM projections, climate stochasticity, as well as uncertainties of the downscaling procedure. Applications of the methodology in reproducing future climate conditions for the periods of 2000-2009, 2046-2065 and 2081-2100, using the period of 1962-1992 as the historical baseline are discussed for the location of Firenze (Italy). The inferences of the methodology for the period of 2000-2009 are tested against observations to assess reliability of the stochastic downscaling procedure in reproducing statistics of meteorological variables at different time scales.
NASA Astrophysics Data System (ADS)
Faybishenko, B.; Flach, G. P.
2012-12-01
The objectives of this presentation are: (a) to illustrate the application of Monte Carlo and fuzzy-probabilistic approaches for uncertainty quantification (UQ) in predictions of potential evapotranspiration (PET), actual evapotranspiration (ET), and infiltration (I), using uncertain hydrological or meteorological time series data, and (b) to compare the results of these calculations with those from field measurements at the U.S. Department of Energy Savannah River Site (SRS), near Aiken, South Carolina, USA. The UQ calculations include the evaluation of aleatory (parameter uncertainty) and epistemic (model) uncertainties. The effect of aleatory uncertainty is expressed by assigning the probability distributions of input parameters, using historical monthly averaged data from the meteorological station at the SRS. The combined effect of aleatory and epistemic uncertainties on the UQ of PET, ET, and Iis then expressed by aggregating the results of calculations from multiple models using a p-box and fuzzy numbers. The uncertainty in PETis calculated using the Bair-Robertson, Blaney-Criddle, Caprio, Hargreaves-Samani, Hamon, Jensen-Haise, Linacre, Makkink, Priestly-Taylor, Penman, Penman-Monteith, Thornthwaite, and Turc models. Then, ET is calculated from the modified Budyko model, followed by calculations of I from the water balance equation. We show that probabilistic and fuzzy-probabilistic calculations using multiple models generate the PET, ET, and Idistributions, which are well within the range of field measurements. We also show that a selection of a subset of models can be used to constrain the uncertainty quantification of PET, ET, and I.
NASA Astrophysics Data System (ADS)
Saint-Drenan, Yves-Marie; Wald, Lucien; Ranchin, Thierry; Dubus, Laurent; Troccoli, Alberto
2018-05-01
Classical approaches to the calculation of the photovoltaic (PV) power generated in a region from meteorological data require the knowledge of the detailed characteristics of the plants, which are most often not publicly available. An approach is proposed with the objective to obtain the best possible assessment of power generated in any region without having to collect detailed information on PV plants. The proposed approach is based on a model of PV plant coupled with a statistical distribution of the prominent characteristics of the configuration of the plant and is tested over Europe. The generated PV power is first calculated for each of the plant configurations frequently found in a given region and then aggregated taking into account the probability of occurrence of each configuration. A statistical distribution has been constructed from detailed information obtained for several thousands of PV plants representing approximately 2 % of the total number of PV plants in Germany and was then adapted to other European countries by taking into account changes in the optimal PV tilt angle as a function of the latitude and meteorological conditions. The model has been run with bias-adjusted ERA-interim data as meteorological inputs. The results have been compared to estimates of the total PV power generated in two countries: France and Germany, as provided by the corresponding transmission system operators. Relative RMSE of 4.2 and 3.8 % and relative biases of -2.4 and 0.1 % were found with three-hourly data for France and Germany. A validation against estimates of the country-wide PV-power generation provided by the ENTSO-E for 16 European countries has also been conducted. This evaluation is made difficult by the uncertainty on the installed capacity corresponding to the ENTSO-E data but it nevertheless allows demonstrating that the model output and TSO data are highly correlated in most countries. Given the simplicity of the proposed approach these results are very encouraging. The approach is particularly suited to climatic timescales, both historical and future climates, as demonstrated here.
Windshear certification data base for forward-look detection systems
NASA Technical Reports Server (NTRS)
Switzer, George F.; Hinton, David A.; Proctor, Fred H.
1994-01-01
Described is an introduction to a comprehensive database that is to be used for certification testing of airborne forward-look windshear detection systems. The database was developed by NASA Langley Research Center, at the request of the Federal Aviation Administration (FAA), to support the industry initiative to certify and produce forward-looking windshear detection equipment. The database contains high-resolution three-dimensional fields for meteorological variables that may be sensed by forward-looking systems. The database is made up of seven case studies that are generated by the Terminal Area Simulation System, a state-of-the-art numerical system for the realistic modeling of windshear phenomena. The selected cases contained in the certification documentation represent a wide spectrum of windshear events. The database will be used with vendor-developed sensor simulation software and vendor-collected ground-clutter data to demonstrate detection performance in a variety of meteorological conditions using NASA/FAA pre-defined path scenarios for each of the certification cases. A brief outline of the contents and sample plots from the database documentation are included. These plots show fields of hazard factor, or F-factor (Bowles 1990), radar reflectivity, and velocity vectors on a horizontal plane overlayed with the applicable certification paths. For the plot of the F-factor field the region of 0.105 and above signify an area of hazardous, performance decreasing windshear, while negative values indicate regions of performance increasing windshear. The values of F-factor are based on 1-Km averaged segments along horizontal flight paths, assuming an air speed of 150 knots (approx. 75 m/s). The database has been released to vendors participating in the certification process. The database and associated document have been transferred to the FAA for archival storage and distribution.
Strategies for lidar characterization of particulates from point and area sources
NASA Astrophysics Data System (ADS)
Wojcik, Michael D.; Moore, Kori D.; Martin, Randal S.; Hatfield, Jerry
2010-10-01
Use of ground based remote sensing technologies such as scanning lidar systems (light detection and ranging) has gained traction in characterizing ambient aerosols due to some key advantages such as wide area of regard (10 km2), fast response time, high spatial resolution (<10 m) and high sensitivity. Energy Dynamics Laboratory and Utah State University, in conjunction with the USDA-ARS, has developed a three-wavelength scanning lidar system called Aglite that has been successfully deployed to characterize particle motion, concentration, and size distribution at both point and diffuse area sources in agricultural and industrial settings. A suite of massbased and size distribution point sensors are used to locally calibrate the lidar. Generating meaningful particle size distribution, mass concentration, and emission rate results based on lidar data is dependent on strategic onsite deployment of these point sensors with successful local meteorological measurements. Deployment strategies learned from field use of this entire measurement system over five years include the characterization of local meteorology and its predictability prior to deployment, the placement of point sensors to prevent contamination and overloading, the positioning of the lidar and beam plane to avoid hard target interferences, and the usefulness of photographic and written observational data.
Experimenting with sodar in support of emergency preparedness at Three Mile Island-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heck, W.J.
1989-01-01
In November 1988 at Three Mile Island Unit 1 (TMI-1), GPU Nuclear successfully completed the annual drill-for-grade that, from a modeling point of view, broke new ground for this plant. The meteorological and modeling aspects of the drill scenario were unprecedented for two reasons. First, the plume was buoyant and rose far above the height of the meteorological tower located at TMI. Second, the wind direction data from the meteorological tower were not representative of the wind direction at plume height. In the drill scenario, the buoyant plume resulted from a steam generator tube rupture where the steam ejects directlymore » into the atmosphere via safety relief valves. Plume modeling indicated that the plume would rise to 400 ft, given the scenario meteorology. Wind data from the on-site meteorological tower, however, was only available up to 150 ft. Comparisons of sodar and tower winds were made for various weather conditions. Sodar results were studied in detail during light, moderate, and high winds; various wind directions; occurrences of rain and snow; and by time of day to determine effects of diurnal meteorological conditions on sodar performance.« less
Sensitivity of polar ozone recovery predictions of the GMI 3D CTM to GCM and DAS dynamics
NASA Astrophysics Data System (ADS)
Considine, D.; Connell, P.; Strahan, S.; Douglass, A.; Rotman, D.
2003-04-01
The Global Modeling Initiative (GMI) 3-D chemistry and transport model has been used to generate 2 simulations of the 1995-2030 time period. The 36-year simulations both used the source gas and aerosol boundary conditions of the 2002 World Meteorological Organization assessment exercise MA2. The first simulation was based on a single year of meteorological data (winds, temperatures) generated by the new Goddard Space Flight Center "Finite Volume" General Circulation Model (FVGCM), repeated for each year of the simulation. The second simulation used a year of meteorological data generated by a new data assimilation system based on the FVGCM (FVDAS), using observations for July 1, 1999 - June 30, 2000. All other aspects of the two simulations were identical. The increase in vortex-averaged south polar springtime ozone concentrations in the lower stratosphere over the course of the simulations is more robust in the simulation driven by the GCM meteorological data than in the simulation driven by DAS winds. At the same time, the decrease in estimated chemical springtime ozone loss is similar. We thus attribute the differences between the two simulations to differences in the representations of polar dynamics which reduce the sensitivity of the simulation driven by DAS winds to changes in vortex chemistry. We also evaluate the representations in the two simulations of trace constituent distributions in the current polar lower stratosphere using various observations. In these comparisons the GCM-based simulation often is in better agreement with the observations than the DAS-based simulation.
NASA Astrophysics Data System (ADS)
Alken, P.; Olsen, N.; Finlay, C. C.; Chulliat, A.
2017-12-01
In order to investigate the spatial structure and development of rapid (sub-decadal) changes in the geomagnetic core field, including its secular variation and acceleration, global magnetic measurements from space play a crucial role. With the end of the CHAMP mission in September 2010, there has been a gap in high-quality satellite magnetic field measurements until the Swarm mission was launched in November 2013. Geomagnetic main field models during this period have relied on the global ground observatory network which, due to its sparse spatial configuration, has difficulty in resolving secular variation and acceleration at higher spherical harmonic degrees. In this presentation we will show new results in building main field models during this "gap period", based on vector magnetic measurements from four Defense Meteorological Satellite Program (DMSP) satellites. While the fluxgate instruments onboard DMSP were not designed for high-quality core field modeling, we find that the DMSP dataset can provide valuable information on secular variation and acceleration during the gap period.
NASA Astrophysics Data System (ADS)
Schichtel, B.; Barna, M.; Gebhart, K.; Green, M.
2002-12-01
The Big Bend Regional Aerosol and Visibility Observational Study (BRAVO) was designed to determine the causes of visibility impairment at Big Bend National Park, located in southwestern Texas. As part of BRAVO, an intensive field study was conducted during July-October 1999. Among the features of this study was the release of unique perfluorocarbon tracers from four sites within Texas, representative of industrial/urban locations. These tracers were monitored at 21 sites, throughout Texas. Other measurements collected during the field study included upper-level winds using radar profilers, and speciated fine-particulate mass concentrations. MM5 was used to simulate the regional meteorology during BRAVO, and was run in non-hydrostatic mode using a continental-scale 36km domain with nested 12km and 4km domains. MM5 employed observational nudging by incorporating the available measured wind data from the National Weather Service and data from the radar wind profilers. Meteorological data from the National Weather Service's Eta Data Assimilation System (EDAS), archived at 80km grid spacing, were also available. Several models are being used to evaluate airmass transport to Big Bend, including CMAQ, REMSAD, HYSPLIT and the CAPITA Monte Carlo Model. This combination of tracer data, meteorological data and deployment of four models provides a unique opportunity to assess the ability of the model/wind field combinations to properly simulate the regional scale atmospheric transport and dispersion of trace gases over distances of 100 to 800km. This paper will present the tracer simulations from REMSAD using the 36 and 12 km MM5 wind fields, and results from HYSPLIT and the Monte Carlo model driven by the 36km MM5 and 80km EDAS wind fields. Preliminary results from HYSPLIT and the Monte Carlo model driven by the EDAS wind fields shows that these models are able to account for the primary features of tracer concentrations patterns in the Big Bend area. However, at times the simulated concentration peaks proceeded or followed the actual measured concentrations by about at day and the duration of the simulated tracer impacts were shorter than those measured in the Big Bend area.
Jerome D. Fast; Rahul A. Zaveri; Xindi Bian; Elaine G. Chapman; Richard C. Easter
2002-01-01
A new meteorological-chemical model is used to determine the relative contribution of regional-scale transport and local photochemical production on air quality over Philadelphia. The model performance is evaluated using surface and airborne meteorological and chemical measurements made during a 30-day period in July and August of 1999 as part of the Northeast Oxidant...
Efforts to Overcome Difficulties in a Higher Education Meteorology Department Institution
NASA Astrophysics Data System (ADS)
Mota, G. V.; Souza, J. R.; Ribeiro, J. B.; Souza, E. B.; Gomes, N. V.; Oliveira, R. A.; Ameida, W. G.; Chagas, G. O.; Yoksas, T.; Spangler, T.; Cutrim, E.
2007-05-01
The development of cyberinfrastructure in higher education meteorology departments has become a key requirement to better qualify their students and develop scientific research. The authors present their efforts to overcome low budget, lack of personnel, and other difficulties in the Department of Meteorology, Universidade Federal do Pará (UFPA), to participate in international collaborations for sharing hydro-meteorological data, tools and technological systems. Some important steps towards a consolidated integration of the group with the international partnership are discussed, and three are highlighted: (a) the resources from the Unidata's Equipment Award (supported by the National Science Foundation - NSF) and equipment donated in cooperation with the COMET and Meteoforum projects; (b) the interaction of the local team making its project resources available to the community; and (c) the involvement of students with the programs and the cyberinfrastructure available locally. Some positive results can be observed, such as the ability for students of Synoptic Meteorology II class to not only see static meteorological fields on the web, but actually build themselves regional and real-time synoptic products from the data received through Unidata's Internet Data Distribution (IDD) system. Moreover, the UFPA's group intends to improve its infrastructure to expand the access of real-time data and products to other members of the local meteorological community.
Short perturbations of cosmic ray intensity and electric field in atmosphere
NASA Technical Reports Server (NTRS)
Alexeyenko, V. V.; Chudakov, A. E.; Sborshikov, V. G.; Tizengauzen, V. A.
1985-01-01
Short perturbations of cosmic ray intensity were found to be a common phenomenon. Its meteorological origin and correlation with electric field is established. The phenomenon can be explained by the electric field if the strength of this field at high altitudes is much bigger than the measured one at surface.
NASA Astrophysics Data System (ADS)
Tolosana-Delgado, R.; Soret, A.; Jorba, O.; Baldasano, J. M.; Sánchez-Arcilla, A.
2012-04-01
Meteorological models, like WRF, usually describe the earth surface characteristics by tables that are function of land-use. The roughness length (z0) is an example of such approach. However, over sea z0 is modeled by the Charnock (1955) relation, linking the surface friction velocity u*2 with the roughness length z0 of turbulent air flow, z0 = α-u2* g The Charnock coefficient α may be considered a measure of roughness. For the sea surface, WRF considers a constant roughness α = 0.0185. However, there is evidence that sea surface roughness should depend on wave energy (Donelan, 1982). Spectral wave models like WAM, model the evolution and propagation of wave energy as a function of wind, and include a richer sea surface roughness description. Coupling WRF and WAM is thus a common way to improve the sea surface roughness description of WRF. WAM is a third generation wave model, solving the equation of advection of wave energy subject to input/output terms of: wind growth, energy dissipation and resonant non-linear wave-wave interactions. Third generation models work on the spectral domain. WAM considers the Charnock coefficient α a complex yet known function of the total wind input term, which depends on the wind velocity and on the Charnock coefficient again. This is solved iteratively (Janssen et al., 1990). Coupling of meteorological and wave models through a common Charnock coefficient is operationally done in medium-range met forecasting systems (e.g., at ECMWF) though the impact of coupling for smaller domains is not yet clearly assessed (Warner et al, 2010). It is unclear to which extent the additional effort of coupling improves the local wind and wave fields, in comparison to the effects of other factors, like e.g. a better bathymetry and relief resolution, or a better circulation information which might have its influence on local-scale meteorological processes (local wind jets, local convection, daily marine wind regimes, etc.). This work, within the scope of the 7th EU FP Project FIELD_AC, assesses the impact of coupling WAM and WRF on wind and wave forecasts on the Balearic Sea, and compares it with other possible improvements, like using available high-resolution circulation information from MyOcean GMES core services, or assimilating altimeter data on the Western Mediterranean. This is done in an ordered fashion following statistical design rules, which allows to extract main effects of each of the factors considered (coupling, better circulation information, data assimilation following Lionello et al., 1992) as well as two-factor interactions. Moreover, the statistical significance of these improvements can be tested in the future, though this requires maximum likelihood ratio tests with correlated data. Charnock, H. (1955) Wind stress on a water surface. Quart.J. Row. Met. Soc. 81: 639-640 Donelan, M. (1982) The dependence of aerodynamic drag coefficient on wave parameters. Proc. 1st Int. Conf. on Meteorology and Air-Sea Interactions of teh Coastal Zone. The Hague (Netherlands). AMS. 381-387 Janssen, P.A.E.M., Doyle, J., Bidlot, J., Hansen, B., Isaksen, L. and Viterbo, P. (1990) The impact of oean waves on the atmosphere. Seminars of the ECMWF. Lionello, P., Günther, H., and Janssen P.A.E.M. (1992) Assimilation of altimeter data in a global third-generation wave model. Journal of Geophysical Research 97 (C9): 453-474. Warner, J., Armstrong, B., He, R. and Zambon, J.B. (2010) Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. Ocean Modelling 35: 230-244.
NASA Astrophysics Data System (ADS)
Amicarelli, A.; Gariazzo, C.; Finardi, S.; Pelliccioni, A.; Silibello, C.
2008-05-01
Data assimilation techniques are methods to limit the growth of errors in a dynamical model by allowing observations distributed in space and time to force (nudge) model solutions. They have become common for meteorological model applications in recent years, especially to enhance weather forecast and to support air-quality studies. In order to investigate the influence of different data assimilation techniques on the meteorological fields produced by RAMS model, and to evaluate their effects on the ozone and PM10 concentrations predicted by FARM model, several numeric experiments were conducted over the urban area of Rome, Italy, during a summer episode.
NASA Astrophysics Data System (ADS)
Park, Jeong-Gyun; Jee, Joon-Bum
2017-04-01
Dangerous weather such as severe rain, heavy snow, drought and heat wave caused by climate change make more damage in the urban area that dense populated and industry areas. Urban areas, unlike the rural area, have big population and transportation, dense the buildings and fuel consumption. Anthropogenic factors such as road energy balance, the flow of air in the urban is unique meteorological phenomena. However several researches are in process about prediction of urban meteorology. ASAPS (Advanced Storm-scale Analysis and Prediction System) predicts a severe weather with very short range (prediction with 6 hour) and high resolution (every hour with time and 1 km with space) on Seoul metropolitan area based on KLAPS (Korea Local Analysis and Prediction System) from KMA (Korea Meteorological Administration). This system configured three parts that make a background field (SUF5), analysis field (SU01) with observation and forecast field with high resolution (SUF1). In this study, we improve a high-resolution ASAPS model and perform a sensitivity test for the rainfall case. The improvement of ASAPS include model domain configuration, high resolution topographic data and data assimilation with WISE observation data.
Field gamma-ray spectrometer GS256: measurements stability
NASA Astrophysics Data System (ADS)
Mojzeš, Andrej
2009-01-01
The stability of in situ readings of the portable gamma-ray spectrometer GS256 during the field season of 2006 was studied. The instrument is an impulse detector of gamma rays based on NaI(Tl) 3" × 3" scintillation unit and 256-channel spectral analyzer which allows simultaneous assessment of up to 8 radioisotopes in rocks. It is commonly used in surface geophysical survey for the measurement of natural 40K, 238U and 232Th but also artificial 137Cs quantities. The statistical evaluation is given of both repeated measurements - in the laboratory and at several field control points in different survey areas. The variability of values shows both the instrument stability and also the relative influence of some meteorological factors, mainly rainfalls. The analysis shows an acceptable level of instrument measurements stability, the necessity to avoid measurement under unfavourable meteorological conditions and to keep detailed field book information about time, position and work conditions.
NASA Technical Reports Server (NTRS)
Martin, S.; Cavalieri, D. J.; Gloersen, P.; Mcnutt, S. L.
1982-01-01
During March 1979, field operations were carried out in the Marginal Ice Zone (MIZ) of the Bering Sea. The field measurements which included oceanographic, meteorological and sea ice observations were made nearly coincident with a number of Nimbus-7 and Tiros-N satellite observations. The results of a comparison between surface and aircraft observations, and images from the Tiros-N satellite, with ice concentrations derived from the microwave radiances of the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) are given. Following a brief discussion of the field operations, including a summary of the meteorological conditions during the experiment, the satellite data is described with emphasis on the Nimbus-7 SMMR and the physical basis of the algorithm used to retrieve ice concentrations.
Applications of ISES for meteorology
NASA Technical Reports Server (NTRS)
Try, Paul D.
1990-01-01
The results are summarized from an initial assessment of the potential real-time meteorological requirements for the data from Eos systems. Eos research scientists associated with facility instruments, investigator instruments, and interdisciplinary groups with data related to meteorological support were contacted, along with those from the normal operational user and technique development groups. Two types of activities indicated the greatest need for real-time Eos data: technology transfer groups (e.g., NOAA's Forecasting System Laboratory and the DOD development laboratories), and field testing groups with airborne operations. A special concern was expressed by several non-U.S. participants who desire a direct downlink to be sure of rapid receipt of the data for their area of interest. Several potential experiments or demonstrations are recommended for ISES which include support for hurricane/typhoon forecasting, space shuttle reentry, severe weather forecasting (using microphysical cloud classification techniques), field testing, and quick reaction of instrumented aircraft to measure such events as polar stratospheric clouds and volcanic eruptions.
NASA Astrophysics Data System (ADS)
Jatczak, K.; Linkowska, J.; Rapiejko, P.
2010-09-01
In Poland phenological data is used mainly as a natural indicator of the influence of climate changes on environment. In relation to the growing interest of phenology in scientific research, we substantially extended observation ranges, concentrating mainly on phenophases of selected species that are important for allergology. Phenological data application in complex analysis together with meteorological and aerobiological data, give an opportunity for drawing conclusions on variability of the starting date of pollen season and its dynamics in a meteorological aspect. Species have their regional phenological characteristics, however the characteristics depends on meteorological conditions in a particular year. Therefore, the calculation of pheno-meteorological parameters is important for pollen release prediction. Availability of phenological database can also be useful in the field of preventive health care, through phenological data application in different atmospheric models (NWP models, phenological models, pollen release models) for numerical forecasting of pollen concentration in the air. Genetic conditions, industrial development, increase of air pollution are regarded as the main determinants of allergic diseases. The results of pheno - aero- meteorological analysis enable the estimation of the influence of natural environmental changes on the increasing prevalence of allergic diseases in Poland.
Future directions of meteorology related to air-quality research.
Seaman, Nelson L
2003-06-01
Meteorology is one of the major factors contributing to air-pollution episodes. More accurate representation of meteorological fields has been possible in recent years through the use of remote sensing systems, high-speed computers and fine-mesh meteorological models. Over the next 5-20 years, better meteorological inputs for air quality studies will depend on making better use of a wealth of new remotely sensed observations in more advanced data assimilation systems. However, for fine mesh models to be successful, parameterizations used to represent physical processes must be redesigned to be more precise and better adapted for the scales at which they will be applied. Candidates for significant overhaul include schemes to represent turbulence, deep convection, shallow clouds, and land-surface processes. Improvements in the meteorological observing systems, data assimilation and modeling, coupled with advancements in air-chemistry modeling, will soon lead to operational forecasting of air quality in the US. Predictive capabilities can be expected to grow rapidly over the next decade. This will open the way for a number of valuable new services and strategies, including better warnings of unhealthy atmospheric conditions, event-dependent emissions restrictions, and now casting support for homeland security in the event of toxic releases into the atmosphere.
AIRBORNE BACTERIA IN THE ATMOSPHERIC SURFACE LAYER: TEMPORAL DISTRIBUTION ABOVE A GRASS SEED FIELD
Temporal airborne bacterial concentrations and meteorological conditions were measured above a grass seed field in the Willamette River Valley, near Corvallis, Oregon, in the summer of 1993. he report describes the changes in the atmospheric surface layer over a grass seed field ...
The Air Force Interactive Meteorological System: A Research Tool for Satellite Meteorology
1992-12-02
NFARnet itself is a subnet to the global computer network INTERNET that links nearly all U.S. government research facilities and universi- ties along...required input to a generalized mathematical solution to the satellite/earth coordinate transform used for earth location of GOES sensor data. A direct...capability also exists to convert absolute coordinates to relative coordinates for transformations associated with gridded fields. 3. Spatial objective
EUMETCast: The Meteorological Data Dissemination Service
NASA Astrophysics Data System (ADS)
Gaertner, V. K.; Koenig, M.
2006-05-01
EUMETCast is EUMETSAT's broadcast system for environmental data. It utilises telecommunications satellites and the services of telecommunication providers to distribute data files using Digital Video Broadcast (DVB) standards to a wide audience located within the combined geographical coverage zones of the individual telecommunication satellites used to transmit the data. The telecommunication zones are now covering Europe, Africa, South America and parts of Asia and North America. This service has been established to provide the meteorological communities with satellite data and other meteorological products in near real-time for operational, but also research, education and training purposes. The following EUMETSAT services are currently available via EUMETCast: - Second Generation Meteosat - High Rate SEVIRI Image Data (every 15 minutes) - First Generation Meteosat - Indian Ocean Data Coverage (IODC) (every 30 minutes) - Other Geostationary Data from NOAA (GOES E/W) and JMA (MTSAT), (every 3 hours) - Data Collection and Retransmission (DCP) and Meteorological Data Dissemination (MDD) - Basic Meteorological Data (BMD) (Ku-band Europe only) - Meteorological Products (including some Satellite Application Facility products) - EUMETSAT Advanced Retransmission Service (EARS) (Ku-band Europe only) - DWDSAT (Ku-band Europe only) - VEGETATION data (C-band Africa only) Progressively during 2006 users will find an increasing amount of polar satellite data and products available on EUMETCast. As part of the extension of the EUMETCast Advanced Retransmission Service (EARS), ERS scatterometer data and NOAA satellite AVHRR data have already been introduced in early 2006. The ERS- SCAT demonstration service is a forerunner for the future pilot EARS-ASCAT service and the pilot EARS- AVHRR service will continue to expand during 2006 with the inclusion of data from additional AVHRR stations in the EARS network. The EUMETCast System will be also be used to provide dissemination of EPS (EUMETSAT Polar System) global products in Ku-band, for a European audience. The EUMETCast South America service commenced dissemination trials on 1 January 2006 with the formal start of service on 1 April 2006. The service comprising of MSG SEVIRI High Rate Image data disseminated every 15 minutes, will ensure continuity in the provision of Meteosat data to this region when the first generation Meteosat services from 0o will terminate. EUMETSAT Data Policy principles apply to some of the above services. Access to DWDSAT is in accordance with the data policy of Deutscher Wetterdienst.
NASA Astrophysics Data System (ADS)
Colli, M.; Lanza, L. G.; La Barbera, P.; Chan, P. W.
2014-07-01
The contribution of any single uncertainty factor in the resulting performance of infield rain gauge measurements still has to be comprehensively assessed due to the high number of real world error sources involved, such as the intrinsic variability of rainfall intensity (RI), wind effects, wetting losses, the ambient temperature, etc. In recent years the World Meteorological Organization (WMO) addressed these issues by fostering dedicated investigations, which revealed further difficulties in assessing the actual reference rainfall intensity in the field. This work reports on an extensive assessment of the OTT Pluvio2 weighing gauge accuracy when measuring rainfall intensity under laboratory dynamic conditions (time varying reference flow rates). The results obtained from the weighing rain gauge (WG) were also compared with a MTX tipping-bucket rain gauge (TBR) under the same test conditions. Tests were carried out by simulating various artificial precipitation events, with unsteady rainfall intensity, using a suitable dynamic rainfall generator. Real world rainfall data measured by an Ogawa catching-type drop counter at a field test site located within the Hong Kong International Airport (HKIA) were used as a reference for the artificial rain generation system. Results demonstrate that the differences observed between the laboratory and field performance of catching-type gauges are only partially attributable to the weather and operational conditions in the field. The dynamics of real world precipitation events is responsible for a large part of the measurement errors, which can be accurately assessed in the laboratory under controlled environmental conditions. This allows for new testing methodologies and the development of instruments with enhanced performance in the field.
Impacts of wind farms on surface air temperatures
Baidya Roy, Somnath; Traiteur, Justin J.
2010-01-01
Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms. PMID:20921371
Operational seasonal and interannual predictions of ocean conditions
NASA Technical Reports Server (NTRS)
Leetmaa, Ants
1992-01-01
Dr. Leetmaa described current work at the U.S. National Meteorological Center (NMC) on coupled systems leading to a seasonal prediction system. He described the way in which ocean thermal data is quality controlled and used in a four dimensional data assimilation system. This consists of a statistical interpolation scheme, a primitive equation ocean general circulation model, and the atmospheric fluxes that are required to force this. This whole process generated dynamically consist thermohaline and velocity fields for the ocean. Currently routine weekly analyses are performed for the Atlantic and Pacific oceans. These analyses are used for ocean climate diagnostics and as initial conditions for coupled forecast models. Specific examples of output products were shown both in the Pacific and the Atlantic Ocean.
NASA Astrophysics Data System (ADS)
Williams, J. E.; van der Swaluw, E.; de Vries, W. J.; Sauter, F. J.; van Pul, W. A. J.; Hoogerbrugge, R.
2015-08-01
We present a parameterization developed to simulate Ammonium particle (NH4+) concentrations in the Operational Priority Substances (OPS) source-receptor model, without the necessity of using a detailed chemical scheme. By using the ratios of the main pre-cursor gases SO2, NO2 and NH3, and utilising calculations performed using a chemical box-model, we show that the parameterization can simulate annual mean NH4+ concentration fields to within ∼15% of measured values at locations throughout the Netherlands. Performing simulations for different decades, we find a strong correlation of simulated NH4+ distributions for both past (1993-1995) and present (2009-2012) time periods. Although the total concentration of NH4+ has decreased over the period, we find that the fraction of NH4+ transported into the Netherlands has increased from around 40% in the past to 50% for present-day. This is due to the variable efficiency of mitigation practises across economic sectors. Performing simulations for the year 2020 using associated emission estimates, we show that there are generally decreases of ∼8-25% compared to present day concentrations. By altering the meteorological fields applied in the future simulations, we show that a significant uncertainty of between ∼50 and 100% exists on this estimated NH4+ distribution as a result of variability in the temperature dependent emission terms and relative humidity. Therefore, any projections of future NH4+ distributions should be performed using well chosen meteorological fields representing recent meteorological situations.
2013-09-30
forcing through an ensemble-based method. The results of our findings were presented at the 2013 American Meteorological Society (AMS) annual meeting...Forcing to the Existing Satellite Observations, 93rd American Meteorological Society Annual Meeting, Austin, Texas, January 5-10, 2013b...Ceburnis, D., Chang, R., Clarke, A., de Leeuw, G., Deane, G., DeMott, P. J., Elliot, S., Facchini, M. C., Fairall, C. W., Hawkins, L., Hu, Y., Hudson , J
Šepić, Jadranka; Vilibić, Ivica; Rabinovich, Alexander B; Monserrat, Sebastian
2015-06-29
A series of tsunami-like waves of non-seismic origin struck several southern European countries during the period of 23 to 27 June 2014. The event caused considerable damage from Spain to Ukraine. Here, we show that these waves were long-period ocean oscillations known as meteorological tsunamis which are generated by intense small-scale air pressure disturbances. An unique atmospheric synoptic pattern was tracked propagating eastward over the Mediterranean and the Black seas in synchrony with onset times of observed tsunami waves. This pattern favoured generation and propagation of atmospheric gravity waves that induced pronounced tsunami-like waves through the Proudman resonance mechanism. This is the first documented case of a chain of destructive meteorological tsunamis occurring over a distance of thousands of kilometres. Our findings further demonstrate that these events represent potentially dangerous regional phenomena and should be included in tsunami warning systems.
Šepić, Jadranka; Vilibić, Ivica; Rabinovich, Alexander B.; Monserrat, Sebastian
2015-01-01
A series of tsunami-like waves of non-seismic origin struck several southern European countries during the period of 23 to 27 June 2014. The event caused considerable damage from Spain to Ukraine. Here, we show that these waves were long-period ocean oscillations known as meteorological tsunamis which are generated by intense small-scale air pressure disturbances. An unique atmospheric synoptic pattern was tracked propagating eastward over the Mediterranean and the Black seas in synchrony with onset times of observed tsunami waves. This pattern favoured generation and propagation of atmospheric gravity waves that induced pronounced tsunami-like waves through the Proudman resonance mechanism. This is the first documented case of a chain of destructive meteorological tsunamis occurring over a distance of thousands of kilometres. Our findings further demonstrate that these events represent potentially dangerous regional phenomena and should be included in tsunami warning systems. PMID:26119833
Meteorological tsunamis along the East Coast of the United States
NASA Astrophysics Data System (ADS)
Rabinovich, A.
2012-12-01
Tsunami-like intense sea level oscillations are common along the East Coast of the United States. They are generated by various types of atmospheric disturbances, including hurricanes, frontal passages, tornados, trains of atmospheric gravity waves, pressure jumps, squalls, and gales, that each set up a local, time-limited barotropic response in the affected body of water. These meteorologically induced waves have the same temporal and spatial scales as their seismically generated counterparts and inflict comparable destructions. Observed around the globe, these devastating waves are known locally as "abiki" in Nagaski Bay (Japan), "rissaga" in Spain, "šćiga" along the Croation Coast bordering the Adriatic Sea, "milghuba" in Malta, and "marrobbio" in Italy. Collectively, they may be considered as "meteorological tsunamis" or "meteotsunamis." The updated NOAA tide gauge network with 1 min sampling enabled us to examine resonant amplifications of specific events observed in 2007-2012 and physical properties of meteotsunamis impacting the United States East Coast in general. Of particular interest and focus was the "derecho" event of June 29 - July 2, 2012.
User's guide for MAGIC-Meteorologic and hydrologic genscn (generate scenarios) input converter
Ortel, Terry W.; Martin, Angel
2010-01-01
Meteorologic and hydrologic data used in watershed modeling studies are collected by various agencies and organizations, and stored in various formats. Data may be in a raw, un-processed format with little or no quality control, or may be checked for validity before being made available. Flood-simulation systems require data in near real-time so that adequate flood warnings can be made. Additionally, forecasted data are needed to operate flood-control structures to potentially mitigate flood damages. Because real-time data are of a provisional nature, missing data may need to be estimated for use in floodsimulation systems. The Meteorologic and Hydrologic GenScn (Generate Scenarios) Input Converter (MAGIC) can be used to convert data from selected formats into the Hydrologic Simulation System-Fortran hourly-observations format for input to a Watershed Data Management database, for use in hydrologic modeling studies. MAGIC also can reformat the data to the Full Equations model time-series format, for use in hydraulic modeling studies. Examples of the application of MAGIC for use in the flood-simulation system for Salt Creek in northeastern Illinois are presented in this report.
NASA Technical Reports Server (NTRS)
Danielsen, Edwin F.; Pfister, Leonhard; Hipskind, R. Stephen; Gaines, Steven E.
1990-01-01
The purpose of this task is the acquisition, distribution, archival, and analysis of data collected during and in support of the Upper Atmospheric Research Program (UARP) field experiments. Meteorological and U2 data from the 1984 Stratosphere-Troposphere Exchange Project (STEP) was analyzed to determine characteristics of internal atmospheric waves. CDROM's containing data from the 1987 STEP, 1987 Airborne Antarctic Ozone Expedition (AAOE), and the 1989 Airborne Arctic Stratospheric Expedition (AASE) were produced for archival and distribution of those data sets. The AASE CDROM contains preliminary data and a final release is planned for February 1990. Comparisons of data from the NASA ER-2 Meteorological Measurement System (MMS) with radar tracking and radiosonde data show good agreement. Planning for a Meteorological Support Facility continues. We are investigating existing and proposed hardware and software to receive, manipulate, and display satellite imagery and standard meteorological analyses, forecasts, and radiosonde data.
Latin American Network of students in Atmospheric Sciences and Meteorology
NASA Astrophysics Data System (ADS)
Cuellar-Ramirez, P.
2017-12-01
The Latin American Network of Students in Atmospheric Sciences and Meteorology (RedLAtM) is a civil nonprofit organization, organized by students from Mexico and some Latin- American countries. As a growing organization, providing human resources in the field of meteorology at regional level, the RedLAtM seeks to be a Latin American organization who helps the development of education and research in Atmospheric Sciences and Meteorology in order to engage and promote the integration of young people towards a common and imminent future: Facing the still unstudied various weather and climate events occurring in Latin America. The RedLAtM emerges from the analysis and observation/realization of a limited connection between Latin American countries around research in Atmospheric Sciences and Meteorology. The importance of its creation is based in cooperation, linking, research and development in Latin America and Mexico, in other words, to join efforts and stablish a regional scientific integration who leads to technological progress in the area of Atmospheric Sciences and Meteorology. As ultimate goal the RedLAtM pursuit to develop climatic and meteorological services for those countries unable to have their own programs, as well as projects linked with the governments of Latin American countries and private companies for the improvement of prevention strategies, research and decision making. All this conducing to enhance the quality of life of its inhabitants facing problems such as poverty and inequality.
MODULATING EMISSIONS FROM ELECTRIC GENERATING UNITS AS A FUNCTION OF METEOROLOGICAL VARIABLES
Electric Generating Units (EGUs) are an important source of emissions of nitrogen oxides (NOx), which react with volatile organic compounds (VOCs) in the presence of sunlight to form ozone. Emissions from EGUs are believed to vary depending on short-term demands for electricity;...
Development of the Next Generation Air Quality Modeling System
A next generation air quality modeling system is being developed at the U.S. EPA to enable modeling of air quality from global to regional to (eventually) local scales. We envision that the system will have three configurations: 1. Global meteorology with seamless mesh refinemen...
An Investigation of Turbulent Heat Exchange in the Subtropics
2014-09-30
meteorological sensors aboard the research vessel the R/V Revelle during the DYNAMO field program. In situ meteorology and high-rate flux sensors operated...continuously while in the sampling period for DYNAMO Leg 3. This included all sensors operating during Leg 2 with the addition of a closed-path LI...stress; wave data; surface and near surface sea temperatures, salinity and currents; and other key variables specifically requested by DYNAMO /LASP PIs
High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models
NASA Astrophysics Data System (ADS)
Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David
2014-12-01
High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.
THE NEW YORK MIDTOWN DISPERSION STUDY (MID-05) METEOROLOGICAL DATA REPORT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
REYNOLDS,R.M.; SULLIVAN, T.M.; SMITH, S.
2007-01-01
The New York City midtown dispersion program, MID05, examined atmospheric transport in the deep urban canyons near Rockefeller Center. Little is known about air flow and hazardous gas dispersion under such conditions, since previous urban field experiments have focused on small to medium sized cities with much smaller street canyons and examined response over a much larger area. During August, 2005, a series of six gas tracer tests were conducted and sampling was conducted over a 2 km grid. A critical component of understanding gas movement in these studies is detailed wind and meteorological information in the study zone. Tomore » support data interpretation and modeling, several meteorological stations were installed at street level and on roof tops in Manhattan. In addition, meteorological data from airports and other weather instrumentation around New York City were collected. This document describes the meteorological component of the project and provides an outline of data file formats for the different instruments. These data provide enough detail to support highly-resolved computational simulations of gas transport in the study zone.« less
Crowd-sourcing Meteorological Data for Student Field Projects
NASA Astrophysics Data System (ADS)
Bullard, J. E.
2016-12-01
This paper explains how students can rapidly collect large datasets to characterise wind speed and direction under different meteorological conditions. The tools used include a mobile device (tablet or phone), low cost wind speed/direction meters that are plugged in to the mobile device, and an app with online web support for uploading, collating and georeferencing data. Electronic customised data input forms downloaded to the mobile device are used to ensure students collect data using specified protocols which streamlines data management and reduces the likelihood of data entry errors. A key benefit is the rapid collection and quality control of field data that can be promptly disseminated to students for subsequent analysis.
ERIC Educational Resources Information Center
Windschitl, Mark; Dvornich, Karen; Ryken, Amy E.; Tudor, Margaret; Koehler, Gary
2007-01-01
Field investigations are not characterized by randomized and manipulated control group experiments; however, most school science and high-stakes tests recognize only this paradigm of investigation. Scientists in astronomy, genetics, field biology, oceanography, geology, and meteorology routinely select naturally occurring events and conditions and…
NASA Astrophysics Data System (ADS)
Menut, Laurent; Coll, Isabelle; Cautenet, Sylvie
2005-03-01
During the summer 2001, several photo-oxidant pollution episodes were documented around Marseilles-Fos-Berre in the South of France within the framework of the ESCOMPTE campaign. The site is composed of large cities (Marseilles, Aix, and Toulon), significant factories (Fos-Berre), a dense road network, and extensive rural area. Both biogenic and anthropogenic emissions are thus significative. Located close to the Mediterranean Sea and framed by the Pyrenees and the Alps Mountains, pollutant concentrations are under the influence of strong emissions as well as a complex meteorology. During the whole summer 2001, the chemistry-transport model CHIMERE was used to forecast pollutant concentrations. The ECMWF forecast meteorological fields were used as forcing, with a raw spatial and temporal resolution of 0.5° and 3 h, respectively. It was observed that even if the synoptic dynamic processes were correctly described, the resolution was not always able to detail small-scale dynamics (sea breezes and orographical winds). To estimate the impact of meteorological forcing on the modeled concentration accuracy, an intercomparison exercise has thus been carried out on the same episode but with two sets of meteorological data: ECMWF data (with horizontal and temporal resolution of 0.5° and 3 h) and data from the mesoscale model RAMS (3 km and 1 h). The two sets of meteorological data are compared and discussed in terms of raw differences as a function of time and location, and in terms of induced discrepancies between the modeled and observed ozone concentration fields. It was shown that even if the RAMS model provides a better description of land-sea breezes and nocturnal boundary layer processes, the simulated ozone time series are satisfactory with the two meteorological forcings. In the context of ozone forecast, the scores are better with ECMWF. This is attributed to the diffusive aspect of these data that will more easily catch localized peaks, while a small error in wind speed or direction in RAMS will misplace the ozone plume.
NASA Astrophysics Data System (ADS)
Ahmadov, R.; McKeen, S. A.; Angevine, W. M.; Frost, G. J.; Roberts, J. M.; De Gouw, J. A.; Warneke, C.; Peischl, J.; Brown, S. S.; Edwards, P. M.; Wild, R. J.; Pichugina, Y. L.; Banta, R. M.; Brewer, A.; Senff, C. J.; Langford, A. O.; Petron, G.; Karion, A.; Sweeney, C.; Schnell, R. C.; Johnson, B.; Zamora, R. J.; Helmig, D.; Park, J.; Evans, J.; Stephens, C. R.; Olson, J. B.; Trainer, M.
2013-12-01
The Uintah Basin Winter Ozone Studies (UBWOS) field campaigns took place during winter of 2012 and 2013 in the Uintah Basin, Utah. The studies were aimed at characterizing meteorology, emissions of atmospheric constituents and air chemistry in a region abundant with oil and gas production, with associated emissions of various volatile organic compounds (VOCs) and NOx. High ozone pollution events were observed throughout the Uintah Basin during the winter of 2013, but not during the winter of 2012. A clear understanding of the processes leading to high ozone events is still lacking. We present here high spatiotemporal resolution simulations of meteorology, tracer transport and gas chemistry over the basin during January-February, 2012 and 2013 using the WRF/Chem regional photochemical model. Correctly characterizing the meteorology poses unique challenges due to complex terrain, cold-pool conditions, and shallow inversion layers observed during the winter of 2013. We discuss the approach taken to adequately simulate the meteorology over the basin and present evaluations of the modeled meteorology using surface, lidar and tethersonde measurements. Initial simulations use a passive tracer within the model as a surrogate for CH4 released from oil and gas wells. These tracer transport simulations show that concentrations of inert, emitted species near the surface in 2013 were 4-8 times higher than 2012 due to much shallower boundary layers and reduced winds in 2013. This is supported by in-situ measurements of CH4 made at the Horse Pool surface station during the field campaigns. Full photochemical simulations are forced by VOC and NOx emissions that are determined in a top-down approach, using observed emission ratios of VOC and NOx relative to CH4, along with available information of active wells, compressors, and processing plants. We focus on differences in meteorology, temperature, and radiation between the two winters in determining ozone concentrations in the basin. The model is then used diagnostically to assess first-order sensitivities of basin-wide ozone to NOx or VOC emissions, and how they depend on the environmental differences between the winters of 2012 and 2013.
The U.S. Environmental Protection Agency (USEPA) has a team of scientists developing a next generation air quality modeling system employing the Model for Prediction Across Scales – Atmosphere (MPAS-A) as its meteorological foundation. Several preferred physics schemes and ...
Algorithm Estimates Microwave Water-Vapor Delay
NASA Technical Reports Server (NTRS)
Robinson, Steven E.
1989-01-01
Accuracy equals or exceeds conventional linear algorithms. "Profile" algorithm improved algorithm using water-vapor-radiometer data to produce estimates of microwave delays caused by water vapor in troposphere. Does not require site-specific and weather-dependent empirical parameters other than standard meteorological data, latitude, and altitude for use in conjunction with published standard atmospheric data. Basic premise of profile algorithm, wet-path delay approximated closely by solution to simplified version of nonlinear delay problem and generated numerically from each radiometer observation and simultaneous meteorological data.
NASA Astrophysics Data System (ADS)
Lassonde, Sylvain; Boucher, Olivier; Breon, François-Marie; Tobin, Isabelle; Vautard, Robert
2016-04-01
The share of renewable energies in the mix of electricity production is increasing worldwide. This trend is driven by environmental and economic policies aiming at a reduction of greenhouse gas emissions and an improvement of energy security. It is expected to continue in the forthcoming years and decades. Electricity production from renewables is related to weather and climate factors such as the diurnal and seasonal cycles of sunlight and wind, but is also linked to variability on all time scales. The intermittency in the renewable electricity production (solar, wind power) could eventually hinder their future deployment. Intermittency is indeed a challenge as demand and supply of electricity need to be balanced at any time. This challenge can be addressed by the deployment of an overcapacity in power generation (from renewable and/or thermal sources), a large-scale energy storage system and/or improved management of the demand. The main goal of this study is to optimize a hypothetical renewable energy system at the French and European scales in order to investigate if spatial diversity of the production (here electricity from wind energy) could be a response to the intermittency. We use ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-interim meteorological reanalysis and meteorological fields from the Weather Research and Forecasts (WRF) model to estimate the potential for wind power generation. Electricity demand and production are provided by the French electricity network (RTE) at the scale of administrative regions for years 2013 and 2014. Firstly we will show how the simulated production of wind power compares against the measured production at the national and regional scale. Several modelling and bias correction methods of wind power production will be discussed. Secondly, we will present results from an optimization procedure that aims to minimize some measure of the intermittency of wind energy. For instance we estimate the optimal distribution between French regions (with or without cross-border inputs) that minimizes the impact of low-production periods computed in a running mean sense and its sensitivity to the period considered. We will also assess which meteorological situations are the most problematic over the 35-year ERA-interim climatology(1980-2015).
NASA Astrophysics Data System (ADS)
Konstantinov, Pavel; Varentsov, Mikhail; Platonov, Vladimir; Samsonov, Timofey; Zhdanova, Ekaterina; Chubarova, Natalia
2017-04-01
The main goal of this investigation is to develop a kind of "urban reanalysis" - the database of meteorological and radiation fields under Moscow megalopolis for period 1981-2014 with high spatial resolution. Main meteorological fields for Moscow region are reproduced with COSMO_CLM regional model (including urban parameters) with horizontal resolution 1x1 km. Time resolution of output fields is 1 hour. For radiation fields is quite useful to calculate SVF (Sky View Factor) for obtaining losses of UV radiation in complex urban conditions. Usually, the raster-based SVF analysis the shadow-casting algorithm proposed by Richens (1997) is popular (see Ratti and Richens 2004, Gal et al. 2008, for example). SVF image is obtained by combining shadow images obtained from different directions. An alternative is to use raster-based SVF calculation similar to vector approach using digital elevation model of urban relief. Output radiation field includes UV-radiation with horizontal resolution 1x1 km This study was financially supported by the Russian Foundation for Basic Research within the framework of the scientific project no. 15-35-21129 _mol_a_ved and project no 15-35-70006 mol_a_mos References: 1. Gal, T., Lindberg, F., and Unger, J., 2008. Computing continuous sky view factors using 3D urban raster and vector databases: comparison and application to urban climate. Theoretical and applied climatology, 95 (1-2), 111-123. 2. Richens, P., 1997. Image processing for urban scale environmental modelling. In: J.D. Spitler and J.L.M. Hensen, eds. th Intemational IBPSA Conference Building Simulation, Prague. 3. Ratti, C. and Richens, P., 2004. Raster analysis of urban form. Environment and Planning B: Planning and Design, 31 (2), 297-309.
Kinematic and Hydrometer Data Products from Scanning Radars during MC3E
matthews, Alyssa; Dolan, Brenda; Rutledge, Steven
2016-02-29
Recently the Radar Meteorology Group at Colorado State University has completed major case studies of some top cases from MC3E including 25 April, 20 May and 23 May 2011. A discussion on the analysis methods as well as radar quality control methods is included. For each case, a brief overview is first provided. Then, multiple Doppler (using available X-SAPR and C-SAPR data) analyses are presented including statistics on vertical air motions, sub-divided by convective and stratiform precipitation. Mean profiles and CFAD's of vertical motion are included to facilitate comparison with ASR model simulations. Retrieved vertical motion has also been verified with vertically pointing profiler data. Finally for each case, hydrometeor types are included derived from polarimetric radar observations. The latter can be used to provide comparisons to model-generated hydrometeor fields. Instructions for accessing all the data fields are also included. The web page can be found at: http://radarmet.atmos.colostate.edu/mc3e/research/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-02-01
The preliminary assessment included the following activities: (1) An on-site visit, including interviews and field surveys; (2) Acquisition and analysis of information on past hazardous materials use, waste generation, and waste disposal at the Station; (3) Acquisition and analysis of available geological surveys, hydrological data, meteorological data, and environmental data; and (4) The identification and assessment of sites where contamination of soils, ground water and/or surface water may have occurred. Operations that have involved the use of hazardous materials and the disposal of hazardous wastes include vehicle maintenance and aerospace ground equipment (AGE) maintenance. The hazardous wastes disposed of throughmore » these operations include varying quantities of petroleum-oil-lubricant (POL) products, acids, paints, thinners, strippers, and solvents. The field surveys and interviews resulted in the identification of three sites that exhibit the potential for migration of contaminants due to leakage or seepage from landfills and storage tanks.« less
Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave
NASA Technical Reports Server (NTRS)
Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.
1992-01-01
Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.
Yerramilli, Anjaneyulu; Challa, Venkata Srinivas; Indracanti, Jayakumar; Dasari, Hariprasad; Baham, Julius; Patrick, Chuck; Young, John; Hughes, Robert; White, Lorren D.; Hardy, Mark G.; Swanier, Shelton
2008-01-01
Coastal atmospheric conditions widely vary from those over inland due to the land-sea interface, temperature contrast and the consequent development of local circulations. In this study a field meteorological experiment was conducted to measure vertical structure of boundary layer during the period 25–29 June, 2007 at three locations Seabee base, Harrison and Wiggins sites in the Mississippi coast. A GPS Sonde along with slow ascent helium balloon and automated weather stations equipped with slow and fast response sensors were used in the experiment. GPS sonde were launched at three specific times (0700 LT, 1300 LT and 1800 LT) during the experiment days. The observations indicate shallow boundary layer near the coast which gradually develops inland. The weather research and forecasting (WRF) meso-scale atmospheric model and a Lagrangian particle dispersion model (HYSPLIT) are used to simulate the lower atmospheric flow and dispersion in a range of 100 km from the coast for 28–30 June, 2007. The simulated meteorological parameters were compared with the experimental observations. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of development of sea breeze flow, its coupling with the large scale flow field and the ensuing alteration in the mixing depth across the coast. Simulated ground-level concentrations of SO2 from four elevated point sources located along the coast indicate diurnal variation and impact of the local sea-land breeze on the direction of the plume. Model concentration levels were highest during the stable morning condition and during the sea-breeze time in the afternoon. The highest concentrations were found up to 40 km inland during sea breeze time. The study illustrates the application of field meteorological observations for the validation of WRF which is coupled to HYSPLIT for dispersion assessment in the coastal region. PMID:19151446
NASA Technical Reports Server (NTRS)
Chandler, William S.; Hoell, James M.; Westberg, David; Zhang, Taiping; Stackhouse, Paul W., Jr.
2013-01-01
A primary objective of NASA's Prediction of Worldwide Energy Resource (POWER) project is to adapt and infuse NASA's solar and meteorological data into the energy, agricultural, and architectural industries. Improvements are continuously incorporated when higher resolution and longer-term data inputs become available. Climatological data previously provided via POWER web applications were three-hourly and 1x1 degree latitude/longitude. The NASA Modern Era Retrospective-analysis for Research and Applications (MERRA) data set provides higher resolution data products (hourly and 1/2x1/2 degree) covering the entire globe. Currently POWER solar and meteorological data are available for more than 30 years on hourly (meteorological only), daily, monthly and annual time scales. These data may be useful to several renewable energy sectors: solar and wind power generation, agricultural crop modeling, and sustainable buildings. A recent focus has been working with ASHRAE to assess complementing weather station data with MERRA data. ASHRAE building design parameters being investigated include heating/cooling degree days and climate zones.
CalWater 2015 — Atmospheric Rivers and Aerosol Impacts on Precipitation
NASA Astrophysics Data System (ADS)
Spackman, J. R.; Ralph, F. M.; Prather, K. A.; Cayan, D.; DeMott, P. J.; Dettinger, M. D.; Doyle, J. D.; Fairall, C. W.; Leung, L. R.; Rosenfeld, D.; Rutledge, S. A.; Waliser, D. E.; White, A. B.
2015-12-01
The CalWater 2015 field experiment was conducted between January and March and consisted of more than fifty science flights, a major research cruise, and continuous ground-based observations coordinated to study phenomena driving the incidence of extreme precipitation events and the variability of water supply along the West Coast of the United States. CalWater 2015 examined key processes linked to (1) atmospheric rivers (ARs) in delivering much of the precipitation associated with major winter storms, and (2) aerosols, originating from local sources as well as from remote continents, within and between storms and their modulating effects on precipitation on the U.S. West Coast. As part of a large interagency field effort including NOAA, DOE, NASA, NSF, and the Naval Research Laboratory, four research aircraft from three government agencies were deployed in coordination with the oceangoing NOAA Ronald H. Brown and were equipped with meteorological and chemical observing systems in near-shore regions of California and the eastern Pacific. At the same time, ground-based measurements from NOAA's HydroMeteorological Testbed (HMT) network on the U.S. West Coast and a major NSF-supported observing site for aerosols and microphysics at Bodega Bay, California provided continuous near surface-level meteorological and chemical observations, respectively, during CalWater 2015. The DOE-sponsored ARM Cloud Aerosol and Precipitation Experiment (ACAPEX) was executed in close coordination with NOAA and NASA facilities and deployed airborne and ship-based observing systems. This presentation summarizes the objectives, implementation strategy, data acquisitions, and some preliminary results from CalWater 2015 addressing science gaps associated with (1) the evolution and structure of ARs including cloud and precipitation processes and air-sea interaction, and (2) aerosol interaction with ARs and the impact on precipitation, including locally-generated aerosol effects on orographic precipitation along the U.S. West Coast. CalWater 2015 is part of a broad, five-year interagency vision called CalWater 2 (http://esrl.noaa.gov/psd/calwater) that includes proposed West Coast observations for multiple winter seasons to address these science gaps.
The Impact of Meteorology on Ozone Levels in the Lake Tahoe Basin
NASA Astrophysics Data System (ADS)
Theiss, Sandra
The Lake Tahoe Basin is located on the California-Nevada border and occasionally experiences elevated levels of ozone exceeding the 70 ppb California Air Resources Board (CARB) ambient air quality standard (8-hour average). Previous studies indicate that both the local generation of ozone in the Basin and long-range transport from out-of-Basin sources are important in contributing to ozone exceedances, but little is known about the impact of meteorology on the distribution of ozone source regions. In order to develop a better understanding of the factors affecting ozone levels and sources in the Lake Tahoe Basin, this study combines observational data from a 2010 and 2012 summer field campaigns, HYSPLIT back trajectories, and WRF model output to examine the meteorological influences of ozone transport in the topographically complex Lake Tahoe Basin. Findings from the field work portions of this study include enhanced background ozone levels at higher elevations, the local circulation pattern of lake breezes occurring at Lake level sites, and an indication that ozone precursors are coming off the Lake. Our analysis also showed that if transport of ozone does occur, it is more likely to come from the San Joaquin Valley to the south rather than originate in the large cities to the west, such as Sacramento and San Francisco. Analysis of modeled PBL schemes as compared with observational data showed that the ACM2 PBL scheme best represented the geographical domain. The ACM2 PBL scheme was then used to show wind circulation patterns in the Lake Tahoe Basin and concluded that there is decent vertical mixing over the Basin and no indication of ozone transport from the west however some indication of transport from the east. Overall this study concludes that transport from the west is less significant than transport from the south and east, and that transport only influences ozone values at higher elevations. Within the Basin itself (at lower elevations), local factors including mixing depth, rising or sinking air, and lake/land breeze circulations are more significant in influencing ozone values.
Bauer, Timothy J
2013-06-15
The Jack Rabbit Test Program was sponsored in April and May 2010 by the Department of Homeland Security Transportation Security Administration to generate source data for large releases of chlorine and ammonia from transport tanks. In addition to a variety of data types measured at the release location, concentration versus time data was measured using sensors at distances up to 500 m from the tank. Release data were used to create accurate representations of the vapor flux versus time for the ten releases. This study was conducted to determine the importance of source terms and meteorological conditions in predicting downwind concentrations and the accuracy that can be obtained in those predictions. Each source representation was entered into an atmospheric transport and dispersion model using simplifying assumptions regarding the source characterization and meteorological conditions, and statistics for cloud duration and concentration at the sensor locations were calculated. A detailed characterization for one of the chlorine releases predicted 37% of concentration values within a factor of two, but cannot be considered representative of all the trials. Predictions of toxic effects at 200 m are relevant to incidents involving 1-ton chlorine tanks commonly used in parts of the United States and internationally. Published by Elsevier B.V.
DREAMS-SIS: The Solar Irradiance Sensor on-board the ExoMars 2016 lander
NASA Astrophysics Data System (ADS)
Arruego, I.; Apéstigue, V.; Jiménez-Martín, J.; Martínez-Oter, J.; Álvarez-Ríos, F. J.; González-Guerrero, M.; Rivas, J.; Azcue, J.; Martín, I.; Toledo, D.; Gómez, L.; Jiménez-Michavila, M.; Yela, M.
2017-07-01
The Solar Irradiance Sensor (SIS) was part of the DREAMS (Dust characterization, Risk assessment, and Environment Analyzer on the Martian Surface) payload package on board the ExoMars 2016 Entry and Descent Module (EDM), "Schiaparelli". DREAMS was a meteorological station aimed at the measurement of several atmospheric parameters, as well as the presence of electric fields, during the surface operations of EDM. DREAMS-SIS is a highly miniaturized lightweight sensor designed for small meteorological stations, capable of estimating the aerosol optical depth (AOD) several times per sol, as well as performing a direct measurement of the global (direct plus scattered) irradiance on the Martian surface in the spectral range between 200 and 1100 nm. AOD is estimated from the irradiance measurements at two different spectral bands - Ultraviolet (UV) and near infrared (NIR) - which also enables color index (CI) analysis for the detection of clouds. Despite the failure in the landing of Schiaparelli, DREAMS-SIS is a valuable precursor for new developments being carried-on at present. The concept and design of DREAMS-SIS are here presented and its operating principles, supported by preliminary results from a short validation test, are described. Lessons learnt and future work towards a new generation of Sun irradiance sensors is also outlined.
NASA Technical Reports Server (NTRS)
Oswald, Hayden; Molthan, Andrew L.
2011-01-01
Satellite remote sensing has gained widespread use in the field of operational meteorology. Although raw satellite imagery is useful, several techniques exist which can convey multiple types of data in a more efficient way. One of these techniques is multispectral compositing. The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed two multispectral satellite imagery products which utilize data from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra and Aqua satellites, based upon products currently generated and used by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT). The nighttime microphysics product allows users to identify clouds occurring at different altitudes, but emphasizes fog and low cloud detection. This product improves upon current spectral difference and single channel infrared techniques. Each of the current products has its own set of advantages for nocturnal fog detection, but each also has limiting drawbacks which can hamper the analysis process. The multispectral product combines each current product with a third channel difference. Since the final image is enhanced with color, it simplifies the fog identification process. Analysis has shown that the nighttime microphysics imagery product represents a substantial improvement to conventional fog detection techniques, as well as provides a preview of future satellite capabilities to forecasters.
Meteorological factors and timing of the initiating event of human parturition
NASA Astrophysics Data System (ADS)
Hirsch, Emmet; Lim, Courtney; Dobrez, Deborah; Adams, Marci G.; Noble, William
2011-03-01
The aim of this study was to determine whether meteorological factors are associated with the timing of either onset of labor with intact membranes or rupture of membranes prior to labor—together referred to as `the initiating event' of parturition. All patients delivering at Evanston Hospital after spontaneous labor or rupture of membranes at ≥20 weeks of gestation over a 6-month period were studied. Logistic regression models of the initiating event of parturition using clinical variables (maternal age, gestational age, parity, multiple gestation and intrauterine infection) with and without the addition of meteorological variables (barometric pressure, temperature and humidity) were compared. A total of 1,088 patients met the inclusion criteria. Gestational age, multiple gestation and chorioamnionitis were associated with timing of initiation of parturition ( P < 0.01). The addition of meteorological to clinical variables generated a statistically significant improvement in prediction of the initiating event; however, the magnitude of this improvement was small (less than 2% difference in receiver-operating characteristic score). These observations held regardless of parity, fetal number and gestational age. Meteorological factors are associated with the timing of parturition, but the magnitude of this association is small.
NASA Astrophysics Data System (ADS)
Taghavi, M.; Cautenet, S.
2003-04-01
The ESCOMPTE Campaign has been conducted over Southern France (Provence region including the Marseille, Aix and Toulon cities and the Fos-Berre industrial center) in June and July of 2001. In order to study the redistribution of the pollutants emitted by anthropic and biogenic emissions and their impact on the atmospheric chemistry, we used meso-scale modeling (RAMS model, paralleled version 4.3, coupled on line with chemical modules : MOCA2.2 (Poulet et al, 2002) including 29 gaseous species). The hourly high resolution emissions were obtained from ESCOMPTE database (Ponche et al, 2002). The model was coupled with the dry deposition scheme (Walmsley and Weseley,1996). In this particular case of complex circulation (sea breeze associated with topography), the processes involving peaks of pollution were strongly non linear, and the meso scale modeling coupled on line with chemistry module was an essential step for a realistic redistribution of chemical species. Two nested grids satisfactorily describe the synoptic dynamics and the sea breeze circulations. The ECMWF meteorological fields provide the initial and boundary conditions. Different events characterized by various meteorological situations were simulated. Meteorological fields retrieved by modeling, also Modeled ozone, NOx, CO and SO2 concentrations, were compared with balloons, lidars, aircrafts and surface stations measurements. The chemistry regimes were explained according to the distribution of plumes. The stratified layers were examined.
Refinement and testing of analysis nudging in MPAS-A ...
The Model for Prediction Across Scales - Atmosphere (MPAS-A) is being adapted to serve as the meteorological driver for EPA’s “next-generation” air-quality model. To serve that purpose, it must be able to function in a diagnostic mode where past meteorological conditions are represented in greater detail and accuracy than can be provided by available observational data and meteorological reanalysis products. MPAS-A has been modified to allow four dimensional data assimilation (FDDA) by the nudging of temperature, humidity and wind toward target values predefined on the MPAS-A computational mesh. The technique of “analysis nudging” developed for the Penn State / NCAR Mesoscale Model – Version 4 (MM4), and later applied in the Weather Research and Forecasting model (WRF), is applied here in MPAS-A with adaptations for the unstructured Voronoi mesh used in MPAS-A. Test simulations for the periods of January and July 2013, with and without FDDA, are compared to target fields at various vertical levels and to surface-level meteorological observations. The results show the ability to follow target fields with high fidelity while still maintaining conservation of mass as in the original model. The results also show model errors relative to observations continue to be constrained throughout the simulations using FDDA and even show some error reduction during the first few days that could be attributable to the finer resolution of the 92-25 km computa
NASA Astrophysics Data System (ADS)
Osterman, G.; Harper, C.; Estes, M.; Zhao, W.; Bowman, K.; Pierce, B.; Irion, B.; Kahn, B.; Al-Saadi, J.
2008-05-01
The Houston/Galveston/Brazoria (HGB) area of Texas has been classified as in moderate nonattainment of the Environmental Protection Agency (EPA) 8-hour standard for ground level ozone since April 30, 2004. The Texas Commission on Environmental Quality uses photochemical model results as one of its primary tools to develop strategies to bring the HGB area into attainment with the EPA standard. The state of Texas then includes the strategies into a revised version of its State Implementation Plan (SIP). We will discuss efforts that have been or soon will be underway to use satellite data to evaluate and improve the meteorological and photochemical modeling efforts at TCEQ. In particular we will show the use of GOES, AIRS and TES data to improve the ability to model, using the MM5 model, the meteorological conditions over Texas and the Gulf of Mexico. The meteorological fields are then used as one of the inputs to the CAMx air quality model used at TCEQ. We will discuss the use of chemical transport model results as initial and boundary conditions which are a key uncertainty in the modeling of the air above Houston. We will also discuss the use of TES data to assist in the evaluation of preliminary model results generated by TCEQ for time periods in 2005. The satellite data will provide key information on ozone and carbon monoxide concentrations away from surface monitors in the troposphere. We will show how satellite data is becoming a key tool in the effort to improve air quality in the HGB area and one that can easily applied for use in other regions of the country.
NASA Astrophysics Data System (ADS)
Usui, Norihisa; Ishizaki, Shiro; Fujii, Yosuke; Tsujino, Hiroyuki; Yasuda, Tamaki; Kamachi, Masafumi
The Meteorological Research Institute multivariate ocean variational estimation (MOVE) System has been developed as the next-generation ocean data assimilation system in Japan Meteorological Agency. A multivariate three-dimensional variational (3DVAR) analysis scheme with vertical coupled temperature salinity empirical orthogonal function modes is adopted. The MOVE system has two varieties, the global (MOVE-G) and North Pacific (MOVE-NP) systems. The equatorial Pacific and western North Pacific are analyzed with assimilation experiments using MOVE-G and -NP, respectively. In each system, the salinity and velocity fields are well reproduced, even in cases without salinity data. Changes in surface and subsurface zonal currents during the 1997/98 El Niño event are captured well, and their transports are reasonably consistent with in situ observations. For example, the eastward transport in the upper layer around the equator has 70 Sv in spring 1997 and weakens in spring 1998. With MOVE-NP, the Kuroshio transport has 25 Sv in the East China Sea, and 40 Sv crossing the ASUKA (Affiliated Surveys of the Kuroshio off Cape Ashizuri) line south of Japan. The variations in the Kuroshio transports crossing the ASUKA line agree well with observations. The Ryukyu Current System has a transport ranging from 6 Sv east of Taiwan to 17 Sv east of Amami. The Oyashio transport crossing the OICE (Oyashio Intensive observation line off Cape Erimo) line south of Hokkaido has 14 Sv southwestward (near shore) and 11 Sv northeastward (offshore). In the Kuroshio Oyashio transition area east of Japan, the eastward transport has 41 Sv (32 36°N) and 12 Sv (36 39°N) crossing the 145°E line.
Li, Longxiang; Gong, Jianhua; Zhou, Jieping
2014-01-01
Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health. PMID:24798197
Li, Longxiang; Gong, Jianhua; Zhou, Jieping
2014-01-01
Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health.
NASA Astrophysics Data System (ADS)
Verfaillie, Deborah; Déqué, Michel; Morin, Samuel; Soubeyroux, Jean-Michel; Lafaysse, Matthieu
2017-04-01
Current and future availability of seasonal snow is a recurring topic in mountain regions such as the Pyrenees, where winter tourism and hydropower production are large contributors to the regional revenues in France, Spain and Andorra. Associated changes in river discharges, their consequences on water storage management, the future vulnerability of Pyrenean ecosystems as well as the occurrence of climate-related hazards such as debris flows and avalanches are also under consideration. However, to generate projections of snow conditions, a traditional dynamical downscaling approach featuring spatial resolutions typically between 10 and 50 km is not sufficient to capture the fine-scale processes and thresholds at play. Indeed, the altitudinal resolution matters, since the phase of precipitation is mainly controlled by the temperature which is altitude-dependent. Moreover, simulations from general circulation models (GCMs) and regional climate models (RCMs) suffer from biases compared to local observations, and often provide outputs at too coarse time resolution to drive impact models. RCM simulations must therefore be adjusted before they can be used to drive specific models such as land surface models. In this study, time series of hourly temperature, precipitation, wind speed, humidity, and short- and longwave radiation were generated over the Pyrenees for the period 1950-2100, by using a new approach (named ADAMONT for ADjustment of RCM outputs to MOuNTain regions) based on quantile mapping applied to daily data, followed by time disaggregation accounting for weather patterns selection. Meteorological observations used for the quantile mapping consist of the regional scale reanalysis SAFRAN, which operates at the scale of homogeneous areas on the order of 1000 km2 within which meteorological conditions vary only with elevation. SAFRAN combines large-scale NWP reanalysis (ERA40, ARPEGE) with in-situ meteorological observations. The SAFRAN reanalysis is available over the entire Pyrenean chain since 1980. Outputs from EURO-CORDEX simulations spanning 6 different RCMs forced by 6 different GCMs under 3 representative concentration pathways scenarios (RCP 2.6, 4.5 and 8.5) over Europe were downscaled at the massif scale and for 300 m elevation bands and statistically adjusted against the SAFRAN reanalysis. These corrected fields were then used to force the SURFEX/ISBA-Crocus land surface model over the Pyrenees. Here we present as an example a reanalysis and future projections (using adjusted EURO-CORDEX data) of meteorological and snow conditions obtained using this method at the site of La Mongie in the French Pyrenees, which we compare to in-situ observations carried out since the 1970s. These results further enable us to identify and apportion the main drivers for changes in snow conditions at the site, and the various uncertainty components at play. This work is a direct contribution of the French GICC ADAMONT project, and of the Interreg project "Clim'Py", aiming to develop the Pyrenean Observatory of Climate Change.
NASA Astrophysics Data System (ADS)
Freudling, M.; Egner, S.; Hering, M.; Carbó, F. L.; Thiele, H.
2017-09-01
The Meteosat Third Generation (MTG) Programme will ensure the future continuity and enhancement of meteorological data from geostationary orbit as currently provided by the Meteosat Second Generation (MSG) system. The industrial prime contractor for the space segment is Thales Alenia Space (France), with a core team consortium including OHB System AG (Germany).
NASA Technical Reports Server (NTRS)
Segal, M.; Pielke, R. A.; Mcnider, R. T.; Mcdougal, D. S.
1982-01-01
The mesoscale numerical model of the University of Virginia (UVMM), has been applied to the greater Chesapeake Bay area in order to provide a detailed description of the air pollution meteorology during a typical summer day. This model provides state of the art simulations for land-sea thermally induced circulations. The model-predicted results agree favorably with available observed data. The effects of synoptic flow and sea breeze coupling on air pollution meteorological characteristics in this region, are demonstrated by a spatial and temporal presentation of various model predicted fields. A transport analysis based on predicted wind velocities indicated possible recirculation of pollutants back onto the Atlantic coast due to the sea breeze circulation.
NASA Astrophysics Data System (ADS)
Pirovano, G.; Coll, I.; Bedogni, M.; Alessandrini, S.; Costa, M. P.; Gabusi, V.; Lasry, F.; Menut, L.; Vautard, R.
The modelling reconstruction of the processes determining the transport and mixing of ozone and its precursors in complex terrain areas is a challenging task, particularly when local-scale circulations, such as sea breeze, take place. Within this frame, the ESCOMPTE European campaign took place in the vicinity of Marseille (south-east of France) in summer 2001. The main objectives of the field campaign were to document several photochemical episodes, as well as to constitute a detailed database for chemistry transport models intercomparison. CAMx model has been applied on the largest intense observation periods (IOP) (June 21-26, 2001) in order to evaluate the impacts of two state-of-the-art meteorological models, RAMS and MM5, on chemical model outputs. The meteorological models have been used as best as possible in analysis mode, thus allowing to identify the spread arising in pollutant concentrations as an indication of the intrinsic uncertainty associated to the meteorological input. Simulations have been deeply investigated and compared with a considerable subset of observations both at ground level and along vertical profiles. The analysis has shown that both models were able to reproduce the main circulation features of the IOP. The strongest discrepancies are confined to the Planetary Boundary Layer, consisting of a clear tendency to underestimate or overestimate wind speed over the whole domain. The photochemical simulations showed that variability in circulation intensity was crucial mainly for the representation of the ozone peaks and of the shape of ozone plumes at the ground that have been affected in the same way over the whole domain and all along the simulated period. As a consequence, such differences can be thought of as a possible indicator for the uncertainty related to the definition of meteorological fields in a complex terrain area.
Physical Processes Governing Atmospheric Trace Constituents Measured from an Aircraft on PEM-Tropics
NASA Technical Reports Server (NTRS)
Newell, Reginald E.; Hoell, James M., Jr. (Technical Monitor)
2001-01-01
Before the mission, the PI (principal investigator) was instrumental in securing real-time use of the new 51-level ECMWF (European Centre for Medium Range Weather Forecasts) meteorological data. During the mission, he provided flight planning and execution guidance as meteorologist for the P-3B. Mr. Yong Zhu computed and plotted meteorological forecast maps using the ECMWF data and transmitted them to the field from MIT (Massachusetts Institute of Technology). Dr. John Cho was in the field for the Christmas Island portion to extract data from the on-site NOAA (National Oceanic and Atmospheric Administration) radars for local wind profiles that were used at the flight planning meetings. When the power supply for the VHF radar failed, he assisted the NOAA engineer in its repair. After the mission, Mr. Zhu produced meteorological data memos, which were made available to the PEM (Pacific Exploratory Mission)-Tropics B science team on request. An undergraduate student, Ms. Danielle Morse, wrote memos annotating the cloud conditions seen on the aircraft external monitor video tapes. Dr. Cho and the PI circulated a memo regarding the status (and associated problems) of the meteorological measurement systems on the DC-8 and P-3B to the relevant people on the science team. Several papers by members of our project were completed and accepted by JGR (Journal of Geophysical Research) for the first special section on PEM-Tropics B. These papers included coverage of the following topics: 1) examination of boundary layer data; 2) water vapor transport; 3) tropospheric trace constituent layers; 4) summarizations of the meteorological background and events during PEM-Tropics B; 5) concomitant lidar measurements of ozone, water vapor, and aerosol.
Climate, not conflict, explains extreme Middle East dust storm
Parolari, Anthony J.; Li, Dan; Bou-Zeid, Elie; ...
2016-11-08
The recent dust storm in the Middle East (Sepember 2015) was publicized in the media as a sign of an impending 'Dust Bowl.' Its severity, demonstrated by extreme aerosol optical depth in the atmosphere in the 99th percentile compared to historical data, was attributed to the ongoing regional conflict. However, surface meteorological and remote sensing data, as well as regional climate model simulations, support an alternative hypothesis: the historically unprecedented aridity played a more prominent role, as evidenced by unusual climatic and meteorological conditions prior to and during the storm. Remotely sensed normalized difference vegetation index demonstrates that vegetation covermore » was high in 2015 relative to the prior drought and conflict periods, suggesting that agricultural activity was not diminished during that year, thus negating the media narrative. Instead, meteorological simulations using the Weather Research and Forecasting (WRF) model show that the storm was associated with a cyclone and 'Shamal' winds, typical for dust storm generation in this region, that were immediately followed by an unusual wind reversal at low levels that spread dust west to the Mediterranean Coast. These unusual meteorological conditions were aided by a significant reduction in the critical shear stress due to extreme dry and hot conditions, thereby enhancing dust availability for erosion during this storm. Concluding, unusual aridity, combined with unique synoptic weather patterns, enhanced dust emission and westward long-range transport across the region, thus generating the extreme storm.« less
Climate, not conflict, explains extreme Middle East dust storm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parolari, Anthony J.; Li, Dan; Bou-Zeid, Elie
The recent dust storm in the Middle East (Sepember 2015) was publicized in the media as a sign of an impending 'Dust Bowl.' Its severity, demonstrated by extreme aerosol optical depth in the atmosphere in the 99th percentile compared to historical data, was attributed to the ongoing regional conflict. However, surface meteorological and remote sensing data, as well as regional climate model simulations, support an alternative hypothesis: the historically unprecedented aridity played a more prominent role, as evidenced by unusual climatic and meteorological conditions prior to and during the storm. Remotely sensed normalized difference vegetation index demonstrates that vegetation covermore » was high in 2015 relative to the prior drought and conflict periods, suggesting that agricultural activity was not diminished during that year, thus negating the media narrative. Instead, meteorological simulations using the Weather Research and Forecasting (WRF) model show that the storm was associated with a cyclone and 'Shamal' winds, typical for dust storm generation in this region, that were immediately followed by an unusual wind reversal at low levels that spread dust west to the Mediterranean Coast. These unusual meteorological conditions were aided by a significant reduction in the critical shear stress due to extreme dry and hot conditions, thereby enhancing dust availability for erosion during this storm. Concluding, unusual aridity, combined with unique synoptic weather patterns, enhanced dust emission and westward long-range transport across the region, thus generating the extreme storm.« less
An airborne meteorological data collection system using satellite relay (ASDAR)
NASA Technical Reports Server (NTRS)
Bagwell, J. W.; Lindow, B. G.
1978-01-01
The National Aeronautics and Space Administration (NASA) has developed an airborne data acquisition and communication system for the National Oceanic and Atmospheric Administration (NOAA). This system known as ASDAR, the Aircraft to Satellite Data Relay, consists of a microprocessor based controller, time clock, transmitter and antenna. Together they acquire meteorological and position information from existing aircraft systems on B-747 aircraft, convert and format these, and transmit them to the ground via the GOES meteorological satellite series. The development and application of the ASDAR system is described with emphasis on unique features. Performance to date is exceptional, providing horizon-to-horizon coverage of aircraft flights. The data collected is of high quality and is considered a valuable addition to the data base from which NOAA generates its weather forecasts.
Sampling errors in the estimation of empirical orthogonal functions. [for climatology studies
NASA Technical Reports Server (NTRS)
North, G. R.; Bell, T. L.; Cahalan, R. F.; Moeng, F. J.
1982-01-01
Empirical Orthogonal Functions (EOF's), eigenvectors of the spatial cross-covariance matrix of a meteorological field, are reviewed with special attention given to the necessary weighting factors for gridded data and the sampling errors incurred when too small a sample is available. The geographical shape of an EOF shows large intersample variability when its associated eigenvalue is 'close' to a neighboring one. A rule of thumb indicating when an EOF is likely to be subject to large sampling fluctuations is presented. An explicit example, based on the statistics of the 500 mb geopotential height field, displays large intersample variability in the EOF's for sample sizes of a few hundred independent realizations, a size seldom exceeded by meteorological data sets.
Ensemble-Based Assimilation of Aerosol Observations in GEOS-5
NASA Technical Reports Server (NTRS)
Buchard, V.; Da Silva, A.
2016-01-01
MERRA-2 is the latest Aerosol Reanalysis produced at NASA's Global Modeling Assimilation Office (GMAO) from 1979 to present. This reanalysis is based on a version of the GEOS-5 model radiatively coupled to GOCART aerosols and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from AVHRR over ocean, MODIS sensors on both Terra and Aqua satellites, MISR over bright surfaces and AERONET data. In order to assimilate lidar profiles of aerosols, we are updating the aerosol component of our assimilation system to an Ensemble Kalman Filter (EnKF) type of scheme using ensembles generated routinely by the meteorological assimilation. Following the work performed with the first NASA's aerosol reanalysis (MERRAero), we first validate the vertical structure of MERRA-2 aerosol assimilated fields using CALIOP data over regions of particular interest during 2008.
Probabilistic forecasts based on radar rainfall uncertainty
NASA Astrophysics Data System (ADS)
Liguori, S.; Rico-Ramirez, M. A.
2012-04-01
The potential advantages resulting from integrating weather radar rainfall estimates in hydro-meteorological forecasting systems is limited by the inherent uncertainty affecting radar rainfall measurements, which is due to various sources of error [1-3]. The improvement of quality control and correction techniques is recognized to play a role for the future improvement of radar-based flow predictions. However, the knowledge of the uncertainty affecting radar rainfall data can also be effectively used to build a hydro-meteorological forecasting system in a probabilistic framework. This work discusses the results of the implementation of a novel probabilistic forecasting system developed to improve ensemble predictions over a small urban area located in the North of England. An ensemble of radar rainfall fields can be determined as the sum of a deterministic component and a perturbation field, the latter being informed by the knowledge of the spatial-temporal characteristics of the radar error assessed with reference to rain-gauges measurements. This approach is similar to the REAL system [4] developed for use in the Southern-Alps. The radar uncertainty estimate can then be propagated with a nowcasting model, used to extrapolate an ensemble of radar rainfall forecasts, which can ultimately drive hydrological ensemble predictions. A radar ensemble generator has been calibrated using radar rainfall data made available from the UK Met Office after applying post-processing and corrections algorithms [5-6]. One hour rainfall accumulations from 235 rain gauges recorded for the year 2007 have provided the reference to determine the radar error. Statistics describing the spatial characteristics of the error (i.e. mean and covariance) have been computed off-line at gauges location, along with the parameters describing the error temporal correlation. A system has then been set up to impose the space-time error properties to stochastic perturbations, generated in real-time at gauges location, and then interpolated back onto the radar domain, in order to obtain probabilistic radar rainfall fields in real time. The deterministic nowcasting model integrated in the STEPS system [7-8] has been used for the purpose of propagating the uncertainty and assessing the benefit of implementing the radar ensemble generator for probabilistic rainfall forecasts and ultimately sewer flow predictions. For this purpose, events representative of different types of precipitation (i.e. stratiform/convective) and significant at the urban catchment scale (i.e. in terms of sewer overflow within the urban drainage system) have been selected. As high spatial/temporal resolution is required to the forecasts for their use in urban areas [9-11], the probabilistic nowcasts have been set up to be produced at 1 km resolution and 5 min intervals. The forecasting chain is completed by a hydrodynamic model of the urban drainage network. The aim of this work is to discuss the implementation of this probabilistic system, which takes into account the radar error to characterize the forecast uncertainty, with consequent potential benefits in the management of urban systems. It will also allow a comparison with previous findings related to the analysis of different approaches to uncertainty estimation and quantification in terms of rainfall [12] and flows at the urban scale [13]. Acknowledgements The authors would like to acknowledge the BADC, the UK Met Office and Dr. Alan Seed from the Australian Bureau of Meteorology for providing the radar data and the nowcasting model. The authors acknowledge the support from the Engineering and Physical Sciences Research Council (EPSRC) via grant EP/I012222/1.
Operational Reconnaissance: Identifying the Right Problems in a Complex World
2015-05-23
about the activities and resources of an enemy or rival, or to secure data concerning the meteorological , hydrographic, or geographic characteristics of...Information. Kansas City, KS: Hudson -Kimberly Publishing Co., 1896. War Department. Field Manual (FM) 1-20, Army Air Force Field Manual, Tactics and
-7162 Don assists with the installation and maintenance of the NWTC's field test turbines as well as with test article installations and testing in the Structural Testing Laboratory and both dynamometer facilities. He participates in the operation and maintenance of the field test sites and meteorological
NASA Astrophysics Data System (ADS)
Bernard, Didier C.; Cécé, Raphaël; Dorville, Jean-François
2013-04-01
During the dry season, the Guadeloupe archipelago may be affected by extreme rainy disturbances which may induce floods in a very short time. C. Brévignon (2003) considered a heavy rain event for rainfall upper 100 mm per day (out of mountainous areas) for this tropical region. During a cold front passage (3-5 January 2011), torrential rainfalls caused floods, major damages, landslides and five deaths. This phenomenon has put into question the current warning system based on large scale numerical models. This low-resolution forecasting (around 50-km scale) has been unsuitable for small tropical island like Guadeloupe (1600 km2). The most affected area was the middle of Grande-Terre island which is the main flat island of the archipelago (area of 587 km2, peak at 136 m). It is the most populated sector of Guadeloupe. In this area, observed rainfall have reached to 100-160 mm in 24 hours (this amount is equivalent to two months of rain for January (C. Brévignon, 2003)), in less 2 hours drainage systems have been saturated, and five people died in a ravine. Since two years, the atmospheric model WRF ARW V3 (Skamarock et al., 2008) has been used to modeling meteorological variables fields observed over the Guadeloupe archipelago at high resolution 1-km scale (Cécé et al., 2011). The model error estimators show that meteorological variables seem to be properly simulated for standard types of weather: undisturbed, strong or weak trade winds. These simulations indicate that for synoptic winds weak to moderate, a small island like Grande-Terre is able to generate inland convergence zones during daytime. In this presentation, we apply this high resolution model to simulate this extreme rainy disturbance of 3-5 January 2011. The evolution of modeling meteorological variable fields is analyzed in the most affected area of Grande-Terre (city of Les Abymes). The main goal is to examine local quasi-stationary updraft systems and highlight their convective mechanisms. The spatio-temporal distribution of simulated rainfall could help to design the prevention and evacuation plan, particularly for the flooding areas. The meteorological variable fields simulated are evaluated by comparison with observed data of meteorological weather stations (French Met. Office) available in the area. Brévignon, C., 2003: Atlas climatique: l'environnement atmosphérique de la Guadeloupe, de Saint-Barthélémy et Saint-martin. Météo-France, Service Régional de Guadeloupe, 92 pp. Cécé, R., T. Plocoste, C. D'Alexis, D. Bernard and J.-F. Dorville, 2012: Modélisation numérique à l'échelle locale des situations météorologiques observées au cours de la transition saison sèche - saison humide à l'aide de WRF ARW V3 : cas de l'archipel de la Guadeloupe. AMA 2012, Toulouse. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A Description of the Advanced Research WRF Version 3.Tech. Rep., National Center for Atmospheric Research.
NASA Astrophysics Data System (ADS)
Vaidyanathan, A.; Yip, F.
2017-12-01
Context: Studies that have explored the impacts of environmental exposure on human health have mostly relied on data from weather stations, which can be limited in geographic scope. For this assessment, we: (1) evaluated the performance of the meteorological data from the North American Land Data Assimilation System Phase 2 (NLDAS) model with measurements from weather stations for public health and specifically for CDC's Environmental Public Health Tracking Program, and (2) conducted a health assessment to explore the relationship between heat exposure and mortality, and examined region-specific differences in heat-mortality (H-M) relationships when using model-based estimates in place of measurements from weather stations.Methods: Meteorological data from the NLDAS Phase 2 model was evaluated against measurements from weather stations. A time-series analysis was conducted, using both station- and model-based data, to generate H-M relationships for counties in the U.S. The county-specific risk information was pooled to characterize regional relationships for both station- and model-based data, which were then compared to identify degrees of overlap and discrepancies between results generated using the two data sources. Results: NLDAS-based heat metrics were in agreement with those generated using weather station data. In general, the H-M relationship tended to be non-linear and varied by region, particularly the heat index value at which the health risks become positively significant. However, there was a high degree of overlap between region-specific H-M relationships generated from weather stations and the NLDAS model.Interpretation: Heat metrics from NLDAS model are available for all counties in the coterminous U.S. from 1979-2015. These data can facilitate health research and surveillance activities exploring health impacts associated with long-term heat exposures at finer geographic scales.Conclusion: High spatiotemporal coverage of environmental health data is an important attribute in understanding potential public health impacts. With the limited geographic scope of station-based measurements, adopting NLDAS-based modeled estimates in CDC's Tracking Network would provide a more comprehensive understanding of specific meteorological exposures on human health.
Geomagnetic main field modeling with DMSP
NASA Astrophysics Data System (ADS)
Alken, P.; Maus, S.; Lühr, H.; Redmon, R. J.; Rich, F.; Bowman, B.; O'Malley, S. M.
2014-05-01
The Defense Meteorological Satellite Program (DMSP) launches and maintains a network of satellites to monitor the meteorological, oceanographic, and solar-terrestrial physics environments. In the past decade, geomagnetic field modelers have focused much attention on magnetic measurements from missions such as CHAMP, Ørsted, and SAC-C. With the completion of the CHAMP mission in 2010, there has been a multiyear gap in satellite-based vector magnetic field measurements available for main field modeling. In this study, we calibrate the special sensor magnetometer instrument on board DMSP to create a data set suitable for main field modeling. These vector field measurements are calibrated to compute instrument timing shifts, scale factors, offsets, and nonorthogonality angles of the fluxgate magnetometer cores. Euler angles are then computed to determine the orientation of the vector magnetometer with respect to a local coordinate system. We fit a degree 15 main field model to the data set and compare with the World Magnetic Model and Ørsted scalar measurements. We call this model DMSP-MAG-1, and its coefficients and software are available for download at http://geomag.org/models/dmsp.html. Our results indicate that the DMSP data set will be a valuable source for main field modeling for the years between CHAMP and the recently launched Swarm mission.
Improvement of Meteorological Inputs for TexAQS-II Air Quality Simulations
NASA Astrophysics Data System (ADS)
Ngan, F.; Byun, D.; Kim, H.; Cheng, F.; Kim, S.; Lee, D.
2008-12-01
An air quality forecasting system (UH-AQF) for Eastern Texas, which is in operation by the Institute for Multidimensional Air Quality Studies (IMAQS) at the University of Houston, uses the Fifth-Generation PSU/NCAR Mesoscale Model MM5 model as the meteorological driver for modeling air quality with the Community Multiscale Air Quality (CMAQ) model. While the forecasting system was successfully used for the planning and implementation of various measurement activities, evaluations of the forecasting results revealed a few systematic problems in the numerical simulations. From comparison with observations, we observe some times over-prediction of northerly winds caused by inaccurate synoptic inputs and other times too strong southerly winds caused by local sea breeze development. Discrepancies in maximum and minimum temperature are also seen for certain days. Precipitation events, as well as clouds, are simulated at the incorrect locations and times occasionally. Model simulatednrealistic thunderstorms are simulated, causing sometimes cause unrealistically strong outflows. To understand physical and chemical processes influencing air quality measures, a proper description of real world meteorological conditions is essential. The objective of this study is to generate better meteorological inputs than the AQF results to support the chemistry modeling. We utilized existing objective analysis and nudging tools in the MM5 system to develop the MUltiscale Nest-down Data Assimilation System (MUNDAS), which incorporates extensive meteorological observations available in the simulated domain for the retrospective simulation of the TexAQS-II period. With the re-simulated meteorological input, we are able to better predict ozone events during TexAQS-II period. In addition, base datasets in MM5 such as land use/land cover, vegetation fraction, soil type and sea surface temperature are updated by satellite data to represent the surface features more accurately. They are key physical parameters inputs affecting transfer of heat, momentum and soil moisture in land-surface process in MM5. Using base the accurate input datasets, we are able to have improved see the differences of predictions of ground temperatures, winds and even thunderstorm activities within boundary layer.
Fernández, M D; López, J C; Baeza, E; Céspedes, A; Meca, D E; Bailey, B
2015-08-01
A typical meteorological year (TMY) represents the typical meteorological conditions over many years but still contains the short term fluctuations which are absent from long-term averaged data. Meteorological data were measured at the Experimental Station of Cajamar 'Las Palmerillas' (Cajamar Foundation) in Almeria, Spain, over 19 years at the meteorological station and in a reference greenhouse which is typical of those used in the region. The two sets of measurements were subjected to quality control analysis and then used to create TMY datasets using three different methodologies proposed in the literature. Three TMY datasets were generated for the external conditions and two for the greenhouse. They were assessed by using each as input to seven horticultural models and comparing the model results with those obtained by experiment in practical trials. In addition, the models were used with the meteorological data recorded during the trials. A scoring system was used to identify the best performing TMY in each application and then rank them in overall performance. The best methodology was that of Argiriou for both greenhouse and external conditions. The average relative errors between the seasonal values estimated using the 19-year dataset and those using the Argiriou greenhouse TMY were 2.2 % (reference evapotranspiration), -0.45 % (pepper crop transpiration), 3.4 % (pepper crop nitrogen uptake) and 0.8 % (green bean yield). The values obtained using the Argiriou external TMY were 1.8 % (greenhouse reference evapotranspiration), 0.6 % (external reference evapotranspiration), 4.7 % (greenhouse heat requirement) and 0.9 % (loquat harvest date). Using the models with the 19 individual years in the historical dataset showed that the year to year weather variability gave results which differed from the average values by ± 15 %. By comparison with results from other greenhouses it was shown that the greenhouse TMY is applicable to greenhouses which have a solar radiation transmission of approximately 65 % and rely on manual control of ventilation which constitute the majority in the south-east of Spain and in most Mediterranean greenhouse areas.
NASA Astrophysics Data System (ADS)
Fernández, M. D.; López, J. C.; Baeza, E.; Céspedes, A.; Meca, D. E.; Bailey, B.
2015-08-01
A typical meteorological year (TMY) represents the typical meteorological conditions over many years but still contains the short term fluctuations which are absent from long-term averaged data. Meteorological data were measured at the Experimental Station of Cajamar `Las Palmerillas' (Cajamar Foundation) in Almeria, Spain, over 19 years at the meteorological station and in a reference greenhouse which is typical of those used in the region. The two sets of measurements were subjected to quality control analysis and then used to create TMY datasets using three different methodologies proposed in the literature. Three TMY datasets were generated for the external conditions and two for the greenhouse. They were assessed by using each as input to seven horticultural models and comparing the model results with those obtained by experiment in practical trials. In addition, the models were used with the meteorological data recorded during the trials. A scoring system was used to identify the best performing TMY in each application and then rank them in overall performance. The best methodology was that of Argiriou for both greenhouse and external conditions. The average relative errors between the seasonal values estimated using the 19-year dataset and those using the Argiriou greenhouse TMY were 2.2 % (reference evapotranspiration), -0.45 % (pepper crop transpiration), 3.4 % (pepper crop nitrogen uptake) and 0.8 % (green bean yield). The values obtained using the Argiriou external TMY were 1.8 % (greenhouse reference evapotranspiration), 0.6 % (external reference evapotranspiration), 4.7 % (greenhouse heat requirement) and 0.9 % (loquat harvest date). Using the models with the 19 individual years in the historical dataset showed that the year to year weather variability gave results which differed from the average values by ± 15 %. By comparison with results from other greenhouses it was shown that the greenhouse TMY is applicable to greenhouses which have a solar radiation transmission of approximately 65 % and rely on manual control of ventilation which constitute the majority in the south-east of Spain and in most Mediterranean greenhouse areas.
COMPARISON OF SCIENTIFIC FINDINGS FROM MAJOR OZONE FIELD STUDIES IN NORTH AMERICA AND EUROPE
During the past decade, nearly 600 million dollars were invested in more than 30 major field studies in North America and Europe examining tropospheric ozone chemistry, meteorology, precursor emissions, and modeling. Most of these studies were undertaken to provide new or refin...
NASA Astrophysics Data System (ADS)
Halenka, T.; Huszar, P.; Belda, M.
2010-09-01
Recent studies show considerable effect of atmospheric chemistry and aerosols on climate on regional and local scale. For the purpose of qualifying and quantifying the magnitude of climate forcing due to atmospheric chemistry/aerosols on regional scale, the development of coupling of regional climate model and chemistry/aerosol model was started on the Department of Meteorology and Environmental Protection, Charles University, Prague, for the EC FP6 Project QUANTIFY and EC FP6 Project CECILIA. For this coupling, existing regional climate model and chemistry transport model have been used at very high resolution of 10km grid. Climate is calculated using RegCM while chemistry is solved by CAMx. The experiments with the couple have been prepared for EC FP7 project MEGAPOLI assessing the impact of the megacities and industrialized areas on climate. Meteorological fields generated by RCM drive CAMx transport, chemistry and a dry/wet deposition. A preprocessor utility was developed for transforming RegCM provided fields to CAMx input fields and format. New domain have been settled for MEGAPOLI purpose in 10km resolution including all the European "megacities" regions, i.e. London metropolitan area, Paris region, industrialized Ruhr area, Po valley etc. There is critical issue of the emission inventories available for 10km resolution including the urban hot-spots, TNO emissions are adopted for this sensitivity study in 10km resolution for comparison of the results with the simulation based on merged TNO emissions, i.e. basically original EMEP emissions at 50 km grid. The sensitivity test to switch on/off Paris area emissions is analysed as well. Preliminary results for year 2005 are presented and discussed to reveal whether the concept of effective emission indices could help to parameterize the urban plume effects in lower resolution models. Interactive coupling is compared to study the potential of possible impact of urban air-pollution to the urban area climate.
Carvajal, Thaddeus M; Viacrusis, Katherine M; Hernandez, Lara Fides T; Ho, Howell T; Amalin, Divina M; Watanabe, Kozo
2018-04-17
Several studies have applied ecological factors such as meteorological variables to develop models and accurately predict the temporal pattern of dengue incidence or occurrence. With the vast amount of studies that investigated this premise, the modeling approaches differ from each study and only use a single statistical technique. It raises the question of whether which technique would be robust and reliable. Hence, our study aims to compare the predictive accuracy of the temporal pattern of Dengue incidence in Metropolitan Manila as influenced by meteorological factors from four modeling techniques, (a) General Additive Modeling, (b) Seasonal Autoregressive Integrated Moving Average with exogenous variables (c) Random Forest and (d) Gradient Boosting. Dengue incidence and meteorological data (flood, precipitation, temperature, southern oscillation index, relative humidity, wind speed and direction) of Metropolitan Manila from January 1, 2009 - December 31, 2013 were obtained from respective government agencies. Two types of datasets were used in the analysis; observed meteorological factors (MF) and its corresponding delayed or lagged effect (LG). After which, these datasets were subjected to the four modeling techniques. The predictive accuracy and variable importance of each modeling technique were calculated and evaluated. Among the statistical modeling techniques, Random Forest showed the best predictive accuracy. Moreover, the delayed or lag effects of the meteorological variables was shown to be the best dataset to use for such purpose. Thus, the model of Random Forest with delayed meteorological effects (RF-LG) was deemed the best among all assessed models. Relative humidity was shown to be the top-most important meteorological factor in the best model. The study exhibited that there are indeed different predictive outcomes generated from each statistical modeling technique and it further revealed that the Random forest model with delayed meteorological effects to be the best in predicting the temporal pattern of Dengue incidence in Metropolitan Manila. It is also noteworthy that the study also identified relative humidity as an important meteorological factor along with rainfall and temperature that can influence this temporal pattern.
Kroeger, Axel; Olliaro, Piero; Rocklöv, Joacim; Sewe, Maquins Odhiambo; Tejeda, Gustavo; Benitez, David; Gill, Balvinder; Hakim, S. Lokman; Gomes Carvalho, Roberta; Bowman, Leigh; Petzold, Max
2018-01-01
Background Dengue outbreaks are increasing in frequency over space and time, affecting people’s health and burdening resource-constrained health systems. The ability to detect early emerging outbreaks is key to mounting an effective response. The early warning and response system (EWARS) is a toolkit that provides countries with early-warning systems for efficient and cost-effective local responses. EWARS uses outbreak and alarm indicators to derive prediction models that can be used prospectively to predict a forthcoming dengue outbreak at district level. Methods We report on the development of the EWARS tool, based on users’ recommendations into a convenient, user-friendly and reliable software aided by a user’s workbook and its field testing in 30 health districts in Brazil, Malaysia and Mexico. Findings 34 Health officers from the 30 study districts who had used the original EWARS for 7 to 10 months responded to a questionnaire with mainly open-ended questions. Qualitative content analysis showed that participants were generally satisfied with the tool but preferred open-access vs. commercial software. EWARS users also stated that the geographical unit should be the district, while access to meteorological information should be improved. These recommendations were incorporated into the second-generation EWARS-R, using the free R software, combined with recent surveillance data and resulted in higher sensitivities and positive predictive values of alarm signals compared to the first-generation EWARS. Currently the use of satellite data for meteorological information is being tested and a dashboard is being developed to increase user-friendliness of the tool. The inclusion of other Aedes borne viral diseases is under discussion. Conclusion EWARS is a pragmatic and useful tool for detecting imminent dengue outbreaks to trigger early response activities. PMID:29727447
Hussain-Alkhateeb, Laith; Kroeger, Axel; Olliaro, Piero; Rocklöv, Joacim; Sewe, Maquins Odhiambo; Tejeda, Gustavo; Benitez, David; Gill, Balvinder; Hakim, S Lokman; Gomes Carvalho, Roberta; Bowman, Leigh; Petzold, Max
2018-01-01
Dengue outbreaks are increasing in frequency over space and time, affecting people's health and burdening resource-constrained health systems. The ability to detect early emerging outbreaks is key to mounting an effective response. The early warning and response system (EWARS) is a toolkit that provides countries with early-warning systems for efficient and cost-effective local responses. EWARS uses outbreak and alarm indicators to derive prediction models that can be used prospectively to predict a forthcoming dengue outbreak at district level. We report on the development of the EWARS tool, based on users' recommendations into a convenient, user-friendly and reliable software aided by a user's workbook and its field testing in 30 health districts in Brazil, Malaysia and Mexico. 34 Health officers from the 30 study districts who had used the original EWARS for 7 to 10 months responded to a questionnaire with mainly open-ended questions. Qualitative content analysis showed that participants were generally satisfied with the tool but preferred open-access vs. commercial software. EWARS users also stated that the geographical unit should be the district, while access to meteorological information should be improved. These recommendations were incorporated into the second-generation EWARS-R, using the free R software, combined with recent surveillance data and resulted in higher sensitivities and positive predictive values of alarm signals compared to the first-generation EWARS. Currently the use of satellite data for meteorological information is being tested and a dashboard is being developed to increase user-friendliness of the tool. The inclusion of other Aedes borne viral diseases is under discussion. EWARS is a pragmatic and useful tool for detecting imminent dengue outbreaks to trigger early response activities.
NASA Astrophysics Data System (ADS)
Leauthaud, Crystele; Cappelaere, Bernard; Demarty, Jérôme; Guichard, Françoise; Velluet, Cécile; Kergoat, Laurent; Vischel, Théo; Grippa, Manuela; Mouhaimouni, Mohammed; Bouzou Moussa, Ibrahim; Mainassara, Ibrahim; Sultan, Benjamin
2017-04-01
The Sahel has experienced strong climate variability in the past decades. Understanding its implications for natural and cultivated ecosystems is pivotal in a context of high population growth and mainly agriculture-based livelihoods. However, efforts to model processes at the land-atmosphere interface are hindered, particularly when the multi-decadal timescale is targeted, as climatic data are scarce, largely incomplete and often unreliable. This study presents the generation of a long-term, high-temporal resolution, multivariate local climatic data set for Niamey, Central Sahel. The continuous series spans the period 1950-2009 at a 30-min timescale and includes ground station-based meteorological variables (precipitation, air temperature, relative and specific humidity, air pressure, wind speed, downwelling long- and short-wave radiation) as well as process-modelled surface fluxes (upwelling long- and short-wave radiation,latent, sensible and soil heat fluxes and surface temperature). A combination of complementary techniques (linear/spline regressions, a multivariate analogue method, artificial neural networks and recursive gap filling) was used to reconstruct missing meteorological data. The complete surface energy budget was then obtained for two dominant land cover types, fallow bush and millet, by applying the meteorological forcing data set to a finely field-calibrated land surface model. Uncertainty in reconstructed data was expressed by means of a stochastic ensemble of plausible historical time series. Climatological statistics were computed at sub-daily to decadal timescales and compared with local, regional and global data sets such as CRU and ERA-Interim. The reconstructed precipitation statistics, ˜1°C increase in mean annual temperature from 1950 to 2009, and mean diurnal and annual cycles for all variables were in good agreement with previous studies. The new data set, denoted NAD (Niamey Airport-derived set) and publicly available, can be used to investigate the water and energy cycles in Central Sahel, while the methodology can be applied to reconstruct series at other stations. The study has been published in Int. J. Climatol. (2016), DOI: 10.1002/joc.4874
Effective and efficient analysis of spatio-temporal data
NASA Astrophysics Data System (ADS)
Zhang, Zhongnan
Spatio-temporal data mining, i.e., mining knowledge from large amount of spatio-temporal data, is a highly demanding field because huge amounts of spatio-temporal data have been collected in various applications, ranging from remote sensing, to geographical information systems (GIS), computer cartography, environmental assessment and planning, etc. The collection data far exceeded human's ability to analyze which make it crucial to develop analysis tools. Recent studies on data mining have extended to the scope of data mining from relational and transactional datasets to spatial and temporal datasets. Among the various forms of spatio-temporal data, remote sensing images play an important role, due to the growing wide-spreading of outer space satellites. In this dissertation, we proposed two approaches to analyze the remote sensing data. The first one is about applying association rules mining onto images processing. Each image was divided into a number of image blocks. We built a spatial relationship for these blocks during the dividing process. This made a large number of images into a spatio-temporal dataset since each image was shot in time-series. The second one implemented co-occurrence patterns discovery from these images. The generated patterns represent subsets of spatial features that are located together in space and time. A weather analysis is composed of individual analysis of several meteorological variables. These variables include temperature, pressure, dew point, wind, clouds, visibility and so on. Local-scale models provide detailed analysis and forecasts of meteorological phenomena ranging from a few kilometers to about 100 kilometers in size. When some of above meteorological variables have some special change tendency, some kind of severe weather will happen in most cases. Using the discovery of association rules, we found that some special meteorological variables' changing has tight relation with some severe weather situation that will happen very soon. This dissertation is composed of three parts: an introduction, some basic knowledges and relative works, and my own three contributions to the development of approaches for spatio-temporal data mining: DYSTAL algorithm, STARSI algorithm, and COSTCOP+ algorithm.
NASA Technical Reports Server (NTRS)
Schmetz, Johannes; Menzel, W. Paul; Velden, Christopher; Wu, Xiangqian; Vandeberg, Leo; Nieman, Steve; Hayden, Christopher; Holmlund, Kenneth; Geijo, Carlos
1995-01-01
This paper describes the results from a collaborative study between the European Space Operations Center, the European Organization for the Exploitation of Meteorological Satellites, the National Oceanic and Atmospheric Administration, and the Cooperative Institute for Meteorological Satellite Studies investigating the relationship between satellite-derived monthly mean fields of wind and humidity in the upper troposphere for March 1994. Three geostationary meteorological satellites GOES-7, Meteosat-3, and Meteosat-5 are used to cover an area from roughly 160 deg W to 50 deg E. The wind fields are derived from tracking features in successive images of upper-tropospheric water vapor (WV) as depicted in the 6.5-micron absorption band. The upper-tropospheric relative humidity (UTH) is inferred from measured water vapor radiances with a physical retrieval scheme based on radiative forward calculations. Quantitative information on large-scale circulation patterns in the upper-troposphere is possible with the dense spatial coverage of the WV wind vectors. The monthly mean wind field is used to estimate the large-scale divergence; values range between about-5 x 10(exp -6) and 5 x 10(exp 6)/s when averaged over a scale length of about 1000-2000 km. The spatial patterns of the UTH field and the divergence of the wind field closely resemble one another, suggesting that UTH patterns are principally determined by the large-scale circulation. Since the upper-tropospheric humidity absorbs upwelling radiation from lower-tropospheric levels and therefore contributes significantly to the atmospheric greenhouse effect, this work implies that studies on the climate relevance of water vapor should include three-dimensional modeling of the atmospheric dynamics. The fields of UTH and WV winds are useful parameters for a climate-monitoring system based on satellite data. The results from this 1-month analysis suggest the desirability of further GOES and Meteosat studies to characterize the changes in the upper-tropospheric moisture sources and sinks over the past decade.
Selecting Meteorological Input for the Global Modeling Initiative Assessments
NASA Technical Reports Server (NTRS)
Strahan, Susan; Douglass, Anne; Prather, Michael; Coy, Larry; Hall, Tim; Rasch, Phil; Sparling, Lynn
1999-01-01
The Global Modeling Initiative (GMI) science team has developed a three dimensional chemistry and transport model (CTM) to evaluate the impact of the exhaust of supersonic aircraft on the stratosphere. An important goal of the GMI is to test modules for numerical transport, photochemical integration, and model dynamics within a common framework. This work is focussed on the dependence of the overall assessment on the wind and temperature fields used by the CTM. Three meteorological data sets for the stratosphere were available to GMI: the National Center for Atmospheric Research Community Climate Model (CCM2), the Goddard Earth Observing System Data Assimilation System (GEOS-DAS), and the Goddard Institute for Space Studies general circulation model (GISS-2'). Objective criteria were established by the GMI team to evaluate which of these three data sets provided the best representation of trace gases in the stratosphere today. Tracer experiments were devised to test various aspects of model transport. Stratospheric measurements of long-lived trace gases were selected as a test of the CTM transport. This presentation describes the criteria used in grading the meteorological fields and the resulting choice of wind fields to be used in the GMI assessment. This type of objective model evaluation will lead to a higher level of confidence in these assessments. We suggest that the diagnostic tests shown here be used to augment traditional general circulation model evaluation methods.
A GIS Procedure to Monitor PWV During Severe Meteorological Events
NASA Astrophysics Data System (ADS)
Ferrando, I.; Federici, B.; Sguerso, D.
2016-12-01
As widely known, the observation of GNSS signal's delay can improve the knowledge of meteorological phenomena. The local Precipitable Water Vapour (PWV), which can be easily derived from Zenith Total Delay (ZTD), Pressure (P) and Temperature (T) (Bevis et al., 1994), is not a satisfactory parameter to evaluate the occurrence of severe meteorological events. Hence, a GIS procedure, called G4M (GNSS for Meteorology), has been conceived to produce 2D PWV maps with high spatial and temporal resolution (1 km and 6 minutes respectively). The input data are GNSS, P and T observations not necessarily co-located coming from existing infrastructures, combined with a simplified physical model, owned by the research group.On spite of the low density and the different configurations of GNSS, P and T networks, the procedure is capable to detect severe meteorological events with reliable results. The procedure has already been applied in a wide and orographically complex area covering approximately the north-west of Italy and the French-Italian border region, to study two severe meteorological events occurred in Genoa (Italy) and other meteorological alert cases. The P, T and PWV 2D maps obtained by the procedure have been compared with the ones coming from meteorological re-analysis models, used as reference to obtain statistics on the goodness of the procedure in representing these fields. Additionally, the spatial variability of PWV was taken into account as indicator for representing potential critical situations; this index seems promising in highlighting remarkable features that precede intense precipitations. The strength and originality of the procedure lie into the employment of existing infrastructures, the independence from meteorological models, the high adaptability to different networks configurations, and the ability to produce high-resolution 2D PWV maps even from sparse input data. In the next future, the procedure could also be set up for near real-time applications.
Nitrogen oxide (NOx) emissions from electrical generating units (EGUs) in the northeast US have declined dramatically during the past few years as a result of a series of air quality rules (RACT rule, Clean Air Act Amendments Title IV, and the NOx SIP call)....
NASA Astrophysics Data System (ADS)
Khajehei, S.; Madadgar, S.; Moradkhani, H.
2014-12-01
The reliability and accuracy of hydrological predictions are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model parameters and model structure. To reduce the total uncertainty in hydrological applications, one approach is to reduce the uncertainty in meteorological forcing by using the statistical methods based on the conditional probability density functions (pdf). However, one of the requirements for current methods is to assume the Gaussian distribution for the marginal distribution of the observed and modeled meteorology. Here we propose a Bayesian approach based on Copula functions to develop the conditional distribution of precipitation forecast needed in deriving a hydrologic model for a sub-basin in the Columbia River Basin. Copula functions are introduced as an alternative approach in capturing the uncertainties related to meteorological forcing. Copulas are multivariate joint distribution of univariate marginal distributions, which are capable to model the joint behavior of variables with any level of correlation and dependency. The method is applied to the monthly forecast of CPC with 0.25x0.25 degree resolution to reproduce the PRISM dataset over 1970-2000. Results are compared with Ensemble Pre-Processor approach as a common procedure used by National Weather Service River forecast centers in reproducing observed climatology during a ten-year verification period (2000-2010).
Urban heat island research from 1991 to 2015: a bibliometric analysis
NASA Astrophysics Data System (ADS)
Huang, Qunfang; Lu, Yuqi
2018-02-01
A bibliometric analysis based on the Science Citation Index-Expanded (SCI-Expanded) database from the Web of Science was performed to review urban heat island (UHI) research from 1991 to 2015 and statistically assess its developments, trends, and directions. In total, 1822 papers published in 352 journals over the past 25 years were analyzed for scientific output; citations; subject categories; major journals; outstanding keywords; and leading countries, institutions, authors, and research collaborations. The number of UHI-related publications has continuously increased since 1991. Meteorology atmospheric sciences, environmental sciences, and construction building technology were the three most frequent subject categories. Building and Environment, International Journal of Climatology, and Theoretical and Applied Climatology were the three most popular publishing journals. The USA and China were the two leading countries in UHI research, contributing 49.56% of the total articles. Chinese Academy of Science, Arizona State University, and China Meteorological Administration published the most UHI articles. Weng QH and Santamouris M were the two most prolific authors. Author keywords were classified into four major groups: (1) research methods and indicators, e.g., remote sensing, field measurement, and models; (2) generation factors, e.g., impervious urban surfaces, urban geometry, waste heat, vegetation, and pollutants; (3) environmental effects, e.g., urban climate, heat wave, ecology, and pollution; and (4) mitigation and adaption strategies, e.g., roof technology cooling, reflective cooling, vegetation cooling, and urban geometry cooling. A comparative analysis of popular issues revealed that UHI determination (intensity, heat source, supporting techniques) remains the central topic, whereas UHI impacts and mitigation strategies are becoming the popular issues that will receive increasing scientific attention in the future. Modeling will continue to be the leading research method, and remote sensing will be used more widely. Additionally, a combination of remote sensing and field measurements with models is expected.
NASA Astrophysics Data System (ADS)
Houborg, R.; McCabe, M. F.; Rosas Aguilar, J.; Anderson, M. C.; Hain, C.
2014-12-01
The Middle East and North Africa (MENA) region is an area characterized by limited fresh water resources, an often inefficient use of these, and relatively poor in-situ monitoring as a result of sparse meteorological observations. Enhanced satellite-based monitoring systems are needed for aiding local water resource and agricultural management activities in these data poor arid environments. A multi-sensor and multi-scale land-surface flux monitoring capacity is being implemented over parts of MENA in order to provide meaningful decision support at relevant spatiotemporal scales. The integrated modeling system uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI), and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) in conjunction with model reanalysis data and remotely sensed data from polar orbiting (Landsat and MODIS; MODerate resolution Imaging Spectroradiometer) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate daily estimates of land surface fluxes down to sub-field scale (i.e. 30 m). Within this modeling system, thermal infrared satellite data provide information about the sub-surface moisture status and plant stress, obviating the need for precipitation input and error-prone soil surface characterizations. In this study, the integrated ALEXI-DisALEXI-STARFM framework is applied over an irrigated agricultural region in Saudi Arabia, and the daily estimates of Landsat scale water, energy and carbon fluxes are evaluated against available flux tower observations and other independent in-situ and satellite-based records. The study addresses the challenges associated with time-continuous sub-field scale mapping of land-surface fluxes in a harsh desert environment, and looks into the optimization of model descriptions and parameterizations and meteorological forcing and vegetation inputs for application over these regions.
Airborne Wake Vortex Detection
DOT National Transportation Integrated Search
1974-03-01
The vortices generated by large aircraft can create dangerous encounter situations with other airplanes as a result of their slow dissipation rates or in conjunction with unfavorable meteorological conditions that prolong their presence over a runway...
NASA Astrophysics Data System (ADS)
Wang, Jingxuan; Ge, Zhiwu; Yang, Xiaoyan; Ye, Chunhua; Lin, Yanxia
2017-04-01
Photovoltaic facility agriculture system can effectively alleviate the contradiction between limited land and Photovoltaic power generation. It’s flexible to create suitable environment for crop growth, and generate electricity over the same land at the same time. It’s necessary to set appropriate solar panel angle to get more solar energy. Through detailed analysis and comparison, we chose the Hay’s model as solar radiation model. Based on the official meteorological data got from Haikou Meteorological Bureau, and by comparing the amount of radiation obtained at different tilted angles per month, the optimal placement angle of PV panels at different seasons in Haikou was obtained through calculation, and the optimal placement angle from April to October was also obtained. Through optimized angle and arrangement of solar photovoltaic panels, we can get greater power efficiency.
NASA Astrophysics Data System (ADS)
Yankine, S. A.; Van Stan, J. T., II; Mesta, D. C.; Côté, J. F.; Hildebrandt, A.; Friesen, J.; Maldonado, G.
2017-12-01
Stemflow is a pointed hydrologic flux at the base of tree stems that has been linked to a host of biogeochemical processes in vegetated landscapes. Much work has been done to examine controls over stemflow water yield, finding three major factors: individual tree canopy structure, meteorological variables, and neighborhood conditions. However, the authors are unaware of any study to directly quantify all factors using a combination of terrestrial LiDAR and micrometeorological monitoring methods. This study directly quantifies individual Pinus palustris tree canopy characteristics (trunk volume and angle, branch volume and angle from 1st-to-3rd order, bark roughness, and height), 10-m radius neighborhood properties (number of trees, mean diameter and height, mean distance from study tree, and canopy overlap), and above-canopy storm conditions (magnitude, intensity, mean/max wind speed, and vapor pressure deficit) directly at the site. Stemflow production was 1% of rainfall, ranging from 0.3-59 L per storm from individual trees. Preliminary findings from storms (5-176 mm in magnitude) indicate that all individual tree characteristics, besides bark roughness, have little influence on stemflow generation. Bark roughness altered stemflow generation by affecting trunk water storage (0.1-0.7 mm) and wet trunk evaporation rates (0.005-0.03 mm/h). The strongest influence over stemflow generation from individual trees was the interaction between neighborhood characteristics and meteorological conditions (primarily rainfall amount and, secondarily, rainfall intensity).
DOE Office of Scientific and Technical Information (OSTI.GOV)
CALDERONE,JAMES J.; GARBIN,H. DOUGLAS
2001-08-01
Public concern regarding the effects of noise generated by the detonation of excess and obsolete explosive munitions at U.S. Army demolition ranges is a continuing issue for the Army's demilitarization and disposal groups. Recent concerns of citizens living near the McAlester Army Ammunition Plant (MCAAP) in Oklahoma have lead the U.S. Army Defense Ammunition Center (DAC) to conduct a demonstration and evaluation of noise abatement techniques that could be applied to the MCAAP demolition range. With the support of the DAC, MCAAP, and Sandia National Laboratories (SNL), three types of noise abatement techniques were applied: aqueous foams, overburden (using combinationsmore » of sand beds and dirt coverings), and rubber or steel blast mats. Eight test configurations were studied and twenty-four experiments were conducted on the MCAAP demolition range in July of 2000. Instrumentation and data acquisition systems were fielded for the collection of near-field blast pressures, far-field acoustic pressures, plant boundary seismic signals, and demolition range meteorological conditions. The resulting data has been analyzed and reported, and a ranking of each technique's effects has been provided to the DAC.« less
SPRAYTRAN 1.0 User’s Guide: A GIS-Based Atmospheric Spray Droplet Dispersion Modeling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allwine, K Jerry; Rutz, Frederick C.; Droppo, James G.
SPRAY TRANsport (SPRAYTRAN) is a comprehensive dispersion modeling system that is used to simulate the offsite drift of pesticides from spray applications. SPRAYTRAN functions as a console application within Environmental System Research Institute’s ArcMap Geographic Information System (Version 9.x) and integrates the widely-used, U.S. Environmental Protection Agency (EPA)-approved CALifornia PUFF (CALPUFF) dispersion model and model components to simulate longer-range transport and diffusion in variable terrain and spatially/temporally varying meteorological (e.g., wind) fields. Area sources, which are used to define spray blocks in SPRAYTRAN, are initialized using output files generated from a separate aerial-spray-application model called AGDISP (AGricultural DISPersal). The AGDISPmore » model is used for estimating the amount of pesticide deposited to the spray block based on spraying characteristics (e.g., pesticide type, spray nozzles, and aircraft type) and then simulating the near-field (less than 300-m) drift from a single pesticide application. The fraction of pesticide remaining airborne from the AGDISP near-field simulation is then used by SPRAYTRAN for simulating longer-range (greater than 300 m) drift and deposition of the pesticide.« less
NASA Astrophysics Data System (ADS)
Khajehei, Sepideh; Moradkhani, Hamid
2015-04-01
Producing reliable and accurate hydrologic ensemble forecasts are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model structure, and model parameters. Producing reliable and skillful precipitation ensemble forecasts is one approach to reduce the total uncertainty in hydrological applications. Currently, National Weather Prediction (NWP) models are developing ensemble forecasts for various temporal ranges. It is proven that raw products from NWP models are biased in mean and spread. Given the above state, there is a need for methods that are able to generate reliable ensemble forecasts for hydrological applications. One of the common techniques is to apply statistical procedures in order to generate ensemble forecast from NWP-generated single-value forecasts. The procedure is based on the bivariate probability distribution between the observation and single-value precipitation forecast. However, one of the assumptions of the current method is fitting Gaussian distribution to the marginal distributions of observed and modeled climate variable. Here, we have described and evaluated a Bayesian approach based on Copula functions to develop an ensemble precipitation forecast from the conditional distribution of single-value precipitation forecasts. Copula functions are known as the multivariate joint distribution of univariate marginal distributions, which are presented as an alternative procedure in capturing the uncertainties related to meteorological forcing. Copulas are capable of modeling the joint distribution of two variables with any level of correlation and dependency. This study is conducted over a sub-basin in the Columbia River Basin in USA using the monthly precipitation forecasts from Climate Forecast System (CFS) with 0.5x0.5 Deg. spatial resolution to reproduce the observations. The verification is conducted on a different period and the superiority of the procedure is compared with Ensemble Pre-Processor approach currently used by National Weather Service River Forecast Centers in USA.
Numerical Weather Prediction Models on Linux Boxes as tools in meteorological education in Hungary
NASA Astrophysics Data System (ADS)
Gyongyosi, A. Z.; Andre, K.; Salavec, P.; Horanyi, A.; Szepszo, G.; Mille, M.; Tasnadi, P.; Weidiger, T.
2012-04-01
Education of Meteorologist in Hungary - according to the Bologna Process - has three stages: BSc, MSc and PhD, and students graduating at each stage get the respective degree (BSc, MSc and PhD). The three year long base BSc course in Meteorology can be chosen by undergraduate students in the fields of Geosciences, Environmental Sciences and Physics. BasicsFundamentals in Mathematics (Calculus), Physics (General and Theoretical) Physics and Informatics are emphasized during their elementary education. The two year long MSc course - in which about 15 to 25 students are admitted each year - can be studied only at our the Eötvös Loránd uUniversity in the our country. Our aim is to give a basic education in all fields of Meteorology. Main topics are: Climatology, Atmospheric Physics, Atmospheric Chemistry, Dynamic and Synoptic Meteorology, Numerical Weather Prediction, modeling Modeling of surfaceSurface-atmosphere Iinteractions and Cclimate change. Education is performed in two branches: Climate Researcher and Forecaster. Education of Meteorologist in Hungary - according to the Bologna Process - has three stages: BSc, MSc and PhD, and students graduating at each stage get the respective degree. The three year long BSc course in Meteorology can be chosen by undergraduate students in the fields of Geosciences, Environmental Sciences and Physics. Fundamentals in Mathematics (Calculus), (General and Theoretical) Physics and Informatics are emphasized during their elementary education. The two year long MSc course - in which about 15 to 25 students are admitted each year - can be studied only at the Eötvös Loránd University in our country. Our aim is to give a basic education in all fields of Meteorology: Climatology, Atmospheric Physics, Atmospheric Chemistry, Dynamic and Synoptic Meteorology, Numerical Weather Prediction, Modeling of Surface-atmosphere Interactions and Climate change. Education is performed in two branches: Climate Researcher and Forecaster. Numerical modeling became a common tool in the daily practice of weather experts forecasters due to the i) increasing user demands for weather data by the costumers, ii) the growth in computer resources, iii) numerical weather prediction systems available for integration on affordable, off the shelf computers and iv) available input data (from ECMWF or NCEP) for model integrations. Beside learning the theoretical basis, since the last year. Students in their MSc or BSc Thesis Research or in Student's Research ProjectsStudent's Research Projects h have the opportunity to run numerical models and to analyze the outputs for different purposes including wind energy estimation, simulation of the dynamics of a polar low, and subtropical cyclones, analysis of the isentropic potential vorticity field, examination of coupled atmospheric dispersion models, etc. A special course in the application of numerical modeling has been held (is being announced for the upcoming semester) (is being announced for the upcoming semester) for our students in order to improve their skills on this field. Several numerical model (NRIPR ETA and WRF) systems have been adapted in the University and integrated WRF have been tested and used for the geographical region of the Carpathian Basin (NRIPR, ETA and WRF). Recently ALADIN/CHAPEAU the academic version of the ARPEGE ALADIN cy33t1 meso-scale numerical weather prediction model system (which is the operational forecasting tool of our National Weather Service) has been installed at our Institute. ALADIN is the operational forecasting model of the Hungarian Meteorological Service and developed in the framework of the international ALADIN co-operation. Our main objectives are i) the analysis of different typical weather situations, ii) fine tuning of parameterization schemes and the iii) comparison of the ALADIN/CHAPEAU and WRF model outputs based on case studies. The necessary hardware and software innovations has have been done. In the presentation the computer resources needed for the integration of both WRF and ALADIN/CHAPEAU models will be briefly described. The software developments performed for the evaluation and comparison of the different modeling systems will be demonstrated. The main objectives of the education program on the practical numerical weather modeling will be introduced, as well as its detailed thematics and the structure of the labs.
A framework for improving a seasonal hydrological forecasting system using sensitivity analysis
NASA Astrophysics Data System (ADS)
Arnal, Louise; Pappenberger, Florian; Smith, Paul; Cloke, Hannah
2017-04-01
Seasonal streamflow forecasts are of great value for the socio-economic sector, for applications such as navigation, flood and drought mitigation and reservoir management for hydropower generation and water allocation to agriculture and drinking water. However, as we speak, the performance of dynamical seasonal hydrological forecasting systems (systems based on running seasonal meteorological forecasts through a hydrological model to produce seasonal hydrological forecasts) is still limited in space and time. In this context, the ESP (Ensemble Streamflow Prediction) remains an attractive forecasting method for seasonal streamflow forecasting as it relies on forcing a hydrological model (starting from the latest observed or simulated initial hydrological conditions) with historical meteorological observations. This makes it cheaper to run than a standard dynamical seasonal hydrological forecasting system, for which the seasonal meteorological forecasts will first have to be produced, while still producing skilful forecasts. There is thus the need to focus resources and time towards improvements in dynamical seasonal hydrological forecasting systems which will eventually lead to significant improvements in the skill of the streamflow forecasts generated. Sensitivity analyses are a powerful tool that can be used to disentangle the relative contributions of the two main sources of errors in seasonal streamflow forecasts, namely the initial hydrological conditions (IHC; e.g., soil moisture, snow cover, initial streamflow, among others) and the meteorological forcing (MF; i.e., seasonal meteorological forecasts of precipitation and temperature, input to the hydrological model). Sensitivity analyses are however most useful if they inform and change current operational practices. To this end, we propose a method to improve the design of a seasonal hydrological forecasting system. This method is based on sensitivity analyses, informing the forecasters as to which element of the forecasting chain (i.e., IHC or MF) could potentially lead to the highest increase in seasonal hydrological forecasting performance, after each forecast update.
Random forest meteorological normalisation models for Swiss PM10 trend analysis
NASA Astrophysics Data System (ADS)
Grange, Stuart K.; Carslaw, David C.; Lewis, Alastair C.; Boleti, Eirini; Hueglin, Christoph
2018-05-01
Meteorological normalisation is a technique which accounts for changes in meteorology over time in an air quality time series. Controlling for such changes helps support robust trend analysis because there is more certainty that the observed trends are due to changes in emissions or chemistry, not changes in meteorology. Predictive random forest models (RF; a decision tree machine learning technique) were grown for 31 air quality monitoring sites in Switzerland using surface meteorological, synoptic scale, boundary layer height, and time variables to explain daily PM10 concentrations. The RF models were used to calculate meteorologically normalised trends which were formally tested and evaluated using the Theil-Sen estimator. Between 1997 and 2016, significantly decreasing normalised PM10 trends ranged between -0.09 and -1.16 µg m-3 yr-1 with urban traffic sites experiencing the greatest mean decrease in PM10 concentrations at -0.77 µg m-3 yr-1. Similar magnitudes have been reported for normalised PM10 trends for earlier time periods in Switzerland which indicates PM10 concentrations are continuing to decrease at similar rates as in the past. The ability for RF models to be interpreted was leveraged using partial dependence plots to explain the observed trends and relevant physical and chemical processes influencing PM10 concentrations. Notably, two regimes were suggested by the models which cause elevated PM10 concentrations in Switzerland: one related to poor dispersion conditions and a second resulting from high rates of secondary PM generation in deep, photochemically active boundary layers. The RF meteorological normalisation process was found to be robust, user friendly and simple to implement, and readily interpretable which suggests the technique could be useful in many air quality exploratory data analysis situations.
User's Guide for MetView: A Meteorological Display and Assessment Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glantz, Clifford S.; Pelton, Mitchell A.; Allwine, K Jerry
2000-09-27
MetView Version 2.0 is an easy-to-use model for accessing, viewing, and analyzing meteorological data. MetView provides both graphical and numerical displays of data. It can accommodate data from an extensive meteorological monitoring network that includes near-surface monitoring locations, instrumented towers, sodars, and meteorologist observations. MetView is used operationally for both routine, emergency response, and research applications at the U.S. Department of Energy's Hanford Site. At the Site's Emergency Operations Center, MetView aids in the access, visualization, and interpretation of real-time meteorological data. Historical data can also be accessed and displayed. Emergency response personnel at the Emergency Operations Center use MetViewmore » products in the formulation of protective action recommendations and other decisions. In the initial stage of an emergency, MetView can be operated using a very simple, five-step procedure. This first-responder procedure allows non-technical staff to rapidly generate meteorological products and disseminate key information. After first-responder information products are produced, the Emergency Operations Center's technical staff can conduct more sophisticated analyses using the model. This may include examining the vertical variation in winds, assessing recent changes in atmospheric conditions, evaluating atmospheric mixing rates, and forecasting changes in meteorological conditions. This user's guide provides easy-to-follow instructions for both first-responder and routine operation of the model. Examples, with explanations, are provided for each type of MetView output display. Information is provided on the naming convention, format, and contents of each type of meteorological data file used by the model area. This user's guide serves as a ready reference for experienced MetView users and a training manual for new users.« less
Fine-Scale Comparison of TOMS Total Ozone Data with Model Analysis of an Intense Midwestern Cyclone
NASA Technical Reports Server (NTRS)
Olsen, Mark A.; Gallus, William A., Jr.; Stanford, John L.; Brown, John M.
2000-01-01
High-resolution (approx. 40 km) along-track total column ozone data from the Total Ozone Mapping Spectrometer (TOMS) instrument are compared with a high-resolution mesoscale numerical model analysis of an intense cyclone in the Midwestern United States. Total ozone increased by 100 DU (nearly 38%) as the TOMS instrument passed over the associated tropopause fold region. Complex structure is seen in the meteorological fields and compares well with the total ozone observations. Ozone data support the meteorological analysis showing that stratospheric descent was confined to levels above approx. 600 hPa; significant positive potential vorticity at lower levels is attributable to diabetic processes. Likewise, meteorological fields show that two pronounced ozone streamers extending north and northeastward into Canada at high levels are not bands of stratospheric air feeding into the cyclone; one is a channel of exhaust downstream from the system, and the other apparently previously connected the main cyclonic circulation to a southward intrusion of polar stratospheric air and advected eastward as the cut-off cyclone evolved. Good agreement between small-scale features in the model output and total ozone data underscores the latter's potential usefulness in diagnosing upper tropospheric/lower stratospheric dynamics and kinematics.
An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1998-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical 'cores' of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. The two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical 'simple physics' parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.
An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1998-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Cen- ter and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical "cores" of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. ne two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical "simple physics" parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.
Selection of meteorological conditions to apply in an Ecotron facility
NASA Astrophysics Data System (ADS)
Leemans, Vincent; De Cruz, Lesley; Dumont, Benjamin; Hamdi, Rafiq; Delaplace, Pierre; Heinesh, Bernard; Garré, Sarah; Verheggen, François; Theodorakopoulos, Nicolas; Longdoz, Bernard
2017-04-01
This presentation aims to propose a generic method to produce meteorological input data that is useful for climate research infrastructures such as an Ecotron, where researchers will face the need to generate representative actual or future climatic conditions. Depending on the experimental objectives and the research purposes, typical conditions or more extreme values such as dry or wet climatic scenarios might be requested. Four variables were considered here, the near-surface air temperature, the near-surface relative humidity, the cloud cover and precipitation. The meteorological datasets, among which a specific meteorological year can be picked up, are produced by the ALARO-0 model from the RMIB (Royal Meteorological Institute of Belgium). Two future climate scenarios (RCP 4.5 and 8.5) and two time periods (2041-2070 and 2071-2100) were used as well as a historical run of the model (1981-2010) which is used as a reference. When the data from a historical run were compared to the observed historical data, biases were noticed. A linear correction was proposed for all the variables except for precipitation, for which a non-linear correction (using a power function) was chosen to maintain a zero-precipitation occurrences. These transformations were able to remove most of the differences between the observed and historical run of the model for the means and for the standard deviations. For the relative humidity, because of non-linearities, only one half of the average bias was corrected and a different path might have to be chosen. For the selection of a meteorological year, a position and a dispersion parameter have been proposed to characterise each meteorological year for each variable. For precipitation, a third parameter quantifying the importance of dry and wet periods has been defined. In order to select a specific climate, for each of these nine parameters the experimenter should provide a percentile and a weight to prioritize the importance of each variable in the process of a global climate selection. The proposed algorithm computed the weighted distance for each year between the parameters and the point representing the position of the percentile in the nine-dimensional space. The five closest values were then selected and represented in different graphs. The proposed method is able to provide a decision aid in the selection of the meteorological conditions to be generated within an Ecotron. However, with a limited number of years available in each case (thirty years for each RCP and each time period), there is no perfect match and the ultimate trade-off will be the responsibility of the researcher. For typical years, close to the median, the relative frequency is higher and the trade-off is more easy than for more extreme years where the relative frequency is low.
Homogeneous and heterogeneous chemistry along air parcel trajectories
NASA Technical Reports Server (NTRS)
Jones, R. L.; Mckenna, D. L.; Poole, L. R.; Solomon, S.
1990-01-01
The study of coupled heterogeneous and homogeneous chemistry due to polar stratospheric clouds (PSC's) using Lagrangian parcel trajectories for interpretation of the Airborne Arctic Stratosphere Experiment (AASE) is discussed. This approach represents an attempt to quantitatively model the physical and chemical perturbation to stratospheric composition due to formation of PSC's using the fullest possible representation of the relevant processes. Further, the meteorological fields from the United Kingdom Meteorological office global model were used to deduce potential vorticity and inferred regions of PSC's as an input to flight planning during AASE.
A graphics package for meteorological data, version 1.5
NASA Technical Reports Server (NTRS)
Moorthi, Shrinivas; Suarez, Max; Phillips, Bill; Schemm, Jae-Kyung; Schubert, Siegfried
1989-01-01
A plotting package has been developed to simplify the task of plotting meteorological data. The calling sequences and examples of high level yet flexible routines which allow contouring, vectors and shading of cylindrical, polar, orthographic and Mollweide (egg) projections are given. Routines are also included for contouring pressure-latitude and pressure-longitude fields with linear or log scales in pressure (interpolation to fixed grid interval is done automatically). Also included is a fairly general line plotting routine. The present version (1.5) produces plots on WMS laser printers and uses graphics primitives from WOLFPLOT.
NASA Astrophysics Data System (ADS)
Dorman, L. I.; Dorman, I. V.
We extend our model (Dorman and Dorman, 1995) of cosmic ray atmospheric electric field effect on the case of neutron monitor. We take into account that about 0.07 of neu- tron monitor counting rate caused by negative soft muons captured by lead nucleons and formed mesoatoms with generation of several MeV energy neutrons from lead. In this case the neutron monitor or neutron supermonitor works as analyzer which de- tects muons of only one, negative sign. It is very important because the atmospheric electric field effect have opposite signs for positive and negative muons that main part of this effect in the muon telescope or in ionization chamber is compensated and we can observe only small part of total effect of one sign muons. On the basis of our gen- eral theory of cosmic ray meteorological effects with taking into account of negative soft muon acceleration and deceleration in the Earth atmosphere (in dependence of di- rection and intensity of electric field) we discuss the possibility of existing this effect in cosmic ray neutron component and made some rough estimations. REFERENCES: Dorman L.I. and Dorman I.V., 1995. "Cosmic-ray atmospheric electric field effects". Canadian J. of Physics, Vol. 73, pp. 440-443.
NEXRAD and the Broadcast Weather Industry: Preparing to Share the Technology.
NASA Astrophysics Data System (ADS)
Robertson, Michele M.; Droegemeier, Kelvin K.
1990-01-01
This paper describes results from a survey designed to establish the current level of radar and computer technology of the television weather industry, and to assess the awareness and attitudes of television weather forecasters toward the Next Generation Weather Radar (NEXRAD) program and its potential impact on the field of broadcast meteorology. The survey was distributed to one affiliate station in each of the 213 national television markets, and a 46% response rate was achieved over a 4-week period. The survey results indicate substantial awareness of and interest in NEXRAD, along with a willingness to learn more about its capabilities and potential for use in the private sector. Survey participants suggested that potential private NEXRAD users work directly with the National Weather Service (NWS) and its affiliates so as to fully utilize the capabilities of the new radar system.
NASA Astrophysics Data System (ADS)
Swenson, J.; Byerley, L. G.; Bogoev, I.; Hinckley, A.; Beasley, W. H.
2003-12-01
The atmospheric electric field is a unique indicator of locally disturbed weather, local thunderstorms and local atmospheric electrical hazards. Yet, surprisingly, routine observations of ambient electric field have never been included in the canonical suite of measured meteorological variables. This notable omission may be a result of the historically high costs to acquire, install, and maintain conventional electric-field mills. To reduce costs and overcome limitations of traditional field meters, Campbell Scientific, Inc. has developed an electric-field meter (patent pending) with a reciprocating shutter that eliminates the problem of making electrical contact with a rotating shaft. The reciprocating action is under microprocessor control, so the sample rate can be varied in response to measured conditions. Between samples of electric field, the shutter can even be left open indefinitely, allowing the instrument to function as a field-change antenna. Since the shutter is closed before and after each measurement in field-meter mode, it is relatively easy to account for drift and offsets automatically, so that measurements can be made even if the electrode insulator becomes degraded by conductive deposits of the types likely to be encountered in severe outdoor environments. Because the motor is energized for only a small fraction of each measurement cycle, average power consumption is exceptionally low, making the new field meter especially suitable for solar-powered applications such as automated remote meteorological stations. Some preliminary observations demonstrate the capabilities of the instrument.
Geng, Xiaobing; Xie, Zhenghui; Zhang, Lijun; Xu, Mei; Jia, Binghao
2018-03-01
An inverse source estimation method is proposed to reconstruct emission rates using local air concentration sampling data. It involves the nonlinear least squares-based ensemble four-dimensional variational data assimilation (NLS-4DVar) algorithm and a transfer coefficient matrix (TCM) created using FLEXPART, a Lagrangian atmospheric dispersion model. The method was tested by twin experiments and experiments with actual Cs-137 concentrations measured around the Fukushima Daiichi Nuclear Power Plant (FDNPP). Emission rates can be reconstructed sequentially with the progression of a nuclear accident, which is important in the response to a nuclear emergency. With pseudo observations generated continuously, most of the emission rates were estimated accurately, except under conditions when the wind blew off land toward the sea and at extremely slow wind speeds near the FDNPP. Because of the long duration of accidents and variability in meteorological fields, monitoring networks composed of land stations only in a local area are unable to provide enough information to support an emergency response. The errors in the estimation compared to the real observations from the FDNPP nuclear accident stemmed from a shortage of observations, lack of data control, and an inadequate atmospheric dispersion model without improvement and appropriate meteorological data. The proposed method should be developed further to meet the requirements of a nuclear emergency response. Copyright © 2017 Elsevier Ltd. All rights reserved.
An advanced stochastic weather generator for simulating 2-D high-resolution climate variables
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo
2017-07-01
A new stochastic weather generator, Advanced WEather GENerator for a two-dimensional grid (AWE-GEN-2d) is presented. The model combines physical and stochastic approaches to simulate key meteorological variables at high spatial and temporal resolution: 2 km × 2 km and 5 min for precipitation and cloud cover and 100 m × 100 m and 1 h for near-surface air temperature, solar radiation, vapor pressure, atmospheric pressure, and near-surface wind. The model requires spatially distributed data for the calibration process, which can nowadays be obtained by remote sensing devices (weather radar and satellites), reanalysis data sets and ground stations. AWE-GEN-2d is parsimonious in terms of computational demand and therefore is particularly suitable for studies where exploring internal climatic variability at multiple spatial and temporal scales is fundamental. Applications of the model include models of environmental systems, such as hydrological and geomorphological models, where high-resolution spatial and temporal meteorological forcing is crucial. The weather generator was calibrated and validated for the Engelberg region, an area with complex topography in the Swiss Alps. Model test shows that the climate variables are generated by AWE-GEN-2d with a level of accuracy that is sufficient for many practical applications.
Radicals and Reservoirs in the GMI Chemistry and Transport Model: Comparison to Measurements
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; Stolarski, Richard S.; Strahan, Susan E.; Connell, Peter S.
2004-01-01
We have used a three-dimensional chemistry and transport model (CTM), developed under the Global Modeling Initiative (GMI), to carry out two simulations of the composition of the stratosphere under changing halogen loading for 1995 through 2030. The two simulations differ only in that one uses meteorological fields from a general circulation model while the other uses meteorological fields from a data assimilation system. A single year's winds and temperatures are repeated for each 36-year simulation. We compare results from these two simulations with an extensive collection of data from satellite and ground-based measurements for 1993-2000. Comparisons of simulated fields with observations of radical and reservoir species for some of the major ozone-destroying compounds are of similar quality for both simulations. Differences in the upper stratosphere, caused by transport of total reactive nitrogen and methane, impact the balance among the ozone loss processes and the sensitivity of the two simulations to the change in composition.
NASA Technical Reports Server (NTRS)
North, G. R.; Bell, T. L.; Cahalan, R. F.; Moeng, F. J.
1982-01-01
Geometric characteristics of the spherical earth are shown to be responsible for the increase of variance with latitude of zonally averaged meteorological statistics. An analytic model is constructed to display the effect of a spherical geometry on zonal averages, employing a sphere labeled with radial unit vectors in a real, stochastic field expanded in complex spherical harmonics. The variance of a zonally averaged field is found to be expressible in terms of the spectrum of the vector field of the spherical harmonics. A maximum variance is then located at the poles, and the ratio of the variance to the zonally averaged grid-point variance, weighted by the cosine of the latitude, yields the zonal correlation typical of the latitude. An example is provided for the 500 mb level in the Northern Hemisphere compared to 15 years of data. Variance is determined to increase north of 60 deg latitude.
Wind noise under a pine tree canopy.
Raspet, Richard; Webster, Jeremy
2015-02-01
It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.
Owgis 2.0: Open Source Java Application that Builds Web GIS Interfaces for Desktop Andmobile Devices
NASA Astrophysics Data System (ADS)
Zavala Romero, O.; Chassignet, E.; Zavala-Hidalgo, J.; Pandav, H.; Velissariou, P.; Meyer-Baese, A.
2016-12-01
OWGIS is an open source Java and JavaScript application that builds easily configurable Web GIS sites for desktop and mobile devices. The current version of OWGIS generates mobile interfaces based on HTML5 technology and can be used to create mobile applications. The style of the generated websites can be modified using COMPASS, a well known CSS Authoring Framework. In addition, OWGIS uses several Open Geospatial Consortium standards to request datafrom the most common map servers, such as GeoServer. It is also able to request data from ncWMS servers, allowing the websites to display 4D data from NetCDF files. This application is configured by XML files that define which layers, geographic datasets, are displayed on the Web GIS sites. Among other features, OWGIS allows for animations; streamlines from vector data; virtual globe display; vertical profiles and vertical transects; different color palettes; the ability to download data; and display text in multiple languages. OWGIS users are mainly scientists in the oceanography, meteorology and climate fields.
Are meteotsunamis an underrated hazard?
Pattiaratchi, Charitha B.; Wijeratne, E. M. S.
2015-01-01
Meteotsunamis are generated by meteorological events, particularly moving pressure disturbances due to squalls, thunderstorms, frontal passages and atmospheric gravity waves. Relatively small initial sea-level perturbations, of the order of a few centimetres, can increase significantly through multi-resonant phenomena to create destructive events through the superposition of different factors. The global occurrence of meteotsunamis and the different resonance phenomena leading to amplification of meteotsunamis are reviewed. Results from idealized numerical modelling and field measurements from southwest Australia are presented to highlight the relative importance of the different processes. It is shown that the main influence that leads to amplification of the initial disturbance is due to wave shoaling and topographic resonance. Although meteotsunamis are not catastrophic to the extent of major seismically induced basin-scale events, the temporal and spatial occurrence of meteotsunamis are higher than those of seismic tsunamis as the atmospheric disturbances responsible for the generation of meteotsunamis are more common. High-energy events occur only for very specific combinations of resonant effects. The rareness of such combinations is perhaps the main reason why destructive meteotsunamis are exceptional and observed only at a limited number of sites globally. PMID:26392619
Abstraction the public from scientific - applied meteorological-climatologic data
NASA Astrophysics Data System (ADS)
Trajanoska, L.
2010-09-01
Mathematical and meteorological statistic processing of meteorological-climatologic data, which includes assessment of the exactness, level of confidence of the average and extreme values, frequencies (probabilities) of the occurrence of each meteorological phenomenon and element e.t.c. helps to describe the impacts climate may have on different social and economic activities (transportation, heat& power generation), as well as on human health. Having in mind the new technology and the commercial world, during the work with meteorological-climatologic data we have meet many different challenges. Priority in all of this is the quality of the meteorological-climatologic set of data. First, we need compatible modern, sophisticated measurement and informatics solution for data. Results of this measurement through applied processing and analyze is the second branch which is very important also. Should we all (country) need that? Today we have many unpleasant events connected with meteorology, many questions which are not answered and all of this has too long lasting. We must give the answers and solve the real and basic issue. In this paper the data issue will be presented. We have too much of data but so little of real and quality applied of them, Why? There is a data for: -public applied -for jurisdiction needs -for getting fast decision-solutions (meteorological-dangerous phenomenon's) -for getting decisions for long-lasting plans -for explore in different sphere of human living So, it is very important for what kind of data we are talking. Does the data we are talking are with public or scientific-applied character? So,we have two groups. The first group which work with the data direct from the measurement place and instrument. They are store a quality data base and are on extra help to the journalists, medical workers, human civil engineers, electromechanical engineers, agro meteorological and forestry engineer e.g. The second group do work with all scientific methods for the needed purposes. Hours, days, years and periods with characteristic meanings are separated for the purposes of the comprehensive analyze and application.
NASA Astrophysics Data System (ADS)
Boger, R. A.; Low, R.; Paull, S.; Anyamba, A.; Soebiyanto, R. P.
2017-12-01
Temperature and precipitation are important drivers of mosquito population dynamics, and a growing set of models have been proposed to characterize these relationships. Validation of these models, and development of broader theories across mosquito species and regions could nonetheless be improved by comparing observations from a global dataset of mosquito larvae with satellite-based measurements of meteorological variables. Citizen science data can be particularly useful for two such aspects of research into the meteorological drivers of mosquito populations: i) Broad-scale validation of mosquito distribution models and ii) Generation of quantitative hypotheses regarding changes to mosquito abundance and phenology across scales. The recently released GLOBE Observer Mosquito Habitat Mapper (GO-MHM) app engages citizen scientists in identifying vector taxa, mapping breeding sites and decommissioning non-natural habitats, and provides a potentially useful new tool for validating mosquito ubiquity projections based on the analysis of remotely sensed environmental data. Our early work with GO-MHM data focuses on two objectives: validating citizen science reports of Aedes aegypti distribution through comparison with accepted scientific data sources, and exploring the relationship between extreme temperature and precipitation events and subsequent observations of mosquito larvae. Ultimately the goal is to develop testable hypotheses regarding the shape and character of this relationship between mosquito species and regions.
Sorooshian, Armin; MacDonald, Alexander B; Dadashazar, Hossein; Bates, Kelvin H; Coggon, Matthew M; Craven, Jill S; Crosbie, Ewan; Hersey, Scott P; Hodas, Natasha; Lin, Jack J; Negrón Marty, Arnaldo; Maudlin, Lindsay C; Metcalf, Andrew R; Murphy, Shane M; Padró, Luz T; Prabhakar, Gouri; Rissman, Tracey A; Shingler, Taylor; Varutbangkul, Varuntida; Wang, Zhen; Woods, Roy K; Chuang, Patrick Y; Nenes, Athanasios; Jonsson, Haflidi H; Flagan, Richard C; Seinfeld, John H
2018-02-27
Airborne measurements of meteorological, aerosol, and stratocumulus cloud properties have been harmonized from six field campaigns during July-August months between 2005 and 2016 off the California coast. A consistent set of core instruments was deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter for 113 flight days, amounting to 514 flight hours. A unique aspect of the compiled data set is detailed measurements of aerosol microphysical properties (size distribution, composition, bioaerosol detection, hygroscopicity, optical), cloud water composition, and different sampling inlets to distinguish between clear air aerosol, interstitial in-cloud aerosol, and droplet residual particles in cloud. Measurements and data analysis follow documented methods for quality assurance. The data set is suitable for studies associated with aerosol-cloud-precipitation-meteorology-radiation interactions, especially owing to sharp aerosol perturbations from ship traffic and biomass burning. The data set can be used for model initialization and synergistic application with meteorological models and remote sensing data to improve understanding of the very interactions that comprise the largest uncertainty in the effect of anthropogenic emissions on radiative forcing.
Sorooshian, Armin; MacDonald, Alexander B.; Dadashazar, Hossein; Bates, Kelvin H.; Coggon, Matthew M.; Craven, Jill S.; Crosbie, Ewan; Hersey, Scott P.; Hodas, Natasha; Lin, Jack J.; Negrón Marty, Arnaldo; Maudlin, Lindsay C.; Metcalf, Andrew R.; Murphy, Shane M.; Padró, Luz T.; Prabhakar, Gouri; Rissman, Tracey A.; Shingler, Taylor; Varutbangkul, Varuntida; Wang, Zhen; Woods, Roy K.; Chuang, Patrick Y.; Nenes, Athanasios; Jonsson, Haflidi H.; Flagan, Richard C.; Seinfeld, John H.
2018-01-01
Airborne measurements of meteorological, aerosol, and stratocumulus cloud properties have been harmonized from six field campaigns during July-August months between 2005 and 2016 off the California coast. A consistent set of core instruments was deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter for 113 flight days, amounting to 514 flight hours. A unique aspect of the compiled data set is detailed measurements of aerosol microphysical properties (size distribution, composition, bioaerosol detection, hygroscopicity, optical), cloud water composition, and different sampling inlets to distinguish between clear air aerosol, interstitial in-cloud aerosol, and droplet residual particles in cloud. Measurements and data analysis follow documented methods for quality assurance. The data set is suitable for studies associated with aerosol-cloud-precipitation-meteorology-radiation interactions, especially owing to sharp aerosol perturbations from ship traffic and biomass burning. The data set can be used for model initialization and synergistic application with meteorological models and remote sensing data to improve understanding of the very interactions that comprise the largest uncertainty in the effect of anthropogenic emissions on radiative forcing. PMID:29485627
NASA Astrophysics Data System (ADS)
Sorooshian, Armin; MacDonald, Alexander B.; Dadashazar, Hossein; Bates, Kelvin H.; Coggon, Matthew M.; Craven, Jill S.; Crosbie, Ewan; Hersey, Scott P.; Hodas, Natasha; Lin, Jack J.; Negrón Marty, Arnaldo; Maudlin, Lindsay C.; Metcalf, Andrew R.; Murphy, Shane M.; Padró, Luz T.; Prabhakar, Gouri; Rissman, Tracey A.; Shingler, Taylor; Varutbangkul, Varuntida; Wang, Zhen; Woods, Roy K.; Chuang, Patrick Y.; Nenes, Athanasios; Jonsson, Haflidi H.; Flagan, Richard C.; Seinfeld, John H.
2018-02-01
Airborne measurements of meteorological, aerosol, and stratocumulus cloud properties have been harmonized from six field campaigns during July-August months between 2005 and 2016 off the California coast. A consistent set of core instruments was deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter for 113 flight days, amounting to 514 flight hours. A unique aspect of the compiled data set is detailed measurements of aerosol microphysical properties (size distribution, composition, bioaerosol detection, hygroscopicity, optical), cloud water composition, and different sampling inlets to distinguish between clear air aerosol, interstitial in-cloud aerosol, and droplet residual particles in cloud. Measurements and data analysis follow documented methods for quality assurance. The data set is suitable for studies associated with aerosol-cloud-precipitation-meteorology-radiation interactions, especially owing to sharp aerosol perturbations from ship traffic and biomass burning. The data set can be used for model initialization and synergistic application with meteorological models and remote sensing data to improve understanding of the very interactions that comprise the largest uncertainty in the effect of anthropogenic emissions on radiative forcing.
NASA Astrophysics Data System (ADS)
Rössler, Ole; Keller, Denise; Fischer, Andreas
2016-04-01
In 2011 the Swiss national consortium C2SM providednew climate change scenarios were released in Switzerland that came with a comprehensive data set of temperature and precipitation changes under climate change conditions for every a large network of meteorological stations, and for aggregated as well as regions in across Switzerland. These climate change signals were generated for three emission scenarios and three different future time-periods and designed to be used asbased on a delta change factors approach. This data set proved to be very successful in Switzerland as many different users, researchers, private companies, and societal users were able to use and interpret the climate data set. Thus, a range of applications that are all based on the same climate data set enabled a comparable view on climate change impact in several disciplines. The main limitation and criticism to this data set was the usage of the delta change approach for downscaling as it comes with severe limitations such as underestimatinges changes in extreme values and neglecting changes in variability and changes in temporal sequencesneglecting changes in variability, be it year-to-year or day-to-day, and changes in temporal sequences . lacks a change in the day-to-day-variability. One way to overcome this the latter limitation is the usage of stochastic weather generators in a downscaling context. Weather generators are known to be one suitable downscaling technique, but A common limitation of most weather generators is the absence of spatial consistency rrelation in the generated daily time-series, resulting in an underestimation of areal means over several stations that are often low-biased. refer to one point scale (single-site) and lacks the spatial representation of weather. The latter A realistic representation of the inter-station correlation in the downscaled time-series This is of high particular importance in some impact studies, especially infor any hydrological impact studiesy. Recently, a multi-site weather generator was developed and tested for downscaling purposes over Switzerland. The weather generator is of type Richardson, that is run with spatially correlated random number streams to ensure spatial consistency. As a downside, multi-site weather generators are much more complex to develop, but they are a very promising alternative downscaling technique. A new multi-site-weather generator was developed for Switzerland in a previous study (Keller et al. 2014). In this study, we tested this new multi-site-weather generator against the "standard" delta change derived data in a hydrological impact assessment study that focused on runoff in the meso-scale catchment of the river Thur catchment. Two hydrological models of different complexity were run with the data sets under present (1980-2009) and under future conditions (2070-2099), assuming the SRES A1B emission2070-2100 scenario conditions. Eight meteorological stations were used to interpolate a meteorological field that served as input to calibrate and validate the two hydrological models against runoff. The downscaling intercomparison was done for We applied 10 GCM-RCM combinations simulations of the ENSEMBLES. In case of the weather generator, that allows for multiple synthetic realizations, we generated for which change factors for each station (delta change approach) were available and generated 25 realizations of multi-site weather. with each climate model projection. Results show that the delta change driven data constitutes only one appropriate representation compared to theof a bandwidth of runoff projections yielded by the multi-site weather generator data. Especially oOn average, differences between both the two approaches are small. Low and high runoff Runoff values to both extremes are however better reproduced with the weather generator driven data set. The stochastic representation of multiday rainfall events are considered as the main reason. Hence, tThere is a clear yet small added value to the delta change approach that in turn performs rather well. Although these small but considerable differences might questioning the need to construct a multi-site-weather generator with a huge effort, the potential and possibilities to further develop the multi-site weather generator is undoubted.
NASA Astrophysics Data System (ADS)
Bernard, Eddie; Wei, Yong; Tang, Liujuan; Titov, Vasily
2014-12-01
Following the devastating 11 March 2011 tsunami, two deep-ocean assessment and reporting of tsunamis (DART®)(DART® and the DART® logo are registered trademarks of the National Oceanic and Atmospheric Administration, used with permission) stations were deployed in Japanese waters by the Japanese Meteorological Agency. Two weeks after deployment, on 7 December 2012, a M w 7.3 earthquake off Japan's Pacific coastline generated a tsunami. The tsunami was recorded at the two Japanese DARTs as early as 11 min after the earthquake origin time, which set a record as the fastest tsunami detecting time at a DART station. These data, along with those recorded at other DARTs, were used to derive a tsunami source using the National Oceanic and Atmospheric Administration tsunami forecast system. The results of our analysis show that data provided by the two near-field Japanese DARTs can not only improve the forecast speed but also the forecast accuracy at the Japanese tide gauge stations. This study provides important guidelines for early detection and forecasting of local tsunamis.
FLORIDA TOWER FOOTPRINT EXPERIMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
WATSON,T.B.; DIETZ, R.N.; WILKE, R.
2007-01-01
The Florida Footprint experiments were a series of field programs in which perfluorocarbon tracers were released in different configurations centered on a flux tower to generate a data set that can be used to test transport and dispersion models. These models are used to determine the sources of the CO{sub 2} that cause the fluxes measured at eddy covariance towers. Experiments were conducted in a managed slash pine forest, 10 km northeast of Gainesville, Florida, in 2002, 2004, and 2006 and in atmospheric conditions that ranged from well mixed, to very stable, including the transition period between convective conditions atmore » midday to stable conditions after sun set. There were a total of 15 experiments. The characteristics of the PFTs, details of sampling and analysis methods, quality control measures, and analytical statistics including confidence limits are presented. Details of the field programs including tracer release rates, tracer source configurations, and configuration of the samplers are discussed. The result of this experiment is a high quality, well documented tracer and meteorological data set that can be used to improve and validate canopy dispersion models.« less
An overview of San Francisco Bay PORTS
Cheng, Ralph T.; McKinnie, David; English, Chad; Smith, Richard E.
1998-01-01
The Physical Oceanographic Real-Time System (PORTS) provides observations of tides, tidal currents, and meteorological conditions in real-time. The San Francisco Bay PORTS (SFPORTS) is a decision support system to facilitate safe and efficient maritime commerce. In addition to real-time observations, SFPORTS includes a nowcast numerical model forming a San Francisco Bay marine nowcast system. SFPORTS data and nowcast numerical model results are made available to users through the World Wide Web (WWW). A brief overview of SFPORTS is presented, from the data flow originated at instrument sensors to final results delivered to end users on the WWW. A user-friendly interface for SFPORTS has been designed and implemented. Appropriate field data analysis, nowcast procedures, design and generation of graphics for WWW display of field data and nowcast results are presented and discussed. Furthermore, SFPORTS is designed to support hazardous materials spill prevention and response, and to serve as resources to scientists studying the health of San Francisco Bay ecosystem. The success (or failure) of the SFPORTS to serve the intended user community is determined by the effectiveness of the user interface.
Choosing Meteorological Input for the Global Modeling Initiative Assessment of High Speed Aircraft
NASA Technical Reports Server (NTRS)
Douglas, A. R.; Prather, M. P.; Hall, T. M.; Strahan, S. E.; Rasch, P. J.; Sparling, L. C.; Coy, L.; Rodriquez, J. M.
1998-01-01
The Global Modeling Initiative (GMI) science team is developing a three dimensional chemistry and transport model (CTM) to be used in assessment of the atmospheric effects of aviation. Requirements are that this model be documented, be validated against observations, use a realistic atmospheric circulation, and contain numerical transport and photochemical modules representing atmospheric processes. The model must also retain computational efficiency to be tractable to use for multiple scenarios and sensitivity studies. To meet these requirements, a facility model concept was developed in which the different components of the CTM are evaluated separately. The first use of the GMI model will be to evaluate the impact of the exhaust of supersonic aircraft on the stratosphere. The assessment calculations will depend strongly on the wind and temperature fields used by the CTM. Three meteorological data sets for the stratosphere are available to GMI: the National Center for Atmospheric Research Community Climate Model (CCM2), the Goddard Earth Observing System Data Assimilation System (GEOS DAS), and the Goddard Institute for Space Studies general circulation model (GISS). Objective criteria were established by the GMI team to identify the data set which provides the best representation of the stratosphere. Simulations of gases with simple chemical control were chosen to test various aspects of model transport. The three meteorological data sets were evaluated and graded based on their ability to simulate these aspects of stratospheric measurements. This paper describes the criteria used in grading the meteorological fields. The meteorological data set which has the highest score and therefore was selected for GMI is CCM2. This type of objective model evaluation establishes a physical basis for interpretation of differences between models and observations. Further, the method provides a quantitative basis for defining model errors, for discriminating between different models, and for ready re-evaluation of improved models. These in turn will lead to a higher level of confidence in assessment calculations.
Long Island Sound Tropospheric Ozone Study (LISTOS) Fact Sheet
EPA scientists are collaborating on a multi-agency field study to investigate the complex interaction of emissions, chemistry and meteorological factors contributing to elevated ozone levels along the Long Island Sound shoreline.
Meso- to micro-scale coupled simulations of flow over complex terrain at the Perdigao site
NASA Astrophysics Data System (ADS)
Neher, J.; van Veen, L.; Chow, F. K.; Mirocha, J. D.; Lundquist, J. K.
2017-12-01
In this work, the site of the 2017 Perdigao field campaign is analyzed with high resolution large-eddy simulations generated using the Weather Research and Forecasting (WRF) model as a coupled mesoscale to microscale model. The fine topographic features of the site, with its ridgelines a mere 1.2 km apart, the occurrence of intermittent turbulence at night, and the presence of a wind turbine on one of the ridgelines pose a challenge for many current numerical models. Key test cases in the observational data that demonstrate these modelling difficulties are identified, and advanced modeling techniques for overcoming these issues in the WRF model are presented. These techniques include vertical grid nesting for control of the grid aspect ratio, the cell perturbation method for accelerating the generation of turbulence at the boundary, the dynamic reconstruction model as a closure model that allows for backscatter of turbulence, and the actuator disk model for representing the turbine wake. Multiple nesting configurations are considered, with special consideration given to spanning the `grey zone' where neither PBL nor LES closures are effective. Comparisons between model results and measured sounding, meteorological tower, and Lidar data are used to evaluate the effectiveness of these techniques, and the model results are evaluated to provide a broader view of the flow field and the turbine wake interactions at the site.
Helicity in dynamic atmospheric processes
NASA Astrophysics Data System (ADS)
Kurgansky, M. V.
2017-03-01
An overview on the helicity of the velocity field and the role played by this concept in modern research in the field of geophysical fluid dynamics and dynamic meteorology is given. Different (both previously known in the literature and first presented) formulations of the equation of helicity balance in atmospheric motions (including those with allowance for effects of air compressibility and Earth's rotation) are brought together. Equations and relationships are given which are valid in different approximations accepted in dynamic meteorology: Boussinesq approximation, quasi-static approximation, and quasi-geostrophic approximation. Emphasis is placed on the analysis of helicity budget in large-scale quasi-geostrophic systems of motion; a formula for the helicity flux across the upper boundary of the nonlinear Ekman boundary layer is given, and this flux is shown to be exactly compensated for by the helicity destruction inside the Ekman boundary layer.
NASA Astrophysics Data System (ADS)
Lundquist, J. K.; Banta, R. M.; Pichugina, Y.; Brewer, A.; Alvarez, R. J.; Sandberg, S. P.; Kelley, N. D.; Aitken, M.; Clifton, A.; Mirocha, J. D.
2011-12-01
To support substantial deployment of renewably-generated electricity from the wind, critical information about the variability of wind turbine wakes in the real atmosphere from multi-MW turbines is required. The assessment of the velocity deficit and turbulence associated with industrial-scale turbines is a major issue for wind farm design, particularly with respect to the optimization of the spacing between turbines. The significant velocity deficit and turbulence generated by upstream turbines can reduce the power production and produce harmful vibrations in downstream turbines, which can lead to excess maintenance costs. The complexity of wake effects depends on many factors arising from both hardware (turbine size, rotor speed, and blade geometry, etc.) and from meteorological considerations such as wind velocity, gradients of wind across the turbine rotor disk, atmospheric stability, and atmospheric turbulence. To characterize the relationships between the meteorological inflow and turbine wakes, a collaborative field campaign was designed and carried out at the Department of Energy's National Wind Technology Center (NREL/NWTC) in south Boulder, Colorado, in spring 2011. This site often experiences channeled flow with a consistent wind direction, enabling robust statistics of wake velocity deficits and turbulence enhancements. Using both in situ and remote sensing instrumentation, measurements upwind and downwind of multi-megawatt wind turbine in complex terrain quantified the variability of wind turbine inflow and wakes from an industrial-scale turbine. The turbine of interest has a rated power of 2.3 MW, a rotor diameter of 100m, and a hub height of 80m. In addition to several meteorological towers, one extending to hub height (80m) and another extending above the top of the rotor disk (135m), a Triton mini-sodar and a Windcube lidar characterized the inflow to the turbine and the variability across the site. The centerpiece instrument of the TWICS campaign was the NOAA High Resolution Doppler lidar (HRDL), a scanning lidar which captured three-dimensional images of the turbine inflow and wake. Over several weeks, 48+ hours of HRDL observations during a variety of wind speed and atmospheric stability conditions were collected using three scanning strategies. Wake features such as lofting, meandering, intersection with the ground, and expansion factors are identified and discussed. Observations of a remarkably long-distance wake are presented and compared with existing wake models.
Satellite data based approach for the estimation of anthropogenic heat flux over urban areas
NASA Astrophysics Data System (ADS)
Nitis, Theodoros; Tsegas, George; Moussiopoulos, Nicolas; Gounaridis, Dimitrios; Bliziotis, Dimitrios
2017-09-01
Anthropogenic effects in urban areas influence the thermal conditions in the environment and cause an increase of the atmospheric temperature. The cities are sources of heat and pollution, affecting the thermal structure of the atmosphere above them which results to the urban heat island effect. In order to analyze the urban heat island mechanism, it is important to estimate the anthropogenic heat flux which has a considerable impact on the urban energy budget. The anthropogenic heat flux is the result of man-made activities (i.e. traffic, industrial processes, heating/cooling) and thermal releases from the human body. Many studies have underlined the importance of the Anthropogenic Heat Flux to the calculation of the urban energy budget and subsequently, the estimation of mesoscale meteorological fields over urban areas. Therefore, spatially disaggregated anthropogenic heat flux data, at local and city scales, are of major importance for mesoscale meteorological models. The main objectives of the present work are to improve the quality of such data used as input for mesoscale meteorological models simulations and to enhance the application potential of GIS and remote sensing in the fields of climatology and meteorology. For this reason, the Urban Energy Budget concept is proposed as the foundation for an accurate determination of the anthropogenic heat discharge as a residual term in the surface energy balance. The methodology is applied to the cities of Athens and Paris using the Landsat ETM+ remote sensing data. The results will help to improve our knowledge on Anthropogenic Heat Flux, while the potential for further improvement of the methodology is also discussed.
Impact of shade on outdoor thermal comfort—a seasonal field study in Tempe, Arizona
NASA Astrophysics Data System (ADS)
Middel, Ariane; Selover, Nancy; Hagen, Björn; Chhetri, Nalini
2016-12-01
Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C-38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.
Stuntebeck, Todd D.; Komiskey, Matthew J.; Owens, David W.; Hall, David W.
2008-01-01
The University of Wisconsin (UW)-Madison Discovery Farms (Discovery Farms) and UW-Platteville Pioneer Farm (Pioneer Farm) programs were created in 2000 to help Wisconsin farmers meet environmental and economic challenges. As a partner with each program, and in cooperation with the Wisconsin Department of Natural Resources and the Sand County Foundation, the U.S. Geological Survey (USGS) Wisconsin Water Science Center (WWSC) installed, maintained, and operated equipment to collect water-quantity and water-quality data from 25 edge-offield, 6 streamgaging, and 5 subsurface-tile stations at 7 Discovery Farms and Pioneer Farm. The farms are located in the southern half of Wisconsin and represent a variety of landscape settings and crop- and animal-production enterprises common to Wisconsin agriculture. Meteorological stations were established at most farms to measure precipitation, wind speed and direction, air and soil temperature (in profile), relative humidity, solar radiation, and soil moisture (in profile). Data collection began in September 2001 and is continuing through the present (2008). This report describes methods used by USGS WWSC personnel to collect, process, and analyze water-quantity, water-quality, and meteorological data for edge-of-field, streamgaging, subsurface-tile, and meteorological stations at Discovery Farms and Pioneer Farm from September 2001 through October 2007. Information presented includes equipment used; event-monitoring and samplecollection procedures; station maintenance; sample handling and processing procedures; water-quantity, waterquality, and precipitation data analyses; and procedures for determining estimated constituent concentrations for unsampled runoff events.
Objective high Resolution Analysis over Complex Terrain with VERA
NASA Astrophysics Data System (ADS)
Mayer, D.; Steinacker, R.; Steiner, A.
2012-04-01
VERA (Vienna Enhanced Resolution Analysis) is a model independent, high resolution objective analysis of meteorological fields over complex terrain. This system consists of a special developed quality control procedure and a combination of an interpolation and a downscaling technique. Whereas the so called VERA-QC is presented at this conference in the contribution titled "VERA-QC, an approved Data Quality Control based on Self-Consistency" by Andrea Steiner, this presentation will focus on the method and the characteristics of the VERA interpolation scheme which enables one to compute grid point values of a meteorological field based on irregularly distributed observations and topography related aprior knowledge. Over a complex topography meteorological fields are not smooth in general. The roughness which is induced by the topography can be explained physically. The knowledge about this behavior is used to define the so called Fingerprints (e.g. a thermal Fingerprint reproducing heating or cooling over mountainous terrain or a dynamical Fingerprint reproducing positive pressure perturbation on the windward side of a ridge) under idealized conditions. If the VERA algorithm recognizes patterns of one or more Fingerprints at a few observation points, the corresponding patterns are used to downscale the meteorological information in a greater surrounding. This technique allows to achieve an analysis with a resolution much higher than the one of the observational network. The interpolation of irregularly distributed stations to a regular grid (in space and time) is based on a variational principle applied to first and second order spatial and temporal derivatives. Mathematically, this can be formulated as a cost function that is equivalent to the penalty function of a thin plate smoothing spline. After the analysis field has been divided into the Fingerprint components and the unexplained part respectively, the requirement of a smooth distribution is applied to the latter component only (the Fingerprint field is rough by definition). In order to obtain the final analysis field, the unexplained component has to be combined with the weighted Fingerprint patterns. Operationally, VERA is carried out at our Department on an hourly basis analyzing temperature measurements, pressure, wind and precipitation observations for several domains of the whole world. VERA analyses are used for nowcasting purposes, for establishing climate databases and model verification. Furthermore, VERA can be interesting for everyone who possesses a PC but does not have access to a complex data assimilation system which is in general only available at numerical weather prediction centers.
Surface meteorology and Solar Energy
NASA Technical Reports Server (NTRS)
Stackhouse, Paul W. (Principal Investigator)
The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].
Non-steady wind turbine response to daytime atmospheric turbulence.
Nandi, Tarak N; Herrig, Andreas; Brasseur, James G
2017-04-13
Relevant to drivetrain bearing fatigue failures, we analyse non-steady wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and the rotating blades of a GE 1.5 MW wind turbine using a unique dataset from a GE field experiment and computer simulation. Time-resolved local velocity data were collected at the leading and trailing edges of an instrumented blade together with generator power, revolutions per minute, pitch and yaw. Wind velocity and temperature were measured upwind on a meteorological tower. The stability state and other atmospheric conditions during the field experiment were replicated with a large-eddy simulation in which was embedded a GE 1.5 MW wind turbine rotor modelled with an advanced actuator line method. Both datasets identify three important response time scales: advective passage of energy-dominant eddies (≈25-50 s), blade rotation (once per revolution (1P), ≈3 s) and sub-1P scale (<1 s) response to internal eddy structure. Large-amplitude short-time ramp-like and oscillatory load fluctuations result in response to temporal changes in velocity vector inclination in the aerofoil plane, modulated by eddy passage at longer time scales. Generator power responds strongly to large-eddy wind modulations. We show that internal dynamics of the blade boundary layer near the trailing edge is temporally modulated by the non-steady external flow that was measured at the leading edge, as well as blade-generated turbulence motions.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).
Non-steady wind turbine response to daytime atmospheric turbulence
Nandi, Tarak N.; Herrig, Andreas
2017-01-01
Relevant to drivetrain bearing fatigue failures, we analyse non-steady wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and the rotating blades of a GE 1.5 MW wind turbine using a unique dataset from a GE field experiment and computer simulation. Time-resolved local velocity data were collected at the leading and trailing edges of an instrumented blade together with generator power, revolutions per minute, pitch and yaw. Wind velocity and temperature were measured upwind on a meteorological tower. The stability state and other atmospheric conditions during the field experiment were replicated with a large-eddy simulation in which was embedded a GE 1.5 MW wind turbine rotor modelled with an advanced actuator line method. Both datasets identify three important response time scales: advective passage of energy-dominant eddies (≈25–50 s), blade rotation (once per revolution (1P), ≈3 s) and sub-1P scale (<1 s) response to internal eddy structure. Large-amplitude short-time ramp-like and oscillatory load fluctuations result in response to temporal changes in velocity vector inclination in the aerofoil plane, modulated by eddy passage at longer time scales. Generator power responds strongly to large-eddy wind modulations. We show that internal dynamics of the blade boundary layer near the trailing edge is temporally modulated by the non-steady external flow that was measured at the leading edge, as well as blade-generated turbulence motions. This article is part of the themed issue ‘Wind energy in complex terrains’. PMID:28265026
How do I know if my forecasts are better? Using benchmarks in hydrological ensemble prediction
NASA Astrophysics Data System (ADS)
Pappenberger, F.; Ramos, M. H.; Cloke, H. L.; Wetterhall, F.; Alfieri, L.; Bogner, K.; Mueller, A.; Salamon, P.
2015-03-01
The skill of a forecast can be assessed by comparing the relative proximity of both the forecast and a benchmark to the observations. Example benchmarks include climatology or a naïve forecast. Hydrological ensemble prediction systems (HEPS) are currently transforming the hydrological forecasting environment but in this new field there is little information to guide researchers and operational forecasters on how benchmarks can be best used to evaluate their probabilistic forecasts. In this study, it is identified that the forecast skill calculated can vary depending on the benchmark selected and that the selection of a benchmark for determining forecasting system skill is sensitive to a number of hydrological and system factors. A benchmark intercomparison experiment is then undertaken using the continuous ranked probability score (CRPS), a reference forecasting system and a suite of 23 different methods to derive benchmarks. The benchmarks are assessed within the operational set-up of the European Flood Awareness System (EFAS) to determine those that are 'toughest to beat' and so give the most robust discrimination of forecast skill, particularly for the spatial average fields that EFAS relies upon. Evaluating against an observed discharge proxy the benchmark that has most utility for EFAS and avoids the most naïve skill across different hydrological situations is found to be meteorological persistency. This benchmark uses the latest meteorological observations of precipitation and temperature to drive the hydrological model. Hydrological long term average benchmarks, which are currently used in EFAS, are very easily beaten by the forecasting system and the use of these produces much naïve skill. When decomposed into seasons, the advanced meteorological benchmarks, which make use of meteorological observations from the past 20 years at the same calendar date, have the most skill discrimination. They are also good at discriminating skill in low flows and for all catchment sizes. Simpler meteorological benchmarks are particularly useful for high flows. Recommendations for EFAS are to move to routine use of meteorological persistency, an advanced meteorological benchmark and a simple meteorological benchmark in order to provide a robust evaluation of forecast skill. This work provides the first comprehensive evidence on how benchmarks can be used in evaluation of skill in probabilistic hydrological forecasts and which benchmarks are most useful for skill discrimination and avoidance of naïve skill in a large scale HEPS. It is recommended that all HEPS use the evidence and methodology provided here to evaluate which benchmarks to employ; so forecasters can have trust in their skill evaluation and will have confidence that their forecasts are indeed better.
Zhang, Hao; Yuan, Haiou; Liu, Xiaohui; Yu, Junyi; Jiao, Yongli
2018-06-15
North China Plain area (NCP) is one of the most densely populated and heavily polluted regions in the world. In the last five years, frequently happened fine particulate matter (PM 2.5 ) serious pollution events were one of the top environmental concerns in China. As PM 2.5 concentrations are highly influenced by synoptic flow patterns and local meteorological conditions, a two-stage hierarchical clustering method based on dynamic principal component analysis (DPCA) and standard k-means clustering algorithm was employed to classify synoptic wind fields into 6 patterns over the NCP area using the data of 5 PM 2.5 seasons (Sept. 15th-Apr. 15th) from 2013 to 2017. Among the six identified synoptic patterns, pattern of uniform pressure field (U) and that of zonal high pressure (Z H ) accounted for 78.21%, 65.55%, 63.56%, 57.11%, 59.13% and 58.27% studied heavy smog pollution events in Beijing, Tianjin, Tangshan, Baoding, Shijiazhuang and Xingtai city. The two particular patterns were associated with uniform pressure field and sparsely latitudinal isobar in 850 hPa level, respectively. They were also characterized by high relative humidity, low temperature, low-speed northerly wind in Tianjin and Tangshan, and southerly wind in the other cities. Under the continuous control of pattern Z H , the values of 24 h-average PM 2.5 were found to increase at a rate of 31.78 μg/m 3 per day. To evaluate the contribution of meteorological factors and precursors to PM 2.5 levels, linear mixed-effects models (LMMs) were applied to establish relations among 24 h-average PM 2.5 concentrations, concentrations of main precursors, local meteorological factors and synoptic patterns. Results show that the variations of precursors, local meteorological factors and synoptic flow patterns can explain 51.67%, 19.15% and 14.01% changes of the 24 h-average PM 2.5 concentrations, respectively. This study illustrates that dense precursor emissions are still the main cause for heavy haze pollution events, although meteorological conditions play almost equal roles sometimes. Copyright © 2018 Elsevier B.V. All rights reserved.
Clustering of Synoptic Pattern over the Korean Peninsula from Meteorological Models
NASA Astrophysics Data System (ADS)
Kim, Jinah; Heo, Kiyoung; Choi, Jungwoon; Jung, Sanghoon
2017-04-01
Numerical modeling data on meteorological and ocean science is one of example of big geographic data sources. The properties of the data including the volume, variety, and dynamic aspects pose new challenges for geographic visualization, and visual geoanalytics using big data analysis using machine learning method. A combination of algorithmic and visual approaches that make sense of large volumes of various types of spatiotemporal data are required to gain knowledge about complex phenomena. In the East coast of Korea, it is suffering from property damages and human causalities due to abnormal high waves (swell-like high-height waves). It is known to be caused by local meteorological conditions on the East Sea of Korean Peninsula in previous research and they proposed three kinds of pressure patterns that generate abnormal high waves. However, they cannot describe all kinds of pressure patterns that generate abnormal high waves. In our study, we propose unsupervised machine learning method for pattern clustering and applied it to classify a pattern which has occurred abnormal high waves using numerical meteorological model's reanalysis data from 2000 to 2015 and past historical records of accidents by abnormal high waves. About 25,000 patterns of total spatial distribution of sea surface pressure are clustered into 30 patterns and they are classified into seasonal sea level pressure patterns based on meteorological characteristics of Korean peninsula. Moreover, in order to determine the representative patterns which occurs abnormal high waves, we classified it again using historical accidents cases among the winter season pressure patterns. In this work, we clustered synoptic pattern over the Korean Peninsula in meteorological modeling reanalysis data and we could understand a seasonal variation through identifying the occurrence of clustered synoptic pattern. For the future work, we have to identify the relationship of wave modeling data for better understanding of abnormal high waves and we will develop pattern decision system to predict abnormal high waves in advances. This research was a part of the project titled "Development of Korea Operational Oceanographic System (KOOS), Phase 2" and "Investigation of Large Swell Waves and Rip currents and Development of The Disaster Response System," funded by the Ministry of Oceans & Fisheries Korea (Grant PM59691 and PM59240).
What are the hydro-meteorological controls on flood characteristics?
NASA Astrophysics Data System (ADS)
Nied, Manuela; Schröter, Kai; Lüdtke, Stefan; Nguyen, Viet Dung; Merz, Bruno
2017-02-01
Flood events can be expressed by a variety of characteristics such as flood magnitude and extent, event duration or incurred loss. Flood estimation and management may benefit from understanding how the different flood characteristics relate to the hydrological catchment conditions preceding the event and to the meteorological conditions throughout the event. In this study, we therefore propose a methodology to investigate the hydro-meteorological controls on different flood characteristics, based on the simulation of the complete flood risk chain from the flood triggering precipitation event, through runoff generation in the catchment, flood routing and possible inundation in the river system and floodplains to flood loss. Conditional cumulative distribution functions and regression tree analysis delineate the seasonal varying flood processes and indicate that the effect of the hydrological pre-conditions, i.e. soil moisture patterns, and of the meteorological conditions, i.e. weather patterns, depends on the considered flood characteristic. The methodology is exemplified for the Elbe catchment. In this catchment, the length of the build-up period, the event duration and the number of gauges undergoing at least a 10-year flood are governed by weather patterns. The affected length and the number of gauges undergoing at least a 2-year flood are however governed by soil moisture patterns. In case of flood severity and loss, the controlling factor is less pronounced. Severity is slightly governed by soil moisture patterns whereas loss is slightly governed by weather patterns. The study highlights that flood magnitude and extent arise from different flood generation processes and concludes that soil moisture patterns as well as weather patterns are not only beneficial to inform on possible flood occurrence but also on the involved flood processes and resulting flood characteristics.
Screening procedure for airborne pollutants emitted from a high-tech industrial complex in Taiwan.
Wang, John H C; Tsai, Ching-Tsan; Chiang, Chow-Feng
2015-11-01
Despite the modernization of computational techniques, atmospheric dispersion modeling remains a complicated task as it involves the use of large amounts of interrelated data with wide variability. The continuously growing list of regulated air pollutants also increases the difficulty of this task. To address these challenges, this study aimed to develop a screening procedure for a long-term exposure scenario by generating a site-specific lookup table of hourly averaged dispersion factors (χ/Q), which could be evaluated by downwind distance, direction, and effective plume height only. To allow for such simplification, the average plume rise was weighted with the frequency distribution of meteorological data so that the prediction of χ/Q could be decoupled from the meteorological data. To illustrate this procedure, 20 receptors around a high-tech complex in Taiwan were selected. Five consecutive years of hourly meteorological data were acquired to generate a lookup table of χ/Q, as well as two regression formulas of plume rise as functions of downwind distance, buoyancy flux, and stack height. To calculate the concentrations for the selected receptors, a six-step Excel algorithm was programmed with four years of emission records and 10 most critical toxics were screened out. A validation check using Industrial Source Complex (ISC3) model with the same meteorological and emission data showed an acceptable overestimate of 6.7% in the average concentration of 10 nearby receptors. The procedure proposed in this study allows practical and focused emission management for a large industrial complex and can therefore be integrated into an air quality decision-making system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stereo Measurements from Satellites
NASA Technical Reports Server (NTRS)
Adler, R.
1982-01-01
The papers in this presentation include: 1) 'Stereographic Observations from Geosynchronous Satellites: An Important New Tool for the Atmospheric Sciences'; 2) 'Thunderstorm Cloud Top Ascent Rates Determined from Stereoscopic Satellite Observations'; 3) 'Artificial Stereo Presentation of Meteorological Data Fields'.
NASA Technical Reports Server (NTRS)
Case, Jonathan; Spratt, Scott; Sharp, David
2006-01-01
The Applied Meteorology Unit (AMU) located at the Kennedy Space Center (KSC)/Cape Canaveral Air Force Station (CCAFS) implemented an operational configuration of the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS), as well as the ARPS numerical weather prediction (NWP) model. Operational, high-resolution ADAS analyses have been produced from this configuration at the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) over the past several years. Since that time, ADAS fields have become an integral part of forecast operations at both NWS MLB and SMG. To continue providing additional utility, the AMU has been tasked to implement visualization products to assess the potential for supercell thunderstorms and significant tornadoes, and to improve assessments of short-term cloud-to-ground (CG) lightning potential. This paper and presentation focuses on the visualization products developed by the AMU for the operational high-resolution ADAS and AR.PS at the NWS MLB and SMG. The two severe weather threat graphics implemented within ADAS/ARPS are the Supercell Composite Parameter (SCP) and Significant Tornado Parameter (SIP). The SCP was designed to identify areas with supercell thunderstorm potential through a combination of several instability and shear parameters. The SIP was designed to identify areas that favor supercells producing significant tornadoes (F2 or greater intensity) versus non-tornadic supercells. Both indices were developed by the NOAAINWS Storm Prediction Center (SPC) and were normalized by key threshold values based on previous studies. The indices apply only to discrete storms, not other convective modes. In a post-analysis mode, the AMU calculated SCP and SIP for graphical output using an ADAS configuration similar to the operational set-ups at NWS MLB and SMG. Graphical images from ADAS were generated every 15 minutes for 13 August 2004, the day that Hurricane Charley approached and made landfall on the Florida peninsula. Several tornadoes struck the interior of the Florida peninsula in advance of Hurricane Charley's landfall during the daylight hours of 13 August. Since SPC had previously examined this case using SCP and SIP graphics generated from output of the Rapid Update Cycle (RUC) model, this day served as a good benchmark to compare and validate the high-resolution ADAS graphics against the smoother RUC analyses, which serves as background fields to the ADAS analyses. The ADAS-generated SCP and STP graphics have been integrated into the suite of products examined operationally by NWS MLB forecasters and are used to provide additional guidance for assessment of the near-storm environment during convective situations.
NASA Astrophysics Data System (ADS)
Deng, T.; Chen, Y.; Wan, Q.
2017-12-01
The Community Multiscale Air Quality (CMAQ) model was utilized for forecasting air quality over the Pearl River Delta (PRD) region from December 2013 to January 2014. The pollution forecasting performance of CMAQ coupled with the two different meteorological models, the Global/Regional Assimilation and Prediction System (GRAPES) and the 5th-generation Mesoscale Model (MM5), was assessed by combining observational data. The effect of meteorological factors and physical-chemical processes on forecast results was discussed through process analysis. The results showed that both models have similar good performance with better performance by GRAPES-CMAQ. GRAPES was superior in predicting the overall meteorological element variation tendencies but showed large deviations in atmospheric pressure and wind speed. It contributed to higher correlation coefficients of the pollutants with GRAPES-CMAQ, but with greater deviation. The underestimations of nitrate and ammonium salt contributed to the underestimations of Particle Matter (PM) and extinction coefficients. Surface layer SO2, CO and NO source emissions made the sole positive contribution. O3 originated mainly from horizontal and vertical transport and chemical processes were the main consumption item. On the contrary, NO2 derived mainly from chemical production.
A rocket borne instrument to measure electric fields inside electrified clouds
NASA Technical Reports Server (NTRS)
Ruhnke, L. H.
1971-01-01
The development of a rocket borne instrument to measure electric fields in thunderstorms is described. Corona currents from a sharp needle atop a small rocket are used to sense the electric field. A high ohm resistor in series with the corona needle linearizes the relationship between corona current and electric field. The corona current feeds a relaxation oscillator, whose pulses trigger a transmitter which operates in the 395 to 410 MHz meteorological band. The instrument senses fields between 5 kV/m and 100 kV/m.
The Influence of Urban Planning Affected Static and Stable Meteorological Field on Air Pollution
NASA Astrophysics Data System (ADS)
Zhang, Yue; Zhang, Liyuan; Zhang, Yunwei
2018-02-01
Accompany with the rapid urbanized and industrialized process, the built-up area and the number of high-rise buildings increased fast. Urban air quality is facing with the challenge caused by the rapid increase in energy consumption, motor vehicles owned, and the city construction. Long term high precision analysis on Beijing-Tianjin-Hebei region has been conducted in this article, so as to explore the influence of rapid increase in urban size and tall building amount on occurrence frequency of urban static and stable meteorological conditions as well as the contribution to urban PM2.5 pollution.
NASA Technical Reports Server (NTRS)
Deloach, R.; Morris, A. L.; Mcbeth, R. B.
1976-01-01
A portable boundary-layer meteorological data-acquisition and analysis system is described which employs a small tethered balloon and a programmable calculator. The system is capable of measuring pressure, wet- and dry-bulb temperature, wind speed, and temperature fluctuations as a function of height and time. Other quantities, which can be calculated in terms of these, can also be made available in real time. All quantities, measured and calculated, can be printed, plotted, and stored on magnetic tape in the field during the data-acquisition phase of an experiment.
A field study of air flow and turbulent features of advection fog
NASA Technical Reports Server (NTRS)
Connell, J. D.
1979-01-01
The setup and initial operation of a set of specialized meteorological data collection hardware are described. To study the life cycle of advection fogs at a lake test site, turbulence levels in the fog are identified, and correlated with the temperature gradients and mean wind profiles. A meteorological tower was instrumented to allow multiple-level measurements of wind and temperature on a continuous basis. Additional instrumentation was: (1)hydrothermograph, (2)microbarograph, (3)transmissometers, and (4)a boundary layer profiler. Two types of fogs were identified, and important differences in the turbulence scales were noted.
Correlation between isotopic and meteorological parameters in Italian wines: a local-scale approach.
Aghemo, Costanza; Albertino, Andrea; Gobetto, Roberto; Spanna, Federico
2011-08-30
Since the beginning of the 1980s deuterium nuclear magnetic resonance and carbon-13 mass spectrometry have proved to be reliable techniques for detecting adulteration and for classifying natural products by their geographic origin. Scientific literature has so far mainly focused on data acquired at regional level where isotopic parameters are correlated to climatic mean data relative to large territories. Nebbiolo and Barbera wine samples of various vintages and from different areas within the Piedmont region (northern Italy) were analysed using SNIF-NMR and GC-C-IRMS and a large set of meteorological parameters were recorded by means of weather stations placed in fields where the grapes were grown. Correlations between isotopic ((2)H and (13)C) data and several climatic parameters at a local level (mean temperature, total rainfall, mean humidity and thermal sums) were attempted and some linear correlations were found. Mean temperature and total rainfall were found to be correlated to isotopic ((2)H and (13)C) abundance in linear direct and inverse proportions respectively. Lower or no correlations between deuterium and carbon-13 abundances and other meteorological parameters such as mean humidity and thermal sums were found. Moreover, wines produced from different grape varieties in the same grape field showed significantly different isotopic values. Copyright © 2011 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Roustan, Yelva; Duhanyan, Nora; Bocquet, Marc; Winiarek, Victor
2013-04-01
A sensitivity study of the numerical model, as well as, an inverse modelling approach applied to the atmospheric dispersion issues after the Chernobyl disaster are both presented in this paper. On the one hand, the robustness of the source term reconstruction through advanced data assimilation techniques was tested. On the other hand, the classical approaches for sensitivity analysis were enhanced by the use of an optimised forcing field which otherwise is known to be strongly uncertain. The POLYPHEMUS air quality system was used to perform the simulations of radionuclide dispersion. Activity concentrations in air and deposited to the ground of iodine-131, caesium-137 and caesium-134 were considered. The impact of the implemented parameterizations of the physical processes (dry and wet depositions, vertical turbulent diffusion), of the forcing fields (meteorology and source terms) and of the numerical configuration (horizontal resolution) were investigated for the sensitivity study of the model. A four dimensional variational scheme (4D-Var) based on the approximate adjoint of the chemistry transport model was used to invert the source term. The data assimilation is performed with measurements of activity concentrations in air extracted from the Radioactivity Environmental Monitoring (REM) database. For most of the investigated configurations (sensitivity study), the statistics to compare the model results to the field measurements as regards the concentrations in air are clearly improved while using a reconstructed source term. As regards the ground deposited concentrations, an improvement can only be seen in case of satisfactorily modelled episode. Through these studies, the source term and the meteorological fields are proved to have a major impact on the activity concentrations in air. These studies also reinforce the use of reconstructed source term instead of the usual estimated one. A more detailed parameterization of the deposition process seems also to be able to improve the simulation results. For deposited activities the results are more complex probably due to a strong sensitivity to some of the meteorological fields which remain quite uncertain.
Craig B. Clements; Neil P. Lareau; Daisuke Seto; Jonathan Contezac; Braniff Davis; Casey Teske; Thomas J. Zajkowski; Andrew T. Hudak; Benjamin C. Bright; Matthew B. Dickinson; Bret W. Butler; Daniel Jimenez; J. Kevin Hiers
2016-01-01
The role of fire-atmosphere coupling on fire behaviour is not well established, and to date few field observations have been made to investigate the interactions between fire spread and fire-induced winds. Therefore, comprehensive field observations are needed to better understand micrometeorological aspects of fire spread. To address this need, meteorological...
Does it matter what we call it?
USDA-ARS?s Scientific Manuscript database
Agronomy, soil science, plant science, crop science, agricultural science, computer science, environmental science, environmental engineering, agricultural and irrigation engineering, hydrology, meteorology – all are names that describe fields of study relevant to agriculture and the environment in ...
Site 300 Bat Monitoring Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drennan, Joe; Tortosa, Justin
2016-07-18
From June 15 to 18, 2015, GANDA biologist Graham Neale assisted in programming and fieldtesting of the bat monitoring equipment. The equipment was deployed in the field on a meteorological (MET) tower within Site 300 on June 18, 2015.
Verification of FLYSAFE Clear Air Turbulence (CAT) objects against aircraft turbulence measurements
NASA Astrophysics Data System (ADS)
Lunnon, R.; Gill, P.; Reid, L.; Mirza, A.
2009-09-01
Prediction of gridded CAT fields The main causes of CAT are (a) Vertical wind shear - low Richardson Number (b) Mountain waves (c) Convection. All three causes contribute roughly equally to CAT occurrences, globally Prediction of shear induced CAT The predictions of shear induced CAT has a longer history than either mountain-wave induced CAT or convectively induced CAT. Both Global Aviation Forecasting Centres are currently using the Ellrod TI1 algorithm (Ellrod and Knapp, 1992). This predictor is the scalar product of deformation [akm1]and vertical wind shear. More sophisticated algorithms can amplify errors in non-linear, differentiated quantities so it is very likely that Ellrod will out-perform other algorithms when verified globally. Prediction of mountain wave CAT The Global Aviation Forecasting Centre in the UK has been generating automated forecasts of mountain wave CAT since the late 1990s, based on the diagnosis of gravity wave drag. Generation of CAT objects In the FLYSAFE project it was decided at an early stage that short range forecasts of meteorological hazards, i.e. icing, Clear Air Turbulence, Cumulonimbus Clouds, should be represented as weather objects, that is, descriptions of individual hazardous volumes of airspace. For CAT, the forecast information on which the weather objects were based was gridded, that comprised a representation of a hazard level for all points in a pre-defined 3-D grid, for a range of forecast times. A "grid-to-objects" capability was generated. This is discussed further in Mirza and Drouin (this conference). Verification of CAT forecasts Verification was performed using digital accelerometer data from aircraft in the British Airways Boeing 747 fleet. A preliminary processing of the aircraft data were performed to generate a truth field on a scale similar to that used to provide gridded forecasts to airlines. This truth field was binary, i.e. each flight segment was characterised as being either "turbulent" or "benign". A gridded forecast field is a continuously changing variable. In contrast, a simple weather object must be characterised by a specific threshold. For a gridded forecast and a binary truth measure it is possible to generate Relative Operating Characteristic (ROC) curves. For weather objects, a single point in the hit-rate/false-alarm-rate space can be generated. If this point is plotted on a ROC curve graph then the skill of the forecast using weather objects can be compared with the skill of the gridded forecast.
Conjunction Assessment Past, Present, and Future
NASA Technical Reports Server (NTRS)
Newman, Lauri K.
2015-01-01
Since 1957, humankind's reliance on the space domain for military, humanitarian, and commercial applications has continued to increase. 1960 first successful use of a meteorological satellite,1963 first use of a geosynchronous communications satellite, 1985 Block I of GPS fielded, 1998 first module of ISS, 2001 first satellite radio broadcast over North America. What you take into space, stays in space: launch vehicle, rocket-bodies, mission-related debris. Debris can also be generated on-orbit: fuel/battery explosions, collisions. Only naturally-occurring retarding effect is orbital decay due to atmospheric drag: some remediation measures available, active debris removal not yet viable option. Because of our reliance on space and the fact that space really isn't limitless, the Big Sky theory is no longer an acceptable risk posture. There have been eight (8) on-orbit collisions reported to date, half of which occurred in the last 10 years.
Multivariate space - time analysis of PRE-STORM precipitation
NASA Technical Reports Server (NTRS)
Polyak, Ilya; North, Gerald R.; Valdes, Juan B.
1994-01-01
This paper presents the methodologies and results of the multivariate modeling and two-dimensional spectral and correlation analysis of PRE-STORM rainfall gauge data. Estimated parameters of the models for the specific spatial averages clearly indicate the eastward and southeastward wave propagation of rainfall fluctuations. A relationship between the coefficients of the diffusion equation and the parameters of the stochastic model of rainfall fluctuations is derived that leads directly to the exclusive use of rainfall data to estimate advection speed (about 12 m/s) as well as other coefficients of the diffusion equation of the corresponding fields. The statistical methodology developed here can be used for confirmation of physical models by comparison of the corresponding second-moment statistics of the observed and simulated data, for generating multiple samples of any size, for solving the inverse problem of the hydrodynamic equations, and for application in some other areas of meteorological and climatological data analysis and modeling.
Verification of Meteorological and Oceanographic Ensemble Forecasts in the U.S. Navy
NASA Astrophysics Data System (ADS)
Klotz, S.; Hansen, J.; Pauley, P.; Sestak, M.; Wittmann, P.; Skupniewicz, C.; Nelson, G.
2013-12-01
The Navy Ensemble Forecast Verification System (NEFVS) has been promoted recently to operational status at the U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). NEFVS processes FNMOC and National Centers for Environmental Prediction (NCEP) meteorological and ocean wave ensemble forecasts, gridded forecast analyses, and innovation (observational) data output by FNMOC's data assimilation system. The NEFVS framework consists of statistical analysis routines, a variety of pre- and post-processing scripts to manage data and plot verification metrics, and a master script to control application workflow. NEFVS computes metrics that include forecast bias, mean-squared error, conditional error, conditional rank probability score, and Brier score. The system also generates reliability and Receiver Operating Characteristic diagrams. In this presentation we describe the operational framework of NEFVS and show examples of verification products computed from ensemble forecasts, meteorological observations, and forecast analyses. The construction and deployment of NEFVS addresses important operational and scientific requirements within Navy Meteorology and Oceanography. These include computational capabilities for assessing the reliability and accuracy of meteorological and ocean wave forecasts in an operational environment, for quantifying effects of changes and potential improvements to the Navy's forecast models, and for comparing the skill of forecasts from different forecast systems. NEFVS also supports the Navy's collaboration with the U.S. Air Force, NCEP, and Environment Canada in the North American Ensemble Forecast System (NAEFS) project and with the Air Force and the National Oceanic and Atmospheric Administration (NOAA) in the National Unified Operational Prediction Capability (NUOPC) program. This program is tasked with eliminating unnecessary duplication within the three agencies, accelerating the transition of new technology, such as multi-model ensemble forecasting, to U.S. Department of Defense use, and creating a superior U.S. global meteorological and oceanographic prediction capability. Forecast verification is an important component of NAEFS and NUOPC. Distribution Statement A: Approved for Public Release; distribution is unlimited
Verification of Meteorological and Oceanographic Ensemble Forecasts in the U.S. Navy
NASA Astrophysics Data System (ADS)
Klotz, S. P.; Hansen, J.; Pauley, P.; Sestak, M.; Wittmann, P.; Skupniewicz, C.; Nelson, G.
2012-12-01
The Navy Ensemble Forecast Verification System (NEFVS) has been promoted recently to operational status at the U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). NEFVS processes FNMOC and National Centers for Environmental Prediction (NCEP) meteorological and ocean wave ensemble forecasts, gridded forecast analyses, and innovation (observational) data output by FNMOC's data assimilation system. The NEFVS framework consists of statistical analysis routines, a variety of pre- and post-processing scripts to manage data and plot verification metrics, and a master script to control application workflow. NEFVS computes metrics that include forecast bias, mean-squared error, conditional error, conditional rank probability score, and Brier score. The system also generates reliability and Receiver Operating Characteristic diagrams. In this presentation we describe the operational framework of NEFVS and show examples of verification products computed from ensemble forecasts, meteorological observations, and forecast analyses. The construction and deployment of NEFVS addresses important operational and scientific requirements within Navy Meteorology and Oceanography (METOC). These include computational capabilities for assessing the reliability and accuracy of meteorological and ocean wave forecasts in an operational environment, for quantifying effects of changes and potential improvements to the Navy's forecast models, and for comparing the skill of forecasts from different forecast systems. NEFVS also supports the Navy's collaboration with the U.S. Air Force, NCEP, and Environment Canada in the North American Ensemble Forecast System (NAEFS) project and with the Air Force and the National Oceanic and Atmospheric Administration (NOAA) in the National Unified Operational Prediction Capability (NUOPC) program. This program is tasked with eliminating unnecessary duplication within the three agencies, accelerating the transition of new technology, such as multi-model ensemble forecasting, to U.S. Department of Defense use, and creating a superior U.S. global meteorological and oceanographic prediction capability. Forecast verification is an important component of NAEFS and NUOPC.
NASA Astrophysics Data System (ADS)
Rollinson, C.; Simkins, J.; Fer, I.; Desai, A. R.; Dietze, M.
2017-12-01
Simulations of ecosystem dynamics and comparisons with empirical data require accurate, continuous, and often sub-daily meteorology records that are spatially aligned to the scale of the empirical data. A wealth of meteorology data for the past, present, and future is available through site-specific observations, modern reanalysis products, and gridded GCM simulations. However, these products are mismatched in spatial and temporal resolution, often with both different means and seasonal patterns. We have designed and implemented a two-step meteorological downscaling and ensemble generation method that combines multiple meteorology data products through debiasing and temporal downscaling protocols. Our methodology is designed to preserve the covariance among seven meteorological variables for use as drivers in ecosystem model simulations: temperature, precipitation, short- and longwave radiation, surface pressure, humidity, and wind. Furthermore, our method propagates uncertainty through the downscaling process and results in ensembles of meteorology that can be compared to paleoclimate reconstructions and used to analyze the effects of both high- and low-frequency climate anomalies on ecosystem dynamics. Using a multiple linear regression approach, we have combined hourly, 0.125-degree gridded data from the NLDAS (1980-present) with CRUNCEP (1901-2010) and CMIP5 historical (1850-2005), past millennium (850-1849), and future (1950-2100) GCM simulations. This has resulted in an ensemble of continuous, hourly-resolved meteorology from from the paleo era into the future with variability in weather events as well as low-frequency climatic changes. We investigate the influence of extreme sub-daily weather phenomena versus long-term climatic changes in an ensemble of ecosystem models that range in atmospheric and biological complexity. Through data assimilation with paleoclimate reconstructions of past climate, we can improve data-model comparisons using observations of vegetation change from the past 1200 years. Accounting for driver uncertainty in model evaluation can help determine the relative influence of structural versus parameterization errors in ecosystem modelings.
Evaluating Aerosol Process Modules within the Framework of the Aerosol Modeling Testbed
NASA Astrophysics Data System (ADS)
Fast, J. D.; Velu, V.; Gustafson, W. I.; Chapman, E.; Easter, R. C.; Shrivastava, M.; Singh, B.
2012-12-01
Factors that influence predictions of aerosol direct and indirect forcing, such as aerosol mass, composition, size distribution, hygroscopicity, and optical properties, still contain large uncertainties in both regional and global models. New aerosol treatments are usually implemented into a 3-D atmospheric model and evaluated using a limited number of measurements from a specific case study. Under this modeling paradigm, the performance and computational efficiency of several treatments for a specific aerosol process cannot be adequately quantified because many other processes among various modeling studies (e.g. grid configuration, meteorology, emission rates) are different as well. The scientific community needs to know the advantages and disadvantages of specific aerosol treatments when the meteorology, chemistry, and other aerosol processes are identical in order to reduce the uncertainties associated with aerosols predictions. To address these issues, an Aerosol Modeling Testbed (AMT) has been developed that systematically and objectively evaluates new aerosol treatments for use in regional and global models. The AMT consists of the modular Weather Research and Forecasting (WRF) model, a series testbed cases for which extensive in situ and remote sensing measurements of meteorological, trace gas, and aerosol properties are available, and a suite of tools to evaluate the performance of meteorological, chemical, aerosol process modules. WRF contains various parameterizations of meteorological, chemical, and aerosol processes and includes interactive aerosol-cloud-radiation treatments similar to those employed by climate models. In addition, the physics suite from the Community Atmosphere Model version 5 (CAM5) have also been ported to WRF so that they can be tested at various spatial scales and compared directly with field campaign data and other parameterizations commonly used by the mesoscale modeling community. Data from several campaigns, including the 2006 MILAGRO, 2008 ISDAC, 2008 VOCALS, 2010 CARES, and 2010 CalNex campaigns, have been incorporated into the AMT as testbed cases. Data from operational networks (e.g. air quality, meteorology, satellite) are also included in the testbed cases to supplement the field campaign data. The CARES and CalNex testbed cases are used to demonstrate how the AMT can be used to assess the strengths and weaknesses of simple and complex representations of aerosol processes in relation to computational cost. Anticipated enhancements to the AMT and how this type of testbed can be used by the scientific community to foster collaborations and coordinate aerosol modeling research will also be discussed.
NASA Astrophysics Data System (ADS)
Lemone, Margaret A.; Waukau, Patricia L.
1982-11-01
The names of 927 women who are or have been active in meteorology or closely related fields have been obtained from various sources. Of these women, at least 500 are presently active. An estimated 4-5% of the total number of Ph.D.s in meteorology are awarded to women. About 10% of those receiving B.S. and M.S. degrees are women.The work patterns, accomplishments, and salaries of employed women meteorologists have been summarized from 330 responses to questionnaires, as functions of age, family status, part- or full-time working status, and employing institutions. It was found that women meteorologists holding Ph.D.s are more likely than their male counterparts to be employed by universities. As increasing number of women were employed in operational meteorology, although few of them were married and fewer still responsible for children. Several women were employed by private industry and some had advanced into managerial positions, although at the present time, such positions remain out of the reach of most women.The subjective and objective effects of several gender-related factors have been summarized from the comments and responses to the questionnaires. The primary obstacles to advancement were found to be part-time work and the responsibility for children. Part-time work was found to have a clearly negative effect on salary increase as a function of age. prejudicated discrimination and rules negatively affecting women remain important, especially to the older women, and affirmative action programs are generally seen as beneficial.Surprisingly, in contrast to the experience of women in other fields of science, women Ph.D.s in meteorology earn salaries comparable of their employment in government or large corporations and universities where there are strong affirmative action programs and above-average salaries. Based on the responses to the questionnaire, the small size of the meteorological community is also a factor, enabling women to become recognized quickly as individuals. It also may be partially attributed to the relative youth of the women involved. They are too young to have encountered the severe discrimination others experienced in the past, and too young to have reached the barriers that have traditionally prevented women from advancing to higher positions. No figures are available that would allow comparison between salaries of male and female holders of bachelor's and master's degrees.
A Method for Evaluation of Model-Generated Vertical Profiles of Meteorological Variables
2016-03-01
3 2.1 RAOB Soundings and WRF Output for Profile Generation 3 2.2 Height-Based Profiles 5 2.3 Pressure-Based Profiles 5 3. Comparisons 8 4...downward arrow. The blue lines represent sublayers with sublayer means indicated by red triangles. Circles indicate the observations or WRF output...9 Table 3 Sample of differences in listed variables derived from WRF and RAOB data
NASA Astrophysics Data System (ADS)
Miller, J. N.; Bernacchi, C.
2016-12-01
Second-generation biofuel crops are being planted at an increasing extent around the globe. Changing land use from common field crops to perennial biofuel crops such as miscanthus or switchgrass is expected to alter ecohydrology via changes in evapotranspiration (ET). However, the direction in which evapotranspiration will shift, either partitioning more moisture through soil evaporation (E) or through plant transpiration (T) is uncertain. To investigate how land conversion from maize to miscanthus affects ET partitioning we measured the isotopic composition of water vapor via continuous air sampling. We obtained continuous diurnal measurements of δ2H and δ18O for miscanthus and maize on multiple days over the course of the growing season. Water vapor isotopes drawn from two heights were measured at 2 Hz using a cavity ringdown spectrometer and partitioned into components of E and T using a simple mixing equation. Partitioning was also accomplished with a combination of sap flow sensors and soil lysimeters. Preliminary results reveal that while daily transpiration fraction can be strongly influenced by meteorological events, the whole season transpiration fraction dominates variations in ET in miscanthus fields more so than in fields of maize.
Latency in Visionic Systems: Test Methods and Requirements
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Arthur, J. J., III; Williams, Steven P.; Kramer, Lynda J.
2005-01-01
A visionics device creates a pictorial representation of the external scene for the pilot. The ultimate objective of these systems may be to electronically generate a form of Visual Meteorological Conditions (VMC) to eliminate weather or time-of-day as an operational constraint and provide enhancement over actual visual conditions where eye-limiting resolution may be a limiting factor. Empirical evidence has shown that the total system delays or latencies including the imaging sensors and display systems, can critically degrade their utility, usability, and acceptability. Definitions and measurement techniques are offered herein as common test and evaluation methods for latency testing in visionics device applications. Based upon available data, very different latency requirements are indicated based upon the piloting task, the role in which the visionics device is used in this task, and the characteristics of the visionics cockpit display device including its resolution, field-of-regard, and field-of-view. The least stringent latency requirements will involve Head-Up Display (HUD) applications, where the visionics imagery provides situational information as a supplement to symbology guidance and command information. Conversely, the visionics system latency requirement for a large field-of-view Head-Worn Display application, providing a Virtual-VMC capability from which the pilot will derive visual guidance, will be the most stringent, having a value as low as 20 msec.
Advanced Corrections for InSAR Using GPS and Numerical Weather Models
NASA Astrophysics Data System (ADS)
Cossu, F.; Foster, J. H.; Amelung, F.; Varugu, B. K.; Businger, S.; Cherubini, T.
2017-12-01
We present results from an investigation into the application of numerical weather models for generating tropospheric correction fields for Interferometric Synthetic Aperture Radar (InSAR). We apply the technique to data acquired from a UAVSAR campaign as well as from the CosmoSkyMed satellites. The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting InSAR's potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric models covering the Big Island of Hawaii and an even higher, 300 m resolution grid over the Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate heterogeneous information from the GPS data into the atmospheric models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. Comparison of the InSAR data, our atmospheric analyses, and assessments of the active local and mesoscale meteorological processes allows us to assess under what conditions the technique works most effectively. This work will produce best-practice recommendations for the use of weather models for InSAR correction, and inform efforts to design a global strategy for the NISAR mission, for both low-latency and definitive atmospheric correction products.
Towards the Next Generation Air Quality Modeling System ...
The community multiscale air quality (CMAQ) model of the U.S. Environmental Protection Agency is one of the most widely used air quality model worldwide; it is employed for both research and regulatory applications at major universities and government agencies for improving understanding of the formation and transport of air pollutants. It is noted, however, that air quality issues and climate change assessments need to be addressed globally recognizing the linkages and interactions between meteorology and atmospheric chemistry across a wide range of scales. Therefore, an effort is currently underway to develop the next generation air quality modeling system (NGAQM) that will be based on a global integrated meteorology and chemistry system. The model for prediction across scales-atmosphere (MPAS-A), a global fully compressible non-hydrostatic model with seamlessly refined centroidal Voronoi grids, has been chosen as the meteorological driver of this modeling system. The initial step of adapting MPAS-A for the NGAQM was to implement and test the physics parameterizations and options that are preferred for retrospective air quality simulations (see the work presented by R. Gilliam, R. Bullock, and J. Herwehe at this workshop). The next step, presented herein, would be to link the chemistry from CMAQ to MPAS-A to build a prototype for the NGAQM. Furthermore, the techniques to harmonize transport processes between CMAQ and MPAS-A, methodologies to connect the chemis
Analysis of the origin of Aufeis feed-water on the arctic slope of Alaska
NASA Technical Reports Server (NTRS)
Hall, D. K.; Roswell, C. (Principal Investigator)
1980-01-01
The origin of water feeding large aufeis fields (overflow river ice) on the Arctic Slope of Alaska is analyzed. Field measurements of two large aufeis fields on the eastern Arctic Slope were taken during July of 1978 and 1979. Measurements of aufeis extent and distribution were made using LANDSAT Multispectral Scanner Subsystem (MSS) satellite data from 1973 through 1979. In addition, ice cores were analyzed in the laboratory. Results of the field and laboratory studies indicate that the water derived from aufeis melt water has a chemical composition different from the adjacent upstream river water. Large aufeis fields are found in association with springs and faults thus indicating a subterranean origin of the feed water. In addition, the maximum extent of large aufeis fields was not found to follow meteorological patterns which would only be expected if the origin of the feed water were local. It is concluded that extent of large aufeis in a given river channel on the Arctic Slope is controlled by discharge from reservoirs of groundwater. It seems probable that precipitation passes into limestone aquifers in the Brooks Range, through an interconnecting system of subterranean fractures in calcareous rocks and ultimately discharges into alluvial sediments on the coastal plain to form aufeis. It is speculated that only small aufeis patches are affected by local meteorological parameters in the months just prior to aufeis formation.
NASA Technical Reports Server (NTRS)
Liu, Hong-Yu; Jacob, Daniel J.; Bey, Isabelle; Yantosca, Robert M.
2001-01-01
The atmospheric distributions of the aerosol tracers Pb-210 and Be-7 are simulated with a global three-dimensional model driven by assimilated meteorological observations for 1991-1996 from the NASA Goddard Earth Observing System (GEOSl). The combination of terrigenic Pb-210 and cosmogenic Be-7 provides a sensitive test of wet deposition and vertical transport in the model. Our simulation of moist transport and removal includes scavenging in wet convective updrafts (40% scavenging efficiency per kilometer of updraft), midlevel entrainment and detrainment, first-order rainout and washout from both convective anvils and large-scale precipitation, and cirrus precipitation. Observations from surface sites in specific years are compared to model results for the corresponding meteorological years, and observations from aircraft missions over the Pacific are compared to model results for the days of the flights. Initial simulation of Be-7 showed that cross-tropopause transport in the GEOSl meteorological fields is too fast by a factor of 3-4. We adjusted the stratospheric Be-7 source to correct the tropospheric simulation. Including this correction, we find that the model gives a good simulation of observed Pb-210 and Be-7 concentrations and deposition fluxes at surface sites worldwide, with no significant global bias and with significant success in reproducing the observed latitudinal and seasonal distributions. We achieve several improvements over previous models; in particular, we reproduce the observed Be-7 minimum in the tropics and show that its simulation is sensitive to rainout from convective anvils. Comparisons with aircraft observations up to 12-km altitude suggest that cirrus precipitation could be important for explaining the low concentrations in the middle and upper troposphere.
Impact of atmospheric circulation types on southwest Asian dust and Indian summer monsoon rainfall
NASA Astrophysics Data System (ADS)
Kaskaoutis, D. G.; Houssos, E. E.; Solmon, F.; Legrand, M.; Rashki, A.; Dumka, U. C.; Francois, P.; Gautam, R.; Singh, R. P.
2018-03-01
This study examines the meteorological feedback on dust aerosols and rainfall over the Arabian Sea and India during the summer monsoon using satellite data, re-analysis and a regional climate model. Based on days with excess aerosol loading over the central Ganges basin during May - September, two distinct atmospheric circulation types (weather clusters) are identified, which are associated with different dust-aerosol and rainfall distributions over south Asia, highlighting the role of meteorology on dust emissions and monsoon rainfall. Each cluster is characterized by different patterns of mean sea level pressure (MSLP), geopotential height at 700 hPa (Z700) and wind fields at 1000 hPa and at 700 hPa, thus modulating changes in dust-aerosol loading over the Arabian Sea. One cluster is associated with deepening of the Indian/Pakistan thermal low leading to (i) increased cyclonicity and thermal convection over northwestern India and Arabian Peninsula, (ii) intensification of the southwest monsoon off the Horn of Africa, iii) increase in dust emissions from Rub-Al-Khali and Somalian deserts, (iv) excess dust accumulation over the Arabian Sea and, (v) strengthening of the convergence of humid air masses and larger precipitation over Indian landmass compared to the other cluster. The RegCM4.4 model simulations for dust-aerosol and precipitation distributions support the meteorological fields and satellite observations, while the precipitation over India is positively correlated with the aerosol loading over the Arabian Sea on daily basis for both weather clusters. This study highlights the key role of meteorology and atmospheric dynamics on dust life cycle and rainfall over the monsoon-influenced south Asia.
A Lagrangian particle model to predict the airborne spread of foot-and-mouth disease virus
NASA Astrophysics Data System (ADS)
Mayer, D.; Reiczigel, J.; Rubel, F.
Airborne spread of bioaerosols in the boundary layer over a complex terrain is simulated using a Lagrangian particle model, and applied to modelling the airborne spread of foot-and-mouth disease (FMD) virus. Two case studies are made with study domains located in a hilly region in the northwest of the Styrian capital Graz, the second largest town in Austria. Mountainous terrain as well as inhomogeneous and time varying meteorological conditions prevent from application of so far used Gaussian dispersion models, while the proposed model can handle these realistically. In the model, trajectories of several thousands of particles are computed and the distribution of virus concentration near the ground is calculated. This allows to assess risk of infection areas with respect to animal species of interest, such as cattle, swine or sheep. Meteorological input data like wind field and other variables necessary to compute turbulence were taken from the new pre-operational version of the non-hydrostatic numerical weather prediction model LMK ( Lokal-Modell-Kürzestfrist) running at the German weather service DWD ( Deutscher Wetterdienst). The LMK model provides meteorological parameters with a spatial resolution of about 2.8 km. To account for the spatial resolution of 400 m used by the Lagrangian particle model, the initial wind field is interpolated upon the finer grid by a mass consistent interpolation method. Case studies depict a significant influence of local wind systems on the spread of virus. Higher virus concentrations at the upwind side of the hills and marginal concentrations in the lee are well observable, as well as canalization effects by valleys. The study demonstrates that the Lagrangian particle model is an appropriate tool for risk assessment of airborne spread of virus by taking into account the realistic orographic and meteorological conditions.
Impact of shade on outdoor thermal comfort-a seasonal field study in Tempe, Arizona.
Middel, Ariane; Selover, Nancy; Hagen, Björn; Chhetri, Nalini
2016-12-01
Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C-38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.
Adde, Antoine; Roux, Emmanuel; Mangeas, Morgan; Dessay, Nadine; Nacher, Mathieu; Dusfour, Isabelle; Girod, Romain; Briolant, Sébastien
2016-01-01
Local variation in the density of Anopheles mosquitoes and the risk of exposure to bites are essential to explain the spatial and temporal heterogeneities in the transmission of malaria. Vector distribution is driven by environmental factors. Based on variables derived from satellite imagery and meteorological observations, this study aimed to dynamically model and map the densities of Anopheles darlingi in the municipality of Saint-Georges de l’Oyapock (French Guiana). Longitudinal sampling sessions of An. darlingi densities were conducted between September 2012 and October 2014. Landscape and meteorological data were collected and processed to extract a panel of variables that were potentially related to An. darlingi ecology. Based on these data, a robust methodology was formed to estimate a statistical predictive model of the spatial-temporal variations in the densities of An. darlingi in Saint-Georges de l’Oyapock. The final cross-validated model integrated two landscape variables—dense forest surface and built surface—together with four meteorological variables related to rainfall, evapotranspiration, and the minimal and maximal temperatures. Extrapolation of the model allowed the generation of predictive weekly maps of An. darlingi densities at a resolution of 10-m. Our results supported the use of satellite imagery and meteorological data to predict malaria vector densities. Such fine-scale modeling approach might be a useful tool for health authorities to plan control strategies and social communication in a cost-effective, targeted, and timely manner. PMID:27749938
Adde, Antoine; Roux, Emmanuel; Mangeas, Morgan; Dessay, Nadine; Nacher, Mathieu; Dusfour, Isabelle; Girod, Romain; Briolant, Sébastien
2016-01-01
Local variation in the density of Anopheles mosquitoes and the risk of exposure to bites are essential to explain the spatial and temporal heterogeneities in the transmission of malaria. Vector distribution is driven by environmental factors. Based on variables derived from satellite imagery and meteorological observations, this study aimed to dynamically model and map the densities of Anopheles darlingi in the municipality of Saint-Georges de l'Oyapock (French Guiana). Longitudinal sampling sessions of An. darlingi densities were conducted between September 2012 and October 2014. Landscape and meteorological data were collected and processed to extract a panel of variables that were potentially related to An. darlingi ecology. Based on these data, a robust methodology was formed to estimate a statistical predictive model of the spatial-temporal variations in the densities of An. darlingi in Saint-Georges de l'Oyapock. The final cross-validated model integrated two landscape variables-dense forest surface and built surface-together with four meteorological variables related to rainfall, evapotranspiration, and the minimal and maximal temperatures. Extrapolation of the model allowed the generation of predictive weekly maps of An. darlingi densities at a resolution of 10-m. Our results supported the use of satellite imagery and meteorological data to predict malaria vector densities. Such fine-scale modeling approach might be a useful tool for health authorities to plan control strategies and social communication in a cost-effective, targeted, and timely manner.
Science: A History of Woman's Work
ERIC Educational Resources Information Center
Kadar, Agnes; Shupe, Barbara
1977-01-01
Discussed are significant female contributors to scientific discovery. Fields of inquiry include astronomy, geology, meteorology, physics, chemistry, public health and home economics. The importance of appropriate role models for female students in science as teachers and scientists is stressed. (CS)
Development of ambient PM 2.5 management strategies.
DOT National Transportation Integrated Search
2009-10-01
"Using analyzed and modeled field data on air quality and meteorology, researchers identified major contributors of fine particulate matter (PM2.5) in Fairbanks. This : project was an effort to help the city meet U.S. Environmental Protection Agency ...
Propagation of radar rainfall uncertainty in urban flood simulations
NASA Astrophysics Data System (ADS)
Liguori, Sara; Rico-Ramirez, Miguel
2013-04-01
This work discusses the results of the implementation of a novel probabilistic system designed to improve ensemble sewer flow predictions for the drainage network of a small urban area in the North of England. The probabilistic system has been developed to model the uncertainty associated to radar rainfall estimates and propagate it through radar-based ensemble sewer flow predictions. The assessment of this system aims at outlining the benefits of addressing the uncertainty associated to radar rainfall estimates in a probabilistic framework, to be potentially implemented in the real-time management of the sewer network in the study area. Radar rainfall estimates are affected by uncertainty due to various factors [1-3] and quality control and correction techniques have been developed in order to improve their accuracy. However, the hydrological use of radar rainfall estimates and forecasts remains challenging. A significant effort has been devoted by the international research community to the assessment of the uncertainty propagation through probabilistic hydro-meteorological forecast systems [4-5], and various approaches have been implemented for the purpose of characterizing the uncertainty in radar rainfall estimates and forecasts [6-11]. A radar-based ensemble stochastic approach, similar to the one implemented for use in the Southern-Alps by the REAL system [6], has been developed for the purpose of this work. An ensemble generator has been calibrated on the basis of the spatial-temporal characteristics of the residual error in radar estimates assessed with reference to rainfall records from around 200 rain gauges available for the year 2007, previously post-processed and corrected by the UK Met Office [12-13]. Each ensemble member is determined by summing a perturbation field to the unperturbed radar rainfall field. The perturbations are generated by imposing the radar error spatial and temporal correlation structure to purely stochastic fields. A hydrodynamic sewer network model implemented in the Infoworks software was used to model the rainfall-runoff process in the urban area. The software calculates the flow through the sewer conduits of the urban model using rainfall as the primary input. The sewer network is covered by 25 radar pixels with a spatial resolution of 1 km2. The majority of the sewer system is combined, carrying both urban rainfall runoff as well as domestic and trade waste water [11]. The urban model was configured to receive the probabilistic radar rainfall fields. The results showed that the radar rainfall ensembles provide additional information about the uncertainty in the radar rainfall measurements that can be propagated in urban flood modelling. The peaks of the measured flow hydrographs are often bounded within the uncertainty area produced by using the radar rainfall ensembles. This is in fact one of the benefits of using radar rainfall ensembles in urban flood modelling. More work needs to be done in improving the urban models, but this is out of the scope of this research. The rainfall uncertainty cannot explain the whole uncertainty shown in the flow simulations, and additional sources of uncertainty will come from the structure of the urban models as well as the large number of parameters required by these models. Acknowledgements The authors would like to acknowledge the BADC, the UK Met Office and the UK Environment Agency for providing the various data sets. We also thank Yorkshire Water Services Ltd for providing the urban model. The authors acknowledge the support from the Engineering and Physical Sciences Research Council (EPSRC) via grant EP/I012222/1. References [1] Browning KA, 1978. Meteorological applications of radar. Reports on Progress in Physics 41 761 Doi: 10.1088/0034-4885/41/5/003 [2] Rico-Ramirez MA, Cluckie ID, Shepherd G, Pallot A, 2007. A high-resolution radar experiment on the island of Jersey. Meteorological Applications 14: 117-129. [3] Villarini G, Krajewski WF, 2010. Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surveys in Geophysics 31: 107-129. [4] Rossa A, Liechti K, Zappa M, Bruen M, Germann U, Haase G, Keil C, Krahe P, 2011. The COST 731 Action: A review on uncertainty propagation in advanced hydrometeorological forecast systems. Atmospheric Research 100, 150-167. [5] Rossa A, Bruen M, Germann U, Haase G, Keil C, Krahe P, Zappa M, 2010. Overview and Main Results on the interdisciplinary effort in flood forecasting COST 731-Propagation of Uncertainty in Advanced Meteo-Hydrological Forecast Systems. Proceedings of Sixth European Conference on Radar in Meteorology and Hydrology ERAD 2010. [6] Germann U, Berenguer M, Sempere-Torres D, Zappa M, 2009. REAL - ensemble radar precipitation estimation for hydrology in a mountainous region. Quarterly Journal of the Royal Meteorological Society 135: 445-456. [8] Bowler NEH, Pierce CE, Seed AW, 2006. STEPS: a probabilistic precipitation forecasting scheme which merges and extrapolation nowcast with downscaled NWP. Quarterly Journal of the Royal Meteorological Society 132: 2127-2155. [9] Zappa M, Rotach MW, Arpagaus M, Dorninger M, Hegg C, Montani A, Ranzi R, Ament F, Germann U, Grossi G et al., 2008. MAP D-PHASE: real-time demonstration of hydrological ensemble prediction systems. Atmospheric Science Letters 9, 80-87. [10] Liguori S, Rico-Ramirez MA. Quantitative assessment of short-term rainfall forecasts from radar nowcasts and MM5 forecasts. Hydrological Processes, accepted article. DOI: 10.1002/hyp.8415 [11] Liguori S, Rico-Ramirez MA, Schellart ANA, Saul AJ, 2012. Using probabilistic radar rainfall nowcasts and NWP forecasts for flow prediction in urban catchments. Atmospheric Research 103: 80-95. [12] Harrison DL, Driscoll SJ, Kitchen M, 2000. Improving precipitation estimates from weather radar using quality control and correction techniques. Meteorological Applications 7: 135-144. [13] Harrison DL, Scovell RW, Kitchen M, 2009. High-resolution precipitation estimates for hydrological uses. Proceedings of the Institution of Civil Engineers - Water Management 162: 125-135.
Escompte Pre-modelling Studies In The Marseille Area.
NASA Astrophysics Data System (ADS)
Meleux, F.; Rosset, R.
On June and July 2001, the campaign ESCOMPTE took place in the Marseille area in southern of France, with the aim of generating a detailed 3-D data base for the study of dynamics and chemistry of high pollution events so as to validate and improve air quality models. Previous to this field experiment, a pre-modelling exercise has been performed to document the dynamic interactions between sea and land breezes and orographics flows over this complex topographical area. This study was carried out using a nesting procedure at local and regional scales using the MESO-NH model (jointly developed by Laboratoire d'Aérologie and Meteofrance at Toulouse). Tracers emitted at various locations in the Marseille and Etang de Berre areas were first fol- lowed, then in a second step, full chemistry simulations have been run for two selected periods on June and July 1999, quite similar to the meteorological situations met dur- ing the IOP2a and the IOP4 in the 2001 campaign. The performance of the model has been assessed by comparing measured data with simulated data for meteorological pa- rameters and ozone. The general ability of the model to correctly simulate these two situations allows to further study ozone plume developments in more details. In par- ticular, these studies bear upon the relative roles of O3 transport versus O3 chemical production, as a function of distance within the plume to anthropogenic emissions and biogenic emissions, together with ozone daily variations and peak values observed at rural sites.
NASA Astrophysics Data System (ADS)
Hinnant, F.
2009-12-01
The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD and will provide continuity for the NASA Earth Observation System with the launch of the NPOESS Preparatory Project. This poster will provide a top level status update of the program, as well as an overview of the NPOESS system architecture, which includes four segments. The space segment includes satellites in two orbits that carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The NPOESS system design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for NPOESS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes NPOESS satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government as well as remote terminal users. The Launch Support Segment completes the four segments that make up the NPOESS system that will enhance the connectivity between research and operations and provide critical operational and scientific environmental measurements to military, civil, and scientific users until 2026.
National Polar-orbiting Operational Environmental Satellite System (NPOESS) Design and Architecture
NASA Astrophysics Data System (ADS)
Hinnant, F.
2008-12-01
The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system - the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS will replace the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD and will provide continuity for the NASA Earth Observing System (EOS) with the launch of the NPOESS Preparatory Project (NPP). This poster will provide an overview of the NPOESS architecture, which includes four segments. The space segment includes satellites in two orbits that carry a suite of sensors to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the Earth, atmosphere, and near-Earth space environment. The NPOESS design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for NPOESS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes NPOESS satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government as well as to remote terminal users. The Launch Support Segment completes the four segments that make up NPOESS that will enhance the connectivity between research and operations and provide critical operational and scientific environmental measurements to military, civil, and scientific users until 2026.
NASA Astrophysics Data System (ADS)
Knowland, K. E.; Ott, L.; Hodges, K.; Wargan, K.; Duncan, B. N.
2016-12-01
Stratospheric intrusions (SI) - the introduction of ozone-rich stratospheric air into the troposphere - have been linked with surface ozone air quality exceedences, especially at the high elevations in the western USA in springtime. However, the impact of SIs in the remaining seasons and over the rest of the USA is less clear. This study investigates the atmospheric dynamics that generate SIs over the western USA and the different mechanisms through which SIs may influence atmospheric chemistry and surface air quality over the eastern USA. An analysis of the spatiotemporal variability of SIs over the continental US is performed using NASA's Modern-Era Retrospective Analysis for Research and Applications Version-2 (MERRA-2) reanalysis dataset and other Goddard Earth Observing System Model, Version 5 (GEOS-5) model products. Both upper-level and lower-level dynamical features are examined on seasonal timescales using the tracking algorithm of Hodges (1995, 1999). We show how upper-level relative vorticity maxima - representing troughs and cut-off lows - can be tracked and related to the lower-level storm tracks. The influence of both sets of tracks on the assimilated MERRA-2 ozone and meteorological parameters throughout the troposphere and lower stratosphere is quantified. By focusing on the major modes of variability that influence the weather patterns in the USA, namely the Pacific North American (PNA) pattern, Arctic Oscillation (AO) and the North Atlantic Oscillation (NAO), predicative patterns in the meteorological fields that are associated with SIs are identified for their regional effects.
A deep belief network approach using VDRAS data for nowcasting
NASA Astrophysics Data System (ADS)
Han, Lei; Dai, Jie; Zhang, Wei; Zhang, Changjiang; Feng, Hanlei
2018-04-01
Nowcasting or very short-term forecasting convective storms is still a challenging problem due to the high nonlinearity and insufficient observation of convective weather. As the understanding of the physical mechanism of convective weather is also insufficient, the numerical weather model cannot predict convective storms well. Machine learning approaches provide a potential way to nowcast convective storms using various meteorological data. In this study, a deep belief network (DBN) is proposed to nowcast convective storms using the real-time re-analysis meteorological data. The nowcasting problem is formulated as a classification problem. The 3D meteorological variables are fed directly to the DBN with dimension of input layer 6*6*80. Three hidden layers are used in the DBN and the dimension of output layer is two. A box-moving method is presented to provide the input features containing the temporal and spatial information. The results show that the DNB can generate reasonable prediction results of the movement and growth of convective storms.
NASA Astrophysics Data System (ADS)
Henderson, J. M.; Eluszkiewicz, J.; Mountain, M. E.; Nehrkorn, T.; Chang, R. Y.-W.; Karion, A.; Miller, J. B.; Sweeney, C.; Steiner, N.; Wofsy, S. C.; Miller, C. E.
2014-10-01
This paper describes the atmospheric modeling that underlies the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) science analysis, including its meteorological and atmospheric transport components (Polar variant of the Weather Research and Forecasting (WRF) and Stochastic Time Inverted Lagrangian Transport (STILT) models), and provides WRF validation for May-October 2012 and March-November 2013 - the first two years of the aircraft field campaign. A triply nested computational domain for WRF was chosen so that the innermost domain with 3.3 km grid spacing encompasses the entire mainland of Alaska and enables the substantial orography of the state to be represented by the underlying high-resolution topographic input field. Summary statistics of the WRF model performance on the 3.3 km grid indicate good overall agreement with quality-controlled surface and radiosonde observations. Two-meter temperatures are generally too cold by approximately 1.4 K in 2012 and 1.1 K in 2013, while 2 m dewpoint temperatures are too low (dry) by 0.2 K in 2012 and too high (moist) by 0.6 K in 2013. Wind speeds are biased too low by 0.2 m s-1 in 2012 and 0.3 m s-1 in 2013. Model representation of upper level variables is very good. These measures are comparable to model performance metrics of similar model configurations found in the literature. The high quality of these fine-resolution WRF meteorological fields inspires confidence in their use to drive STILT for the purpose of computing surface influences ("footprints") at commensurably increased resolution. Indeed, footprints generated on a 0.1° grid show increased spatial detail compared with those on the more common 0.5° grid, lending itself better for convolution with flux models for carbon dioxide and methane across the heterogeneous Alaskan landscape. Ozone deposition rates computed using STILT footprints indicate good agreement with observations and exhibit realistic seasonal variability, further indicating that WRF-STILT footprints are of high quality and will support accurate estimates of CO2 and CH4 surface-atmosphere fluxes using CARVE observations.
NASA Astrophysics Data System (ADS)
Henderson, J. M.; Eluszkiewicz, J.; Mountain, M. E.; Nehrkorn, T.; Chang, R. Y.-W.; Karion, A.; Miller, J. B.; Sweeney, C.; Steiner, N.; Wofsy, S. C.; Miller, C. E.
2015-04-01
This paper describes the atmospheric modeling that underlies the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) science analysis, including its meteorological and atmospheric transport components (polar variant of the Weather Research and Forecasting (WRF) and Stochastic Time Inverted Lagrangian Transport (STILT) models), and provides WRF validation for May-October 2012 and March-November 2013 - the first 2 years of the aircraft field campaign. A triply nested computational domain for WRF was chosen so that the innermost domain with 3.3 km grid spacing encompasses the entire mainland of Alaska and enables the substantial orography of the state to be represented by the underlying high-resolution topographic input field. Summary statistics of the WRF model performance on the 3.3 km grid indicate good overall agreement with quality-controlled surface and radiosonde observations. Two-meter temperatures are generally too cold by approximately 1.4 K in 2012 and 1.1 K in 2013, while 2 m dewpoint temperatures are too low (dry) by 0.2 K in 2012 and too high (moist) by 0.6 K in 2013. Wind speeds are biased too low by 0.2 m s-1 in 2012 and 0.3 m s-1 in 2013. Model representation of upper level variables is very good. These measures are comparable to model performance metrics of similar model configurations found in the literature. The high quality of these fine-resolution WRF meteorological fields inspires confidence in their use to drive STILT for the purpose of computing surface influences ("footprints") at commensurably increased resolution. Indeed, footprints generated on a 0.1° grid show increased spatial detail compared with those on the more common 0.5° grid, better allowing for convolution with flux models for carbon dioxide and methane across the heterogeneous Alaskan landscape. Ozone deposition rates computed using STILT footprints indicate good agreement with observations and exhibit realistic seasonal variability, further indicating that WRF-STILT footprints are of high quality and will support accurate estimates of CO2 and CH4 surface-atmosphere fluxes using CARVE observations.
NASA Astrophysics Data System (ADS)
French, N. H. F.; Ottmar, R. D.; Brown, T. J.; Larkin, N. K.
2017-12-01
The Fire and Smoke Model Evaluation Experiment (FASMEE) is an integrative research effort to identify and collect critical measurements to improve operational wildland fire and smoke prediction systems. FASMEE has two active phases and one suggested phase. Phase 1 is the analysis and planning process to assess the current state of fire-plume-smoke modeling and to determine the critical measurements required to evaluate and improve these operational fire and smoke models. As the major deliverable for Phase 1, a study plan has been completed that describes the measurement needs, field campaigns, and command, safety and air space de-confliction plans necessary to complete the FASMEE project. Phase 2 is a set of field campaigns to collect data during 2019-2022. Future Improvements would be a set of analyses and model improvements based on the data collected within Phase 2 that is dependent on identifying future funding sources. In this presentation, we will review the FASMEE Study Plan and detailed measurements and conditions expected for the four to five proposed research burns. The recommended measurements during Phase 2 span the four interrelated disciplines of FASMEE: fuels and consumption, fire behavior and energy, plume dynamics and meteorology, and smoke emissions, chemistry, and transport. Fuel type, condition, and consumption during wildland fire relates to several fire impacts including radiative heating, which provides the energy that drives fire dynamics. Local-scale meteorology is an important factor which relates to atmospheric chemistry, dispersion, and transport. Plume dynamics provide the connection between fire behavior and far-field smoke dispersion, because it determines the vertical distribution of the emissions. Guided by the data needs and science questions generated during Phase 1, three wildland fire campaigns were selected. These included the western wildfire campaign (rapid deployment aimed at western wildfires supporting NOAA, NASA, and NSF smoke flights), southwestern campaign (targeting high intensity prescribed fires), and southeastern campaign (targeting large and higher than average fuel loadings with important smoke management relevancy).
A new concept to study the effect of climate change on different flood types
NASA Astrophysics Data System (ADS)
Nissen, Katrin; Nied, Manuela; Pardowitz, Tobias; Ulbrich, Uwe; Merz, Bruno
2014-05-01
Flooding is triggered by the interaction of various processes. Especially important are the hydrological conditions prior to the event (e.g. soil saturation, snow cover) and the meteorological conditions during flood development (e.g. rainfall, temperature). Depending on these (pre-) conditions different flood types may develop such as long-rain floods, short-rain floods, flash floods, snowmelt floods and rain-on-snow floods. A new concept taking these factors into account is introduced and applied to flooding in the Elbe River basin. During the period September 1957 to August 2002, 82 flood events are identified and classified according to their flood type. The hydrological and meteorological conditions at each day during the analysis period are detemined. In case of the hydrological conditions, a soil moisture pattern classification is carried out. Soil moisture is simulated with a rainfall-runoff model driven by atmospheric observations. Days of similar soil moisture patterns are identified by a principle component analysis and a subsequent cluster analysis on the leading principal components. The meteorological conditions are identified by applying a cluster analysis to the geopotential height, temperature and humidity fields of the ERA40 reanalysis data set using the SANDRA cluster algorithm. We are able to identify specific pattern combinations of hydrological pre-conditions and meteorological conditions which favour different flood types. Based on these results it is possible to analyse the effect of climate change on different flood types. As an example we show first results obtained using an ensemble of climate scenario simulations of ECHAM5 MPIOM model, taking only the changes in the meteorological conditions into account. According to the simulations, the frequency of the meteorological patterns favouring long-rain, short-rain and flash floods will not change significantly under future climate conditions. A significant increase is, however, predicted for the amount of precipitation associated with many of the relevant meteorological patterns. The increase varies between 12 and 67% depending on the weather pattern.
Preliminary validation of WRF model in two Arctic fjords, Hornsund and Porsanger
NASA Astrophysics Data System (ADS)
Aniskiewicz, Paulina; Stramska, Małgorzata
2017-04-01
Our research is focused on development of efficient modeling system for arctic fjords. This tool should include high-resolution meteorological data derived using downscaling approach. In this presentation we have focused on modeling, with high spatial resolution, of the meteorological conditions in two Arctic fjords: Hornsund (H), located in the western part of Svalbard archipelago and Porsanger (P) located in the coastal waters of the Barents Sea. The atmospheric downscaling is based on The Weather Research and Forecasting Model (WRF, www.wrf-model.org) with polar stereographic projection. We have created two parent domains with grid point distances of about 3.2 km (P) and 3.0 km (H) and with nested domains (almost 5 times higher resolution than parent domains). We tested what is the impact of the spatial resolution of the model on derived meteorological quantities. For both fjords the input topography data resolution is 30 sec. To validate the results we have used meteorological data from the Norwegian Meteorological Institute for stations Lakselv (L) and Honningsvåg (Ho) located in the inner and outer parts of the Porsanger fjord as well as from station in the outer part of the Hornsund fjord. We have estimated coefficients of determination (r2), statistical errors (St) and systematic errors (Sy) between measured and modelled air temperature and wind speed at each station. This approach will allow us to create high resolution spatially variable meteorological fields that will serve as forcing for numerical models of the fjords. We will investigate the role of different meteorological quantities (e. g. wind, solar insolation, precipitation) on hydrohraphic processes in fjords. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018. This work was also funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support comes from the Institute of Oceanology (IO PAN).
Kustas, William P.; Moran, M.S.; Jackson, R. D.; Gay, L.W.; Duell, L.F.W.; Kunkel, K.E.; Matthias, A.D.
1990-01-01
Remotely sensed surface temperature and reflectance in the visible and near infrared wavebands along with ancilliary meteorological data provide the capability of computing three of the four surface energy balance components (i.e., net radiation, soil heat flux, and sensible heat flux) at different spatial and temporal scales. As a result, under nonadvective conditions, this enables the estimation of the remaining term (i.e., the latent heat flux). One of the practical applications with this approach is to produce evapotranspiration (ET) maps for agricultural regions which consist of an array of fields containing different crops at varying stages of growth and soil moisture conditions. Such a situation exists in the semiarid southwest at the University of Arizona Maricopa Agricultural Center, south of Phoenix. For one day (14 June 1987), surface temperature and reflectance measurements from an aircraft 150 m above ground level (agl) were acquired over fields from zero to nearly full cover at four times between 1000 MST and 1130 MST. The diurnal pattern of the surface energy balance was measured over four fields, which included alfalfa at 60% cover, furrowed cotton at 20% and 30% cover, and partially plowed what stubble. Instantaneous and daily values of ET were estimated for a representative area around each flux site with an energy balance model that relies on a reference ET. This reference value was determined with remotely sensed data and several meteorological inputs. The reference ET was adjusted to account for the different surface conditions in the other fields using only remotely sensed variables. A comparison with the flux measurements suggests the model has difficulties with partial canopy conditions, especially related to the estimation of the sensible heat flux. The resulting errors for instantaneous ET were on the order of 100 W m-2 and for daily values of order 2 mm day-1. These findings suggest future research should involve development of methods to account for the variability of meteorological parameters brought about by changes in surface conditions and improvements in the modeling of sensible heat transfer across the surface-atmosphere interface for partial canopy conditions using remote sensing information. ?? 1990.
Firestone, Simon M; Cogger, Naomi; Ward, Michael P; Toribio, Jenny-Ann L M L; Moloney, Barbara J; Dhand, Navneet K
2012-01-01
The influences of relative humidity and ambient temperature on the transmission of influenza A viruses have recently been established under controlled laboratory conditions. The interplay of meteorological factors during an actual influenza epidemic is less clear, and research into the contribution of wind to epidemic spread is scarce. By applying geostatistics and survival analysis to data from a large outbreak of equine influenza (A/H3N8), we quantified the association between hazard of infection and air temperature, relative humidity, rainfall, and wind velocity, whilst controlling for premises-level covariates. The pattern of disease spread in space and time was described using extraction mapping and instantaneous hazard curves. Meteorological conditions at each premises location were estimated by kriging daily meteorological data and analysed as time-lagged time-varying predictors using generalised Cox regression. Meteorological covariates time-lagged by three days were strongly associated with hazard of influenza infection, corresponding closely with the incubation period of equine influenza. Hazard of equine influenza infection was higher when relative humidity was <60% and lowest on days when daily maximum air temperature was 20-25°C. Wind speeds >30 km hour(-1) from the direction of nearby infected premises were associated with increased hazard of infection. Through combining detailed influenza outbreak and meteorological data, we provide empirical evidence for the underlying environmental mechanisms that influenced the local spread of an outbreak of influenza A. Our analysis supports, and extends, the findings of studies into influenza A transmission conducted under laboratory conditions. The relationships described are of direct importance for managing disease risk during influenza outbreaks in horses, and more generally, advance our understanding of the transmission of influenza A viruses under field conditions.
Draxler, Roland; Arnold, Dèlia; Chino, Masamichi; Galmarini, Stefano; Hort, Matthew; Jones, Andrew; Leadbetter, Susan; Malo, Alain; Maurer, Christian; Rolph, Glenn; Saito, Kazuo; Servranckx, René; Shimbori, Toshiki; Solazzo, Efisio; Wotawa, Gerhard
2015-01-01
Five different atmospheric transport and dispersion model's (ATDM) deposition and air concentration results for atmospheric releases from the Fukushima Daiichi nuclear power plant accident were evaluated over Japan using regional (137)Cs deposition measurements and (137)Cs and (131)I air concentration time series at one location about 110 km from the plant. Some of the ATDMs used the same and others different meteorological data consistent with their normal operating practices. There were four global meteorological analyses data sets available and two regional high-resolution analyses. Not all of the ATDMs were able to use all of the meteorological data combinations. The ATDMs were configured identically as much as possible with respect to the release duration, release height, concentration grid size, and averaging time. However, each ATDM retained its unique treatment of the vertical velocity field and the wet and dry deposition, one of the largest uncertainties in these calculations. There were 18 ATDM-meteorology combinations available for evaluation. The deposition results showed that even when using the same meteorological analysis, each ATDM can produce quite different deposition patterns. The better calculations in terms of both deposition and air concentration were associated with the smoother ATDM deposition patterns. The best model with respect to the deposition was not always the best model with respect to air concentrations. The use of high-resolution mesoscale analyses improved ATDM performance; however, high-resolution precipitation analyses did not improve ATDM predictions. Although some ATDMs could be identified as better performers for either deposition or air concentration calculations, overall, the ensemble mean of a subset of better performing members provided more consistent results for both types of calculations. Published by Elsevier Ltd.
Firestone, Simon M.; Cogger, Naomi; Ward, Michael P.; Toribio, Jenny-Ann L. M. L.; Moloney, Barbara J.; Dhand, Navneet K.
2012-01-01
The influences of relative humidity and ambient temperature on the transmission of influenza A viruses have recently been established under controlled laboratory conditions. The interplay of meteorological factors during an actual influenza epidemic is less clear, and research into the contribution of wind to epidemic spread is scarce. By applying geostatistics and survival analysis to data from a large outbreak of equine influenza (A/H3N8), we quantified the association between hazard of infection and air temperature, relative humidity, rainfall, and wind velocity, whilst controlling for premises-level covariates. The pattern of disease spread in space and time was described using extraction mapping and instantaneous hazard curves. Meteorological conditions at each premises location were estimated by kriging daily meteorological data and analysed as time-lagged time-varying predictors using generalised Cox regression. Meteorological covariates time-lagged by three days were strongly associated with hazard of influenza infection, corresponding closely with the incubation period of equine influenza. Hazard of equine influenza infection was higher when relative humidity was <60% and lowest on days when daily maximum air temperature was 20–25°C. Wind speeds >30 km hour−1 from the direction of nearby infected premises were associated with increased hazard of infection. Through combining detailed influenza outbreak and meteorological data, we provide empirical evidence for the underlying environmental mechanisms that influenced the local spread of an outbreak of influenza A. Our analysis supports, and extends, the findings of studies into influenza A transmission conducted under laboratory conditions. The relationships described are of direct importance for managing disease risk during influenza outbreaks in horses, and more generally, advance our understanding of the transmission of influenza A viruses under field conditions. PMID:22536366
Uncertainty estimation of long-range ensemble forecasts of snowmelt flood characteristics
NASA Astrophysics Data System (ADS)
Kuchment, L.
2012-04-01
Long-range forecasts of snowmelt flood characteristics with the lead time of 2-3 months have important significance for regulation of flood runoff and mitigation of flood damages at almost all large Russian rivers At the same time, the application of current forecasting techniques based on regression relationships between the runoff volume and the indexes of river basin conditions can lead to serious errors in forecasting resulted in large economic losses caused by wrong flood regulation. The forecast errors can be caused by complicated processes of soil freezing and soil moisture redistribution, too high rate of snow melt, large liquid precipitation before snow melt. or by large difference of meteorological conditions during the lead-time periods from climatologic ones. Analysis of economic losses had shown that the largest damages could, to a significant extent, be avoided if the decision makers had an opportunity to take into account predictive uncertainty and could use more cautious strategies in runoff regulation. Development of methodology of long-range ensemble forecasting of spring/summer floods which is based on distributed physically-based runoff generation models has created, in principle, a new basis for improving hydrological predictions as well as for estimating their uncertainty. This approach is illustrated by forecasting of the spring-summer floods at the Vyatka River and the Seim River basins. The application of the physically - based models of snowmelt runoff generation give a essential improving of statistical estimates of the deterministic forecasts of the flood volume in comparison with the forecasts obtained from the regression relationships. These models had been used also for the probabilistic forecasts assigning meteorological inputs during lead time periods from the available historical daily series, and from the series simulated by using a weather generator and the Monte Carlo procedure. The weather generator consists of the stochastic models of daily temperature and precipitation. The performance of the probabilistic forecasts were estimated by the ranked probability skill scores. The application of Monte Carlo simulations using weather generator has given better results then using the historical meteorological series.
76 FR 490 - Marking Meteorological Evaluation Towers
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
... of energy generation. Wind energy, converted into electrical energy by wind turbines, is widely... turbine or wind farm, companies erect METs. These towers are used to gather wind data necessary for site... if the targeted area represents a potential location for the installation of wind turbines...
2015-08-27
and 2) preparing for the post-MODIS/MISR era using the Geostationary Operational Environmental Satellite (GOES). 3. Improve model representations of...meteorological property retrievals. In this study, using collocated data from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Geostationary
ATMOSPHERIC DISPERSION IN THE ARCTIC: WINTERTIME BOUNDARY-LAYER MEASUREMENTS
The wintertime arctic atmospheric boundary layer was investigated with micro-meteorological and SF6 tracer measurements collected in Prudhoe Bay, AK. he flat, snow-covered tundra surface at this site generates a very small (0.03 cm) surface roughness. he relatively warm maritime ...
Electric power from offshore wind via synoptic-scale interconnection
Kempton, Willett; Pimenta, Felipe M.; Veron, Dana E.; Colle, Brian A.
2010-01-01
World wind power resources are abundant, but their utilization could be limited because wind fluctuates rather than providing steady power. We hypothesize that wind power output could be stabilized if wind generators were located in a meteorologically designed configuration and electrically connected. Based on 5 yr of wind data from 11 meteorological stations, distributed over a 2,500 km extent along the U.S. East Coast, power output for each hour at each site is calculated. Each individual wind power generation site exhibits the expected power ups and downs. But when we simulate a power line connecting them, called here the Atlantic Transmission Grid, the output from the entire set of generators rarely reaches either low or full power, and power changes slowly. Notably, during the 5-yr study period, the amount of power shifted up and down but never stopped. This finding is explained by examining in detail the high and low output periods, using reanalysis data to show the weather phenomena responsible for steady production and for the occasional periods of low power. We conclude with suggested institutions appropriate to create and manage the power system analyzed here. PMID:20368464
NASA Technical Reports Server (NTRS)
Ghil, M.
1980-01-01
A unified theoretical approach to both the four-dimensional assimilation of asynoptic data and the initialization problem is attempted. This approach relies on the derivation of certain relationships between geopotential tendencies and tendencies of the horizontal velocity field in primitive-equation models of atmospheric flow. The approach is worked out and analyzed in detail for some simple barotropic models. Certain independent results of numerical experiments for the time-continuous assimilation of real asynoptic meteorological data into a complex, baroclinic weather prediction model are discussed in the context of the present approach. Tentative inferences are drawn for practical assimilation procedures.
NASA Astrophysics Data System (ADS)
Schwarz, Oliver
When in the second half of the 19th century both solar physics and astrophysics came into existence, various solar phenomena were described by analogies encountered in the terrestrial atmosphere. For a certain time, meteorology played a central role in research on solar processes. At first glance, this may appear as a curious and old-fashioned specialty. However, solar physics owes its first insights into solar structure to various analogies in terrestrial atmospheric studies. The present investigation intends to elucidate this fact, to present details of the historical development, and to demonstrate how our present knowledge in certain fields is based on considerations which were originally taken from the description of the terrestrial atmosphere.
NASA Astrophysics Data System (ADS)
Kroneberger, Monika; Calleri, Andrea; Ulfers, Hendrik; Klossek, Andreas; Goepel, Michael
2017-09-01
The Meteosat Third Generation (MTG) program will ensure the continuity and enhancement of meteorological data from geostationary orbit as currently provided by the Meteosat Second Generation (MSG) system. OHB-Munich, as part of the core team consortium of the industrial prime contractor for the space segment Thales Alenia Space (France), is responsible for the Flexible Combined Imager - Telescope Assembly (FCI-TA) as well as the Infrared Sounder (IRS).
Sea State and Boundary Layer Physics of the Emerging Arctic Ocean
2013-09-01
meteorological stations; weather observations; upper-air (rawinsondes, balloons and tethered kit); turbulent fluxes; radiation; surface temperature...remote sensing, in-field remote sensing will be employed, using small unmanned aerial vehicles (UAV), balloons , and manned aircraft (funded by other
Estimating future flood frequency and magnitude in basins affected by glacier wastage.
DOT National Transportation Integrated Search
2015-03-01
We present field measurements of meteorology, hydrology and glaciers and long-term modeled projections of glacier mass balance and : stream flow informed by downscaled climate simulations. The study basins include Valdez Glacier Stream (342 km2 : ), ...
Development of ambient PM 2.5 management strategies
DOT National Transportation Integrated Search
2009-10-01
Using analyzed and modeled field data on air quality and meteorology, researchers identified major contributors of fine particulate matter (PM2.5) in Fairbanks. This : project was an effort to help the city meet U.S. Environmental Protection Agency a...
NASA Technical Reports Server (NTRS)
Murray, Lee T.; Fiore, Arlene M.
2014-01-01
Over four decades of measurements exist that sample the 3-D composition of reactive trace gases in the troposphere from approximately weekly ozone sondes, instrumentation on civil aircraft, and individual comprehensive aircraft field campaigns. An obstacle to using these data to evaluate coupled chemistry-climate models (CCMs)the models used to project future changes in atmospheric composition and climateis that exact space-time matching between model fields and observations cannot be done, as CCMs generate their own meteorology. Evaluation typically involves averaging over large spatiotemporal regions, which may not reflect a true average due to limited or biased sampling. This averaging approach generally loses information regarding specific processes. Here we aim to identify where discrete sampling may be indicative of long-term mean conditions, using the GEOS-Chem global chemical-transport model (CTM) driven by the MERRA reanalysis to reflect historical meteorology from 2003 to 2012 at 2o by 2.5o resolution. The model has been sampled at the time and location of every ozone sonde profile available from the Would Ozone and Ultraviolet Radiation Data Centre (WOUDC), along the flight tracks of the IAGOSMOZAICCARABIC civil aircraft campaigns, as well as those from over 20 individual field campaigns performed by NASA, NOAA, DOE, NSF, NERC (UK), and DLR (Germany) during the simulation period. Focusing on ozone, carbon monoxide and reactive nitrogen species, we assess where aggregates of the in situ data are representative of the decadal mean vertical, spatial and temporal distributions that would be appropriate for evaluating CCMs. Next, we identically sample a series of parallel sensitivity simulations in which individual emission sources (e.g., lightning, biogenic VOCs, wildfires, US anthropogenic) have been removed one by one, to assess where and when the aggregated observations may offer constraints on these processes within CCMs. Lastly, we show results of an additional 31-year simulation from 1980-2010 of GEOS-Chem driven by the MACCity emissions inventory and MERRA reanalysis at 4o by 5o. We sample the model at every WOUDC sonde and flight track from MOZAIC and NASA field campaigns to evaluate which aggregate observations are statistically reflective of long-term trends over the period.
What determines transitions between energy- and moisture-limited evaporative regimes?
NASA Astrophysics Data System (ADS)
Haghighi, E.; Gianotti, D.; Akbar, R.; Salvucci, G.; Entekhabi, D.
2017-12-01
The relationship between evaporative fraction (EF) and soil moisture (SM) has traditionally been used in atmospheric and land-surface modeling communities to determine the strength of land-atmosphere coupling in the context of the dominant evaporative regime (energy- or moisture-limited). However, recent field observations reveal that EF-SM relationship is not unique and could vary substantially with surface and/or meteorological conditions. This implies that conventional EF-SM relationships (exclusive of surface and meteorological conditions) are embedded in more complex dependencies and that in fact it is a multi-dimensional function. To fill the fundamental knowledge gaps on the important role of varying surface and meteorological conditions not accounted for by the traditional evaporative regime conceptualization, we propose a generalized EF framework using a mechanistic pore-scale model for evaporation and energy partitioning over drying soil surfaces. Nonlinear interactions among the components of the surface energy balance are reflected in a critical SM that marks the onset of transition between energy- and moisture-limited evaporative regimes. The new generalized EF framework enables physically based estimates of the critical SM, and provides new insights into the origin of land surface EF partitioning linked to meteorological input data and the evolution of land surface temperature during surface drying that affect the relative efficiency of surface energy balance components. Our results offer new opportunities to advance predictive capabilities quantifying land-atmosphere coupling for a wide range of present and projected meteorological input data.
Ozone process insights from field experiments - part I: overview
NASA Astrophysics Data System (ADS)
Hidy, G. M.
This paper gives an overview of selected approaches recently adopted to analyze observations from field experiments that characterize the tropospheric physics and chemistry of ozone and related oxidation products. Analysis of ambient oxidant and precursor concentration measurements, combined with meteorological observations, has provided important information about tropospheric processes. Projection of the response of tropospheric ozone concentrations to changes in precursor emissions is achieved through emissions based air quality models (AQMs). These models integrate several "process" elements from source emissions to meteorological and chemical phenomena. Through field campaigns, new knowledge has become available which has enabled workers to better understand the strengths and weaknesses of AQMs and their components. Examples of insightful results include: (a) reconciliation of ambient concentrations of speciated volatile organic compounds (VOCs) with estimates from emissions models, and inventories, (b) verification of chemical mechanisms for ozone formation from its precursors using approximations applicable in different chemical regimes, (c) inference of regimes of sensitivity in ozone concentration to changes in VOC and NO x precursors from ozone management practices, (d) conceptualization of important air mass transport and mixing processes on different spatial and temporal scales that affect ozone and precursor concentrations distributions, and (e) application of the analysis of spatial and temporal variance to infer the origins of chemical product transport, and precursor distributions. Studies from the first category have been used to improve emissions models substantially over previous forms. The remainder of the analyses has yielded valuable insight into the chemical and meteorological mechanisms at work on different spatial and temporal scales. The methods have provided an observationally based framework for effective choices to improve ozone management, notably in terms of NO x or VOC sensitive regimes. Investigation of meteorological processes relevant to ozone accumulation has illustrated the importance of accounting for both transport winds and the day-night vertical structure of the atmosphere in AQM analyses. Finally, variance analyses of O 3 concentrations with other aerometric parameters offer significant opportunities to use semi-empirically air monitoring data as a means determining space and time scales of O 3 variance, and detecting precursor emissions source-ozone receptor relationships.
Boehnke, Denise; Gebhardt, Reiner; Petney, Trevor; Norra, Stefan
2017-11-06
Ecological field research on the influence of meteorological parameters on a forest inhabiting species is confronted with the complex relations between measured data and the real conditions the species is exposed to. This study highlights this complexity for the example of Ixodes ricinus. This species lives mainly in forest habitats near the ground, but field research on impacts of meteorological conditions on population dynamics is often based on data from nearby official weather stations or occasional in situ measurements. In addition, studies use very different data approaches to analyze comparable research questions. This study is an extensive examination of the methodology used to analyze the impact of meteorological parameters on Ixodes ricinus and proposes a methodological approach that tackles the underlying complexity. Our specifically developed measurement concept was implemented at 25 forest study sites across Baden-Württemberg, Germany. Meteorological weather stations recorded data in situ and continuously between summer 2012 and autumn 2015, including relative humidity measures in the litter layer and different heights above it (50 cm, 2 m). Hourly averages of relative humidity were calculated and compared with data from the nearest official weather station. Data measured directly in the forest can differ dramatically from conditions recorded at official weather stations. In general, data indicate a remarkable relative humidity decrease from inside to outside the forest and from ground to atmosphere. Relative humidity measured in the litter layer were, on average, 24% higher than the official data and were much more balanced, especially in summer. The results illustrate the need for, and benefit of, continuous in situ measurements to grasp the complex relative humidity conditions in forests. Data from official weather stations do not accurately represent actual humidity conditions in forest stands and the explanatory power of short period and fragmentary in situ measurements is extremely limited. However, it is still an open question to what kind of meteorological data are necessary to answer specific questions in tick research. The comparison of research findings was hindered by the variety of information provided, which is why we propose details for future reporting.
Thunderstorm monitoring with VLF network and super dense meteorological observation system
NASA Astrophysics Data System (ADS)
Takahashi, Yukihiro; Sato, Mitsuteru
2015-04-01
It's not easy to understand the inside structure and developing process of thunderstorm only with existing meteorological instruments since its horizontal extent of the storm cell is sometimes smaller than an order of 10 km while one of the densest ground network in Japan, AMEDAS, consists of sites located every 17 km in average and the resolution of meteorological radar is 1-2 km in general. Even the X-band radar realizes the resolution of 250 m or larger. Here we suggest a thunderstorm monitoring system consisting of the network of VLF radio wave receivers and the super dense meteorological observation system with simple and low cost plate-type sensors that can be used for measurement both of raindrop and vertical electric field change caused by cloud-to-ground lightning discharge, adding to basic equipments for meteorological measurements. The plate-type sensor consists of two aluminum plates with a diameter of 10-20 cm. We carried out an observation campaign in summer of 2013 in the foothills of Mt. Yastugatake, Yamanashi and Nagano prefectures in Japan, installing 6 plate-type sensors at a distance of about 4 km. Horizontal location, height and charge amount of each lightning discharge are estimated successfully based on the information of electric field changes at several observing sites. Moreover, it was found that the thunderstorm has a very narrow structure smaller than 300 m that cannot be measured by any other ways, counting the positive and negative pulses caused by attachment of raindrop to the sensor plate, respectively. We plan to construct a new super dense observation network in the north Kanto region, Japan, where the lightning activity is most prominent in summer Japan and surrounded by our VLF systems developed for detecting sferics from lightning discharge, distributing more than several tens of sensors at every 4 km or shorter, such as an order of 100 m at minimum. This kind of new type network will reveal the unknown fine structures of thunderstorms and open the door for constructing real time alert system of torrential rainfall and lightning stroke especially in the city area.
MONET: multidimensional radiative cloud scene model
NASA Astrophysics Data System (ADS)
Chervet, Patrick
1999-12-01
All cloud fields exhibit variable structures (bulge) and heterogeneities in water distributions. With the development of multidimensional radiative models by the atmospheric community, it is now possible to describe horizontal heterogeneities of the cloud medium, to study these influences on radiative quantities. We have developed a complete radiative cloud scene generator, called MONET (French acronym for: MOdelisation des Nuages En Tridim.) to compute radiative cloud scene from visible to infrared wavelengths for various viewing and solar conditions, different spatial scales, and various locations on the Earth. MONET is composed of two parts: a cloud medium generator (CSSM -- Cloud Scene Simulation Model) developed by the Air Force Research Laboratory, and a multidimensional radiative code (SHDOM -- Spherical Harmonic Discrete Ordinate Method) developed at the University of Colorado by Evans. MONET computes images for several scenario defined by user inputs: date, location, viewing angles, wavelength, spatial resolution, meteorological conditions (atmospheric profiles, cloud types)... For the same cloud scene, we can output different viewing conditions, or/and various wavelengths. Shadowing effects on clouds or grounds are taken into account. This code is useful to study heterogeneity effects on satellite data for various cloud types and spatial resolutions, and to determine specifications of new imaging sensor.
Characteristics of Recent Tsunamis
NASA Astrophysics Data System (ADS)
Sweeney, A. D.; Eble, M. C.; Mungov, G.
2017-12-01
How long do tsunamis impact a coast? How often is the largest tsunami wave the first to arrive? How do measurements in the far field differ from those made close to the source? Extending the study of Eblé et al. (2015) who showed the prevalence of a leading negative phase, we assimilate and summarize characteristics of known tsunami events recorded on bottom pressure and coastal water level stations throughout the world oceans to answer these and other questions. An extensive repository of data from the National Centers for Environmental Information (NCEI) archive for tsunami-ready U.S. tide gauge stations, housing more than 200 sites going back 10 years are utilized as are some of the more 3000 marigrams (analog or paper tide gauge records) for tsunami events. The focus of our study is on five tsunamis generated by earthquakes: 2010 Chile (Maule), 2011 East Japan (Tohoku), 2012 Haida Gwaii, 2014 Chile (Iquique), and 2015 Central Chile and one meteorologically generated tsunami on June 2013 along the U.S. East Coast and Caribbean. Reference: Eblé, M., Mungov, G. & Rabinovich, A. On the Leading Negative Phase of Major 2010-2014 Tsunamis. Pure Appl. Geophys. (2015) 172: 3493. https://doi.org/10.1007/s00024-015-1127-5
The Weather Forecast Using Data Mining Research Based on Cloud Computing.
NASA Astrophysics Data System (ADS)
Wang, ZhanJie; Mazharul Mujib, A. B. M.
2017-10-01
Weather forecasting has been an important application in meteorology and one of the most scientifically and technologically challenging problem around the world. In my study, we have analyzed the use of data mining techniques in forecasting weather. This paper proposes a modern method to develop a service oriented architecture for the weather information systems which forecast weather using these data mining techniques. This can be carried out by using Artificial Neural Network and Decision tree Algorithms and meteorological data collected in Specific time. Algorithm has presented the best results to generate classification rules for the mean weather variables. The results showed that these data mining techniques can be enough for weather forecasting.
NASA Astrophysics Data System (ADS)
Ding, Huang; Cui, Fang; Wang, Zhijia; Zhou, Hai; Chen, Weidong
2018-03-01
Based on the meteorological observation of the DG plants in East China, the assimilation effect of the WRF in the summer of 2016 was studied. The results show that, in the case of using data assimilation, the model correctly predicted the occurrence time of precipitation, as well as the variation of the precipitation along with the time were well consistent with the observations, which gives more accurate downward shortwave radiation. The application of data assimilation techniques can provide reliable information to adapt to the high resolution of meso-scale meteorological model. Therefore, it provides the necessary technical support for the development of the distributed power generation.
Wu, Bingfang; Liu, Shufu; Zhu, Weiwei; Yu, Mingzhao; Yan, Nana; Xing, Qiang
2016-11-04
Sunshine duration is an important variable that is widely used in atmospheric energy balance studies, analysis of the thermal loadings on buildings, climate research, and the evaluation of agricultural resources. In most cases, it is calculated using an interpolation method based on regional-scale meteorological data from field stations. Accurate values in the field are difficult to obtain without ground measurements. In this paper, a satellite-based method to estimate sunshine duration is introduced and applied over the Heihe River Basin. This method is based on hourly cloud classification product data from the FY-2D geostationary meteorological satellite (FY-2D). A new index-FY-2D cloud type sunshine factor-is proposed, and the Shuffled Complex Evolution Algorithm (SCE-UA) was used to calibrate sunshine factors from different coverage types based on ground measurement data from the Heihe River Basin in 2007. The estimated sunshine duration from the proposed new algorithm was validated with ground observation data for 12 months in 2008, and the spatial distribution was compared with the results of an interpolation method over the Heihe River Basin. The study demonstrates that geostationary satellite data can be used to successfully estimate sunshine duration. Potential applications include climate research, energy balance studies, and global estimations of evapotranspiration.
Wu, Bingfang; Liu, Shufu; Zhu, Weiwei; Yu, Mingzhao; Yan, Nana; Xing, Qiang
2016-01-01
Sunshine duration is an important variable that is widely used in atmospheric energy balance studies, analysis of the thermal loadings on buildings, climate research, and the evaluation of agricultural resources. In most cases, it is calculated using an interpolation method based on regional-scale meteorological data from field stations. Accurate values in the field are difficult to obtain without ground measurements. In this paper, a satellite-based method to estimate sunshine duration is introduced and applied over the Heihe River Basin. This method is based on hourly cloud classification product data from the FY-2D geostationary meteorological satellite (FY-2D). A new index—FY-2D cloud type sunshine factor—is proposed, and the Shuffled Complex Evolution Algorithm (SCE-UA) was used to calibrate sunshine factors from different coverage types based on ground measurement data from the Heihe River Basin in 2007. The estimated sunshine duration from the proposed new algorithm was validated with ground observation data for 12 months in 2008, and the spatial distribution was compared with the results of an interpolation method over the Heihe River Basin. The study demonstrates that geostationary satellite data can be used to successfully estimate sunshine duration. Potential applications include climate research, energy balance studies, and global estimations of evapotranspiration. PMID:27827935
NASA Astrophysics Data System (ADS)
Bouet, Christel; Siour, Guillaume; Poulet, David; Bergametti, Gilles; Laurent, Benoit; Brocheton, Fabien; Forêt, Gilles; Xu, Yiwen; Marticorena, Béatrice
2017-04-01
Modelling of the mineral dust cycle is still a challenging issue both at the global and regional scales: during the last decade, several exercises of model intercomparison highlighted the wide variability of the existing dust models to estimate dust emission fluxes and atmospheric load at both scales. For instance, within the framework of the international AEROCOM Project (http://aerocom.met.no/), 15 different global dust models provide a range of possible dust emission fluxes from 400 to 2200 Tg yr-1 for North Africa and from 26 to 526 Tg yr-1 for the Middle East, i.e. still a factor of 5 and 20 respectively (Huneeus et al., 2011). Whatever the scale, a critical aspect for any dust model is the sensitivity to the meteorological fields used to compute dust emission fluxes (external forcing or simulated by the coupled meteorological or climatic model). Indeed, the intensity of dust emission varies as a power 3 of the surface wind speed, and the number of dust emission events is the number of times the surface wind speed exceeds the wind erosion threshold. As a result, the simulations of dust emissions are extremely sensitive to the way the surface wind speeds are accounted for both in global and regional models. In this context, the aim of the DRUMS (DeseRt dUst Modeling: performance and Sensitivity evaluation) project was to investigate the sensitivity of a regional dust model (CHIMERE) to this parameter. This sensitivity study was conducted for 3 years from 2006 to 2008 over the North of Africa (45°N-0°N; 45°W-55°E), where dust emissions are the most intense. Emission fluxes can be simulated there with the most relevant data set of surface properties controlling dust emissions and accounting for the heterogeneity of land surfaces (surface roughness, soil size distribution and texture) of desert regions (Laurent et al., 2008). Meteorological products (forecasts and re-analysis) provided by the most recognized international meteorological centres (US NCEP and ECMWF), and thus the most widely used for the simulations of the mineral dust cycle, were tested. In addition, the benefit provided by the use of the WRF model to downscale the meteorological forcing was evaluated. The estimation of the performance of the CHIMERE model forced by the different meteorological fields was conducted using a unique validation data set compiled during the project by analysing and evaluating (i) the large number of experimental data resulting from the AMMA (African Monsoon Multidisciplinary Analysis) field campaigns, (ii) long-term aerosol monitoring over West Africa (Sahelian Dust Transect) and downwind the Sahara/Sahel region (AERONET), and (iii) recent satellite aerosol products (SeaWIFS AOD). This dataset allowed to validate the main characteristics of the dust cycle (emission, transport, and deposit).
Near-field monitoring of the Eyjafjallajökull eruption cloud
NASA Astrophysics Data System (ADS)
Bjornsson, H.; Pedersen, G. N.; Arason, P.; Karlsdottir, S.; Vogfjord, K. S.; Thorsteinsson, H.; Palmason, B.; Sigurdsson, A.
2010-12-01
When the ice capped Eyjafjallajökull volcano erupted in April 2010 the Icelandic Meteorological Office (IMO) employed range of observation systems to monitor the eruption cloud and the progress of the eruption. The main tool for monitoring the volcanic cloud was a C-band weather radar located at Keflavik international airport, about 150 km from the volcano. Radar monitoring was supported by visual observations, on-site and from a network of web-cameras. Airborne observations allowed for detailed examination of the plume, and pilot reports proved to be an extremely useful aid in verifying the radar data. Furthermore, data from lightning sensors and radiosondes was used to supplement information on plume height. Satellite images, from several frequency bands and both polar as well as geostationary satellites were used to track the orientation of the eruption cloud, and brightness temperature difference was used to estimate far field ash dispersal. Ash fall monitoring and meteorological observations supplemented with atmospheric reanalysis and wind forecasts were used to track local ash dispersal. Information from these data sources was combined with geophysical and hydrological measurements (seismic, GPS, strain and river flow gauges) made by the IMO, the Earth Institute of the University of Iceland and other institutions. The data generated by these different observation types gives a consistent picture of the progression of the eruption and reveals interesting connections. For example, volcanic tremors tended to be inversly related to the eruption cloud height, increasing tremors were associated lower plume height and reduced eruption strength. Furthermore, the occurrence of lighting seems to be explained by both sufficiently strong plume and cold ambient air. Wind also had a clear effect on the eruption cloud height. In general, simple scaling laws for the relationship between the emission rate of the volcano, and the height of the eruption do not seem to explain all the height variations in the eruption cloud.
Monitoring of Carbon Dioxide and Methane Plumes from Combined Ground-Airborne Sensors
NASA Astrophysics Data System (ADS)
Jacob, Jamey; Mitchell, Taylor; Honeycutt, Wes; Materer, Nicholas; Ley, Tyler; Clark, Peter
2016-11-01
A hybrid ground-airborne sensing network for real-time plume monitoring of CO2 and CH4 for carbon sequestration is investigated. Conventional soil gas monitoring has difficulty in distinguishing gas flux signals from leakage with those associated with meteorologically driven changes. A low-cost, lightweight sensor system has been developed and implemented onboard a small unmanned aircraft and is combined with a large-scale ground network that measures gas concentration. These are combined with other atmospheric diagnostics, including thermodynamic data and velocity from ultrasonic anemometers and multi-hole probes. To characterize the system behavior and verify its effectiveness, field tests have been conducted with simulated discharges of CO2 and CH4 from compressed gas tanks to mimic leaks and generate gaseous plumes, as well as field tests over the Farnsworth CO2-EOR site in the Anadarko Basin. Since the sensor response time is a function of vehicle airspeed, dynamic calibration models are required to determine accurate location of gas concentration in space and time. Comparisons are made between the two tests and results compared with historical models combining both flight and atmospheric dynamics. Supported by Department of Energy Award DE-FE0012173.
NASA Astrophysics Data System (ADS)
Fernandez-Cascales, Laura; Lucas, Antoine; Rodriguez, Sébastien; Gao, Xin; Spiga, Aymeric; Narteau, Clément
2018-05-01
Dunes provide unique information about wind regimes on planetary bodies where there is no direct meteorological data. At the eastern margin of Olympia Undae on Mars, dune orientation is measured from satellite imagery and sediment cover is estimated using the high contrast between the dune material and substrate. The analysis of these data provide the first quantification of relationship between sediment availability and dune orientation. Abrupt and smooth dune reorientations are associated with inward and outward dynamics of dunes approaching and ejecting from major sedimentary bodies, respectively. These reorientation patterns along sediment transport pathways are interpreted using a new generation dune model based on the coexistence of two dune growth mechanisms. This model also permits solving of the inverse problem of predicting the wind regime from dune orientation. For bidirectional wind regimes, solutions of this inverse problem show substantial differences in the distributions of sediment flux orientation, which can be attributed to atmospheric flow variations induced by changes in albedo at the boundaries of major dune fields. Then, we conclude that relationships between sediment cover and dune orientation can be used to constrain wind regime and dune field development on Mars and other planetary surfaces.
Airborne Detection and Dynamic Modeling of Carbon Dioxide and Methane Plumes
NASA Astrophysics Data System (ADS)
Jacob, Jamey; Mitchell, Taylor; Whyte, Seabrook
2015-11-01
To facilitate safe storage of greenhouse gases such as CO2 and CH4, airborne monitoring is investigated. Conventional soil gas monitoring has difficulty in distinguishing gas flux signals from leakage with those associated with meteorologically driven changes. A low-cost, lightweight sensor system has been developed and implemented onboard a small unmanned aircraft that measures gas concentration and is combined with other atmospheric diagnostics, including thermodynamic data and velocity from hot-wire and multi-hole probes. To characterize the system behavior and verify its effectiveness, field tests have been conducted over controlled rangeland burns and over simulated leaks. In the former case, since fire produces carbon dioxide over a large area, this was an opportunity to test in an environment that while only vaguely similar to a carbon sequestration leak source, also exhibits interesting plume behavior. In the simulated field tests, compressed gas tanks are used to mimic leaks and generate gaseous plumes. Since the sensor response time is a function of vehicle airspeed, dynamic calibration models are required to determine accurate location of gas concentration in (x , y , z , t) . Results are compared with simulations using combined flight and atmospheric dynamic models. Supported by Department of Energy Award DE-FE0012173.
NASA Astrophysics Data System (ADS)
Fox, Neil I.; Micheas, Athanasios C.; Peng, Yuqiang
2016-07-01
This paper introduces the use of Bayesian full Procrustes shape analysis in object-oriented meteorological applications. In particular, the Procrustes methodology is used to generate mean forecast precipitation fields from a set of ensemble forecasts. This approach has advantages over other ensemble averaging techniques in that it can produce a forecast that retains the morphological features of the precipitation structures and present the range of forecast outcomes represented by the ensemble. The production of the ensemble mean avoids the problems of smoothing that result from simple pixel or cell averaging, while producing credible sets that retain information on ensemble spread. Also in this paper, the full Bayesian Procrustes scheme is used as an object verification tool for precipitation forecasts. This is an extension of a previously presented Procrustes shape analysis based verification approach into a full Bayesian format designed to handle the verification of precipitation forecasts that match objects from an ensemble of forecast fields to a single truth image. The methodology is tested on radar reflectivity nowcasts produced in the Warning Decision Support System - Integrated Information (WDSS-II) by varying parameters in the K-means cluster tracking scheme.
Gravity waves generated by a tropical cyclone during the STEP tropical field program - A case study
NASA Technical Reports Server (NTRS)
Pfister, L.; Chan, K. R.; Bui, T. P.; Bowen, S.; Legg, M.; Gary, B.; Kelly, K.; Proffitt, M.; Starr, W.
1993-01-01
Overflights of a tropical cyclone during the Australian winter monsoon field experiment of the Stratosphere-Troposphere Exchange Project (STEP) show the presence of two mesoscale phenomena: a vertically propagating gravity wave with a horizontal wavelength of about 110 km and a feature with a horizontal scale comparable to that of the cyclone's entire cloud shield. The larger feature is fairly steady, though its physical interpretation is ambiguous. The 110-km gravity wave is transient, having maximum amplitude early in the flight and decreasing in amplitude thereafter. Its scale is comparable to that of 100-to 150-km-diameter cells of low satellite brightness temperatures within the overall cyclone cloud shield; these cells have lifetimes of 4.5 to 6 hrs. These cells correspond to regions of enhanced convection, higher cloud altitude, and upwardly displaced potential temperature surfaces. The temporal and spatial distribution of meteorological variables associated with the 110-km gravity wave can be simulated by a slowly moving transient forcing at the anvil top having an amplitude of 400-600 m, a lifetime of 4.5-6 hrs, and a size comparable to the cells of low brightness temperature.
Augustaitis, Algirdas; Bytnerowicz, Andrzej
2008-10-01
The study aimed to explore if changes in crown defoliation and stem growth of Scots pines (Pinus sylvestris L.) could be related to changes in ambient ozone (O(3)) concentration in central Europe. To meet this objective the study was performed in 3 Lithuanian national parks, close to the ICP integrated monitoring stations from which data on meteorology and pollution were provided. Contribution of peak O(3) concentrations to the integrated impact of acidifying compounds and meteorological parameters on pine stem growth was found to be more significant than its contribution to the integrated impact of acidifying compounds and meteorological parameters on pine defoliation. Findings of the study provide statistical evidence that peak concentrations of ambient O(3) can have a negative impact on pine tree crown defoliation and stem growth reduction under field conditions in central and northeastern Europe where the AOT40 values for forests are commonly below their phytotoxic levels.
NASA Astrophysics Data System (ADS)
Kim, Yongku; Seo, Young-Kyo; Baek, Sung-Ok
2013-12-01
Although large quantities of air pollutants are released into the atmosphere, they are partially monitored and routinely assessed for their health implications. This paper proposes a statistical model describing the temporal behavior of hazardous air pollutants (HAPs), which can have negative effects on human health. Benzo[a]pyrene (BaP) is selected for statistical modeling. The proposed model incorporates the linkage between BaP and meteorology and is specifically formulated to identify meteorological effects and allow for seasonal trends. The model is used to estimate and forecast temporal fields of BaP conditional on observed (or forecasted) meteorological conditions, including temperature, precipitation, wind speed, and air quality. The effects of BaP on human health are examined by characterizing health indicators, namely the cancer risk and the hazard quotient. The model provides useful information for the optimal monitoring period and projection of future BaP concentrations for both industrial and residential areas in Korea.
Sensitivity of Assimilated Tropical Tropospheric Ozone to the Meteorological Analyses
NASA Technical Reports Server (NTRS)
Hayashi, Hiroo; Stajner, Ivanka; Pawson, Steven; Thompson, Anne M.
2002-01-01
Tropical tropospheric ozone fields from two different experiments performed with an off-line ozone assimilation system developed in NASA's Data Assimilation Office (DAO) are examined. Assimilated ozone fields from the two experiments are compared with the collocated ozone profiles from the Southern Hemispheric Additional Ozonesondes (SHADOZ) network. Results are presented for 1998. The ozone assimilation system includes a chemistry-transport model, which uses analyzed winds from the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). The two experiments use wind fields from different versions of GEOS DAS: an operational version of the GEOS-2 system and a prototype of the GEOS-4 system. While both versions of the DAS utilize the Physical-space Statistical Analysis System and use comparable observations, they use entirely different general circulation models and data insertion techniques. The shape of the annual-mean vertical profile of the assimilated ozone fields is sensitive to the meteorological analyses, with the GEOS-4-based ozone being closest to the observations. This indicates that the resolved transport in GEOS-4 is more realistic than in GEOS-2. Remaining uncertainties include quantification of the representation of sub-grid-scale processes in the transport calculations, which plays an important role in the locations and seasons where convection dominates the transport.
NASA Technical Reports Server (NTRS)
Alacron, Vladimir J.; Nigro, Joseph D.; McAnally, William H.; OHara, Charles G.; Engman, Edwin Ted; Toll, David
2011-01-01
This paper documents the use of simulated Moderate Resolution Imaging Spectroradiometer land use/land cover (MODIS-LULC), NASA-LIS generated precipitation and evapo-transpiration (ET), and Shuttle Radar Topography Mission (SRTM) datasets (in conjunction with standard land use, topographical and meteorological datasets) as input to hydrological models routinely used by the watershed hydrology modeling community. The study is focused in coastal watersheds in the Mississippi Gulf Coast although one of the test cases focuses in an inland watershed located in northeastern State of Mississippi, USA. The decision support tools (DSTs) into which the NASA datasets were assimilated were the Soil Water & Assessment Tool (SWAT) and the Hydrological Simulation Program FORTRAN (HSPF). These DSTs are endorsed by several US government agencies (EPA, FEMA, USGS) for water resources management strategies. These models use physiographic and meteorological data extensively. Precipitation gages and USGS gage stations in the region were used to calibrate several HSPF and SWAT model applications. Land use and topographical datasets were swapped to assess model output sensitivities. NASA-LIS meteorological data were introduced in the calibrated model applications for simulation of watershed hydrology for a time period in which no weather data were available (1997-2006). The performance of the NASA datasets in the context of hydrological modeling was assessed through comparison of measured and model-simulated hydrographs. Overall, NASA datasets were as useful as standard land use, topographical , and meteorological datasets. Moreover, NASA datasets were used for performing analyses that the standard datasets could not made possible, e.g., introduction of land use dynamics into hydrological simulations
Comparing Resource Adequacy Metrics and Their Influence on Capacity Value: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibanez, E.; Milligan, M.
2014-04-01
Traditional probabilistic methods have been used to evaluate resource adequacy. The increasing presence of variable renewable generation in power systems presents a challenge to these methods because, unlike thermal units, variable renewable generation levels change over time because they are driven by meteorological events. Thus, capacity value calculations for these resources are often performed to simple rules of thumb. This paper follows the recommendations of the North American Electric Reliability Corporation?s Integration of Variable Generation Task Force to include variable generation in the calculation of resource adequacy and compares different reliability metrics. Examples are provided using the Western Interconnection footprintmore » under different variable generation penetrations.« less
NASA Astrophysics Data System (ADS)
Nagorskiy, Petr; Zenchenko, Tatiana; Breus, Tamara; Smirnov, Sergey
The objective of this work was to study the degree of synchronization of heart rate (HR) of healthy volunteers with magnetic variations and various weather conditions in mHz - frequency range. Experimental results for synchronic registration of physiological variations, atmospheric electrical and meteorological parameters with a time resolution of 0.5-1 min are presented. The experiment was conducted in a building of IMCES SB RAS (Tomsk). 15 experiments of 60 minutes each were conducted, and four volunteers of all ages in a state of rest were examined. Meteorological parameters (atmospheric pressure, relative air humidity and temperatureas well as a wind speed) were measured using standard meteorological devices located on the roof of the same building and also on the open area. Data on geomagnetic activity on the nearest magnetic station Klyichi were obtained from the site http://ottawa.intermagnet.org/apps/download/index-eng.php # view. The electric field intensity was recorded the following way: in the room (5-storey panel ferroconcrete building) by the autonomous fluxmeter CS110 at a distance of 1.5 meters from the investigated volunteers, and on the open test - area by the stationary electric fluxmeter "Field 2". Data analysis techniques were: cross-correlation analysis, spectral analysis (Fourier transform and the calculation of the coherence function) and wavelet analysis. It was found that the dependence of the heart rate variation dynamics from the X-component of the Earth magnetic field magnitude was observed in 53% of cases, from the relative humidity - in 33%, from the atmospheric pressure, the wind speed and intensity of the electric field in an open area - in 20%, from the intensity the electric field in the room of the experiment - in 7% of cases. It was found not only coincidence of observed values of oscillation periods in physiological and geophysical series lasting 5-30 minutes, but also moments of approximate synchronicity in their appearance and disappearance. The highest degree of synchronization of HR with the variations of the geomagnetic field (in all four conducted experiments in this day) was observed in the most geomagnetically quiet day - 04.10.12 (Ap = 1), while the lowest one - in the day of the geomagnetic disturbances - 01.10.12 (Ap = 32). The characteristics of the electric field variations in the time-frequency domain in the experiments conducted indoors and outdoors differ fundamentally.
Oettl, D
2015-11-01
Dispersion modelling in complex terrain always has been challenging for modellers. Although a large number of publications are dedicated to that field, candidate methods and models for usage in regulatory applications are scarce. This is all the more true when the combined effect of topography and obstacles on pollutant dispersion has to be taken into account. In Austria, largely situated in Alpine regions, such complex situations are quite frequent. This work deals with an approach, which is in principle capable of considering both buildings and topography in simulations by combining state-of-the-art wind field models at the micro- (<1 km) and mesoscale γ (2-20 km) with a Lagrangian particle model. In order to make such complex numerical models applicable for regulatory purposes, meteorological input data for the models need to be readily derived from routine observations. Here, use was made of the traditional way to bin meteorological data based on wind direction, speed, and stability class, formerly mainly used in conjunction with Gaussian-type models. It is demonstrated that this approach leads to reasonable agreements (fractional bias < 0.1) between observed and modelled annual average concentrations in an Alpine basin with frequent low-wind-speed conditions, temperature inversions, and quite complex flow patterns, while keeping the simulation times within the frame of possibility with regard to applications in licencing procedures. However, due to the simplifications in the derivation of meteorological input data as well as several ad hoc assumptions regarding the boundary conditions of the mesoscale wind field model, the methodology is not suited for computing detailed time and space variations of pollutant concentrations.
NASA Astrophysics Data System (ADS)
Lee, Han Soo; Yamashita, Takao; Hsu, John R.-C.; Ding, Fei
2013-01-01
In August 2009, Typhoon Morakot caused massive flooding and devastating mudslides in the southern Taiwan triggered by extremely heavy rainfall (2777 mm in 4 days) which occurred during its passage. It was one of the deadliest typhoons that have ever attacked Taiwan in recent years. In this study, numerical simulations are performed for the storm surge and ocean surface waves, together with dynamic meteorological fields such as wind, pressure and precipitation induced by Typhoon Morakot, using an atmosphere-waves-ocean integrated modelling system. The wave-induced dissipation stress from breaking waves, whitecapping and depth-induced wave breaking, is parameterized and included in the wave-current interaction process, in addition to its influence on the storm surge level in shallow water along the coast of Taiwan. The simulated wind and pressure field captures the characteristics of the observed meteorological field. The spatial distribution of the accumulated rainfall within 4 days, from 00:00 UTC 6 August to 00:00 UTC 10 August 2009, shows similar patterns as the observed values. The 4-day accumulated rainfall of 2777 mm at the A-Li Shan mountain weather station for the same period depicted a high correlation with the observed value of 2780 mm/4 days. The effects of wave-induced dissipation stress in the wave-current interaction resulted in increased surge heights on the relatively shallow western coast of Taiwan, where the bottom slope of the bathymetry ranges from mild to moderate. The results also show that wave-breaking has to be considered for accurate storm surge prediction along the east coast of Taiwan over the narrow bank of surf zone with a high horizontal resolution of the model domain.
The Geostationary Operational Environmental Satellite (GOES) Product Generation System
NASA Technical Reports Server (NTRS)
Haines, S. L.; Suggs, R. J.; Jedlovec, G. J.
2004-01-01
The Geostationary Operational Environmental Satellite (GOES) Product Generation System (GPGS) is introduced and described. GPGS is a set of computer programs developed and maintained at the Global Hydrology and Climate Center and is designed to generate meteorological data products using visible and infrared measurements from the GOES-East Imager and Sounder instruments. The products that are produced by GPGS are skin temperature, total precipitable water, cloud top pressure, cloud albedo, surface albedo, and surface insolation. A robust cloud mask is also generated. The retrieval methodology for each product is described to include algorithm descriptions and required inputs and outputs for the programs. Validation is supplied where applicable.
Gildea, Kevin M; Hileman, Christy R; Rogers, Paul; Salazar, Guillermo J; Paskoff, Lawrence N
2018-04-01
Research indicates that first-generation antihistamine usage may impair pilot performance by increasing the likelihood of vestibular illusions, spatial disorientation, and/or cognitive impairment. Second- and third-generation antihistamines generally have fewer impairing side effects and are approved for pilot use. We hypothesized that toxicological findings positive for second- and third-generation antihistamines are less likely to be associated with pilots involved in fatal mishaps than first-generation antihistamines. The evaluated population consisted of 1475 U.S. civil pilots fatally injured between September 30, 2008, and October 1, 2014. Mishap factors evaluated included year, weather conditions, airman rating, recent airman flight time, quarter of year, and time of day. Due to the low prevalence of positive antihistamine findings, a count-based model was selected, which can account for rare outcomes. The means and variances were close for both regression models supporting the assumption that the data follow a Poisson distribution; first-generation antihistamine mishap airmen (N = 582, M = 0.17, S2 = 0.17) with second- and third-generation antihistamine mishap airmen (N = 116, M = 0.20, S2 = 0.18). The data indicate fewer airmen with second- and third-generation antihistamines than first-generation antihistamines in their system are fatally injured while flying in IMC conditions. Whether the lower incidence is a factor of greater usage of first-generation antihistamines versus second- and third-generation antihistamines by the pilot population or fewer deleterious side effects with second- and third-generation antihistamines is unclear. These results engender cautious optimism, but additional research is necessary to determine why these differences exist.Gildea KM, Hileman CR, Rogers P, Salazar GJ, Paskoff LN. The use of a Poisson regression to evaluate antihistamines and fatal aircraft mishaps in instrument meteorological conditions. Aerosp Med Hum Perform. 2018; 89(4):389-395.
Development of gridded solar radiation data over Belgium based on Meteosat and in-situ observations
NASA Astrophysics Data System (ADS)
Journée, Michel; Vanderveken, Gilles; Bertrand, Cédric
2013-04-01
Knowledge on solar resources is highly important for all forms of solar energy applications. With the recent development in solar-based technologies national meteorological services are faced with increasing demands for high-quality and reliable site-time specific solar resource information. Traditionally, solar radiation is observed by means of networks of meteorological stations. Costs for installation and maintenance of such networks are very high and national networks comprise only few stations. Consequently the availability of ground-based solar radiation measurements has proven to be spatially and temporally inadequate for many applications. To overcome such a limitation, a major effort has been undertaken at the Royal Meteorological Institute of Belgium (RMI) to provide the solar energy industry, the electricity sector, governments, and renewable energy organizations and institutions with the most suitable and accurate information on the solar radiation resources at the Earth's surface over the Belgian territory. Only space-based observations can deliver a global coverage of the solar irradiation impinging on horizontal surface at the ground level. Because only geostationary data allow to capture the diurnal cycle of the solar irradiance at the Earth's surface, a method that combines information from Meteosat Second Generation satellites and ground-measurement has been implemented at RMI to generate high resolution solar products over Belgium on an operational basis. Besides these new products, the annual and seasonal variability of solar energy resource was evaluated, solar radiation climate zones were defined and the recent trend in solar radiation was characterized.
NASA Astrophysics Data System (ADS)
Daliakopoulos, Ioannis; Tsanis, Ioannis
2017-04-01
Mitigating the vulnerability of Mediterranean rangelands against degradation is limited by our ability to understand and accurately characterize those impacts in space and time. The Normalized Difference Vegetation Index (NDVI) is a radiometric measure of the photosynthetically active radiation absorbed by green vegetation canopy chlorophyll and is therefore a good surrogate measure of vegetation dynamics. On the other hand, meteorological indices such as the drought assessing Standardised Precipitation Index (SPI) are can be easily estimated from historical and projected datasets at the global scale. This work investigates the potential of driving Random Forest (RF) models with meteorological indices to approximate NDVI-based vegetation dynamics. A sufficiently large number of RF models are trained using random subsets of the dataset as predictors, in a bootstrapping approach to account for the uncertainty introduced by the subset selection. The updated E-OBS-v13.1 dataset of the ENSEMBLES EU FP6 program provides observed monthly meteorological input to estimate SPI over the Mediterranean rangelands. RF models are trained to depict vegetation dynamics using the latest version (3g.v1) of the third generation GIMMS NDVI generated from NOAA's Advanced Very High Resolution Radiometer (AVHRR) sensors. Analysis is conducted for the period 1981-2015 at a gridded spatial resolution of 25 km. Preliminary results demonstrate the potential of machine learning algorithms to effectively mimic the underlying physical relationship of drought and Earth Observation vegetation indices to provide estimates based on precipitation variability.
An Operational Computational Terminal Area PBL Prediction System
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Kaplan, Michael L.; Weglarz, Ronald P.; Hamilton, David W.
1997-01-01
There are two fundamental goals of this research project. The first and primary goal is to develop a prognostic system which could satisfy the operational weather prediction requirements of the meteorological subsystem within the Aircraft Vortex Spacing System (AVOSS). The secondary goal is to perform indepth diagnostic analyses of the meteorological conditions affecting the Memphis field experiment held during August 1995. These two goals are interdependent because a thorough understanding of the atmospheric dynamical processes which produced the unique meteorology during the Memphis deployment will help us design a prognostic system for the planetary boundary layer (PBL) which could be utilized to support the meteorological subsystem within AVOSS. The secondary goal occupied much of the first year of the research project. This involved extensive data acquisition and indepth analyses of a spectrum of atmospheric observational data sets. Concerning the primary goal, the first part of the four-stage prognostic system in support of AVOSS entitled: Terminal Area PBL Prediction System (TAPPS) was also formulated and tested in a research environment during 1996. We describe this system, and the three stages which are planned to follow. This first part of a software system designed to meet the primary goal of this research project is relatively inexpensive to implement and run operationally.
Evaluation of near surface ozone and particulate matter in air ...
In this study, techniques typically used for future air quality projections are applied to a historical 11-year period to assess the performance of the modeling system when the driving meteorological conditions are obtained using dynamical downscaling of coarse-scale fields without correcting toward higher-resolution observations. The Weather Research and Forecasting model and the Community Multiscale Air Quality model are used to simulate regional climate and air quality over the contiguous United States for 2000–2010. The air quality simulations for that historical period are then compared to observations from four national networks. Comparisons are drawn between defined performance metrics and other published modeling results for predicted ozone, fine particulate matter, and speciated fine particulate matter. The results indicate that the historical air quality simulations driven by dynamically downscaled meteorology are typically within defined modeling performance benchmarks and are consistent with results from other published modeling studies using finer-resolution meteorology. This indicates that the regional climate and air quality modeling framework utilized here does not introduce substantial bias, which provides confidence in the method’s use for future air quality projections. This paper shows that if emissions inputs and coarse-scale meteorological inputs are reasonably accurate, then air quality can be simulated with acceptable accuracy even wi
Practice of Meteorological Services in Turpan Solar Eco-City in China (Invited)
NASA Astrophysics Data System (ADS)
Shen, Y.; Chang, R.; He, X.; Jiang, Y.; Zhao, D.; Ma, J.
2013-12-01
Turpan Solar Eco-City is located in Gobi in Northwest China, which is one of the National New Energy Demonstration Urban. The city was planed and designed from October of 2008 and constructed from May of 2010, and the first phase of the project has been completed by October of 2013. Energy supply in Turpan Solar Eco-City is mainly from PV power, which is installed in all of the roof and the total capacity is 13.4MW. During the planning and designing of the city, and the running of the smart grid, meteorological services have played an important role. 1) Solar Energy Resource Assessment during Planning Phase. According to the observed data from meteorological stations in recent 30 years, solar energy resource was assessed and available PV power generation capacity was calculated. The results showed that PV power generation capacity is 1.3 times the power consumption, that is, solar energy resource in Turpan is rich. 2) Key Meteorological Parameters Determination for Architectural Design. A professional solar energy resource station was constructed and the observational items included Global Horizontal Irradiance, Inclined Total Solar Irradiance at 30 degree, Inclined Total Solar Irradiance at local latitude, and so on. According these measured data, the optical inclined angle for PV array was determined, that is, 30 degree. The results indicated that the annual irradiation on inclined plane with optimal angle is 1.4% higher than the inclined surface with latitude angle, and 23.16% higher than the horizontal plane. The diffuse ratio and annual variation of the solar elevation angle are two major factors that influence the irradiation on inclined plane. 3) Solar Energy Resource Forecast for Smart Grid. Weather Research Forecast (WRF) model was used to forecast the hourly solar radiation of future 72 hours and the measured irradiance data was used to forecast the minutely solar radiation of future 4 hours. The forecast results were submitted to smart grid and used to regulate the local grid and the city gird.
Development of an analysis tool for cloud base height and visibility
NASA Astrophysics Data System (ADS)
Umdasch, Sarah; Reinhold, Steinacker; Manfred, Dorninger; Markus, Kerschbaum; Wolfgang, Pöttschacher
2014-05-01
The meteorological variables cloud base height (CBH) and horizontal atmospheric visibility (VIS) at surface level are of vital importance for safety and effectiveness in aviation. Around 20% of all civil aviation accidents in the USA from 2003 to 2007 were due to weather related causes, around 18% of which were owing to decreased visibility or ceiling (main CBH). The aim of this study is to develop a system generating quality-controlled gridded analyses of the two parameters based on the integration of various kinds of observational data. Upon completion, the tool is planned to provide guidance for nowcasting during take-off and landing as well as for flights operated under visual flight rules. Primary input data consists of manual as well as instrumental observation of CBH and VIS. In Austria, restructuring of part of the standard meteorological stations from human observation to automatic measurement of VIS and CBH is currently in progress. As ancillary data, satellite derived products can add 2-dimensional information, e.g. Cloud Type by NWC SAF (Nowcasting Satellite Application Facilities) MSG (Meteosat Second Generation). Other useful available data are meteorological surface measurements (in particular of temperature, humidity, wind and precipitation), radiosonde, radar and high resolution topography data. A one-year data set is used to study the spatial and weather-dependent representativeness of the CBH and VIS measurements. The VERA (Vienna Enhanced Resolution Analysis) system of the Institute of Meteorology and Geophysics of the University of Vienna provides the framework for the analysis development. Its integrated "Fingerprint" technique allows the insertion of empirical prior knowledge and ancillary information in the form of spatial patterns. Prior to the analysis, a quality control of input data is performed. For CBH and VIS, quality control can consist of internal consistency checks between different data sources. The possibility of two-dimensional consistency checks has to be explored. First results in the development of quality control features and fingerprints will be shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torn, Margaret
This is the AmeriFlux version of the carbon flux data for the site US-NGB NGEE Barrow. Site Description - The ecosystem is an Arctic coastal tundra. This site measures greenhouse gasses and meteorological variables at the Barrow Environmental Observatory (BEO) as part of the Next-Generation Ecosystem Experiment - Arctic.
Researchers who perform air quality modeling studies usually do so on a regional scale. Typically, the boundary conditions are generated by another model which might have a different chemical mechanism, spatial resolution, and/or map projection. Hence, a necessary conversion/inte...
The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) Programme coordinates high-quality observations of atmospheric composition from global to local scales with the aim to drive high-quality and high-impact science while co-producing a new generation of pro...
Adding Four- Dimensional Data Assimilation (a.k.a. grid nudging) to MPAS
Adding four-dimensional data assimilation (a.k.a. grid nudging) to MPAS.The U.S. Environmental Protection Agency is investigating the use of MPAS as the meteorological driver for its next-generation air quality model. To function as such, MPAS needs to operate in a diagnostic mod...
Identification of wind fields for wave modeling near Qatar
NASA Astrophysics Data System (ADS)
Nayak, Sashikant; Balan Sobhana, Sandeepan; Panchang, Vijay
2016-04-01
Due to the development of coastal and offshore infrastructure in and around the Arabian Gulf, a large semi-enclosed sea, knowledge of met-ocean factors like prevailing wind systems, wind generated waves, and currents etc. are of great importance. Primarily it is important to identify the wind fields that are used as forcing functions for wave and circulation models for hindcasting and forecasting purposes. The present study investigates the effects of using two sources of wind-fields on the modeling of wind-waves in the Arabian Gulf, in particular near the coastal regions of Qatar. Two wind sources are considered here, those obtained from ECMWF and those generated by us using the WRF model. The wave model SWAN was first forced with the 6 hourly ERA Interim daily winds (from ECMWF) having spatial resolution of 0.125°. For the second option, wind fields were generated by us using the mesoscale wind model (WRF) with a high spatial resolution (0.1°) at every 30 minute intervals. The simulations were carried out for a period of two months (7th October-7th December, 2015) during which measurements were available from two moored buoys (deployed and operated by the Qatar Meteorological Department), one in the north of Qatar ("Qatar North", in water depth of 58.7 m) and other in the south ("Shiraouh Island", in water depth of 16.64 m). This period included a high-sea event on 11-12th of October, recorded by the two buoys where the significant wave heights (Hs) reached as high as 2.9 m (i.e. max wave height H ~ 5.22 m) and 1.9 (max wave height H ~ 3.4 m) respectively. Model results were compared with the data for this period. The scatter index (SI) of the Hs simulated using the WRF wind fields and the observed Hs was found to be about 30% and 32% for the two buoys (total period). The observed Hs were generally reproduced but there was consistent underestimation. (Maximum 27% for the high-sea event). For the Hs obtained with ERA interim wind fields, the underestimation was of the order of 50% (on average) for the entire duration. The study therefore suggests the use of a mesoscale weather forecasting model such as WRF, for deriving the wind fields for a large but marginal semi-enclosed sea where small scale phenomena dominate, and when used as forcing in the wave model, it provides wave-climate predictions with less error.
Atmosphere-ionosphere coupling from convectively generated gravity waves
NASA Astrophysics Data System (ADS)
Azeem, Irfan; Barlage, Michael
2018-04-01
Ionospheric variability impacts operational performances of a variety of technological systems, such as HF communication, Global Positioning System (GPS) navigation, and radar surveillance. The ionosphere is not only perturbed by geomagnetic inputs but is also influenced by atmospheric tides and other wave disturbances propagating from the troposphere to high altitudes. Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the largest sources of mesoscale variability in the ionosphere. In this paper, Total Electron Content (TEC) data from networks of GPS receivers in the United States are analyzed to investigate AGWs in the ionosphere generated by convective thunderstorms. Two case studies of convectively generated gravity waves are presented. On April 4, 2014 two distinct large convective systems in Texas and Arkansas generated two sets of concentric AGWs that were observed in the ionosphere as Traveling Ionospheric Disturbances (TIDs). The period of the observed TIDs was 20.8 min, the horizontal wavelength was 182.4 km, and the horizontal phase speed was 146.4 m/s. The second case study shows TIDs generated from an extended squall line on December 23, 2015 stretching from the Gulf of Mexico to the Great Lakes in North America. Unlike the concentric wave features seen in the first case study, the extended squall line generated TIDs, which exhibited almost plane-parallel phase fronts. The TID period was 20.1 min, its horizontal wavelength was 209.6 km, and the horizontal phase speed was 180.1 m/s. The AGWs generated by both of these meteorological events have large vertical wavelength (>100 km), which are larger than the F2 layer thickness, thus allowing them to be discernible in the TEC dataset.
Feedbacks between Air-Quality, Meteorology, and the Forest Environment
NASA Astrophysics Data System (ADS)
Makar, Paul; Akingunola, Ayodeji; Stroud, Craig; Zhang, Junhua; Gong, Wanmin; Moran, Michael; Zheng, Qiong; Brook, Jeffrey; Sills, David
2017-04-01
The outcome of air quality forecasts depend in part on how the local environment surrounding the emissions regions influences chemical reaction rates and transport from those regions to the larger spatial scales. Forested areas alter atmospheric chemistry through reducing photolysis rates and vertical diffusivities within the forest canopy. The emitted pollutants, and their reaction products, are in turn capable of altering meteorology, through the well-known direct and indirect effects of particulate matter on radiative transfer. The combination of these factors was examined using version 2 of the Global Environmental Multiscale - Modelling Air-quality and CHemistry (GEM-MACH) on-line air pollution model. The model configuration used for this study included 12 aerosol size bins, eight aerosol species, homogeneous core Mie scattering, the Milbrandt-Yao two-moment cloud microphysics scheme with cloud condensation nuclei generated from model aerosols using the scheme of Abdul-Razzak and Ghan, and a new parameterization for forest canopy shading and turbulence. The model was nested to 2.5km resolution for a domain encompassing the lower Great Lakes, for simulations of a period in August of 2015 during the Pan American Games, held in Toronto, Canada. Four scenarios were carried out: (1) a "Base Case" scenario (the original model, in which coupling between chemistry and weather is not permitted; instead, the meteorological model's internal climatologies for aerosol optical and cloud condensation properties are used for direct and indirect effect calculations); (2) a "Feedback" scenario (the aerosol properties were derived from the internally simulated chemistry, and coupled to the meteorological model's radiative transfer and cloud formation modules); (3) a "Forest" scenario (canopy shading and turbulence were added to the Base Case); (4) a "Combined" scenario (including both direct and indirect effect coupling between meteorology and chemistry, as well as the forest canopy parameterization). The simulations suggest that the feedbacks between simulated aerosols and meteorology may strengthen the existing lake breeze circulation, modifying the resulting meteorological and air-quality forecasts, while the forest canopy's influence may extend throughout the planetary boundary layer, and may also influence the weather. The simulations will be compared to available observations, in order to determine their relative impact on model performance.
Exploring the relationship between meteorology and surface PM2.5 in Northern India
NASA Astrophysics Data System (ADS)
Schnell, J.; Naik, V.; Horowitz, L. W.; Paulot, F.; Ginoux, P. A.
2017-12-01
Northern India is one of the most polluted and densely populated regions in world. Accurately modeling pollution in the region is difficult due to the extreme conditions with respect to emissions, meteorology, and topography, but it is paramount in order to understand how future changes in emissions and climate may alter the region's pollution regime. We evaluate a developmental version of the new-generation NOAA GFDL Atmospheric Model, version 4 (AM4) in its ability to simulate observed wintertime PM2.5 and its relationship to meteorology over the Northern India (23°N-31°N, 68°E-90°E). We perform two simulations of the GFDL-AM4 nudged to observed meteorology for the period (1980-2016) with two emission inventories developed for CMIP5 and CMIP6 and compare results with observations from India's Central Pollution Control Board (CPCB) for the period 1 October 2015 - 31 March 2016. Overall, our results indicate that the simulation with CMIP6 emissions has substantially reduced the low model bias in the region. The AM4, albeit biased low, generally simulates the magnitude and daily variability in observed total PM2.5. Ammonium nitrate and ammonium sulfate are the primary components of PM2.5 in the model, and although not directly observed, correlations of total observed PM2.5 and meteorology with the modeled individual PM2.5 components suggest the same for the observations. The model correctly reproduces the shape and magnitude of the seasonal cycle of PM2.5; but for the diurnal cycle, it misses the early evening rise and secondary maximum found in the observations. Observed PM2.5 abundances within the densely populated Indo-Gangetic Plain are by far the highest and are closely related to boundary layer meteorology, specifically relative humidity, wind speed, boundary layer height, and inversion strength. The GFDL-AM4 reproduces the observed pollution gradient over Northern India as well as the strength of the meteorology-PM2.5 relationship in most locations.
Evaluation of the Combined AERCOARE/AERMOD Modeling Approach for Offshore Sources
ENVIRON conducted an evaluation of the combined AERCOARE/AERMOD (AERCOARE-MOD) modeling approach for offshore sources using tracer data from four field studies. AERCOARE processes overwater meteorological data for use by the AERMOD air quality dispersion model (EPA, 2004a). AERC...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
ERIC Educational Resources Information Center
Johnson, Roger W.; Kliche, Donna V.; Smith, Paul L.
2015-01-01
Being able to characterize the size of raindrops is useful in a number of fields including meteorology, hydrology, agriculture and telecommunications. Associated with this article are data sets containing surface (i.e. ground-level) measurements of raindrop size from two different instruments and two different geographical locations. Students may…
NASA Astrophysics Data System (ADS)
Reuder, Joachim; Jonassen, Marius; Ólafsson, Haraldur
2012-10-01
During the last 5 years, the Small Unmanned Meteorological Observer SUMO has been developed as a flexible tool for atmospheric boundary layer (ABL) research to be operated as sounding system for the lowest 4 km of the atmosphere. Recently two main technical improvements have been accomplished. The integration of an inertial measurement unit (IMU) into the Paparazzi autopilot system has expanded the environmental conditions for SUMO operation. The implementation of a 5-hole probe for determining the 3D flow vector with 100 Hz resolution and a faster temperature sensor has enhanced the measurement capabilities. Results from two recent field campaigns are presented. During the first one, in Denmark, the potential of the system to study the effects of wind turbines on ABL turbulence was shown. During the second one, the BLLAST field campaign at the foothills of the Pyrenees, SUMO data proved to be highly valuable for studying the processes of the afternoon transition of the convective boundary layer.
Rise of interdisciplinary research on climate
Weart, Spencer
2013-01-01
Until the middle of the 20th century, the discipline of climatology was a stagnant field preoccupied with regional statistics. It had little to do with meteorology, which itself was predominantly a craft that paid scant attention to physical theory. The Second World War and Cold War promoted a rapid growth of meteorology, which some practitioners increasingly combined with physical science in hopes of understanding global climate dynamics. However, the dozen or so scientific disciplines that had something to say about climate were largely isolated from one another. In the 1960s and 1970s, worries about climate change helped to push the diverse fields into contact. Scientists interested in climate change kept their identification with different disciplines but developed ways to communicate across the boundaries (for example, in large international projects). Around the turn of the 21st century, the Intergovernmental Panel on Climate Change institutionalized an unprecedented process of exchanges; its reports relied especially on computer modeling, which became a center of fully integrated interdisciplinary cooperation. PMID:22778431
ERTS-1 data collection systems used to predict wheat disease severities. [Riley County, Kansas
NASA Technical Reports Server (NTRS)
Kanemasu, E. T.; Schimmelpfenning, H.; Choy, E. C.; Eversmeyer, M. G.; Lenhert, D.
1974-01-01
The author has identified the following significant results. The feasibility of using the data collection system on ERTS-1 to predict wheat leaf rust severity and resulting yield loss was tested. Ground-based data collection platforms (DCP'S), placed in two commercial wheat fields in Riley County, Kansas, transmitted to the satellite such meteorological information as maximum and minimum temperature, relative humidity, and hours of free moisture. Meteorological data received from the two DCP'S from April 23 to 29 were used to estimate the disease progress curve. Values from the curve were used to predict the percentage decrease in wheat yields resulting from leaf rust. Actual decrease in yield was obtained by applying a zinc and maneb spray (5.6 kg/ha) to control leaf rust, then comparing yields of the controlled (healthy) and the noncontrolled (rusted) areas. In each field a 9% decrease in yield was predicted by the DCP-derived data; actual decreases were 12% and 9%.
DC-8 Airborne Laboratory in flight during research mission - view from above
NASA Technical Reports Server (NTRS)
1999-01-01
The DC-8 Airborne Science Laboratroy is shown flying above a solid layer of clouds. The aircraft was transferred from the Ames Research Center to the Dryden Flight Research Center in late 1997. Over the past several years, it has undertaken a wide range of research in such fields as archeology, ecology, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, and other fields. In this photo, it is shown flying over a bank of clouds. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.
From AWE-GEN to AWE-GEN-2d: a high spatial and temporal resolution weather generator
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo
2016-04-01
A new weather generator, AWE-GEN-2d (Advanced WEather GENerator for 2-Dimension grid) is developed following the philosophy of combining physical and stochastic approaches to simulate meteorological variables at high spatial and temporal resolution (e.g. 2 km x 2 km and 5 min for precipitation and cloud cover and 100 m x 100 m and 1 h for other variables variable (temperature, solar radiation, vapor pressure, atmospheric pressure and near-surface wind). The model is suitable to investigate the impacts of climate variability, temporal and spatial resolutions of forcing on hydrological, ecological, agricultural and geomorphological impacts studies. Using appropriate parameterization the model can be used in the context of climate change. Here we present the model technical structure of AWE-GEN-2d, which is a substantial evolution of four preceding models (i) the hourly-point scale Advanced WEather GENerator (AWE-GEN) presented by Fatichi et al. (2011, Adv. Water Resour.) (ii) the Space-Time Realizations of Areal Precipitation (STREAP) model introduced by Paschalis et al. (2013, Water Resour. Res.), (iii) the High-Resolution Synoptically conditioned Weather Generator developed by Peleg and Morin (2014, Water Resour. Res.), and (iv) the Wind-field Interpolation by Non Divergent Schemes presented by Burlando et al. (2007, Boundary-Layer Meteorol.). The AWE-GEN-2d is relatively parsimonious in terms of computational demand and allows generating many stochastic realizations of current and projected climates in an efficient way. An example of model application and testing is presented with reference to a case study in the Wallis region, a complex orography terrain in the Swiss Alps.
NASA Technical Reports Server (NTRS)
Lupu, A.; Kaminski, J. W.; Neary, L.; McConnell, J. C.; Toyota, K.; Rinsland, C. P.; Bernath, P. F.; Walker, K. A.; Boone, C. D.; Nagahama, Y.;
2009-01-01
We investigate the spatial and temporal distribution of hydrogen cyanide (HCN) in the upper troposphere through numerical simulations and comparison with observations from a space-based instrument. To perform the simulations, we used the Global Environmental Multiscale Air Quality model (GEM-AQ), which is based on the threedimensional Gobal multiscale model developed by the Meteorological Service of Canada for operational weather forecasting. The model was run for the period 2004-2006 on a 1.5deg x 1.5deg global grid with 28 hybrid vertical levels from the surface up to 10 hPa. Objective analysis data from the Canadian Meteorological Centre were used to update the meteorological fields every 24 h. Fire emission fluxes of gas species were generated by using year-specific inventories of carbon emissions with 8-day temporal resolution from the Global Fire Emission Database (GFED) version 2. The model output is compared with HCN profiles measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) instrument onboard the Canadian SCISAT-1 satellite. High values of up to a few ppbv are observed in the tropics in the Southern Hemisphere; the enhancement in HCN volume mixing ratios in the upper troposphere is most prominent in October. Low upper-tropospheric mixing ratios of less than 100 pptv are mostly recorded at middle and high latitudes in the Southern Hemisphere in May-July. Mixing ratios in Northern Hemisphere peak in the boreal summer. The amplitude of the seasonal variation is less pronounced than in the Southern Hemisphere. The comparison with the satellite data shows that in the upper troposphere GEM-AQ perform7s well globally for all seasons, except at northern hi gh and middle latitudes in surnmer, where the model has a large negative bias, and in the tropics in winter and spring, where it exhibits large positive bias. This may reflect inaccurate emissions or possible inaccuracies in the emission profile. The model is able to explain most of the observed variability in the upper troposphere HCN field, includin g the interannual variations in the observed mixing ratio. A complementary comparison with daily total columns of HCN from two middle latitude ground-based stations in Northern Japan for the same simulation period shows that the model captures the observed seasonal variation and also points to an underestimation of model emissions in the Northern Hemisphere in the summer. The estimated average global emission equals 1.3 Tg N/yr. The average atmospheric burden is 0.53 Tg N, and the corresponding lifetime is 4.9 months.
A Remotely Piloted Aircraft (RPA) as a Measurement Tool for Wind-Energy Research
NASA Astrophysics Data System (ADS)
Wildmann, Norman; Bange, Jens
2014-05-01
In wind energy meteorology, RPA have the clear advantage compared to manned aircraft that they allow to fly very close to the ground and even in between individual wind turbines in a wind farm. Compared to meteorological towers and lidar systems, the advantage is the flexibility of the system, which makes it possible to measure at the desired site on short notice and not only in main wind direction. At the Center of Applied Geoscience at the University of Tübingen, the research RPA MASC (Multi-purpose Airborne Sensor Carrier) was developed. RPA of type MASC have a wingspan of about 3 m and a maximum take-off weight of 7.5 kg, including payload. The standard meteorological payload includes instruments for temperature, humidity, barometric pressure and wind measurement. It is possible to resolve turbulence fluctuations of wind and temperature up to 20 Hz. The autopilot ROCS (Research Onboard Computer System), which is developed at the Institute of Flight Mechanics and Control, University of Stuttgart, makes it possible to automatically follow predefined waypoints at constant altitude and airspeed. At a cruising speed of 24 m/s and a battery life of approx. one hour, a range of 80 km is feasible. The project 'Lidar Complex', funded by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, is part of the research network 'WindForS', based in Southern Germany. The goal of the project is to establish lidar technology for wind energy plant site evaluation in complex terrain. Additional goals are the comparison of different measurement techniques and the validation of wind-field models in not IEC 61400 conform terrain. It is planned to design a turbulent wind-field generator, fed by real measurement data, which can be used to analyse WEC behaviour. Two test sites were defined for the 'Lidar Complex' project, one in IEC-conform terrain about 15 km from the Baltic Sea, the other in the Swabian Alb, only 2 km downstream of a 100 m steep escarpment. At both sites, flight measurements were performed in 2013 with the RPA MASC. The data that was collected allows to investigate the influence of thermal stability of the atmosphere at the test site and turbulence intensity around individual wind energy converters (WECs). Several measurement flights were done to investigate the wake structure downstream a running WEC. Preliminary results will be presented as well as an outlook for future research with the instrument.
Linear and Non-linear Information Flows In Rainfall Field
NASA Astrophysics Data System (ADS)
Molini, A.; La Barbera, P.; Lanza, L. G.
The rainfall process is the result of a complex framework of non-linear dynamical in- teractions between the different components of the atmosphere. It preserves the com- plexity and the intermittent features of the generating system in space and time as well as the strong dependence of these properties on the scale of observations. The understanding and quantification of how the non-linearity of the generating process comes to influence the single rain events constitute relevant research issues in the field of hydro-meteorology, especially in those applications where a timely and effective forecasting of heavy rain events is able to reduce the risk of failure. This work focuses on the characterization of the non-linear properties of the observed rain process and on the influence of these features on hydrological models. Among the goals of such a survey is the research of regular structures of the rainfall phenomenon and the study of the information flows within the rain field. The research focuses on three basic evo- lution directions for the system: in time, in space and between the different scales. In fact, the information flows that force the system to evolve represent in general a connection between the different locations in space, the different instants in time and, unless assuming the hypothesis of scale invariance is verified "a priori", the different characteristic scales. A first phase of the analysis is carried out by means of classic statistical methods, then a survey of the information flows within the field is devel- oped by means of techniques borrowed from the Information Theory, and finally an analysis of the rain signal in the time and frequency domains is performed, with par- ticular reference to its intermittent structure. The methods adopted in this last part of the work are both the classic techniques of statistical inference and a few procedures for the detection of non-linear and non-stationary features within the process starting from measured data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiter, E.R.; Sheaffer, J.D.; Bossert, J.E.
1987-06-01
A long-planned field-measurement program to determine surface-energy budgets at two sites in Tibet was carried out during June 1986 in collaboration with scientists from the State Meteorological Administration, Academy of Meteorological Sciences, People's Republic of China. The data set obtained in Tibet is unique for this remote region of the world. The present report describes some of the experiences of the United States scientific team and its medical officer, M. Otteman of Ft. Collins, Colorado. The data are presently being archived on computer tapes. Preliminary analysis results are presented as typical examples of the conditions encountered at the two experimentalmore » sites near Lhasa (3635 m) and Nagqu (4500 m).« less
Desert winds: Monitoring wind-related surface processes in Arizona, New Mexico, and California
Breed, Carol S.; Reheis, Marith C.
1999-01-01
The 18-year Desert Winds Project established instrumented field sites in the five major regions of the North American Desert to obtain meteorological, geological, and vegetation data for natural desert sites affected by wind erosion. The eight chapters in this volume describe the settings and operation of the stations and summarize eolian-related research to date around the stations. The report includes studies of the sand-moving effectiveness of storm winds, wind-erosion susceptibility of different ground-surface types, relations of dust storms to meteorological conditions, mediation of wind erosion by vegetation, remote sensing to detect vegetation changes related to climate change, and comparison of regional dust deposition to that near Owens (dry) Lake.
Effects of temperature on flood forecasting: analysis of an operative case study in Alpine basins
NASA Astrophysics Data System (ADS)
Ceppi, A.; Ravazzani, G.; Salandin, A.; Rabuffetti, D.; Montani, A.; Borgonovo, E.; Mancini, M.
2013-04-01
In recent years the interest in the forecast and prevention of natural hazards related to hydro-meteorological events has increased the challenge for numerical weather modelling, in particular for limited area models, to improve the quantitative precipitation forecasts (QPF) for hydrological purposes. After the encouraging results obtained in the MAP D-PHASE Project, we decided to devote further analyses to show recent improvements in the operational use of hydro-meteorological chains, and above all to better investigate the key role played by temperature during snowy precipitation. In this study we present a reanalysis simulation of one meteorological event, which occurred in November 2008 in the Piedmont Region. The attention is focused on the key role of air temperature, which is a crucial feature in determining the partitioning of precipitation in solid and liquid phase, influencing the quantitative discharge forecast (QDF) into the Alpine region. This is linked to the basin ipsographic curve and therefore by the total contributing area related to the snow line of the event. In order to assess hydrological predictions affected by meteorological forcing, a sensitivity analysis of the model output was carried out to evaluate different simulation scenarios, considering the forecast effects which can radically modify the discharge forecast. Results show how in real-time systems hydrological forecasters have to consider also the temperature uncertainty in forecasts in order to better understand the snow dynamics and its effect on runoff during a meteorological warning with a crucial snow line over the basin. The hydrological ensemble forecasts are based on the 16 members of the meteorological ensemble system COSMO-LEPS (developed by ARPA-SIMC) based on the non-hydrostatic model COSMO, while the hydrological model used to generate the runoff simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano.
Mishra, Soumya Ranjan; Pradhan, Rudra Pratap; Prusty, B Anjan Kumar; Sahu, Sanjat Kumar
2016-07-01
The ambient air quality (AAQ) assessment was undertaken in Sukinda Valley, the chromite hub of India. The possible correlations of meteorological variables with different air quality parameters (PM10, PM2.5, SO2, NO2 and CO) were examined. Being the fourth most polluted area in the globe, Sukinda Valley has always been under attention of researchers, for hexavalent chromium contamination of water. The monitoring was carried out from December 2013 through May 2014 at six strategic locations in the residential and commercial areas around the mining cluster of Sukinda Valley considering the guidelines of Central Pollution Control Board (CPCB). In addition, meteorological parameters viz., temperature, relative humidity, wind speed, wind direction and rainfall, were also monitored. The air quality data were subjected to a general linear model (GLM) coupled with one-way analysis of variance (ANOVA) test for testing the significant difference in the concentration of various parameters among seasons and stations. Further, a two-tailed Pearson's correlation test helped in understanding the influence of meteorological parameters on dispersion of pollutants in the area. All the monitored air quality parameters varied significantly among the monitoring stations suggesting (i) the distance of sampling location to the mine site and other allied activities, (ii) landscape features and topography and (iii) meteorological parameters to be the forcing functions. The area was highly polluted with particulate matters, and in most of the cases, the PM level exceeded the National Ambient Air Quality Standards (NAAQS). The meteorological parameters seemed to play a major role in the dispersion of pollutants around the mine clusters. The role of wind direction, wind speed and temperature was apparent in dispersion of the particulate matters from their source of generation to the surrounding residential and commercial areas of the mine.
Armstrong, Brandy N.; Warner, John C.; Voulgaris, George; List, Jeffrey H.; Thieler, Robert; Martini, Marinna A.; Montgomery, Ellyn T.; McNinch, Jesse E.; Book, Jeffrey W.; Haas, Kevin
2013-01-01
An oceanographic field study conducted in February 2010 investigated processes that control nearshore flow and sediment transport dynamics at Cape Hatteras, North Carolina. This report describes the project background, field program, instrumentation setup, and locations of the sensor deployments. The data collected, and supporting meteorological and streamflow observations, are presented as time-series plots for data visualization. Additionally, the data are available as part of this report.
Isosurface Display of 3-D Scalar Fields from a Meteorological Model on Google Earth
2013-07-01
facets to four, we have chosen to adopt and implement a revised method discussed and made available by Bourke (1994), which can accommodate up to...five facets for a given grid cube. While the published code from Bourke (1994) is in the public domain, it was originally implemented in the C...and atmospheric temperatures. 17 4. References Bourke , P. Polygonising a Scalar Field. http://paulbourke.net/geometry/polygonise
Predicting cloud-to-ground lightning with neural networks
NASA Technical Reports Server (NTRS)
Barnes, Arnold A., Jr.; Frankel, Donald; Draper, James Stark
1991-01-01
A neural network is being trained to predict lightning at Cape Canaveral for periods up to two hours in advance. Inputs consist of ground based field mill data, meteorological tower data, lightning location data, and radiosonde data. High values of the field mill data and rapid changes in the field mill data, offset in time, provide the forecasts or desired output values used to train the neural network through backpropagation. Examples of input data are shown and an example of data compression using a hidden layer in the neural network is discussed.
Imaging experiment: The Viking Lander
Mutch, T.A.; Binder, A.B.; Huck, F.O.; Levinthal, E.C.; Morris, E.C.; Sagan, C.; Young, A.T.
1972-01-01
The Viking Lander Imaging System will consist of two identical facsimile cameras. Each camera has a high-resolution mode with an instantaneous field of view of 0.04??, and survey and color modes with instantaneous fields of view of 0.12??. Cameras are positioned one meter apart to provide stereoscopic coverage of the near-field. The Imaging Experiment will provide important information about the morphology, composition, and origin of the Martian surface and atmospheric features. In addition, lander pictures will provide supporting information for other experiments in biology, organic chemistry, meteorology, and physical properties. ?? 1972.
Ideas for a pattern-oriented approach towards a VERA analysis ensemble
NASA Astrophysics Data System (ADS)
Gorgas, T.; Dorninger, M.
2010-09-01
Ideas for a pattern-oriented approach towards a VERA analysis ensemble For many applications in meteorology and especially for verification purposes it is important to have some information about the uncertainties of observation and analysis data. A high quality of these "reference data" is an absolute necessity as the uncertainties are reflected in verification measures. The VERA (Vienna Enhanced Resolution Analysis) scheme includes a sophisticated quality control tool which accounts for the correction of observational data and provides an estimation of the observation uncertainty. It is crucial for meteorologically and physically reliable analysis fields. VERA is based on a variational principle and does not need any first guess fields. It is therefore NWP model independent and can also be used as an unbiased reference for real time model verification. For downscaling purposes VERA uses an a priori knowledge on small-scale physical processes over complex terrain, the so called "fingerprint technique", which transfers information from rich to data sparse regions. The enhanced Joint D-PHASE and COPS data set forms the data base for the analysis ensemble study. For the WWRP projects D-PHASE and COPS a joint activity has been started to collect GTS and non-GTS data from the national and regional meteorological services in Central Europe for 2007. Data from more than 11.000 stations are available for high resolution analyses. The usage of random numbers as perturbations for ensemble experiments is a common approach in meteorology. In most implementations, like for NWP-model ensemble systems, the focus lies on error growth and propagation on the spatial and temporal scale. When defining errors in analysis fields we have to consider the fact that analyses are not time dependent and that no perturbation method aimed at temporal evolution is possible. Further, the method applied should respect two major sources of analysis errors: Observation errors AND analysis or interpolation errors. With the concept of an analysis ensemble we hope to get a more detailed sight on both sources of analysis errors. For the computation of the VERA ensemble members a sample of Gaussian random perturbations is produced for each station and parameter. The deviation of perturbations is based on the correction proposals by the VERA QC scheme to provide some "natural" limits for the ensemble. In order to put more emphasis on the weather situation we aim to integrate the main synoptic field structures as weighting factors for the perturbations. Two widely approved approaches are used for the definition of these main field structures: The Principal Component Analysis and a 2D-Discrete Wavelet Transform. The results of tests concerning the implementation of this pattern-supported analysis ensemble system and a comparison of the different approaches are given in the presentation.
Air-Quality and Climate Coupling in High Resolution for Urban Heat Island Study
NASA Astrophysics Data System (ADS)
Halenka, T.; Huszar, P.; Belda, M.
2012-04-01
Recent studies show considerable effect of atmospheric chemistry and aerosols on climate on regional and local scale. For the purpose of qualifying and quantifying the magnitude of climate forcing due to atmospheric chemistry/aerosols on regional scale and climate change effects on air-quality the regional climate model RegCM and chemistry/aerosol model CAMx was coupled. Climate change impacts on air-quality have been studied in high resolution of 10km with interactive two-way coupling of the effects of air-quality on climate. The experiments with the couple were performed for EC FP7 project MEGAPOLI assessing the impact of the megacities and industrialized areas on climate. New experiments in high resolution are prepared andsimulated for Urban Heat Island studies within the OP Central Europe Project UHI. Meteorological fields generated by RCM drive CAMx transport, chemistry and a dry/wet deposition. A preprocessor utility was developed for transforming RegCM provided fields to CAMx input fields and format. There is critical issue of the emission inventories available for 10km resolution including the urban hot-spots, TNO emissions are adopted for the experiments. Sensitivity tests switching on/off urban areas emissions are analysed as well. The results for year 2005 are presented and discussed, interactive coupling is compared to study the potential of possible impact of urban air-pollution to the urban area climate.
NASA Technical Reports Server (NTRS)
Ng, Carolyn; Stonesifer, G. Richard
1989-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from meteorological and terrestrial applications spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.
The Pan-American Center for the WMO Sand and Dust Storm Warning Advisory and Assessment System
NASA Astrophysics Data System (ADS)
Sprigg, W. A.
2013-05-01
A World Meteorological Organization system has been established to coordinate knowledge, data, and information concerning airborne dust, the environmental conditions and storms that generate it, the consequences of it, and the means to mitigate and cope with it. Three nodes, or foci, of collaboration cover the globe: for Asia, administered from the China Meteorological Administration in Beijing; for Africa, Europe and the Middle East, administered from the Barcelona Supercomputing Center; and for Pan-America, administered from Chapman University in Orange, California. Pan-American Center priorities include understanding the sources of windblown dust and particulates, simulating and predicting dust events, and serving the health, safety and environmental communities that may benefit from the WMO system.
NASA Astrophysics Data System (ADS)
Mukherjee, A. D.; Brown, S. G.; McCarthy, M. C.
2017-12-01
A new generation of low cost air quality sensors have the potential to provide valuable information on the spatial-temporal variability of air pollution - if the measurements have sufficient quality. This study examined the performance of a particulate matter sensor model, the AirBeam (HabitatMap Inc., Brooklyn, NY), over a three month period in the urban environment of Sacramento, California. Nineteen AirBeam sensors were deployed at a regulatory air monitoring site collocated with meteorology measurements and as a local network over an 80 km2 domain in Sacramento, CA. This study presents the methodology to evaluate the precision, accuracy, and reliability of the sensors over a range of meteorological and aerosol conditions. The sensors demonstrated a robust degree of precision during collocated measurement periods (R2 = 0.98 - 0.99) and a moderate degree of correlation against a Beta Attenuation Monitor PM2.5 monitor (R2 0.6). A normalization correction is applied during the study period so that each AirBeam sensor in the network reports a comparable value. The role of the meteorological environment on the accuracy of the sensor measurements is investigated, along with the possibility of improving the measurements through a meteorology weighted correction. The data quality of the network of sensors is examined, and the spatial variability of particulate matter through the study domain derived from the sensor network is presented.
Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Development
NASA Technical Reports Server (NTRS)
Daniels, Taumi S.; Tsoucalas, George; Anderson, Mark; Mulally, Daniel; Moninger, William; Mamrosh, Richard
2004-01-01
One of the recommendations of the National Aviation Weather Program Council was to expand and institutionalize the generation, dissemination, and use of automated pilot reports (PIREPS) to the full spectrum of the aviation community, including general aviation. In response to this and other similar recommendations, NASA initiated cooperative research into the development of an electronic pilot reporting capability (Daniels 2002). The ultimate goal is to develop a small low-cost sensor, collect useful meteorological observations below 25,000 ft., downlink the data in near real time, and use the data to improve weather forecasts. Primary users of the data include pilots, who are one targeted audience for the improved weather information that will result from the TAMDAR data. The weather data will be disseminated and used to improve aviation safety by providing pilots with enhanced weather situational awareness. In addition, the data will be used to improve the accuracy and timeliness of weather forecasts. Other users include air traffic controllers, flight service stations, and airline weather centers. Additionally, the meteorological data collected by TAMDAR is expected to have a significant positive impact on forecast accuracy for ground based applications.
Video Kills the Lecturing Star: New Technologies and the Teaching of Meterology.
ERIC Educational Resources Information Center
Sumner, Graham
1984-01-01
The educational potential of time-lapse video sequences and weather data obtained using a conventional microcomputer are considered in the light of recent advances in both fields. Illustrates how videos and microcomputers can be used to study clouds in meteorology classes. (RM)
Building hydrologic information systems to promote climate resilience in the Blue Nile/Abay higlands
USDA-ARS?s Scientific Manuscript database
Climate adaptation requires information about climate and land-surface conditions – spatially distributed, and at scales of human influence (the field scale). This article describes a project aimed at combining meteorological data, satellite remote sensing, hydrologic modeling, and downscaled clima...
We present results from a study testing the new boundary layer parameterization method, the canopy drag approach (DA) which is designed to explicitly simulate the effects of buildings, street and tree canopies on the dynamic, thermodynamic structure and dispersion fields in urban...
Urban dispersion and air quality simulation models applied at various horizontal scales require different levels of fidelity for specifying the characteristics of the underlying surfaces. As the modeling scales approach the neighborhood level (~1 km horizontal grid spacing), the...
COSmic-ray soil moisture observing system (COSMOS) in grazing-cap fields at El Reno, Oklahoma
USDA-ARS?s Scientific Manuscript database
Soil water content (SWC), especially over large areas, is an important variable needed by hydrological, meteorological, climatological, agricultural, and environmental scientists. Point measurements of SWC are impractical to obtain over extensive areas; thus, methods that provide real-time, hectare...
Catalytic Generation of Lift Gases for Balloons
NASA Technical Reports Server (NTRS)
Zubrin, Robert; Berggren, Mark
2011-01-01
A lift-gas cracker (LGC) is an apparatus that generates a low-molecular-weight gas (mostly hydrogen with smaller amounts of carbon monoxide and/or carbon dioxide) at low gauge pressure by methanol reforming. LGCs are undergoing development for use as sources of buoyant gases for filling zero-gauge-pressure meteorological and scientific balloons in remote locations where heavy, high-pressure helium cylinders are not readily available. LGCs could also be used aboard large, zero-gauge-pressure, stratospheric research balloons to extend the duration of flight.
Evaluating the uncertainty of predicting future climate time series at the hourly time scale
NASA Astrophysics Data System (ADS)
Caporali, E.; Fatichi, S.; Ivanov, V. Y.
2011-12-01
A stochastic downscaling methodology is developed to generate hourly, point-scale time series for several meteorological variables, such as precipitation, cloud cover, shortwave radiation, air temperature, relative humidity, wind speed, and atmospheric pressure. The methodology uses multi-model General Circulation Model (GCM) realizations and an hourly weather generator, AWE-GEN. Probabilistic descriptions of factors of change (a measure of climate change with respect to historic conditions) are computed for several climate statistics and different aggregation times using a Bayesian approach that weights the individual GCM contributions. The Monte Carlo method is applied to sample the factors of change from their respective distributions thereby permitting the generation of time series in an ensemble fashion, which reflects the uncertainty of climate projections of future as well as the uncertainty of the downscaling procedure. Applications of the methodology and probabilistic expressions of certainty in reproducing future climates for the periods, 2000 - 2009, 2046 - 2065 and 2081 - 2100, using the 1962 - 1992 period as the baseline, are discussed for the location of Firenze (Italy). The climate predictions for the period of 2000 - 2009 are tested against observations permitting to assess the reliability and uncertainties of the methodology in reproducing statistics of meteorological variables at different time scales.
Weather observations on Whistler Mountain during five storms
NASA Astrophysics Data System (ADS)
Thériault, Julie M.; Rasmussen, Kristen L.; Fisico, Teresa; Stewart, Ronald E.; Joe, Paul; Gultepe, Ismail; Clément, Marilys; Isaac, George A.
2014-01-01
A greater understanding of precipitation formation processes over complex terrain near the west coast of British Colombia will contribute to many relevant applications, such as climate studies, local hydrology, transportation, and winter sport competition. The phase of precipitation is difficult to determine because of the warm and moist weather conditions experienced during the wintertime in coastal mountain ranges. The goal of this study is to investigate the wide range of meteorological conditions that generated precipitation on Whistler Mountain from 4-12 March 2010 during the SNOW-V10 field campaign. During this time period, five different storms were documented in detail and were associated with noticeably different meteorological conditions in the vicinity of Whistler Mountain. New measurement techniques, along with the SNOW-V10 instrumentation, were used to obtain in situ observations during precipitation events along the Whistler mountainside. The results demonstrate a high variability of weather conditions ranging from the synoptic-scale to the macro-scale. These weather events were associated with a variation of precipitation along the mountainside, such as events associated with snow, snow pellets, and rain. Only two events associated with a rain-snow transition along the mountainside were observed, even though above-freezing temperatures along the mountainside were recorded 90 % of the time. On a smaller scale, these events were also associated with a high variability of snowflake types that were observed simultaneously near the top of Whistler Mountain. Overall, these detailed observations demonstrate the importance of understanding small-scale processes to improve observational techniques, short-term weather prediction, and longer-term climate projections over mountainous regions.
CSU FIRE 2 cirrus field experiment: Description of field deployment phase
NASA Technical Reports Server (NTRS)
Cox, S.; Beck, G.; Cornwall, C.; Davis, J.; Hein, P.; Lappen, C.; Song, R.; Withrow, J.; Wood, D.; Alvarez, J.
1992-01-01
The Colorado State University (CSU) surface observing systems are described. These systems were deployed at the Parsons, Kansas site during the FIRE 2 Cirrus Special Observing Period (SOP) from 13 Nov. - 7 Dec. 1991. The geographical coordinates of the site containing most of the CSU instrumentation are 37 deg. 18 min N. latitude and 96 deg. 30 min. W. longitude; site elevation was 269 meters. In addition, one surface meteorological and broadband flux observing site was maintained at the Tri City Airport which is approximately 18 miles due west of Parsons (37 deg. 20 min. N. latitude, 95 deg. 30 min. 30 sec. W. longitude). A map of the locations of the CSU deployment sites is presented. At the main Parsons site, the instrumentation was located directly adjacent to and north of a lake. Under most cirrus observing conditions, when the wing had a significant southernly component, the lake was upwind of the observing site. The measurements and observations collected during the experiment are listed. These measurements may be grouped into five categories: surface meteorology; infrared spectral and broadband measurements; solar spectral and broadband measurements; upper air measurements; and cloud measurements. A summary of observations collected at the Parsons site during the SOP are presented. The wind profiler, laser ceilometer, surface meteorology and surface broadband radiation instrumentation were operated on a continuous basis. All other systems were operated on an 'on demand' basis when cloud conditions merited the collection of data.
Final Report for High Latitude Climate Modeling: ARM Takes Us Beyond Case Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Lynn M; Lubin, Dan
2013-06-18
The main thrust of this project was to devise a method by which the majority of North Slope of Alaska (NSA) meteorological and radiometric data, collected on a daily basis, could be used to evaluate and improve global climate model (GCM) simulations and their parameterizations, particularly for cloud microphysics. Although the standard ARM Program sensors for a less complete suite of instruments for cloud and aerosol studies than the instruments on an intensive field program such as the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC), the advantage they offer lies in the long time base and large volume of datamore » that covers a wide range of meteorological and climatological conditions. The challenge has been devising a method to interpret the NSA data in a practical way, so that a wide variety of meteorological conditions in all seasons can be examined with climate models. If successful, climate modelers would have a robust alternative to the usual “case study” approach (i.e., from intensive field programs only) for testing and evaluating their parameterizations’ performance. Understanding climate change on regional scales requires a broad scientific consideration of anthropogenic influences that goes beyond greenhouse gas emissions to also include aerosol-induced changes in cloud properties. For instance, it is now clear that on small scales, human-induced aerosol plumes can exert microclimatic radiative and hydrologic forcing that rivals that of greenhouse gas–forced warming. This project has made significant scientific progress by investigating what causes successive versions of climate models continue to exhibit errors in cloud amount, cloud microphysical and radiative properties, precipitation, and radiation balance, as compared with observations and, in particular, in Arctic regions. To find out what is going wrong, we have tested the models' cloud representation over the full range of meteorological conditions found in the Arctic using the ARM North Slope of Alaska (NSA) data.« less
NASA Astrophysics Data System (ADS)
Madala, Srikanth; Satyanarayana, A. N. V.; Srinivas, C. V.; Tyagi, Bhishma
2016-05-01
In the present study, advanced research WRF (ARW) model is employed to simulate convective thunderstorm episodes over Kharagpur (22°30'N, 87°20'E) region of Gangetic West Bengal, India. High-resolution simulations are conducted using 1 × 1 degree NCEP final analysis meteorological fields for initial and boundary conditions for events. The performance of two non-local [Yonsei University (YSU), Asymmetric Convective Model version 2 (ACM2)] and two local turbulence kinetic energy closures [Mellor-Yamada-Janjic (MYJ), Bougeault-Lacarrere (BouLac)] are evaluated in simulating planetary boundary layer (PBL) parameters and thermodynamic structure of the atmosphere. The model-simulated parameters are validated with available in situ meteorological observations obtained from micro-meteorological tower as well has high-resolution DigiCORA radiosonde ascents during STORM-2007 field experiment at the study location and Doppler Weather Radar (DWR) imageries. It has been found that the PBL structure simulated with the TKE closures MYJ and BouLac are in better agreement with observations than the non-local closures. The model simulations with these schemes also captured the reflectivity, surface pressure patterns such as wake-low, meso-high, pre-squall low and the convective updrafts and downdrafts reasonably well. Qualitative and quantitative comparisons reveal that the MYJ followed by BouLac schemes better simulated various features of the thunderstorm events over Kharagpur region. The better performance of MYJ followed by BouLac is evident in the lesser mean bias, mean absolute error, root mean square error and good correlation coefficient for various surface meteorological variables as well as thermo-dynamical structure of the atmosphere relative to other PBL schemes. The better performance of the TKE closures may be attributed to their higher mixing efficiency, larger convective energy and better simulation of humidity promoting moist convection relative to non-local schemes.
Appropriate prediction of residential air exchange rate (AER) is important for estimating human exposures in the residential microenvironment, as AER drives the infiltration of outdoor-generated air pollutants indoors. AER differences among homes may result from a number of fact...
Colorado Wind Resource at 50 Meters Above Ground Level
Meters Above Ground Level Geospatial_Data_Presentation_Form: vector digital data Description: Abstract . Supplemental_Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. This shapefile was generated from
Linking the M&Rfi Weather Generator with Agrometeorological Models
NASA Astrophysics Data System (ADS)
Dubrovsky, Martin; Trnka, Miroslav
2015-04-01
Realistic meteorological inputs (representing the present and/or future climates) for the agrometeorological model simulations are often produced by stochastic weather generators (WGs). This contribution presents some methodological issues and results obtained in our recent experiments. We also address selected questions raised in the synopsis of this session. The input meteorological time series for our experiments are produced by the parametric single site weather generator (WG) Marfi, which is calibrated from the available observational data (or interpolated from surrounding stations). To produce meteorological series representing the future climate, the WG parameters are modified by climate change scenarios, which are prepared by the pattern scaling method: the standardised scenarios derived from Global or Regional Climate Models are multiplied by the change in global mean temperature (ΔTG) determined by the simple climate model MAGICC. The presentation will address following questions: (i) The dependence of the quality of the synthetic weather series and impact results on the WG settings. An emphasis will be put on an effect of conditioning the daily WG on monthly WG (presently being one of our hot topics), which aims at improvement of the reproduction of the low-frequency weather variability. Comparison of results obtained with various WG settings is made in terms of climatic and agroclimatic indices (including extreme temperature and precipitation characteristics and drought indices). (ii) Our methodology accounts for the uncertainties coming from various sources. We will show how the climate change impact results are affected by 1. uncertainty in climate modelling, 2. uncertainty in ΔTG, and 3. uncertainty related to the complexity of the climate change scenario (focusing on an effect of inclusion of changes in variability into the climate change scenarios). Acknowledgements: This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248. The weather generator is being developed within the frame of WG4VALUE project (LD12029), which is supported by Ministry of Education, Youth and Sports and linked to the COST action ES1102 VALUE.
Meteorological situations that generated exceptional discharges along the Danube River
NASA Astrophysics Data System (ADS)
Bocioaca, Mihai; Marinica, Ion; Rusu, Simona
2010-05-01
For Europe, the undisputed importance of the Danube can be rendered by some general data: Its hydrographic basin surface exceeds 817,000 km2, i.e. about 10% of that of the continent, its length is 2857 km and its mean multiannual discharge is about 6500 m3/s, thus ranking second to Volga river. Romania is the country with the largest surface situated within Danube's basin (97.4%), representing 29% of Danube's hydrographic basin. The water resources of the Danube in Bazias section amount to 205 billion m3, 30 billion m3 of which are technically usable resources. Our analysis aimed at determining those complex meteorological situations at the European continent level that triggered exceptional discharges along the Danube, resulting in severe flooding, causing in turn heavy damages, fatalities, population evacuations and considerable rehabilitation costs. A complex analysis was performed, of statistical-synoptic type and those complex meteorological situations were identified that determined the occurrence of such disasters. Discharges and levels of the Danube were used along the whole measuring period, data from the archive of the National Meteorological Administration, and data, map and image archives from Wetterzentrale (Kartenarchiv, NCEP, NCAR, AVN etc.). The complex meteorological situations at the level of the European continent that triggered exceptional discharges along the Danube correlate with intense cyclonic activity, of both the Icelandic and the Mediterranean cyclones, with the negative phase of the North-Atlantic Oscillation and with decreasing or minimum solar activity (according to data from NOAA's Space Environment Center). The most disastrous floods occurred in the spring of 2006. The paper is important for meteorologists, in their weather forecasting activity, for hydrologists, in their hydrological forecasting and for the institutions involved in flood management.
Lingala, Mercy A L
Malaria is a public health problem caused by Plasmodium parasite and transmitted by anopheline mosquitoes. Arid and semi-arid regions of western India are prone to malaria outbreaks. Malaria outbreak prone districts viz. Bikaner, Barmer and Jodhpur were selected to study the effect of meteorological variables on Plasmodium vivax and Plasmodium falciparum malaria outbreaks for the period of 2009-2012. The data of monthly malaria cases and meteorological variables was analysed using SPSS 20v. Spearman correlation analysis was conducted to examine the strength of the relationship between meteorological variables, P. vivax and P. falciparum malaria cases. Pearson's correlation analysis was carried out among the meteorological variables to observe the independent effect of each independent variable on the outcome. Results indicate that malaria outbreaks have occurred in Bikaner and Barmer due to continuous rains for more than two months. Rainfall has shown to be an important predictor of malaria outbreaks in Rajasthan. P. vivax is more significantly correlated with rainfall, minimum temperature (P<0.01) and less significantly with relative humidity (P<0.05); whereas P. falciparum is significantly correlated with rainfall, relative humidity (P<0.01) and less significantly with temperature (P<0.05). The determination of the lag period for P. vivax is relative humidity and for P. falciparum is temperature. The lag period between malaria cases and rainfall is shorter for P. vivax than P. falciparum. In conclusion, the knowledge generated is not only useful to take prompt malaria control interventions but also helpful to develop better forecasting model in outbreak prone regions. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.
Forecasting of extreme events in Andes mountain basins using CFSv2
NASA Astrophysics Data System (ADS)
Castro, L.
2017-12-01
As has been shown in several recent studies related with climate change, there has been an increase in heavy daily precipitation events, and this is expected to continue in almost all areas of the globe. In central Chile, where the hydrological regime is influenced by snow accumulation, an increase in temperatures is expected due to CC, which in turn may cause an elevation of the freezing level. The impact on the freezing level increase is also significant because a larger area of the basin will be exposed to liquid precipitation rather than snow, and afterwards will have a strong impact on streamflow. The frequency of extreme precipitation events and freezing level increases have recently affected the north and central parts of Chile. In order to predict the severity of an extreme hydrometeorological event in a mountainous basin affected by rainfall and freezing level variations, this paper pose that it is necessary to know in advance the expected meteorology and the way it will affect the hydrological response of the basin. To achieve this purpose, it will be necessary to have meteorological forecasts of a numerical model for short-term prediction, corrected and disaggregated at local scale. The methodological process is as follows. First, we consider the generation of daily forecasts at local scale using statistical downscaling methods for the forecasts obtained from an NWP model. Second, we pose to improve our knowledge the spatial-temporal distribution of the meteorological forcings using a dense network of meteorological stations in a mountain basin. With the above, the statistical methods used to represent the spatial-temporal variability of the meteorological forcings at basin scale will be evaluated.
Weathering Heights: The Emergence of Aeronautical Meteorology as an Infrastructural Science
NASA Astrophysics Data System (ADS)
Turner, Roger
The first half of the 20th century was an era of weathering heights. As the development of powered flight made the free atmosphere militarily and economically relevant, meteorologists encountered new kinds of weather conditions at altitude. Pilots also learned to weather heights, as they struggled to survive in an atmosphere that revealed surprising dangers like squall lines, fog, icing, and turbulence. Aeronautical meteorology evolved out of these encounters, a heterogeneous body of knowledge that included guidelines for routing aircraft, networks for observing the upper air using scientific instruments, and procedures for synthesizing those observations into weather forecasts designed for pilots. As meteorologists worked to make the skies safe for aircraft, they remade their science around the physics of the free atmosphere. The dissertation tracks a small group of Scandinavian meteorologists, the "Bergen School," who came to be the dominant force in world meteorology by forecasting for Arctic exploration flights, designing airline weather services, and training thousands of military weather officers during World War II. After the war, some of these military meteorologists invented the TV weather report (now the most widely consumed genre of popular science) by combining the narrative of the pre-fight weather briefing with the visual style of comic-illustrated training manuals. The dissertation argues that aeronautical meteorology is representative of what I call the "infrastructural sciences," a set of organizationally intensive, purposefully invisible, applied sciences. These sciences enable the reliable operation of large technological systems by integrating theory-derived knowledge with routine environmental observation. The dissertation articulates a set of characteristics for identifying and understanding infrastructural science, and then argues that these culturally modest technical practices play a pervasive role in maintaining industrial lifeways. It concludes by noting that while meteorology successfully helped aviation become a reliable, taken-for-granted part of the transportation system, the interests of aviation created a meteorology that centered on the needs of pilots, to the detriment of fields like agricultural climatology.
A New Approach for Examining Water Vapor and Deep Convection Interactions in the Tropics
NASA Astrophysics Data System (ADS)
Adams, D. K.
2014-12-01
The complex interactions/feedbacks between water vapor fields and deep atmospheric convection remains one of the outstanding problems in Tropical Meteorology. The lack of high spatial/temporal resolution, all-weather observations in the Tropics has hampered progress. Numerical models have difficulties, for example, in representing the shallow-to-deep convective transition and the diurnal cycle of precipitation. GNSS (Global Navigation Satellite System) meteorology, which provides all-weather, high frequency (5 minutes), precipitable water vapor, can help. From 3.5 years of GNSS meteorological data in Manaus, (Central Amazonia), 320 convective events were analyzed. Results reveal two characteristic time scales of water vapor convergence; an 8 h time scale of weak convergence and 4 h timescale of intense water vapor convergence associated with the shallow-to-deep convection transition. The 4 h shallow-to-deep transition time scale is particularly robust, regardless of convective intensity, seasonality, or nocturnal versus daytime convection. We also present a summary of the Amazon Dense GNSS Meteorological Network experiment, the first ever in the Tropics, was created with the explicit aim of examining the wv/deep convection relationships at the mesoscale. This innovative, international experiment, consisted of two mesoscale (100km x100km) networks: (1) a one-year (April 2011 to April 2012) campaign (20 GNSS meteorological sites) in and around Manaus , and (2) a 6 week (June 2011) intensive campaign (15 GNSS meteorological sites) in and around Belem, this latter in collaboration with the CHUVA GPM in Brazil. Results presented here from both networks focus on the diurnal cycle of precipitable water vapor: for sea breeze convection in Belem and, for assessing the influence seasonal and topographic influences for Manaus. Ultimately, these unique observations may serve to initialize, constrain, or validate precipitable water vapor spatial and temporal evolution in high resolution models.
Weathering Database Technology
ERIC Educational Resources Information Center
Snyder, Robert
2005-01-01
Collecting weather data is a traditional part of a meteorology unit at the middle level. However, making connections between the data and weather conditions can be a challenge. One way to make these connections clearer is to enter the data into a database. This allows students to quickly compare different fields of data and recognize which…
ERIC Educational Resources Information Center
Stamm, Alfred J.; And Others
1993-01-01
The study of starlings in the urban environment integrates nervous regulation, the senses, and animal behavior, while also providing an excellent example of how the biology of an animal is related to the demands of the physical environment. (PR)
Application and evaluation of high-resolution WRF-CMAQ with simple urban parameterization.
The 2-way coupled WRF-CMAQ meteorology and air quality modeling system is evaluated for high-resolution applications by comparing to a regional air quality field study (Discover-AQ). The model was modified to better account for the effects of urban environments. High-resolution...
Application and evaluation of high-resolution WRF-CMAQ with simple urban parameterization
The 2-way coupled WRF-CMAQ meteorology and air quality modeling system is evaluated for high-resolution applications by comparing to a regional air quality field study (Discover-AQ). The model was modified to better account for the effects of urban environments. High-resolution...
NASA Astrophysics Data System (ADS)
1985-12-01
The conference presents papers on statistical data and standards, coupling and indirect effects, meteorology and thunderstorm studies, lightning simulators, fuel ignition hazards, the phenomenology and characterization of lightning, susceptibility and protection of avionics, ground systems protection, lightning locators, aircraft systems protection, structures and materials, electrostatics, and spacecraft protection against static electricity. Particular attention is given to a comparison of published HEMP and natural lightning on the surface of an aircraft, electromagnetic interaction of external impulse fields with aircraft, of thunderstorm currents and lightning charges at the NASA Kennedy Space Center, the design of a fast risetime lightning generator, lightning simulation tests in FAA CV-580 lightning research aircraft, and the energy requirements of an aircraft triggered discharge. Papers are also presented on aircraft lightning attachment at low altitudes, a new form of transient suppressor, a proving ground for lightning research, and a spacecraft materials test in a continuous, broad energy-spectrum electron beam.
NASA Astrophysics Data System (ADS)
Roswintiarti, O.; Raman, S.
- This paper describes the meteorological processes responsible for the mean transport of air pollutants during the ENSO-related forest fires in Kalimantan, Indonesia from 00 UTC 21 September to 00 UTC 25 September, 1997. The Fifth Generation of the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5) is used to simulate three-dimensional winds at 6-hourly intervals. A nonhydrostatic version of the model is run using two nested grids with horizontal resolutions of 45 km and 15 km. From the simulated wind fields, the backward and forward trajectories of the air parcel are investigated using the Vis5D model.The results indicate that the large-scale subsidence over Indonesia, the southwest monsoon low-level flows (2-8 m s-1), and the shallow planetary boundary layer height (400-800 m) play a key role in the transport of air pollutants from Kalimantan to Malaysia, Singapore and Brunei.
A Flexible Approach for the Statistical Visualization of Ensemble Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, K.; Wilson, A.; Bremer, P.
2009-09-29
Scientists are increasingly moving towards ensemble data sets to explore relationships present in dynamic systems. Ensemble data sets combine spatio-temporal simulation results generated using multiple numerical models, sampled input conditions and perturbed parameters. While ensemble data sets are a powerful tool for mitigating uncertainty, they pose significant visualization and analysis challenges due to their complexity. We present a collection of overview and statistical displays linked through a high level of interactivity to provide a framework for gaining key scientific insight into the distribution of the simulation results as well as the uncertainty associated with the data. In contrast to methodsmore » that present large amounts of diverse information in a single display, we argue that combining multiple linked statistical displays yields a clearer presentation of the data and facilitates a greater level of visual data analysis. We demonstrate this approach using driving problems from climate modeling and meteorology and discuss generalizations to other fields.« less
Ocean Surface Observations of the Diurnal Cycle of Turbulence with ASIP
NASA Astrophysics Data System (ADS)
Ward, Brian; Sutherland, Graig; Reverdin, Gilles; Marie, Louis; Christensen, Kai; Brostrom, Goran; Harcourt, Ramsey; Breivik, Oyvind
2015-04-01
The STRASSE field experiment was conducted in August/September 2012 as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) campaign. The average conditions during STRASSE were low wind and high insolation, which are typical for the generation of near-surface diurnal warming. We deployed the Air-Sea Interaction Profiler (ASIP), an autonomous upwardly-rising microstructure instrument capable of resolving small-scale processes close to the air-sea interface. ASIP provides direct estimates of the dissipation rate of turbulent kinetic energy, temperature, salinity, and PAR at timescales suitable for the study of diurnal processes. In combination with the ASIP data, we had shipboard meteorological data for calculation of atmospheric forcing, and a surface mounted Lagrangian ADCP for determination of the near-surface velocity. There was a strong diurnal cycle of temperature and dissipation (from ASIP) and shear (from an ADCP). As air-sea fluxes are driven by turbulence immediately at the air-sea interface, the presence of this enhanced shear-induced turbulence will enhance fluxes.
NASA Astrophysics Data System (ADS)
He, Fei; Zhang, Xiao-Xin; Wang, Wenbin; Liu, Libo; Ren, Zhi-Peng; Yue, Xinan; Hu, Lianhuan; Wan, Weixing; Wang, Hui
2018-04-01
In this study, we present multisatellite observations of the large-scale structures of subauroral polarization streams (SAPS) during the main phase of a severe geomagnetic storm that occurred on 31 March 2001. Observations by the Defense Meteorological Satellite Program F12 to F15 satellites indicate that the SAPS were first generated around the dusk sector at the beginning of the main phase. The SAPS channel then expanded toward the midnight sector and moved to lower latitudes as the main phase progressed. The peak velocity, latitudinal width, latitudinal alignment, and longitudinal span of the SAPS channel were highly dynamic during the storm main phase. The large westward velocities of the SAPS were located in the region of low electron densities, associated with low ionospheric conductivity. The large-scale structures of the SAPS also corresponded closely to those of the region-2 field-aligned currents, which were mainly determined by the azimuthal pressure gradient of the ring current.
Evaluation and prediction of solar radiation for energy management based on neural networks
NASA Astrophysics Data System (ADS)
Aldoshina, O. V.; Van Tai, Dinh
2017-08-01
Currently, there is a high rate of distribution of renewable energy sources and distributed power generation based on intelligent networks; therefore, meteorological forecasts are particularly useful for planning and managing the energy system in order to increase its overall efficiency and productivity. The application of artificial neural networks (ANN) in the field of photovoltaic energy is presented in this article. Implemented in this study, two periodically repeating dynamic ANS, that are the concentration of the time delay of a neural network (CTDNN) and the non-linear autoregression of a network with exogenous inputs of the NAEI, are used in the development of a model for estimating and daily forecasting of solar radiation. ANN show good productivity, as reliable and accurate models of daily solar radiation are obtained. This allows to successfully predict the photovoltaic output power for this installation. The potential of the proposed method for controlling the energy of the electrical network is shown using the example of the application of the NAEI network for predicting the electric load.
NASA Astrophysics Data System (ADS)
Kovalets, Ivan V.; Efthimiou, George C.; Andronopoulos, Spyros; Venetsanos, Alexander G.; Argyropoulos, Christos D.; Kakosimos, Konstantinos E.
2018-05-01
In this work, we present an inverse computational method for the identification of the location, start time, duration and quantity of emitted substance of an unknown air pollution source of finite time duration in an urban environment. We considered a problem of transient pollutant dispersion under stationary meteorological fields, which is a reasonable assumption for the assimilation of available concentration measurements within 1 h from the start of an incident. We optimized the calculation of the source-receptor function by developing a method which requires integrating as many backward adjoint equations as the available measurement stations. This resulted in high numerical efficiency of the method. The source parameters are computed by maximizing the correlation function of the simulated and observed concentrations. The method has been integrated into the CFD code ADREA-HF and it has been tested successfully by performing a series of source inversion runs using the data of 200 individual realizations of puff releases, previously generated in a wind tunnel experiment.
NASA Astrophysics Data System (ADS)
Finger, David C.; Pétursdóttir, Þórunn; Halldórsson, Guðmundur
2017-04-01
Ecosystems that are in equilibrium provide vital resources to local inhabitants, including protection from naturally occurring disasters. Natural vegetation cover has been optimized over many years to retain a maximum of rainfall runoff by increasing the field capacity (FC) of the soil cover, securing water availability during droughts and reducing the flood risk during heavy precipitation events. In this presentation we will present the HydroResilience project, which will assess the effects of ecosystem restoration on the runoff dynamics of rainfall water in Rangárvellir, a restoration area in southern Iceland. The Rangárvellir area presents ideal conditions for such investigations. Dramatic deforestation during the last millennium and year round livestock grazing along with devastating ash depositions during volcanic eruptions and a harsh sub-polar oceanic climate have led to severe degradation in Rangárvellir. Since the beginning of the 20th century diverse restoration measures have been implemented making Rangárvellir an ideal case study to investigate the effects of restoration on hydro-meteorological risk reduction. In this project we will assess and quantify the evolution of water resources in Rangárvellir by assessing the runoff dynamics in the main rivers of Rangárvellir under four main scenarios: i) present conditions, ii) degraded conditions as was the case 100 years ago, iii) under hypothetical fully restored ecosystems and, finally, iv) under conditions of a scenario developed in collaboration with local stakeholder groups to optimize socio-ecological benefits. For this purpose the dynamics of the relevant hydrological processes in the area (incl. river runoff, ground water table, snow cover duration, and soil moisture dynamics) will be reconstructed using hydrological models to run the above mentioned scenarios. The scientific findings and conclusion of this project will generate valuable insights on the effects of land restoration on hydro-meteorological risk reduction. The presentations will outline the main methods used during the project and conclude by providing an outlook on the expected results.
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Rodgers, E. B.
1977-01-01
An advanced Man-Interactive image and data processing system (AOIPS) was developed to extract basic meteorological parameters from satellite data and to perform further analyses. The errors in the satellite derived cloud wind fields for tropical cyclones are investigated. The propagation of these errors through the AOIPS system and their effects on the analysis of horizontal divergence and relative vorticity are evaluated.
2011-08-01
of geostationary (GEO) and low-earth-orbiting (LEO) sensors were employed to help guide daily mission planning , forecasts, and outlooks, and also...to enhance postmission analysis studies. This paper chronicles the T-PARC/TCS-08 project’s satellite-observing tools, imagery, and de - rived...how satellite-based remote sensing can be optimized to provide dedicated field campaign support. ReAl-Time miSSiON PlANNiNg , NOw- CASTiNg, AND
NASA Technical Reports Server (NTRS)
Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.
2013-01-01
The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.
Measurement study on stratospheric turbulence generation by wave-wave interaction
NASA Astrophysics Data System (ADS)
Söder, Jens; Gerding, Michael; Schneider, Andreas; Wagner, Johannes; Lübken, Franz-Josef
2017-04-01
During a joint campaign of the research programmes METROSI and GW-LCYCLE 2 (Northern Scandinavia, January 2016), an extraordinary case of turbulence generation by wave-wave interaction has been observed. To describe this turbulence, we will focus on the energy dissipation rate. The most feasible way to measure dissipation is to resolve the inner scale of turbulence. This is done by our balloon-borne instrument LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere) that combines a precise turbulence measurement method with the capability of being launched from every radiosonde station. For the flight in discussion further information on the meteorological background is obtained by a radiosonde. Due to the fact that the balloon drifts horizontally during ascent, measurements of vertical and horizontal wave parameters are ambiguous. Hence further understanding of the wave field is aided by 3d-simulations using WRF and ECMWF. Concentrating on one out of six LITOS launches during that campaign, we see some turbulent activity across the whole flightpath as on most other LITOS measurements. Nevertheless, we find pronounced maxima in the middle stratosphere (24 - 32 km). They coincide with a distinct phase of a mountain wave. As seen from WRF and ECMWF wind fields, this mountain wave interacts with another larger scale gravity wave. That is, the second wave influences the propagation of the smaller scale mountain wave. With LITOS we see the strongest dissipation rates in areas where the phase direction of the smaller wave changes due to wave-wave interaction. Therefore, these measurements provide an opportunity for further investigation into breakdown processes of internal gravity waves.
NASA Astrophysics Data System (ADS)
Sturman, V. I.
2018-01-01
This paper studies spatial distribution and temporal dynamics of power frequency electric and magnetic fields in Saint-Petersburg. It was determined that sanitary-protection and exclusion zones of the standard size high-voltage transmission lines (HVTL) do not always ensure maximum allowable limits of the electrical field depression. A dependence of the electric field strength on meteorological factors was defined. A series of sources create a city-wide background for magnetic fields. That said, the heavier the man-caused load is, the higher the mean values of magnetic induction are. Abnormally high values of magnetic induction are explained by the influence of underground electric cables.
Du, Hongyu; Wang, Duoduo; Wang, Yuanyuan; Zhao, Xiaolei; Qin, Fei; Jiang, Hong; Cai, Yongli
2016-11-15
Urban heat islands (UHIs) reflect the localized impact of human activities on thermal fields. In this study, we assessed the surface UHI and its relationship with types of land, meteorological conditions, anthropogenic heat sources and urban areas in the Yangtze River Delta Urban Agglomeration (YRDUA) with the aid of remote sensing data, statistical data and meteorological data. The results showed that the UHI intensity in YRDUA was the strongest (0.84°C) in summer, followed by 0.81°C in autumn, 0.78°C in spring and 0.53°C in winter. The daytime UHI intensity is 0.98°C, which is higher than the nighttime UHI intensity of 0.50°C. Then, the relationship between the UHI intensity and several factors such as meteorological conditions, anthropogenic heat sources and the urban area were analysed. The results indicated that there was an insignificant correlation between population density and the UHI intensity. Energy consumption, average temperature and urban area had a significant positive correlation with UHI intensity. However, the average wind speed and average precipitation were significantly negatively correlated with UHI intensity. This study provides insight into the regional climate characteristics and a scientific basis for city layout. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jeon, Wonbae; Choi, Yunsoo; Roy, Anirban; Pan, Shuai; Price, Daniel; Hwang, Mi-Kyoung; Kim, Kyu Rang; Oh, Inbo
2018-02-01
Oak pollen concentrations over the Houston-Galveston-Brazoria (HGB) area in southeastern Texas were modeled and evaluated against in-situ data. We modified the Community Multi-scale Air Quality (CMAQ) model to include oak pollen emission, dispersion, and deposition. The Oak Pollen Emission Model (OPEM) calculated gridded oak pollen emissions, which are based on a parameterized equation considering a plant-specific factor ( C e ), surface characteristics, and meteorology. The simulation period was chosen to be February 21 to April 30 in the spring of 2010, when the observed monthly mean oak pollen concentrations were the highest in six years (2009-2014). The results indicated C e and meteorology played an important role in the calculation of oak pollen emissions. While C e was critical in determining the magnitude of oak pollen emissions, meteorology determined their variability. In particular, the contribution of the meteorology to the variation in oak pollen emissions increased with the oak pollen emission rate. The evaluation results using in-situ surface data revealed that the model underestimated pollen concentrations and was unable to accurately reproduce the peak pollen episodes. The model error was likely due to uncertainty in climatology-based C e used for the estimation of oak pollen emissions and inaccuracy in the wind fields from the Weather Research and Forecast (WRF) model.
NASA Astrophysics Data System (ADS)
Yang, W.
2017-12-01
Knowledge of the meteorology and energy fluxes of debris-free and debris-covered glaciers is important for understanding the varying response of glaciers to climate change. Field measurements at the debris-free Parlung No. 4 Glacier and the debris-covered 24K Glacier in the southeastern Tibetan Plateau were carried out to compare the meteorology and surface energy fluxes and to understand the factors controlling the melting process. The meteorological comparisons displayed temporally synchronous fluctuations in air temperature, relative humidity, incoming longwave radiation (Lin), but notable differences in precipitation, incoming shortwave radiation (Sin) and wind speed. Under the prevailing regional precipitation and debris conditions, more Lin (42 W/m2) was supplied from warmer and more humid air and more Sin (58 W/m2) was absorbed at the 24K Glacier. The relatively high energy supply led mainly to an increased energy output via turbulent heat fluxes and outgoing longwave radiation, rather than glacier melting beneath the thick debris. The sensitivity experiment showed that melting rates were sensitive to variations in energy supply with debris thicknesses of less than 10 cm. In contrast, energy supply to the ablation zone of the Parlung No. 4 Glacier mainly resulted in snow/ice melting, the magnitude of which was significantly influenced by the energy supplied by Sin and the sensible heat flux.
NASA Astrophysics Data System (ADS)
González-Carrasco, J. F.; Benavente, R. F.; Zelaya, C.; Núñez, C.; Gonzalez, G.
2017-12-01
The 2017 Mw 8.1, Tehuantepec earthquake generated a moderated tsunami, which was registered in near-field tide gauges network activating a tsunami threat state for Mexico issued by PTWC. In the case of Chile, the forecast of tsunami waves indicate amplitudes less than 0.3 meters above the tide level, advising an informative state of threat, without activation of evacuation procedures. Nevertheless, during sea level monitoring of network we detect wave amplitudes (> 0.3 m) indicating a possible change of threat state. Finally, NTWS maintains informative level of threat based on mathematical filtering analysis of sea level records. After 2010 Mw 8.8, Maule earthquake, the Chilean National Tsunami Warning System (NTWS) has increased its observational capabilities to improve early response. Most important operational efforts have focused on strengthening tide gauge network for national area of responsibility. Furthermore, technological initiatives as Integrated Tsunami Prediction and Warning System (SIPAT) has segmented the area of responsibility in blocks to focus early warning and evacuation procedures on most affected coastal areas, while maintaining an informative state for distant areas of near-field earthquake. In the case of far-field events, NTWS follow the recommendations proposed by Pacific Tsunami Warning Center (PTWC), including a comprehensive monitoring of sea level records, such as tide gauges and DART (Deep-Ocean Assessment and Reporting of Tsunami) buoys, to evaluate the state of tsunami threat in the area of responsibility. The main objective of this work is to analyze the first-order physical processes involved in the far-field propagation and coastal impact of tsunami, including implications for decision-making of NTWS. To explore our main question, we construct a finite-fault model of the 2017, Mw 8.1 Tehuantepec earthquake. We employ the rupture model to simulate a transoceanic tsunami modeled by Neowave2D. We generate synthetic time series at tide gauge stations and compare them with recorded sea level data, to dismiss meteorological processes, such as storms and surges. Resonance analysis is performed by wavelet technique.
Regional Air Quality forecAST (RAQAST) Over the U.S
NASA Astrophysics Data System (ADS)
Yoshida, Y.; Choi, Y.; Zeng, T.; Wang, Y.
2005-12-01
A regional chemistry and transport modeling system is used to provide 48-hour forecast of the concentrations of ozone and its precursors over the United States. Meteorological forecast is conducted using the NCAR/Penn State MM5 model. The regional chemistry and transport model simulates the sources, transport, chemistry, and deposition of 24 chemical tracers. The lateral and upper boundary conditions of trace gas concentrations are specified using the monthly mean output from the global GEOS-CHEM model. The initial and boundary conditions for meteorological fields are taken from the NOAA AVN forecast. The forecast has been operational since August, 2003. Model simulations are evaluated using surface, aircraft, and satellite measurements in the A'hindcast' mode. The next step is an automated forecast evaluation system.
Choice of Control Variables in Variational Data Assimilation and Its Analysis and Forecast Impact
NASA Astrophysics Data System (ADS)
Xie, Yuanfu; Sun, Jenny; Fang, Wei-ting
2014-05-01
Choice of control variables directly impacts the analysis qualify of a variational data assimilation and its forecasts. A theory on selecting control variables for wind and moisture field is introduced for 3DVAR or 4DVAR. For a good control variable selection, Parseval's theory is applied to 3-4DVAR and the behavior of different control variables is illustrated in physical and Fourier space in terms of minimization condition, meteorological dynamic scales and practical implementation. The computational and meteorological benefits will be discussed. Numerical experiments have been performed using WRF-DA for wind control variables and CRTM for moisture control variables. It is evident of the WRF forecast improvement and faster convergence of CRTM satellite data assimilation.
Evaluation of Transport in the Lower Tropical Stratosphere in a Global Chemistry and Transport Model
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; Schoeberl, Mark R.; Rood, Richard B.; Pawson, Steven; Bhartia, P. K. (Technical Monitor)
2002-01-01
Off-line models of the evolution of stratospheric constituents use meteorological information from a general circulation model (GCM) or from a data assimilation system (DAS). Here we focus on transport in the tropics and between the tropics and middle latitudes. Constituent fields from two simulations are compared with each other and with observations. One simulation uses winds from a GCM and the second uses winds from a DAS that has the same GCM at its core. Comparisons of results from the two simulations with observations from satellite, aircraft, and sondes are used to judge the realism of the tropical transport. Faithful comparisons between simulated fields and observations for O3, CH4, and the age-of-air are found for the simulation using the GCM fields. The same comparisons for the simulation using DAS fields show rapid upward tropical transport and excessive mixing between the tropics and middle latitudes. The unrealistic transport found in the DAS fields may be due to the failure of the GCM used in the assimilation system to represent the quasi-biennial oscillation. The assimilation system accounts for differences between the observations and the GCM by requiring implicit forcing to produce consistency between the GCM and observations. These comparisons suggest that the physical consistency of the GCM fields is more important to transport characteristics in the lower tropical stratosphere than the elimination bias with respect to meteorological observations that is accomplished by the DAS. The comparisons presented here show that GCM fields are more appropriate for long-term calculations to assess the impact of changes in stratospheric composition because the balance between photochemical and transport terms is likely to be represented correctly.
NASA Astrophysics Data System (ADS)
Seabra, M.; Gonçalves, P.; Braga, A.; Raposo, R.; Ito, E.; Gadelha, A.; Dallantonia, A.
2008-05-01
The XV Pan-American Games were organized in Rio de Janeiro city during 13 to 29 July, 2007 with a participation of 5.662 athletes of 42 countries . The Ministry of Sports requested INMET to provide meteorological support to the games, with the exception of the water sports only, which fell under the responsibility of the Brazilian Navy. The meteorological activities should follow the same pattern experienced during the Olympic Games of Sydney in Australia in the year of 2000, and of Athens in Greece in 2004, with a forecast center entirely dedicated to the event. NMET developed a website with detailed information oriented to the athletes and organizing committee and to the general public. The homepage had 3 different option of idioms (Portuguese, English and Spanish). After choosing the idiom, the user could consult the meteorological data, to each competition place, and to the Pan- American Village, every 15 minutes, containing weather forecast bulletin, daily synoptic analysis, the last 10 satellite image and meteograms. Besides observed data verified "in situ" INMET supplied forecast generated by High Resolution Model (MBAR) with 7km grid resolution especially set up for the games. INMET installed 7 automatic meteorological stations near the competition places, which supplied temperature , relative humidity , atmospheric pressure, wind (direction and intensity), radiation and precipitation every 15 minutes. Those information were relayed by satellite to INMET headquarters located in Brasília and soon after they were published in the website. To help the Brazilian Olympic Committee - COB, the athletes, their technical commission and the public in general, meteorological bulletins were emitted daily. The forecast was done together with the Navy and also with INMET's 6th District located in Rio de Janeiro, and responsible for the forecast statewide. This forecast was then placed at the INMET's website. Both the 3 days weather forecast and Meteorological Alert were emitted in Portuguese, English and Spanish, and sent to the INMET homepage, organizing committee, and specific area (intranet) accessed only by the athletes and technical commissions. Direct interaction with the game organizers allowed for a more efficient and precise decision-making process regarding meteorological effects in some sport modalities. As an example we can mention the fact that during the women marathon competition a low humidity alert was forecasted and the organizers took care to increase hydratation to prevent problems. INMET's participation during the XVth Pan-American Games, which took place in Rio de Janeiro in July 2007, represented a good opportunity for the institute to provide a tailor-made short range forecast with specific application. INMET's performance was recognized by the organizing committee and the occasion helped to divulge products and services provided by the institution.
Air Pollutant Distribution and Mesoscale Circulation Systems During Escompte
NASA Astrophysics Data System (ADS)
Kottmeier, Ch.; Kalthoff, N.; Corsmeier, U.; Robin, D.; Thürauf, J.; Hofherr, T.; Hasel, M.
The distribution of pollutants observed with an Dornier 128 instrumented aircraft and from AIRMARAIX ground stations during one day of the Escompte experiment (June 25, 2001) is analysed in relation to the mesoscale wind systems and vertical mixing from aircraft and radiosonde data. The ESCOMPTE-experiment (http://medias.obs- mip.fr/escompte) was carried out in June and July 2001 in the urban area of Marseille and its rural surroundings to investigate periods with photosmog conditions. The over- all aim is to produce an appropriate high quality 3-D data set which includes emission, meteorological, and chemical data. The data is used for the validation of mesoscale models and for chemical and meteorological process studies. The evolution of pho- tosmog episodes with high ozone concentrations depends on both chemical transfor- mation processes and meteorological conditions. As Marseille is situated between the Mediterranean Sea in the south and mountainous sites in the north, under weak large- scale flow the meteorological conditions are dominated by thermally driven circula- tion systems which strongly influence the horizontal transport of air pollutants. Ad- ditionally, vertically exchange processes like mountain venting and slope winds may contribute in the temporal evolution of the trace gas concentration of the city plume in the atmospheric boundary layer and are particularly studied by the Dornier flight measurements. Therefore the experiment was designed to measure both, the chemi- cal species and meteorological parameters with high resolution in space and time by surface stations, aircraft and vertical profiling systems like radiosondes, sodars and lidars. Results are shown (a) on the evolution of the wind field and the ozone concen- trations during June 25, when an ozone maximum develops about 60 km in the lee site of Marseille and (b) the vertical transport of air pollutants between the boundary layer and the free troposphere.
NASA Astrophysics Data System (ADS)
Leng, Pei; Li, Zhao-Liang; Duan, Si-Bo; Gao, Mao-Fang; Huo, Hong-Yuan
2017-09-01
Soil moisture has long been recognized as one of the essential variables in the water cycle and energy budget between Earth's surface and atmosphere. The present study develops a practical approach for deriving all-weather soil moisture using combined satellite images and gridded meteorological products. In this approach, soil moisture over the Moderate Resolution Imaging Spectroradiometer (MODIS) clear-sky pixels are estimated from the Vegetation Index/Temperature (VIT) trapezoid scheme in which theoretical dry and wet edges were determined pixel to pixel by China Meteorological Administration Land Data Assimilation System (CLDAS) meteorological products, including air temperature, solar radiation, wind speed and specific humidity. For cloudy pixels, soil moisture values are derived by the calculation of surface and aerodynamic resistances from wind speed. The approach is capable of filling the soil moisture gaps over remaining cloudy pixels by traditional optical/thermal infrared methods, allowing for a spatially complete soil moisture map over large areas. Evaluation over agricultural fields indicates that the proposed approach can produce an overall generally reasonable distribution of all-weather soil moisture. An acceptable accuracy between the estimated all-weather soil moisture and in-situ measurements at different depths could be found with an Root Mean Square Error (RMSE) varying from 0.067 m3/m3 to 0.079 m3/m3 and a slight bias ranging from 0.004 m3/m3 to -0.011 m3/m3. The proposed approach reveals significant potential to derive all-weather soil moisture using currently available satellite images and meteorological products at a regional or global scale in future developments.
Estimation of vegetative mercury emissions in China.
Quan, Jiannong; Zhang, Xiaoshan; Shim, Shang Gyoo
2008-01-01
Vegetative mercury emissions were estimated within the framework of Biogenic Emission Inventory System (BEIS3 V3.11). In this estimation, the 19 categories of U.S. Geological Survey landcover data were incorporated to generate the vegetation-specific mercury emissions in a 81-km Lambert Conformal model grid covering the total Chinese continent. The surface temperature and cloud-corrected solar radiation from a Mesoscale Meteorological model (MM5) were retrieved and used for calculating the diurnal variation. The implemented emission factors were either evaluated from the measured mercury flux data for forest, agriculture and water, or assumed for other land fields without available flux data. Annual simulations using the MM5 data were performed to investigate the seasonal emission variation. From the sensitivity analysis using two sets of emission factors, the vegetative mercury emissions in China domain were estimated to range from a lower limit of 79 x 10(3) kg/year to an upper limit of 177 x 10(3) kg/year. The modeled vegetative emissions were mainly generated from the eastern and southern China. Using the estimated data, it is shown that mercury emissions from vegetation are comparable to that from anthropogenic sources during summer. However, the vegetative emissions decrease greatly during winter, leaving anthropogenic sources as the major sources of emission.
Critical Analyses of Data Differences Between FNMOC and AFGWC Spawned SSM/I Datasets
NASA Technical Reports Server (NTRS)
Ritchie, Adrian A., Jr.; Smith, Matthew R.; Goodman, H. Michael; Schudalla, Ronald L.; Conway, Dawn K.; LaFontaine, Frank J.; Moss, Don; Motta, Brian
1998-01-01
Antenna temperatures and the corresponding geolocation data from the five sources of the Special Sensor Microwave/Imager data from the Defense Meteorological Satellite Program F11 satellite have been characterized. Data from the Fleet Numerical Meteorology and Oceanography Center (FNMOC) have been compared with data from other sources to define and document the differences resulting from different processing systems. While all sources used similar methods to calculate antenna temperatures, different calibration averaging techniques and other processing methods yielded temperature differences. Analyses of the geolocation data identified perturbations in the FNMOC and National Environmental Satellite, Data and Information Service data. The effects of the temperature differences were examined by generating rain rates using the Goddard Scattering Algorithm. Differences in the geophysical precipitation products are directly attributable to antenna temperature differences.
Applications of Geostationary Satellite Data to Aviation
NASA Astrophysics Data System (ADS)
Ellrod, Gary P.; Pryor, Kenneth
2018-03-01
Weather is by far the most important factor in air traffic delays in the United States' National Airspace System (NAS) according to the Federal Aviation Administration (FAA). Geostationary satellites have been an effective tool for the monitoring of meteorological conditions that affect aviation operations since the launch of the first Synchronous Meteorological Satellite (SMS) in the United States in 1974. This paper will review the global use of geostationary satellites in support of aviation weather since their inception, with an emphasis on the latest generation of satellites, such as Geostationary Operational Environmental Satellite (GOES)-R (16) with its Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM). Specific applications discussed in this paper include monitoring of convective storms and their associated hazards, fog and low stratus, turbulence, volcanic hazards, and aircraft icing.
Analyzing Martian winds and tracer concentrations using Mars Observer data
NASA Technical Reports Server (NTRS)
Houben, Howard C.
1993-01-01
During the courses of a day, the Mars Observer spacecraft will acquire globally distributed profiles of the martian atmosphere. It is highly desirable that this data be assembled into synoptic weather maps (complete specifications of the atmospheric pressure, temperature, and winds at a given time), which can in turn be used as starting points in the study of many meteorological phenomena. Unfortunately, the special nature of the Mars Observer data presents several challenges above and beyond the usual difficult problem of data initialization. Mars Observer atmospheric data will consist almost exclusively of asynoptic vertical profiles of temperatures (or radiances) and pressures, whereas winds are generally in balance with horizontal gradients of these quantities (which will not be observed). It will therefore be necessary to resort to dynamical models to analyze the wind fields. As a rule, data assimilation into atmospheric models can result in the generation of spurious gravity waves, so special steps must be taken to suppress these. In addition, the asynoptic nature of the data will require a four-dimensional (space and time) data assimilation scheme. The problem is to find a full set of meteorological fields (winds and temperatures) such that, when marched forward in time in the model, they achieve a best fit (in the weighted least-squares sense) to the data. The proposed solution is to develop a model especially for the Mars Observer data assimilation problem. Gravity waves are filtered from the model by eliminating all divergence terms from the prognostic divergence equation. This leaves a diagnostic gradient wind relation between the rotational wind and the temperature field. The divergent wind is diagnosed as the wind required to maintain the gradient wind balance in the presence of the diabatic heating. The primitive equations of atmospheric dynamics (with three principal dependent variables) are thus reduced to a simpler system with a single prognostic equation for temperature - the variable that will be best observed. (This balance system was apparently first derived by Charney as a first-order Rossby number expansion of the equations of motion). Experience with a full primitive equation model of the martian atmosphere indicates that a further simplification is possible: at least for short-term integrations, the model can be linearized about the zonally symmetric basic state.
NASA Astrophysics Data System (ADS)
Robles-Morua, A.; Vivoni, E.; Rivera-Fernandez, E. R.; Dominguez, F.; Meixner, T.
2013-05-01
Hydrologic modeling using high spatiotemporal resolution satellite precipitation products in the southwestern United States and northwest Mexico is important given the sparse nature of available rain gauges. In addition, the bimodal distribution of annual precipitation also presents a challenge as differential climate impacts during the winter and summer seasons are not currently well understood. In this work, we focus on hydrological comparisons using rainfall forcing from a satellite-based product, downscaled GCM precipitation estimates and available ground observations. The simulations are being conducted in the Santa Cruz and San Pedro river basins along the Arizona-Sonora border at high spatiotemporal resolutions (~100 m and ~1 hour). We use a distributed hydrologic model, known as the TIN-based Real-time Integrated Basin Simulator (tRIBS), to generate simulated hydrological fields under historical (1991-2000) and climate change (2031-2040) scenarios obtained from an application of the Weather Research and Forecast (WRF) model. Using the distributed model, we transform the meteorological scenarios at 10-km, hourly resolution into predictions of the annual water budget, seasonal land surface fluxes and individual hydrographs of flood and recharge events. We compare the model outputs and rainfall fields of the WRF products against the forcing from the North American Land Data Assimilation System (NLDAS) and available ground observations from the National Climatic Data Center (NCDC) and Arizona Meteorological Network (AZMET). For this contribution, we selected two full years in the historical period and in the future scenario that represent wet and dry conditions for each decade. Given the size of the two basins, we rely on a high performance computing platform and a parallel domain discretization with higher resolutions maintained at experimental catchments in each river basin. Model simulations utilize best-available data across the Arizona-Sonora border on topography, land cover and soils obtained from analysis of remotely-sensed imagery and government databases. In addition, for the historical period, we build confidence in the model simulations through comparisons with streamflow estimates in the region. The model comparisons during the historical and future periods will yield a first-of-its-kind assessment on the impacts of climate change on the hydrology of two large semiarid river basins of the southwestern United States
Dispersion modeling of accidental releases of toxic gases - utility for the fire brigades.
NASA Astrophysics Data System (ADS)
Stenzel, S.; Baumann-Stanzer, K.
2009-09-01
Several air dispersion models are available for prediction and simulation of the hazard areas associated with accidental releases of toxic gases. The most model packages (commercial or free of charge) include a chemical database, an intuitive graphical user interface (GUI) and automated graphical output for effective presentation of results. The models are designed especially for analyzing different accidental toxic release scenarios ("worst-case scenarios”), preparing emergency response plans and optimal countermeasures as well as for real-time risk assessment and management. The research project RETOMOD (reference scenarios calculations for toxic gas releases - model systems and their utility for the fire brigade) was conducted by the Central Institute for Meteorology and Geodynamics (ZAMG) in cooperation with the Viennese fire brigade, OMV Refining & Marketing GmbH and Synex Ries & Greßlehner GmbH. RETOMOD was funded by the KIRAS safety research program of the Austrian Ministry of Transport, Innovation and Technology (www.kiras.at). The main tasks of this project were 1. Sensitivity study and optimization of the meteorological input for modeling of the hazard areas (human exposure) during the accidental toxic releases. 2. Comparison of several model packages (based on reference scenarios) in order to estimate the utility for the fire brigades. For the purpose of our study the following models were tested and compared: ALOHA (Areal Location of Hazardous atmosphere, EPA), MEMPLEX (Keudel av-Technik GmbH), Trace (Safer System), Breeze (Trinity Consulting), SAM (Engineering office Lohmeyer). A set of reference scenarios for Chlorine, Ammoniac, Butane and Petrol were proceed, with the models above, in order to predict and estimate the human exposure during the event. Furthermore, the application of the observation-based analysis and forecasting system INCA, developed in the Central Institute for Meteorology and Geodynamics (ZAMG) in case of toxic release was investigated. INCA (Integrated Nowcasting through Comprehensive Analysis) data are calculated operationally with 1 km horizontal resolution and based on the weather forecast model ALADIN. The meteorological field's analysis with INCA include: Temperature, Humidity, Wind, Precipitation, Cloudiness and Global Radiation. In the frame of the project INCA data were compared with measurements from the meteorological observational network, conducted at traffic-near sites in Vienna. INCA analysis and very short term forecast fields (up to 6 hours) are found to be an advanced possibility to provide on-line meteorological input for the model package used by the fire brigade. Since the input requirements differ from model to model, and the outputs are based on unequal criteria for toxic area and exposure, a high degree of caution in the interpretation of the model results is required - especially in the case of slow wind speeds, stable atmospheric condition, and flow deflection by buildings in the urban area or by complex topography.
Interannual variation, decadal trend, and future change in ozone outflow from East Asia
NASA Astrophysics Data System (ADS)
Zhu, Jia; Liao, Hong; Mao, Yuhao; Yang, Yang; Jiang, Hui
2017-03-01
We examine the past and future changes in the O3 outflow from East Asia using a global 3-D chemical transport model, GEOS-Chem. The simulations of Asian O3 outflow for 1986-2006 are driven by the assimilated GEOS-4 meteorological fields, and those for 2000-2050 are driven by the meteorological fields archived by the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM) 3 under the IPCC SRES A1B scenario. The evaluation of the model results against measurements shows that the GEOS-Chem model captures the seasonal cycles and interannual variations of tropospheric O3 concentrations fairly well with high correlation coefficients of 0.82-0.93 at four ground-based sites and 0.55-0.88 at two ozonesonde sites where observations are available. The increasing trends in surface-layer O3 concentrations in East Asia over the past 2 decades are captured by the model, although the modeled O3 trends have low biases. Sensitivity studies are conducted to examine the respective impacts of meteorological parameters and emissions on the variations in the outflow flux of O3. When both meteorological parameters and anthropogenic emissions varied from 1986-2006, the simulated Asian O3 outflow fluxes exhibited a statistically insignificant decadal trend; however, they showed large interannual variations (IAVs) with seasonal values of 4-9 % for the absolute percent departure from the mean (APDM) and an annual APDM value of 3.3 %. The sensitivity simulations indicated that the large IAVs in O3 outflow fluxes were mainly caused by variations in the meteorological conditions. The variations in meteorological parameters drove the IAVs in O3 outflow fluxes by altering the O3 concentrations over East Asia and by altering the zonal winds; the latter was identified to be the key factor, since the O3 outflow was highly correlated with zonal winds from 1986-2006. The simulations of the 2000-2050 changes show that the annual outflow flux of O3 will increase by 2.0, 7.9, and 12.2 % owing to climate change alone, emissions change alone, and changes in both climate and emissions, respectively. Therefore, climate change will aggravate the effects of the increases in anthropogenic emissions on future changes in the Asian O3 outflow. Future climate change is predicted to greatly increase the Asian O3 outflow in the spring and summer seasons as a result of the projected increases in zonal winds. The findings from the present study help us to understand the variations in tropospheric O3 in the downwind regions of East Asia on different timescales and have important implications for long-term air quality planning in the regions downwind of China, such as Japan and the US.
Fine fuel moisture measured and estimated in dead Andropogon virginicus in Hawaii
Francis M. Fujioka
1976-01-01
Fuel moisture estimates generated by the National Fire-Danger Rating System procedure were compared with actual fuel moisture measurements determined from laboratory analysis. Meteorological data required for the NFDRS procedure were collected at two heights to assess the effect of temperature and humidity lapse rates. Standard measurements gave the best results, but...
High resolution urban morphology data for urban wind flow modeling
NASA Astrophysics Data System (ADS)
Cionco, Ronald M.; Ellefsen, Richard
The application of urban forestry methods and technologies to a number of practical problems can be further enhanced by the use and incorporation of localized, high resolution wind and temperature fields into their analysis methods. The numerical simulation of these micrometeorological fields will represent the interactions and influences of urban structures, vegetation elements, and variable terrain as an integral part of the dynamics of an urban domain. Detailed information of the natural and man-made components that make up the urban area is needed to more realistically model meteorological fields in urban domains. Simulating high resolution wind and temperatures over and through an urban domain utilizing detailed morphology data can also define and quantify local areas where urban forestry applications can contribute to better solutions. Applications such as the benefits of planting trees for shade purposes can be considered, planned, and evaluated for their impact on conserving energy and cooling costs as well as the possible reconfiguration or removal of trees and other barriers for improved airflow ventilation and similar processes. To generate these fields, a wind model must be provided, as a minimum, the location, type, height, structural silhouette, and surface roughness of these components, in order to account for the presence and effects of these land morphology features upon the ambient airflow. The morphology of Sacramento, CA has been characterized and quantified in considerable detail primarily for wind flow modeling, simulation, and analyses, but can also be used for improved meteorological analyses, urban forestry, urban planning, and other urban related activities. Morphology methods previously developed by Ellefsen are applied to the Sacramento scenario with a high resolution grid of 100 m × 100 m. The Urban Morphology Scheme defines Urban Terrain Zones (UTZ) according to how buildings and other urban elements are structured and placed with respect to each other. The urban elements within the 100 m × 100 m cells (one hectare) are further described and digitized as building height, building footprint (in percent), reflectivity of its roof, pitched roof or flat, building's long axis orientation, footprint of impervious surface and its reflectivity, footprint of canopy elements, footprint of woodlots, footprint of grass area, and footprint of water surface. A variety of maps, satellite images, low level aerial photographs, and street level photographs are the raw data used to quantify these urban properties. The final digitized morphology database resides in a spreadsheet ready for use on ordinary personal computers.
NASA Astrophysics Data System (ADS)
Foresti, Loris; Reyniers, Maarten; Delobbe, Laurent
2014-05-01
The Short-Term Ensemble Prediction System (STEPS) is a probabilistic precipitation nowcasting scheme developed at the Australian Bureau of Meteorology in collaboration with the UK Met Office. In order to account for the multiscaling nature of rainfall structures, the radar field is decomposed into an 8 levels multiplicative cascade using a Fast Fourier Transform. The cascade is advected using the velocity field estimated with optical flow and evolves stochastically according to a hierarchy of auto-regressive processes. This allows reproducing the empirical observation that the rate of temporal evolution of the small scales is faster than the large scales. The uncertainty in radar rainfall measurement and the unknown future development of the velocity field are also considered by stochastic modelling in order to reflect their typical spatial and temporal variability. Recently, a 4 years national research program has been initiated by the University of Leuven, the Royal Meteorological Institute (RMI) of Belgium and 3 other partners: PLURISK ("forecasting and management of extreme rainfall induced risks in the urban environment"). The project deals with the nowcasting of rainfall and subsequent urban inundations, as well as socio-economic risk quantification, communication, warning and prevention. At the urban scale it is widely recognized that the uncertainty of hydrological and hydraulic models is largely driven by the input rainfall estimation and forecast uncertainty. In support to the PLURISK project the RMI aims at integrating STEPS in the current operational deterministic precipitation nowcasting system INCA-BE (Integrated Nowcasting through Comprehensive Analysis). This contribution will illustrate examples of STEPS ensemble and probabilistic nowcasts for a few selected case studies of stratiform and convective rain in Belgium. The paper focuses on the development of STEPS products for potential hydrological users and a preliminary verification of the nowcasts, especially to analyze the spatial distribution of forecast errors. The analysis of nowcast biases reveals the locations where the convective initiation, rainfall growth and decay processes significantly reduce the forecast accuracy, but also points out the need for improving the radar-based quantitative precipitation estimation product that is used both to generate and verify the nowcasts. The collection of fields of verification statistics is implemented using an online update strategy, which potentially enables the system to learn from forecast errors as the archive of nowcasts grows. The study of the spatial or temporal distribution of nowcast errors is a key step to convey to the users an overall estimation of the nowcast accuracy and to drive future model developments.
NASA Astrophysics Data System (ADS)
Kettle, Anthony
2016-04-01
Important issues for energy meteorology are to assess meteorological conditions for normal operating conditions and extreme events for the ultimate limit state of engineering structures. For the offshore environment in northwest Europe, energy meteorology encompasses weather conditions relevant for petroleum production infrastructure and also the new field of offshore wind energy production. Autumn and winter storms are an important issue for offshore operations in the North Sea. The weather in this region is considered as challenging for extreme meteorological events as the Gulf of Mexico with its attendant hurricane risk. The rise of the Internet and proliferation of digital recording devices has placed a much greater amount of information in the public domain than was available to national meteorological agencies even 20 years ago. This contribution looks at reports of meteorology and infrastructure damage from a storm in the autumn of 2006 to trace the spatial and temporal record of meteorological events. Media reports give key information to assess the events of the storm. The storm passed over northern Europe between Oct.31-Nov. 2, 2006, and press reports from the time indicate that its most important feature was a high surge that inundated coastal areas. Sections of the Dutch and German North Sea coast were affected, and there was record flooding in Denmark and East Germany in the southern Baltic Sea. Extreme wind gusts were also reported that were strong enough to damage roofs and trees, and there was even tornado recorded near the Dutch-German border. Offshore, there were a series of damage reports from ship and platforms that were linked with sea state, and reports of rogue waves were explicitly mentioned. Many regional government authorities published summaries of geophysical information related to the storm, and these form part of a regular series of online winter storm reports that started as a public service about 15 years ago. Depending on the issuing authority, these reports include wind speed and atmospheric pressure for a number of stations. However, there is also important ancillary information that includes satellite images, weather radar pictures, sea state recordings, tide gauge records, and coastal surveys. When collated together, the literature survey gives good view of events related to the autumn storm. The key information from media reports is backed up by quantitative numbers from the scientific literature. For energy meteorology in the offshore environment, there is an outline of extreme wave events that may be important to help define the ultimate limit state of engineering structures and the return periods of extreme waves. While this contribution focusses on events from an old storm in the autumn of 2006, more severe regional storms have occurred since then, and the scientific literature indicates that these may be linked with climate warming. Literature surveys may help to fully define extreme meteorological conditions offshore and benefit different branches of the energy industry in Europe.
Armstrong, Brandy N.; Warner, John C.; List, Jeffrey H.; Martini, Marinna A.; Montgomery, Ellyn T.; Voulgaris, George; Traykovski, Peter A.
2015-01-01
An oceanographic field study during January through April 2012 investigated processes that control the sediment-transport dynamics near Fire Island, New York. This report describes the project background, field program, instrumentation configuration, and locations of the sensors deploymed. The data collected and supporting meteorological observations are presented as time series plots for data visualization. Additionally, individual, links to the database containing digital data files are available as part of this report.
Armstrong, Brandy N.; Warner, John C.; List, Jeffrey H.; Martini, Marinna A.; Montgomery, Ellyn T.; Traykovski, Peter A.; Voulgaris, George
2015-01-01
An oceanographic field study during February through May 2014 investigated processes that control the sediment-transport dynamics along the western part of Fire Island, New York. This report describes the project background, field program, instrumentation configuration, and locations of the sensors deployed. The data collected, including meteorological observations, are presented as time-series plots for data visualization. Additionally, individual links to the database containing digital data files are available as part of this report.
Observatorio Astrofísico de Javalambre: observation scheduler and sequencer
NASA Astrophysics Data System (ADS)
Ederoclite, A.; Cristóbal-Hornillos, D.; Moles, M.; Cenarro, A. J.; Marín-Franch, A.; Yanes Díaz, A.; Gruel, N.; Varela, J.; Chueca, S.; Rueda-Teruel, F.; Rueda-Teruel, S.; Luis-Simoes, R.; Hernández-Fuertes, J.; López-Sainz, A.; Chioare Díaz-Martín, M.
2013-05-01
Observational strategy is a critical path in any large survey. The planning of a night requires the knowledge of the fields observed, the quality of the data already secured, and the ones still to be observed to optimize scientific returns. Finally, field maximum altitude, sky distance/brightness during the night and meteorological data (cloud coverage and seeing) have to be taken into account in order to increase the chance to have a successful observation. To support the execution of the J-PAS project at the Javalambre Astrophysical Observatory, we have prepared a scheduler and a sequencer (SCH/SQ) which takes into account all the relevant mentioned parameters. The scheduler first selects the fields which can be observed during the night and orders them on the basis of their figure of merit. It takes into account the quality and spectral coverage of the existing observations as well as the possibility to get a good observation during the night. The sequencer takes into account the meteorological variables in order to prepare the observation queue for the night. During the commissioning of the telescopes at OAJ, we expect to improve our figures of merit and eventually get to a system which can function semi-automatically. This poster describes the design of this software.
NASA Astrophysics Data System (ADS)
Sanchez, J. L.; Merino, A.; Melcón, P.; García-Ortega, E.; Fernández-González, S.; Berthet, C.; Dessens, J.
2017-12-01
In the context of a warming climate, one of the variables currently under investigation is related to the detection of possible changes in hail precipitation. In this work, we analyze hail frequencies in one of the most affected areas by this phenomenon in Europe, southern France. Here, an extensive hail detection network has been in operation since 1988. In general, the detection of hailfall is very uncertain. To overcome the constraints of scarcity and poor standardization of hail detection and monitoring systems, some relationships between hailstorm occurrence and synoptic, mesoscale or thermodynamic atmospheric characteristics have been proposed in different areas. Therefore, we analyzed meteorological fields at synoptic scale that are related to the formation of hailstorms in the study area, i.e., geopotential height at 500 hPa, sea level pressure, and lapse-rate between 850 and 500 hPa. These fields describe the state of the atmosphere at low and mid levels, and facilitate the evaluation of thermal and dynamic instability. Using the Mann-Kendall test and Sen estimator, we examined trends in the three fields during the period 1948-2015 and their spatial patterns, revealing an evolution toward synoptic environments that favor hail precipitation in the Mediterranean region.
NOAA Atmospheric Sciences Modeling Division support to the US Environmental Protection Agency
NASA Astrophysics Data System (ADS)
Poole-Kober, Evelyn M.; Viebrock, Herbert J.
1991-07-01
During FY-1990, the Atmospheric Sciences Modeling Division provided meteorological research and operational support to the U.S. Environmental Protection Agency. Basic meteorological operational support consisted of applying dispersion models and conducting dispersion studies and model evaluations. The primary research effort was the development and evaluation of air quality simulation models using numerical and physical techniques supported by field studies. Modeling emphasis was on the dispersion of photochemical oxidants and particulate matter on urban and regional scales, dispersion in complex terrain, and the transport, transformation, and deposition of acidic materials. Highlights included expansion of the Regional Acid Deposition Model/Engineering Model family to consist of the Tagged Species Engineering Model, the Non-Depleting Model, and the Sulfate Tracking Model; completion of the Acid-MODES field study; completion of the RADM2.1 evaluation; completion of the atmospheric processes section of the National Acid Precipitation Assessment Program 1990 Integrated Assessment; conduct of the first field study to examine the transport and entrainment processes of convective clouds; development of a Regional Oxidant Model-Urban Airshed Model interface program; conduct of an international sodar intercomparison experiment; incorporation of building wake dispersion in numerical models; conduct of wind-tunnel simulations of stack-tip downwash; and initiation of the publication of SCRAM NEWS.