Science.gov

Sample records for generates intracellular multilamellar

  1. Nonlinear intracellular elasticity controlled by myosin-generated fluctuating stress

    NASA Astrophysics Data System (ADS)

    Wei, Ming-Tzo; Ou-Yang, H. Daniel; Lehigh University Team

    2014-03-01

    The mechanics of biological cells are governed by a network of cytoskeletal filaments and molecular motors forming a dynamic mechanical entity. It has been found that local elasticity of in vitro active polymer networks, a synthesized cytoskeletal network, increase as a result of myosin-generated stresses. It is unknown this also holds in the local intracellular stress. We study the intracellular stress by the combination of the approaches of active and passive microrheology to measure the myosin-generated fluctuating stress and intracellular elasticity. Our experimental data show an increase in the fluctuations of the cellular elasticity with increasing motor-generated fluctuating local stress inside living cells. In addition, we found a direct correlation between the mean intracellular elasticity and steady-state intracellular stress. Our study provides a link between in vitro active polymer networks and in vivo cell experiments.

  2. Zinc Chelation Mediates the Lysosomal Disruption without Intracellular ROS Generation

    PubMed Central

    Matias, Andreza Cândido; Manieri, Tânia Maria; Cerchiaro, Giselle

    2016-01-01

    We report the molecular mechanism for zinc depletion caused by TPEN (N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine) in neuroblastoma cells. The activation of p38 MAP kinase and subsequently caspase 3 is not due to or followed by redox imbalance or ROS generation, though these are commonly observed in literature. We found that TPEN is not responsible for ROS generation and the mechanism involves essentially lysosomal disruption caused by intracellular zinc depletion. We also observed a modest activation of Bax and no changes in the Bcl-2 proteins. As a result, we suggest that TPEN causes intracellular zinc depletion which can influence the breakdown of lysosomes and cell death without ROS generation. PMID:27123155

  3. Controllable bioeffects of laser-generated intracellular microbubbles

    NASA Astrophysics Data System (ADS)

    Zohdy, Marwa Joy

    Laser-induced optical breakdown (LIOB) is a nonlinear energy absorption process that can generate precise damage in biological tissues. With femtosecond laser pulses, disruption is highly localized with minimal thermal and mechanical effects to the surrounding region. Cavitation bubbles are produced as a result of LIOB, and these bubbles can be detected and monitored with high-frequency ultrasound. In this work, the controllable viability effects of LIOB bubbles in single cells were characterized. Using a high-frequency acoustic transducer synchronized with a 793 nm, 100 fs laser pulsed at 250 kHz, thermal effects in the vicinity of an LIOB event were directly assessed. Temperaturedependent pulse-echo displacements were calculated using phase-sensitive correlation tracking and fit to a finite-element heat transfer model to estimate thermal distribution. Results indicate a minimal temperature increase (<1 degree C) within 100 microns of a bubble created with multiple laser pulses, confirming that LIOB can be controlled to be thermally noninvasive in the bubble vicinity. Acoustically detectable microbubbles were generated in individual cells with femtosecond LIOB. By adjusting laser fluence, exposure time, and focal location, LIOB could be controlled to produce distinctly different cellular effects. Small (1-2 micron) bubbles with short lifetimes (10100 ms) could be generated in cells without affecting their viability; and, alternatively, large (510 micron) bubbles with long lifetimes (1-5 s) could be generated for selective cell killing without affecting immediately neighboring cells. Experiments were performed in Chinese hamster ovary (CHO) cells in vitro, and LIOB was detected with both optical and acoustic microscopy. A long-term proliferation assay was also performed using green-fluorescent MCA207 mouse sarcoma cells targeted for LIOB. This assay confirmed that nondestructive bubbles did not affect target cell proliferation over several generations, and that

  4. Light generation of intracellular Ca2+ signals by a genetically encoded protein BACCS

    PubMed Central

    Ishii, Tomohiro; Sato, Koji; Kakumoto, Toshiyuki; Miura, Shigenori; Touhara, Kazushige; Takeuchi, Shoji; Nakata, Takao

    2015-01-01

    Ca2+ signals are highly regulated in a spatiotemporal manner in numerous cellular physiological events. Here we report a genetically engineered blue light-activated Ca2+ channel switch (BACCS), as an optogenetic tool for generating Ca2+ signals. BACCS opens Ca2+-selective ORAI ion channels in response to light. A BACCS variant, dmBACCS2, combined with Drosophila Orai, elevates the Ca2+ concentration more rapidly, such that Ca2+ elevation in mammalian cells is observed within 1 s on light exposure. Using BACCSs, we successfully control cellular events including NFAT-mediated gene expression. In the mouse olfactory system, BACCS mediates light-dependent electrophysiological responses. Furthermore, we generate BACCS mutants, which exhibit fast and slow recovery of intracellular Ca2+. Thus, BACCSs are a useful optogenetic tool for generating temporally various intracellular Ca2+ signals with a large dynamic range, and will be applicable to both in vitro and in vivo studies. PMID:26282514

  5. Intracellular bottom-up generation of targeted nanosensors for single-molecule imaging

    NASA Astrophysics Data System (ADS)

    Hou, Yanyan; Arai, Satoshi; Kitaguchi, Tetsuya; Suzuki, Madoka

    2016-02-01

    Organic dyes are useful tools for sensing cellular activities but unfavorable in single-molecule imaging, whereas quantum dots (QDs) are widely applied in single-molecule imaging but with few sensing applications. Here, to visualize cellular activities by monitoring the response of a single probe in living cells, we propose a bottom-up approach to generate nanoprobes where four organic dyes are conjugated to tetravalent single-chain avidin (scAVD) proteins via an intracellular click reaction. We demonstrate that the nanoprobes, exhibiting increased brightness and enhanced photostability, were detectable as single dots in living cells. The ease of intracellular targeting allowed the tracking of endoplasmic reticulum (ER) remodeling with nanometer spatial resolution. Conjugating thermosensitive dyes generated temperature-sensitive nanoprobes on ER membranes that successfully monitored local temperature changes in response to external heat pulses. Our approach is potentially a suitable tool for visualizing localized cellular activities with single probe sensitivity in living cells.Organic dyes are useful tools for sensing cellular activities but unfavorable in single-molecule imaging, whereas quantum dots (QDs) are widely applied in single-molecule imaging but with few sensing applications. Here, to visualize cellular activities by monitoring the response of a single probe in living cells, we propose a bottom-up approach to generate nanoprobes where four organic dyes are conjugated to tetravalent single-chain avidin (scAVD) proteins via an intracellular click reaction. We demonstrate that the nanoprobes, exhibiting increased brightness and enhanced photostability, were detectable as single dots in living cells. The ease of intracellular targeting allowed the tracking of endoplasmic reticulum (ER) remodeling with nanometer spatial resolution. Conjugating thermosensitive dyes generated temperature-sensitive nanoprobes on ER membranes that successfully monitored local

  6. Intracellular reactive oxygen species in monocytes generated by photosensitive chromophores activated with blue light.

    PubMed

    Bouillaguet, Serge; Owen, Brandi; Wataha, John C; Campo, Marino A; Lange, Norbert; Schrenzel, Jacques

    2008-08-01

    Disinfection of the tooth pulp-canal system is imperative to successful endodontic therapy. Yet, studies suggest that 30-50% of current endodontic treatments fail from residual bacterial infection. Photodynamic therapy using red-light chromophores (630 nm) to induce antimicrobial death mediated by generated reactive oxygen species (ROS) has been reported, but red-light also may thermally damage resident tissues. In the current study, we tested the hypothesis that several blue light chromophores (380-500 nm) generate intracellular reactive oxygen species but are not cytotoxic to mammalian cells. THP1 monocytes were exposed to 10 microM of four chromophores (chlorin e6, pheophorbide-a, pheophorbide-a-PLL, and riboflavin) for 30 min before activation with blue light (27J/cm(2), 60s). After activation, intracellular ROS were measured using a dihydrofluorescein diacetate technique, and cytotoxicity was determined by measuring mitochondrial activity with the MTT method. All photosensitizers produced intracellular ROS levels that were dependent on both the presence of the photosensitizer and blue light exposure. Riboflavin and pheophorbide-a-PLL produced the highest levels of ROS. Photosensitizers except riboflavin exhibited cytotoxicity above 10 microM, and all except pheophorbide-a-PLL were more cytotoxic after blue light irradiation. The current study demonstrated the possible utility of blue light chromophores as producers of ROS that would be useful for endodontic disinfection.

  7. Ectodomain Shedding of Interleukin-2 Receptor β and Generation of an Intracellular Functional Fragment*

    PubMed Central

    de Oca B., Pavel Montes; Malardé, Valerie; Proust, Richard; Dautry-Varsat, Alice; Gesbert, Franck

    2010-01-01

    Interleukin-2 (IL-2) regulates different functions of various lymphoid cell subsets. These are mediated by its binding to the IL-2 receptor (IL-2R) composed of three subunits (IL2-Rα, -β, and -γc). IL-2Rβ is responsible for the activation of several signaling pathways. Ectodomain shedding of membrane receptors is thought to be an important mechanism for down-regulation of cell surface receptor abundance but is also emerging as a mechanism that cell membrane-associated molecules require for proper action in vivo. Here, we demonstrate that IL-2Rβ is cleaved in cell lines of different origin, including T cells, generating an intracellular 37-kDa fragment (37βic) that comprises the full intracellular C-terminal and transmembrane domains. Ectodomain shedding of IL-2Rβ decreases in a mutant deleted of the juxtamembrane region, where cleavage is predicted to occur, and is inhibited by tissue inhibitor of metalloproteases-3. 37βic is tyrosine-phosphorylated and associates with STAT-5, a canonic signal transducer of IL-2R. Finally, lymphoid cell transfection with a truncated form of IL-2Rβ mimicking 37βic increases their proliferation. These data indicate that IL-2Rβ is subject to ectodomain shedding generating an intracellular fragment biologically functional, because (i) it is phosphorylated, (ii) it associates with STAT5A, and (iii) it increases cell proliferation. PMID:20495002

  8. Biodistribution and gastrointestinal drug delivery of new lipidic multilamellar vesicles.

    PubMed

    Freund, O

    2001-01-01

    Encapsulation of therapeutic molecules in a new noncationic multilamellar vector (Spherulites), composed of phosphatidylcholine, cholesterol, and polyoxyethylene alcohol, is described here. Spherulites with entrapped drugs were prepared by shearing a phospholipidic lyotropic lamellar phase using a recently discovered method. The average size of these vesicles is approximately 300 nm. Our formulation did not show cytotoxicity to human cells and could be used as a drug delivery system. Our previous experiments showed that this new multilamellar vector is stable in many different buffers such as serum, acidic or basic buffers, and enzymatic buffers and may deliver drugs in vivo. We describe two ways of administration for drug delivery. The tissue biodistribution of radiolabeled Spherulites entrapping 125I protein A was studied after intravenous injection in Wistar rats using the major organs of the body. Approximately 70% of the radioactivity was found in the spleen 60 min after injection and about half this percentage was found in the liver. By 6 hr, only 52% remained in the spleen. The other tissues accumulated <30% of the dose throughout the duration of the study. On the other hand, oral administration of Spherulites, entrapping111 In-NTA, in fasting rats showed a significant increase of radioactivity in blood.

  9. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles

    NASA Astrophysics Data System (ADS)

    Lavado, Andrea S.; Chauhan, Veeren M.; Alhaj Zen, Amer; Giuntini, Francesca; Jones, D. Rhodri E.; Boyle, Ross W.; Beeby, Andrew; Chan, Weng C.; Aylott, Jonathan W.

    2015-08-01

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(ii) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn

  10. Shear-Induced Deformation of Surfactant Multilamellar Vesicles

    NASA Astrophysics Data System (ADS)

    Pommella, Angelo; Caserta, Sergio; Guida, Vincenzo; Guido, Stefano

    2012-03-01

    Surfactant multilamellar vesicles (SMLVs) play a key role in the formulation of many industrial products, such as detergents, foodstuff, and cosmetics. In this Letter, we present the first quantitative investigation of the flow behavior of single SMLVs in a shearing parallel plate apparatus. We found that SMLVs are deformed and oriented by the action of shear flow while keeping constant volume and exhibit complex dynamic modes (i.e., tumbling, breathing, and tank treading). This behavior can be explained in terms of an excess area (as compared to a sphere of the same volume) and of microstructural defects, which were observed by 3D shape reconstruction through confocal microscopy. Furthermore, the deformation and orientation of SMLVs scale with radius R in analogy with emulsion droplets and elastic capsules (instead of R3, such as in unilamellar vesicles). A possible application of the physical insight provided by this Letter is in the rationale design of processing methods of surfactant-based systems.

  11. A Miniature Couette to Generate Shear for Flow Cytometry: Studying Real-Time Modulation of Intracellular Calcium in Monocytic Cells

    PubMed Central

    Zwartz, Gordon J.; Chigaev, Alexandre; Foutz, Terry D.; Edwards, Bruce; Sklar, Larry A.

    2013-01-01

    Extracellular hydrodynamic forces may be transmitted to the interior of cells through the alteration of integrin conformation and affinity. Integrin activation regulates leukocyte recruitment, cell activation, and transmigration. The cellular and molecular mechanisms for integrin activation are not precisely known, although intracellular calcium signaling is involved. Flow cytometry offers a versatile way to study intracellular calcium signaling in real-time. We report a novel method to generate defined shear by using a miniature Couette. Testing involved measuring shear induced intracellular calcium signals of human monoblastoid U937 cells in suspension. The Couette was connected externally to a flow cytometer and pressurized at 6 PSI (4.1 N/m2). Cells were subjected to well-defined shear between 0 and 1000 s−1 and delivered continuously within 10 s to a FACScan at 1 μl/s. Intracellular calcium levels and the percentage of cells activated increased as shear increased in duration and intensity. PMID:22045643

  12. Pathways for intracellular generation of oxidants and tyrosine nitration by a macrophage cell line.

    PubMed

    Palazzolo-Ballance, Amy M; Suquet, Christine; Hurst, James K

    2007-06-26

    various times post-activation by using fluorescein-conjugated polyacrylamide beads, which efficiently trap MPO-generated HOCl in neutrophils to give stable chlorofluorescein products. However, chlorination of the dye was not detected under any conditions in RAW cells, virtually precluding MPO involvement in their intracellular reactions. This same probe was used to determine changes in intraphagosomal pH, which increased slowly from approximately 6.5 to approximately 8.2 over a 20 h post-phagocytosis period. The cumulative data suggest that activation is followed by sequential induction of an endogenous peroxidase, iNOS, and COX-2, with NADPH oxidase-derived O2*- playing a minimal role in the direct generation of intracellular oxidants. To account for reported observations of intracellular tyrosine nitration late in the life cycles of macrophages, we propose a novel mechanism wherein iNOS-generated NO2- is used by COX-2 to produce NO2* as a terminal microbicidal oxidant and nitrating agent.

  13. Pathways for Intracellular Generation of Oxidants and Tyrosine Nitration by a Macrophage Cell Line†

    PubMed Central

    Palazzolo-Ballance, Amy M.; Suquet, Christine; Hurst, James K.

    2008-01-01

    -activation by using fluorescein-conjugated polyacrylamide beads, which efficiently trap MPO-generated HOCl in neutrophils to give stable chlorofluorescein products. However, chlorination of the dye was not detected under any conditions in RAW cells, virtually precluding MPO involvement in their intracellular reactions. This same probe was used to determine changes in intraphagosomal pH, which increased slowly from ∼6.5 to ∼8.2 over a 20 h post-phagocytosis period. The cumulative data suggest activation is followed by sequential induction of an endogenous peroxidase, iNOS, and COX-2, with NADPH oxidase-derived O2·- playing a minimal role in direct generation of intracellular oxidants. To account for reported observations of intracellular tyrosine nitration late in the life cycles of macrophages, we propose a novel mechanism wherein iNOS-generated NO2- is used by COX-2 to produce NO2· as a terminal microbicidal oxidant and nitrating agent. PMID:17530864

  14. Effect of formulation design and freeze-drying on properties of fluconazole multilamellar liposomes

    PubMed Central

    El-Nesr, Ola H.; Yahiya, Soad A.; El-Gazayerly, Omaima N.

    2010-01-01

    Fluconazole-entrapped multilamellar liposomes were prepared using the thin-film hydration method. The effects of cholesterol molar ratio, charge-inducing agents, and α-tocopherol acetate on encapsulation efficiency values and in vitro drug release of multilamellar liposomes were studied. Freeze-dried liposomal products were prepared with or without cryoprotectants. Results showed that incorporation of stearylamine resulted in an increased entrapment of fluconazole, whereas incorporation of dicetyl phosphate decreased the drug entrapment efficiency. The incorporation of α-tocopherol acetate into fluconazole multilamellar liposomes resulted in the increase of entrapment efficiency of fluconazole liposomes. In vitro release studies revealed that incorporation of cholesterol into multilamellar liposomal formulations decreased drug permeability from formulations. Positively charged fluconazole multilamellar liposomes gave rise to a slow release rate compared to neutral liposomes whereas negatively charged fluconazole liposomes showed a rapid release rate. Physical stability studies showed that lyophilized cake of liposomes without cryoprotectants was compact and difficult to reconstitute compared to fluffy easily reconstituted cakes upon using cryoprotectants. Fluconazole retained in freeze-dried liposomes without cryoprotectants was 63.452% compared to 91.877% using three grams of trehalose as a cryoprotectant per gram lipid in positively charged multilamellar liposomes. Physical stability studies showed superior potentials of the lyophilized product after reconstitution in comparison with those of a solution product. PMID:23960730

  15. Different effects of propofol and nitrosopropofol on DMPC multilamellar liposomes.

    PubMed

    Momo, Federico; Fabris, Sabrina; Bindoli, Alberto; Scutari, Guido; Stevanato, Roberto

    2002-02-19

    The mechanisms of reaction of propofol with nitrosoglutathione lead to the formation of an active species which was identified, and then synthesised, as 2,6-diisopropyl-4-nitrosophenol. In the present work, we demonstrate the in vitro formation of 2,6-diisopropyl-4-nitrosophenol, then we discuss the interaction of propofol and 2,6-diisopropyl-4-nitrosophenol with dimyristoylphosphatidylcholine and egg yolk phosphatidylcholine multilamellar liposomes using differential scanning calorimetry and spin labelling techniques. It was demonstrated that both molecules are highly lipophylic and absorb almost entirely in the lipid phase. The thermotropic profiles showed that these molecules affect the temperature and the co-operativity of the gel-to-fluid state transition of the liposomes differently: the effects of 2,6-diisopropylphenol on the lipid organisation are quite similar to phenol and coherently interpretable in terms of the disorder produced in the membrane by a bulky group; 2,6-diisopropyl-4-nitrosophenol is a stronger perturbing agent, and ESR spectra suggest that this is due to a relative accumulation of the molecule into the interfacial region of the bilayer.

  16. Kinetics of a Multilamellar Lipid Vesicle Ripening: Simulation and Theory.

    PubMed

    Xu, Rui; He, Xuehao

    2016-03-10

    Lipid vesicle ripening via unimolecular diffusion and exchange greatly influences the evolution of complex vesicle structure. However, this behavior is difficult to capture using conventional experimental technology and molecular simulation. In the present work, the ripening of a multilamellar lipid vesicle (MLV) is effectively explored using a mesoscale coarse-grained molecular model. The simulation reveals that a small MLV evolves into a unilamellar vesicle over a very long time period. In this process, only the outermost bilayer inflates, and the inner bilayers shrink. With increasing MLV size, the ripening process becomes complex and depends on competition between a series of adjacent bilayers in the MLV. To understand the diffusion behavior of the unimolecule, the potentials of mean force (PMFs) of a single lipid molecule across unilamellar vesicles with different sizes are calculated. It is found that the PMF of lipid dissociation from the inner layer is different than that of the outer layer, and the dissociation energy barrier sensitively depends on the curvature of the bilayer. A kinetics theoretical model of MLV ripening that considers the lipid dissociation energy for curved bilayers is proposed. The model successfully interprets the MLV ripening process with various numbers of bilayers and shows potential to predict the ripening kinetics of complex lipid vesicles.

  17. Thermotropic phase behavior of multilamellar membranes of dioleoylphosphatidylcholine.

    PubMed

    Zhang, Yu-Dong; Lu, Ying; Hu, Shu-Xin; Li, Ming

    2010-02-18

    We use the X-ray diffraction method to examine the thermotropic phase behavior of multilamellar membranes of dioleoylphosphatidylcholine. We find that when the temperature is reduced from room temperature to below 0 degrees C, both the lipid bilayers and the amount of water in the bilayers increase. But the interbilayer distance descends abruptly at a certain temperature between -6 and -15 degrees C, the actual value depending on the relative humidity of the atmosphere, solely due to the thinning of the water layer, d(w). There are several L(alpha) and L(c) phase coexistence states both in the cooling process and in the heating process. In the cooling process, only a part of the lipid molecules accomplish the L(alpha)-to-L(c) main phase transition at -16 degrees C, with the rest of the lipids being frozen down to a very low temperature. In the heating process, however, these frozen lipid molecules are able to move to complete the L(alpha)-to-L(c) main phase transition at -12 degrees C. The reverse of the main phase transition begins at -9 degrees C and is completed at -5 degrees C, after which the water is absorbed into the lipid bilayer to increase the thickness of the water layer, while the thickness of the lipid membranes remain unchanged. This process continues until all the ice on top of the samples melts.

  18. Development and characterization of multilamellar liposomes containing pyridostigmine.

    PubMed

    Souza, Ana Carolina Moreira; Grabe-Guimarães, Andrea; Souza, Jacqueline; Botacim, Wallace Entringer; Almeida, Tamara Marine; Frézard, Fréderic Jean Georges; Silva Barcellos, Neila Márcia

    2014-06-01

    Pyridostigmine has cardioprotective activity in both free and liposomal forms. This study aimed to develop and characterize liposomal formulations of pyridostigmine. For this, a spectrophotometric ultraviolet (UV) analytical method, at 270 nm, was developed and validated to quantify liposomal pyridostigmine. The method was linear in ranges from 0.02 to 0.09 mg/mL. The accuracy of this method was determined intra- and inter-day; the results of coefficient of variation were of 1.73-2.72% and 0.32-2.32%, respectively. The accuracy ranged between 99.45% and 101.12%. The method has not changed by influence of liposomal matrix and demonstrated being able to quantify pyridostigmine in liposomes. Two liposomal multilamellar formulations were developed: a constituted by dystearoyl-phosphatidylcholine (DSPC) and cholesterol (CHOL) other by dioleil-phosphatidylcholine (DOPC) and CHOL. The encapsulation efficiency was determined as 23.4% and 15.4%, respectively. Analyses of size and release of pyridostigmine from the formulations were made and the results showed that the formulations are viable for future studies in vivo.

  19. Associative polymers bridging between layers of multilamellar vesicles.

    NASA Astrophysics Data System (ADS)

    Choi, Seo; Bhatia, Surita

    2006-03-01

    Multilamellar vesicles can be found in a variety of pharmaceutical formulations, personal care products, and home care products. Hydrophobically modified associative polymers are often used to stabilize the vesicles or to control the rheological properties of these formulations. The hydrophobic groups are expected to insert themselves into the vesicle bilayers. Recent experimental work shows that hydrophobically modified polymers may from bridges between vesicles or may bridge between layers of a single vesicle. The latter configuration forces an interlayer spacing roughly equal to the radius of gyration of the backbone between associative groups. We have performed simple mean-field calculations on ideal telechelic associative polymers between concentric spherical surfaces. We find that the free energy per chain has an attractive minimum when the layer spacing is approximately N^1/2l, which is consistent with experimental results. The depth of the minimum depends on both chain length and curvature, and as expected when the curvature becomes small, the result for telechelic chains between flat surfaces is recovered.

  20. Small-angle scattering model for multilamellar vesicles

    SciTech Connect

    Frielinghaus, Henrich

    2007-11-15

    A small-angle neutron-x-ray-light-scattering model for multilamellar vesicles is developed on the basis of a simple geometry. N spherical shells with radii of an arithmetic series are allowed for displacements {delta}R which are limited by {delta}R

  1. Crosslinked Multilamellar Liposomes for Controlled Delivery of Anticancer Drugs

    PubMed Central

    Joo, Kye-Il; Xiao, Liang; Liu, Shuanglong; Liu, Yarong; Lee, Chi-Lin; Conti, Peter S.; Wong, Michael K.; Li, Zibo; Wang, Pin

    2014-01-01

    Liposomes constitute one of the most popular nanocarriers for the delivery of cancer therapeutics. However, since their potency is limited by incomplete drug release and inherent instability in the presence of serum components, their poor delivery occurs in certain circumstances. In this study, we address these shortcomings and demonstrate an alternative liposomal formulation, termed crosslinked multilamellar liposome (CML). With its properties of improved sustainable drug release kinetics and enhanced vesicle stability, CML can achieve controlled delivery of cancer therapeutics. CML stably encapsulated the anticancer drug doxorubicin (Dox) in the vesicle and exhibited a remarkably controlled rate of release compared to that of the unilamellar liposome (UL) with the same lipid composition or Doxil-like liposome (DLL). Our imaging study demonstrated that the CMLs were mainly internalized through a caveolin-dependent pathway and were further trafficked through the endosome-lysosome compartments. Furthermore, in vivo experiments showed that the CML-Dox formulation reduced systemic toxicity and significantly improved therapeutic activity in inhibiting tumor growth compared to that of UL-Dox or DLL-Dox. This drug packaging technology may therefore provide a new treatment option to better manage cancer and other diseases. PMID:23375392

  2. Multilamellar liposomes of triamcinolone acetonide: preparation, stability, and characterization.

    PubMed

    Clares, B; Gallardo, V; Medina, M M; Ruiz, Ma A

    2009-01-01

    The aim of this study was to assess and characterize the stability of multilamellar liposomes as a delivery vehicle for triamcinolone acetonide. A standardized preparation method for a liposomal delivery vehicle was developed, after varying composition and storage conditions, and assessing encapsulation efficiency and loss of active principle. The assessment of temperature as a factor in formula stability during storage showed that stability improved under refrigeration (4-6 degrees C) (less early diffusion of active principle through the liposomal wall), in comparison with samples stored at room temperature. To improve stability, cholesterol was added to some formulae, which although resulting in a decrease in average encapsulation efficiency, mitigated subsequent losses of retained active principle (formulae 4, 5, and 6), in comparison with those without cholesterol (formulae 1, 2, and 3). This was evident both under refrigerated and room-temperature conditions. Finally, after testing the effects of adding an antioxidant and/or preservative to the formulae, a liposomal design was achieved with acceptable stability, vesicle dimensions, and encapsulation efficiency.

  3. Stress Induced Domain Formation in Multilamellar Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Tayebi, Lobat; Gillmore, Sean; Parikh, Atul

    2010-03-01

    Domain formation in lipid mixtures due to phase separation of the components is a well-known phenomenon that has been studied in mono- and bi-molecular lipid configurations. We report same phenomenon, however, in multilamellar configurations consisting of thousands of lamellae where the domain pattern in each layer is interestingly aligned with the other lamellae. In this process, both dehydration and hydration of lipid cake can act as the driving force to separate two phases of liquid ordered and liquid disordered. In a controlled experiment with a stack lipid saturated with water, mechanical perturbation can induce domain formation too. Series of experiments of this kind reaches us to the conclusion that any sort of stress in special condition may cause domain formation. We use a combination of microscopy tools including AFM, fluorescence confocal and bright-field microscopy to determine the influence of interaction between the line tension and key elastic properties of the lipid bilayers. As a particular interest we studied the dynamics of the domain pattern formation and the interactions between the domains such as long-term fusion.

  4. Foams stabilized by multilamellar polyglycerol ester self-assemblies.

    PubMed

    Curschellas, Corina; Kohlbrecher, Joachim; Geue, Thomas; Fischer, Peter; Schmitt, Bertrand; Rouvet, Martine; Windhab, Erich J; Limbach, Hans Jörg

    2013-01-08

    The importance of surfactant self-assemblies in foam stabilization is well-known. The aim of the current study was to investigate the self-assemblies of the nonionic surfactant polyglycerol ester (PGE) in bulk solutions, at the interface and within foams, using a combined approach of small-angle neutron scattering, neutron reflectivity, and electron microscopy. PGE bulk solutions contain vesicles as well as open lamellar structures. Upon heating of the solutions the lamellar spacing increases, with significant differences in the presence of NaCl or CaCl(2) as compared to the standard solution. The adsorption of the multilamellar structures present in the bulk solutions lead to a multilayered film at the air-water interface. The ordering within this film was increased as a result of a 20% area compression mimicking a coalescence event. Finally, PGE foams were shown to be stabilized not only by strong interfacial films but also by agglomerated self-assemblies within the interstitial areas of the foams.

  5. The characterization of molecular organization of multilamellar emulsions containing pseudoceramide and type III synthetic ceramide.

    PubMed

    Park, B D; Youm, J K; Jeong, S K; Choi, E H; Ahn, S K; Lee, S H

    2003-10-01

    To investigate the molecular organization and phase behavior of physiologic lipid mixtures that contain either newly synthesized pseudoceramide or type III synthetic ceramide, various analytical techniques were used. The phase transition temperatures detected in differential scanning calorimetry analysis were 51.19 and 50.52 for the pseudoceramide-containing physiologic lipid mixture and synthetic type III ceramide-containing lipid mixture, respectively. From the small angle XRD patterns, the multilamellar emulsion-pseudoceramide showed 11.5 nm and 7.61 nm lamellar phases, while the multilamellar emulsion-synthetic ceramide showed only a 7.61 nm lamellar phase. The nonceramide containing lipid mixture did not show any distinct repeat pattern. Lateral packing distances of multilamellar emulsion-pseudoceramide and multilamellar emulsion-synthetic ceramide were measured as 0.4119 and 0.4110 nm at 30, respectively, which indicated the presence of hexagonal lattice. On the contrary, non-multilamellar emulsion did not show any definite repeat pattern. Transmission electron microscopy observation showed nearly comparable lamellar structures in all of the tested emulsions compared to the structure of human stratum corneum intercellular lipid. Decrease of water contents resulted in phase transition into liquid phase for all the tested emulsions, whereas phase transition into orthorhombic phase was observed only in multilamellar emulsion-pseudoceramide. From these results, we concluded that the molecular organization of multilamellar emulsion-pseudoceramide was characterized as the lateral hexagonal phase and both the long and short periodicity lamellar phases, which showed structural similarity with the native human stratum corneum intercellular lipid.

  6. Calcium phosphate formation in aqueous suspensions of multilamellar liposomes.

    PubMed

    Eanes, E D; Hailer, A W; Costa, J L

    1984-07-01

    The present study examined calcium phosphate precipitation in aqueous suspensions of multilamellar liposomes as a possible in vitro model for matrix vesicle mineralization. Liposomes were prepared by dispersing CHCl3-evaporated thin films of 7:2:1 and 7:1:1 molar mixtures of phosphatidylcholine, dicetyl phosphate, and cholesterol in aqueous solutions containing 0, 25, or 50 mM PO4 and 0 or 0.8 mM Mg. After removal of unencapsulated PO4 by gel filtration, the liposomes were suspended in 1.33 mM Ca/0.8 mM Mg solutions and made permeable to these cations by the addition of the ionophore X-537A. All experiments were carried out at pH 7.4, 22 degrees C, and 240 mOsm. In the absence of entrapped PO4, Ca2+ taken up by the liposomes was largely bound to inner membrane surfaces. With PO4 present, Ca2+ uptake increased as much as sixfold with maximum accumulations well above values sufficient for solid formation. Precipitated solids appeared to be located predominantly in the aqueous intermembranous spaces of the liposomes. Amorphous calcium phosphate (ACP) precipitated initially in the presence of entrapped Mg2+, then subsequently converted to apatite intermixed with some octacalcium phosphate. The stability of the liposomal ACP was somewhat greater than that observed in bulk solutions under comparable conditions of pH, temperature, and electrolyte makeup. In time, the mineral deposits caused entrapped PO4 to leak from the liposomes. These findings suggest that the precipitation within liposomes is similar to that which occurs in macro-volume synthetic systems but that the precipitated solid eventually impairs the integrity of the surrounding intermembranous space.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Dynamic behaviour of multilamellar vesicles under Poiseuille flow.

    PubMed

    Pommella, A; Donnarumma, D; Caserta, S; Guido, S

    2017-09-27

    Surfactant solutions exhibit multilamellar surfactant vesicles (MLVs) under flow conditions and in concentration ranges which are found in a large number of industrial applications. MLVs are typically formed from a lamellar phase and play an important role in determining the rheological properties of surfactant solutions. Despite the wide literature on the collective dynamics of flowing MLVs, investigations into the flow behavior of single MLVs are scarce. In this work, we investigate a concentrated aqueous solution of linear alkylbenzene sulfonic acid (HLAS), characterized by MLVs dispersed in an isotropic micellar phase. Rheological tests show that the HLAS solution is a shear-thinning fluid with a power law index dependent on the shear rate. Pressure-driven shear flow of the HLAS solution in glass capillaries is investigated using high-speed video microscopy and image analysis. The so obtained velocity profiles provide evidence for a power-law fluid behaviour of the HLAS solution and images show a flow-focusing effect of the lamellar phase in the central core of the capillary. The flow behavior of individual MLVs shows analogies with that of unilamellar vesicles and emulsion droplets. Deformed MLVs exhibit typical shapes of unilamellar vesicles, such as parachute and bullet-like. Furthermore, MLV velocity follows the classical Hetsroni theory for droplets provided that the power law shear dependent viscosity of the HLAS solution is taken into account. The results of this work are relevant for the processing of surfactant-based systems in which the final properties depend on the flow-induced morphology, such as cosmetic formulations and food products.

  8. Effect of interlamellar interactions on shear induced multilamellar vesicle formation

    NASA Astrophysics Data System (ADS)

    Kawabata, Y.; Bradbury, R.; Kugizaki, S.; Weigandt, K.; Melnichenko, Y. B.; Sadakane, K.; Yamada, N. L.; Endo, H.; Nagao, M.; Seto, H.

    2017-07-01

    Shear-induced multilamellar vesicle (MLV) formation has been studied by coupling the small-angle neutron scattering (SANS) technique with neutron spin echo (NSE) spectroscopy. A 10% mass fraction of the nonionic surfactant pentaethylene glycol dodecyl ether (C12E5) in water was selected as a model system for studying weak inter-lamellar interactions. These interactions are controlled either by adding an anionic surfactant, sodium dodecyl sulfate, or an antagonistic salt, rubidium tetraphenylborate. Increasing the charge density in the bilayer induces an enhanced ordering of the lamellar structure. The charge density dependence of the membrane bending modulus was determined by NSE and showed an increasing trend with charge. This behavior is well explained by a classical theoretical model. By considering the Caillé parameters calculated from the SANS data, the layer compressibility modulus B ¯ is estimated and the nature of the dominant inter-lamellar interaction is determined. Shear flow induces MLV formation around a shear rate of 10 s-1, when a small amount of charge is included in the membrane. The flow-induced layer undulations are in-phase between neighboring layers when the inter-lamellar interaction is sufficiently strong. Under these conditions, MLV formation can occur without significantly changing the inter-lamellar spacing. On the other hand, in the case of weak inter-lamellar interactions, the flow-induced undulations are not in-phase, and greater steric repulsion leads to an increase in the inter-lamellar spacing with shear rate. In this case, MLV formation occurs as the amplitude of the undulations gets larger and the steric interaction leads to in-phase undulations between neighboring membranes.

  9. Phycoerythrin averts intracellular ROS generation and physiological functional decline in eukaryotes under oxidative stress.

    PubMed

    Sonani, Ravi R; Rastogi, Rajesh P; Singh, Niraj K; Thadani, Jaymesh; Patel, Puja J; Kumar, Jitendra; Tiwari, Anand K; Devkar, Ranjitsinh V; Madamwar, Datta

    2017-03-01

    In vitro antioxidant virtue and life-prolonging effect of phycoerythrin (PE; a pigment protein isolated from Phormidium sp. A09DM) have been revealed in our previous reports (Sonani et al. in Age 36:9717, 2014a; Sonani et al. in Process Biochem 49:1757-1766, 2014b). It has been hypothesized that the PE expands life span of Caenorhabditis elegans (bears large resemblance with human aging pathways) due to its antioxidant virtue. This hypothesis is tested in present study by checking the effect of PE on intracellular reactive oxygen species (ROS) generation and associated physiological deformities using mouse and human skin fibroblasts, C. elegans, and Drosophila melanogaster Oregon R (+) and by divulging PE's structural attributes responsible for its antioxidant asset. PE treatment displayed noteworthy decrease of 67, 48, and 77 % in ROS level in mouse fibroblast (3T3-L1), human fibroblast, and C. elegans N2, respectively, arisen under chemical-induced oxidative stress. PE treatment delayed the development of paraquat-induced Alzheimer phenotype by 14.5 % in C. elegans CL4176. Furthermore, PE improved the locomotion of D. melanogaster Oregon R (+) under oxidative stress with simultaneous up-regulation in super-oxide dismutase and catalase activities. The existence of 52 Glu + Asp + His + Thr residues (having metal ion sequestration capacity), 5 phycoerythrobilin chromophores (potential electron exchangers) in PE's primary structure, and significant hydrophobic patches on the surface of its α- and β-subunits are supposed to collectively contribute in the antioxidant virtues of PE. Altogether, results support the hypothesis that it is the PE's antioxidant asset, which is responsible for its life-prolonging effect and thus could be exploited in the therapeutics of ROS-associated abnormalities including aging and neurodegeneration in eukaryotes.

  10. Lens intracellular hydrostatic pressure is generated by the circulation of sodium and modulated by gap junction coupling

    PubMed Central

    Gao, Junyuan; Sun, Xiurong; Moore, Leon C.; White, Thomas W.; Brink, Peter R.

    2011-01-01

    We recently modeled fluid flow through gap junction channels coupling the pigmented and nonpigmented layers of the ciliary body. The model suggested the channels could transport the secretion of aqueous humor, but flow would be driven by hydrostatic pressure rather than osmosis. The pressure required to drive fluid through a single layer of gap junctions might be just a few mmHg and difficult to measure. In the lens, however, there is a circulation of Na+ that may be coupled to intracellular fluid flow. Based on this hypothesis, the fluid would cross hundreds of layers of gap junctions, and this might require a large hydrostatic gradient. Therefore, we measured hydrostatic pressure as a function of distance from the center of the lens using an intracellular microelectrode-based pressure-sensing system. In wild-type mouse lenses, intracellular pressure varied from ∼330 mmHg at the center to zero at the surface. We have several knockout/knock-in mouse models with differing levels of expression of gap junction channels coupling lens fiber cells. Intracellular hydrostatic pressure in lenses from these mouse models varied inversely with the number of channels. When the lens’ circulation of Na+ was either blocked or reduced, intracellular hydrostatic pressure in central fiber cells was either eliminated or reduced proportionally. These data are consistent with our hypotheses: fluid circulates through the lens; the intracellular leg of fluid circulation is through gap junction channels and is driven by hydrostatic pressure; and the fluid flow is generated by membrane transport of sodium. PMID:21624945

  11. Intracellular biogenic silver nanoparticles for the generation of carbon supported antiviral and sustained bactericidal agents.

    PubMed

    Vijayakumar, P S; Prasad, B L V

    2009-10-06

    Intracellular silver nanoparticles produced by exposing silver ions to the fungus Aspergillus ochraceus were heat-treated in nitrogen environment to yield silver nanoparticles embedded in carbonaceous supports. This carbonaceous matrix embedded silver nanoparticles showed antimicrobial properties against both bacteria (Gram-positive and Gram-negative) and virus (M 13 phage virus). The bactericidal effects were noticed even after washing and repeated exposure of these carbon supported silver nanoparticles to fresh bacterial cultures, revealing their sustained activity.

  12. Soft x-ray imaging of intracellular granules of filamentous cyanobacterium generating musty smell in Lake Biwa

    NASA Astrophysics Data System (ADS)

    Takemoto, K.; Mizuta, G.; Yamamoto, A.; Yoshimura, M.; Ichise, S.; Namba, H.; Kihara, H.

    2013-10-01

    A planktonic blue-green algae, which are currently identified as Phormidium tenue, was observed by a soft x-ray microscopy (XM) for comparing a musty smell generating green strain (PTG) and a non-smell brown strain (PTB). By XM, cells were clearly imaged, and several intracellular granules which could not be observed under a light microscope were visualized. The diameter of granules was about 0.5-1 μm, and one or a few granules were seen in a cell. XM analyses showed that width of cells and sizes of intracellular granules were quite different between PTG and PTB strains. To study the granules observed by XM, transmission in more detail, transmission electron microscopy (TEM) and indirect fluorescent-antibody technique (IFA) were applied. By TEM, carboxysomes, thylakoids and polyphosphate granules were observed. IFA showed the presence of carboxysomes. Results lead to the conclusion that intracellular granules observed under XM are carboxysomes or polyphosphate granules. These results demonstrate that soft XM is effective for analyzing fine structures of small organisms such as cyanobacterium, and for discriminating the strains which generates musty smells from others.

  13. Piperine regulates UCP1 through the AMPK pathway by generating intracellular lactate production in muscle cells

    PubMed Central

    Kim, Nami; Nam, Miso; Kang, Mi Sun; Lee, Jung Ok; Lee, Yong Woo; Hwang, Geum-Sook; Kim, Hyeon Soo

    2017-01-01

    This study characterizes the human metabolic response to piperine, a curcumin extract, and the details of its underlying molecular mechanism. Using 1H-NMR-based metabolome analysis, we showed the metabolic effect of piperine on skeletal muscle and found that piperine increased the level of intracellular lactate, an important metabolic intermediate that controls expression of several genes involved in mitochondrial activity. Piperine also induced the phosphorylation of AMP-activated protein kinase (AMPK) and its downstream target, acetyl-CoA carboxylase (ACC), while additionally stimulating glucose uptake in an AMPK dependent manner. Piperine also stimulates the p38 mitogen-activated protein kinase (p38 MAPK), an effect that was reversed by pretreatment with compound C, an AMPK inhibitor. Inhibition of p38 MAPK resulted in no piperine-induced glucose uptake. Increased level of lactate resulted in increased expression of mitochondrial uncoupling protein 1 (UCP1), which regulates energy expenditure, thermogenesis, and fat browning. Knock-down of AMPK blocked piperine-induced UCP1 up-regulation, demonstrating the required role of AMPK in this effect. Taken together, these results suggest that piperine leads to benign metabolic effects by activating the AMPK-p38 MAPK signaling pathway and UCP1 expression by activating intracellular lactate production in skeletal muscle. PMID:28117414

  14. Evidence for extracellular, but not intracellular, generation of angiotensin II in the rat adrenal zona glomerulosa

    SciTech Connect

    Urata, H.; Khosla, M.C.; Bumpus, M.; Husain, A. )

    1988-11-01

    Based on the observation that high levels of renin and angiotensin II (Ang II) are found in the adrenal zona glomerulosa (ZG), it has been postulated that Ang II is formed intracellularly by the renin-converting enzyme cascade in this tissue. To test this hypothesis, the authors examined renin-angiotensin system components in subcellular fractions of the rat adrenal ZG. Renin activity and immunoreactive-Ang II (IR-Ang II) were observed in vesicular fractions but were not colocalized. In addition, angiotensinogen, angiotensin I, and converting enzyme were not observed in the renin or IR-Ang II-containing vesicular fractions. These data do not support the hypothesis that Ang II is formed intracellularly within the renin-containing vesicles of the ZG. Rather, since modulatable renin release from adrenal ZG slices was observed and renin activity was found in dense vesicular fractions (33-39% sucrose), it is likely that Ang II formation in the ZG is extracellular and initiated by the release of vesicular renin. In ZG lysomal fractions {sup 125}I-labeled Ang II was degraded to {sup 125}I-labeled des-(Phe{sup 8})Ang II. Since Ang II antibodies do not recognize des-(Phe{sup 8})Ang II, these finding explain why IR-Ang II in the ZG is due predominantly to Ang II and not to its C-terminal immunoreactive fragments.

  15. Does amiodarone affect heart rate by inhibiting the intracellular generation of triiodothyronine from thyroxine?

    PubMed Central

    Lindenmeyer, M.; Spörri, S.; Stäubli, M.; Studer, A.; Studer, H.

    1984-01-01

    The hypothesis that the antiarrhythmic drug amiodarone slows down the heart rate by its inhibitory action on the intracellular conversion of thyroxine (T4) to 3,5,3' triiodothyronine (T3) was investigated. For this purpose we compared the effect of amiodarone with that of another potent inhibitor of the T4----T3 conversion, i.e. the radiographic contrast medium iopanoic acid, on the heart rate of unanaesthetized guinea-pigs. Both amiodarone and, to an even greater extent, iopanoic acid induced an increase in serum 3.5',3' triiodothyronine (reverse T3), indicating effective inhibition of T4----T3 conversion. Both amiodarone and iopanoic acid were accumulated in the liver and in the heart (measured as iodine). While amiodarone induced bradycardia, iopanoic acid did not change the heart rate. Supraphysiological amounts of exogenous T3 reverted the amiodarone induced bradycardia to near normal values. A comparable effect was observed with isoprenaline. The intracellular inhibition of the T4----T3 conversion is not the ultimate mode of the action of the amiodarone effect on heart rate. It is thought that amiodarone interacts with T3 at its receptor or somewhere later along the pathway from the T3-receptor interaction to the final effect of T3 on heart rate. PMID:6733357

  16. An Intracellular Arrangement of Histoplasma capsulatum Yeast-Aggregates Generates Nuclear Damage to the Cultured Murine Alveolar Macrophages

    PubMed Central

    Pitangui, Nayla de Souza; Sardi, Janaina de Cássia Orlandi; Voltan, Aline R.; dos Santos, Claudia T.; da Silva, Julhiany de Fátima; da Silva, Rosangela A. M.; Souza, Felipe O.; Soares, Christiane P.; Rodríguez-Arellanes, Gabriela; Taylor, Maria Lucia; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2016-01-01

    Histoplasma capsulatum is responsible for a human systemic mycosis that primarily affects lung tissue. Macrophages are the major effector cells in humans that respond to the fungus, and the development of respiratory disease depends on the ability of Histoplasma yeast cells to survive and replicate within alveolar macrophages. Therefore, the interaction between macrophages and H. capsulatum is a decisive step in the yeast dissemination into host tissues. Although the role played by components of cell-mediated immunity in the host's defense system and the mechanisms used by the pathogen to evade the host immune response are well understood, knowledge regarding the effects induced by H. capsulatum in host cells at the nuclear level is limited. According to the present findings, H. capsulatum yeast cells display a unique architectural arrangement during the intracellular infection of cultured murine alveolar macrophages, characterized as a formation of aggregates that seem to surround the host cell nucleus, resembling a “crown.” This extranuclear organization of yeast-aggregates generates damage on the nucleus of the host cell, producing DNA fragmentation and inducing apoptosis, even though the yeast cells are not located inside the nucleus and do not trigger changes in nuclear proteins. The current study highlights a singular intracellular arrangement of H. capsulatum yeast near to the nucleus of infected murine alveolar macrophages that may contribute to the yeast's persistence under intracellular conditions, since this fungal pathogen may display different strategies to prevent elimination by the host's phagocytic mechanisms. PMID:26793172

  17. Subcellular trafficking of guanylyl cyclase/natriuretic peptide receptor-A with concurrent generation of intracellular cGMP.

    PubMed

    Mani, Indra; Garg, Renu; Tripathi, Satyabha; Pandey, Kailash N

    2015-09-15

    Atrial natriuretic peptide (ANP) activates guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which lowers blood pressure and blood volume. The objective of the present study was to visualize internalization and trafficking of enhanced GFP (eGFP)-tagged NPRA (eGFP-NPRA) in human embryonic kidney-293 (HEK-293) cells, using immunofluorescence (IF) and co-immunoprecipitation (co-IP) of eGFP-NPRA. Treatment of cells with ANP initiated rapid internalization and co-localization of the receptor with early endosome antigen-1 (EEA-1), which was highest at 5 min and gradually decreased within 30 min. Similarly, co-localization of the receptor was observed with lysosome-associated membrane protein-1 (LAMP-1); however, after treatment with lysosomotropic agents, intracellular accumulation of the receptor gradually increased within 30 min. Co-IP assays confirmed that the localization of internalized receptors occurred with subcellular organelles during the endocytosis of NPRA. Rab 11, which was used as a recycling endosome (Re) marker, indicated that ∼20% of receptors recycled back to the plasma membrane. ANP-treated cells showed a marked increase in the IF of cGMP, whereas receptor was still trafficking into the intracellular compartments. Thus, after ligand binding, NPRA is rapidly internalized and trafficked from the cell surface into endosomes, Res and lysosomes, with concurrent generation of intracellular cGMP. © 2015 Authors.

  18. The γ-secretase-generated intracellular domain of β-amyloid precursor protein binds Numb and inhibits Notch signaling

    PubMed Central

    Roncarati, Roberta; Šestan, Nenad; Scheinfeld, Meir H.; Berechid, Bridget E.; Lopez, Peter A.; Meucci, Olimpia; McGlade, Jane C.; Rakic, Pasko; D'Adamio, Luciano

    2002-01-01

    The β-amyloid precursor protein (APP) and the Notch receptor undergo intramembranous proteolysis by the Presenilin-dependent γ-secretase. The cleavage of APP by γ-secretase releases amyloid-β peptides, which have been implicated in the pathogenesis of Alzheimer's disease, and the APP intracellular domain (AID), for which the function is not yet well understood. A similar γ-secretase-mediated cleavage of the Notch receptor liberates the Notch intracellular domain (NICD). NICD translocates to the nucleus and activates the transcription of genes that regulate the generation, differentiation, and survival of neuronal cells. Hence, some of the effects of APP signaling and Alzheimer's disease pathology may be mediated by the interaction of APP and Notch. Here, we show that membrane-tethered APP binds to the cytosolic Notch inhibitors Numb and Numb-like in mouse brain lysates. AID also binds Numb and Numb-like, and represses Notch activity when released by APP. Thus, γ-secretase may have opposing effects on Notch signaling; positive by cleaving Notch and generating NICD, and negative by processing APP and generating AID, which inhibits the function of NICD. PMID:12011466

  19. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO2-x NPs

    NASA Astrophysics Data System (ADS)

    Qiu, Yuan; Rojas, Elena; Murray, Richard A.; Irigoyen, Joseba; Gregurec, Danijela; Castro-Hartmann, Pablo; Fledderman, Jana; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio E.

    2015-04-01

    Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO2-x NPs. The brush coating does not prevent CeO2-x NPs from displaying antioxidant properties.Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell

  20. Instability of a Lamellar Phase under Shear Flow: Formation of Multilamellar Vesicles

    NASA Astrophysics Data System (ADS)

    Courbin, L.; Delville, J. P.; Rouch, J.; Panizza, P.

    2002-09-01

    The formation of closed-compact multilamellar vesicles (referred to in the literature as the ``onion texture'') obtained upon shearing lamellar phases is studied using small-angle light scattering and cross-polarized microscopy. By varying the shear rate γ ˙, the gap cell D, and the smectic distance d, we show that: (i)the formation of this structure occurs homogeneously in the cell at a well-defined wave vector qi, via a strain-controlled process, and (ii)the value of qi varies as (dγ ˙/D)1/3. These results strongly suggest that formation of multilamellar vesicles may be monitored by an undulation (buckling) instability of the membranes, as expected from theory.

  1. Regulated intramembrane proteolysis of the AXL receptor kinase generates an intracellular domain that localizes in the nucleus of cancer cells.

    PubMed

    Lu, Yinzhong; Wan, Jun; Yang, Zhifeng; Lei, Xiling; Niu, Qi; Jiang, Lanxin; Passtoors, Willemijn M; Zang, Aiping; Fraering, Patrick C; Wu, Fang

    2017-04-01

    Deregulation of the TAM (TYRO3, AXL, and MERTK) family of receptor tyrosine kinases (RTKs) has recently been demonstrated to predominately promote survival and chemoresistance of cancer cells. Intramembrane proteolysis mediated by presenilin/γ-secretase is known to regulate the homeostasis of some RTKs. In the present study, we demonstrate that AXL, but not TYRO3 or MERTK, is efficiently and sequentially cleaved by α- and γ-secretases in various types of cancer cell lines. Proteolytic processing of AXL redirected signaling toward a secretase-mediated pathway, away from the classic, well-known, ligand-dependent canonical RTK signaling pathway. The AXL intracellular domain cleavage product, but not full-length AXL, was further shown to translocate into the nucleus via a nuclear localization sequence that harbored a basic HRRKK motif. Of interest, we found that the γ-secretase-uncleavable AXL mutant caused an elevated chemoresistance in non-small-cell lung cancer cells. Altogether, our findings suggest that AXL can undergo sequential processing mediated by various proteases kept in a homeostatic balance. This newly discovered post-translational processing of AXL may provide an explanation for the diverse functions of AXL, especially in the context of drug resistance in cancer cells.-Lu, Y., Wan, J., Yang, Z., Lei, X., Niu, Q., Jiang, L., Passtoors, W. M., Zang, A., Fraering, P. C., Wu, F. Regulated intramembrane proteolysis of the AXL receptor kinase generates an intracellular domain that localizes in the nucleus of cancer cells. © The Author(s).

  2. Regulated intramembrane proteolysis of the AXL receptor kinase generates an intracellular domain that localizes in the nucleus of cancer cells

    PubMed Central

    Lu, Yinzhong; Wan, Jun; Yang, Zhifeng; Lei, Xiling; Niu, Qi; Jiang, Lanxin; Passtoors, Willemijn M.; Zang, Aiping; Fraering, Patrick C.; Wu, Fang

    2017-01-01

    Deregulation of the TAM (TYRO3, AXL, and MERTK) family of receptor tyrosine kinases (RTKs) has recently been demonstrated to predominately promote survival and chemoresistance of cancer cells. Intramembrane proteolysis mediated by presenilin/γ-secretase is known to regulate the homeostasis of some RTKs. In the present study, we demonstrate that AXL, but not TYRO3 or MERTK, is efficiently and sequentially cleaved by α- and γ-secretases in various types of cancer cell lines. Proteolytic processing of AXL redirected signaling toward a secretase-mediated pathway, away from the classic, well-known, ligand-dependent canonical RTK signaling pathway. The AXL intracellular domain cleavage product, but not full-length AXL, was further shown to translocate into the nucleus via a nuclear localization sequence that harbored a basic HRRKK motif. Of interest, we found that the γ-secretase–uncleavable AXL mutant caused an elevated chemoresistance in non–small-cell lung cancer cells. Altogether, our findings suggest that AXL can undergo sequential processing mediated by various proteases kept in a homeostatic balance. This newly discovered post-translational processing of AXL may provide an explanation for the diverse functions of AXL, especially in the context of drug resistance in cancer cells.—Lu, Y., Wan, J., Yang, Z., Lei, X., Niu, Q., Jiang, L., Passtoors, W. M., Zang, A., Fraering, P. C., Wu, F. Regulated intramembrane proteolysis of the AXL receptor kinase generates an intracellular domain that localizes in the nucleus of cancer cells. PMID:28034848

  3. Intracellular fragmentation of bone resorption products by reactive oxygen species generated by osteoclastic tartrate-resistant acid phosphatase.

    PubMed

    Halleen, J M; Räisänen, S; Salo, J J; Reddy, S V; Roodman, G D; Hentunen, T A; Lehenkari, P P; Kaija, H; Vihko, P; Väänänen, H K

    1999-08-13

    Tartrate-resistant acid phosphatase (TRAP) is highly expressed in bone-resorbing osteoclasts and activated macrophages. It has been suggested that a redox-active iron in the binuclear iron center of TRAP could have the capacity to react with hydrogen peroxide to produce highly destructive reactive oxygen species (ROS). Here we show that TRAP can generate ROS in vitro and that cells over-expressing TRAP produce higher amounts of intracellular ROS than their parent cells. We further demonstrate that these ROS can be targeted to destroy collagen and other proteins. In resorbing osteoclasts, TRAP was found in transcytotic vesicles transporting matrix degradation products through the cell, suggesting that TRAP-facilitated fragmentation of endocytosed material takes place in a specific cellular compartment. These results suggest that bone matrix degradation occurs not only extracellularly in the resorption lacunae but also intracellularly in the transcytotic vesicles. We propose that proteins containing redox-active iron could represent a novel mechanism of physiological fragmentation of organic molecules. This mechanism could be important in tissue remodeling and as a defense mechanism of phagocytosing cells.

  4. Recent progress in generating intracellular functional antibody fragments to target and trace cellular components in living cells.

    PubMed

    Kaiser, Philipp D; Maier, Julia; Traenkle, Bjoern; Emele, Felix; Rothbauer, Ulrich

    2014-11-01

    In biomedical research there is an ongoing demand for new technologies, which help to elucidate disease mechanisms and provide the basis to develop novel therapeutics. In this context a comprehensive understanding of cellular processes and their pathophysiology based on reliable information on abundance, localization, posttranslational modifications and dynamic interactions of cellular components is indispensable. Besides their significant impact as therapeutic molecules, antibodies are arguably the most powerful research tools to study endogenous proteins and other cellular components. However, for cellular diagnostics their use is restricted to endpoint assays using fixed and permeabilized cells. Alternatively, live cell imaging using fluorescent protein-tagged reporters is widely used to study protein localization and dynamics in living cells. However, only artificially introduced chimeric proteins are visualized, whereas the endogenous proteins, their posttranslational modifications as well as non-protein components of the cell remain invisible and cannot be analyzed. To overcome these limitations, traceable intracellular binding molecules provide new opportunities to perform cellular diagnostics in real time. In this review we summarize recent progress in the generation of intracellular and cell penetrating antibodies and their application to target and trace cellular components in living cells. We highlight recent advances in the structural formulation of recombinant antibody formats, reliable screening protocols and sophisticated cellular targeting technologies and propose that such intrabodies will become versatile research tools for real time cell-based diagnostics including target validation and live cell imaging. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.

  5. Controlled release application of multilamellar vesicles: a novel drug delivery approach.

    PubMed

    Agnihotri, Sunil A; Soppimath, Kumaresh S; Betageri, Guru V

    2010-02-01

    A novel multilamellar vesicular delivery system was developed for the controlled release application. Multilamellar vesicles were prepared by thin film hydration and converted into proliposomes by freeze-drying. A model drug metoclopramide, a highly hydrophilic drug, was successfully encapsulated into proliposomes. The proliposomes produced were non-sticky, free-flowing powders. The proliposomes were formulated into a unit dosage form by combining with various excipients. The effect of different compositions such as type and concentration of phospholipid or hydrophilic polymer was investigared to optimize the formulation. The formation of multilamellar vesicles was confirmed by observing the process of hydration of proliposomes under an optical microscope. The spherical shape of vesicles was confirmed by transmission electron microscopy (TEM) and mean particle sizes were in the range of 1.3-2.5 microm, as measured by dynamic light scattering technique. Differential scanning calorimetry (DSC) study of formulations was conducted to understand the crystalline nature of drug in the vesicles. The results indicated a molecular level dispersion of drug into proliposomes with encapsulation efficiency up to 43%. Critical formulation parameters were identified to obtain a near zero order in vitro release pattern. Proliposomal formulations produced were suitable as multiparticulate drug delivery systems for the controlled release of a highly hydrophilic molecule.

  6. Intracellular delivery of the reactive oxygen species generating agent D-penicillamine upon conjugation to poly-L-glutamic acid.

    PubMed

    Wadhwa, Saurabh; Mumper, Russell J

    2010-06-07

    D-penicillamine is an aminothiol that is cytotoxic to cancer cells and generates dose dependent reactive oxygen species (ROS) via copper catalyzed oxidation. However, the delivery of D-pen to cancer cells remains a challenge due to its high hydrophilicity, highly reactive thiol group and impermeability to the cell membrane. To overcome this challenge, we investigated a novel poly-L-glutamic acid (PGA) conjugate of D-pen (PGA-D-pen) where D-pen was conjugated to PGA modified with 2-(2-pyridyldithio)-ethylamine (PDE) via disulfide bonds. Confocal microscopy and cell uptake studies showed that the fluorescently labeled PGA-D-pen was taken up by human leukemia cells (HL-60) in a time dependent manner. Treatment of HL-60, murine leukemia cells (P388) and human breast cancer cells (MDA-MB-468) with PGA-D-pen resulted in dose dependent cytotoxicity and elevation of intracellular ROS levels. PGA-D-pen induced apoptosis in HL-60 cells which was verified by Annexin V binding. The in vivo evaluation of the conjugate in the P388 murine leukemia model (intraperitoneal) resulted in significant enhancement in the survival of CD2F1 mice over vehicle control.

  7. Interaction of spermine with dimyristoyl-L-alpha-phosphatidyl-DL-glycerol multilamellar liposomes.

    PubMed

    Stevanato, R; Wisniewska, A; Momo, F

    1997-10-15

    Polycationic spermine interacts with the negative phosphate group of dimyristoylphosphatidylglycerol multilamellar liposomes, forming a positively charged shell around the vesicle surface. An association constant of (2.15+/-0.45) x 10(3) M(-1) between spermine and the phospholipid groups in liposomes has been evaluated by a new and rapid enzymatic method. ESR spectra show that the effects of this polycation on liposomes are substantially different from those of cations like Ca2+ and Mg2+ and confirm the ability of spermine to induce liposome aggregation and not fusion.

  8. A Highly Diverse and Functional Naïve Ubiquitin Variant Library for Generation of Intracellular Affinity Reagents.

    PubMed

    Leung, Isabel; Jarvik, Nick; Sidhu, Sachdev S

    2017-01-06

    We report the design, construction, and validation of a highly diverse phage-displayed naïve ubiquitin variant (Ubv) library. We first conducted a mutation tolerance scan of 27 residues and confirmed that 24 of these could be substituted by chemically diverse amino acids without compromising the display of Ubvs on phage. Subsequently, we constructed a library containing 6.8×10(10) unique members, in which these 24 positions were diversified with a degenerate codon that encodes for 6 aa that are prevalent in protein interaction sites. To ensure the optimal structural stability of the Ubvs, we constructed the library in a two-step process, whereby 12 positions were randomized first, and following the selection for displayed Ubvs, the resulting pool was further diversified at the other 12 positions. The resulting library was validated by conducting binding selections against a panel of 40 diverse protein antigens and was found to be as functional as a highly validated synthetic antibody library, yielding binders against 30 of the antigens. Detailed characterization of an Ubv that bound to the cell-surface receptor human epidermal growth factor receptor 3 revealed tight binding in the single-digit nanomolar range. Moreover, Ubvs that bound to two distinct sites on the intracellular adapter Grb2 could be combined to generate a potent inhibitor that functioned in cells. These results validate ubiquitin as a robust scaffold for the construction of naïve libraries that can be used to generate Ubvs that target signaling networks both outside and inside the cells.

  9. Dehydration of multilamellar fatty acid membranes: Towards a computational model of the stratum corneum

    NASA Astrophysics Data System (ADS)

    MacDermaid, Christopher M.; DeVane, Russell H.; Klein, Michael L.; Fiorin, Giacomo

    2014-12-01

    The level of hydration controls the cohesion between apposed lamellae of saturated free fatty acids found in the lipid matrix of stratum corneum, the outermost layer of mammalian skin. This multilamellar lipid matrix is highly impermeable to water and ions, so that the local hydration shell of its fatty acids may not always be in equilibrium with the acidity and relative humidity, which significantly change over a course of days during skin growth. The homeostasis of the stratum corneum at each moment of its growth likely requires a balance between two factors, which affect in opposite ways the diffusion of hydrophilic species through the stratum corneum: (i) an increase in water order as the lipid lamellae come in closer contact, and (ii) a decrease in water order as the fraction of charged fatty acids is lowered by pH. Herein molecular dynamics simulations are employed to estimate the impact of both effects on water molecules confined between lamellae of fatty acids. Under conditions where membrane undulations are energetically favorable, the charged fatty acids are able to sequester cations around points of contact between lamellae that are fully dehydrated, while essentially maintaining a multilamellar structure for the entire system. This observation suggests that the undulations of the fatty acid lamellae control the diffusion of hydrophilic species through the water phase by altering the positional and rotational order of water molecules in the embedded/occluded "droplets."

  10. Structural Phase Diagram for Multi-lamellar Tubular Deformations of Lipid Mesophases

    NASA Astrophysics Data System (ADS)

    Tayebi, Lobat; Parikh, Atul

    2011-03-01

    Stable multi-lamellar cylindrical tubules protrude readily from concentrated mass of amphiphilic molecules in response to a variety of external stresses. Using energetic considerations, we have developed an phase diagram, predicting various types of morphologies of equilibrium multilamellar tubular deformations that stabilize for a broad range of their bending rigidity and surface tension values. Tubular morphologies are described in terms of core radius(rc) and number of lamellae(N). Results of the calculations reveal that emergent tubular morphologies can be classified into three major classes: (1) thin tethers (small rc and low N); (2) solid tubes (high N); and (3) hollow tubes (large rc and and low N). Experimental validation of these predictions is obtained in experiments involving hydration of dry stack lipids Here, tubular deformations, referred to as myelin figures, of all predicted morphologies form in separate populations. Furthermore, the phase diagram also sheds light on a long-standing question of the determinants of the thickness of such myelin figures.

  11. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses

    NASA Astrophysics Data System (ADS)

    Moon, James J.; Suh, Heikyung; Bershteyn, Anna; Stephan, Matthias T.; Liu, Haipeng; Huang, Bonnie; Sohail, Mashaal; Luo, Samantha; Ho Um, Soong; Khant, Htet; Goodwin, Jessica T.; Ramos, Jenelyn; Chiu, Wah; Irvine, Darrell J.

    2011-03-01

    Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8+ T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8+ T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.

  12. Influence of cholesterol and ceramide VI on the structure of multilamellar lipid membranes at water exchange

    SciTech Connect

    Ryabova, N. Yu. Kiselev, M. A.; Balagurov, A. M.

    2010-05-15

    The structural changes in the multilamellar lipid membranes of dipalmitoylphosphatidylcholine (DPPC)/cholesterol and DPPC/ceramide VI binary systems during hydration and dehydration have been studied by neutron diffraction. The effect of cholesterol and ceramide on the kinetics of water exchange in DPPC membranes is characterized. Compared to pure DPPC, membranes of binary systems swell faster during hydration (with a characteristic time of {approx}30 min). Both compounds, ceramide VI and cholesterol, similarly affect the hydration of DPPC membranes, increasing the repeat distance due to the bilayer growth. However, in contrast to cholesterol, ceramide significantly reduces the thickness of the membrane water layer. The introduction of cholesterol into a DPPC membrane slows down the change in the parameters of the bilayer internal structure during dehydration. In the DPPC/ceramide VI/cholesterol ternary system (with a molar cholesterol concentration of 40%), cholesterol is partially released from the lamellar membrane structure into the crystalline phase.

  13. Global SAXS Data Analysis for Multilamellar Vesicles: Evolution of the Scattering Density Profile (SDP) Model

    SciTech Connect

    Heftberger, Peter; Kollmitzer, Benjamin; Heberle, Frederick A; Pan, Jianjun; Rappolt, Michael; Amenitsch, Heinz; Kucerka, Norbert; Katsaras, John; Pabst, georg

    2014-01-01

    The highly successful scattering density profile (SDP) model, used to jointly analyze small-angle X-ray and neutron scattering data from unilamellar vesicles, has been adapted for use with data from fully hydrated, liquid crystalline multilamellar vesicles (MLVs). Using a genetic algorithm, this new method is capable of providing high-resolution structural information, as well as determining bilayer elastic bending fluctuations from standalone X-ray data. Structural parameters such as bilayer thickness and area per lipid were determined for a series of saturated and unsaturated lipids, as well as binary mixtures with cholesterol. The results are in good agreement with previously reported SDP data, which used both neutron and X-ray data. The inclusion of deuterated and non-deuterated MLV neutron data in the analysis improved the lipid backbone information but did not improve, within experimental error, the structural data regarding bilayer thickness and area per lipid.

  14. Neutrase entrapment in stable multilamellar and large unilamellar vesicles for the acceleration of cheese ripening.

    PubMed

    b1esta, M; Wehrli, E; Puglisi, G

    1995-01-01

    We report the encapsulation of neutrase in liposomes for the acceleration of cheese ripening. The liposome preparation procedure consisted of repeated freeze-thaw cycles of multilamellar vesicles followed by extrusion through polycarbonate filters. The neutrase encapsulation efficiency in the liposomes was influenced by the number of freeze-thaw cycles, achieving the highest value after seven cycles. Filtration through 200-nm polycarbonate membranes yielded homogenous size liposome populations with trapping efficiencies of about 65%. The vesicle stability and low neutrase release during the first stages of the cheese-making procedure, coupled with an almost quantitative retention of neutrase-loaded liposomes in cheese curd, ensured a proteolysis rate that was twice that observed in the control cheese.

  15. Multilamellar Structures and Filament Bundles Are Found on the Cell Surface during Bunyavirus Egress

    PubMed Central

    Sanz-Sánchez, Laura; Risco, Cristina

    2013-01-01

    Inside cells, viruses build specialized compartments for replication and morphogenesis. We observed that virus release associates with specific structures found on the surface of mammalian cells. Cultured adherent cells were infected with a bunyavirus and processed for oriented sectioning and transmission electron microscopy. Imaging of cell basal regions showed sophisticated multilamellar structures (MLS) and extracellular filament bundles with attached viruses. Correlative light and electron microscopy confirmed that both MLS and filaments proliferated during the maximum egress of new viruses. MLS dimensions and structure were reminiscent of those reported for the nanostructures on gecko fingertips, which are responsible for the extraordinary attachment capacity of these lizards. As infected cells with MLS were more resistant to detachment than control cells, we propose an adhesive function for these structures, which would compensate for the loss of adherence during release of new virus progeny. PMID:23799021

  16. A new fixation-free 3D multilamellar preperitoneal implant for open inguinal hernia repair

    PubMed Central

    Brescia, Antonio; Tomassini, Federico; Berardi, Giammauro; Pezzatini, Massimo; Cosenza, Umile Michele; Castiglia, Davide; Dall’Oglio, Anna; Salaj, Adelona; Gasparrini, Marcello

    2017-01-01

    Summary Between September 2014 and December 2015, 32 patients with inguinal hernia were treated using a new 3D mesh in our department. This mesh is characterized by a multilamellar flower-shaped central core with a flat, large-pore polypropylene ovoid disk that has to be implanted preperitoneally. Compared with the traditional Lichtenstein procedure, we observed a shorter mean duration of surgery and a significantly lower mean visual analogue scale (VAS) postoperative pain score recorded immediately after the procedure in the 3D mesh group. The mean VAS score recoded after 4 and 8 postoperative days showed better results in the 3D mesh group than the control group. Moreover, there was reduced postoperative morbidity in the 3D mesh group than the control group, even if no patients experienced severe complications. PMID:28234593

  17. Reorganizational dynamics of multilamellar lipid bilayer assemblies using continuously scanning Fourier transform infrared spectroscopic imaging.

    PubMed

    Huffman, Scott W; Schlücker, Sebastian; Levin, Ira W

    2004-07-01

    We employ an implementation of rapid-scan Fourier transform infrared (FT-IR) microspectroscopic imaging to acquire time-resolved images for assessing the non-repetitive reorganizational dynamics of aqueous dispersions of multilamellar lipid vesicles (MLVs) derived from distearoylphosphatidylcholine (DSPC). The spatially and temporally resolved images allow direct and simultaneous determinations of various physical and chemical properties of the MLVs, including the main thermal gel to liquid crystalline phase transition, comparisons of vesicle diffusion rates in both phases and the variation in lipid bilayer packing properties between the inner and outer lamellae defining the vesicle. Specifically, in the lipid liquid crystalline phase, the inner bilayers of the MLVs are more intermolecularly ordered than the outer regions, while the intramolecular acyl chain order/disorder parameters, reflecting the overall characteristics of the fluid phase, remain uniform across the vesicle diameter. In contrast, the lipid vesicle gel phase displays no intermolecular or intramolecular dependence as a function of distance from the MLV center.

  18. Fast formation of low-defect-density tethered bilayers by fusion of multilamellar vesicles.

    PubMed

    Ragaliauskas, Tadas; Mickevicius, Mindaugas; Rakovska, Bozena; Penkauskas, Tadas; Vanderah, David J; Heinrich, Frank; Valincius, Gintaras

    2017-05-01

    A facile and reproducible preparation of surface-supported lipid bilayers is essential for fundamental membrane research and biotechnological applications. We demonstrate that multilamellar vesicles fuse to molecular-anchor-grafted surfaces yielding low-defect-density, tethered bilayer membranes. Continuous bilayers are formed within 10min, while the electrically insulating bilayers with <0.1μm(-2) defect density can be accomplished within 60min. Surface plasmon resonance spectroscopy indicates that an amount of lipid material transferred from vesicles to a surface is inversely proportional to the density of an anchor, while the total amount of lipid that includes tethered and transferred lipid remains constant within 5% standard error. This attests for the formation of intact bilayers independent of the tethering agent density. Neutron reflectometry (NR) revealed the atomic level structural details of the tethered bilayer showing, among other things, that the total thickness of the hydrophobic slab of the construct was 3.2nm and that the molar fraction of cholesterol in lipid content is essentially the same as the molar fraction of cholesterol in the multilamellar liposomes. NR also indicated the formation of an overlayer with an effective thickness of 1.9nm. These overlayers may be easily removed by a single rinse of the tethered construct with 30% ethanol solution. Fast assembly and low residual defect density achievable within an hour of fusion makes our tethered bilayer methodology an attractive platform for biosensing of membrane damaging agents, such as pore forming toxins. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) as an O2(*-) generator induces apoptosis via the depletion of intracellular GSH contents in Calu-6 cells.

    PubMed

    Han, Yong Hwan; Kim, Suhn Hee; Kim, Sung Zoo; Park, Woo Hyun

    2009-02-01

    Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) is an uncoupler of mitochondrial oxidative phosphorylation in eukaryotic cells. Here, we investigated an involvement of O(2)(*-) and GSH in FCCP-induced Calu-6 cell death and examined whether ROS scavengers rescue cells from FCCP-induced cell death. Levels of intracellular O(2)(*-) were markedly increased depending on the concentrations (5-100 microM) of FCCP. A depletion of intracellular GSH content was also observed after exposing cells to FCCP. Stable SOD mimetics, Tempol and Tiron did not change the levels of intracellular O(2)(*-), apoptosis and the loss of mitochondrial membrane potential (DeltaPsi(m)). Treatment with thiol antioxidants, NAC and DTT, showed the recovery of GSH depletion and the reduction of O(2)(*-) levels in FCCP-treated cells, which were accompanied by the inhibition of apoptosis. In contrast, BSO, a well-known inhibitor of GSH synthesis, aggravated GSH depletion, oxidative stress of O(2)(*-) and cell death in FCCP-treated cells. Taken together, our data suggested that FCCP as an O(2)(*-) generator, induces apoptosis via the depletion of intracellular GSH contents in Calu-6 cells.

  20. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu

    PubMed Central

    Uchiyama, Hidefumi; Zhao, Qing-Li; Hassan, Mariame Ali; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2015-01-01

    Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an

  1. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu.

    PubMed

    Uchiyama, Hidefumi; Zhao, Qing-Li; Hassan, Mariame Ali; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2015-01-01

    Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an

  2. The interaction of atmospheric pressure plasma jets with cancer and normal cells: generation of intracellular reactive oxygen species and changes of the cell proliferation and cell cycle

    NASA Astrophysics Data System (ADS)

    Chung, Tae Hun; Joh, Hea Min; Kim, Sun Ja; Leem, Sun Hee

    2013-09-01

    The possibility of atmospheric pressure plasmas is emerging as a candidate in cancer therapy. The primary role is played by reactive oxygen species (ROS), UV photons, charged particles and electric fields. Among them, intracellular ROS induced by plasma are considered to be the key constituents that induce cellular changes and apoptosis. In this study, the effects of atmospheric pressure plasma jet on cancer cells (human lung carcinoma cells) and normal cells (embryonic kidney cells and bronchial epithelial cells) were investigated. The plasma treatment was performed under different working gases, applied voltages, gas flow rates, and with and without additive oxygen flow. Using a detection dye, we observed that plasma exposure leads to the increase of the intracellular ROS and that the intracellular ROS production can be controlled by plasma parameters. A significant ROS generation was induced by plasma exposure on cancer cells and the overproduction of ROS contributes to the reduced cell proliferation. Normal cells were observed to be less affected by the plasma-mediated ROS and cell proliferation was less changed. The plasma treatment also resulted in the alteration of the cell cycle that contributes to the induction of apoptosis in cancer cells. The selective effect on cancer and normal cells provides a promising prospect of cold plasma as cancer therapy. This work was supported by the National Research Foundation of Korea under Contract No. 2012R1A1A2002591 and 2012R1A1A3010213.

  3. Enhancement of Lateral Diffusion in Catanionic Vesicles during Multilamellar-to-Unilamellar Transition.

    PubMed

    Mitra, S; Sharma, V K; Garcia-Sakai, V; Orecchini, A; Seydel, T; Johnson, M; Mukhopadhyay, R

    2016-04-21

    Catanionic vesicles are formed spontaneously by mixing cationic and anionic dispersions in aqueous solution in suitable conditions. Because of spontaneity in formation, long-term stability, and easy modulation of size and charge, they have numerous advantages over conventional lipid-based vesicles. The dynamics of such vesicles is of interest in the field of biomedicine, as they can be used to deliver drug molecules into the cell membrane. Dynamics of catanionic vesicles based on sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) have been studied using incoherent elastic and quasielastic neutron scattering (QENS) techniques. Neutron scattering experiments have been carried out on two backscattering spectrometers, IRIS and IN16B, which have different energy resolutions and energy transfer windows. An elastic fixed-window scan carried out using IN16B shows a phase transition at ∼307 K during the heating cycle, whereas on cooling the transition occurred at ∼294 K. DSC results are found to be in close agreement with the elastic scan data. This transition is ascribed to a structural rearrangement from a multilamellar to a unilamellar phase [ Andreozzi J. Phys. Chem. B 2010 , 114 , 8056 - 8060 ]. It is found that a model in which the surfactant molecules undergo both lateral and internal motions can describe the QENS data quite well. While the data from IRIS have contributions from both dynamical processes, the data from IN16B probe only lateral motions, as the internal motions are too fast for the energy window of the spectrometer. It is found that, through the transition, the fraction of surfactant molecules undergoing lateral motion increases of a factor of 2 from the multilamellar to the unilamellar phase, indicating an enhanced fluidity of the latter. The lateral motion is found to be Fickian in nature, while the internal motion has been described by a localized translational diffusion model. The results reported here could have direct

  4. Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner.

    PubMed

    Kim, Guen Tae; Lee, Se Hee; Kim, Jong Il; Kim, Young Min

    2014-04-01

    The induction of apoptosis in cancer cells is a therapeutic strategy for the treatment of cancer. In the present study, we investigated the regulatory mechanisms responsible for quercetin-induced apoptosis, mamely the increased expression of sestrin 2 and the activation of the 5' AMP-activated protein kinase (AMPK)/p38 MAPK signaling pathway. Our results revealed that quercetin induced apoptosis by generating the production of intracellular reactive oxygen species (ROS) and increasing the expression of sestrin 2. The induction of apoptosis by quercetin occurred through the activation of the AMPK/p38 signaling pathway and was dependent on sestrin 2. However, the silencing of sestrin 2 using small interfering RNA (siRNA) targeting sestrin 2 revealed that quercetin did not regulate AMPK or p38 phosphorylation in the cells in which sestrin 2 was silenced. On the other hand, it has been previously reported that sestrin 2 expression is not dependent on p53 expression under hypoxic conditions, whereas DNA damage is dependent on p53. We demonstrate that the increase in the expression of sestrin 2 by quercetin-generated intracellular ROS is p53-independent. The increased expression of sestrin 2 induced apoptosis through the AMPK/p38 signaling pathway in the HT-29 colon cancer cells, which are p53 mutant, treated with quercetin. Thus, our data suggest that quercetin induces apoptosis by reducing mitochondrial membrane potential, generating intracellular ROS production and increasing sestrin 2 expression through the AMPK/p38 pathway. In addition, p53 is not a necessary element for an apoptotic event induced by sestrin 2.

  5. Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner

    PubMed Central

    KIM, GUEN TAE; LEE, SE HEE; KIM, JONG IL; KIM, YOUNG MIN

    2014-01-01

    The induction of apoptosis in cancer cells is a therapeutic strategy for the treatment of cancer. In the present study, we investigated the regulatory mechanisms responsible for quercetin-induced apoptosis, mamely the increased expression of sestrin 2 and the activation of the 5′ AMP-activated protein kinase (AMPK)/p38 MAPK signaling pathway. Our results revealed that quercetin induced apoptosis by generating the production of intracellular reactive oxygen species (ROS) and increasing the expression of sestrin 2. The induction of apoptosis by quercetin occurred through the activation of the AMPK/p38 signaling pathway and was dependent on sestrin 2. However, the silencing of sestrin 2 using small interfering RNA (siRNA) targeting sestrin 2 revealed that quercetin did not regulate AMPK or p38 phosphorylation in the cells in which sestrin 2 was silenced. On the other hand, it has been previously reported that sestrin 2 expression is not dependent on p53 expression under hypoxic conditions, whereas DNA damage is dependent on p53. We demonstrate that the increase in the expression of sestrin 2 by quercetin-generated intracellular ROS is p53-independent. The increased expression of sestrin 2 induced apoptosis through the AMPK/p38 signaling pathway in the HT-29 colon cancer cells, which are p53 mutant, treated with quercetin. Thus, our data suggest that quercetin induces apoptosis by reducing mitochondrial membrane potential, generating intracellular ROS production and increasing sestrin 2 expression through the AMPK/p38 pathway. In addition, p53 is not a necessary element for an apoptotic event induced by sestrin 2. PMID:24535669

  6. Enhanced intracellular delivery of the reactive oxygen species (ROS)-generating copper chelator D-penicillamine via a novel gelatin--D-penicillamine conjugate.

    PubMed

    Gupte, Anshul; Wadhwa, Saurabh; Mumper, Russell J

    2008-07-01

    D-Penicillamine (D-pen) is an established copper chelator. We have recently shown that the copper-catalyzed D-pen oxidation generates concentration-dependent hydrogen peroxide (H 2O 2). Additionally, D-pen coincubated with cupric sulfate resulted in cytotoxicity in human leukemia and breast cancer cells due to the extracellular generation of reactive oxygen species (ROS). The inherent physicochemical properties of D-pen such as its short in vivo half-life, low partition coefficient, and rapid metal catalyzed oxidation limit its intracellular uptake and the potential utility as an anticancer agent in vivo. Therefore, to enhance the intracellular delivery and to protect the thiol moiety of D-pen, we designed, synthesized, and evaluated a novel gelatin-D-pen conjugate. D-pen was covalently coupled to gelatin with a biologically reversible disulfide bond with the aid of a heterobifunctional cross-linker ( N-succinimidyl-3-(2-pyridyldithio)-propionate) (SPDP). Additionally, fluorescein-labeled gelatin-D-pen conjugate was synthesized for cell uptake studies. D-pen alone was shown not to enter leukemia cells. In contrast, the qualitative intracellular uptake of the conjugate in human leukemia cells (HL-60) was shown with confocal microscopy. The conjugate exhibited slow cell uptake (over the period of 48 to 72 h). A novel HPLC assay was developed to simultaneously quantify both D-pen and glutathione in a single run. The conjugate was shown to completely release D-pen in the presence of glutathione (1 mM) in approximately 3 h in PBS buffer, pH 7.4. The gelatin-D-pen conjugate resulted in significantly greater cytotoxicity compared to free D-pen, gelatin alone, and a physical mixture of gelatin and D-pen in human leukemia cells. Further studies are warranted to assess the potential of D-pen conjugate in the delivery of D-pen as a ROS generating anticancer agent.

  7. Synthesis and analysis of separation networks for the recovery of intracellular chemicals generated from microbial-based conversions

    DOE PAGES

    Yenkie, Kirti M.; Wu, Wenzhao; Maravelias, Christos T.

    2017-05-08

    Background. Bioseparations can contribute to more than 70% in the total production cost of a bio-based chemical, and if the desired chemical is localized intracellularly, there can be additional challenges associated with its recovery. Based on the properties of the desired chemical and other components in the stream, there can be multiple feasible options for product recovery. These options are composed of several alternative technologies, performing similar tasks. The suitability of a technology for a particular chemical depends on (1) its performance parameters, such as separation efficiency; (2) cost or amount of added separating agent; (3) properties of the bioreactormore » effluent (e.g., biomass titer, product content); and (4) final product specifications. Our goal is to first synthesize alternative separation options and then analyze how technology selection affects the overall process economics. To achieve this, we propose an optimization-based framework that helps in identifying the critical technologies and parameters. Results. We study the separation networks for two representative classes of chemicals based on their properties. The separation network is divided into three stages: cell and product isolation (stage I), product concentration (II), and product purification and refining (III). Each stage exploits differences in specific product properties for achieving the desired product quality. The cost contribution analysis for the two cases (intracellular insoluble and intracellular soluble) reveals that stage I is the key cost contributor (>70% of the overall cost). Further analysis suggests that changes in input conditions and technology performance parameters lead to new designs primarily in stage I. Conclusions. The proposed framework provides significant insights for technology selection and assists in making informed decisions regarding technologies that should be used in combination for a given set of stream/product properties and final

  8. Intracellular proteoglycans.

    PubMed Central

    Kolset, Svein Olav; Prydz, Kristian; Pejler, Gunnar

    2004-01-01

    Proteoglycans (PGs) are proteins with glycosaminoglycan chains, are ubiquitously expressed and have a wide range of functions. PGs in the extracellular matrix and on the cell surface have been the subject of extensive structural and functional studies. Less attention has so far been given to PGs located in intracellular compartments, although several reports suggest that these have biological functions in storage granules, the nucleus and other intracellular organelles. The purpose of this review is, therefore, to present some of these studies and to discuss possible functions linked to PGs located in different intracellular compartments. Reference will be made to publications relevant for the topics we present. It is beyond the scope of this review to cover all publications on PGs in intracellular locations. PMID:14759226

  9. Identification of Proteins Associated with Multilamellar Bodies Produced by Dictyostelium discoideum

    PubMed Central

    Denoncourt, Alix M.; Paquet, Valérie E.; Sedighi, Ahmadreza; Charette, Steve J.

    2016-01-01

    Dictyostelium discoideum amoebae produce and secrete multilamellar bodies (MLBs) when fed digestible bacteria. The aim of the present study was to elucidate the proteic content of MLBs. The lipid composition of MLBs is mainly amoebal in origin, suggesting that MLB formation is a protozoa-driven process that could play a significant role in amoebal physiology. We identified four major proteins on purified MLBs using mass spectrometry in order to better understand the molecular mechanisms governing MLB formation and, eventually, to elucidate the true function of MLBs. These proteins were SctA, PhoPQ, PonC and a protein containing a cytidine/deoxycytidylate deaminase (CDD) zinc-binding region. SctA is a component of pycnosomes, which are membranous materials that are continuously secreted by amoebae. The presence of SctA on MLBs was confirmed by immunofluorescence and Western blotting using a specific anti-SctA antibody. The CDD protein may be one of the proteins recognized by the H36 antibody, which was used as a MLB marker in a previous study. The function of the CDD protein is unknown. Immunofluorescence and flow cytometric analyses confirmed that the H36 antibody is a better marker of MLBs than the anti-SctA antibody. This study is an additional step to elucidate the potential role of MLBs and revealed that only a small set of proteins appeared to be present on MLBs. PMID:27340834

  10. Interaction of linear mono- and diamines with dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol multilamellar liposomes.

    PubMed

    Momo, F; Fabris, S; Stevanato, R

    2000-10-15

    The effect of linear monoamines on dimyristoylphosphatidylglycerol and dimyristoylphosphatidylcholine multilamellar liposomes was studied as a function of their length and compared with the behavior of linear carboxylic acids. The role of the hydrophobic interactions was demonstrated and the free energy of the binding for each interacting carbon atom was determined. The thermotropic behavior of the liposomes was characterized by differential scanning calorimetry and it was shown that these molecules affect the temperature and the cooperativity of the gel to fluid state transition of the membrane differently. In particular, it appeared that membrane perturbation was maximum when the chain length of the amphipathic molecules ranged between 7 and 9 carbon atoms, with more pronounced effects in the case of monoamines. Molecules shorter than 3-4 carbon atoms did not produce any observable change in the transition temperature. The study was extended to linear alpha,omega-diamines to investigate the amphipathic character of long diamines and to investigate the role of bridging bonds established with neighboring phospholipids.

  11. Structure and phase transitions of the multilamellar DMPC membranes in presence of the DMSO and DESO

    NASA Astrophysics Data System (ADS)

    Gorshkova, Yu E.; Ivankov, O. I.

    2017-05-01

    The structure and phase transitions of the prepared and formed spontaneously multilamellar vesicles (MLVs) of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) in dimethyl sulfoxide (DMSO) and diethyl sulfoxide (DESO) were investigated using small angle neutron scattering (SANS). The both polar aprotic solvents increase the temperature of the main phase transition (Tm ). The pre-transition does not observed at sulfoxides mole fraction X = 0.2. The transition of the MLVs DMPC in the presence DMSO from gel to liquid-crystalline phase occurs at lower temperature. The method of the MLVs preparation has directly effects on the temperature of the main phase transition and its structure. The value of Tm is higher with ∼ 4.6 ºC in case of the spontaneous forming MLVs from extruded ULVs. The thickness of the solvent layer for prepared MLVs is less by 4.0 Å in gel phase and by 5.6 Å in liquid-crystalline phase than the thickness of the solvent layer for spontaneously formed MLVs.

  12. Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering

    PubMed Central

    Gil, Eun Seok; Mandal, Biman B.; Park, Sang-Hyug; Marchant, Jeffrey K.; Omenetto, Fiorenzo G.; Kaplan, David L.

    2010-01-01

    RGD-coupled silk protein-biomaterial lamellar systems were prepared and studied with human cornea fibroblasts (hCFs) to match functional requirements. A strategy for corneal tissue engineering was pursued to replicate the structural hierarchy of human corneal stroma within thin stacks of lamellae-like tissues, in this case constructed from scaffolds constructed with RGD-coupled, patterned, porous, mechanically robust and transparent silk films. The influence of RGD-coupling on the orientation, proliferation, ECM organization, and gene expression of hCFs was assessed. RGD surface modification enhanced cell attachment, proliferation, alignment and expression of both collagens (type I and V) and proteoglycans (decorin and biglycan). Confocal and histological images of the lamellar systems revealed that the bio-functionalized silk human cornea 3D constructs exhibited integrated corneal stroma tissue with helicoidal multi-lamellar alignment of collagen-rich and proteoglycan-rich extracellular matrix, with transparency of the construct. This biomimetic approach to replicate corneal stromal tissue structural hierarchy and architecture demonstrates a useful strategy for engineering human cornea. Further, this approach can be exploited for other tissue systems due to the pervasive nature of such helicoids in most human tissues. PMID:20801503

  13. Interactions of tamoxifen with distearoyl phosphatidylcholine multilamellar vesicles: FTIR and DSC studies

    NASA Astrophysics Data System (ADS)

    Bilge, Duygu; Sahin, Ipek; Kazanci, Nadide; Severcan, Feride

    2014-09-01

    Interactions of a non-steroidal antiestrogen drug, tamoxifen (TAM), with distearoyl-sn-glycero-3-phosphatidylcholine (DSPC) multilamellar liposomes (MLVs) were investigated as a function of drug concentration (1-15 mol%) by using two noninvasive techniques, namely Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). FTIR spectroscopy results show that increasing TAM concentrations (except 1 mol%) increased the wavenumbers of the CH2 stretching modes, implying an disordering effect for DSPC MLVs both in the gel and liquid crystalline phases. The bandwidth values of the CH2 stretchings except for 1 mol% increased when TAM concentrations increased for DSPC liposomes, indicating an increase in the dynamics of liposomes. The Cdbnd O stretching and PO2- antisymmetric double bond stretching bands were analyzed to study interactions of TAM with head groups of lipids. As the concentrations of TAM increased, dehydration occurred around these functional groups in the polar part of the lipids. The DSC studies on thermal properties of DSPC lipids indicate that TAM eliminated the pre transition, shifted the main phase transition to lower temperatures and broadened the phase transition curve of the liposomes.

  14. Packaging of Campylobacter jejuni into Multilamellar Bodies by the Ciliate Tetrahymena pyriformis

    PubMed Central

    Trigui, Hana; Paquet, Valérie E.; Charette, Steve J.

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial gastroenteritis worldwide. Transmission to humans occurs through consumption of contaminated food or water. The conditions affecting the persistence of C. jejuni in the environment are poorly understood. Some protozoa package and excrete bacteria into multilamellar bodies (MLBs). Packaged bacteria are protected from deleterious conditions, which increases their survival. We hypothesized that C. jejuni could be packaged under aerobic conditions by the amoeba Acanthamoeba castellanii or the ciliate Tetrahymena pyriformis, both of which are able to package other pathogenic bacteria. A. castellanii did not produce MLBs containing C. jejuni. In contrast, when incubated with T. pyriformis, C. jejuni was ingested, packaged in MLBs, and then expelled into the milieu. The viability of the bacteria inside MLBs was confirmed by microscopic analyses. The kinetics of C. jejuni culturability showed that packaging increased the survival of C. jejuni up to 60 h, in contrast to the strong survival defect seen in ciliate-free culture. This study suggests that T. pyriformis may increase the risk of persistence of C. jejuni in the environment and its possible transmission between different reservoirs in food and potable water through packaging. PMID:26921427

  15. Simulation and analysis of light scattering by multilamellar bodies present in the human eye.

    PubMed

    Méndez-Aguilar, Emilia M; Kelly-Pérez, Ismael; Berriel-Valdos, L R; Delgado-Atencio, José A

    2017-06-01

    A modified computational model of the human eye was used to obtain and compare different probability density functions, radial profiles of light pattern distributions, and images of the point spread function formed in the human retina under the presence of different kinds of particles inside crystalline lenses suffering from cataracts. Specifically, this work uses simple particles without shells and multilamellar bodies (MLBs) with shells. The emergence of such particles alters the formation of images on the retina. Moreover, the MLBs change over time, which affects properties such as the refractive index of their shell. Hence, this work not only simulates the presence of such particles but also evaluates the incidence of particle parameters such as particle diameter, particle thickness, and shell refractive index, which are set based on reported experimental values. In addition, two wavelengths (400 nm and 700 nm) are used for light passing through the different layers of the computational model. The effects of these parameters on light scattering are analyzed using the simulation results. Further, in these results, the effects of light scattering on image formation can be seen when single particles, early-stage MLBs, or mature MLBs are incorporated in the model. Finally, it is found that particle diameter has the greatest impact on image formation.

  16. Simulation and analysis of light scattering by multilamellar bodies present in the human eye

    PubMed Central

    Méndez-Aguilar, Emilia M.; Kelly-Pérez, Ismael; Berriel-Valdos, L. R.; Delgado-Atencio, José A.

    2017-01-01

    A modified computational model of the human eye was used to obtain and compare different probability density functions, radial profiles of light pattern distributions, and images of the point spread function formed in the human retina under the presence of different kinds of particles inside crystalline lenses suffering from cataracts. Specifically, this work uses simple particles without shells and multilamellar bodies (MLBs) with shells. The emergence of such particles alters the formation of images on the retina. Moreover, the MLBs change over time, which affects properties such as the refractive index of their shell. Hence, this work not only simulates the presence of such particles but also evaluates the incidence of particle parameters such as particle diameter, particle thickness, and shell refractive index, which are set based on reported experimental values. In addition, two wavelengths (400 nm and 700 nm) are used for light passing through the different layers of the computational model. The effects of these parameters on light scattering are analyzed using the simulation results. Further, in these results, the effects of light scattering on image formation can be seen when single particles, early-stage MLBs, or mature MLBs are incorporated in the model. Finally, it is found that particle diameter has the greatest impact on image formation. PMID:28663924

  17. Interactions of tamoxifen with distearoyl phosphatidylcholine multilamellar vesicles: FTIR and DSC studies.

    PubMed

    Bilge, Duygu; Sahin, Ipek; Kazanci, Nadide; Severcan, Feride

    2014-09-15

    Interactions of a non-steroidal antiestrogen drug, tamoxifen (TAM), with distearoyl-sn-glycero-3-phosphatidylcholine (DSPC) multilamellar liposomes (MLVs) were investigated as a function of drug concentration (1-15 mol%) by using two noninvasive techniques, namely Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). FTIR spectroscopy results show that increasing TAM concentrations (except 1 mol%) increased the wavenumbers of the CH2 stretching modes, implying an disordering effect for DSPC MLVs both in the gel and liquid crystalline phases. The bandwidth values of the CH2 stretchings except for 1 mol% increased when TAM concentrations increased for DSPC liposomes, indicating an increase in the dynamics of liposomes. The CO stretching and PO2- antisymmetric double bond stretching bands were analyzed to study interactions of TAM with head groups of lipids. As the concentrations of TAM increased, dehydration occurred around these functional groups in the polar part of the lipids. The DSC studies on thermal properties of DSPC lipids indicate that TAM eliminated the pre transition, shifted the main phase transition to lower temperatures and broadened the phase transition curve of the liposomes.

  18. Lipid Composition of Multilamellar Bodies Secreted by Dictyostelium discoideum Reveals Their Amoebal Origin

    PubMed Central

    Paquet, Valérie E.; Lessire, René; Domergue, Frédéric; Fouillen, Laetitia; Filion, Geneviève; Sedighi, Ahmadreza

    2013-01-01

    When they are fed with bacteria, Dictyostelium discoideum amoebae produce and secrete multilamellar bodies (MLBs), which are composed of membranous material. It has been proposed that MLBs are a waste disposal system that allows D. discoideum to eliminate undigested bacterial remains. However, the real function of MLBs remains unknown. Determination of the biochemical composition of MLBs, especially lipids, represents a way to gain information about the role of these structures. To allow these analyses, a protocol involving various centrifugation procedures has been developed to purify secreted MLBs from amoeba-bacterium cocultures. The purity of the MLB preparation was confirmed by transmission electron microscopy and by immunofluorescence using H36, an antibody that binds to MLBs. The lipid and fatty acid compositions of pure MLBs were then analyzed by high-performance thin-layer chromatography (HPTLC) and gas chromatography (GC), respectively, and compared to those of amoebae as well as bacteria used as a food source. While the bacteria were devoid of phosphatidylcholine (PC) and phosphatidylinositol (PI), these two polar lipid species were major classes of lipids in MLBs and amoebae. Similarly, the fatty acid composition of MLBs and amoebae was characterized by the presence of polyunsaturated fatty acids, while cyclic fatty acids were found only in bacteria. These results strongly suggest that the lipids constituting the MLBs originate from the amoebal metabolism rather than from undigested bacterial membranes. This opens the possibility that MLBs, instead of being a waste disposal system, have unsuspected roles in D. discoideum physiology. PMID:23748431

  19. Influence of temperature on stability of multilamellar liposomes in wool dyeing.

    PubMed

    Montazer, M; Validi, M; Toliyat, T

    2006-01-01

    Liposomes are lipid vesicles that are composed of amphiphile molecules and can carry hydrophobic and hydrophilic materials. In this research work liposomes used as carrier for transfer of dye molecules into wool fibers. The preparation and production of multilamellar liposomes (MLV) from Soya lecithin were carried out and the behavior of liposomes at different temperature was studied. The effect of different concentration of liposomes in the dye exhaustion profile of two dyes (Namely, Irgalan Blue FBL and Lanaset Blue 2R) at two different temperatures of 85 degrees C and 95 degrees C on the wool fabric was investigated. The results showed that presence of liposomes in the dye-bath helps to increase the dye absorption on the wool fabric before 80 degrees C. Dyeing at higher temperature and longer time leads to a decrease in the final exhaustion along with increase in the liposomes concentration. Liposomes at high temperature converted to the disperse phospholipids unimers that may deposited on the fabric surface and may produce a hydrophobic barrier against absorption of dye. The presence of 1% o.w.f. (on weight of fabric) of liposomes at 85 degrees C improved the dye exhaustion of Irgalan Blue FBL on the wool fabric. The wash fastness properties of samples which dyed in the dye-bath containing liposomes also improved.

  20. Codelivery of Doxorubicin and Paclitaxel by Cross-Linked Multilamellar Liposome Enables Synergistic Antitumor Activity

    PubMed Central

    2015-01-01

    Combining chemotherapeutics is a promising method of improving cancer treatment; however, the clinical success of combination therapy is limited by the distinct pharmacokinetics of combined drugs, which leads to nonuniform distribution. In this study, we report a new robust approach to load two drugs with different hydrophilicities into a single cross-linked multilamellar liposomal vesicle (cMLV) to precisely control the drug ratio that reaches the tumor in vivo. The stability of cMLVs improves the loading efficiency and sustained release of doxorubicin (Dox) and paclitaxel (PTX), maximizing the combined therapeutic effect and minimizing the systemic toxicity. Furthermore, we show that the cMLV formulation maintains specific drug ratios in vivo for over 24 h, enabling the ratio-dependent combination synergy seen in vitro to translate to in vivo antitumor activity and giving us control over another parameter important to combination therapy. This combinatorial delivery system may provide a new strategy for synergistic delivery of multiple chemotherapeutics with a ratiometric control over encapsulated drugs to treat cancer and other diseases. PMID:24673622

  1. Evaluation of extra- and intracellular OH radical generation, cancer cell injury, and apoptosis induced by a non-thermal atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Ninomiya, Kazuaki; Ishijima, Tatsuo; Imamura, Masatoshi; Yamahara, Takayuki; Enomoto, Hiroshi; Takahashi, Kenji; Tanaka, Yasunori; Uesugi, Yoshihiko; Shimizu, Nobuaki

    2013-10-01

    In this study, we investigated the effects of a non-thermal atmospheric-pressure plasma jet inducing extracellular and intracellular OH radical generation as well as cell injury and apoptosis for the cultured human breast cancer cells. Increased OH radical generation in the extracellular culture medium (liquid phase) was observed with increased irradiation time, distance to the liquid surface, and voltage. From the voltage-response relationships for two breast cancer cell lines (invasive MDA-MB-231 cells and non-invasive MCF-7 cells) and normal breast cells (HMEC), the half-maximal effective peak-to-peak voltage (EV50) values were 16.7 ± 0.3 kV, 15.0 ± 0.4 kV and 11.2 ± 0.7 kV for MDA-MB-231, MCF-7 and HMEC cells, respectively. This indicated that there was almost no selective cancer cell injury induced by plasma jet irradiation under these conditions. Compared with control condition without a plasma jet, intracellular OH radical accumulation and apoptotic cells were observed with a plasma jet using conditions that induced injury to 50% of cells irrespective of the cancer cell line.

  2. Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells.

    PubMed

    Lavi, Ronit; Shainberg, Asher; Friedmann, Harry; Shneyvays, Vladimir; Rickover, Ophra; Eichler, Maor; Kaplan, Doron; Lubart, Rachel

    2003-10-17

    Low energy visible light (LEVL) irradiation has been shown to exert some beneficial effects on various cell cultures. For example, it increases the fertilizing capability of sperm cells, promotes cell proliferation, induces sprouting of neurons, and more. To learn about the mechanism of photobiostimulation, we studied the relationship between increased intracellular calcium ([Ca2+]i) and reactive oxygen species production following LEVL illumination of cardiomyocytes. We found that visible light causes the production of O2. and H2O2 and that exogenously added H2O2 (12 microm) can mimic the effect of LEVL (3.6 J/cm2) to induce a slow and transient increase in [Ca2+]i. This [Ca2+]i elevation can be reduced by verapamil, a voltage-dependent calcium channel inhibitor. The kinetics of [Ca2+]i elevation and morphologic damage following light or addition of H2O2 were found to be dose-dependent. For example, LEVL, 3.6 J/cm2, which induced a transient increase in [Ca2+]i, did not cause any cell damage, whereas visible light at 12 J/cm2 induced a linear increase in [Ca2+]i and damaged the cells. The linear increase in [Ca2+]i resulting from high energy doses of light could be attenuated into a non-linear small rise in [Ca2+]i by the presence of extracellular catalase during illumination. We suggest that the different kinetics of [Ca2+]i elevation following various light irradiation or H2O2 treatment represents correspondingly different adaptation levels to oxidative stress. The adaptive response of the cells to LEVL represented by the transient increase in [Ca2+]i can explain LEVL beneficial effects.

  3. Generation of Covalently Closed Circular DNA of Hepatitis B Viruses via Intracellular Recycling Is Regulated in a Virus Specific Manner

    PubMed Central

    Köck, Josef; Rösler, Christine; Zhang, Jing-Jing; Blum, Hubert E.; Nassal, Michael; Thoma, Christian

    2010-01-01

    Persistence of hepatitis B virus (HBV) infection requires covalently closed circular (ccc)DNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc) DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV) in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process. PMID:20824087

  4. Nanosecond-Pulsed DBD Plasma-Generated Reactive Oxygen Species Trigger Immunogenic Cell Death in A549 Lung Carcinoma Cells through Intracellular Oxidative Stress

    PubMed Central

    Lin, Abraham; Truong, Billy; Patel, Sohil; Kaushik, Nagendra; Choi, Eun Ha; Fridman, Gregory; Fridman, Alexander; Miller, Vandana

    2017-01-01

    A novel application for non-thermal plasma is the induction of immunogenic cancer cell death for cancer immunotherapy. Cells undergoing immunogenic death emit danger signals which facilitate anti-tumor immune responses. Although pathways leading to immunogenic cell death are not fully understood; oxidative stress is considered to be part of the underlying mechanism. Here; we studied the interaction between dielectric barrier discharge plasma and cancer cells for oxidative stress-mediated immunogenic cell death. We assessed changes to the intracellular oxidative environment after plasma treatment and correlated it to emission of two danger signals: surface-exposed calreticulin and secreted adenosine triphosphate. Plasma-generated reactive oxygen and charged species were recognized as the major effectors of immunogenic cell death. Chemical attenuators of intracellular reactive oxygen species successfully abrogated oxidative stress following plasma treatment and modulated the emission of surface-exposed calreticulin. Secreted danger signals from cells undergoing immunogenic death enhanced the anti-tumor activity of macrophages. This study demonstrated that plasma triggers immunogenic cell death through oxidative stress pathways and highlights its potential development for cancer immunotherapy. PMID:28467380

  5. Characterization of intracellular dynamics of inoculated PrP-res and newly generated PrPSc during early stage prion infection in Neuro2a cells

    PubMed Central

    Yamasaki, Takeshi; Baron, Gerald S; Suzuki, Akio; Hasebe, Rie; Horiuchi, Motohiro

    2014-01-01

    Summary To clarify the cellular mechanisms for the establishment of prion infection, we analyzed the intracellular dynamics of inoculated and newly generated abnormal isoform of prion protein (PrPSc) in Neuro2a cells. Within 24 h after inoculation, the newly generated PrPSc was evident at the plasma membrane, in early endosomes, and in late endosomes, but this PrPSc was barely evident in lysosomes; in contrast, the majority of the inoculated PrPSc was evident in late endosomes and lysosomes. However, during the subsequent 48 h, the newly generated PrPSc increased remarkably in early endosomes and recycling endosomes. Overexpression of wild-type and mutant Rab proteins showed that membrane trafficking along not only the endocytic-recycling pathway but also the endo-lysosomal pathway is involved in de novo PrPSc generation. These results suggest that the trafficking of exogenously introduced PrPSc from the endo-lysosomal pathway to the endocytic-recycling pathway is important for the establishment of prion infection. PMID:24503096

  6. Plumbagin Inhibits Proliferative and Inflammatory Responses of T Cells Independent of ROS Generation But by Modulating Intracellular Thiols

    PubMed Central

    Checker, Rahul; Sharma, Deepak; Sandur, Santosh K.; Subrahmanyam, G.; Krishnan, Sunil; Poduval, T.B.; Sainis, K.B.

    2011-01-01

    Plumbagin inhibited activation, proliferation, cytokine production, and graft-versus-host disease in lymphocytes and inhibited growth of tumor cells by suppressing nuclear factor-κB (NF-κB). Plumbagin was also shown to induce reactive oxygen species (ROS) generation in tumor cells via an unknown mechanism. Present report describes a novel role of cellular redox in modulation of immune responses in normal lymphocytes by plumbagin. Plumbagin depleted glutathione (GSH) levels that led to increase in ROS generation. The decrease in GSH levels was due to direct reaction of plumbagin with GSH as evinced by mass spectrometric and HPLC analysis. Further, addition of plumbagin to cells resulted in decrease in free thiol groups on proteins and increase in glutathionylation of proteins. The suppression of mitogen-induced T-cell proliferation and cytokine (IL-2/IL-4/IL-6/IFN-γ) production by plumbagin was abrogated by thiol antioxidants but not by non-thiol antioxidants confirming that thiols but not ROS play an important role in biological activity of plumbagin. Plumbagin also abrogated mitogen-induced phosphorylation of ERK, IKK, and degradation of IκB-α. However, it did not affect phosphorylation of P38, JNK, and AKT. Our results for the first time show that antiproliferative effects of plumbagin are mediated by modulation of cellular redox. These results provide a rationale for application of thiol-depleting agents as anti-inflammatory drugs. PMID:20564204

  7. Dimethyl sulfoxide-induced dehydration of the intermembrane space of dipalmitoylphosphatidylcholine multilamellar vesicles: Neutron and synchrotron diffraction study

    NASA Astrophysics Data System (ADS)

    Kiselev, M. A.; Zemlyanaya, E. V.

    2017-09-01

    Small-angle neutron scattering spectra of a polydispersed population of dipalmitoylphosphatidylcholine (DPPC) unilamellar vesicles in heavy water in the presence of dimethyl sulfoxide (DMSO) are analyzed by means of the separated form-factor method. An increase in the mole fraction of DMSO in water from 0 to 15% was shown to lead to an increase in the thickness of the bilayer to the characteristics repeat distances of DPPC multilamellar membranes. This fact is indicative of dehydration of the intermembrane space and a steric contact between adjacent DPPC bilayers at 15% mole fraction of DMSO.

  8. Synaptic generation of an intracellular retrograde signal requires activation of the tyrosine kinase and mitogen-activated protein kinase signaling cascades in Aplysia.

    PubMed

    Stough, Shara; Kopec, Ashley M; Carew, Thomas J

    2015-11-01

    Cellular changes underlying memory formation can be generated in an activity-dependent manner at specific synapses. Thus an important question concerns the mechanisms by which synaptic signals communicate with the cell body to mediate these cellular changes. A monosynaptic circuit that is enhanced by sensitization in Aplysia is well-suited to study this question because three different subcellular compartments: (i) the sensorimotor SN-MN synapses, (ii) the SN projections to MNs via axonal connections, (iii) the SN cell bodies, can all be manipulated and studied independently. Here, we report that activity-dependent (AD) training in either the entire SN-MN circuit or in only the synaptic compartment, activates MAPK in a temporally and spatially specific pattern. Specifically, we find (i) MAPK activation is first transiently generated at SN-MN synapses during training, (ii) immediately after training MAPK is transiently activated in SN-MN axonal connections and persistently activated in SN cell bodies, and finally, (iii) MAPK is activated in SN cell bodies and SN-MN synapses 1h after training. These data suggest that there is an intracellularly transported retrograde signal generated at the synapse which is later responsible for delayed MAPK activation at SN somata. Finally, we find that this retrograde signal requires activation of tyrosine kinase (TK) and MEK signaling cascades at the synapses.

  9. Intracellular ROS

    PubMed Central

    Leshem, Yehoram

    2007-01-01

    Intracellular localization of stress induced reactive oxygen species (ROS) has emerged as an important aspect towards understanding of cellular responses to environmental stimuli. Our recent study published in the PNAS (103:18008–13)1 shows that NaCl-induced ROS appear within endosomes on the way to tonoplast as part of the vacuolar vesicle trafficking. In addition to showing ROS damage to the tonoplast, this finding may shed light upon recently reported aspects of root water relations during salt stress, suggesting a new signaling role for intracellular ROS in Arabidopsis root cells, during salt stress: ROS that are compartmentalized in endosomes are delivered by the vacuolar vesicle trafficking pathway to the tonoplast, resulting in oxidative gating of TIPs water channels. The closure of the tonoplast aquaporins contributes to the observed reduction in root hydraulic conductivity during salt stress. PMID:19704741

  10. Intracellular Generation of ROS by 3,5-Dimethylaminophenol: Persistence, Cellular Response, and Impact of Molecular Toxicity

    PubMed Central

    Chao, Ming-Wei; Erkekoglu, Pinar; Tseng, Chia-Yi; Ye, Wenjie; Trudel, Laura J.; Skipper, Paul L.; Tannenbaum, Steven R.; Wogan, Gerald N.

    2014-01-01

    Epidemiological studies have demonstrated extensive human exposure to the monocyclic aromatic amines, particularly to 3,5-dimethylaniline, and found an association between exposure to these compounds and risk for bladder cancer. Little is known about molecular mechanisms that might lead to the observed risk. We previously suggested that the hydroxylated 3,5-dimethylaniline metabolite, 3,5-dimethylaminophenol (3,5-DMAP), played a central role in effecting genetic change through the generation of reactive oxygen species (ROS) in a redox cycle with 3,5-dimethylquinoneimine. Experiments here characterize ROS generation by 3,5-DMAP exposure in nucleotide repair-proficient and -deficient Chinese hamster ovary cells as a function of time. Besides, various cellular responses discussed herein indicate that ROS production is the principal cause of cytotoxicity. Fluorescence microscopy of cells exposed to 3,5-DMAP confirmed that ROS production occurs in the nuclear compartment, as suggested by a previous study demonstrating covalent linkage between 3,5-DMAP and histones. 3,5-DMAP was also compared with 3,5-dimethylhydroquinone to determine whether substitution of one of the phenolic hydroxyl groups by an amino group had a significant effect on some of the investigated parameters. The comparatively much longer duration of observable ROS produced by 3,5-DMAP (7 vs. 1 day) provides further evidence that 3,5-DMAP becomes embedded in the cellular matrix in a form capable of continued redox cycling. 3,5-DMAP also induced dose-dependent increase of H2O2 and ·OH, which were determined as the major free radicals contributing to the cytotoxicity and apoptosis mediated via caspase-3 activation. Overall, this study provides insight into the progression of alkylaniline-induced toxicity. PMID:24973092

  11. Enhancing radiotherapy by lipid nanocapsule-mediated delivery of amphiphilic gold nanoparticles to intracellular membranes.

    PubMed

    Yang, Yu-Sang; Carney, Randy P; Stellacci, Francesco; Irvine, Darrell J

    2014-09-23

    Amphiphilic gold nanoparticles (amph-NPs), composed of gold cores surrounded by an amphiphilic mixed organic ligand shell, are capable of embedding within and traversing lipid membranes. Here we describe a strategy using crosslink-stabilized lipid nanocapsules (NCs) as carriers to transport such membrane-penetrating particles into tumor cells and promote their transfer to intracellular membranes for enhanced radiotherapy of cancer. We synthesized and characterized interbilayer-crosslinked multilamellar lipid vesicles (ICMVs) carrying amph-NPs embedded in the capsule walls, forming Au-NCs. Confocal and electron microscopies revealed that the intracellular distribution of amph-NPs within melanoma and breast tumor cells following uptake of free particles vs Au-NCs was quite distinct and that amph-NPs initially delivered into endosomes by Au-NCs transferred over a period of hours to intracellular membranes through tumor cells, with greater intracellular spread in melanoma cells than breast carcinoma cells. Clonogenic assays revealed that Au-NCs enhanced radiotherapeutic killing of melanoma cells. Thus, multilamellar lipid capsules may serve as an effective carrier to deliver amphiphilic gold nanoparticles to tumors, where the membrane-penetrating properties of these materials can significantly enhance the efficacy of frontline radiotherapy treatments.

  12. 5-Aminolevulinic acid strongly enhances delayed intracellular production of reactive oxygen species (ROS) generated by ionizing irradiation: quantitative analyses and visualization of intracellular ROS production in glioma cells in vitro.

    PubMed

    Kitagawa, Takehiro; Yamamoto, Junkoh; Tanaka, Tohru; Nakano, Yoshiteru; Akiba, Daisuke; Ueta, Kunihiro; Nishizawa, Shigeru

    2015-02-01

    Postoperative adjuvant radiotherapy has important roles in multimodal treatment for highly aggressive malignant gliomas. Previously, we demonstrated that multi-dose ionizing irradiation with repetitive administration of 5-aminolevulinic acid (5-ALA) enhanced the host antitumor response and strongly inhibited tumor growth in experimental glioma. However, the mechanism of the radiosensitizing effect of 5-ALA is not known. Ionizing irradiation not only causes reactive oxygen species (ROS) formation initially by water radiolysis but also induces delayed production of mitochondrial ROS for mediating the long-lasting effects of ionizing irradiation on tumor cells. 5-ALA leads to high accumulation of protoporphyrin IX (PpIX) in the mitochondria of tumor cells, yet can also improve dysfunction of the mitochondrial respiratory chain in tumor cells. Here, we assessed the effect of 5-ALA-induced PpIX synthesis and delayed production of intracellular ROS after ionizing irradiation with 5-ALA in glioma cells in vitro. Temporal changes in intracellular 5-ALA-induced PpIX synthesis after ionizing irradiation in glioma cell lines were evaluated using flow cytometry (FCM). Then, the effect of 5-ALA on delayed production of intracellular ROS 12 h after ionizing irradiation in glioma cells was evaluated by FCM and confocal laser scanning microscopy. Ionizing irradiation had no effect on 5-ALA-induced PpIX synthesis in glioma cells. Delayed intracellular production of ROS was significantly higher than that just after ionizing irradiation, but 5-ALA pretreatment strongly enhanced the delayed intracellular production of ROS, mainly in the cytoplasm of glioma cells. This 5-ALA-induced increase in the delayed production of ROS tended to be higher in the case of 5-ALA treatment before rather than after ionizing irradiation. These results suggest that 5-ALA can affect tumor cells under ionizing irradiation, and greatly increase secondary intracellular production of ROS long after ionizing

  13. Non-transferrin bound iron, cytokine activation and intracellular reactive oxygen species generation in hemodialysis patients receiving intravenous iron dextran or iron sucrose.

    PubMed

    Pai, Amy Barton; Conner, Todd; McQuade, Charles R; Olp, Jonathan; Hicks, Paul

    2011-08-01

    Intravenous (IV) iron supplementation is widely used to support erythropoeisis in hemodialysis patients. IV iron products are associated with oxidative stress that has been measured principally by circulating biomarkers such as products of lipid peroxidation. The pro-oxidant effects of IV iron are presumed to be due at least in part, by free or non-transferrin bound iron (NTBI). However, the effects of IV iron on intracellular redox status and downstream effectors is not known. This prospective, crossover study compared cytokine activation, reactive oxygen species generation and oxidative stress after single IV doses of iron sucrose and iron dextran. This was a prospective, open-label, crossover study. Ten patients with end-stage renal disease (ESRD) on hemodialysis and four age and sex-matched healthy were assigned to receive 100 mg of each IV iron product over 5 min in random sequence with a 2 week washout between products. Subjects were fasted and fed a low iron diet in the General Clinical Research Center at the University of New Mexico. Serum and plasma samples for IL-1, IL-6, TNF-α and IL-10 and NTBI were obtained at baseline, 60 and 240 min after iron infusion. Peripheral blood mononuclear cells (PBMC) were isolated at the same time points and stained with fluorescent probes to identify intracellular reactive oxygen species and mitochondrial membrane potential (Δψm) by flow cytometry. Lipid peroxidation was assessed by plasma F(2) isoprostane concentration. Mean ± SEM maximum serum NTBI values were significantly higher among patients receiving IS compared to ID (2.59 ± 0.31 and 1.0 ± 0.36 µM, respectively, P = 0.005 IS vs. ID) Mean ± SEM NTBI area under the serum concentration-time curve (AUC) was 3-fold higher after IS versus ID (202 ± 53 vs. 74 ± 23 µM*min/l, P = 0.04) in ESRD patients, indicating increased exposure to NTBI. IV iron administration was associated with increased pro-inflammatory cytokines. Serum IL-6 concentrations increased most

  14. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes

    NASA Astrophysics Data System (ADS)

    Himbert, Sebastian; Alsop, Richard J.; Rose, Markus; Hertz, Laura; Dhaliwal, Alexander; Moran-Mirabal, Jose M.; Verschoor, Chris P.; Bowdish, Dawn M. E.; Kaestner, Lars; Wagner, Christian; Rheinstädter, Maikel C.

    2017-01-01

    We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (lo) and liquid disordered (ld) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the lo domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains.

  15. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes

    PubMed Central

    Himbert, Sebastian; Alsop, Richard J.; Rose, Markus; Hertz, Laura; Dhaliwal, Alexander; Moran-Mirabal, Jose M.; Verschoor, Chris P.; Bowdish, Dawn M. E.; Kaestner, Lars; Wagner, Christian; Rheinstädter, Maikel C.

    2017-01-01

    We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (lo) and liquid disordered (ld) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the lo domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains. PMID:28045119

  16. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes.

    PubMed

    Himbert, Sebastian; Alsop, Richard J; Rose, Markus; Hertz, Laura; Dhaliwal, Alexander; Moran-Mirabal, Jose M; Verschoor, Chris P; Bowdish, Dawn M E; Kaestner, Lars; Wagner, Christian; Rheinstädter, Maikel C

    2017-01-03

    We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (lo) and liquid disordered (ld) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the lo domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains.

  17. Sequential and γ-secretase-dependent processing of the betacellulin precursor generates a palmitoylated intracellular-domain fragment that inhibits cell growth

    PubMed Central

    Stoeck, Alexander; Shang, Li; Dempsey, Peter J.

    2010-01-01

    Betacellulin (BTC) belongs to the family of epidermal growth factor (EGF)-like growth factors that are expressed as transmembrane precursors and undergo proteolytic ectodomain shedding to release soluble mature ligands. BTC is a dual-specificity ligand for ErbB1 and ErbB4 receptors, and can activate unique signal-transduction pathways that are beneficial for the function, survival and regeneration of pancreatic β-cells. We have previously shown that BTC precursor (proBTC) is cleaved by ADAM10 to generate soluble ligand and a stable, transmembrane remnant (BTC-CTF). In this study, we analyzed the fate of the BTC-CTF in greater detail. We demonstrated that proBTC is cleaved by ADAM10 to produce BTC-CTF, which then undergoes intramembrane processing by presenilin-1- and/or presenilin-2-dependent γ-secretase to generate an intracellular-domain fragment (BTC-ICD). We found that the proBTC cytoplasmic domain is palmitoylated and that palmitoylation is not required for ADAM10-dependent cleavage but is necessary for the stability and γ-secretase-dependent processing of BTC-CTF to generate BTC-ICD. Additionally, palmitoylation is required for nuclear-membrane localization of BTC-ICD, as demonstrated by the redistribution of non-palmitoylated BTC-ICD mutant to the nucleoplasm. Importantly, a novel receptor-independent role for BTC-ICD signaling is suggested by the ability of BTC-ICD to inhibit cell growth in vitro. PMID:20530572

  18. Intracellular microlasers

    NASA Astrophysics Data System (ADS)

    Humar, Matjaž; Hyun Yun, Seok

    2015-09-01

    Optical microresonators, which confine light within a small cavity, are widely exploited for various applications ranging from the realization of lasers and nonlinear devices to biochemical and optomechanical sensing. Here we use microresonators and suitable optical gain materials inside biological cells to demonstrate various optical functions in vitro including lasing. We explore two distinct types of microresonator—soft and hard—that support whispering-gallery modes. Soft droplets formed by injecting oil or using natural lipid droplets support intracellular laser action. The laser spectra from oil-droplet microlasers can chart cytoplasmic internal stress (˜500 pN μm-2) and its dynamic fluctuations at a sensitivity of 20 pN μm-2 (20 Pa). In a second form, whispering-gallery modes within phagocytized polystyrene beads of different sizes enable individual tagging of thousands of cells easily and, in principle, a much larger number by multiplexing with different dyes.

  19. Multiple Surface Regions on the Niemann-Pick C2 Protein Facilitate Intracellular Cholesterol Transport.

    PubMed

    McCauliff, Leslie A; Xu, Zhi; Li, Ran; Kodukula, Sarala; Ko, Dennis C; Scott, Matthew P; Kahn, Peter C; Storch, Judith

    2015-11-06

    The cholesterol storage disorder Niemann-Pick type C (NPC) disease is caused by defects in either of two late endosomal/lysosomal proteins, NPC1 and NPC2. NPC2 is a 16-kDa soluble protein that binds cholesterol in a 1:1 stoichiometry and can transfer cholesterol between membranes by a mechanism that involves protein-membrane interactions. To examine the structural basis of NPC2 function in cholesterol trafficking, a series of point mutations were generated across the surface of the protein. Several NPC2 mutants exhibited deficient sterol transport properties in a set of fluorescence-based assays. Notably, these mutants were also unable to promote egress of accumulated intracellular cholesterol from npc2(-/-) fibroblasts. The mutations mapped to several regions on the protein surface, suggesting that NPC2 can bind to more than one membrane simultaneously. Indeed, we have previously demonstrated that WT NPC2 promotes vesicle-vesicle interactions. These interactions were abrogated, however, by mutations causing defective sterol transfer properties. Molecular modeling shows that NPC2 is highly plastic, with several intense positively charged regions across the surface that could interact favorably with negatively charged membrane phospholipids. The point mutations generated in this study caused changes in NPC2 surface charge distribution with minimal conformational changes. The plasticity, coupled with membrane flexibility, probably allows for multiple cholesterol transfer routes. Thus, we hypothesize that, in part, NPC2 rapidly traffics cholesterol between closely appositioned membranes within the multilamellar interior of late endosomal/lysosomal proteins, ultimately effecting cholesterol egress from this compartment.

  20. Application of pressure-modulated differential scanning calorimetry to the determination of relaxation kinetics of multilamellar lipid vesicles.

    PubMed

    Boehm, Kristian; Guddorf, Jessica; Hinz, Hans-Jürgen

    2007-03-01

    We report an extension of the recently published PMDSC method that permitted synchronous determination of heat capacity and expansibility when using slow, defined pressure formats in a DSC scan. Here we applied continuously opposing pressure changes that are fast compared to the time constants of the DSC instrument to study relaxation kinetics of phospholipids. Investigations of multilamellar vesicles of DPPC or DSPC in water revealed for both lipids relaxation times of about 30 s at the maximum of the main transition peak and about 15 s at the maximum of the pretransition. The relaxation times in the transition range are proportional to heat capacity of main- and pretransition. The molecular origin of the relaxation processes appears to stem from pressure-induced water fluxes between the interbilayer region and the bulk water phase.

  1. Long-term stability of CdSe/CdZnS quantum dot encapsulated in a multi-lamellar microcapsule

    NASA Astrophysics Data System (ADS)

    Park, Sang-Yul; Kim, Hyo-Sun; Yoo, Jeseung; Kwon, Suyong; Shin, Tae Joo; Kim, Kyungnam; Jeong, Sohee; Seo, Young-Soo

    2015-07-01

    We developed a novel and easy encapsulation method for quantum dots (QDs) using a partially oxidized semi-crystalline polymeric material which forms a micron-sized granule with a multi-lamellar structure from a dilute solution. The QDs were highly dispersed in the granule in such a way that they were adsorbed on the lamella with ˜12 nm spacing followed by lamellar stacking. The QDs were heavily loaded into the granule to 16.7 wt% without aggregation, a process which took only a few minutes. We found that the quantum yield of the QDs was not degraded after the encapsulation. The encapsulated QD-silicone composite exhibited excellent long-term photo- and thermal stability with its initial photoluminescence intensity maintained after blue LED light radiation for 67 days and storage at 85 °C and 85% relative humidity for 119 days.

  2. Long-term stability of CdSe/CdZnS quantum dot encapsulated in a multi-lamellar microcapsule.

    PubMed

    Park, Sang-Yul; Kim, Hyo-Sun; Yoo, Jeseung; Kwon, Suyong; Shin, Tae Joo; Kim, Kyungnam; Jeong, Sohee; Seo, Young-Soo

    2015-07-10

    We developed a novel and easy encapsulation method for quantum dots (QDs) using a partially oxidized semi-crystalline polymeric material which forms a micron-sized granule with a multi-lamellar structure from a dilute solution. The QDs were highly dispersed in the granule in such a way that they were adsorbed on the lamella with ∼12 nm spacing followed by lamellar stacking. The QDs were heavily loaded into the granule to 16.7 wt% without aggregation, a process which took only a few minutes. We found that the quantum yield of the QDs was not degraded after the encapsulation. The encapsulated QD-silicone composite exhibited excellent long-term photo- and thermal stability with its initial photoluminescence intensity maintained after blue LED light radiation for 67 days and storage at 85 °C and 85% relative humidity for 119 days.

  3. Structural information from multilamellar liposomes at full hydration: Full q-range fitting with high quality x-ray data

    NASA Astrophysics Data System (ADS)

    Pabst, Georg; Rappolt, Michael; Amenitsch, Heinz; Laggner, Peter

    2000-09-01

    We present a method for analyzing small angle x-ray scattering data on multilamellar phospholipid bilayer systems at full hydration. The method utilizes a modified Caillé theory structure factor in combination with a Gaussian model representation of the electron density profile such that it accounts also for the diffuse scattering between Bragg peaks. Thus the method can retrieve structural information even if only a few orders of diffraction are observed. We further introduce a procedure to derive fundamental parameters, such as area per lipid, membrane thickness, and number of water molecules per lipid, directly from the electron density profile without the need of additional volumetric measurements. The theoretical apparatus is applied to experimental data on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine liposome preparations.

  4. Quantitative study of the encapsulation of glucose oxidase into multilamellar vesicles and its effect on enzyme activity

    NASA Astrophysics Data System (ADS)

    Olea, David; Faure, Chrystel

    2003-09-01

    The encapsulation of glucose oxidase (GOx) into onion-type multilamellar vesicles is studied and compared to that of GOx into liposomes. The enzyme was shown not to be affected by encapsulation as evidenced by the complete recovery of its activity after being freed. An ˜15% increase of GOx activity was conferred by confinement in onions in the 30-50 °C temperature range. Entrapment of GOx in onions was proved to be effective since a maximum of 10% leak was measured after 45 days of encapsulation. The encapsulation yield, which reaches 80%, and the number of encapsulated enzyme molecules per onion (1000 GOx molecules) were found to be much higher than for liposomes. The effect of onion composition on the encapsulation yield was determined and predicted by a thermodynamic model applied to the lipids-GOx-phosphate buffer system.

  5. Endoplasmic reticulum-derived multilamellar bodies in oocytes of mouse follicle cultures under oxidized low-density lipoprotein treatment.

    PubMed

    Spanel-Borowski, Katharina; Nowicki, Marcin; Borlak, Juergen; Trapphoff, Tom; Eichenlaub-Ritter, Ursula

    2013-01-01

    Multilamellar bodies associated with an organized endoplasmic reticulum (ER) arise in various somatic cell types, and a subtype called multivesicular bodies is described in oocytes. Both entities, so far undetermined in significance, may occur in oocytes of follicles under oxidative stress. In preovulatory follicles, oxidative stress appears to be caused by oxidized low-density lipoprotein (ox-LDL). Cultures of preantral mouse follicles were treated with 100 µg/ml ox-LDL or normal LDL (n-LDL) for 12-48 h or for 12 days during antral follicle growth followed by in vitro ovulation and harvest of cumulus oophorus complexes (COCs) with metaphase II (MII) oocytes on day 13. Preantral follicles, COCs, or MII oocytes were immunostained with anti-tubulin antibody or stained with actin-binding phalloidin for confocal microscopy. Ultrathin sections were prepared for electron microscopy. Preantral follicles exposed to n-LDL or ox-LDL developed normally, and MII oocytes in COCs possessed normal spindles with well-aligned chromosomes. In contrast, treated cumulus cells underwent apoptosis. Only the ox-LDL-treated preantral follicle oocytes showed ER-derived multilamellar bodies (EMBs) of type I, consisting of rough ER membranes for the envelope. The MII oocytes of COCs showed type II EMBs consisting of smooth/vesicular ER and were more prominent after ox-LDL than after n-LDL exposure. Degenerating mitochondria were prominent in oocytes of the ox-LDL group and judged as a sign of oxidative stress. Oxidative stress presumably induces damage of proteins and organelles in the oocytes. The EMBs might sequester the damaged structures for oocyte survival. Thus, EMBs could represent a novel form of autophagy. Copyright © 2012 S. Karger AG, Basel.

  6. Chimeras of sperm PLCζ reveal disparate protein domain functions in the generation of intracellular Ca2+ oscillations in mammalian eggs at fertilization

    PubMed Central

    Theodoridou, Maria; Nomikos, Michail; Parthimos, Dimitris; Gonzalez-Garcia, J. Raul; Elgmati, Khalil; Calver, Brian L.; Sideratou, Zili; Nounesis, George; Swann, Karl; Lai, F. Anthony

    2013-01-01

    Phospholipase C-zeta (PLCζ) is a sperm-specific protein believed to cause Ca2+ oscillations and egg activation during mammalian fertilization. PLCζ is very similar to the somatic PLCδ1 isoform but is far more potent in mobilizing Ca2+ in eggs. To investigate how discrete protein domains contribute to Ca2+ release, we assessed the function of a series of PLCζ/PLCδ1 chimeras. We examined their ability to cause Ca2+ oscillations in mouse eggs, enzymatic properties using in vitro phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and their binding to PIP2 and PI(3)P with a liposome interaction assay. Most chimeras hydrolyzed PIP2 with no major differences in Ca2+ sensitivity and enzyme kinetics. Insertion of a PH domain or replacement of the PLCζ EF hands domain had no deleterious effect on Ca2+ oscillations. In contrast, replacement of either XY-linker or C2 domain of PLCζ completely abolished Ca2+ releasing activity. Notably, chimeras containing the PLCζ XY-linker bound to PIP2-containing liposomes, while chimeras containing the PLCζ C2 domain exhibited PI(3)P binding. Our data suggest that the EF hands are not solely responsible for the nanomolar Ca2+ sensitivity of PLCζ and that membrane PIP2 binding involves the C2 domain and XY-linker of PLCζ. To investigate the relationship between PLC enzymatic properties and Ca2+ oscillations in eggs, we have developed a mathematical model that incorporates Ca2+-dependent InsP3 generation by the PLC chimeras and their levels of intracellular expression. These numerical simulations can for the first time predict the empirical variability in onset and frequency of Ca2+ oscillatory activity associated with specific PLC variants. PMID:24152875

  7. Overcoming Akt Induced Therapeutic Resistance in Breast Cancer through siRNA and Thymoquinone Encapsulated Multilamellar Gold Niosomes.

    PubMed

    Rajput, Shashi; Puvvada, Nagaprasad; Kumar, B N Prashanth; Sarkar, Siddik; Konar, Suraj; Bharti, Rashmi; Dey, Goutam; Mazumdar, Abhijit; Pathak, Amita; Fisher, Paul B; Mandal, Mahitosh

    2015-12-07

    Akt overexpression in cancer causes resistance to traditional chemotherapeutics. Silencing Akt through siRNA provides new therapeutic options; however, poor in vivo siRNA pharmacokinetics impede translation. We demonstrate that acidic milieu-sensitive multilamellar gold niosomes (Nio-Au) permit targeted delivery of both Akt-siRNA and thymoquinone (TQ) in tamoxifen-resistant and Akt-overexpressing MCF7 breast cancer cells. Octadecylamine groups of functionalized gold nanoparticles impart cationic attribute to niosomes, stabilized through polyethylene glycol. TQ's aqueous insolubility renders its encapsulation within hydrophobic core, and negatively charged siRNA binds in hydrophilic region of cationic niosomes. These niosomes were exploited to effectively knockdown Akt, thereby sensitizing cells to TQ. Immunoblot studies revealed enhanced apoptosis by inducing p53 and inhibiting MDM2 expression, which was consistent with in vivo xenograft studies. This innovative strategy, using Nio-Au to simultaneously deliver siRNA (devoid of any chemical modification) and therapeutic drug, provides an efficacious approach for treating therapy-resistant cancers with significant translational potential.

  8. Concentration-dependent differing actions of the nonsteroidal anti-inflammatory drug, celecoxib, in distearoyl phosphatidylcholine multilamellar vesicles.

    PubMed

    Sade, Asli; Banerjee, Sreeparna; Severcan, Feride

    2010-06-01

    The interactions of the nonsteroidal anti-inflammatory drug, celecoxib, with 1,2-distearoyl-sn-glycero-3-phosphocholine multilamellar vesicles were studied as a function of temperature and different drug concentrations, using Fourier transform infrared spectroscopy, differential scanning calorimetry, and turbidity technique at 440 nm. Our studies reveal that celecoxib lowers the main phase-transition temperature and decreases the fluidity of the membranes at all concentrations. Celecoxib induced opposing effects on molecular order at different concentrations by increasing the ordering of the system at low concentrations and disordering it at high concentrations. Further, the drug increases the number of hydrogen bonds around the carbonyl groups at low concentrations in both phases, whereas the degree of dehydration increases at high concentrations in the gel phase. An evidence of phase separation has also been clearly observed at high concentrations. Thus, depending on the concentration used, celecoxib induces significant changes in the biophysical properties of membranes that may aid in understanding its mechanism of action.

  9. Amoeba-resisting bacteria found in multilamellar bodies secreted by Dictyostelium discoideum: social amoebae can also package bacteria.

    PubMed

    Paquet, Valérie E; Charette, Steve J

    2016-03-01

    Many bacteria can resist phagocytic digestion by various protozoa. Some of these bacteria (all human pathogens) are known to be packaged in multilamellar bodies produced in the phagocytic pathway of the protozoa and that are secreted into the extracellular milieu. Packaged bacteria are protected from harsh conditions, and the packaging process is suspected to promote bacterial persistence in the environment. To date, only a limited number of protozoa, belonging to free-living amoebae and ciliates, have been shown to perform bacteria packaging. It is still unknown if social amoebae can do bacteria packaging. The link between the capacity of 136 bacterial isolates to resist the grazing of the social amoeba Dictyostelium discoideum and to be packaged by this amoeba was investigated in the present study. The 45 bacterial isolates displaying a resisting phenotype were tested for their capacity to be packaged. A total of seven isolates from Cupriavidus, Micrococcus, Microbacterium and Rathayibacter genera seemed to be packaged and secreted by D. discoideum based on immunofluorescence results. Electron microscopy confirmed that the Cupriavidus and Rathayibacter isolates were formally packaged. These results show that social amoebae can package some bacteria from the environment revealing a new aspect of microbial ecology.

  10. No correlation between multilamellar bodies in the inner ear and further organs of mutant (backstroke, bks) and wildtype zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Anken, R.; Ibsch, M.; Kniesel, U.; Rahmann, H.

    2004-01-01

    The origin of the proteinacious matrix of the inner ear stones (otoliths) of vertebrates has not yet been clarified. Using the backstroke mutant (bks) of the zebrafish Danio rerio, which is characterized by a complete lack of otoliths, we searched for possibly missing or aberrant structural components within the macular epithelia of the inner ears of embryos on the ultrastructural level. Numerous multilamellar bodies (MLBs) were found. The MLBs were, however, not restricted to the inner ears of mutants but were also found in wildtype individuals and in further organs such as brain and liver. MLBs have hitherto never been described from the inner ear of fish and are generally estimated to be rare structures. Their occurrence in fish liver can, however, be induced by using particular chemical substances, which seem to effect adaptive compensatory processes on the cellular level. Such a chemical treatment also affects the ultrastructure of further organelles. Since the occurrence of MLBs in the liver of zebrafish was not accompanied by an alteration of the morphology of other organelles, their occurrence seems not to be due to environmental stress. The findings indicate that the MLBs cannot be correlated with bks-inherent features as well as with missing otolith development/growth. Since the occurrence of MLBs was independent from the developmental stage of a specimen and its overall tissue preservation, it can moreover be excluded that these MLBs merely represent fixation artifacts. Their presence more likely indicates cellular remodelling processes of hitherto unknown significance.

  11. Heteromerization of dopamine D2 receptors with dopamine D1 or D5 receptors generates intracellular calcium signaling by different mechanisms

    PubMed Central

    Hasbi, Ahmed; O’Dowd, Brian F.; George, Susan R.

    2009-01-01

    The repertoire of signal transduction pathways activated by dopamine in brain includes the increase of intracellular calcium. However the mechanism(s) by which dopamine activated this important second messenger system was unknown. Although we showed that activation of the D5 dopamine receptor increased calcium concentrations, the restricted anatomic distribution of this receptor made this unlikely to be the major mechanism in brain. We have identified novel heteromeric dopamine receptor complexes that are linked to calcium signaling. The calcium pathway activated through the D1–D2 receptor heteromer involved coupling to Gq, through phospholipase C and IP3 receptors to result in a rise in intracellular calcium. The calcium rise activated through the D2–D5 receptor heteromer involved a small rise in intracellular calcium through the Gq pathway that triggered a store operated channel mediated influx of extracellular calcium. These novel receptor heteromeric complexes, for the first time, establish the link between dopamine action and rapid calcium signaling. PMID:19897420

  12. Mechanical strain stimulates vasculogenesis and expression of angiogenesis guidance molecules of embryonic stem cells through elevation of intracellular calcium, reactive oxygen species and nitric oxide generation.

    PubMed

    Sharifpanah, Fatemeh; Behr, Sascha; Wartenberg, Maria; Sauer, Heinrich

    2016-12-01

    Differentiation of embryonic stem (ES) cells may be regulated by mechanical strain. Herein, signaling molecules underlying mechanical stimulation of vasculogenesis and expression of angiogenesis guidance cues were investigated in ES cell-derived embryoid bodies. Treatment of embryoid bodies with 10% static mechanical strain using a Flexercell strain system significantly increased CD31-positive vascular structures and the angiogenesis guidance molecules plexinB1, ephrin B2, neuropilin1 (NRP1), semaphorin 4D (sem4D) and robo4 as well as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) as evaluated by Western blot and real time RT-PCR. In contrast ephrin type 4 receptor B (EphB4) expression was down-regulated upon mechanical strain, indicating an arterial-type differentiation. Robo1 protein expression was modestly increased with no change in mRNA expression. Mechanical strain increased intracellular calcium as well as reactive oxygen species (ROS) and nitric oxide (NO). Mechanical strain-induced vasculogenesis was abolished by the NOS inhibitor L-NAME, the NADPH oxidase inhibitor VAS2870, upon chelation of intracellular calcium by BAPTA as well as upon siRNA inactivation of ephrin B2, NRP1 and robo4. BAPTA blunted the strain-induced expression of angiogenic growth factors, the increase in NO and ROS as well as the expression of NRP1, sem4D and plexinB1, whereas ephrin B2, EphB4 as well as robo1 and robo4 expression were not impaired. Mechanical strain stimulates vasculogenesis of ES cells by the intracellular messengers ROS, NO and calcium as well as by upregulation of angiogenesis guidance molecules and the angiogenic growth factors VEGF, FGF-2 and PDGF-BB. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The Clinical Efficacy of Mometasone Furoate in Multi-Lamellar Emulsion for Eczema: A Double-blinded Crossover Study

    PubMed Central

    Kim, Duk Han; Lee, Hyun Jong; Park, Chun Wook; Kim, Kyu Han; Lee, Kwang Hoon; Ro, Byung In

    2013-01-01

    Background Topical application of corticosteroids also has an influence on skin barrier impairment. Physiological lipid mixtures, such as multi-lamellar emulsion (MLE) containing a natural lipid component leads to effective recovery of the barrier function. Objective The purpose of this study was to conduct an evaluation of the therapeutic efficacy and skin barrier protection of topical mometasone furoate in MLE. Methods A multi-center randomized, double-blind, controlled study was performed to assess the efficacy and safety of mometasone furoate cream in MLE for Korean patients with eczema. The study group included 175 patients with eczema, who applied either mometasone furoate in MLE cream or methylprednisolone aceponate cream for 2 weeks. Treatment efficacy was evaluated using the physician's global assessment of clinical response (PGA), trans-epidermal water loss (TEWL), and visual analogue scale (VAS) for pruritus. Patients were evaluated using these indices at days 4, 8, and 15. Results Comparison of PGA score, TEWL, and VAS score at baseline with those at days 4, 8, and 15 of treatment showed a significant improvement in both groups. Patients who applied mometasone furoate in MLE (74.8%) showed better results (p<0.05) than those who applied methylprednisolone aceponate (47.8%). The TEWL improvement ratio was higher in the mometasone furoate in MLE group than that in the methylprednisolone aceponate group, and VAS improvement was also better in the mometasone furoate in MLE group. Conclusion Mometasone furoate in MLE has a better therapeutic efficacy as well as less skin barrier impairment than methylprednisolone aceponate. PMID:23467551

  14. Allicin protects rat cardiomyoblasts (H9c2 cells) from hydrogen peroxide-induced oxidative injury through inhibiting the generation of intracellular reactive oxygen species.

    PubMed

    Chan, Jackie Yan-Yan; Tsui, Hei-Tung; Chung, Ivan Ying-Ming; Chan, Robbie Yat-Kan; Kwan, Yiu-Wa; Chan, Shun-Wan

    2014-11-01

    Oxidative stress is considered an important factor that promotes cell death in response to a variety of pathophysiological conditions. This study investigated the antioxidant properties of allicin, the principle ingredient of garlic, on preventing oxidative stress-induced injury. The antioxidant capacities of allicin were measured by using 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay and hydrogen peroxide (H(2)O(2))-induced cell damage on H9c2 cardiomyoblasts. Allicin (0.3-10 μM) pre-incubation could concentration-dependently attenuate the intracellular reactive oxygen species (ROS) increase induced by H(2)O(2) on H9c2 cells. It could also protect H9c2 cells against H(2)O(2)-induced cell damage. However, the DPPH free radical scavenging activity of allicin was shown to be low. Therefore, it is believed that the protective effect of allicin on H9c2 cells could inhibit intracellular ROS production instead of scavenging extracellular H(2)O(2) or free radicals. For the observed protective effect on H9c2 cells, allicin might also be effective in reducing free radical-induced myocardial cell death in ischemic condition.

  15. Supramolecularly engineered perylene bisimide assemblies exhibiting thermal transition from columnar to multilamellar structures.

    PubMed

    Yagai, Shiki; Usui, Mari; Seki, Tomohiro; Murayama, Haruno; Kikkawa, Yoshihiro; Uemura, Shinobu; Karatsu, Takashi; Kitamura, Akihide; Asano, Atsushi; Seki, Shu

    2012-05-09

    Perylene 3,4:9,10-tetracarboxylic acid bisimide (PBI) was functionalized with ditopic cyanuric acid to organize it into complex columnar architectures through the formation of hydrogen-bonded supermacrocycles (rosette) by complexing with ditopic melamines possessing solubilizing alkoxyphenyl substituents. The aggregation study in solution using UV-vis and NMR spectroscopies showed the formation of extended aggregates through hydrogen-bonding and π-π stacking interactions. The cylindrical fibrillar nanostructures were visualized by microscopic techniques (AFM, TEM), and the formation of lyotropic mesophase was confirmed by polarized optical microscopy and SEM. X-ray diffraction study revealed that a well-defined hexagonal columnar (Col(h)) structure was formed by solution-casting of fibrillar assemblies. All of these results are consistent with the formation of hydrogen-bonded PBI rosettes that spontaneously organize into the Col(h) structure. Upon heating the Col(h) structure in the bulk state, a structural transition to a highly ordered lamellar (Lam) structure was observed by variable-temperature X-ray diffraction, differential scanning calorimetry, and AFM studies. IR study showed that the rearrangement of the hydrogen-bonding motifs occurs during the structural transition. These results suggest that such a striking structural transition is aided by the reorganization in the lowest level of self-organization, i.e., the rearrangement of hydrogen-bonded motifs from rosette to linear tape. A remarkable increase in the transient photoconductivity was observed by the flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements upon converting the Col(h) structure to the Lam structure. Transient absorption spectroscopy revealed that electron transfer from electron-donating alkoxyphenyl groups of melamine components to electron-deficient PBI moieties takes place, resulting in a higher probability of charge carrier generation in the Lam structure

  16. Evolution of intracellular pathogens.

    PubMed

    Casadevall, Arturo

    2008-01-01

    The evolution of intracellular pathogens is considered in the context of ambiguities in basic definitions and the diversity of host-microbe interactions. Intracellular pathogenesis is a subset of a larger world of host-microbe interactions that includes amoeboid predation and endosymbiotic existence. Intracellular pathogens often reveal genome reduction. Despite the uniqueness of each host-microbe interaction, there are only a few general solutions to the problem of intracellular survival, especially in phagocytic cells. Similarities in intracellular pathogenic strategies between phylogenetically distant microbes suggest convergent evolution. For discerning such patterns, it is useful to consider whether the microbe is acquired from another host or directly from the environment. For environmentally acquired microbes, biotic pressures, such as amoeboid predators, may select for the capacity for virulence. Although often viewed as a specialized adaptation, the capacity for intracellular survival may be widespread among microbes, thus questioning whether the intracellular lifestyle warrants a category of special distinctiveness.

  17. Electron tomography of fiber cell cytoplasm and dense cores of multilamellar bodies from human age-related nuclear cataracts.

    PubMed

    Costello, M Joseph; Burette, Alain; Weber, Mariko; Metlapally, Sangeetha; Gilliland, Kurt O; Fowler, W Craig; Mohamed, Ashik; Johnsen, Sönke

    2012-08-01

    Human nuclear cataract formation is a multi-factorial disease with contributions to light scattering from many cellular sources that change their scattering properties over decades. The aging process produces aggregation of cytoplasmic crystallin proteins, which alters the protein packing and texture of the cytoplasm. Previous studies of the cytoplasmic texture quantified increases in density fluctuations in protein packing and theoretically predicted the corresponding scattering. Multilamellar bodies (MLBs) are large particles with a core of crystallin cytoplasm that have been suggested to be major sources of scattering in human nuclei. The core has been shown to condense over time such that the refractive index increases compared to the adjacent aged and textured cytoplasm. Electron tomography is used here to visualize the 3D arrangement of protein aggregates in aged and cataractous lens nuclear cytoplasm compared to the dense protein packing in the cores of MLBs. Thin sections, 70 nm thick, were prepared from epoxy-embedded human transparent donor lenses and nuclear cataracts. Tilt series were collected on an FEI T20 transmission electron microscope (TEM) operated at 200 kV using 15 nm gold particles as fiducial markers. Images were aligned and corrected with FEI software and reconstructed with IMOD and other software packages to produce animated tilt series and stereo anaglyphs. The 3D views of protein density showed the relatively uniform packing of proteins in aged transparent lens nuclear cytoplasm and less dense packing of aged cataractous cytoplasm where many low-density regions can be appreciated in the absence of the TEM projection artifacts. In contrast the cores of the MLBs showed a dense packing of protein with minimal density fluctuations. These observations support the conclusion that, during the nuclear cataract formation, alterations in protein packing are extensive and can result in pronounced density fluctuations. Aging causes the MLB cores to

  18. Densely stacked multilamellar and oligovesicular vesicles, bilayer cylinders, and tubes joining with vesicles of a salt-free catanionic extractant and surfactant system.

    PubMed

    Yuan, Zaiwu; Yin, Zhilei; Sun, Sixiu; Hao, Jingcheng

    2008-02-07

    In the phase diagram of an excellent extractant of rare earth metal ions, di(2-ethylhexyl) phosphate (HDEHP, commercial name P204), mixing with a cationic trimethyltetradecylammonium hydroxide (TTAOH) in water, a birefringent Lalpha phase was found, which consists of densely stacked multilamellar vesicles. The densely stacked multilamellar vesicles are remarkably deformed, as observed by means of cryotransmission electron microscopy (cryo-TEM). Further, self-assembled structures-oligovesicular vesicles, bilayer cylinders, and tubes joining with vesicles-were also observed. The self-assembled phase is transparent, anisotropic, and highly viscous, possessing elastic properties determined by rheological measurements. This is the first time that birefringent Lalpha phase with remarkably deformed amphiphilic bilayer membranes has been constructed through combining a hydrophobic organic extractant having double chains with a water-soluble surfactant having a single chain, which may direct primarily toward acquiring an understanding of the mechanism of salt-free catanionic vesicles and secondarily to determine if vesicle-extraction technology utilizing extractants is possible.

  19. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes

    PubMed Central

    Tseng, Chia-Yi; Chang, Jing-Fen; Wang, Jhih-Syuan; Chang, Yu-Jung; Gordon, Marion K.; Chao, Ming-Wei

    2015-01-01

    Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione. PMID:26148005

  20. The radical scavenger edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) reacts with a pterin derivative and produces a cytotoxic substance that induces intracellular reactive oxygen species generation and cell death.

    PubMed

    Arai, Toshiyuki; Nonogawa, Mitsuru; Makino, Keisuke; Endo, Nobuyuki; Mori, Hiroko; Miyoshi, Takashi; Yamashita, Kouhei; Sasada, Masataka; Kakuyama, Masahiro; Fukuda, Kazuhiko

    2008-02-01

    Cytotoxic effects of the combined use of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a radical scavenger and an approved medicine for acute brain infarction in Japan, with a pterin derivative, were examined in vitro. When pancreatic cancer cell line Panc-1 cells were incubated with 50 to 400 microM of a pterin derivative, 2-(N,N-dimethylaminomethyleneamino)-6-formyl-3-pivaloylpteridine-4-one (DFP), and the equivalent dose of edaravone, reactive oxygen species (ROS), were generated, and cell death was induced. ROS generation and the loss of mitochondrial membrane potential (MMP) preceding cell death were simultaneously monitored using time-lapse microscopy with an ROS-sensitive dye and a probe to monitor MMP, respectively. Cell death was also estimated quantitatively by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. ROS generation and cell death were prominent when more than 100 microM of each agent was used in combination, whereas the sole use of each agent did not show any effects even at the highest dose, 400 microM. Chemical analysis revealed that DFP and edaravone react immediately in aqueous solution and produce a new compound named DFP-E. DFP-E chemically reacted with NADH much faster than DFP and generated ROS, and biologically, it was much more cell-permeable than DFP. These findings collectively indicated that the combined use of DFP with edaravone produced DFP-E, which caused intracellular ROS generation and cell death. Cell death was observed in normal cells, and edaravone reacted with another pterin derivative to yield an ROS-generating compound. As a result, care should be taken with the clinical use of edaravone when pterin derivatives stay in the body.

  1. A method to study intracellular ice nucleation.

    PubMed

    Tatsutani, K; Rubinsky, B

    1998-02-01

    The thermodynamics of intracellular ice nucleation are important in low-temperature biology for understanding and controlling the process of cell destruction by freezing. We have developed a new apparatus and technique for studying the physics of intracellular ice nucleation. Employing the principle of directional solidification in conjunction with light microscopy, we can generate information on the temperature at which ice nucleates intracellularly as a function of the thermal history the cells experience. The methodology is introduced, and results with primary prostatic cancer cells are described.

  2. Intracellular Parasite Invasion Strategies

    NASA Astrophysics Data System (ADS)

    Sibley, L. D.

    2004-04-01

    Intracellular parasites use various strategies to invade cells and to subvert cellular signaling pathways and, thus, to gain a foothold against host defenses. Efficient cell entry, ability to exploit intracellular niches, and persistence make these parasites treacherous pathogens. Most intracellular parasites gain entry via host-mediated processes, but apicomplexans use a system of adhesion-based motility called ``gliding'' to actively penetrate host cells. Actin polymerization-dependent motility facilitates parasite migration across cellular barriers, enables dissemination within tissues, and powers invasion of host cells. Efficient invasion has brought widespread success to this group, which includes Toxoplasma, Plasmodium, and Cryptosporidium.

  3. Microfluidic Platform for the Continuous Production and Characterization of Multilamellar Vesicles: A Synchrotron Small-Angle X-ray Scattering (SAXS) Study.

    PubMed

    Ghazal, Aghiad; Gontsarik, Mark; Kutter, Jörg P; Lafleur, Josiane P; Ahmadvand, Davoud; Labrador, Ana; Salentinig, Stefan; Yaghmur, Anan

    2017-01-05

    A microfluidic platform combined with synchrotron small-angle X-ray scattering (SAXS) was used for monitoring the continuous production of multilamellar vesicles (MLVs). Their production was fast and started to evolve within less than 0.43 s of contact between the lipids and the aqueous phase. To obtain nanoparticles with a narrow size distribution, it was important to use a modified hydrodynamic flow focusing (HFF) microfluidic device with narrower microchannels than those normally used for SAXS experiments. Monodispersed MLVs as small as 160 nm in size, with a polydispersity index (PDI) of approximately 0.15 were achieved. The nanoparticles produced were smaller and had a narrower size distribution than those obtained via conventional bulk mixing methods. This microfluidic platform therefore has a great potential for the continuous production of monodispersed NPs.

  4. Global small-angle X-ray scattering data analysis for multilamellar vesicles: the evolution of the scattering density profile model

    PubMed Central

    Heftberger, Peter; Kollmitzer, Benjamin; Heberle, Frederick A.; Pan, Jianjun; Rappolt, Michael; Amenitsch, Heinz; Kučerka, Norbert; Katsaras, John; Pabst, Georg

    2014-01-01

    The highly successful scattering density profile (SDP) model, used to jointly analyze small-angle X-ray and neutron scattering data from unilamellar vesicles, has been adapted for use with data from fully hydrated, liquid crystalline multilamellar vesicles (MLVs). Using a genetic algorithm, this new method is capable of providing high-resolution structural information, as well as determining bilayer elastic bending fluctuations from standalone X-ray data. Structural parameters such as bilayer thickness and area per lipid were determined for a series of saturated and unsaturated lipids, as well as binary mixtures with cholesterol. The results are in good agreement with previously reported SDP data, which used both neutron and X-ray data. The inclusion of deuterated and non-deuterated MLV neutron data in the analysis improved the lipid backbone information but did not improve, within experimental error, the structural data regarding bilayer thickness and area per lipid. PMID:24587787

  5. Activation of tumoricidal properties in human blood monocytes by muramyl dipeptide requires specific intracellular interaction

    SciTech Connect

    Fogler, W.E.; Fidler, I.J.

    1986-03-15

    The purpose of this study was to identify the mechanism by which muramyl dipeptide (MDP) activates antitumor cytotoxic properties in normal and interferon-..gamma.. (IFN-..gamma..)-primed human peripheral blood monocytes. The structurally and functionally active MDP analog, nor-muramyl dipeptide (nor-MDP), and (/sup 3/H)nor-MDP were used as reference glycopeptides. Direct activation of normal, noncytotoxic monocytes by nor-MDP was enhanced its encapsulation within multilamellar vesicles (MLV). Studies with (/sup 3/H)nor-MDP revealed that the activation of monocytes by nor-MDP was not attributable to its interaction with a specific cell surface receptor, nor did it result merely from the internalization by monocytes of glycopeptide. Subthreshold concentrations of nor-MDP could activate tumor cytotoxic properties in IFN-..gamma..-primed monocytes. The intracellular interaction of (/sup 3/H)nor-MDP with IFN-..gamma..-primed monocytes was specific in that intracellular levels of radiolabeled material could be displaced and recovered as intact molecules by unlabeled nor-MDP, but not by a biologically inactive MDP stereoisomer. Collectively, these results suggest that the activation of tumoricidal properties in human blood monocytes by MDP occurs subsequent to intracellular interaction with specific MDP receptors.

  6. Chlamydial Intracellular Survival Strategies

    PubMed Central

    Bastidas, Robert J.; Elwell, Cherilyn A.; Engel, Joanne N.

    2013-01-01

    Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen and the causative agent of blinding trachoma. Although Chlamydia is protected from humoral immune responses by residing within remodeled intracellular vacuoles, it still must contend with multilayered intracellular innate immune defenses deployed by its host while scavenging for nutrients. Here we provide an overview of Chlamydia biology and highlight recent findings detailing how this vacuole-bound pathogen manipulates host–cellular functions to invade host cells and maintain a replicative niche. PMID:23637308

  7. Transient generation of hydrogen peroxide is responsible for carcinostatic effects of hydrogen combined with platinum nanocolloid, together with increases intracellular ROS, DNA cleavages, and proportion of G2/M-phase.

    PubMed

    Saitoh, Yasukazu; Ikeshima, Minoru; Kawasaki, Naho; Masumoto, Aoi; Miwa, Nobuhiko

    2016-01-01

    In our previous study, we demonstrated that combined treatment with hydrogen (H2) and platinum nanocolloid (Pt-nc) exerted markedly antiproliferative effects on cancer cells compared with each treatment alone. However, because the related mechanisms remain unclear, we investigated carcinostatic mechanisms of the combined treatment with H2 + Pt-nc. Significant suppression of cell proliferation was confirmed at 52 h following combined treatment, and the similar effect was also observed by the 30- or 40-min transient treatment with H2 + Pt-nc. The transient treatments led to changes in cell size and morphology, loss of microvilli, and apoptosis-like cell death at 120 h after treatment. Moreover, transient combined treatment with H2 + Pt-nc induced cell-cycle arrest, as reflected by decreased proportions of G1-phase cells and accumulation of G2/M-phase cells. In contrast, intracellular peroxide levels were temporarily and significantly increased immediately after H2 + Pt-nc treatment but not after treatment with H2 or Pt-nc alone. Additionally, combined treatment-induced carcinostatic effects were significantly diminished in the presence of catalase, and marked hydrogen peroxide (H2O2) generation was confirmed after mixing Pt-nc into cell culture media containing a high concentration of H2. These changes are in agreement with the results that carcinostatic effects were induced after only 40 min of treatment with H2 + Pt-nc. Thus, transient and marked generation of H2O2 is responsible for the carcinostatic effects of combined treatment with H2 + Pt-nc.

  8. Intracellular fate of Francisella tularensis within arthropod-derived cells.

    PubMed

    Santic, Marina; Akimana, Christine; Asare, Rexford; Kouokam, Joseph C; Atay, Safinur; Kwaik, Yousef Abu

    2009-06-01

    Since transmission of Francisella tularensis into the mammalian host occurs via arthropod vectors such as ticks, mosquitoes, horseflies and deerflies, recent studies have established Drosophila melanogaster as an arthropod vector model system. Nothing is known about the intracellular fate of F. tularensis within arthropod-derived cells, and the role of this host-parasite adaptation in the evolution of this pathogen to infect mammals. In this report, we explored intracellular trafficking of F. tularensis ssp. novicida in D. melanogaster-derived S2 cells. First, we show that similar to the F. tularensis ssp. holarctica-derived LVS strain, F. tularensis ssp. novicida is highly infectious, replicates exponentially within S2 cells and within adult flies, and is fatal to adult fruit flies in a dose-dependent manner, while the iglC, iglD and mglA mutants are defective. Using electron and fluorescence microscopy-based phagosome integrity assays, we show that the wild-type strain escapes into the cytosol of S2 cells within 30-60 min post infection and by 6 h, 90% were cytosolic. In contrast, approximately 40-50% of the iglC and iglD mutants escape into the cytosol by 6 h while the other subpopulation becomes enclosed within multilamellar vesicles (MLVs). Pre-treatment of S2 cells with the autophagy inhibitor methyl adenine blocks formation of the MLVs and all the vacuolar subpopulation of the iglC and iglD mutant bacteria become enclosed within single membrane-surrounded vacuoles. Endocytic trafficking studies of F. tularensis within S2 cells show transient colocalization of the bacterial phagosome with D. melanogaster LAMP2-GFP fusion but not with lysosomes pre-loaded with fluorescent dextran. Our data show that MLVs harbouring the iglC mutant acquire Lamp2 and dextran while MLVs harbouring the iglD mutant exclude these late endosomal and lysosomal markers. Our data indicate crucial differences in the role of the pathogenicity island-encoded proteins in modulating

  9. Periplasmic multilamellar membranous structures in Nicotiana tabacum L. pollen grains treated with Ni²⁺ or Cu²⁺.

    PubMed

    Polevova, Svetlana; Breygina, Maria; Matveyeva, Natalie; Yermakov, Igor

    2014-11-01

    Essential trace elements Ni(2+) and Cu(2+) can block pollen germination without causing cell death. Mechanisms of this effect remain unclear. Using TEM, we studied the effects of Ni(2+) or Cu(2+) treatment on the ultrastructure of the aperture regions in tobacco pollen preparing to germinate in vitro, since in these zones, the main fluxes of water, ions, and metabolites cross the plasmalemma. Neither Ni(2+) nor Cu(2+) altered the cytoplasm ultrastructure, but both affected the reorganization of apertural periplasm during pollen activation. Numerous multilamellar membranous structures continuous with the plasma membrane could be seen in hydrated but not yet activated pollen. When the normal activation was completed, the structures disappeared and the plasmalemma became smooth. In the presence of 1 mM Ni(2+) or 100 μM Cu(2+), these structures preserved its original appearance. It is assumed to be the storage form for the membrane material, which is to provide an initial phase of the pollen tube growth. Ni(2+) and Cu(2+) affect the utilization of these membranes, thereby, blocking the pollen germination.

  10. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession.

  11. Fluorescent nanothermometers for intracellular thermal sensing.

    PubMed

    Jaque, Daniel; Rosal, Blanca Del; Rodríguez, Emma Martín; Maestro, Laura Martínez; Haro-González, Patricia; Solé, José García

    2014-05-01

    The importance of high-resolution intracellular thermal sensing and imaging in the field of modern biomedicine has boosted the development of novel nanosized fluorescent systems (fluorescent nanothermometers) as the next generation of probes for intracellular thermal sensing and imaging. This thermal mapping requires fluorescent nanothermometers with good biocompatibility and high thermal sensitivity in order to obtain submicrometric and subdegree spatial and thermal resolutions, respectively. This review describes the different nanosized systems used up to now for intracellular thermal sensing and imaging. We also include the later advances in molecular systems based on fluorescent proteins for thermal mapping. A critical overview of the state of the art and the future perspective is also included.

  12. Nanovehicular Intracellular Delivery Systems

    PubMed Central

    PROKOP, ALES; DAVIDSON, JEFFREY M.

    2013-01-01

    This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood–brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list “elementary” phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach. PMID:18200527

  13. Evolution of intracellular compartmentalization.

    PubMed

    Diekmann, Yoan; Pereira-Leal, José B

    2013-01-15

    Cells compartmentalize their biochemical functions in a variety of ways, notably by creating physical barriers that separate a compartment via membranes or proteins. Eukaryotes have a wide diversity of membrane-based compartments, many that are lineage- or tissue-specific. In recent years, it has become increasingly evident that membrane-based compartmentalization of the cytosolic space is observed in multiple prokaryotic lineages, giving rise to several types of distinct prokaryotic organelles. Endosymbionts, previously believed to be a hallmark of eukaryotes, have been described in several bacteria. Protein-based compartments, frequent in bacteria, are also found in eukaryotes. In the present review, we focus on selected intracellular compartments from each of these three categories, membrane-based, endosymbiotic and protein-based, in both prokaryotes and eukaryotes. We review their diversity and the current theories and controversies regarding the evolutionary origins. Furthermore, we discuss the evolutionary processes acting on the genetic basis of intracellular compartments and how those differ across the domains of life. We conclude that the distinction between eukaryotes and prokaryotes no longer lies in the existence of a compartmentalized cell plan, but rather in its complexity.

  14. Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype.

    PubMed

    Cooper, James Ross; Abdullatif, Muhammad Bilal; Burnett, Edward C; Kempsell, Karen E; Conforti, Franco; Tolley, Howard; Collins, Jane E; Davies, Donna E

    2016-01-01

    Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 'alveolar' cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII cell phenotype. We examined A549 cell growth in different media over long term culture and then used microarray analysis to investigate temporal regulation of pathways involved in cell cycle and ATII differentiation; we also made comparisons with gene expression in freshly isolated human ATII cells. Analyses indicated that long term culture in Ham's F12 resulted in substantial modulation of cell cycle genes to result in a quiescent population of cells with significant up-regulation of autophagic, differentiation and lipidogenic pathways. There were also increased numbers of up- and down-regulated genes shared with primary cells suggesting adoption of ATII characteristics and multilamellar body (MLB) development. Subsequent Oil Red-O staining and Transmission Electron Microscopy confirmed MLB expression in the differentiated A549 cells. This work defines a set of conditions for promoting ATII differentiation characteristics in A549 cells that may be advantageous for studies with this cell line.

  15. Comparison of the Efficacy of Atopalm(®) Multi-Lamellar Emulsion Cream and Physiogel(®) Intensive Cream in Improving Epidermal Permeability Barrier in Sensitive Skin.

    PubMed

    Jeong, Sekyoo; Lee, Sin Hee; Park, Byeong Deog; Wu, Yan; Man, George; Man, Mao-Qiang

    2016-03-01

    The management of sensitive skin, which affects over 60% of the general population, has been a long-standing challenge for both patients and clinicians. Because defective epidermal permeability barrier is one of the clinical features of sensitive skin, barrier-enhancing products could be an optimal regimen for sensitive skin. In the present study, we evaluated the efficacy and safety of two barrier-enhancing products, i.e., Atopalm (®) Multi-Lamellar Emulsion (MLE) Cream and Physiogel (®) Intensive Cream for sensitive skin. 60 patients with sensitive skin, aged 22-40 years old, were randomly assigned to one group treated with Atopalm MLE Cream, and another group treated with Physiogel Intensive Cream twice daily for 4 weeks. Lactic acid stinging test scores (LASTS), stratum hydration (SC) and transepidermal water loss (TEWL) were assessed before, 2 and 4 weeks after the treatment. Atopalm MLE Cream significantly lowered TEWL after 2 and 4 weeks of treatment (p < 0.01). In contrast, Physiogel Intensive Cream significantly increased TEWL after 2 weeks of treatment (p < 0.05) while TEWL significantly decreased after 4-week treatments. Moreover, both Atopalm MLE Cream and Physiogel Intensive Cream significantly increased SC hydration, and improved LASTS after 4 weeks of treatment. Both barrier-enhancing products are effective and safe for improving epidermal functions, including permeability barrier, SC hydration and LASTS, in sensitive skin. These products could be a valuable alternative for management of sensitive skin. Veterans Affairs Medical Center, San Francisco, California, USA, and NeoPharm Co., Ltd., Daejeon, Korea.

  16. Differential ability of cholesterol-enriched and gel phase domains to resist benzyl alcohol-induced fluidization in multilamellar lipid vesicles.

    PubMed

    Maula, Terhi; Westerlund, Bodil; Slotte, J Peter

    2009-11-01

    Benzyl alcohol (BA) has a well-known fluidizing effect on both artificial and cellular membranes. BA is also likely to modulate the activities of certain membrane proteins by decreasing the membrane order. This phenomenon is presumably related to the ability of BA to interrupt interactions between membrane proteins and the surrounding lipids by fluidizing the lipid bilayer. The components of biological membranes are laterally diversified into transient assemblies of varying content and order, and many proteins are suggested to be activated or inactivated by their localization in or out of membrane domains displaying different physical phases. We studied the ability of BA to fluidize artificial bilayer membranes representing liquid-disordered, cholesterol-enriched and gel phases. Multilamellar vesicles were studied by steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene and trans-parinaric acid, which display different phase partitioning. Domains of different degree of order and thermal stability showed varying abilities to resist fluidization by BA. In bilayers composed of mixtures of an unsaturated phosphatidylcholine, a saturated high melting temperature lipid (sphingomyelin or phosphatidylcholine) and cholesterol, BA fluidized and lowered the melting temperature of the ordered and gel phase domains. In general, cholesterol-enriched domains were more resistant to BA than pure gel phase domains. In contrast, bilayers containing high melting temperature gel phase domains containing a ceramide or a galactosylceramide proved to be the most effective in resisting fluidization. The results of our study suggest that the ability of BA to affect the fluidity and lateral organization of the membranes was dependent on the characteristic features of the membrane compositions studied and related to the intermolecular cohesion in the domains.

  17. Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype

    PubMed Central

    Cooper, James Ross; Abdullatif, Muhammad Bilal; Burnett, Edward C.; Kempsell, Karen E.; Conforti, Franco; Tolley, Howard; Collins, Jane E.; Davies, Donna E.

    2016-01-01

    Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 ‘alveolar’ cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII cell phenotype. We examined A549 cell growth in different media over long term culture and then used microarray analysis to investigate temporal regulation of pathways involved in cell cycle and ATII differentiation; we also made comparisons with gene expression in freshly isolated human ATII cells. Analyses indicated that long term culture in Ham’s F12 resulted in substantial modulation of cell cycle genes to result in a quiescent population of cells with significant up-regulation of autophagic, differentiation and lipidogenic pathways. There were also increased numbers of up- and down-regulated genes shared with primary cells suggesting adoption of ATII characteristics and multilamellar body (MLB) development. Subsequent Oil Red-O staining and Transmission Electron Microscopy confirmed MLB expression in the differentiated A549 cells. This work defines a set of conditions for promoting ATII differentiation characteristics in A549 cells that may be advantageous for studies with this cell line. PMID:27792742

  18. Intracellular protein topogenesis

    PubMed Central

    Blobel, Günter

    1980-01-01

    Concurrently with or shortly after their synthesis on ribosomes, numerous specific proteins are unidirectionally translocated across or asymmetrically integrated into distinct cellular membranes. Thereafter, subpopulations of these proteins need to be sorted from each other and routed for export or targeted to other intracellular membranes or compartments. It is hypothesized here that the information for these processes, termed “protein topogenesis,” is encoded in discrete “topogenic” sequences that constitute a permanent or transient part of the polypeptide chain. The repertoire of distinct topogenic sequences is predicted to be relatively small because many different proteins would be topologically equivalent—i.e., targeted to the same intracellular address. The information content of topogenic sequences would be decoded and processed by distinct effectors. Four types of topogenic sequences could be distinguished: signal sequences, stop-transfer sequences, sorting sequences, and insertion sequences. Signal sequences initiate translocation of proteins across specific membranes. They would be decoded and processed by protein translocators that, by virtue of their signal sequence-specific domain and their unique location in distinct cellular membranes, effect unidirectional translocation of proteins across specific cellular membranes. Stop-transfer sequences interrupt the translocation process that was previously initiated by a signal sequence and, by excluding a distinct segment of the polypeptide chain from translocation, yield asymmetric integration of proteins into translocation-competent membranes. Sorting sequences would act as determinants for posttranslocational traffic of subpopulations of proteins, originating in translocation-competent donor membranes (and compartments) and going to translocation-incompetent receiver membranes (and compartments). Finally, insertion sequences initiate unilateral integration of proteins into the lipid bilayer

  19. Determination of intracellular nitrate.

    PubMed Central

    Romero, J M; Lara, C; Guerrero, M G

    1989-01-01

    A sensitive procedure has been developed for the determination of intracellular nitrate. The method includes: (i) preparation of cell lysates in 2 M-H3PO4 after separation of cells from the outer medium by rapid centrifugation through a layer of silicone oil, and (ii) subsequent nitrate analysis by ion-exchange h.p.l.c. with, as mobile phase, a solution containing 50 mM-H3PO4 and 2% (v/v) tetrahydrofuran, adjusted to pH 1.9 with NaOH. The determination of nitrate is subjected to interference by chloride and sulphate when present in the samples at high concentrations. Nitrite also interferes, but it is easily eliminated by treatment of the samples with sulphamic acid. The method has been successfully applied to the study of nitrate transport in the unicellular cyanobacterium Anacystis nidulans. PMID:2497740

  20. Intracellular Oscillations and Waves

    NASA Astrophysics Data System (ADS)

    Beta, Carsten; Kruse, Karsten

    2017-03-01

    Dynamic processes in living cells are highly organized in space and time. Unraveling the underlying molecular mechanisms of spatiotemporal pattern formation remains one of the outstanding challenges at the interface between physics and biology. A fundamental recurrent pattern found in many different cell types is that of self-sustained oscillations. They are involved in a wide range of cellular functions, including second messenger signaling, gene expression, and cytoskeletal dynamics. Here, we review recent developments in the field of cellular oscillations and focus on cases where concepts from physics have been instrumental for understanding the underlying mechanisms. We consider biochemical and genetic oscillators as well as oscillations that arise from chemo-mechanical coupling. Finally, we highlight recent studies of intracellular waves that have increasingly moved into the focus of this research field.

  1. Proteolysis of the class II-associated invariant chain generates a peptide binding site in intracellular HLA-DR molecules. Proc. Natl. Acad. Sci. USA. 1991. 88: 3150-3154.

    PubMed

    Roche, Paul A; Cresswell, Peter

    2011-08-01

    HLA-DR molecules are heterodimeric transmembrane glycoproteins that associate intracellularly with a polypeptide known as the invariant (I) chain. Shortly before expression of the HLA-DR αβ dimer on the cell surface, however the I chain is removed from the intracellular αβI complex by a mechanism thought to involve proteolysis . In this report, we show that treatment of purified αβI with the cysteine proteinase cathepsin B results in the specific proteolysis of the HLA-DR-associated I chain in vitro. As a consequence of this, the I chain is removed and free αβ dimers are released from αβI. Although αβI fails to bind an immunogenic peptide, the released αβ dimers acquire the ability to bind the peptide after proteolysis of the I chain. These results suggest that the I chain inhibits immunogenic peptide binding to αβI early during intracellular transport and demonstrate that proteolysis is likely to be the in vivo mechanism of I chain removal.

  2. Intracellular microbes and haemophagocytosis.

    PubMed

    Silva-Herzog, Eugenia; Detweiler, Corrella S

    2008-11-01

    Haemophagocytosis (hemophagocytosis) is the phenomenon of activated macrophage consumption of red and white blood cells, including professional phagocytes and lymphocytes. It can occur in patients with severe cases of intracellular microbial infection, including avian influenza, leishmaniasis, tuberculosis and typhoid fever. While well-known to physicians since at least the mid-1800s, haemophagocytosis has been little studied due to a paucity of tractable animal and cell culture models. Recently, haemophagocytosis has been described in a mouse model of typhoid fever, and it was noted that the infectious agent, Salmonella enterica, resides within haemophagocytic macrophages in mice. In addition, a cell culture model for haemophagocytosis revealed that S. enterica preferentially replicate in haemophagocytic macrophages. This review describes how, at the molecular and cellular levels, S. enterica may promote and take advantage of haemophagocytosis to establish long-term systemic infections in mammals. The role, relevance and possible molecular mechanisms of haemophagocytosis are discussed within the context of other microbial infections and of genetic deficiencies in which haemophagocytosis occurs and is associated with morbidity.

  3. Intracellular Sterol Dynamics

    PubMed Central

    Mesmin, Bruno; Maxfield, Frederick R.

    2009-01-01

    We review the cellular mechanisms implicated in cholesterol trafficking and distribution. Recent studies have provided new information about the distribution of sterols within cells, including analysis of its transbilayer distribution. The cholesterol interaction with other lipids and its engagement in various trafficking processes will determine its proper level in a specific membrane; making the cholesterol distribution uneven among the various intracellular organelles. The cholesterol content is important since cholesterol plays an essential role in membranes by controlling their physicochemical properties as well as key cellular events such as signal transduction and protein trafficking. Cholesterol movement between cellular organelles is highly dynamic, and can be achieved by vesicular and non-vesicular processes. Various studies have analyzed the proteins that play a significant role in these processes, giving us new information about the relative importance of these two trafficking pathways in cholesterol transport. Although still poorly characterized in many trafficking routes, several potential sterol transport proteins have been described in detail; as a result, molecular mechanisms for sterol transport among membranes start to be appreciated. PMID:19286471

  4. Impact of Photosensitizers Activation on Intracellular Trafficking and Viscosity

    PubMed Central

    Aubertin, Kelly; Bonneau, Stéphanie; Silva, Amanda K. A.; Bacri, Jean-Claude; Gallet, François; Wilhelm, Claire

    2013-01-01

    The intracellular microenvironment is essential for the efficiency of photo-induced therapies, as short-lived reactive oxygen species generated must diffuse through their intracellular surrounding medium to reach their cellular target. Here, by combining measurements of local cytoplasmic dissipation and active trafficking, we found that photosensitizers activation induced small changes in surrounding viscosity but a massive decrease in diffusion. These effects are the signature of a return to thermodynamic equilibrium of the system after photo-activation and correlated with depolymerization of the microtubule network, as shown in a reconstituted system. These mechanical measurements were performed with two intracellular photosensitizing chlorins having similar quantum yield of singlet oxygen production but different intracellular localizations (cytoplasmic for mTHPC, endosomal for TPCS2a). These two agents demonstrated different intracellular impact. PMID:24386423

  5. Impact of photosensitizers activation on intracellular trafficking and viscosity.

    PubMed

    Aubertin, Kelly; Bonneau, Stéphanie; Silva, Amanda K A; Bacri, Jean-Claude; Gallet, François; Wilhelm, Claire

    2013-01-01

    The intracellular microenvironment is essential for the efficiency of photo-induced therapies, as short-lived reactive oxygen species generated must diffuse through their intracellular surrounding medium to reach their cellular target. Here, by combining measurements of local cytoplasmic dissipation and active trafficking, we found that photosensitizers activation induced small changes in surrounding viscosity but a massive decrease in diffusion. These effects are the signature of a return to thermodynamic equilibrium of the system after photo-activation and correlated with depolymerization of the microtubule network, as shown in a reconstituted system. These mechanical measurements were performed with two intracellular photosensitizing chlorins having similar quantum yield of singlet oxygen production but different intracellular localizations (cytoplasmic for mTHPC, endosomal for TPCS2a). These two agents demonstrated different intracellular impact.

  6. Mechanisms of intracellular ice formation.

    PubMed Central

    Muldrew, K; McGann, L E

    1990-01-01

    The phenomenon of intracellular freezing in cells was investigated by designing experiments with cultured mouse fibroblasts on a cryomicroscope to critically assess the current hypotheses describing the genesis of intracellular ice: (a) intracellular freezing is a result of critical undercooling; (b) the cytoplasm is nucleated through aqueous pores in the plasma membrane; and (c) intracellular freezing is a result of membrane damage caused by electrical transients at the ice interface. The experimental data did not support any of these theories, but was consistent with the hypothesis that the plasma membrane is damaged at a critical gradient in osmotic pressure across the membrane, and intracellular freezing occurs as a result of this damage. An implication of this hypothesis is that mathematical models can be used to design protocols to avoid damaging gradients in osmotic pressure, allowing new approaches to the preservation of cells, tissues, and organs by rapid cooling. PMID:2306499

  7. Treatment of intracellular Mycobacterium avium complex infection by free and liposome-encapsulated sparfloxacin.

    PubMed Central

    Düzgüneş, N; Flasher, D; Reddy, M V; Luna-Herrera, J; Gangadharam, P R

    1996-01-01

    Mycobacterium avium-M. intracellulare complex (MAC) is the most frequent cause of opportunistic bacterial infection in patients with AIDS. Previous studies have indicated that liposome-encapsulated aminoglycosides are highly effective in treating MAC infections in mice. We investigated whether the fluoroquinolone sparfloxacin is effective in treating MAC infection in the murine macrophage-like cell line J774. Sparfloxacin was encapsulated in the membrane phase of multilamellar liposomes composed of phosphatidylglycerol-phosphatidylcholine-cholesterol (1:1:1 molar ratio). MAC-infected macrophages were treated for either 24 h or 4 days with free or liposome-encapsulated sparfloxacin. Treatment with free or liposome-encapsulated sparfloxacin (6 micrograms/ml) for 24 h resulted in the reduction of the growth index to 25 and 30% of that of untreated controls, respectively. When cultures were treated for 4 days, free sparfloxacin reduced the growth index to 6% of that of the untreated control, while liposome-encapsulated sparfloxacin reduced it to 8% of that of the control. PMID:8913475

  8. Intracellular mechanisms of solar water disinfection

    PubMed Central

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-01-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection. PMID:27909341

  9. Intracellular mechanisms of solar water disinfection.

    PubMed

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-02

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  10. Intracellular mechanisms of solar water disinfection

    NASA Astrophysics Data System (ADS)

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  11. Functions of Intracellular Retinoid Binding-Proteins

    PubMed Central

    2017-01-01

    Multiple binding and transport proteins facilitate many aspects of retinoid biology through effects on retinoid transport, cellular uptake, metabolism, and nuclear delivery. These include the serum retinol binding protein sRBP (aka Rbp4), the plasma membrane sRBP receptor Stra6, and the intracellular retinoid binding-proteins such as cellular retinol-binding proteins (CRBP) and cellular retinoic acid binding-proteins (CRABP). sRBP transports the highly lipophilic retinol through an aqueous medium. The major intracellular retinol-binding protein, CRBP1, likely enhances efficient retinoid use by providing a sink to facilitate retinol uptake from sRBP through the plasma membrane or via Stra6, delivering retinol or retinal to select enzymes that generate retinyl esters or retinoic acid, and protecting retinol/retinal from excess catabolism or opportunistic metabolism. Intracellular retinoic acid binding-proteins (CRABP1 and 2, and FABP5) seem to have more diverse functions distinctive to each, such as directing retinoic acid to catabolism, delivering retinoic acid to specific nuclear receptors, and generating non-canonical actions. Gene ablation of intracellular retinoid binding-proteins does not cause embryonic lethality or gross morphological defects. Metabolic and functional defects manifested in knockouts of CRBP1, CRBP2 and CRBP3, however, illustrate their essentiality to health, and in the case of CRBP2, to survival during limited dietary vitamin A. Future studies should continue to address the specific molecular interactions that occur between retinoid binding-proteins and their targets and their precise physiologic contributions to retinoid homeostasis and function. PMID:27830500

  12. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  13. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  14. Linear Peptides in Intracellular Applications.

    PubMed

    Zuconelli, Cristiane R; Brock, Roland; Adjobo-Hermans, Merel J W

    2017-01-01

    To this point, efforts to develop therapeutic peptides for intracellular applications were guided by the perception that unmodified linear peptides are highly unstable and therefore structural modifications are required to reduce proteolytic breakdown. Largely, this concept is a consequence of the fact that most research on intracellular peptides hitherto has focused on peptide degradation in the context of antigen processing, rather than on peptide stability. Interestingly, inside cells, endogenous peptides lacking any chemical modifications to enhance stability escape degradation to the point that they may even modulate intracellular signaling pathways. In addition, many unmodified synthetic peptides designed to interfere with intracellular signaling, following introduction into cells, have the expected activity demonstrating that biologically relevant concentrations can be reached. This review provides an overview of results and techniques relating to the exploration and application of linear, unmodified peptides. After an introduction to intracellular peptide turnover, the review mentions examples for synthetic peptides as modulators of intracellular signaling, introduces endogenous peptides with bioactivity, techniques to measure peptide stability, and peptide delivery. Future experiments should elucidate the rules needed to predict promising peptide candidates. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Functional genomics of intracellular bacteria.

    PubMed

    de Barsy, Marie; Greub, Gilbert

    2013-07-01

    During the genomic era, a large amount of whole-genome sequences accumulated, which identified many hypothetical proteins of unknown function. Rapidly, functional genomics, which is the research domain that assign a function to a given gene product, has thus been developed. Functional genomics of intracellular pathogenic bacteria exhibit specific peculiarities due to the fastidious growth of most of these intracellular micro-organisms, due to the close interaction with the host cell, due to the risk of contamination of experiments with host cell proteins and, for some strict intracellular bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate the bacterial genome. To identify virulence factors of intracellular pathogenic bacteria, functional genomics often rely on bioinformatic analyses compared with model organisms such as Escherichia coli and Bacillus subtilis. The use of heterologous expression is another common approach. Given the intracellular lifestyle and the many effectors that are used by the intracellular bacteria to corrupt host cell functions, functional genomics is also often targeting the identification of new effectors such as those of the T4SS of Brucella and Legionella.

  16. Intracellular guest exchange between dynamic supramolecular hosts.

    PubMed

    Swaminathan, Subramani; Fowley, Colin; McCaughan, Bridgeen; Cusido, Janet; Callan, John F; Raymo, Françisco M

    2014-06-04

    Decyl and oligo(ethylene glycol) chains were appended to the same poly(methacrylate) backbone to generate an amphiphilic polymer with a ratio between hydrophobic and hydrophilic segments of 2.5. At concentrations greater than 10 μg mL(-1) in neutral buffer, multiple copies of this particular macromolecule assemble into nanoparticles with a hydrodynamic diameter of 15 nm. In the process of assembling, these nanoparticles can capture anthracene donors and borondipyrromethene acceptors within their hydrophobic interior and permit the transfer of excitation energy with an efficiency of 95%. Energy transfer is observed also if nanocarriers containing exclusively the donors are mixed with nanoparticles preloaded separately with the acceptors in aqueous media. The two sets of supramolecular assemblies exchange their guests with fast kinetics upon mixing to co-localize complementary chromophores within the same nanostructured container and enable energy transfer. After guest exchange, the nanoparticles can cross the membrane of cervical cancer cells and bring the co-entrapped donors and acceptors within the intracellular environment. Alternatively, intracellular energy transfer is also established after sequential cell incubation with nanoparticles containing the donors first and then with nanocarriers preloaded with the acceptors or vice versa. Under these conditions, the nanoparticles exchange their cargo only after internalization and allow energy transfer exclusively within the cell interior. Thus, the dynamic character of such supramolecular containers offers the opportunity to transport independently complementary species inside cells and permit their interaction only within the intracellular space.

  17. Khz-cp (crude polysaccharide extract obtained from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating P38 and NADPH oxidase-dependent generation of reactive oxygen species in SNU-1 cells.

    PubMed

    Kim, Tae Hwan; Kim, Ju Sung; Kim, Zoo Haye; Huang, Ren Bin; Chae, Young Lye; Wang, Ren Sheng

    2014-07-10

    Khz-cp is a crude polysaccharide extract that is obtained after nuclear fusion in Ganoderma lucidum and Polyporus umbellatus mycelia (Khz). It inhibits the growth of cancer cells. Khz-cp was extracted by solvent extraction. The anti-proliferative activity of Khz-cp was confirmed by using Annexin-V/PI-flow cytometry analysis. Intracellular calcium increase and measurement of intracellular reactive oxygen species (ROS) were performed by using flow cytometry and inverted microscope. SNU-1 cells were treated with p38, Bcl-2 and Nox family siRNA. siRNA transfected cells was employed to investigate the expression of apoptotic, growth and survival genes in SNU-1 cells. Western blot analysis was performed to confirm the expression of the genes. In the present study, Khz-cp induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz-cp was found to induce apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating P38 to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-cp-induced apoptosis was caspase dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-cp-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was shown by the translocation of the regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz-cp. Khz-cp triggered a rapid and sustained increase in [Ca2+]i that activated P38. P38 was considered to play a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation. In summary, these data indicate that Khz-cp preferentially induces apoptosis in cancer cells and that the signaling mechanisms involve an

  18. Khz-cp (crude polysaccharide extract obtained from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating P38 and NADPH oxidase-dependent generation of reactive oxygen species in SNU-1 cells

    PubMed Central

    2014-01-01

    Background Khz-cp is a crude polysaccharide extract that is obtained after nuclear fusion in Ganoderma lucidum and Polyporus umbellatus mycelia (Khz). It inhibits the growth of cancer cells. Methods Khz-cp was extracted by solvent extraction. The anti-proliferative activity of Khz-cp was confirmed by using Annexin-V/PI-flow cytometry analysis. Intracellular calcium increase and measurement of intracellular reactive oxygen species (ROS) were performed by using flow cytometry and inverted microscope. SNU-1 cells were treated with p38, Bcl-2 and Nox family siRNA. siRNA transfected cells was employed to investigate the expression of apoptotic, growth and survival genes in SNU-1 cells. Western blot analysis was performed to confirm the expression of the genes. Results In the present study, Khz-cp induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz-cp was found to induce apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating P38 to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-cp-induced apoptosis was caspase dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-cp-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was shown by the translocation of the regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz-cp. Khz-cp triggered a rapid and sustained increase in [Ca2+]i that activated P38. P38 was considered to play a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation. Conclusions In summary, these data indicate that Khz-cp preferentially induces apoptosis in cancer cells and that the

  19. Quantitating intracellular oxygen tension in vivo by phosphorescence lifetime measurement

    PubMed Central

    Hirakawa, Yosuke; Yoshihara, Toshitada; Kamiya, Mako; Mimura, Imari; Fujikura, Daichi; Masuda, Tsuyoshi; Kikuchi, Ryohei; Takahashi, Ippei; Urano, Yasuteru; Tobita, Seiji; Nangaku, Masaomi

    2015-01-01

    Hypoxia appears to have an important role in pathological conditions in many organs such as kidney; however, a method to quantify intracellular oxygen tension in vivo has not been well established. In this study, we established an optical method to quantify oxygen tension in mice kidneys using a cationic lipophilic phosphorescence probe, BTPDM1, which has an intracellular oxygen concentration-sensitive phosphorescence lifetime. Since this probe is distributed inside the tubular cells of the mice kidney, we succeeded in detecting acute renal hypoxic conditions and chronic kidney disease. This technique enabled us to estimate intracellular partial pressures of oxygen in vivo by extrapolating the calibration curve generated from cultured tubular cells. Since intracellular oxygen tension is directly related to cellular hypoxic reactions, such as the activation of hypoxia-inducible factors, our method will shed new light on hypoxia research in vivo. PMID:26644023

  20. Intracellular dynamics of hippocampal place cells during virtual navigation

    PubMed Central

    Harvey, Christopher D.; Collman, Forrest; Dombeck, Daniel A.; Tank, David W.

    2009-01-01

    Hippocampal place cells encode spatial information in rate and temporal codes. To examine the mechanisms underlying hippocampal coding, we measured the intracellular dynamics of place cells by combining in vivo whole cell recordings with a virtual reality system. Head-restrained mice, running on a spherical treadmill, interacted with a computer-generated visual environment to perform spatial behaviors. Robust place cell activity was present during movement along a virtual linear track. From whole cell recordings, we identified three subthreshold signatures of place fields: (1) an asymmetric ramp-like depolarization of the baseline membrane potential; (2) an increase in the amplitude of intracellular theta oscillations; and, (3) a phase precession of the intracellular theta oscillation relative to the extracellularly-recorded theta rhythm. These intracellular dynamics underlie the primary features of place cell rate and temporal codes. The virtual reality system developed here will enable new experimental approaches to study the neural circuits underlying navigation. PMID:19829374

  1. Intracellular Ca(2+) oscillations generated via the extracellular Ca(2+)-sensing receptor (CaSR) in response to extracellular Ca(2+) or L-phenylalanine: Impact of the highly conservative mutation Ser170Thr.

    PubMed

    Young, Steven H; Rey, Osvaldo; Rozengurt, Enrique

    2015-11-06

    The extracellular Ca(2+)-sensing receptor (CaSR) is an allosteric protein that responds to changes in the extracellular concentration of Ca(2+) ([Ca(2+)]e) and aromatic amino acids with the production of different patterns of oscillations in intracellular Ca(2+) concentration ([Ca(2+)]i). An increase in [Ca(2+)]e stimulates sinusoidal oscillations in [Ca(2+)]i whereas aromatic amino acid-induced CaR activation in the presence of a threshold [Ca(2+)]e promotes transient oscillations in [Ca(2+)]i. Here, we examined spontaneous and ligand-evoked [Ca(2+)]i oscillations in single HEK-293 cells transfected with the wild type CaSR or with a mutant CaSR in which Ser170 was converted to Thr (CaSRS170T). Our analysis demonstrates that cells expressing CaSRS170T display [Ca(2+)]i oscillations in the presence of low concentrations of extracellular Ca(2+) and respond to L-Phe with robust transient [Ca(2+)]i oscillations. Our results indicate that the S170T mutation induces a marked increase in CaSR sensitivity to [Ca(2+)]e and imply that the allosteric regulation of the CaSR by aromatic amino acids is not only mediated by an heterotropic positive effect on Ca(2+) binding cooperativity but, as biased agonists, aromatic amino acids stabilize a CaSR conformation that couples to a different signaling pathway leading to transient [Ca(2+)]i oscillations. Published by Elsevier Inc.

  2. Quantitative relationships between aggregation of IgE receptors, generation of intracellular signals, and histamine secretion in rat basophilic leukemia (2H3) cells. Enhanced responses with heavy water

    SciTech Connect

    Maeyama, K.; Hohman, R.J.; Metzger, H.; Beaven, M.A.

    1986-02-25

    RBL-2H3 cells (a tumor analog of rat mast cells) have plasma-membrane receptors that bind immunoglobulin E, which when aggregated, initiate degranulation. As in other systems, secretion is preceeded by enhanced hydrolysis of inositol phospholipids and by a rise in intracellular Ca2+. Unlike the responses of many other cells, however, both of these earlier events require extracellular Ca2+. The relationship of these events to each other and to the subsequent secretory process is thus unclear. By exposing cells to covalent oligomers of IgE one can demonstrate substantial increases in secretion of histamine by increasing the concentration and size of the oligomers or by using heavy water (D2O) in the medium. We have used such maneuvers to examine the quantitative relationships between aggregation of the receptors and the breakdown of inositol phospholipids, the increase in cytosolic Ca2+ and secretion. Our principal findings were: all treatments that increased secretion, correspondingly increased the changes that precede degranulation. These early events correlated with the degree of aggregation of the receptors even when the stimulatory conditions resulted in maximal secretion. Although the results were insufficient to prove that the hydrolysis of inositol phospholipids is required for the rise in cytosolic Ca2+, the studies with D2O and other observations supported this view. Since a plasma-membrane ion channel for Ca2+ has been implicated in the IgE-mediated rise in cytosolic Ca2+ in RBL 2H3 cells, this in turn suggests a heretofore undescribed role for hydrolysis of inositol phospholipids.

  3. Thermal and non-thermal intracellular mechanical fluctuations of living cells

    NASA Astrophysics Data System (ADS)

    Wei, Ming-Tzo; Ou-Yang, H. Daniel

    2010-08-01

    Intracellular stresses generated by molecular motors can actively modify cytoskeletal network, which causes changes in intracellular mechanical properties. We study the out-of-equilibrium microrheology in living cells. This paper reports measurements of the intracellular mechanical properties using passive and optical tweezers-based active microrheology approaches and endogenous organelle particles as probes. Using the fluctuation-dissipation theorem, we compared the two approaches measurements and distinguished thermal and non-thermal fluctuations of mechanical properties in living cells.

  4. Intracellular Signalling in Retinal Ischemia

    DTIC Science & Technology

    1990-07-01

    36) However, vascularization of the RPE is not known to occur in human diseases of photoreceptor degeneration, such as retinitis pigmentosa ...A.C. (1986) Retinitis pigmentosa and retinal neovascularization. Ophthalmology 91, 1599- 1603. Figure la: Control rat retina, 8 weeks of age, central...TITLE (Include Security Classification) Intracellular Signalling in Retinal Ischemia 12. PERSONAL AUTHOR(S) Burns, Margaret Sue; Bellhorn, Roy William

  5. Direct Measurement of Intracellular Pressure

    PubMed Central

    Petrie, Ryan J.; Koo, Hyun

    2014-01-01

    A method to directly measure the intracellular pressure of adherent, migrating cells is described in the Basic Protocol. This approach is based on the servo-null method where a microelectrode is introduced into the cell to directly measure the physical pressure of the cytoplasm. We also describe the initial calibration of the microelectrode as well as the application of the method to cells migrating inside three-dimensional (3D) extracellular matrix (ECM). PMID:24894836

  6. Revisiting intracellular calcium signaling semantics.

    PubMed

    Haiech, Jacques; Audran, Emilie; Fève, Marie; Ranjeva, Raoul; Kilhoffer, Marie-Claude

    2011-12-01

    Cells use intracellular free calcium concentration changes for signaling. Signal encoding occurs through both spatial and temporal modulation of the free calcium concentration. The encoded message is detected by an ensemble of intracellular sensors forming the family of calcium-binding proteins (CaBPs) which must faithfully translate the message using a new syntax that is recognized by the cell. The cell is home to a significant although limited number of genes coding for proteins involved in the signal encoding and decoding processes. In a cell, only a subset of this ensemble of genes is expressed, leading to a genetic regulation of the calcium signal pathways. Calmodulin (CaM), the most ubiquitous expressed intracellular calcium-binding protein, plays a major role in calcium signal translation. Similar to a hub, it is central to a large and finely tuned network, receiving information, integrating it and dispatching the cognate response. In this review, we examine the different steps starting with an external stimulus up to a cellular response, with special emphasis on CaM and the mechanism by which it decodes calcium signals and translates it into exquisitely coordinated cellular events. By this means, we will revisit the calcium signaling semantics, hoping that we will ease communication between scientists dealing with calcium signals in different biological systems and different domains.

  7. Stochastic models of intracellular transport

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Newby, Jay M.

    2013-01-01

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures.

  8. In vitro and ex vivo strategies for intracellular delivery

    NASA Astrophysics Data System (ADS)

    Stewart, Martin P.; Sharei, Armon; Ding, Xiaoyun; Sahay, Gaurav; Langer, Robert; Jensen, Klavs F.

    2016-10-01

    Intracellular delivery of materials has become a critical component of genome-editing approaches, ex vivo cell-based therapies, and a diversity of fundamental research applications. Limitations of current technologies motivate development of next-generation systems that can deliver a broad variety of cargo to diverse cell types. Here we review in vitro and ex vivo intracellular delivery approaches with a focus on mechanisms, challenges and opportunities. In particular, we emphasize membrane-disruption-based delivery methods and the transformative role of nanotechnology, microfluidics and laboratory-on-chip technology in advancing the field.

  9. Quantifying intracellular hydrogen peroxide perturbations in terms of concentration

    PubMed Central

    Huang, Beijing K.; Sikes, Hadley D.

    2014-01-01

    Molecular level, mechanistic understanding of the roles of reactive oxygen species (ROS) in a variety of pathological conditions is hindered by the difficulties associated with determining the concentration of various ROS species. Here, we present an approach that converts fold-change in the signal from an intracellular sensor of hydrogen peroxide into changes in absolute concentration. The method uses extracellular additions of peroxide and an improved biochemical measurement of the gradient between extracellular and intracellular peroxide concentrations to calibrate the intracellular sensor. By measuring peroxiredoxin activity, we found that this gradient is 650-fold rather than the 7–10-fold that is widely cited. The resulting calibration is important for understanding the mass-action kinetics of complex networks of redox reactions, and it enables meaningful characterization and comparison of outputs from endogenous peroxide generating tools and therapeutics across studies. PMID:25460730

  10. Intracellular targeting with engineered proteins

    PubMed Central

    Miersch, Shane; Sidhu, Sachdev S.

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action

  11. Pharmacology of intracellular signalling pathways

    PubMed Central

    Nahorski, Stefan R

    2006-01-01

    This article provides a brief and somewhat personalized review of the dramatic developments that have occurred over the last 45 years in our understanding of intracellular signalling pathways associated with G-protein-coupled receptor activation. Signalling via cyclic AMP, the phosphoinositides and Ca2+ is emphasized and these systems have already been revealed as new pharmacological targets. The therapeutic benefits of most of such targets are, however, yet to be realized, but it is certain that the discipline of pharmacology needs to widen its boundaries to meet these challenges in the future. PMID:16402119

  12. Review: Intracardiac intracellular angiotensin system in diabetes

    PubMed Central

    Kumar, Rajesh; Yong, Qian Chen; Thomas, Candice M.

    2012-01-01

    The renin-angiotensin system (RAS) has mainly been categorized as a circulating and a local tissue RAS. A new component of the local system, known as the intracellular RAS, has recently been described. The intracellular RAS is defined as synthesis and action of ANG II intracellularly. This RAS appears to differ from the circulating and the local RAS, in terms of components and the mechanism of action. These differences may alter treatment strategies that target the RAS in several pathological conditions. Recent work from our laboratory has demonstrated significant upregulation of the cardiac, intracellular RAS in diabetes, which is associated with cardiac dysfunction. Here, we have reviewed evidence supporting an intracellular RAS in different cell types, ANG II's actions in cardiac cells, and its mechanism of action, focusing on the intracellular cardiac RAS in diabetes. We have discussed the significance of an intracellular RAS in cardiac pathophysiology and implications for potential therapies. PMID:22170614

  13. Intracellular polyamines enhance astrocytic coupling.

    PubMed

    Benedikt, Jan; Inyushin, Mikhail; Kucheryavykh, Yuriy V; Rivera, Yomarie; Kucheryavykh, Lilia Y; Nichols, Colin G; Eaton, Misty J; Skatchkov, Serguei N

    2012-12-05

    Spermine (SPM) and spermidine, endogenous polyamines with the ability to modulate various ion channels and receptors in the brain, exert neuroprotective, antidepressant, antioxidant, and other effects in vivo such as increasing longevity. These polyamines are preferably accumulated in astrocytes, and we hypothesized that SPM increases glial intercellular communication by interacting with glial gap junctions. The results obtained in situ, using Lucifer yellow propagation in the astrocytic syncitium of 21-25-day-old rat CA1 hippocampal slices, showed reduced coupling when astrocytes were dialyzed with standard intracellular solutions without SPM. However, there was a robust increase in the spreading of Lucifer yellow through gap junctions to neighboring astrocytes when the cells were patched with intracellular solutions containing 1 mM SPM, a physiological concentration in glia. Lucifer yellow propagation was inhibited by gap junction blockers. Our findings show that the glial syncitium propagates SPM through gap junctions and further indicate a new role of polyamines in the regulation of the astroglial network under both normal and pathological conditions.

  14. Co-delivery of carboplatin and paclitaxel via cross-linked multilamellar liposomes for ovarian cancer treatment† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ra01100h Click here for additional data file.

    PubMed Central

    Zhang, Xiaoyang; Liu, Yarong; Kim, Yu Jeong; Mac, John; Zhuang, Rachel

    2017-01-01

    Carboplatin (CPT) and paclitaxel (PTX) used in combination is one of the most effective treatments for ovarian cancer. However, the traditional combination methods used to co-administrate CPT and PTX showed limited clinical efficacy due to their distinct pharmacokinetics. Although much effort has been devoted to developing nanoparticles capable of encapsulating drugs with different lipophilicites, co-delivery of carboplatin with paclitaxel by a single nanoparticle has rarely been reported. Here, we encapsulated and delivered this drug combination to ovarian cancer cells at a controlled ratio by a previously reported crosslinked multilamellar liposome vesicle (cMLV). A 1 : 1 CPT/PTX molar ratio for cMLVs (CPT/PTX) combination treatment was found to induce the strongest anti-tumor synergism and to target ALDH+ cancer stem cells (CSC) in vitro. Moreover, we demonstrated that this co-encapsulation strategy reduced systemic cytotoxicity and resulted in a stronger anti-tumor effect when compared to free drug combinations and individual drug-loaded cMLVs in an OVCAR8 ovarian cancer xenograft mouse model. Thus, this study suggests a potentially promising combination therapy for ovarian cancer in clinical practice. PMID:28603607

  15. Cell-cell and intracellular lactate shuttles.

    PubMed

    Brooks, George A

    2009-12-01

    Once thought to be the consequence of oxygen lack in contracting skeletal muscle, the glycolytic product lactate is formed and utilized continuously in diverse cells under fully aerobic conditions. 'Cell-cell' and 'intracellular lactate shuttle' concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signalling. Examples of the cell-cell shuttles include lactate exchanges between between white-glycolytic and red-oxidative fibres within a working muscle bed, and between working skeletal muscle and heart, brain, liver and kidneys. Examples of intracellular lactate shuttles include lactate uptake by mitochondria and pyruvate for lactate exchange in peroxisomes. Lactate for pyruvate exchanges affect cell redox state, and by itself lactate is a ROS generator. In vivo, lactate is a preferred substrate and high blood lactate levels down-regulate the use of glucose and free fatty acids (FFA). As well, lactate binding may affect metabolic regulation, for instance binding to G-protein receptors in adipocytes inhibiting lipolysis, and thus decreasing plasma FFA availability. In vitro lactate accumulation upregulates expression of MCT1 and genes coding for other components of the mitochondrial reticulum in skeletal muscle. The mitochondrial reticulum in muscle and mitochondrial networks in other aerobic tissues function to establish concentration and proton gradients necessary for cells with high mitochondrial densities to oxidize lactate. The presence of lactate shuttles gives rise to the realization that glycolytic and oxidative pathways should be viewed as linked, as opposed to alternative, processes, because lactate, the product of one pathway, is the substrate for the other.

  16. Cell–cell and intracellular lactate shuttles

    PubMed Central

    Brooks, George A

    2009-01-01

    Once thought to be the consequence of oxygen lack in contracting skeletal muscle, the glycolytic product lactate is formed and utilized continuously in diverse cells under fully aerobic conditions. ‘Cell–cell’ and ‘intracellular lactate shuttle’ concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signalling. Examples of the cell–cell shuttles include lactate exchanges between between white-glycolytic and red-oxidative fibres within a working muscle bed, and between working skeletal muscle and heart, brain, liver and kidneys. Examples of intracellular lactate shuttles include lactate uptake by mitochondria and pyruvate for lactate exchange in peroxisomes. Lactate for pyruvate exchanges affect cell redox state, and by itself lactate is a ROS generator. In vivo, lactate is a preferred substrate and high blood lactate levels down-regulate the use of glucose and free fatty acids (FFA). As well, lactate binding may affect metabolic regulation, for instance binding to G-protein receptors in adipocytes inhibiting lipolysis, and thus decreasing plasma FFA availability. In vitro lactate accumulation upregulates expression of MCT1 and genes coding for other components of the mitochondrial reticulum in skeletal muscle. The mitochondrial reticulum in muscle and mitochondrial networks in other aerobic tissues function to establish concentration and proton gradients necessary for cells with high mitochondrial densities to oxidize lactate. The presence of lactate shuttles gives rise to the realization that glycolytic and oxidative pathways should be viewed as linked, as opposed to alternative, processes, because lactate, the product of one pathway, is the substrate for the other. PMID:19805739

  17. Intracellular recording from a spider vibration receptor.

    PubMed

    Gingl, Ewald; Burger, Anna-M; Barth, Friedrich G

    2006-05-01

    The present study introduces a new preparation of a spider vibration receptor that allows intracellular recording of responses to natural mechanical or electrical stimulation of the associated mechanoreceptor cells. The spider vibration receptor is a lyriform slit sense organ made up of 21 cuticular slits located on the distal end of the metatarsus of each walking leg. The organ is stimulated when the tarsus receives substrate vibrations, which it transmits to the organ's cuticular structures, reducing the displacement to about one tenth due to geometrical reasons. Current clamp recording was used to record action potentials generated by electrical or mechanical stimuli. Square pulse stimulation identified two groups of sensory cells, the first being single-spike cells which generated only one or two action potentials and the second being multi-spike cells which produced bursts of action potentials. When the more natural mechanical sinusoidal stimulation was applied, differences in adaptation rate between the two cell types remained. In agreement with prior extracellular recordings, both cell types showed a decrease in the threshold tarsus deflection with increasing stimulus frequency. Off-responses to mechanical stimuli have also been seen in the metatarsal organ for the first time.

  18. Dendritic oligoguanidines as intracellular translocators.

    PubMed

    Chung, Hyun-Ho; Harms, Guido; Seong, Churl Min; Choi, Byung Hyune; Min, Changhee; Taulane, Joseph P; Goodman, Murray

    2004-01-01

    A series of polyguanidylated dendritic structures that can be used as molecular translocators have been designed and synthesized based on nonpeptide units. The dendritic oligoguanidines conjugated with fluorescein or with a green fluorescent protein (GFP) mutant as cargos were isolated and characterized. Quantification and time-course analyses of the cellular uptake of the conjugates using HeLa S3 and human cervical carcinoma cells reveal that the polyguanidylated dendrimers have comparable translocation efficiency to the Tat(49-57) peptide. Furthermore, the deconvolution microscopy image analysis shows that they are located inside the cells. These results clearly show that nonlinear, branched dendritic oligoguanidines are capable of translocation through the cell membrane. This work also demonstrates the potential of these nonpeptidic dendritic oligoguanidines as carriers for intracellular delivery of small molecule drugs, bioactive peptides, and proteins. Copyright 2004 Wiley Periodicals, Inc. Biopolymers (Pept Sci), 2004

  19. THE ALTERATION OF INTRACELLULAR ENZYMES

    PubMed Central

    Kaplan, J. Gordin

    1954-01-01

    1. The ability of homologous series of alcohols, ketones, and aldehydes to cause alteration of intracellular catalase increases approximately threefold for each methylene group added, thus following Traube's rule. Equiactive concentrations of alcohols (methanol to octanol) varied over a 4,000-fold range, yet the average corresponding surface tension was 42 ± 2 dynes/cm., that for ketones 43 ± 2, and for aldehydes (above C1) 41 ± 3. 2. Above C8 the altering activity of alcohols ceased to follow Traube's rule, and at C18 was nil. Yet the surface activities of alcohols from nonanol to dodecanol did follow Traube's rule. These two facts show that the interface which is being affected by these agents is not the cell surface, for if it were, altering activity should not fall off between C9 and C12 where surface activity is undiminished; they show also that micelle formation by short range association of hydrocarbon "tails," usually invoked to explain decrease in biological activity of compounds above C8, is not responsible for this effect in these experiments, in which permeability of the cell membrane probably is involved. 3. The most soluble alcohols and aldehydes (alcohols C1 to C8; aldehydes C1, C2), but not ketones, cause, above optimal concentration, an irreversible inhibition of yeast catalase. 4. The critical concentration of altering agent (i.e., that concentration just sufficient to cause doubling of the catalase activity of the yeast suspension) was independent of the concentration of the yeast cells. 5. Viability studies show that the number of yeast cells killed by the altering agents was not related to the degree of activation of the catalase produced. While all the cells were invariably killed by concentrations of altering agent which produced complete activation, all the cells had been killed by concentrations which were insufficient to cause more than 50 per cent maximal activation. Further, the evidence suggested that the catalase may be partially

  20. Anomalous dynamics in intracellular transport

    NASA Astrophysics Data System (ADS)

    Dinner, Aaron

    2013-03-01

    This talk will describe quantitative analyses of particle tracking data for systems with cytoskeletally associated molecular motors to better understand the motions contributing to intracellular transport and, more generally, means for characterizing systems far from equilibrium. In particular, we have studied the motions of insulin-containing vesicles (granules) in a pancreatic beta cell line. We find subdiffusive behavior with correlations in both space and time. These data can be modeled by subordinating an ergodic random walk process to a non-ergodic one. We relate the dynamics to the underlying microtubule structure by imaging in the presence of the drug vinblastine. Our results provide a simple physical mechanism for how diverse pools of insulin granules and, in turn, biphasic secretion could arise. Time permitting, these dynamics will be compared with those of actomyosin assemblies.

  1. Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors

    PubMed Central

    Karlsson, Hannah; Svensson, Emma; Gigg, Camilla; Jarvius, Malin; Olsson-Strömberg, Ulla; Savoldo, Barbara; Dotti, Gianpietro; Loskog, Angelica

    2015-01-01

    CD19-targeting CAR T cells have shown potency in clinical trials targeting B cell leukemia. Although mainly second generation (2G) CARs carrying CD28 or 4-1BB have been investigated in patients, preclinical studies suggest that third generation (3G) CARs with both CD28 and 4-1BB have enhanced capacity. However, little is known about the intracellular signaling pathways downstream of CARs. In the present work, we have analyzed the signaling capacity post antigen stimulation in both 2G and 3G CARs. 3G CAR T cells expanded better than 2G CAR T cells upon repeated stimulation with IL-2 and autologous B cells. An antigen-driven accumulation of CAR+ cells was evident post antigen stimulation. The cytotoxicity of both 2G and 3G CAR T cells was maintained by repeated stimulation. The phosphorylation status of intracellular signaling proteins post antigen stimulation showed that 3G CAR T cells had a higher activation status than 2G. Several proteins involved in signaling downstream the TCR were activated, as were proteins involved in the cell cycle, cell adhesion and exocytosis. In conclusion, 3G CAR T cells had a higher degree of intracellular signaling activity than 2G CARs which may explain the increased proliferative capacity seen in 3G CAR T cells. The study also indicates that there may be other signaling pathways to consider when designing or evaluating new generations of CARs. PMID:26700307

  2. Intracellular Polyamines Enhance Astrocytic Coupling

    PubMed Central

    Benedikt, Jan; Inyushin, Mikhail; Kucheryavykh, Yuriy V.; Rivera, Yomarie; Kucheryavykh, Lilia Y.; Nichols, Colin G.; Eaton, Misty J.; Skatchkov, Serguei N.

    2013-01-01

    Spermine (SPM) and spermidine (SPD), endogenous polyamines (PA) with the ability to modulate various ion channels and receptors in the brain, exert neuroprotective, antidepressant, antioxidant and other effects in vivo such as increasing longevity. These PA are preferably accumulated in astrocytes, and we hypothesized that SPM increases glial intercellular communication by interacting with glial gap junctions. Results obtained in situ, using Lucifer yellow propagation in the astrocytic syncitium of 21–25 day old rat CA1 hippocampal slices, showed reduced coupling when astrocytes were dialyzed with standard intracellular solutions (ICS) without SPM. However, there was a robust increase in the spreading of Lucifer yellow via gap junctions to neighboring astrocytes when the cells were patched with ICS containing 1 mM SPM; a physiological concentration in glia. Lucifer yellow propagation was inhibited by gap junction blockers. Our findings show that the glial syncitium propagates SPM via gap junctions and further suggest a new role of polyamines in the regulation of the astroglial network in both normal and pathological conditions. PMID:23076119

  3. Intracellular Organisms as Placental Invaders

    PubMed Central

    Vigliani, Marguerite B.; Bakardjiev, Anna I.

    2015-01-01

    In this article we present a novel model for how the human placenta might get infected via the hematogenous route. We present a list of diverse placental pathogens, like Listeria monocytogenes or Cytomegalovirus, which are familiar to most obstetricians, but others, like Salmonella typhi, have only been reported in case studies or small case series. Remarkably, all of these organisms on this list are either obligate or facultative intracellular organisms. These pathogens are able to enter and survive inside host immune cells for at least a portion of their life cycle. We suggest that many blood-borne pathogens might arrive at the placenta via transportation inside of maternal leukocytes that enter the decidua in early pregnancy. We discuss mechanisms by which extravillous trophoblasts could get infected in the decidua and spread infection to other layers in the placenta. We hope to raise awareness among OB/GYN clinicians that organisms not typically associated with the TORCH list might cause placental infections and pregnancy complications. PMID:27695204

  4. Secretome of obligate intracellular Rickettsia

    PubMed Central

    Gillespie, Joseph J.; Kaur, Simran J.; Rahman, M. Sayeedur; Rennoll-Bankert, Kristen; Sears, Khandra T.; Beier-Sexton, Magda; Azad, Abdu F.

    2014-01-01

    The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial ‘life on the inside’. PMID:25168200

  5. Intracellular calcium levels as screening tool for nanoparticle toxicity

    PubMed Central

    Meindl, Claudia; Kueznik, Tatjana; Bösch, Martina; Roblegg, Eva; Fröhlich, Eleonore

    2015-01-01

    The use of engineered nano-sized materials led to revolutionary developments in many industrial applications and in the medical field. These materials, however, also may cause cytotoxicity. In addition to size, surface properties and shape were identified as relevant parameters for cell damage. Cell damage may occur as disruption of membrane integrity, induction of apoptosis and by organelle damage. Generation of oxidative stress may serve as an indicator for cytotoxicity. Effects occurring upon short contact of particles with cells, for instance in the systemic blood circulation, could be identified according to increases of intracellular [Ca2+] levels, which are caused by variety of toxic stimuli. Negatively charged, neutral and positively charged polystyrene particles of different sizes were used to study the role of size and surface properties on viability, membrane disruption, apoptosis, lysosome function, intracellular [Ca2+] levels and generation of oxidative stress. Silica particles served to test this hypothesis. Twenty nm polystyrene particles as well as 12 nm and 40 nm silica particles caused membrane damage and apoptosis with no preference of the surface charge. Only 20 nm plain and amine functionalized polystyrene particles cause oxidative stress and only the plain particles lysosomal damage. A potential role of surface charge was identified for 200 nm polystyrene particles, where only the amidine particles caused lysosomal damage. Increases in intracellular [Ca2+] levels and cytotoxicity after 24 h was often linked but determination of intracellular [Ca2+] levels could serve to characterize further the type of membrane damage. © 2015 The Authors. Journal of Applied Toxicology Published by John Wiley & Sons Ltd. Nano-sized materials may cause cytotoxicity. Negatively charged, neutral and positively charged polystyrene particles of different sizes and silica nanoparticles were used to study the role of size and surface properties on viability, membrane

  6. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry.

    PubMed

    Gota, Chie; Okabe, Kohki; Funatsu, Takashi; Harada, Yoshie; Uchiyama, Seiichi

    2009-03-04

    The first methodology to measure intracellular temperature is described. A highly hydrophilic fluorescent nanogel thermometer developed for this purpose stays in the cytoplasm and emits stronger fluorescence at a higher temperature. Thus, intracellular temperature variations associated with biological processes can be monitored by this novel thermometer with a temperature resolution of better than 0.5 degrees C.

  7. Stapled peptides for intracellular drug targets.

    PubMed

    Verdine, Gregory L; Hilinski, Gerard J

    2012-01-01

    Proteins that engage in intracellular interactions with other proteins are widely considered among the most biologically appealing yet chemically intractable targets for drug discovery. The critical interaction surfaces of these proteins typically lack the deep hydrophobic involutions that enable potent, selective targeting by small organic molecules, and their localization within the cell puts them beyond the reach of protein therapeutics. Considerable interest has therefore arisen in next-generation targeting molecules that combine the broad target recognition capabilities of protein therapeutics with the robust cell-penetrating ability of small molecules. One type that has shown promise in early-stage studies is hydrocarbon-stapled α-helical peptides, a novel class of synthetic miniproteins locked into their bioactive α-helical fold through the site-specific introduction of a chemical brace, an all-hydrocarbon staple. Stapling can greatly improve the pharmacologic performance of peptides, increasing their target affinity, proteolytic resistance, and serum half-life while conferring on them high levels of cell penetration through endocytic vesicle trafficking. Here, we discuss considerations crucial to the successful design and evaluation of potent stapled peptide interactions, our intention being to facilitate the broad application of this technology to intractable targets of both basic biologic interest and potential therapeutic value.

  8. Cardiac alternans and intracellular calcium cycling

    PubMed Central

    Edwards, Joshua N.; Blatter, Lothar A.

    2014-01-01

    Cardiac alternans refers to a condition in which there is a periodic beat-to-beat oscillation in electrical activity and the strength of cardiac muscle contraction at a constant heart rate. Clinically, cardiac alternans occurs in settings that are typical for cardiac arrhythmias and has been causally linked to these conditions. At the cellular level, alternans is defined as beat-to-beat alternations in contraction amplitude (mechanical alternans), action potential duration (APD; electrical or APD alternans), and Ca2+ transient amplitude (Ca2+ alternans). The cause of alternans is multifactorial, however alternans always originate from disturbances of the bi-directional coupling between membrane voltage (Vm) and intracellular calcium ([Ca2+]i). Bi-directional coupling refers to the fact that in cardiac cells, Vm depolarization and the generation of action potentials cause the elevation of [Ca2+]i that is required for contraction (a process referred to as excitation-contraction coupling), the changes of [Ca2+]i on the other hand control Vm because important membrane currents are Ca2+-dependent. Evidence is mounting that alternans is ultimately caused by disturbances of cellular Ca2+ signaling. Here we review how two key factors of cardiac cellular Ca2+ cycling - the release of Ca2+ from internal stores and the capability of clearing the cytosol from Ca2+ after each beat - determine the conditions under which alternans occurs. The contributions from key Ca2+ handling proteins - surface membrane channels, ion pumps and transporters, and internal Ca2+ release channels - are discussed. PMID:25040398

  9. Monitoring Intracellular Oxygen Concentration: Implications for Hypoxia Studies and Real-Time Oxygen Monitoring.

    PubMed

    Potter, Michelle; Badder, Luned; Hoade, Yvette; Johnston, Iain G; Morten, Karl J

    2016-01-01

    The metabolic properties of cancer cells have been widely accepted as a hallmark of cancer for a number of years and have shown to be of critical importance in tumour development. It is generally accepted that tumour cells exhibit a more glycolytic phenotype than normal cells. In this study, we investigate the bioenergetic phenotype of two widely used cancer cell lines, RD and U87MG, by monitoring intracellular oxygen concentrations using phosphorescent Pt-porphyrin based intracellular probes. Our study demonstrates that cancer cell lines do not always exhibit an exclusively glycolytic phenotype. RD demonstrates a reliance on oxidative phosphorylation whilst U87MG display a more glycolytic phenotype. Using the intracellular oxygen sensing probe we generate an immediate readout of intracellular oxygen levels, with the glycolytic lines reflecting the oxygen concentration of the environment, and cells with an oxidative phenotype having significantly lower levels of intracellular oxygen. Inhibition of oxygen consumption in lines with high oxygen consumption increases intracellular oxygen levels towards environmental levels. We conclude that the use of intracellular oxygen probes provides a quantitative assessment of intracellular oxygen levels, allowing the manipulation of cellular bioenergetics to be studied in real time.

  10. Intracellular and extracellular Abeta, a tale of two neuropathologies.

    PubMed

    Cuello, A Claudio

    2005-01-01

    The central pathological cause of Alzheimer disease (AD) is hypothesized to be an excess of beta-amyloid (Abeta) which accumulates into toxic fibrillar deposits within extracellular areas of the brain. These deposits disrupt neural and synaptic function and ultimately lead to neuronal degeneration and dementia. In addition to the pathological roles attributed to Abeta, evidence from our laboratory would suggest that Abeta serves a physiological role in the modulation of CRE-directed gene expression. This commentary also highlights some of the pathological consequences of the accumulation of intracellular Abeta. Finally it discusses the impact of cortical Abeta burden on transmitter-specific synaptic numbers as well as the generation of dystrophic neurites. The fundamental thesis of my proposal is that the Abeta pathology seen in AD is a continuous process from an initial abnormal Abeta intracellular accumulation to the well-established extracellular Abeta aggregation, culminating in the formation of amyloid plaques and dystrophic neurites.

  11. Supramolecular nanoreactors for intracellular singlet-oxygen sensitization

    NASA Astrophysics Data System (ADS)

    Swaminathan, Subramani; Fowley, Colin; Thapaliya, Ek Raj; McCaughan, Bridgeen; Tang, Sicheng; Fraix, Aurore; Burjor, Captain; Sortino, Salvatore; Callan, John F.; Raymo, Françisco M.

    2015-08-01

    An amphiphilic polymer with multiple decyl and oligo(ethylene glycol) chains attached to a common poly(methacrylate) backbone assembles into nanoscaled particles in aqueous environments. Hydrophobic anthracene and borondipyrromethene (BODIPY) chromophores can be co-encapsulated within the self-assembling nanoparticles and transported across hydrophilic media. The reversible character of the noncovalent bonds, holding the supramolecular containers together, permits the exchange of their components with fast kinetics in aqueous solution. Incubation of cervical cancer (HeLA) cells with a mixture of two sets of nanoparticles, pre-loaded independently with anthracene or BODIPY chromophores, results in guest scrambling first and then transport of co-entrapped species to the intracellular space. Alternatively, incubation of cells with the two sets of nanocarriers in consecutive steps permits the sequential transport of the anthracene and BODIPY chromophores across the plasma membrane and only then allows their co-encapsulation within the same supramolecular containers. Both mechanisms position the two sets of chromophores with complementary spectral overlap in close proximity to enable the efficient transfer of energy intracellularly from the anthracene donors to the BODIPY acceptors. In the presence of iodine substituents on the BODIPY platform, intersystem crossing follows energy transfer. The resulting triplet state can transfer energy further to molecular oxygen with the concomitant production of singlet oxygen to induce cell mortality. Furthermore, the donor can be excited with two near-infrared photons simultaneously to permit the photoinduced generation of singlet oxygen intracellularly under illumination conditions compatible with applications in vivo. Thus, these supramolecular strategies to control the excitation dynamics of multichromophoric assemblies in the intracellular environment can evolve into valuable protocols for photodynamic therapy.An amphiphilic

  12. Nanoparticles for intracellular-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Paulo, Cristiana S. O.; Pires das Neves, Ricardo; Ferreira, Lino S.

    2011-12-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  13. Intracellular minerals and metal deposits in prokaryotes.

    PubMed

    Edwards, K J; Bazylinski, D A

    2008-06-01

    Thanks to the work of Terrance J. Beveridge and other pioneers in the field of metal-microbe interactions, prokaryotes are well known to sequester metals and other ions intracellularly in various forms. These forms range from poorly ordered deposits of metals to well-ordered mineral crystals. Studies on well-ordered crystalline structures have generally focused on intracellular organelles produced by magnetotactic bacteria that are ubiquitous in terrestrial and marine environments that precipitate Fe(3)O(4) or Fe(3)S(4), Fe-bearing minerals that have magnetic properties and are enclosed in intracellular membranes. In contrast, studies on less-well ordered minerals have focused on Fe-, As-, Mn-, Au-, Se- and Cd-precipitates that occur intracellularly. The biological and environmental function of these particles remains a matter of debate.

  14. Silicon nanowires as intracellular devices

    NASA Astrophysics Data System (ADS)

    Zimmerman, John F.

    Semiconductor nanowire devices are an exciting class of materials for biomedical and electrophysiology applications, with current studies primarily delivering substrate bound devices through mechanical abrasion or electroporation. However, the ability to distribute these devices in a drug-like fashion is an important step in developing next-generation active therapeutic devices. In this work, we will discuss the interaction of label free Silicon nanowires (SiNWs) with cellular systems, showing that they can be internalized in multiple cell lines, and undergo an active 'burst-like' transport process. (Abstract shortened by ProQuest.).

  15. Intracellular Biopotentials During Static Extracellular Stimulation

    PubMed Central

    Klee, Maurice

    1973-01-01

    Two properties of the intracellular potentials and electric fields resulting from static extracellular stimulation are obtained for arbitrarily shaped cells. First, the values of intracellular potential are shown to be bounded by the maximum and minimum values of extracellular potential on the surface of the cell. Second, the volume average of the magnitude of intracellular electric field is shown to have an upper bound given by the ratio of the magnitude of the largest extracellular potential difference on the surface of the cell to a generalized length constant λ = [σintraVcell/(σmemb Acell)]1/2, where Vcell and Acell are the volume and surface area of the cell, σintra is the intracellular conductivity (reciprocal ohms per centimeter), and σmemb is the membrane conductivity (reciprocal ohms per square centimeter). The use of the upper bound on the volume average of the magnitude of intracellular electric field as an estimate for intracellular isopotentiality is discussed and the use of the generalized length constant for electrically describing arbitrary cells is illustrated for cylindrical- and spheroidal-shaped cells. PMID:4726882

  16. Mapping intracellular mechanics on micropatterned substrates

    PubMed Central

    Mandal, Kalpana; Asnacios, Atef; Goud, Bruno; Manneville, Jean-Baptiste

    2016-01-01

    The mechanical properties of cells impact on their architecture, their migration, intracellular trafficking, and many other cellular functions and have been shown to be modified during cancer progression. We have developed an approach to map the intracellular mechanical properties of living cells by combining micropatterning and optical tweezers-based active microrheology. We optically trap micrometer-sized beads internalized in cells plated on crossbow-shaped adhesive micropatterns and track their displacement following a step displacement of the cell. The local intracellular complex shear modulus is measured from the relaxation of the bead position assuming that the intracellular microenvironment of the bead obeys power-law rheology. We also analyze the data with a standard viscoelastic model and compare with the power-law approach. We show that the shear modulus decreases from the cell center to the periphery and from the cell rear to the front along the polarity axis of the micropattern. We use a variety of inhibitors to quantify the spatial contribution of the cytoskeleton, intracellular membranes, and ATP-dependent active forces to intracellular mechanics and apply our technique to differentiate normal and cancer cells. PMID:27799529

  17. Intracellular Dialysis Disrupts Zn2+ Dynamics and Enables Selective Detection of Zn2+ Influx in Brain Slice Preparations

    PubMed Central

    Aiba, Isamu; West, Adrian K; Sheline, Christian T; Shuttleworth, C. William

    2013-01-01

    We examined the impact of intracellular dialysis on fluorescence detection of neuronal intracellular Zn2+ accumulation. Comparison between two dialysis conditions (standard; 20minutes, brief; 2minutes) by standard whole-cell clamp revealed a high vulnerability of intracellular Zn2+ buffers to intracellular dialysis. Thus low concentrations of zinc-pyrithione generated robust responses in neurons with standard dialysis, but signals were smaller in neurons with short dialysis. Release from oxidation-sensitive Zn2+ pools were reduced by standard dialysis, when compared with responses in neurons with brief dialysis. The dialysis effects were partly reversed by inclusion of recombinant metallothionein-3 in the dialysis solution. These findings suggested that extensive dialysis could be exploited for selective detection of transmembrane Zn2+ influx. Different dialysis conditions were then used to probe responses to synaptic stimulation. Under standard dialysis conditions, synaptic stimuli generated significant FluoZin-3 signals in wild-type (WT) preparations, but responses were almost absent in preparations lacking vesicular Zn2+ (ZnT3-KO). In contrast, under brief dialysis conditions, intracellular Zn2+ transients were very similar in WT and ZnT3-KO preparations. This suggests that both intracellular release and transmembrane flux can contribute to intracellular Zn2+ accumulation after synaptic stimulation. These results demonstrate significant confounds and potential use of intracellular dialysis to investigate intracellular Zn2+ accumulation mechanisms. PMID:23517525

  18. Probing Ordered Lipid Assemblies with Polarized Third-Harmonic-Generation Microscopy

    NASA Astrophysics Data System (ADS)

    Zimmerley, Maxwell; Mahou, Pierre; Débarre, Delphine; Schanne-Klein, Marie-Claire; Beaurepaire, Emmanuel

    2013-01-01

    Ordered lipid assemblies are responsible for important physiological functions including skin barrier and axon conductivity. However, techniques commonly used to probe molecular order such as X-ray scattering and nuclear magnetic resonance are not suited for in-situ tissue studies. Here, we identify and characterize a novel contrast mechanism in nonlinear optical microscopy which is sensitive to molecular ordering in multilamellar lipid vesicles (MLVs) and in samples obtained from human skin biopsy: polarized third-harmonic generation (P-THG). We develop a multiscale theoretical framework to calculate the anisotropic, nonlinear optical response of lipid arrays as a function of molecular order. This analysis reveals that conserved carbon-carbon bond and aliphatic tail directionality are the atomic- and molecular-scale sources of the observed P-THG response, respectively. Agreement between calculations and experiments on lipid droplets and MLVs validates the use of P-THG as a probe of lipid ordering. Finally, we show that P-THG can be used to map molecular ordering in the multilamellar, intercorneocyte lipid matrix of the stratum corneum of human skin. These results provide the foundation for the use of P-THG in probing molecular order and highlight a novel biomedical application of multiphoton microscopy in an optically accessible tissue relevant to monitoring lipid-related disorder.

  19. Umami changes intracellular Ca2+ levels using intracellular and extracellular sources in mouse taste receptor cells.

    PubMed

    Narukawa, Masataka; Mori, Tomohiko; Hayashi, Yukako

    2006-11-01

    Recently, candidates for umami receptors have been identified in taste cells, but the precise transduction mechanisms of the downstream receptor remain unknown. To investigate how intracellular Ca(2+) increases in the umami transduction pathway, we measured changes in intracellular Ca(2+) levels in response to umami stimuli monosodium glutamate (MSG), IMP, and MSG + IMP in mouse taste receptor cells (TRCs) by Ca(2+) imaging. Even when extracellular Ca(2+) was absent, 1/3 of umami-responsive TRCs exhibited increased intracellular Ca(2+) levels. When intracellular Ca(2+) was depleted, half of the TRCs retained their response to umami. These results suggest that umami-responsive TRCs increase their intracellular Ca(2+) levels through two pathways: by releasing Ca(2+) from intracellular stores and by an influx of Ca(2+) from extracellular sources. We conclude that the Ca(2+) influx from extracellular source might play an important role in the synergistic effect between MSG and IMP.

  20. Potent Antibacterial Nanoparticles against Biofilm and Intracellular Bacteria

    NASA Astrophysics Data System (ADS)

    Mu, Haibo; Tang, Jiangjiang; Liu, Qianjin; Sun, Chunli; Wang, Tingting; Duan, Jinyou

    2016-01-01

    The chronic infections related to biofilm and intracellular bacteria are always hard to be cured because of their inherent resistance to both antimicrobial agents and host defenses. Herein we develop a facile approach to overcome the above conundrum through phosphatidylcholine-decorated Au nanoparticles loaded with gentamicin (GPA NPs). The nanoparticles were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS) and ultraviolet‑visible (UV‑vis) absorption spectra which demonstrated that GPA NPs with a diameter of approximately 180 nm were uniform. The loading manner and release behaviors were also investigated. The generated GPA NPs maintained their antibiotic activities against planktonic bacteria, but more effective to damage established biofilms and inhibited biofilm formation of pathogens including Gram-positive and Gram-negative bacteria. In addition, GPA NPs were observed to be nontoxic to RAW 264.7 cells and readily engulfed by the macrophages, which facilitated the killing of intracellular bacteria in infected macrophages. These results suggested GPA NPs might be a promising antibacterial agent for effective treatment of chronic infections due to microbial biofilm and intracellular bacteria.

  1. Ectdomain shedding and regulated intracellular proteolysis in the central nervous system.

    PubMed

    Montes de Oca-B, Pavel

    2010-12-01

    The term Ectodomain Shedding (ES) refers to extracellular domain proteolytic release from cell membrane molecules. This proteolysis is mediated mainly by matrix metalloproteases (MMP) or disintegrin and metalloproteases (ADAM), although some other proteases may mediate it. Virtually, all functional categories of cell membrane molecules are subject of this kind of proteolysis, for this reason ES is involved in different cellular processes such as proliferation, apoptosis, migration, differentiation or pathologies such as inflammation, cancer and degeneration among others. ES releases membrane molecule's extracellular domain (or ectodomain) to the extracellular milieu where it can play different biological functions. ES of transmembrane molecules also generates membrane attached terminal fragments comprising transmembrane and intracellular domains that enable their additional processing by intracellular proteases known as Regulated Intracellular Proteolysis (RIP). This second proteolytic cleavage delivers molecule's intracellular domain (ICD) that carry out intracellular functions. RIP is mediated by the group of intracellular cleaving proteases (i-CLiPs) that include presenilin from the γ-secretase complex. In the CNS the best well known ES is that of the Amyloid Precursor Protein, although many other membrane molecules expressed by cells of the CNS are also subject to ES and RIP. In this review, these molecules are summarized, and some meaningful examples are highlighted and described. In addition, ES and RIP implications in the context of cell biology are discussed. Finally, some considerations that rise from the study of ES and RIP are formulated in view of the unexpected roles of intracellular fragments.

  2. Disruption of intracellular calcium regulation is integral to aminoglycoside-induced hair cell death.

    PubMed

    Esterberg, Robert; Hailey, Dale W; Coffin, Allison B; Raible, David W; Rubel, Edwin W

    2013-04-24

    Intracellular Ca(2+) is a key regulator of life or death decisions in cultured neurons and sensory cells. The role of Ca(2+) in these processes is less clear in vivo, as the location of these cells often impedes visualization of intracellular Ca(2+) dynamics. We generated transgenic zebrafish lines that express the genetically encoded Ca(2+) indicator GCaMP in mechanosensory hair cells of the lateral line. These lines allow us to monitor intracellular Ca(2+) dynamics in real time during aminoglycoside-induced hair cell death. After exposure of live larvae to aminoglycosides, dying hair cells undergo a transient increase in intracellular Ca(2+) that occurs shortly after mitochondrial membrane potential collapse. Inhibition of intracellular Ca(2+) elevation through either caged chelators or pharmacological inhibitors of Ca(2+) effectors mitigates toxic effects of aminoglycoside exposure. Conversely, artificial elevation of intracellular Ca(2+) by caged Ca(2+) release agents sensitizes hair cells to the toxic effects of aminoglycosides. These data suggest that alterations in intracellular Ca(2+) homeostasis play an essential role in aminoglycoside-induced hair cell death, and indicate several potential therapeutic targets to stem ototoxicity.

  3. Directed antigen delivery as a vaccine strategy for an intracellular bacterial pathogen

    NASA Astrophysics Data System (ADS)

    Bouwer, H. G. Archie; Alberti-Segui, Christine; Montfort, Megan J.; Berkowitz, Nathan D.; Higgins, Darren E.

    2006-03-01

    We have developed a vaccine strategy for generating an attenuated strain of an intracellular bacterial pathogen that, after uptake by professional antigen-presenting cells, does not replicate intracellularly and is readily killed. However, after degradation of the vaccine strain within the phagolysosome, target antigens are released into the cytosol for endogenous processing and presentation for stimulation of CD8+ effector T cells. Applying this strategy to the model intracellular pathogen Listeria monocytogenes, we show that an intracellular replication-deficient vaccine strain is cleared rapidly in normal and immunocompromised animals, yet antigen-specific CD8+ effector T cells are stimulated after immunization. Furthermore, animals immunized with the intracellular replication-deficient vaccine strain are resistant to lethal challenge with a virulent WT strain of L. monocytogenes. These studies suggest a general strategy for developing safe and effective, attenuated intracellular replication-deficient vaccine strains for stimulation of protective immune responses against intracellular bacterial pathogens. CD8+ T cell | replication-deficient | Listeria monocytogenes

  4. Supramolecular nanoreactors for intracellular singlet-oxygen sensitization.

    PubMed

    Swaminathan, Subramani; Fowley, Colin; Thapaliya, Ek Raj; McCaughan, Bridgeen; Tang, Sicheng; Fraix, Aurore; Captain, Burjor; Sortino, Salvatore; Callan, John F; Raymo, Françisco M

    2015-09-07

    An amphiphilic polymer with multiple decyl and oligo(ethylene glycol) chains attached to a common poly(methacrylate) backbone assembles into nanoscaled particles in aqueous environments. Hydrophobic anthracene and borondipyrromethene (BODIPY) chromophores can be co-encapsulated within the self-assembling nanoparticles and transported across hydrophilic media. The reversible character of the noncovalent bonds, holding the supramolecular containers together, permits the exchange of their components with fast kinetics in aqueous solution. Incubation of cervical cancer (HeLA) cells with a mixture of two sets of nanoparticles, pre-loaded independently with anthracene or BODIPY chromophores, results in guest scrambling first and then transport of co-entrapped species to the intracellular space. Alternatively, incubation of cells with the two sets of nanocarriers in consecutive steps permits the sequential transport of the anthracene and BODIPY chromophores across the plasma membrane and only then allows their co-encapsulation within the same supramolecular containers. Both mechanisms position the two sets of chromophores with complementary spectral overlap in close proximity to enable the efficient transfer of energy intracellularly from the anthracene donors to the BODIPY acceptors. In the presence of iodine substituents on the BODIPY platform, intersystem crossing follows energy transfer. The resulting triplet state can transfer energy further to molecular oxygen with the concomitant production of singlet oxygen to induce cell mortality. Furthermore, the donor can be excited with two near-infrared photons simultaneously to permit the photoinduced generation of singlet oxygen intracellularly under illumination conditions compatible with applications in vivo. Thus, these supramolecular strategies to control the excitation dynamics of multichromophoric assemblies in the intracellular environment can evolve into valuable protocols for photodynamic therapy.

  5. Intracellular Assessment of ATP Levels in Caenorhabditis elegans

    PubMed Central

    Palikaras, Konstantinos; Tavernarakis, Nektarios

    2017-01-01

    Eukaryotic cells heavily depend on adenosine triphosphate (ATP) generated by oxidative phosphorylation (OXPHOS) within mitochondria. ATP is the major energy currency molecule, which fuels cell to carry out numerous processes, including growth, differentiation, transportation and cell death among others (Khakh and Burnstock, 2009). Therefore, ATP levels can serve as a metabolic gauge for cellular homeostasis and survival (Artal-Sanz and Tavernarakis, 2009; Gomes et al., 2011; Palikaras et al., 2015). In this protocol, we describe a method for the determination of intracellular ATP levels using a bioluminescence approach in the nematode Caenorhabditis elegans. PMID:28194429

  6. Modulation of iron metabolism by iron chelation regulates intracellular calcium and increases sensitivity to doxorubicin

    PubMed Central

    Yalcintepe, Leman; Halis, Emre

    2016-01-01

    Increased intracellular iron levels can both promote cell proliferation and death, as such; iron has a “two-sided effect” in the delicate balance of human health. Though the role of iron in the development of cancer remains unclear, investigations of iron chelators as anti-tumor agents have revealed promising results. Here, we investigated the influence of iron and desferrioxamine (DFO), the iron chelating agent on intracellular calcium in a human leukemia cell line, K562. Iron uptake is associated with increased reactive oxygen species (ROS) generation. Therefore, we showed that iron also caused dose-dependent ROS generation in K562 cells. The measurement of intracellular calcium was determined using Furo-2 with a fluorescence spectrophotometer. The iron delivery process to the cytoplasmic iron pool was examined by monitoring the fluorescence of cells loaded with calcein-acetoxymethyl. Our data showed that iron increased intracellular calcium, and this response was 8 times higher when cells were incubated with DFO. K562 cells with DFO caused a 3.5 times increase of intracellular calcium in the presence of doxorubicin (DOX). In conclusion, DFO induces intracellular calcium and increases their sensitivity to DOX, a chemotherapeutic agent. PMID:26773173

  7. Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation.

    PubMed

    Liszewski, M Kathryn; Kolev, Martin; Le Friec, Gaelle; Leung, Marilyn; Bertram, Paula G; Fara, Antonella F; Subias, Marta; Pickering, Matthew C; Drouet, Christian; Meri, Seppo; Arstila, T Petteri; Pekkarinen, Pirkka T; Ma, Margaret; Cope, Andrew; Reinheckel, Thomas; Rodriguez de Cordoba, Santiago; Afzali, Behdad; Atkinson, John P; Kemper, Claudia

    2013-12-12

    Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While "tonic" intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance.

  8. Intracellular Signal Modulation by Nanomaterials

    PubMed Central

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2016-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive Oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can crucially affect the cytotoxicity of nanomaterials and membrane-dependent signaling pathways can be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future. PMID:24683030

  9. Intracellular signal modulation by nanomaterials.

    PubMed

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2014-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can be of crucial importance for the cytotoxicity of nanomaterials and membrane-dependent signaling pathways have also been shown to be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials, effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future.

  10. Targeted intracellular delivery of therapeutics: an overview.

    PubMed

    Rawat, A; Vaidya, B; Khatri, K; Goyal, A K; Gupta, P N; Mahor, S; Paliwal, R; Rai, S; Vyas, S P

    2007-09-01

    During the last decade, intracellular drug delivery has become an emerging area of research in the medical and pharmaceutical field. Many therapeutic agents such as drugs and DNA/oligonucleotides can be delivered not just to the cell but also to a particular compartment of that cell to achieve better activity e.g. proapoptotic drugs to the mitochondria, antibiotics and enzymes to the lysosomes and various anticancer drugs and gene to the nucleus. The lipidic nature of biological membrans is the major obstacle to the intracellular delivery of macromolecular and ionic drugs. Additionally, after endocytosis, the lysosome, the major degradation compartment, needs to be avoided for better activity. To avoid these problems, various carriers have been investigated for efficient intracellular delivery, either by direct entry to cytoplasm or by escaping the endosomal compartment. These include cell penetrating peptides, and carrier systems such as liposomes, cationic lipids and polymers, polymeric nanoparticles, etc. Various properties of these carriers, including size, surface charge, composition and the presence of cell specific ligands, alter their efficacy and specificity towards particular cells. This review summarizes various aspects of targeted intracellular delivery of therapeutics including pathways, mechanisms and approaches. Various carrier constructs having potential for targeted intracellular delivery are also been discussed.

  11. Internal affairs: investigating the Brucella intracellular lifestyle.

    PubMed

    von Bargen, Kristine; Gorvel, Jean-Pierre; Salcedo, Suzana P

    2012-05-01

    Bacteria of the genus Brucella are Gram-negative pathogens of several animal species that cause a zoonotic disease in humans known as brucellosis or Malta fever. Within their hosts, brucellae reside within different cell types where they establish a replicative niche and remain protected from the immune response. The aim of this article is to discuss recent advances in the field in the specific context of the Brucella intracellular 'lifestyle'. We initially discuss the different host cell targets and their relevance during infection. As it represents the key to intracellular replication, the focus is then set on the maturation of the Brucella phagosome, with particular emphasis on the Brucella factors that are directly implicated in intracellular trafficking and modulation of host cell signalling pathways. Recent data on the role of the type IV secretion system are discussed, novel effector molecules identified and how some of them impact on trafficking events. Current knowledge on Brucella gene regulation and control of host cell death are summarized, as they directly affect intracellular persistence. Understanding how Brucella molecules interplay with their host cell targets to modulate cellular functions and establish the intracellular niche will help unravel how this pathogen causes disease.

  12. Efficient intracellular delivery and improved biocompatibility of colloidal silver nanoparticles towards intracellular SERS immuno-sensing.

    PubMed

    Bhardwaj, Vinay; Srinivasan, Supriya; McGoron, Anthony J

    2015-06-21

    High throughput intracellular delivery strategies, electroporation, passive and TATHA2 facilitated diffusion of colloidal silver nanoparticles (AgNPs) are investigated for cellular toxicity and uptake using state-of-art analytical techniques. The TATHA2 facilitated approach efficiently delivered high payload with no toxicity, pre-requisites for intracellular applications of plasmonic metal nanoparticles (PMNPs) in sensing and therapeutics.

  13. Micro- and nanotechnologies for intracellular delivery.

    PubMed

    Yan, Li; Zhang, Jinfeng; Lee, Chun-Sing; Chen, Xianfeng

    2014-11-01

    The majority of drugs and biomolecules need to be delivered into cells to be effective. However, the cell membranes, a biological barrier, strictly resist drugs or biomolecules entering cells, resulting in significantly reduced intracellular delivery efficiency. To overcome this barrier, a variety of intracellular delivery approaches including chemical and physical ways have been developed in recent years. In this review, the focus is on summarizing the nanomaterial routes involved in making use of a collection of receptors for the targeted delivery of drugs and biomolecules and the physical ways of applying micro- and nanotechnologies for high-throughput intracellular delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. BDI-modelling of complex intracellular dynamics.

    PubMed

    Jonker, C M; Snoep, J L; Treur, J; Westerhoff, H V; Wijngaards, W C A

    2008-03-07

    A BDI-based continuous-time modelling approach for intracellular dynamics is presented. It is shown how temporalized BDI-models make it possible to model intracellular biochemical processes as decision processes. By abstracting from some of the details of the biochemical pathways, the model achieves understanding in nearly intuitive terms, without losing veracity: classical intentional state properties such as beliefs, desires and intentions are founded in reality through precise biochemical relations. In an extensive example, the complex regulation of Escherichia coli vis-à-vis lactose, glucose and oxygen is simulated as a discrete-state, continuous-time temporal decision manager. Thus a bridge is introduced between two different scientific areas: the area of BDI-modelling and the area of intracellular dynamics.

  15. A theoretical model of intracellular devitrification.

    PubMed

    Karlsson, J O

    2001-05-01

    Devitrification of the intracellular solution can cause significant damage during warming of cells cryopreserved by freezing or vitrification. Whereas previous theoretical investigations of devitrification have not considered the effect of cell dehydration on intracellular ice formation, a new model which couples membrane-limited water transport equations, classical nucleation theory, and diffusion-limited crystal growth theory is presented. The model was used to explore the role of cell dehydration in devitrification of human keratinocytes frozen in the presence of glycerol. Numerical simulations demonstrated that water transport during cooling affects subsequent intracellular ice formation during warming, correctly predicting observations that critical warming rate increases with increasing cooling rate. However, for cells with a membrane transport activation energy less than approximately 50 kJ/mol, devitrification was also affected by cell dehydration during warming, leading to a reversal of the relationship between cooling rate and critical warming rate. Thus, for low warming rates (less than 10 degrees C/min for keratinocytes), the size and total volume fraction of intracellular ice crystals forming during warming decreased with decreasing warming rate, and the critical warming rate decreased with increasing cooling rate. The effects of water transport on the kinetics of intracellular nucleation and crystal growth were elucidated by comparison of simulations of cell warming with simulations of devitrification in H(2)O-NaCl-glycerol droplets of constant size and composition. These studies showed that the rate of intracellular nucleation was less sensitive to cell dehydration than was the crystal growth rate. The theoretical methods presented may be of use for the design and optimization of freeze-thaw protocols. Copyright 2001 Academic Press.

  16. Macrophage defense mechanisms against intracellular bacteria.

    PubMed

    Weiss, Günter; Schaible, Ulrich E

    2015-03-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics.

  17. GTPases in intracellular trafficking: an overview.

    PubMed

    Segev, Nava

    2011-02-01

    Small GTPases that belong to the ras sub-families of Rab, Arf, and Rho, and the large GTPase dynamin, regulate intracellular trafficking. This issue of Seminars of Cell and Developmental Biology highlights topics regarding mechanisms by which these GTPases regulate the different steps of vesicular transport: vesicle formation, scission, targeting and fusion. In addition, the emerging roles of GTPases in coordination of individual transport steps as well as coordination of intracellular trafficking with other cellular processes are reviewed. Finally, common structures and mechanisms underlying the function of the ras-like GTPases and the importance of their function to human health and disease are discussed.

  18. NMR measurements of intracellular ions in hypertension

    NASA Astrophysics Data System (ADS)

    Veniero, Joseph C.; Gupta, R. K.

    1993-08-01

    The NMR methods for the measurement of intracellular free Na+, K+, Mg2+, Ca2+, and H+ are introduced. The recent literature is then presented showing applications of these methods to cells and tissues from hypertensive animal model systems, and humans with essential hypertension. The results support the hypothesis of consistent derangement of the intracellular ionic environment in hypertension. The theory that this derangement may be a common link in the disease states of high blood pressure and abnormal insulin and glucose metabolism, which are often associated clinically, is discussed.

  19. Efficient intracellular retrotransposition of an exogenous primate retrovirus genome

    PubMed Central

    Heinkelein, Martin; Pietschmann, Thomas; Jármy, Gergely; Dressler, Marco; Imrich, Horst; Thurow, Jana; Lindemann, Dirk; Bock, Michael; Moebes, Astrid; Roy, Jacqueline; Herchenröder, Ottmar; Rethwilm, Axel

    2000-01-01

    The foamy virus (FV) subgroup of Retroviridae reverse transcribe their RNA (pre-)genome late in the replication cycle before leaving an infected cell. We studied whether a marker gene-transducing FV vector is able to shuttle to the nucleus and integrate into host cell genomic DNA. While a potential intracellular retrotransposition of vectors derived from other retroviruses was below the detection limit of our assay, we found that up to 5% of cells transfected with the FV vector were stably transduced, harboring 1 to ∼10 vector integrants. Generation of the integrants depended on expression of functional capsid, reverse transcriptase and integrase proteins, and did not involve an extracellular step. PCR analysis of the U3 region of the 5′ long terminal repeat and determination of proviral integration sites showed that a reverse transcription step had taken place to generate the integrants. Co-expression of a mutated envelope allowing particle egress and avoiding extracellular infection resulted in a significantly increased rescue of cells harboring integrants, suggesting that accumulation of proviruses via intracellular retrotransposition represents an integral part of the FV replication strategy. PMID:10880456

  20. Intracellular signaling by phospholipase D as a therapeutic target.

    PubMed

    Steed, P M; Chow, A H

    2001-09-01

    The pharmaceutical industry has recently focused on intracellular signaling as a means to integrate the multiple facets of complex disease states, such as inflammation, because these pathways respond to numerous extracellular signals and coordinate a collection of cell responses contributing to pathology. One critical aspect of intracellular signaling is regulation of key cell functions by lipid mediators, in particular the generation of a key mediator, phosphatidic acid (PA) via the hydrolysis of phosphatidylcholine by phospholipase D (PLD). Research in this field has intensified, due in part to the recent cloning and partial characterization of the two PLD isoforms in mammalian cells, and this work has contributed significantly to our understanding of events downstream of PA generation. It is these effector functions of PLD activity that make this pathway attractive as a therapeutic target while the biochemical properties of the PLD isozymes make them amenable to small molecule intervention. Recent studies indicate that PA, and its immediate metabolites diacylglycerol and lyso-PA, affect numerous cellular pathways including ligand-mediated secretion, cytoskeletal reorganisations, respiratory burst, prostaglandin release, cell migration, cytokine release, and mitogenesis. This review summarises the data implicating signaling via PLD in these cell functions, obtained from: (i) molecular analyses of PLD/effector interactions, (ii) correlation between PA production and cell responses, (iii) experimental manipulation of PA levels, (iv) inhibition of PLD regulators, and (v) direct inhibition of PA production. The utility of targeting PLD signaling for the treatment of acute/chronic inflammation and other indications is discussed in light of these data.

  1. Intracellular Peptides as Natural Regulators of Cell Signaling*S⃞

    PubMed Central

    Cunha, Fernanda M.; Berti, Denise A.; Ferreira, Zulma S.; Klitzke, Clécio F.; Markus, Regina P.; Ferro, Emer S.

    2008-01-01

    Protein degradation by the ubiquitin proteasome system releases large amounts of oligopeptides within cells. To investigate possible functions for these intracellularly generated oligopeptides, we fused them to a cationic transactivator peptide sequence using reversible disulfide bonds, introduced them into cells, and analyzed their effect on G protein-coupled receptor (GPCR) signal transduction. A mixture containing four of these peptides (20–80 μm) significantly inhibited the increase in the extracellular acidification response triggered by angiotensin II (ang II) in CHO-S cells transfected with the ang II type 1 receptor (AT1R-CHO-S). Subsequently, either alone or in a mixture, these peptides increased luciferase gene transcription in AT1R CHO-S cells stimulated with ang II and in HEK293 cells treated with isoproterenol. These peptides without transactivator failed to affect GPCR cellular responses. All four functional peptides were shown in vitro to competitively inhibit the degradation of a synthetic substrate by thimet oligopeptidase. Overexpression of thimet oligopeptidase in both CHO-S and HEK293 cells was sufficient to reduce luciferase activation triggered by a specific GPCR agonist. Moreover, using individual peptides as baits in affinity columns, several proteins involved in GPCR signaling were identified, including α-adaptin A and dynamin 1. These results suggest that before their complete degradation, intracellular peptides similar to those generated by proteasomes can actively affect cell signaling, probably representing additional bioactive molecules within cells. PMID:18617518

  2. Intracellular peptides as natural regulators of cell signaling.

    PubMed

    Cunha, Fernanda M; Berti, Denise A; Ferreira, Zulma S; Klitzke, Clécio F; Markus, Regina P; Ferro, Emer S

    2008-09-05

    Protein degradation by the ubiquitin proteasome system releases large amounts of oligopeptides within cells. To investigate possible functions for these intracellularly generated oligopeptides, we fused them to a cationic transactivator peptide sequence using reversible disulfide bonds, introduced them into cells, and analyzed their effect on G protein-coupled receptor (GPCR) signal transduction. A mixture containing four of these peptides (20-80 microm) significantly inhibited the increase in the extracellular acidification response triggered by angiotensin II (ang II) in CHO-S cells transfected with the ang II type 1 receptor (AT1R-CHO-S). Subsequently, either alone or in a mixture, these peptides increased luciferase gene transcription in AT1R CHO-S cells stimulated with ang II and in HEK293 cells treated with isoproterenol. These peptides without transactivator failed to affect GPCR cellular responses. All four functional peptides were shown in vitro to competitively inhibit the degradation of a synthetic substrate by thimet oligopeptidase. Overexpression of thimet oligopeptidase in both CHO-S and HEK293 cells was sufficient to reduce luciferase activation triggered by a specific GPCR agonist. Moreover, using individual peptides as baits in affinity columns, several proteins involved in GPCR signaling were identified, including alpha-adaptin A and dynamin 1. These results suggest that before their complete degradation, intracellular peptides similar to those generated by proteasomes can actively affect cell signaling, probably representing additional bioactive molecules within cells.

  3. Activities of Antimicrobial Agents against Intracellular Pneumococci

    PubMed Central

    Mandell, Gerald L.; Coleman, Elizabeth J.

    2000-01-01

    Pneumococci can enter and survive inside human lung alveolar carcinoma cells. We examined the activity of azithromycin, gentamicin, levofloxacin, moxifloxacin, penicillin G, rifampin, telithromycin, and trovafloxacin against pneumococci inside and outside cells. We found that moxifloxacin, trovafloxacin, and telithromycin were the most active, but only telithromycin killed all intracellular organisms. PMID:10952618

  4. Histoplasma capsulatum surmounts obstacles to intracellular pathogenesis

    PubMed Central

    Garfoot, Andrew L.; Rappleye, Chad A.

    2016-01-01

    The fungal pathogen Histoplasma capsulatum causes respiratory and disseminated disease, even in immunocompetent hosts. In contrast to opportunistic pathogens, which are readily controlled by phagocytic cells, H. capsulatum yeasts are able to infect macrophages, survive antimicrobial defenses, and proliferate as an intracellular pathogen. In this review, we discuss some of the molecular mechanisms that enable H. capsulatum yeasts to overcome obstacles to intracellular pathogenesis. H. capsulatum yeasts gain refuge from extracellular obstacles such as antimicrobial lung surfactant proteins by engaging the β-integrin family of phagocytic receptors to promote entry into macrophages. In addition, H. capsulatum yeasts conceal immunostimulatory β-glucans to avoid triggering signaling receptors such as the β-glucan receptor Dectin-1. H. capsulatum yeasts counteract phagocyte-produced reactive oxygen species by expression of oxidative stress defense enzymes including an extracellular superoxide dismutase and an extracellular catalase. Within the phagosome, H. capsulatum yeasts block phagosome acidification, acquire essential metals such as iron and zinc, and utilize de novo biosynthesis pathways to overcome nutritional limitations. These mechanisms explain how H. capsulatum yeasts avoid and negate macrophage defense strategies and establish a hospitable intracellular niche, making H. capsulatum a successful intracellular pathogen of macrophages. PMID:26235362

  5. [Magnetic nanoparticles and intracellular delivery of biopolymers].

    PubMed

    Kornev, A A; Dubina, M V

    2014-03-01

    The basic methods of intracellular delivery of biopolymers are present in this review. The structure and synthesis of magnetic nanoparticles, their stabilizing surfactants are described. The examples of the interaction of nanoparticles with biopolymers such as nucleic acids and proteins are considered. The final part of the review is devoted to problems physiology and biocompatibility of magnetic nanoparticles.

  6. Protective effect of intracellular ice during freezing?

    PubMed

    Acker, Jason P; McGann, Locksley E

    2003-04-01

    Injury results during freezing when cells are exposed to increasing concentrations of solutes or by the formation of intracellular ice. Methods to protect cells from the damaging effects of freezing have focused on the addition of cryoprotective chemicals and the determination of optimal cooling rates. Based on other studies of innocuous intracellular ice formation, this study investigates the potential for this ice to protect cells from injury during subsequent slow cooling. V-79W Chinese hamster fibroblasts and Madin-Darby Canine Kidney (MDCK) cells were cultured as single attached cells or confluent monolayers. The incidence of intracellular ice formation (IIF) in the cultures at the start of cooling was pre-determined using one of two different extracellular ice nucleation temperatures (-5 or -10 degrees C). Samples were then cooled at 1 degrees C/min to the experimental temperature (-5 to -40 degrees C) where samples were warmed rapidly and cell survival assessed using membrane integrity and metabolic activity. For single attached cells, the lower ice nucleation temperature, corresponding to increased incidence of IIF, resulted in decreased post-thaw cell recovery. In contrast, confluent monolayers in which IIF has been shown to be innocuous, show higher survival after cooling to temperatures as low as -40 degrees C, supporting the concept that intracellular ice confers cryoprotection by preventing cell dehydration during subsequent slow cooling.

  7. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles.

    PubMed

    Aumiller, William M; Keating, Christine D

    2016-02-01

    Biological cells are highly organized, with numerous subcellular compartments. Phosphorylation has been hypothesized as a means to control the assembly/disassembly of liquid-like RNA- and protein-rich intracellular bodies, or liquid organelles, that lack delimiting membranes. Here, we demonstrate that charge-mediated phase separation, or complex coacervation, of RNAs with cationic peptides can generate simple model liquid organelles capable of reversibly compartmentalizing biomolecules. Formation and dissolution of these liquid bodies was controlled by changes in peptide phosphorylation state using a kinase/phosphatase enzyme pair. The droplet-generating phase transition responded to modification of even a single serine residue. Electrostatic interactions between the short cationic peptides and the much longer polyanionic RNAs drove phase separation. Coacervates were also formed on silica beads, a primitive model for localization at specific intracellular sites. This work supports phosphoregulation of complex coacervation as a viable mechanism for dynamic intracellular compartmentalization in membraneless organelles.

  8. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles

    NASA Astrophysics Data System (ADS)

    Aumiller, William M.; Keating, Christine D.

    2016-02-01

    Biological cells are highly organized, with numerous subcellular compartments. Phosphorylation has been hypothesized as a means to control the assembly/disassembly of liquid-like RNA- and protein-rich intracellular bodies, or liquid organelles, that lack delimiting membranes. Here, we demonstrate that charge-mediated phase separation, or complex coacervation, of RNAs with cationic peptides can generate simple model liquid organelles capable of reversibly compartmentalizing biomolecules. Formation and dissolution of these liquid bodies was controlled by changes in peptide phosphorylation state using a kinase/phosphatase enzyme pair. The droplet-generating phase transition responded to modification of even a single serine residue. Electrostatic interactions between the short cationic peptides and the much longer polyanionic RNAs drove phase separation. Coacervates were also formed on silica beads, a primitive model for localization at specific intracellular sites. This work supports phosphoregulation of complex coacervation as a viable mechanism for dynamic intracellular compartmentalization in membraneless organelles.

  9. Intracellular angiotensin II activates rat myometrium

    PubMed Central

    Deliu, Elena; Tica, Andrei A.; Motoc, Dana; Brailoiu, G. Cristina

    2011-01-01

    Angiotensin II is a modulator of myometrial activity; both AT1 and AT2 receptors are expressed in myometrium. Since in other tissues angiotensin II has been reported to activate intracellular receptors, we assessed the effects of intracellular administration of angiotensin II via microinjection on myometrium, using calcium imaging. Intracellular injection of angiotensin II increased cytosolic Ca2+ concentration ([Ca2+]i) in myometrial cells in a dose-dependent manner. The effect was abolished by the AT1 receptor antagonist losartan but not by the AT2 receptor antagonist PD-123319. Disruption of the endo-lysosomal system, but not that of Golgi apparatus, prevented the angiotensin II-induced increase in [Ca2+]i. Blockade of AT1 receptor internalization had no effect, whereas blockade of microautophagy abolished the increase in [Ca2+]i produced by intracellular injection of angiotensin II; this indicates that microautophagy is a critical step in transporting the peptide into the endo-lysosomes lumenum. The response to angiotensin II was slightly reduced in Ca2+-free saline, indicating a major involvement of Ca2+ release from internal stores. Blockade of inositol 1,4,5-trisphosphate (IP3) receptors with heparin and xestospongin C or inhibition of phospholipase C (PLC) with U-73122 abolished the response to angiotensin II, supporting the involvement of PLC-IP3 pathway. Angiotensin II-induced increase in [Ca2+]i was slightly reduced by antagonism of ryanodine receptors. Taken together, our results indicate for the first time that in myometrial cells, intracellular angiotensin II activates AT1-like receptors on lysosomes and activates PLC-IP3-dependent Ca2+ release from endoplasmic reticulum; the response is further augmented by a Ca2+-induced Ca2+ release mechanism via ryanodine receptors activation. PMID:21613610

  10. Bacterium-Derived Cell-Penetrating Peptides Deliver Gentamicin To Kill Intracellular Pathogens

    PubMed Central

    Gomarasca, Marta; F. C. Martins, Thaynan; Greune, Lilo; Hardwidge, Philip R.; Schmidt, M. Alexander

    2017-01-01

    ABSTRACT Commonly used antimicrobials show poor cellular uptake and often have limited access to intracellular targets, resulting in low antimicrobial activity against intracellular pathogens. An efficient delivery system to transport these drugs to the intracellular site of action is needed. Cell-penetrating peptides (CPPs) mediate the internalization of biologically active molecules into the cytoplasm. Here, we characterized two CPPs, α1H and α2H, derived from the Yersinia enterocolitica YopM effector protein. These CPPs, as well as Tat (trans-activator of transcription) from HIV-1, were used to deliver the antibiotic gentamicin to target intracellular bacteria. The YopM-derived CPPs penetrated different endothelial and epithelial cells to the same extent as Tat. CPPs were covalently conjugated to gentamicin, and CPP-gentamicin conjugates were used to target infected cells to kill multiple intracellular Gram-negative pathogenic bacteria, including Escherichia coli K1, Salmonella enterica serovar Typhimurium, and Shigella flexneri. Taken together, CPPs show great potential as delivery vehicles for antimicrobial agents and may contribute to the generation of new therapeutic tools to treat infectious diseases caused by intracellular pathogens. PMID:28096156

  11. Vinyl acetate induces intracellular acidification in mouse oral buccal epithelial cells.

    PubMed

    Nakamoto, Tetsuji; Wagner, Mark; Melvin, James E; Bogdanffy, Matthew S

    2005-08-14

    Vinyl acetate exposure in drinking water has been associated with tumor formation in the upper gastrointestinal tract of rats and mice. One potential mechanism for inducing carcinogenesis involves acidification of the intracellular environment due to the metabolism of vinyl acetate to acetic acid. Prolonged intracellular acidification is thought to produce cytotoxic and/or mitogenic responses that are the sentinel pharmacodynamic steps toward cancer. To determine whether exposure to vinyl acetate affects the intracellular pH of intact oral cavity tissue, isolated mouse oral buccal epithelium was loaded with the pH-sensitive dye BCECF, and then exposed to vinyl acetate concentrations ranging from 10 to 1000 microM for up to 4 min. Extracellular vinyl acetate exposure induced a progressive intracellular acidification that was reversible upon removal of the vinyl acetate. The rate of the acidification was concentration-dependent and increased exponentially within the concentration range tested. The magnitude of the vinyl acetate-induced acidification was inhibited by pretreatment with the carboxylesterase inhibitor bis(p-nitrophenyl)phosphate. These results are consistent with the hypothesis that vinyl acetate contributes to the generation and progression of oral cavity tumors via a process of intracellular acidification. Such a process has been proposed to have practical dose-response thresholds below which the intracellular environment can be maintained within homeostatic bounds and the contribution of exposure to carcinogenic risk is negligible.

  12. Bacterium-Derived Cell-Penetrating Peptides Deliver Gentamicin To Kill Intracellular Pathogens.

    PubMed

    Gomarasca, Marta; F C Martins, Thaynan; Greune, Lilo; Hardwidge, Philip R; Schmidt, M Alexander; Rüter, Christian

    2017-04-01

    Commonly used antimicrobials show poor cellular uptake and often have limited access to intracellular targets, resulting in low antimicrobial activity against intracellular pathogens. An efficient delivery system to transport these drugs to the intracellular site of action is needed. Cell-penetrating peptides (CPPs) mediate the internalization of biologically active molecules into the cytoplasm. Here, we characterized two CPPs, α1H and α2H, derived from the Yersinia enterocolitica YopM effector protein. These CPPs, as well as Tat (trans-activator of transcription) from HIV-1, were used to deliver the antibiotic gentamicin to target intracellular bacteria. The YopM-derived CPPs penetrated different endothelial and epithelial cells to the same extent as Tat. CPPs were covalently conjugated to gentamicin, and CPP-gentamicin conjugates were used to target infected cells to kill multiple intracellular Gram-negative pathogenic bacteria, including Escherichia coli K1, Salmonella enterica serovar Typhimurium, and Shigella flexneri Taken together, CPPs show great potential as delivery vehicles for antimicrobial agents and may contribute to the generation of new therapeutic tools to treat infectious diseases caused by intracellular pathogens.

  13. Aging as a consequence of intracellular water volume and density.

    PubMed

    Bonatto, Diego; Feltes, Bruno César; Poloni, Joice de Faria

    2011-12-01

    Aging is the result of a gradual failure of physiological and/or biochemical pathways that culminates with the death of the organism. Until now, the causative factors of aging are elusive, despite the increasing number of theories that try to explain how aging initiates. Interestingly, aging cells show an increase in intracellular water volume, but this fact is barely explored in aging studies. All cells have a crowded cytoplasm, where the high concentration and proximity of macromolecules create an environment that excludes many small molecules, including water. In this crowded environment, water can be found in two states termed low density water (LDW), which shows low reactivity and has an ice-like structure, and high density water (HDW) that has a disorganized structure and is highly reactive. LDW predominates in a macromolecular crowded environment, while HDW is found only in microenvironments within cytoplasm. In this sense, we hypothesized that the failure in the water homeostasis mechanisms with time changes the equilibrium between LDW and HDW, increasing the concentration of intracellular HDW. Being reactive, HDW leads to the generation of reactive oxygen species and disturbs the crowded cytoplasm environment, resulting in a diminished efficiency of metabolic reactions. Noteworthy, the cell becomes less prone to repair damage when the concentration of HDW increases with time, resulting in aging and finally death. Interestingly, some biological mechanisms (e.g., anhydrobiosis) reduce the concentration of intracellular water and prolong the life of cells and/or organisms. In this sense, anhydrobiosis and related biological mechanisms could be used as a platform to study new anti-aging therapies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Intracellular electric fields produced by dielectric barrier discharge treatment of skin

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu; Kushner, Mark J.

    2010-05-01

    The application of atmospheric pressure plasmas to human tissue has been shown to have therapeutic effects for wound healing and in treatment of skin diseases. These effects are attributed to both production of beneficial radicals which intersect with biological reaction chains and to the surface and intracellular generation of electric fields. In this paper, we report on computational studies of the intersection of plasma streamers in atmospheric pressure dielectric barrier discharges (DBDs) sustained in air with human skin tissue, with emphasis on the intracellular generation of electric fields. Intracellular structures and their electrical properties were incorporated into the computational mesh in order to self-consistently couple gas phase plasma transport with the charging of the surface of the skin and the intracellular production of electrical currents. The short duration of a single plasma filament in DBDs and its intersection with skin enables the intracellular penetration of electric fields. The magnitude of these electric fields can reach 100 kV cm-1 which may exceed the threshold for electroporation.

  15. Dynamics of gradient formation by intracellular shuttling

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-01

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  16. Modeling of spatially-restricted intracellular signaling.

    PubMed

    Neves, Susana R

    2012-01-01

    Understanding the signaling capabilities of a cell presents a major challenge, not only due to the number of molecules involved, but also because of the complex network connectivity of intracellular signaling. Recently, the proliferation of quantitative imaging techniques has led to the discovery of the vast spatial organization of intracellular signaling. Computational modeling has emerged as a powerful tool for understanding how inhomogeneous signaling originates and is maintained. This article covers the current imaging techniques used to obtain quantitative spatial data and the mathematical approaches used to model spatial cell biology. Modeling-derived hypotheses have been experimentally tested and the integration of modeling and imaging approaches has led to non-intuitive mechanistic insights.

  17. Leishmania hijacking of the macrophage intracellular compartments.

    PubMed

    Liévin-Le Moal, Vanessa; Loiseau, Philippe M

    2016-02-01

    Leishmania spp., transmitted to humans by the bite of the sandfly vector, are responsible for the three major forms of leishmaniasis, cutaneous, diffuse mucocutaneous and visceral. Leishmania spp. interact with membrane receptors of neutrophils and macrophages. In macrophages, the parasite is internalized within a parasitophorous vacuole and engages in a particular intracellular lifestyle in which the flagellated, motile Leishmania promastigote metacyclic form differentiates into non-motile, metacyclic amastigote form. This phenomenon is induced by Leishmania-triggered events leading to the fusion of the parasitophorous vacuole with vesicular members of the host cell endocytic pathway including recycling endosomes, late endosomes and the endoplasmic reticulum. Maturation of the parasitophorous vacuole leads to the intracellular proliferation of the Leishmania amastigote forms by acquisition of host cell nutrients while escaping host defense responses. © 2015 FEBS.

  18. Sprouty, an intracellular inhibitor of Ras signaling.

    PubMed

    Casci, T; Vinós, J; Freeman, M

    1999-03-05

    Sprouty was identified in a genetic screen as an inhibitor of Drosophila EGF receptor signaling. The Egfr triggers cell recruitment in the eye, and sprouty- eyes have excess photoreceptors, cone cells, and pigment cells. Sprouty's function is, however, more widespread. We show that it also interacts genetically with the receptor tyrosine kinases Torso and Sevenless, and it was first discovered through its effect on FGF receptor signaling. In contrast to an earlier proposal that Sprouty is extracellular, we show by biochemical analysis that Sprouty is an intracellular protein, associated with the inner surface of the plasma membrane. Sprouty binds to two intracellular components of the Ras pathway, Drk and Gap1. Our results indicate that Sprouty is a widespread inhibitor of Ras pathway signal transduction.

  19. Dynamics of gradient formation by intracellular shuttling

    SciTech Connect

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-21

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  20. Intracellular iron concentration of neurons with and without perineuronal nets

    NASA Astrophysics Data System (ADS)

    Fiedler, Anja; Reinert, Tilo; Morawski, Markus; Brückner, Gert; Arendt, Thomas; Butz, Tilman

    2007-07-01

    Neurodegenerative diseases like Parkinson's disease, Alzheimer's disease and Huntington's disease are characterized by abnormally high concentrations of iron in the affected brain areas. Iron is believed to contribute to oxidative stress by catalysing radical generation and subsequently causing neuronal death. Interestingly, subpopulations of neurons are less vulnerable against degeneration. One of these subpopulations possesses a specialized extracellular matrix arranged as a perineuronal net (PN), a structure with poorly understood functions. In order to differentiate between neurons with and without PN according to their iron concentrations we have performed a μPIXE study at the Leipzig LIPSION laboratory. PN-ensheathed neurons in selected brain areas were detected by lectin-histochemical staining with Wisteria floribunda agglutinin (WFA). The staining was intensified by DAB- nickel by an established method enabling the visualisation of the PNs by nuclear microscopy. The cellular concentration of iron in the rat brain was about 1 mmol/l (ca. 30 μg/g dw). First results of subcellular analysis showed that the intracellular iron concentration of PN-ensheathed neurons tends to be slightly increased in comparison to neurons without PNs. The difference in intracellular iron concentrations could be an effect of the PNs.

  1. Intracellular chemiluminescence activates targeted photodynamic destruction of leukaemic cells

    PubMed Central

    Laptev, R; Nisnevitch, M; Siboni, G; Malik, Z; Firer, M A

    2006-01-01

    Photodynamic therapy (PDT) involves a two-stage process. A light-absorbing photosensitiser (Ps) is endocytosed and then stimulated by light, inducing transfer of energy to a cytoplasmic acceptor molecule and the generation of reactive oxygen species that initiate damage to cellular membrane components and cytolysis. The expanded use of PDT in the clinic is hindered by the lack of Ps target-cell specificity and the limited tissue penetration by external light radiation. This study demonstrates that bioconjugates composed of transferrin and haematoporphyrin (Tf–Hp), significantly improve the specificity and efficiency of PDT for erythroleukemic cells by a factor of almost seven-fold. Fluorescence microscopy showed that the conjugates accumulate in intracellular vesicles whereas free Hp was mostly membrane bound. Experiments with cells deliberately exposed to Tf–Hp at intracellular chemiluminescence. This strategy was then used to obviate the use of external radiation for Ps activation by incubating the cells with luminol either before or together with Tf–Hp. This novel chemical means of PDT activation induced cytotoxicity in 95% of cells. These combined approaches provide an opportunity to develop broader and more effective applications of PDT. PMID:16819545

  2. Antibody-antigen kinetics constrain intracellular humoral immunity

    PubMed Central

    Bottermann, Maria; Lode, Heidrun Elisabeth; Watkinson, Ruth E.; Foss, Stian; Sandlie, Inger; Andersen, Jan Terje; James, Leo C.

    2016-01-01

    During infection with non-enveloped viruses, antibodies stimulate immunity from inside cells by activating the cytosolic Fc receptor TRIM21. This intracellular humoral response relies on opsonized viral particles reaching the cytosol intact but the antigenic and kinetic constraints involved are unknown. We have solved the structure of a potent TRIM21-dependent neutralizing antibody in complex with human adenovirus 5 hexon and show how these properties influence immune activity. Structure-guided mutagenesis was used to generate antibodies with 20,000-fold variation in affinity, on-rates that differ by ~50-fold and off-rates by >175-fold. Characterization of these variants during infection revealed that TRIM21-dependent neutralization and NFκB activation was largely unaffected by on-rate kinetics. In contrast, TRIM21 antiviral activity was exquisitely dependent upon off-rate, with sub-μM affinity antibodies nevertheless unable to stimulate signaling because of fast dissociation kinetics. These results define the antibody properties required to elicit an efficient intracellular immune response during viral infection. PMID:27881870

  3. Transient light-induced intracellular oxidation revealed by redox biosensor

    SciTech Connect

    Kolossov, Vladimir L.; Beaudoin, Jessica N.; Hanafin, William P.; DiLiberto, Stephen J.; Kenis, Paul J.A.; Rex Gaskins, H.

    2013-10-04

    Highlights: •Time-resolved live cell imaging revealed light-induced oxidation. •Only the roGFP probe fused with glutaredoxin reveals photooxidation. •The transient oxidation is rapidly reduced by the cytosolic antioxidant system. •Intracellular photooxidation is media-dependent. •Oxidation is triggered exclusively by exposure to short wavelength excitation. -- Abstract: We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30 s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition.

  4. Targeting caspases in intracellular protozoan infections.

    PubMed

    Guillermo, Landi V C; Pereira, Wânia F; De Meis, Juliana; Ribeiro-Gomes, Flavia L; Silva, Elisabeth M; Kroll-Palhares, Karina; Takiya, Christina M; Lopes, Marcela F

    2009-06-01

    Caspases are cysteine aspartases acting either as initiators (caspases 8, 9, and 10) or executioners (caspases 3, 6, and 7) to induce programmed cell death by apoptosis. Parasite infections by certain intracellular protozoans increase host cell life span by targeting caspase activation. Conversely, caspase activation, followed by apoptosis of lymphocytes and other cells, prevents effective immune responses to chronic parasite infection. Here we discuss how pharmacological inhibition of caspases might affect the immunity to protozoan infections, by either blocking or delaying apoptosis.

  5. Toward Intracellular Targeted Delivery of Cancer Therapeutics

    PubMed Central

    Pandya, Hetal; Debinski, Waldemar

    2013-01-01

    A number of anti-cancer drugs have their targets localized to particular intracellular compartments. These drugs reach the targets mainly through diffusion, dependent on biophysical and biochemical forces that allow cell penetration. This means that both cancer cells and normal cells will be subjected to such diffusion; hence many of these drugs, like chemotherapeutics, are potentially toxic and the concentration achieved at the site of their action is often suboptimal. The same relates to radiation that indiscriminately affects normal and diseased cells. However, nature-designed systems enable compounds present in the extracellular environment to end up inside the cell and even travel to more specific intracellular compartments. For example, viruses and bacterial toxins can more or less specifically recognize eukaryotic cells, enter these cells, and direct some protein portions to designated intracellular areas. These phenomena have led to creative thinking, such as employing viruses or bacterial toxins for cargo delivery to cells and, more specifically, to cancer cells. Proteins can be genetically engineered in order to not only mimic what viruses and bacterial toxins can do, but also to add new functions, extending or changing the intracellular routes. It is possible to make conjugates or, more preferably, single-chain proteins that recognize cancer cells and deliver cargo inside the cells, even to the desired subcellular compartment. These findings offer new opportunities to deliver drugs/labels only to cancer cells and only to their site of action within the cells. The development of such dual-specificity vectors for targeting cancer cells is an attractive and potentially safer and more efficacious way of delivering drugs. We provide examples of this approach for delivering brain cancer therapeutics, using a specific biomarker on glioblastoma tumor cells. PMID:22671766

  6. Intracellular serpins, firewalls and tissue necrosis.

    PubMed

    Marciniak, Stefan J; Lomas, David A

    2008-02-01

    Luke and colleagues have recently attributed a new role to a member of the serpin superfamily of serine proteinase inhibitors. They have used Caenorhabditis elegans to show that an intracellular serpin is crucial for maintaining lysosomal integrity. We examine the role of this firewall in preventing necrosis and attempt to integrate this with current theories of stress-induced protein degradation. We discuss how mutant serpins cause disease either through polymerization or now, perhaps, by unleashing necrosis.

  7. Intercellular and intracellular functions of ceramides and their metabolites in skin (Review).

    PubMed

    Cha, Hwa Jun; He, Congfen; Zhao, Hua; Dong, Yinmao; An, In-Sook; An, Sungkwan

    2016-07-01

    The skin consists of the epidermis, dermis and subcutis. The epidermis is primarily comprised of keratinocytes and is separated into four layers according to the stage of differentiation of the keratinocytes. Corneocytes are terminally differentiated keratinocytes that closely interact with other corneocytes through corneodesmosomes, and synthesize lamellar bodies and the intercellular multilamellar barrier, which protects the body from the external environment. As ceramides are the principal components of lamellar bodies and the multilamellar barrier, it is important to understand the biosynthesis of ceramides and their functions in skin. Ceramides are synthesized by amide bond‑mediated interactions between sphingoid bases, long‑chain amino alcohols [long-chain base] and fatty acids through a de novo pathway, a sphingomyelin (SM) hydrolysis pathway and a catabolic pathway. The majority of ceramides produced by the de novo pathway form the epidermal barrier. Ceramides used as signaling molecules are synthesized by the SM and catabolic pathways. Synthesized ceramides are released from corneocytes and form the multilamellar barrier. Additionally, ceramides and their metabolites regulate the apoptosis, proliferation and differentiation of skin cells as well as the formation of the skin barrier. Thus, the study of ceramides and their metabolites is crucial to understanding the function and regulation of the skin barrier.

  8. A bacteriophage endolysin that eliminates intracellular streptococci

    PubMed Central

    Shen, Yang; Barros, Marilia; Vennemann, Tarek; Gallagher, D Travis; Yin, Yizhou; Linden, Sara B; Heselpoth, Ryan D; Spencer, Dennis J; Donovan, David M; Moult, John; Fischetti, Vincent A; Heinrich, Frank; Lösche, Mathias; Nelson, Daniel C

    2016-01-01

    PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial cell membranes and clears intracellular Spy in a dose-dependent manner. Quantitative studies using model membranes establish that PlyCB interacts strongly with phosphatidylserine (PS), whereas its interaction with other lipids is weak, suggesting specificity for PS as its cellular receptor. Neutron reflection further substantiates that PlyC penetrates bilayers above a PS threshold concentration. Crystallography and docking studies identify key residues that mediate PlyCB–PS interactions, which are validated by site-directed mutagenesis. This is the first report that a native endolysin can traverse epithelial membranes, thus substantiating the potential of PlyC as an antimicrobial for Spy in the extracellular and intracellular milieu and as a scaffold for engineering other functionalities. DOI: http://dx.doi.org/10.7554/eLife.13152.001 PMID:26978792

  9. Detection of intracellular phosphatidylserine in living cells.

    PubMed

    Calderon, Frances; Kim, Hee-Yong

    2008-03-01

    To demonstrate the intracellular phosphatidylserine (PS) distribution in neuronal cells, neuroblastoma cells and hippocampal neurons expressing green fluorescence protein (GFP)-AnnexinV were stimulated with a calcium ionophore and localization of GFP-AnnexinV was monitored by fluorescence microscopy. Initially, GFP-AnnexinV distributed evenly in the cytosol and nucleus. Raising the intracellular calcium level with ionomycin-induced translocation of cytoplasmic GFP-AnnexinV to the plasma membrane but not to the nuclear membrane, indicating that PS distributes in the cytoplasmic side of the plasma membrane. Nuclear GFP-AnnexinV subsequently translocated to the nuclear membrane, indicating PS localization in the nuclear envelope. GFP-AnnexinV also localized in a juxtanuclear organelle that was identified as the recycling endosome. However, minimal fluorescence was detected in any other subcellular organelles including mitochondria, endoplasmic reticulum, Golgi complex, and lysosomes, strongly suggesting that PS distribution in the cytoplasmic face in these organelles is negligible. Similarly, in hippocampal primary neurons PS distributed in the inner leaflet of plasma membranes of cell body and dendrites, and in the nuclear envelope. To our knowledge, this is the first demonstration of intracellular PS localization in living cells, providing an insight for specific sites of PS interaction with soluble proteins involved in signaling processes.

  10. Optical nanoparticle sensors for quantitative intracellular imaging.

    PubMed

    Lee, Yong-Eun Koo; Kopelman, Raoul

    2009-01-01

    Real-time measurements of biological/chemical/physical processes, with no interferences, are an ultimate goal for in vivo intracellular studies. To construct intracellular biosensors that meet such a goal, nanoparticle (NP) platforms seem to be most promising, because of their small size and excellent engineerability. This review describes the development of NP-based opical sensors and their intracellular applications. The sensor designs are classified into two types, based on the sensor structures regarding analyte receptor and signal transducer. Type 1 sensors, with a single component for both receptor and transducer, work by mechanisms similar to those of 'molecular probes'. Type 2 sensors, with a separate component for receptor and transducer, work by different mechanisms that require the presence of specific NPs. A synergistic increase in optical signal or selectivity has been reported for these second type of NP sensors. With ongoing rapid advances in nanotechnology and instrumentation, these NP systems will soon be capable of sensing at the single-molecule level, at the point of interest within the living cell, and capable of simultaneously detecting multiple analytes and physical parameters.

  11. Intracellular Pressure Dynamics in Blebbing Cells.

    PubMed

    Strychalski, Wanda; Guy, Robert D

    2016-03-08

    Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the interactions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the relationship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics explain the apparent discrepancy in the interpretation of experimental results.

  12. Intracellular Pressure Dynamics in Blebbing Cells

    PubMed Central

    Strychalski, Wanda; Guy, Robert D.

    2016-01-01

    Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the interactions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the relationship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics explain the apparent discrepancy in the interpretation of experimental results. PMID:26958893

  13. Invasion and Intracellular Survival by Protozoan Parasites

    PubMed Central

    Sibley, L. David

    2013-01-01

    Summary Intracellular parasitism has arisen only a few times during the long ancestry of protozoan parasites including in diverse groups such as microsporidians, kinetoplastids, and apicomplexans. Strategies used to gain entry differ widely from injection (e.g. microsporidians), active penetration of the host cell (e.g. Toxoplasma), recruitment of lysosomes to a plasma membrane wound (e.g. Trypanosoma cruzi), to host cell-mediated phagocytosis (e.g. Leishmania). The resulting range of intracellular niches is equally diverse ranging from cytosolic (e.g. T. cruzi) to residing within a nonfusigenic vacuole (e.g. Toxoplasma, Encephalitizoon) or a modified phagolysosome (e.g. Leishmania). These lifestyle choices influence access to nutrients, interaction with host cell signaling pathways, and detection by pathogen recognition systems. As such, intracellular life requires a repertoire of adaptations to assure entry-exit from the cell, as well as to thwart innate immune mechanisms and prevent clearance. Elucidating these pathways at the cellular and molecular level may identify key steps that can be targeted to reduce parasite survival or augment immunological responses and thereby prevent disease. PMID:21349087

  14. Evolutionarily conserved intracellular gate of voltage-dependent sodium channels

    NASA Astrophysics Data System (ADS)

    Oelstrom, Kevin; Goldschen-Ohm, Marcel P.; Holmgren, Miguel; Chanda, Baron

    2014-03-01

    Members of the voltage-gated ion channel superfamily (VGIC) regulate ion flux and generate electrical signals in excitable cells by opening and closing pore gates. The location of the gate in voltage-gated sodium channels, a founding member of this superfamily, remains unresolved. Here we explore the chemical modification rates of introduced cysteines along the S6 helix of domain IV in an inactivation-removed background. We find that state-dependent accessibility is demarcated by an S6 hydrophobic residue; substituted cysteines above this site are not modified by charged thiol reagents when the channel is closed. These accessibilities are consistent with those inferred from open- and closed-state structures of prokaryotic sodium channels. Our findings suggest that an intracellular gate composed of a ring of hydrophobic residues is not only responsible for regulating access to the pore of sodium channels, but is also a conserved feature within canonical members of the VGIC superfamily.

  15. Evolutionarily conserved intracellular gate of voltage-dependent sodium channels

    PubMed Central

    Oelstrom, Kevin; Goldschen-Ohm, Marcel P.; Holmgren, Miguel; Chanda, Baron

    2014-01-01

    Members of the voltage-gated ion channel superfamily (VGIC) regulate ion flux and generate electrical signals in excitable cells by opening and closing pore gates. The location of the gate in voltage-gated sodium channels, a founding member of this superfamily, remains unresolved. Here we explore the chemical modification rates of introduced cysteines along the S6 helix of domain IV in an inactivation-removed background. We find that state-dependent accessibility is demarcated by an S6 hydrophobic residue; substituted cysteines above this site are not modified by charged thiol reagents when the channel is closed. These accessibilities are consistent with those inferred from open- and closed-state structures of prokaryotic sodium channels. Our findings suggest that an intracellular gate composed of a ring of hydrophobic residues is not only responsible for regulating access to the pore of sodium channels, but is also a conserved feature within canonical members of the VGIC superfamily. PMID:24619022

  16. The effect of intracellular alkalinisation on intracellular Ca(2+) homeostasis in a human chondrocyte cell line.

    PubMed

    Browning, Joseph A; Wilkins, Robert J

    2002-09-01

    Intracellular pH (pH(i)) is a well-established determinant of cartilage matrix metabolism. Changes to chondrocyte pH(i), and therefore matrix turnover rates, arise following joint loading. It is not yet clear whether pH changes exert their effects on matrix metabolism directly, or by changing the concentration of another, as yet unidentified, intracellular factor. In this study the effect of intracellular alkalinisation on intracellular [Ca(2+)] has been examined using the human chondrocyte C-20/A4 cell line. pH(i) was manipulated by the addition of weak bases to suspensions of chondrocytes and fluorimetric techniques were employed to measure pH(i) and [Ca(2+)](i). The effect of pH(i) changes on intracellular inositol 1,4,5-trisphosphate (IP(3)) levels was also determined. The pH-sensitive properties of the Ca(2+)-sensitive fluoroprobe employed in this study, Fura-2, were investigated such that artefactual effects of pH changes upon the dye could be discounted. It was demonstrated that, for dye loaded into cells, alkalinisation resulted in a small increase in the affinity of the dye for Ca(2+) ions. Intracellular alkalinisation elicited by treatment with either of the weak bases trimethylamine or ammonium chloride initiated a rise in [Ca(2+)](i). This effect was too large to be explicable by the effects of pH changes on Fura-2 and was not dependent on the presence of extracellular Ca(2+) ions. Prior depletion of intracellular Ca(2+) stores by treatment with thapsigargin inhibited alkalinisation-induced increases in [Ca(2+)](i) and intracellular alkalinisation was also associated with increased levels of intracellular IP(3). These results confirm that alkaline pH(i) changes associated with dynamic loading of cartilage also result in knock-on alterations to [Ca(2+)](i). Given the sensitivity of cartilage matrix metabolism to [Ca(2+)](i) it is likely that this signalling cascade forms an important part of the mechanotransduction pathway that determines the response of

  17. Intracellular Penetration and Activity of Gemifloxacin in Human Polymorphonuclear Leukocytes

    PubMed Central

    García, Isabel; Pascual, Alvaro; Ballesta, Sofía; Joyanes, Providencia; Perea, Evelio J.

    2000-01-01

    The intracellular penetration and activity of gemifloxacin in human polymorphonuclear leukocytes (PMN) were evaluated. Gemifloxacin reached intracellular concentrations eight times higher than extracellular concentrations. The uptake was rapid, reversible, and nonsaturable and was affected by environmental temperature, cell viability, and membrane stimuli. At therapeutic extracellular concentrations, gemifloxacin showed intracellular activity against Staphylococcus aureus. PMID:11036051

  18. Role of Host Cell-Derived Amino Acids in Nutrition of Intracellular Salmonella enterica

    PubMed Central

    Popp, Jasmin; Noster, Janina; Busch, Kim; Kehl, Alexander; zur Hellen, Gero

    2015-01-01

    The facultative intracellular pathogen Salmonella enterica resides in a specific membrane-bound compartment termed the Salmonella-containing vacuole (SCV). Despite being segregated from access to metabolites in the host cell cytosol, Salmonella is able to efficiently proliferate within the SCV. We set out to unravel the nutritional supply of Salmonella in the SCV with focus on amino acids. We studied the availability of amino acids by the generation of auxotrophic strains for alanine, asparagine, aspartate, glutamine, and proline in a macrophage cell line (RAW264.7) and an epithelial cell line (HeLa) and examined access to extracellular nutrients for nutrition. Auxotrophies for alanine, asparagine, or proline attenuated intracellular replication in HeLa cells, while aspartate, asparagine, or proline auxotrophies attenuated intracellular replication in RAW264.7 macrophages. The different patterns of intracellular attenuation of alanine- or aspartate-auxotrophic strains support distinct nutritional conditions in HeLa cells and RAW264.7 macrophages. Supplementation of medium with individual amino acids restored the intracellular replication of mutant strains auxotrophic for asparagine, proline, or glutamine. Similarly, a mutant strain deficient in succinate dehydrogenase was complemented by the extracellular addition of succinate. Complementation of the intracellular replication of auxotrophic Salmonella by external amino acids was possible if bacteria were proficient in the induction of Salmonella-induced filaments (SIFs) but failed in a SIF-deficient background. We propose that the ability of intracellular Salmonella to redirect host cell vesicular transport provides access of amino acids to auxotrophic strains and, more generally, is essential to continuously supply bacteria within the SCV with nutrients. PMID:26351287

  19. Hydrogen peroxide attenuates refilling of intracellular calcium store in mouse pancreatic acinar cells

    PubMed Central

    Yoon, Mi Na; Kim, Dong Kwan; Kim, Se Hoon

    2017-01-01

    Intracellular calcium (Ca2+) oscillation is an initial event in digestive enzyme secretion of pancreatic acinar cells. Reactive oxygen species are known to be associated with a variety of oxidative stress-induced cellular disorders including pancreatitis. In this study, we investigated the effect of hydrogen peroxide (H2O2) on intracellular Ca2+ accumulation in mouse pancreatic acinar cells. Perfusion of H2O2 at 300 µM resulted in additional elevation of intracellular Ca2+ levels and termination of oscillatory Ca2+ signals induced by carbamylcholine (CCh) in the presence of normal extracellular Ca2+. Antioxidants, catalase or DTT, completely prevented H2O2-induced additional Ca2+ increase and termination of Ca2+ oscillation. In Ca2+-free medium, H2O2 still enhanced CCh-induced intracellular Ca2+ levels and thapsigargin (TG) mimicked H2O2-induced cytosolic Ca2+ increase. Furthermore, H2O2-induced elevation of intracellular Ca2+ levels was abolished under sarco/endoplasmic reticulum Ca2+ ATPase-inactivated condition by TG pretreatment with CCh. H2O2 at 300 µM failed to affect store-operated Ca2+ entry or Ca2+ extrusion through plasma membrane. Additionally, ruthenium red, a mitochondrial Ca2+ uniporter blocker, failed to attenuate H2O2-induced intracellular Ca2+ elevation. These results provide evidence that excessive generation of H2O2 in pathological conditions could accumulate intracellular Ca2+ by attenuating refilling of internal Ca2+ stores rather than by inhibiting Ca2+ extrusion to extracellular fluid or enhancing Ca2+ mobilization from extracellular medium in mouse pancreatic acinar cells. PMID:28280417

  20. Effects of ApoE on intracellular calcium levels and apoptosis of neurons after mechanical injury.

    PubMed

    Jiang, L; Zhong, J; Dou, X; Cheng, C; Huang, Z; Sun, X

    2015-08-20

    The current study aimed to explore the effects of apolipoprotein e (ApoE) on intracellular calcium ([Ca(2+)]i) and apoptosis of neurons after mechanical injury in vitro. A neuron mechanical injury model was established after primary neurons obtained from APOE knockout and wild-type (WT) mice, and four experimental groups were generated: Group-ApoE4, Group-ApoE3, Group-ApoE(-) and Group-WT. Recombinant ApoE4 and ApoE3 were added to Group-ApoE4 and Group-ApoE3 respectively, and Group-ApoE(-) and Group-WT were control groups. Intracellular calcium was labeled by fluo-3/AM and examined using laser scanning confocal microscope and flow cytometry, and the apoptosis of neurons was also evaluated. The intracellular calcium levels and apoptosis rates of mice neurons were significantly higher in Group-ApoE4 than in Group-ApoE3 and Group-WT after mechanical injury. However, without mechanical injury on neurons, no significant differences in intracellular calcium levels and apoptosis rates were found among all four experimental groups. The effects of ApoE4 on intracellular calcium levels and apoptosis rates of injured neurons were partly decreased by EGTA treatment. Compared with ApoE3-treatment and WT neurons, ApoE4 caused higher intracellular calcium levels and apoptosis rates of neurons after mechanical injury. This suggested APOE polymorphisms may affect neuron apoptosis after mechanical injury through different influences on intracellular calcium levels. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Role of host cell-derived amino acids in nutrition of intracellular Salmonella enterica.

    PubMed

    Popp, Jasmin; Noster, Janina; Busch, Kim; Kehl, Alexander; Zur Hellen, Gero; Hensel, Michael

    2015-12-01

    The facultative intracellular pathogen Salmonella enterica resides in a specific membrane-bound compartment termed the Salmonella-containing vacuole (SCV). Despite being segregated from access to metabolites in the host cell cytosol, Salmonella is able to efficiently proliferate within the SCV. We set out to unravel the nutritional supply of Salmonella in the SCV with focus on amino acids. We studied the availability of amino acids by the generation of auxotrophic strains for alanine, asparagine, aspartate, glutamine, and proline in a macrophage cell line (RAW264.7) and an epithelial cell line (HeLa) and examined access to extracellular nutrients for nutrition. Auxotrophies for alanine, asparagine, or proline attenuated intracellular replication in HeLa cells, while aspartate, asparagine, or proline auxotrophies attenuated intracellular replication in RAW264.7 macrophages. The different patterns of intracellular attenuation of alanine- or aspartate-auxotrophic strains support distinct nutritional conditions in HeLa cells and RAW264.7 macrophages. Supplementation of medium with individual amino acids restored the intracellular replication of mutant strains auxotrophic for asparagine, proline, or glutamine. Similarly, a mutant strain deficient in succinate dehydrogenase was complemented by the extracellular addition of succinate. Complementation of the intracellular replication of auxotrophic Salmonella by external amino acids was possible if bacteria were proficient in the induction of Salmonella-induced filaments (SIFs) but failed in a SIF-deficient background. We propose that the ability of intracellular Salmonella to redirect host cell vesicular transport provides access of amino acids to auxotrophic strains and, more generally, is essential to continuously supply bacteria within the SCV with nutrients. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Regulation of the intracellular free iron pool by Dpr provides oxygen tolerance to Streptococcus mutans.

    PubMed

    Yamamoto, Yuji; Fukui, Kôichi; Koujin, Naoko; Ohya, Hiroaki; Kimura, Kazuhiko; Kamio, Yoshiyuki

    2004-09-01

    Dpr is an iron-binding protein required for oxygen tolerance in Streptococcus mutans. We previously proposed that Dpr could confer oxygen tolerance to the bacterium by sequestering intracellular free iron ions that catalyze generation of highly toxic radicals (Y. Yamamoto, M. Higuchi, L. B. Poole, and Y. Kamio, J. Bacteriol. 182:3740-3747, 2000; Y. Yamamoto, L. B. Poole, R. R. Hantgan, and Y. Kamio, J. Bacteriol. 184:2931-2939, 2002). Here, we examined the intracellular free iron status of wild-type (WT) and dpr mutant strains of S. mutans, before and after exposure to air, by using electron spin resonance spectrometry. Under anaerobic conditions, free iron ion concentrations of WT and dpr strains were 225.9 +/- 2.6 and 333.0 +/- 61.3 microM, respectively. Exposure of WT cells to air for 1 h induced Dpr expression and reduced intracellular free iron ion concentrations to 22.5 +/- 5.3 microM; under these conditions, dpr mutant cells maintained intracellular iron concentration at 230.3 +/- 28.8 microM. A decrease in cell viability and genomic DNA degradation was observed in the dpr mutant exposed to air. These data indicate that regulation of the intracellular free iron pool by Dpr is required for oxygen tolerance in S. mutans.

  3. Boosting Intracellular Delivery of Lipid Nanoparticle-Encapsulated mRNA.

    PubMed

    Patel, Siddharth; Ashwanikumar, N; Robinson, Emily; DuRoss, Allison; Sun, Conroy; Murphy-Benenato, Kerry E; Mihai, Cosmin; Almarsson, Örn; Sahay, Gaurav

    2017-09-13

    Intracellular delivery of mRNA holds great potential for vaccine1-3 and therapeutic4 discovery and development. Despite increasing recognition of the utility of lipid-based nanoparticles (LNPs) for intracellular delivery of mRNA, particle engineering is hindered by insufficient understanding of endosomal escape, which is believed to be a main limiter of cytosolic availability and activity of the nucleic acid inside the cell. Using a series of CRISPR-based genetic perturbations of the lysosomal pathway, we have identified that late endosome/lysosome (LE/Ly) formation is essential for functional delivery of exogenously presented mRNA. Lysosomes provide a spatiotemporal hub to orchestrate mTOR signaling and are known to control cell proliferation, nutrient sensing, ribosomal biogenesis, and mRNA translation. Through modulation of the mTOR pathway we were able to enhance or inhibit LNP-mediated mRNA delivery. To further boost intracellular delivery of mRNA, we screened 212 bioactive lipid-like molecules that are either enriched in vesicular compartments or modulate cell signaling. Surprisingly, we have discovered that leukotriene-antagonists, clinically approved for treatment of asthma and other lung diseases, enhance intracellular mRNA delivery in vitro (over 3-fold, p < 0.005) and in vivo (over 2-fold, p < 0.005). Understanding LNP-mediated intracellular delivery will inspire the next generation of RNA therapeutics that have high potency and limited toxicity.

  4. Cell death and intracellular distribution of hematoporphyrin in a KB cell line.

    PubMed

    Choi, Hongran; Lim, Wonbong; Kim, Ji-Eun; Kim, Inae; Jeong, Jinan; Ko, Youngjong; Song, Jongwoon; You, Sunyeol; Kim, Doman; Kim, Misook; Kim, Byung-Kuk; Kim, Okjoon

    2009-06-01

    The objective of this study is to investigate the effect of intracellular photosensitizer distribution on tumor cell death after photodynamic therapy (PDT). The photosensitizer accumulates in tumor tissue during PDT, and generates intracellular reactive oxygen species (ROS), resulting in tumor cell death. This study was carried out to elucidate the effects of PDT in a KB oral cancer cell line using hematoporphyrin with irradiation at 635 nm and 5 mW/cm(2). After irradiation, the MTT reduction method, agarose gel electrophoresis, flow cytometry, and Diff-Quick staining were performed. The intracellular ROS level was measured by DCF-DA. Intracellular hematoporphyrin was monitored with a confocal microscope, and Western blot and caspase activity assays were performed. In our study, cell survival was reduced by about 50% after 3 h of hematoporphyrin incubation time. In DNA fragmentation, flow cytometry, and Diff-Quick assay, necrosis was identified within 12 h and apoptosis soon thereafter. Confocal microscopy revealed that hematoporphyrin was localized in the cell membrane, cytoplasm, and nucleus as time passed. The quantities of intracellular ROS correlated with the time of hematoporphyrin accumulation. Additionally, Western blot analysis of Bcl-2/Bax, the release of cytochrome C, and activity of caspase-3 and caspase-9 showed that apoptosis followed the mitochondria-dependent pathway. PDT with hematoporphyrin in the KB cell line showed morphological changes of cell necrosis and apoptosis, which were associated with the time of distribution and localization of hematoporphyrin. Also, the apoptosis evoked followed the mitochondria-dependent pathway.

  5. Intracellular transport based on actin polymerization.

    PubMed

    Khaitlina, S Yu

    2014-09-01

    In addition to the intracellular transport of particles (cargo) along microtubules, there are in the cell two actin-based transport systems. In the actomyosin system the transport is driven by myosin, which moves the cargo along actin microfilaments. This transport requires the hydrolysis of ATP in the myosin molecule motor domain that induces conformational changes in the molecule resulting in the myosin movement along the actin filament. The other actin-based transport system of the cell does not involve myosin or other motor proteins. This system is based on a unidirectional actin polymerization, which depends on ATP hydrolysis in actin polymers and is initiated by proteins bound to the surface of transported particles. Obligatory components of the actin-based transport are proteins of the WASP/Scar family and a complex of Arp2/3 proteins. Moreover, the actin-based systems often contain dynamin and cortactin. It is known that a system of actin filaments formed on the surface of particles, the so-called "comet-like tail", is responsible for intracellular movements of pathogenic bacteria, micropinocytotic vesicles, clathrin-coated vesicles, and phagosomes. This movement is reproduced in a cell-free system containing extract of Xenopus oocytes. The formation of a comet-like structure capable of transporting vesicles from the plasma membrane into the cell depth has been studied in detail by high performance electron microscopy combined with electron tomography. A similar mechanism provides the movement of vesicles containing membrane rafts enriched with sphingolipids and cholesterol, changes in position of the nuclear spindle at meiosis, and other processes. This review will consider current ideas about actin polymerization and its regulation by actin-binding proteins and show how these mechanisms are realized in the intracellular actin-based vesicular transport system.

  6. Screening of dietary antioxidants against mitochondria-mediated oxidative stress by visualization of intracellular redox state.

    PubMed

    Maharjan, Sunita; Sakai, Yasuyoshi; Hoseki, Jun

    2016-01-01

    Mitochondrial impairment and the resulting generation of reactive oxygen species (ROS) have been associated with aging and its related pathological conditions. Recently, dietary antioxidants have gained significant attention as potential preventive and therapeutic agents against ROS-generated aging and pathological conditions. We previously demonstrated that food-derived antioxidants prevented intracellular oxidative stress under proteasome inhibition conditions, which was attributed to mitochondrial dysfunction and ROS generation, followed by cell death. Here, we further screened dietary antioxidants for their activity as redox modulators by visualization of the redox state using Redoxfluor, a fluorescent protein redox probe. Direct alleviation of ROS by antioxidants, but not induction of antioxidative enzymes, prevented mitochondria-mediated intracellular oxidation. The effective antioxidants scavenged mitochondrial ROS and suppressed cell death. Our study indicates that redox visualization under mitochondria-mediated oxidative stress is useful for screening potential antioxidants to counteract mitochondrial dysfunction, which has been implicated in aging and the pathogenesis of aging-related diseases.

  7. Intracellular pH in sperm physiology.

    PubMed

    Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L; Darszon, Alberto

    2014-08-01

    Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction.

  8. Caspases rule the intracellular trafficking cartel.

    PubMed

    Duclos, Catherine; Lavoie, Christine; Denault, Jean-Bernard

    2017-05-01

    During apoptosis, caspases feast on several hundreds of cellular proteins to orchestrate rapid cellular demise. Indeed, caspases are known to get a taste of every cellular process in one way or another, activating some, but most often shutting them down. Thus, it is not surprising that caspases proteolyze proteins involved in intracellular trafficking with particularly devastating consequences for this important process. This review article focuses on how caspases target the machinery responsible for smuggling goods within and outside the cell. © 2017 Federation of European Biochemical Societies.

  9. Landmark discoveries in intracellular transport and secretion

    PubMed Central

    Paknikar, Kishore M

    2007-01-01

    Abstract Cellular protein transport and secretion is fundamental to the very existence of an organism, regulating important physiological functions such as reproduction, digestion, energy production, growth, neurotransmission, hormone release, water and ion transport, etc., all required for the survival and maintenance of homeostasis within an organism. Molecular understanding of transport and secretion of intracellular product has therefore been of paramount importance and aggressively investigated for over six decades. Only in the last 20 years, the general molecular mechanism of the process has come to light, following discovery of key proteins involved in ER-Golgi transport, and discovery of the ‘porosome’– the universal secretion machinery in cells. PMID:17635635

  10. Biodegradable nanoparticles for intracellular delivery of antimicrobial agents.

    PubMed

    Xie, Shuyu; Tao, Yanfei; Pan, Yuanhu; Qu, Wei; Cheng, Guyue; Huang, Lingli; Chen, Dongmei; Wang, Xu; Liu, Zhenli; Yuan, Zonghui

    2014-08-10

    Biodegradable nanoparticles have emerged as a promising strategy for ferrying antimicrobial agents into specific cells due to their unique properties. This review discusses the current progress and challenges of biodegradable nanoparticles for intracellular antimicrobial delivery to understand design principles for the development of ideal nanocarriers. The intracellular delivery performances of biodegradable nanoparticles for diverse antimicrobial agents are first summarized. Second, the cellular internalization and intracellular trafficking, degradation and release kinetics of nanoparticles as well as their relation with intracellular delivery of encapsulated antimicrobial agents are provided. Third, the influences of nanoparticle properties on the cellular internalization and intracellular fate of nanoparticles and their payload antimicrobial agents are discussed. Finally, the challenges and perspectives of nanoparticles for intracellular delivery of antimicrobial agents are addressed. The review will be helpful to the scientists who are interested in searching for more efficient nanosystem strategies for intracellular delivery of antimicrobial agents.

  11. Intracellular calcium modulates gallbladder ion transport.

    PubMed

    Cates, J A; Saunders, K D; Abedin, M Z; Roslyn, J J

    1991-06-01

    Although experimentally induced cholesterol gallstone formation has been associated with altered gallbladder (GB) absorption and increased biliary Ca2+, the relationship between these events remains unclear. Recent studies suggest that extracellular Ca2+ ([Ca2+]ec) influences GB ion transport. Whether the effects of [Ca2+]ec are mediated by changes in intracellular Ca2+ ([Ca2+]ic) has not been determined. This study was designed to define the effects of altered [Ca2+]ic on GB ion transport. Prairie dog GBs were mounted in a Ussing chamber and short-circuit current (Isc), potential difference (Vms), and resistance (Rt) were recorded. Mucosal surfaces were exposed to either Dantrolene (Dt) or nickel (Ni2+). Dt "traps" [Ca2+]ic within intracellular organelles, thereby lowering cytosolic Ca2+; and Ni2+ prevents influx of [Ca2+]ec, presumably by binding Ca2+ channels. Although Dt reduced both Isc and Vms (P less than 0.01), these effects were transient. Transport recovery was probably due to increased [Ca2+]ec influx with restoration of [Ca2+]ic. Ni2+ resulted in sustained decreases in Isc and Vms (P less than 0.05) despite subsequent addition of 10 mM Ca2+. These findings are consistent with the prevention of [Ca2+]ec influx by Ni2+. We conclude that: (1) [Ca2+]ic may be a modulator of GB ion transport and (2) previously reported [Ca2+]ec effects on ion transport may be mediated through [Ca2+]ic concentration changes.

  12. NPC1, intracellular cholesterol trafficking and atherosclerosis.

    PubMed

    Yu, Xiao-Hua; Jiang, Na; Yao, Ping-Bo; Zheng, Xi-Long; Cayabyab, Francisco S; Tang, Chao-Ke

    2014-02-15

    Post-lysosomal cholesterol trafficking is an important, but poorly understood process that is essential to maintain lipid homeostasis. Niemann-Pick type C1 (NPC1), an integral membrane protein on the limiting membrane of late endosome/lysosome (LE/LY), is known to accept cholesterol from NPC2 and then mediate cholesterol transport from LE/LY to endoplasmic reticulum (ER) and plasma membrane in a vesicle- or oxysterol-binding protein (OSBP)-related protein 5 (ORP5)-dependent manner. Mutations in the NPC1 gene can be found in the majority of NPC patients, who accumulate massive amounts of cholesterol and other lipids in the LE/LY due to a defect in intracellular lipid trafficking. Liver X receptor (LXR) is the major positive regulator of NPC1 expression. Atherosclerosis is the pathological basis of coronary heart disease, one of the major causes of death worldwide. NPC1 has been shown to play a critical role in the atherosclerotic progression. In this review, we have summarized the role of NPC1 in regulating intracellular cholesterol trafficking and atherosclerosis.

  13. Small Peptide Recognition Sequence for Intracellular Sorting

    PubMed Central

    Pandey, Kailash N.

    2010-01-01

    Increasing evidence indicate that complex arrays of short signals and recognition peptide sequence ensure accurate trafficking and distribution of transmembrane receptors and/or proteins and their ligands into intracellular compartments. Internalization and subsequent trafficking of cell-surface receptors into the cell interior is mediated by specific short-sequence peptide signals within the cytoplasmic domains of these receptor proteins. The short signals usually consist of small linear amino acid sequences, which are recognized by adaptor coat proteins along the endocytic and sorting pathways. In recent years, much has been learned about the function and mechanisms of endocytic pathways responsible for the trafficking and molecular sorting of membrane receptors and their ligands into intracellular compartments, however, the significance and scope of the short sequence motifs in these cellular events is not well understood. Here a particular emphasis has been given to the functions of short-sequence signal motifs responsible for the itinerary and destination of membrane receptors and proteins moving into subcellular compartments. PMID:20817434

  14. Quantitative proteomics of intracellular Porphyromonas gingivalis

    PubMed Central

    Xia, Qiangwei; Wang, Tiansong; Taub, Fred; Park, Yoonsuk; Capestany, Cindy A.; Lamont, Richard J.; Hackett, Murray

    2009-01-01

    Whole-cell quantitative proteomic analyses were conducted to investigate the change from an extracellular to intracellular lifestyle for Porphyromonas gingivalis, a Gram-negative intracellular pathogen associated with periodontal disease. Global protein abundance data for P. gingivalis strain ATCC 33277 internalized for 18 hours within human gingival epithelial cells and controls exposed to gingival cell culture medium were obtained at sufficient coverage to provide strong evidence that these changes are profound. A total of 385 proteins were over-expressed in internalized P. gingivalis relative to controls; 240 proteins were shown to be under-expressed. This represented in total about 28% of the protein encoding ORFs annotated for this organism, and slightly less than half of the proteins that were observed experimentally. Production of several proteases, including the classical virulence factors RgpA, RgpB, and Kgp, was decreased. A separate validation study was carried out in which a 16-fold dilution of the P. gingivalis proteome was compared to the undiluted sample in order to assess the quantitative false negative rate (all ratios truly alternative). Truly null (no change) abundance ratios from technical replicates were used to assess the rate of quantitative false positives over the entire proteome. A global comparison between the direction of abundance change observed and previously published bioinformatic gene pair predictions for P. gingivalis will assist with future studies of P. gingivalis gene regulation and operon prediction. PMID:17979175

  15. Mechanisms of cellular invasion by intracellular parasites.

    PubMed

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  16. Intracellularly Swollen Polypeptide Nanogel Assists Hepatoma Chemotherapy

    PubMed Central

    Shi, Bo; Huang, Kexin; Ding, Jianxun; Xu, Weiguo; Yang, Yu; Liu, Haiyan; Yan, Lesan; Chen, Xuesi

    2017-01-01

    Nowadays, chemotherapy is one of the principal modes of treatment for tumor patients. However, the traditional formulations of small molecule drugs show short circulation time, low tumor selectivity, and high toxicity to normal tissues. To address these problems, a facilely prepared, and pH and reduction dual-responsive polypeptide nanogel was prepared for selectively intracellular delivery of chemotherapy drug. As a model drug, doxorubicin (DOX) was loaded into the nanogel through a sequential dispersion and dialysis technique, resulting in a high drug loading efficiency (DLE) of 96.7 wt.%. The loading nanogel, defined as NG/DOX, exhibited a uniform spherical morphology with a mean hydrodynamic radius of 58.8 nm, pH and reduction dual-triggered DOX release, efficient cell uptake, and cell proliferation inhibition in vitro. Moreover, NG/DOX exhibited improved antitumor efficacy toward H22 hepatoma-bearing BALB/c mouse model compared with free DOX·HCl. Histopathological and immunohistochemical analyses were implemented to further confirm the tumor suppression activity of NG/DOX. Furthermore, the variations of body weight, histopathological morphology, bone marrow cell micronucleus rate, and white blood cell count verified that NG/DOX showed excellent safety in vivo. With these excellent properties in vitro and in vivo, the pH and reduction dual-responsive polypeptide nanogel exhibits great potential for on-demand intracellular delivery of antitumor drug, and holds good prospect for future clinical application. PMID:28255361

  17. Intracellular Calcium Dysregulation: Implications for Alzheimer's Disease

    PubMed Central

    Magi, Simona; Castaldo, Pasqualina; Macrì, Maria Loredana; Maiolino, Marta; Matteucci, Alessandra; Bastioli, Guendalina; Gratteri, Santo; Lariccia, Vincenzo

    2016-01-01

    Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by progressive neuronal loss. AD is associated with aberrant processing of the amyloid precursor protein, which leads to the deposition of amyloid-β plaques within the brain. Together with plaques deposition, the hyperphosphorylation of the microtubules associated protein tau and the formation of intraneuronal neurofibrillary tangles are a typical neuropathological feature in AD brains. Cellular dysfunctions involving specific subcellular compartments, such as mitochondria and endoplasmic reticulum (ER), are emerging as crucial players in the pathogenesis of AD, as well as increased oxidative stress and dysregulation of calcium homeostasis. Specifically, dysregulation of intracellular calcium homeostasis has been suggested as a common proximal cause of neural dysfunction in AD. Aberrant calcium signaling has been considered a phenomenon mainly related to the dysfunction of intracellular calcium stores, which can occur in both neuronal and nonneuronal cells. This review reports the most recent findings on cellular mechanisms involved in the pathogenesis of AD, with main focus on the control of calcium homeostasis at both cytosolic and mitochondrial level. PMID:27340665

  18. Intracellular accumulation of norfloxacin in Mycobacterium smegmatis.

    PubMed

    Corti, S; Chevalier, J; Cremieux, A

    1995-11-01

    To evaluate the intracellular accumulation of norfloxacin in mycobacteria, two methods were used with Mycobacterium smegmatis. A radiometric method (K. V. Cundy, C. E. Fasching, K. E. Willard, and L. R. Peterson, J. Antimicrob. Chemother. 28:491-497, 1991) was used without great modification, but the fluorometric method (P. G. S. Mortimer and L. J. V. Piddock, J. Antimicrob. Chemother. 28:639-653, 1991) was changed considerably. Indeed, adsorption of the quinolone to the bacterial surface was characterized by measuring the level of accumulation of 0 degree C. Taking into account the adsorption, the pH of the washing buffer was increased from 7.0 to 9.0 to improve the desorption of norfloxacin from the cell surface. Both the fluorometric method, with the technical improvement, and the radiometric method could be used to estimate the intracellular accumulation of norfloxacin, which resulted from the difference between the whole uptake measured at 37 degrees C and the adsorption measured at 0 degrees C. A total of 35 ng of norfloxacin per mg of cells (dry weight) penetrated into the M. smegmatis cell, and the steady state was achieved in 5 min. Use of inhibitors of the proton motive force revealed that transport of norfloxacin was energy independent. Thus, the same mechanisms of quinolone accumulation that occur in eubacteria seem to occur in mycobacteria, at least in M. smegmatis.

  19. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.

    PubMed

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-10-20

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design.

  20. Intracellular distribution of microinjected antisense oligonucleotides.

    PubMed

    Leonetti, J P; Mechti, N; Degols, G; Gagnor, C; Lebleu, B

    1991-04-01

    Antisense oligomers constitute an attractive class of specific tools for genetic analysis and for potential therapeutic applications. Targets with different cellular locations have been described, such as mRNA translation initiation sites, pre-mRNA splicing sites, or the genes themselves. However the mechanism(s) of action and the intracellular distribution of antisense oligomers remain poorly understood. Antisense oligomers conjugated with various fluorochromes or with BrdUrd were microinjected into the cytoplasm of somatic cells, and their cellular distribution was monitored by fluorescence microscopy in fixed and nonfixed cells. A fast translocation in the nuclei and a concentration on nuclear structures were observed whatever probe was used. Nuclear transport occurs by diffusion since it is not affected by depletion of the intracellular ATP pool, temperature, or excess unlabeled oligomer. Accumulation of the oligomers in the nuclei essentially takes place on a set of proteins preferentially extracted between 0.2 M and 0.4 M NaCl as revealed by crosslinking of photosensitive oligomers. The relationship between nuclear location of antisense oligomers and their mechanism of action remains to be ascertained and could be of major interest in the design of more efficient antisense molecules.

  1. Intracellular distribution of microinjected antisense oligonucleotides.

    PubMed Central

    Leonetti, J P; Mechti, N; Degols, G; Gagnor, C; Lebleu, B

    1991-01-01

    Antisense oligomers constitute an attractive class of specific tools for genetic analysis and for potential therapeutic applications. Targets with different cellular locations have been described, such as mRNA translation initiation sites, pre-mRNA splicing sites, or the genes themselves. However the mechanism(s) of action and the intracellular distribution of antisense oligomers remain poorly understood. Antisense oligomers conjugated with various fluorochromes or with BrdUrd were microinjected into the cytoplasm of somatic cells, and their cellular distribution was monitored by fluorescence microscopy in fixed and nonfixed cells. A fast translocation in the nuclei and a concentration on nuclear structures were observed whatever probe was used. Nuclear transport occurs by diffusion since it is not affected by depletion of the intracellular ATP pool, temperature, or excess unlabeled oligomer. Accumulation of the oligomers in the nuclei essentially takes place on a set of proteins preferentially extracted between 0.2 M and 0.4 M NaCl as revealed by crosslinking of photosensitive oligomers. The relationship between nuclear location of antisense oligomers and their mechanism of action remains to be ascertained and could be of major interest in the design of more efficient antisense molecules. Images PMID:1849273

  2. Intracellular accumulation of norfloxacin in Mycobacterium smegmatis.

    PubMed Central

    Corti, S; Chevalier, J; Cremieux, A

    1995-01-01

    To evaluate the intracellular accumulation of norfloxacin in mycobacteria, two methods were used with Mycobacterium smegmatis. A radiometric method (K. V. Cundy, C. E. Fasching, K. E. Willard, and L. R. Peterson, J. Antimicrob. Chemother. 28:491-497, 1991) was used without great modification, but the fluorometric method (P. G. S. Mortimer and L. J. V. Piddock, J. Antimicrob. Chemother. 28:639-653, 1991) was changed considerably. Indeed, adsorption of the quinolone to the bacterial surface was characterized by measuring the level of accumulation of 0 degree C. Taking into account the adsorption, the pH of the washing buffer was increased from 7.0 to 9.0 to improve the desorption of norfloxacin from the cell surface. Both the fluorometric method, with the technical improvement, and the radiometric method could be used to estimate the intracellular accumulation of norfloxacin, which resulted from the difference between the whole uptake measured at 37 degrees C and the adsorption measured at 0 degrees C. A total of 35 ng of norfloxacin per mg of cells (dry weight) penetrated into the M. smegmatis cell, and the steady state was achieved in 5 min. Use of inhibitors of the proton motive force revealed that transport of norfloxacin was energy independent. Thus, the same mechanisms of quinolone accumulation that occur in eubacteria seem to occur in mycobacteria, at least in M. smegmatis. PMID:8585727

  3. [Intracellular signaling mechanisms in thyroid cancer].

    PubMed

    Mondragón-Terán, Paul; López-Hernández, Luz Berenice; Gutiérrez-Salinas, José; Suárez-Cuenca, Juan Antonio; Luna-Ceballos, Rosa Isela; Erazo Valle-Solís, Aura

    2016-01-01

    Thyroid cancer is the most common malignancy of the endocrine system, the papillary variant accounts for 80-90% of all diagnosed cases. In the development of papillary thyroid cancer, BRAF and RAS genes are mainly affected, resulting in a modification of the system of intracellular signaling proteins known as «protein kinase mitogen-activated» (MAPK) which consist of «modules» of internal signaling proteins (Receptor/Ras/Raf/MEK/ERK) from the cell membrane to the nucleus. In thyroid cancer, these signanling proteins regulate diverse cellular processes such as differentiation, growth, development and apoptosis. MAPK play an important role in the pathogenesis of thyroid cancer as they are used as molecular biomarkers for diagnostic, prognostic and as possible therapeutic molecular targets. Mutations in BRAF gene have been correlated with poor response to treatment with traditional chemotherapy and as an indicator of poor prognosis. To review the molecular mechanisms involved in intracellular signaling of BRAF and RAS genes in thyroid cancer. Molecular therapy research is in progress for this type of cancer as new molecules have been developed in order to inhibit any of the components of the signaling pathway (RET/PTC)/Ras/Raf/MEK/ERK; with special emphasis on the (RET/PTC)/Ras/Raf section, which is a major effector of ERK pathway. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  4. Strategies for Intracellular Survival of Burkholderia pseudomallei

    PubMed Central

    Allwood, Elizabeth M.; Devenish, Rodney J.; Prescott, Mark; Adler, Ben; Boyce, John D.

    2011-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high mortality that is prevalent in tropical regions of the world. A key component of the pathogenesis of melioidosis is the ability of B. pseudomallei to enter, survive, and replicate within mammalian host cells. For non-phagocytic cells, bacterial adhesins have been identified both on the bacterial surface and associated with Type 4 pili. Cell invasion involves components of one or more of the three Type 3 Secretion System clusters, which also mediate, at least in part, the escape of bacteria from the endosome into the cytoplasm, where bacteria move by actin-based motility. The mechanism of actin-based motility is not clearly understood, but appears to differ from characterized mechanisms in other bacterial species. A small proportion of intracellular bacteria is targeted by host cell autophagy, involving direct recruitment of LC3 to endosomes rather than through uptake by canonical autophagosomes. However, the majority of bacterial cells are able to circumvent autophagy and other intracellular defense mechanisms such as the induction of inducible nitric oxide synthase, and then replicate in the cytoplasm and spread to adjacent cells via membrane fusion, resulting in the formation of multi-nucleated giant cells. A potential role for host cell ubiquitin in the autophagic response to bacterial infection has recently been proposed. PMID:22007185

  5. Intracellular trafficking of hybrid gene delivery vectors.

    PubMed

    Keswani, Rahul K; Lazebnik, Mihael; Pack, Daniel W

    2015-06-10

    Viral and non-viral gene delivery vectors are in development for human gene therapy, but both exhibit disadvantages such as inadequate efficiency, lack of cell-specific targeting or safety concerns. We have recently reported the design of hybrid delivery vectors combining retrovirus-like particles with synthetic polymers or lipids that are efficient, provide sustained gene expression and are more stable compared to native retroviruses. To guide further development of this promising class of gene delivery vectors, we have investigated their mechanisms of intracellular trafficking. Moloney murine leukemia virus-like particles (M-VLPs) were complexed with chitosan (Chi) or liposomes (Lip) comprising DOTAP, DOPE and cholesterol to form the hybrid vectors (Chi/M-VLPs and Lip/M-VLPs, respectively). Transfection efficiency and cellular internalization of the vectors were quantified in the presence of a panel of inhibitors of various endocytic pathways. Intracellular transport and trafficking kinetics of the hybrid vectors were dependent on the synthetic component and used a combination of clathrin- and caveolar-dependent endocytosis and macropinocytosis. Chi/M-VLPs were slower to transfect compared to Lip/M-VLPs due to the delayed detachment of the synthetic component. The synthetic component of hybrid gene delivery vectors plays a significant role in their cellular interactions and processing and is a key parameter for the design of more efficient gene delivery vehicles.

  6. Intracellular accumulation of ethanol in yeast

    SciTech Connect

    Loueiro, V.; Ferreira, H.G.

    1983-09-01

    Ethanol produced in the course of a batch fermentation by Saccharomyces cerevisiae or added from the outside, affects adversely the specific rate of growth of the yeast population, its viability, its specific rate of fermentation, and the specific rates of the uptake of sugar and amino acids. The underlying mechanisms are many and include irreversible denaturation and hyperbolic noncompetitive inhibition of glycolytic enzymes, the exponential noncompetitive inhibition of glucose, maltose, and ammonium transport, the depression of the optimum and the maximum temperature for growth, the increase of the minimum temperature for growth, and the enhancement of thermal death and petite mutation. Nagodawithana and Steinkraus reported that added ethanol was less toxic for S. cerevisiae than ethanol produced by the yeast. The death rates were lower in the presence of added ethanol than those measured at similar external ethanol concentrations endogenously produced. They proposed that, due to an unbalance between the rates of production and the net outflux of ethanol, there would be an intracellular accumulation of ethanol which in turn would explain the apparently greater inhibitory potency of endogenously produced ethanol present in the medium. This hypothesis was supported by the findings of several authors who reported that the intracellular concentration of ethanol, in the course of batch fermentation, is much higher than its concentration in the extracellular medium. The present work is an attempt to clarify this matter. (Refs. 32).

  7. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics

    PubMed Central

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-01-01

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. PMID:26488648

  8. Trade-Offs of Escherichia coli Adaptation to an Intracellular Lifestyle in Macrophages

    PubMed Central

    Thompson, J. A.; Proença, J. T.; Gordo, I.

    2016-01-01

    The bacterium Escherichia coli exhibits remarkable genomic and phenotypic variation, with some pathogenic strains having evolved to survive and even replicate in the harsh intra-macrophage environment. The rate and effects of mutations that can cause pathoadaptation are key determinants of the pace at which E. coli can colonize such niches and become pathogenic. We used experimental evolution to determine the speed and evolutionary paths undertaken by a commensal strain of E. coli when adapting to intracellular life. We estimated the acquisition of pathoadaptive mutations at a rate of 10−6 per genome per generation, resulting in the fixation of more virulent strains in less than a hundred generations. Whole genome sequencing of independently evolved clones showed that the main targets of intracellular adaptation involved loss of function mutations in genes implicated in the assembly of the lipopolysaccharide core, iron metabolism and di- and tri-peptide transport, namely rfaI, fhuA and tppB, respectively. We found a substantial amount of antagonistic pleiotropy in evolved populations, as well as metabolic trade-offs, commonly found in intracellular bacteria with reduced genome sizes. Overall, the low levels of clonal interference detected indicate that the first steps of the transition of a commensal E. coli into intracellular pathogens are dominated by a few pathoadaptive mutations with very strong effects. PMID:26752723

  9. Trade-Offs of Escherichia coli Adaptation to an Intracellular Lifestyle in Macrophages.

    PubMed

    Azevedo, M; Sousa, A; Moura de Sousa, J; Thompson, J A; Proença, J T; Gordo, I

    2016-01-01

    The bacterium Escherichia coli exhibits remarkable genomic and phenotypic variation, with some pathogenic strains having evolved to survive and even replicate in the harsh intra-macrophage environment. The rate and effects of mutations that can cause pathoadaptation are key determinants of the pace at which E. coli can colonize such niches and become pathogenic. We used experimental evolution to determine the speed and evolutionary paths undertaken by a commensal strain of E. coli when adapting to intracellular life. We estimated the acquisition of pathoadaptive mutations at a rate of 10-6 per genome per generation, resulting in the fixation of more virulent strains in less than a hundred generations. Whole genome sequencing of independently evolved clones showed that the main targets of intracellular adaptation involved loss of function mutations in genes implicated in the assembly of the lipopolysaccharide core, iron metabolism and di- and tri-peptide transport, namely rfaI, fhuA and tppB, respectively. We found a substantial amount of antagonistic pleiotropy in evolved populations, as well as metabolic trade-offs, commonly found in intracellular bacteria with reduced genome sizes. Overall, the low levels of clonal interference detected indicate that the first steps of the transition of a commensal E. coli into intracellular pathogens are dominated by a few pathoadaptive mutations with very strong effects.

  10. Intracellular Ascorbate Prevents Endothelial Barrier Permeabilization by Thrombin*

    PubMed Central

    Parker, William H.; Qu, Zhi-chao; May, James M.

    2015-01-01

    Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism. PMID:26152729

  11. Intracellular Ascorbate Prevents Endothelial Barrier Permeabilization by Thrombin.

    PubMed

    Parker, William H; Qu, Zhi-chao; May, James M

    2015-08-28

    Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism.

  12. Bioreducible Lipid-like Nanoparticles for Intracellular Protein Delivery

    NASA Astrophysics Data System (ADS)

    Arellano, Carlos Luis

    Protein-based therapy is one of the most direct ways to manipulate cell function and treat human disease. Although protein therapeutics has made its way to clinical practice, with five of the top fifteen global pharmaceuticals being peptide or protein-based drugs, one common limitation is that the effects of protein therapy are only achieved through the targeting of cell surface receptors and intracellular domains. Due to the impermeability of the cell membrane to most foreign materials, entire classes of potentially therapeutic proteins cannot thoroughly be studied without a safe and efficient method of transporting proteins into the cytosol. We report the use of a combinatorially-designed bioreducible lipid-like material (termed "lipidoid") - based protein delivery platform for the transfection of human cancer cell lines. Lipidoid nanoparticles are synthesized through a thin film dispersion method. The degradation of the bioreducible nanoparticles was observed when exposed to glutathione, a highly reductive compound present in the cytosol. We demonstrate that the nanoparticles are capable of transfecting a dose-dependent concentration of our model protein, beta-galactosidase into HeLa cells. Furthermore, formulations of the lipidoid containing the cytotoxic proteins saporin and RNase-A are both capable of inhibiting tumor cell proliferation as observed in in vitro treatment of different human cancer cell lines. There was no observed loss in protein activity after lyophilization and long--term storage, indicating the potential of pre-clinical applications. Overall, we demonstrate an effective approach to protein formulation and intracellular delivery. We believe that our formulations will lead to the study of a whole class of previously untapped therapeutics that may generate new solutions for previously untreatable diseases.

  13. Intracellular delivery of nanocarriers and targeting to subcellular organelles.

    PubMed

    Jhaveri, Aditi; Torchilin, Vladimir

    2016-01-01

    Recent trends in drug delivery indicate a steady increase in the use of targeted therapeutics to enhance the specific delivery of biologically active payloads to diseased tissues while avoiding their off-target effects. However, in most cases, the distribution of therapeutics inside cells and their targeting to intracellular targets still presents a formidable challenge. The main barrier to intracellular delivery is the translocation of therapeutic molecules across the cell membrane, and ultimately through the membrane of their intracellular target organelles. Another prerequisite for an efficient intracellular localization of active molecules is their escape from the endocytic pathway. Pharmaceutical nanocarriers have demonstrated substantial advantages for the delivery of therapeutics and offer elegant platforms for intracellular delivery. They can be engineered with both intracellular and organelle-specific targeting moieties to deliver encapsulated or conjugated cargoes to specific sub-cellular targets. In this review, we discuss important aspects of intracellular drug targeting and delivery with a focus on nanocarriers modified with various ligands to specifically target intracellular organelles. Intracellular delivery affords selective localization of molecules to their target site, thus maximizing their efficacy and safety. The advent of novel nanocarriers and targeting ligands as well as exploration of alternate routes for the intracellular delivery and targeting has prompted extensive research, and promises an exciting future for this field.

  14. Sigma-1 receptor: the novel intracellular target of neuropsychotherapeutic drugs.

    PubMed

    Hayashi, Teruo

    2015-01-01

    Sigma-1 receptor ligands have been long expected to serve as drugs for treatment of human diseases such as neurodegenerative disorders, depression, idiopathic pain, drug abuse, and cancer. Recent research exploring the molecular function of the sigma-1 receptor started unveiling underlying mechanisms of the therapeutic activity of those ligands. Via the molecular chaperone activity, the sigma-1 receptor regulates protein folding/degradation, ER/oxidative stress, and cell survival. The chaperone activity is activated or inhibited by synthetic sigma-1 receptor ligands in an agonist-antagonist manner. Sigma-1 receptors are localized at the endoplasmic reticulum (ER) membranes that are physically associated with the mitochondria (MAM: mitochondria-associated ER membrane). In specific types of neurons (e.g., those at the spinal cord), sigma-1 receptors are also clustered at ER membranes that juxtapose postsynaptic plasma membranes. Recent studies indicate that sigma-1 receptors, partly in sake of its unique subcellular localization, regulate the mitochondria function that involves bioenergetics and free radical generation. The sigma-1 receptor may thus provide an intracellular drug target that enables controlling ER stress and free radical generation under pathological conditions.

  15. Imaging intracellular protein dynamics by spinning disk confocal microscopy

    PubMed Central

    Stehbens, Samantha; Pemble, Hayley; Murrow, Lindsay; Wittmann, Torsten

    2012-01-01

    The palette of fluorescent proteins has grown exponentially over the last decade, and as a result live imaging of cells expressing fluorescently tagged proteins is becoming more and more main stream. Spinning disk confocal microscopy (SDC) is a high speed optical sectioning technique, and a method of choice to observe and analyze intracellular fluorescent protein dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low noise scientific grade cooled charged-coupled device (CCD) cameras, and can achieve frame rates of up 1000 frames per second. In this chapter we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy, and provide a rationale for specific design choices. We also give guidelines how other imaging techniques such as total internal reflection (TIRF) microscopy or spatially controlled photoactivation can be coupled with SDC imaging, and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction. PMID:22264541

  16. Intracellular pH in Sperm Physiology

    PubMed Central

    Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L.; Darszon, Alberto

    2014-01-01

    Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca2+ channel; Slo3, a K+ channel; the sperm-specific Na+/H+ exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction. PMID:24887564

  17. Impaired intracellular trafficking defines early Parkinson's disease.

    PubMed

    Hunn, Benjamin H M; Cragg, Stephanie J; Bolam, J Paul; Spillantini, Maria-Grazia; Wade-Martins, Richard

    2015-03-01

    Parkinson's disease (PD) is an insidious and incurable neurodegenerative disease, and represents a significant cost to individuals, carers, and ageing societies. It is defined at post-mortem by the loss of dopamine neurons in the substantia nigra together with the presence of Lewy bodies and Lewy neurites. We examine here the role of α-synuclein and other cellular transport proteins implicated in PD and how their aberrant activity may be compounded by the unique anatomy of the dopaminergic neuron. This review uses multiple lines of evidence from genetic studies, human tissue, induced pluripotent stem cells, and refined animal models to argue that prodromal PD can be defined as a disease of impaired intracellular trafficking. Dysfunction of the dopaminergic synapse heralds trafficking impairment.

  18. Intracellular calcium in canine muscle biopsies.

    PubMed

    Valentine, B A; Cooper, B J; Gallagher, E A

    1989-04-01

    Intracellular staining for calcium was studied in muscle biopsies from 15 dogs by the alizarin red S (ARS) stain. Rare positive fibres were present in normal muscle and in denervation atrophy. The percentage of positive fibres was slightly increased in polymyositis, dermatomyositis and canine temporal/masseter myositis and markedly increased in progressive muscular dystrophy. Calcium-positive fibres were usually so-called large-dark (hypercontracted) fibres or necrotic fibres, although there was occasional staining of normal and atrophied fibres. These results indicate the probable involvement of calcium in muscle injury in canine inflammatory myopathies and in canine muscular dystrophy. In addition, use of the ARS stain appears to be useful for detecting the earliest lesions of acute muscle fibre injury.

  19. Intracellular dynamics with the phase microscope Airyscan

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.; Kufal, Georgy E.

    1997-12-01

    Investigation of intracellular dynamics of Allium cepa inner epidermal cells are described. The applicability of the method for quantitative estimation of spatio-temporal phase fluctuations and the effect due to external factors is discussed. The analysis of time-sampled series allows one to detect the regions of various motility in cytoplasm. The intense Fourier-spectra harmonics in 0.2 - 8 Hz interval were observed inside a cell wall and cytoplasm. Regularly spaced 2- to 4-s long batches of 100-ms pulses at cell-wall sites are recorded. The phase-fluctuation intensity decreased and the frequencies of certain harmonics were shifted with lowering temperature. The advantages and specific features of the method are discussed.

  20. [Measurement of intracellular pH].

    PubMed

    Hanaoka, K; Imai, M; Yoshitomi, K

    1992-09-01

    Since various cellular processes depend on changes in pH, the regulation of intracellular pH (pHi) is important both for the individual cell and for the organism. The mechanisms of the regulation of pHi can be investigated by monitoring pHi. In this report, we discuss the four major techniques available for measuring pHi, which are 1) Distribution of weak acids and bases, 2) pH-sensitive microelectrodes, 3) pH-sensitive dyes, and 4) Nuclear magnetic resonance. Among four techniques, the advantage of the microelectrode approach is that it can monitor membrane potential at the same time and be applied to a single cell. The dye technique is a relative new developing technique, which has lots of advantages. It is easy to use, and is capable of monitoring rapid pHi changes, and being applied to a smaller cell, or a single cell.

  1. Myometrial oxytocin receptor expression and intracellular pathways.

    PubMed

    Yulia, A; Johnson, M R

    2014-06-01

    Oxytocin (OT) signalling plays a fundamental role in the mechanisms of parturition. OT is one of the most frequently used drugs in obstetrics, promoting uterine contractions for labor induction and augmentation and to prevent postpartum hemorrhage (PPH). Expression of the oxytocin receptor (OTR) in the human myometrium is tightly regulated during pregnancy and its levels have been shown to peak upon labour onset and to fall sharply in advanced labour and the postpartum period, when the uterus become refractive to OT. However, uterine sensitivity to OT varies between pregnant women, probably reflecting differences in their myometrial OTR expression. Control of OTR expression is mediated by a combination of steroid hormone stimulation, stretch, and inflammation. This review summarises current knowledge regarding the complex regulation of myometrial OTR expression and its associated intracellular signaling pathways.

  2. Glycosaminoglycans: Sorting determinants in intracellular protein traffic.

    PubMed

    Mihov, Deyan; Spiess, Martin

    2015-11-01

    Intracellular transport of proteins to their appropriate destinations is crucial for the maintenance of cellular integrity and function. Sorting information is contained either directly in the amino acid sequence or in a protein's post-translational modifications. Glycosaminoglycans (GAGs) are characteristic modifications of proteoglycans. GAGs are long unbranched polysaccharide chains with unique structural and functional properties also contributing to protein sorting in various ways. By deletion or insertion of GAG attachment sites it has been shown that GAGs affect polarized sorting in epithelial cells, targeting to and storage in secretory granules, and endocytosis. Most recently, the role of GAGs as signals for rapid trans-Golgi-to-cell surface transport, dominant over the cytosolic sorting motifs in the core protein, was demonstrated. Here, we provide an overview on existing data on the roles of GAGs on protein and proteoglycan trafficking.

  3. INTRACELLULAR LOCALIZATION OF ENZYMES IN SPLEEN

    PubMed Central

    Eichel, Herbert J.; Roth, Jay S.

    1962-01-01

    Some properties of rat spleen ribonuclease have been studied, and the intracellular distribution of the enzyme and ribonucleic acid have been presented. Spleen ribonuclease exhibits maximal activity at pH 5.8, and although there is some evidence for the presence of an enzyme with an optimum at pH 7.0, it is not conclusive. The enzyme is concentrated primarily in the mitochondrial fraction, but significant quantities occur in the supernatant fluid. The latter contains ribonuclease inhibitor similar to that found in liver. The effects of whole body x-irradiation, magnesium ion, substrate concentration, type of buffer, presence of p-chloromercuriphenylsulfonic acid, deoxycholate, and Triton X-100 on ribonuclease activity are examined. PMID:13889545

  4. An intracellular anion channel critical for pigmentation.

    PubMed

    Bellono, Nicholas W; Escobar, Iliana E; Lefkovith, Ariel J; Marks, Michael S; Oancea, Elena

    2014-12-16

    Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation.

  5. Intracellular mechanisms of lymphoid cell activation.

    PubMed

    Fresa, K; Hameed, M; Cohen, S

    1989-01-01

    Activation of lymphocytes for proliferation is associated with the appearance of an intracellular factor (ADR) that can induce DNA synthesis in isolated quiescent nuclei. ADR plays a role in the sequence of intracellular events leading to activation for IL-2-mediated proliferation. Because of the nature of the defining assay, the locus of ADR action appears to be near the terminal end of the transduction pathway. Interestingly, although lymphocytes from aged individuals respond poorly to proliferative stimuli, they appear to produce normal to above-normal levels of ADR. In contrast, their nuclei are only poorly responsive to stimulation by ADR. Preparations rich in ADR activity have proteolytic activity as well. In addition, aprotinin, as well as a variety of other protease inhibitors, suppresses ADR-induced DNA synthesis in a dose-dependent manner. ADR activity can be removed from active extracts by absorption with aprotinin-conjugated agarose beads, and can be removed from the beads by elution at pH 5.0. This latter suggests that ADR itself is a protease. However, its endogenous substrate is not yet known. We have also detected an inhibitor of ADR activity in the cytoplasm of resting lymphocytes. This is a heat-stable protein of approximately 60,000 Da. In addition to suppressing the interaction of ADR with quiescent nuclei, the inhibitor can suppress DNA synthetic activity of replicative nuclei isolated from mitogen-activated lymphocytes. Interestingly, these preparations had little or no activity on replicative nuclei derived from several neoplastic cell lines. The resistance of tumor cell nuclei to spontaneously occurring cytoplasmic inhibitory factors such as the one described here may provide one explanation for the loss of growth control in neoplastic cells.

  6. Intracellular trafficking of GABA(A) receptors.

    PubMed

    Barnes, E M

    2000-02-11

    Some of the mechanisms that control the intracellular trafficking of GABA(A) receptors have recently been described. Following the synthesis of alpha, beta, and gamma subunits in the endoplasmic reticulum, ternary receptor complexes assemble slowly and are inefficiently inserted into surface membranes of heterologous cells. While beta3, beta4, and gamma2S subunits appear to contain polypeptide sequences that alone are sufficient for surface targeting, these sequences are neither conserved nor essential for surface expression of heteromeric GABA(A) receptors formed from alpha1beta or alpha1betagamma subunits. At the neuronal surface, native GABA(A) receptor clustering and synaptic targeting require a gamma2 subunit and the participation of gephyrin, a clustering protein for glycine receptors. A linker protein, such as the GABA(A) receptor associated protein (GABARAP), may be necessary for the formation of GABA(A) receptor aggregates containing gephyrin. A substantial fraction of surface receptors are sequestered by endocytosis, another process which apparently requires a GABA(A) receptor gamma2 subunit. In heterologous cells, constitutive endocytosis seems to predominate while, in cortical neurons, internalization is evoked when receptors are occupied by GABA(A) agonists. After constitutive endocytosis, receptors are relatively stable and can be rapidly recycled to the cell surface, a process that may be regulated by protein kinase C. On the other hand, a portion of the intracellular GABA(A) receptors derived from ligand-dependent endocytosis is apparently degraded. The clustering of GABA(A) receptors at synapses and at coated pits are two mechanisms that may compete for a pool of diffusable receptors, providing a model for plasticity at inhibitory synapses.

  7. Spatiotemporal intracellular calcium dynamics during cardiac alternans

    PubMed Central

    Restrepo, Juan G.; Karma, Alain

    2009-01-01

    Cellular calcium transient alternans are beat-to-beat alternations in the peak cytosolic calcium concentration exhibited by cardiac cells during rapid electrical stimulation or under pathological conditions. Calcium transient alternans promote action potential duration alternans, which have been linked to the onset of life-threatening ventricular arrhythmias. Here we use a recently developed physiologically detailed mathematical model of ventricular myocytes to investigate both stochastic and deterministic aspects of intracellular calcium dynamics during alternans. The model combines a spatially distributed description of intracellular calcium cycling, where a large number of calcium release units are spatially distributed throughout the cell, with a full set of ionic membrane currents. The results demonstrate that ion channel stochasticity at the level of single calcium release units can influence the whole-cell alternans dynamics by causing phase reversals over many beats during fixed frequency pacing close to the alternans bifurcation. They also demonstrate the existence of a wide range of dynamical states. Depending on the sign and magnitude of calcium-voltage coupling, calcium alternans can be spatially synchronized or desynchronized, in or out of phase with action potential duration alternans, and the node separating out-of-phase regions of calcium alternans can be expelled from or trapped inside the cell. This range of states is found to be larger than previously anticipated by including a robust global attractor where calcium alternans can be spatially synchronized but out of phase with action potential duration alternans. The results are explained by a combined theoretical analysis of alternans stability and node motion using general iterative maps of the beat-to-beat dynamics and amplitude equations. PMID:19792040

  8. Intracellular angiotensin-(1–12) changes the electrical properties of intact cardiac muscle

    PubMed Central

    Dell’Itallia, L. J.; Varagic, J.; Ferrario, C. M.

    2016-01-01

    In the present work, the influence of intracellular injection of angiotensin-(1–12) [Ang-(1–12)] on the electrical properties of the intact left ventricle of Wistar Kyoto rats was investigated with electrophysiological methods. Particular attention was given to the role of chymostatin on the effect of the peptide. The results indicated that intra-cellular administration of the peptide elicited a depolarization of the surface cell membrane and an increase of duration of the action potential followed by the generation of early afterdepolarizations. The increment of action potential duration caused by Ang-(1–12) (100 nM) was due to a decrease of total potassium current recorded from single cardiomyocytes using the whole cell configuration of pCAMP. The decrease of potassium current was related to the activation of protein kinase C (PKC) because the specific inhibitor of kinase C, Bis-1 (10−9 M), abolished Ang-(1–12) effects on the potassium current. The question of whether the effect of Ang-(1–12) was related to the formation of Ang II by chymase was investigated. The results revealed that the intracellular administration of chymostatin, a chymase inhibitor (10−9 M) abolished the effect of intracellular Ang-(1–12) on the potassium current. Moreover, intracellular Ang II (100 nM), by itself, reduced the potassium current, an effect decreased by intracellular valsartan (100 nM). Valsartan (10–9 M) dialyzed into the cell abolished the effect of Ang-(1–12) (100 nM). These observations demonstrate that the effect of Ang-(1–12) on potassium current was related to the formation of Ang II and that the peptide has arrhythmogenic properties. PMID:27590241

  9. Metabolic profiling of Klebsiella oxytoca: evaluation of methods for extraction of intracellular metabolites using UPLC/Q-TOF-MS.

    PubMed

    Park, Changhun; Yun, Seokhun; Lee, Sang Yup; Park, Kyungmoon; Lee, Jinwon

    2012-06-01

    The global pool of intracellular metabolites is a reflection of all the metabolic functions of an organism. In the absence of in situ methods capable of directly measuring metabolite pools, intracellular metabolite measurements need to be performed after an extraction procedure. In this study, we evaluated the optimization of technologies for generation of a global metabolomics profile for intracellular metabolites in Klebsiella oxytoca. Intracellular metabolites of K. oxytoca were extracted at the early stationary phase using six different common extraction procedures, including cold methanol, boiling ethanol, methanol/chloroform combinations, hot water, potassium hydroxide, and perchloric acid. The metabolites were subsequently collected for further analysis, and intracellular metabolite concentration profiles were generated using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. During analysis, the stability of metabolites extracted using cold methanol was clearly higher than that obtained by other extraction methods. For the majority of metabolites, extracts generated in this manner exhibited the greatest recovery, with high reproducibility. Therefore, the use of cold ethanol was the best extraction method for attaining a metabolic profile. However, in another parallel extraction method, perchloric acid may also be required to maximize the range of metabolites recovered, particularly to extract glucose 1-phosphate and NADPH.

  10. Strategies of Intracellular Pathogens for Obtaining Iron from the Environment

    PubMed Central

    Leon-Sicairos, Nidia; Reyes-Cortes, Ruth; Guadrón-Llanos, Alma M.; Madueña-Molina, Jesús; Leon-Sicairos, Claudia; Canizalez-Román, Adrian

    2015-01-01

    Most microorganisms are destroyed by the host tissues through processes that usually involve phagocytosis and lysosomal disruption. However, some organisms, called intracellular pathogens, are capable of avoiding destruction by growing inside macrophages or other cells. During infection with intracellular pathogenic microorganisms, the element iron is required by both the host cell and the pathogen that inhabits the host cell. This minireview focuses on how intracellular pathogens use multiple strategies to obtain nutritional iron from the intracellular environment in order to use this element for replication. Additionally, the implications of these mechanisms for iron acquisition in the pathogen-host relationship are discussed. PMID:26120582

  11. Strategies of Intracellular Pathogens for Obtaining Iron from the Environment.

    PubMed

    Leon-Sicairos, Nidia; Reyes-Cortes, Ruth; Guadrón-Llanos, Alma M; Madueña-Molina, Jesús; Leon-Sicairos, Claudia; Canizalez-Román, Adrian

    2015-01-01

    Most microorganisms are destroyed by the host tissues through processes that usually involve phagocytosis and lysosomal disruption. However, some organisms, called intracellular pathogens, are capable of avoiding destruction by growing inside macrophages or other cells. During infection with intracellular pathogenic microorganisms, the element iron is required by both the host cell and the pathogen that inhabits the host cell. This minireview focuses on how intracellular pathogens use multiple strategies to obtain nutritional iron from the intracellular environment in order to use this element for replication. Additionally, the implications of these mechanisms for iron acquisition in the pathogen-host relationship are discussed.

  12. Effects of Chlorogenic Acid on Intracellular Calcium Regulation in Lysophosphatidylcholine-Treated Endothelial Cells.

    PubMed

    Jung, Hye-Jin; Im, Seung-Soon; Song, Dae-Kyu; Bae, Jae-Hoon

    2017-01-16

    Lysophosphatidylcholine (LPC) is a major phospholipid component of oxidized low-density lipoprotein (ox-LDL) and is implicated in its atherogenic activity. This study investigated the effects of LPC on cell viability, intracellular calcium homeostasis, and the protective mechanisms of chlorogenic acid (CGA) in human umbilical vein endothelial cells (HUVECs). LPC increased intracellular calcium ([Ca2+]i) by releasing Ca2+ from intracellular stores and via Ca2+ influx through store-operated channels (SOCs). LPC also increased the generation of reactive oxygen species (ROS) and decreased cell viability. The mRNA expression of Transient receptor potential canonical (TRPC) channel 1 was increased significantly by LPC treatment and suppressed by CGA. CGA inhibited LPC-induced Ca2+ influx and ROS generation, and restored cell viability. These results suggested that CGA inhibits SOC-mediated Ca2+ influx and ROS generation by attenuating TRPC1 expression in LPC-treated HUVECs. Therefore, CGA might protect endothelial cells against LPC injury, thereby inhibiting atherosclerosis.

  13. Spatially coordinated changes in intracellular rheology and extracellular force exertion during mesenchymal stem cell differentiation

    NASA Astrophysics Data System (ADS)

    McAndrews, Kathleen M.; McGrail, Daniel J.; Quach, Nhat D.; Dawson, Michelle R.

    2014-10-01

    The mechanical properties within the cell are regulated by the organization of the actin cytoskeleton, which is linked to the extracellular environment through focal adhesion proteins that transmit force. Chemical and mechanical stimuli alter the organization of cytoskeletal actin, which results in changes in cell shape, adhesion, and differentiation. By combining particle-tracking microrheology and traction force cytometry, we can monitor the mechanical properties of the actin meshwork and determine how changes in the intracellular network contribute to force generation. In this study, we investigated the effects of chemical (differentiation factors) and mechanical (substrate rigidity) stimuli important in mesenchymal stem cell (MSC) differentiation on the intracellular mechanics and traction stress generation. We found the presence of adipogenic factors resulted in stiffening of the actin meshwork regardless of substrate rigidity. In contrast, these factors increased traction stresses on hard substrates, which was associated with increased expression of contractility genes. Furthermore, MSCs cultured on hard substrates expressed both adipogenic and osteogenic markers indicative of mixed differentiation. On hard substrates, heterogeneity in the local elastic modulus-traction stress correlation was also increased in response to adipogenic factors, indicating that these mechanical properties may be reflective of differences in the level of MSC differentiation. These results suggest intracellular rheology and traction stress generation are spatially regulated and contribute insight into how single cell mechanical forces contribute to MSC differentiation.

  14. Spatially coordinated changes in intracellular rheology and extracellular force exertion during mesenchymal stem cell differentiation.

    PubMed

    McAndrews, Kathleen M; McGrail, Daniel J; Quach, Nhat D; Dawson, Michelle R

    2014-08-26

    The mechanical properties within the cell are regulated by the organization of the actin cytoskeleton, which is linked to the extracellular environment through focal adhesion proteins that transmit force. Chemical and mechanical stimuli alter the organization of cytoskeletal actin, which results in changes in cell shape, adhesion, and differentiation. By combining particle-tracking microrheology and traction force cytometry, we can monitor the mechanical properties of the actin meshwork and determine how changes in the intracellular network contribute to force generation. In this study, we investigated the effects of chemical (differentiation factors) and mechanical (substrate rigidity) stimuli important in mesenchymal stem cell (MSC) differentiation on the intracellular mechanics and traction stress generation. We found the presence of adipogenic factors resulted in stiffening of the actin meshwork regardless of substrate rigidity. In contrast, these factors increased traction stresses on hard substrates, which was associated with increased expression of contractility genes. Furthermore, MSCs cultured on hard substrates expressed both adipogenic and osteogenic markers indicative of mixed differentiation. On hard substrates, heterogeneity in the local elastic modulus-traction stress correlation was also increased in response to adipogenic factors, indicating that these mechanical properties may be reflective of differences in the level of MSC differentiation. These results suggest intracellular rheology and traction stress generation are spatially regulated and contribute insight into how single cell mechanical forces contribute to MSC differentiation.

  15. Spatially Coordinated Changes in Intracellular Rheology and Extracellular Force Exertion during Mesenchymal Stem Cell Differentiation

    PubMed Central

    McAndrews, Kathleen M.; McGrail, Daniel J.; Quach, Nhat D.; Dawson, Michelle R.

    2014-01-01

    The mechanical properties within the cell are regulated by the organization of the actin cytoskeleton, which is linked to the extracellular environment through focal adhesion proteins that transmit force. Chemical and mechanical stimuli alter the organization of cytoskeletal actin, which results in changes in cell shape, adhesion, and differentiation. By combining particle-tracking microrheology and traction force cytometry, we can monitor the mechanical properties of the actin meshwork and determine how changes in the intracellular network contribute to force generation. In this study, we investigated the effects of chemical (differentiation factors) and mechanical (substrate rigidity) stimuli important in mesenchymal stem cell (MSC) differentiation on the intracellular mechanics and traction stress generation. We found the presence of adipogenic factors resulted in stiffening of the actin meshwork regardless of substrate rigidity. In contrast, these factors increased traction stresses on hard substrates, which was associated with increased expression of contractility genes. Furthermore, MSCs cultured on hard substrates expressed both adipogenic and osteogenic markers indicative of mixed differentiation. On hard substrates, heterogeneity in the local elastic modulus-traction stress correlation was also increased in response to adipogenic factors, indicating that these mechanical properties may be reflective of differences in level of MSC differentiation. These results suggest intracellular rheology and traction stress generation are spatially regulated and contribute insight into how single cell mechanical forces contribute to MSC differentiation. PMID:25156989

  16. Intracellular pH regulation during spreading of human neutrophils

    PubMed Central

    1996-01-01

    The regulation of the intracelluar pH (pHi) during spreading of human neutrophils was studied by a combination of fluorescence imaging and video microscopy. Spreading on adhesive substrates caused a rapid and sustained cytosolic alkalinization. This pHi increase was prevented by the omission of external Na+, suggesting that it results from the activation of Na+/H+ exchange. Spreading-induced alkalinization was also precluded by the compound HOE 694 at concentrations that selectively block the NHE-1 isoform of the Na+H+ antiporter. Inhibition of Na+/H+ exchange by either procedure unmasked a sizable cytosolic acidification upon spreading, indicative of intracellular acid production. The excess acid generation was caused, at least in part, by the activation of the respiratory burst, since the acidification closely correlated with superoxide production, measured in single spreading neutrophils with dihydrorhodamine-123, and little acid production was observed in the presence of diphenylene iodonium, a blocker of the NADPH oxidase. Moreover, neutrophils from chronic granulomatous disease patients, which do not produce superoxide, failed to acidify. Comparable pHi changes were observed when beta 2 integrins were selectively activated during spreading on surfaces coated with anti-CD18 antibodies. When integrin engagement was precluded by pretreatment with soluble anti-CD18 antibody, the pHi changes associated with spreading on fibrinogen were markedly reduced. Inhibition of microfilament assembly with cytochalasin D precluded spreading and concomitantly abolished superoxide production and the associated pHi changes, indicating that cytoskeletal reorganization and/or an increase in the number of adherence receptors engaged are required for the responses. Neutrophils spread normally when the oxidase was blocked or when pHi was clamped near physiological values with nigericin. Spreading, however, was strongly inhibited when pHi was clamped at acidic values. Our results

  17. The intracellular localization of poliomyelitis virus.

    PubMed

    KAPLAN, A S; MELNICK, J L

    1953-01-01

    A study was made of the intracellular localization of Type 2 poliomyelitis virus, using the technique of Mirsky and Pollister (23) for cellular fractionation. After isotonic saline homogenization of central nervous system tissue from infected mice, and subsequent centrifugation of the suspension, the virus present in the supernatant fluid was held to be of cytoplasmic origin. Upon serial washings of the sediment with physiological saline, the resulting supernates contained progressively less virus until by the seventh washing, virtually none was present. At this point extraction of the washed sediment with molar NaCl, which lyses the nuclei, yielded substantial amounts of virus, and this was assumed to be from nuclear sources. The possibility has not been excluded however that the "nuclear" sediment was contaminated by cytoplasmic particles too large to remain in the supernate. Experiments on the increase of virus during the incubation and acute stages of infection have revealed that it was first detectable in the "cytoplasmic" fraction and subsequently in the "nuclear" fraction. Virus in the "nuclear" fraction from paralyzed mice sometimes reached titers almost as high as those found in the "cytoplasm." Adsorption experiments indicated that the "nuclear" fraction of CNS tissue from normal, uninoculated mice did not adsorb added Type 2 poliomyelitis virus, nor did such fractions adsorb virus procured from the "cytoplasm" or "nuclei" of infected cells. Although individual mice varied in their response after virus injection, the "cytoplasmic" fraction of paralytic mice was found to contain virus regularly, whereas little more than half of the non-paralytic mice yielded it. When virus was present in the "cytoplasm," it could be found in the "nuclear" fraction of paralytic mice with much greater regularity than in that of non-paralytic mice. A comparison between the lines of the MEF1 strain of poliomyelitis virus, "adapted" and "non-adapted" to newborn mice, and the

  18. On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles

    PubMed Central

    Lukianova-Hleb, Ekaterina Y; Wu, Xiangwei; Torchilin, Vladimir P; Lapotko, Dmitri O

    2014-01-01

    Chemoradiation-resistant cancers limit treatment efficacy and safety. We show here the cancer cell–specific, on-demand intracellular amplification of chemotherapy and chemoradiation therapy via gold nanoparticle– and laser pulse–induced mechanical intracellular impact. Cancer aggressiveness promotes the clustering of drug nanocarriers and gold nanoparticles in cancer cells. This cluster, upon exposure to a laser pulse, generates a plasmonic nanobubble, the mechanical explosion that destroys the host cancer cell or ejects the drug into its cytoplasm by disrupting the liposome and endosome. The same cluster locally amplifies external X-rays. Intracellular synergy of the mechanical impact of plasmonic nanobubble, ejected drug and amplified X-rays improves the efficacy of standard chemoradiation in resistant and aggressive head and neck cancer by 100-fold in vitro and 17-fold in vivo, reduces the effective entry doses of drugs and X-rays to 2–6% of their clinical doses and efficiently spares normal cells. The developed quadrapeutics technology combines four clinically validated components and transforms a standard macrotherapy into an intracellular on-demand theranostic microtreatment with radically amplified therapeutic efficacy and specificity. PMID:24880615

  19. Human SERPINB12 Is an Abundant Intracellular Serpin Expressed in Most Surface and Glandular Epithelia.

    PubMed

    Niehaus, Jason Z; Good, Misty; Jackson, Laura E; Ozolek, John A; Silverman, Gary A; Luke, Cliff J

    2015-11-01

    The intracellular serine protease inhibitors (serpins) are an important family of proteins that protect cells form proteinase-mediated injury. Understanding the tissue and cellular expression pattern of this protein family can provide important insights into their physiologic roles. For example, high expression in epithelial tissues, such as lung, may suggest a biologic function in cellular defense, secretion, or selective absorption. Although the expression pattern of many of the intracellular serpins has been well described, one member of this class, SERPINB12, has not been carefully examined. We generated a mouse monoclonal antibody directed against human SERPINB12 and delineated its specificity and tissue and cell type distribution pattern through immunoblotting and immunohistochemistry, respectively. This monoclonal antibody was human specific and did not cross-react with other human intracellular serpins or mouse Serpinb12. SERPINB12 was found in nearly all the tissues investigated. In addition, this serpin was found in multiple cell types within individual tissues but primarily the epithelium. These data suggest that SERPINB12, like some other intracellular serpins, may play a vital role in barrier function by providing protection of epithelial cells.

  20. Intracellular Expression of PAI-1 Specific Aptamers Alters Breast Cancer Cell Migration, Invasion and Angiogenesis

    PubMed Central

    Fortenberry, Yolanda M.; Brandal, Stephanie M.; Carpentier, Gilles; Hemani, Malvi; Pathak, Arvind P.

    2016-01-01

    Plasminogen activator inhibitor-1 (PAI-1) is elevated in various cancers, where it has been shown to effect cell migration and invasion and angiogenesis. While, PAI-1 is a secreted protein, its intercellular levels are increased in cancer cells. Consequently, intracellular PAI-1 could contribute to cancer progression. While various small molecule inhibitors of PAI-1 are currently being investigated, none specifically target intracellular PAI-1. A class of inhibitors, termed aptamers, has been used effectively in several clinical applications. We previously generated RNA aptamers that target PAI-1 and demonstrated their ability to inhibit extracellular PAI-1. In the current study we explored the effect of these aptamers on intracellular PAI-1. We transiently transfected the PAI-1 specific aptamers into both MDA-MB-231 human breast cancer cells, and human umbilical vein endothelial cells (HUVECs) and studied their effects on cell migration, invasion and angiogenesis. Aptamer expressing MDA-MB-231 cells exhibited a decrease in cell migration and invasion. Additionally, intracellular PAI-1 and urokinase plasminogen activator (uPA) protein levels decreased, while the PAI-1/uPA complex increased. Moreover, a significant decrease in endothelial tube formation in HUVECs transfected with the aptamers was observed. In contrast, conditioned media from aptamer transfected MDA-MB-231 cells displayed a slight pro-angiogenic effect. Collectively, our study shows that expressing functional aptamers inside breast and endothelial cells is feasible and may exhibit therapeutic potential. PMID:27755560

  1. Peroxynitrite-Induced Neuronal Apoptosis Is Mediated by Intracellular Zinc Release and 12-Lipoxygenase Activation

    PubMed Central

    Zhang, Yumin; Wang, Hong; Li, Jianrong; Jimenez, Daniel A.; Levitan, Edwin S.; Aizenman, Elias; Rosenberg, Paul A.

    2010-01-01

    Peroxynitrite toxicity is a major cause of neuronal injury in stroke and neurodegenerative disorders. The mechanisms underlying the neurotoxicity induced by peroxynitrite are still unclear. In this study, we observed that TPEN [N,N,N′,N′-tetrakis (2-pyridylmethyl) ethylenediamine], a zinc chelator, protected against neurotoxicity induced by exogenous as well as endogenous (coadministration of NMDA and a nitric oxide donor, diethylenetriamine NONOate) peroxynitrite. Two different approaches to detecting intracellular zinc release demonstrated the liberation of zinc from intracellular stores by peroxynitrite. In addition, we found that peroxynitrite toxicity was blocked by inhibitors of 12-lipoxygenase (12-LOX), p38 mitogen-activated protein kinase (MAPK), and caspase-3 and was associated with mitochondrial membrane depolarization. Inhibition of 12-LOX blocked the activation of p38 MAPK and caspase-3. Zinc itself induced the activation of 12-LOX, generation of reactive oxygen species (ROS), and activation of p38 MAPK and caspase-3. These data suggest a cell death pathway triggered by peroxynitrite in which intracellular zinc release leads to activation of 12-LOX, ROS accumulation, p38 activation, and caspase-3 activation. Therefore, therapies aimed at maintaining intracellular zinc homeostasis or blocking activation of 12-LOX may provide a novel avenue for the treatment of inflammation, stroke, and neurodegenerative diseases in which the formation of peroxynitrite is thought to be one of the important causes of cell death. PMID:15564577

  2. Peptidomic analysis of HEK293T cells: Effect of the proteasome inhibitor epoxomicin on intracellular peptides

    PubMed Central

    Fricker, Lloyd D.; Gelman, Julia S.; Castro, Leandro M.; Gozzo, Fabio C.; Ferro, Emer S.

    2012-01-01

    Peptides derived from cytosolic, mitochondrial, and nuclear proteins have been detected in extracts of animal tissues and cell lines. To test whether the proteasome is involved in their formation, HEK293T cells were treated with epoxomicin (0.2 μM or 2 μM) for 1 hour and quantitative peptidomics analysis was performed. Altogether, 147 unique peptides were identified by mass spectrometry sequence analysis. Epoxomicin treatment decreased the levels of the majority of intracellular peptides, consistent with inhibition of the proteasome beta-2 and beta-5 subunits. Treatment with the higher concentration of epoxomicin elevated the levels of some peptides. Most of the elevated peptides resulted from cleavages at acidic residues, suggesting that epoxomicin increased the processing of proteins through the beta-1 subunit. Interestingly, some of the peptides that were elevated by the epoxomicin treatment had hydrophobic residues in P1 cleavage sites. Taken together, these findings suggest that while the proteasome is the major source of intracellular peptides, other peptide-generating mechanisms exist. Because intracellular peptides are likely to perform intracellular functions, studies using proteasome inhibitors need to be interpreted with caution as it is possible that the effects of these inhibitors are due to a change in the peptide levels rather than inhibition of protein degradation. PMID:22304392

  3. ESCRTs regulate amyloid precursor protein sorting in multivesicular bodies and intracellular amyloid-β accumulation.

    PubMed

    Edgar, James R; Willén, Katarina; Gouras, Gunnar K; Futter, Clare E

    2015-07-15

    Intracellular amyloid-β (Aβ) accumulation is a key feature of early Alzheimer's disease and precedes the appearance of Aβ in extracellular plaques. Aβ is generated through proteolytic processing of amyloid precursor protein (APP), but the intracellular site of Aβ production is unclear. APP has been localized to multivesicular bodies (MVBs) where sorting of APP onto intraluminal vesicles (ILVs) could promote amyloidogenic processing, or reduce Aβ production or accumulation by sorting APP and processing products to lysosomes for degradation. Here, we show that APP localizes to the ILVs of a subset of MVBs that also traffic EGF receptor (EGFR), and that it is delivered to lysosomes for degradation. Depletion of the endosomal sorting complexes required for transport (ESCRT) components, Hrs (also known as Hgs) or Tsg101, inhibited targeting of APP to ILVs and the subsequent delivery to lysosomes, and led to increased intracellular Aβ accumulation. This was accompanied by dramatically decreased Aβ secretion. Thus, the early ESCRT machinery has a dual role in limiting intracellular Aβ accumulation through targeting of APP and processing products to the lysosome for degradation, and promoting Aβ secretion.

  4. Quantitative intracellular localization of cationic lipid-nucleic acid nanoparticles with fluorescence microscopy

    PubMed Central

    Majzoub, Ramsey N.; Ewert, Kai K.; Safinya, Cyrus R.

    2016-01-01

    Summary Current activity in developing synthetic carriers of nucleic acids (NA) and small molecule drugs for therapeutic applications is unprecedented. One promising class of synthetic vectors for the delivery of therapeutic NA is PEGylated cationic lipid (CL)-NA nanoparticles (NPs). Chemically-modified PEG-lipids can be used to surface-functionalize lipid-NA nanoparticles, allowing researchers to design active nanoparticles that can overcome the various intracellular and extracellular barriers to efficient delivery. Optimization of these functionalized vectors requires a comprehensive understanding of their intracellular pathways. In this chapter we present 2 distinct methods for investigating the intracellular activity of PEGylated CL-NA NPs using quantitative analysis of fluorescence microscopy. The first method, spatial localization, will describe how to prepare fluorescently-labeled CL-NA NPs, perform fluorescence microscopy and properly analyze the data to measure the intracellular distribution of nanoparticles and fluorescent signal. We provide software which allows data from multiple cells to be averaged together and yield statistically significant results. The second method, fluorescence colocalization, will describe how to label endocytic organelle via Rab-GFPs and generate micrographs for software-assisted NP-endocytic marker colocalization measurements. These tools will allow researchers to study the endosomal trafficking of CL-NA NPs which can guide their design and improve their efficiency. PMID:27436314

  5. Type Six Secretion System of Bordetella bronchiseptica and Adaptive Immune Components Limit Intracellular Survival During Infection

    PubMed Central

    Bendor, Liron; Weyrich, Laura S.; Linz, Bodo; Rolin, Olivier Y.; Taylor, Dawn L.; Goodfield, Laura L.; Smallridge, William E.; Kennett, Mary J.; Harvill, Eric T.

    2015-01-01

    The Type Six Secretion System (T6SS) is required for Bordetella bronchiseptica cytotoxicity, cytokine modulation, infection, and persistence. However, one-third of recently sequenced Bordetella bronchiseptica strains of the predominantly human-associated Complex IV have lost their T6SS through gene deletion or degradation. Since most human B. bronchiseptica infections occur in immunocompromised patients, we determine here whether loss of Type Six Secretion is beneficial to B. bronchiseptica during infection of immunocompromised mice. Infection of mice lacking adaptive immunity (Rag1-/- mice) with a T6SS-deficient mutant results in a hypervirulent phenotype that is characterized by high numbers of intracellular bacteria in systemic organs. In contrast, wild-type B. bronchiseptica kill their eukaryotic cellular hosts via a T6SS-dependent mechanism that prevents survival in systemic organs. High numbers of intracellular bacteria recovered from immunodeficient mice but only low numbers from wild-type mice demonstrates that B. bronchiseptica survival in an intracellular niche is limited by B and T cell responses. Understanding the nature of intracellular survival during infection, and its effects on the generation and function of the host immune response, are important to contain and control the spread of Bordetella-caused disease. PMID:26485303

  6. Type Six Secretion System of Bordetella bronchiseptica and Adaptive Immune Components Limit Intracellular Survival During Infection.

    PubMed

    Bendor, Liron; Weyrich, Laura S; Linz, Bodo; Rolin, Olivier Y; Taylor, Dawn L; Goodfield, Laura L; Smallridge, William E; Kennett, Mary J; Harvill, Eric T

    2015-01-01

    The Type Six Secretion System (T6SS) is required for Bordetella bronchiseptica cytotoxicity, cytokine modulation, infection, and persistence. However, one-third of recently sequenced Bordetella bronchiseptica strains of the predominantly human-associated Complex IV have lost their T6SS through gene deletion or degradation. Since most human B. bronchiseptica infections occur in immunocompromised patients, we determine here whether loss of Type Six Secretion is beneficial to B. bronchiseptica during infection of immunocompromised mice. Infection of mice lacking adaptive immunity (Rag1-/- mice) with a T6SS-deficient mutant results in a hypervirulent phenotype that is characterized by high numbers of intracellular bacteria in systemic organs. In contrast, wild-type B. bronchiseptica kill their eukaryotic cellular hosts via a T6SS-dependent mechanism that prevents survival in systemic organs. High numbers of intracellular bacteria recovered from immunodeficient mice but only low numbers from wild-type mice demonstrates that B. bronchiseptica survival in an intracellular niche is limited by B and T cell responses. Understanding the nature of intracellular survival during infection, and its effects on the generation and function of the host immune response, are important to contain and control the spread of Bordetella-caused disease.

  7. On the Computing Potential of Intracellular Vesicles

    PubMed Central

    Mayne, Richard; Adamatzky, Andrew

    2015-01-01

    Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal ‘circuitry’ and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a ‘vesicle modification’ of the archetypal CBC ‘billiard ball model’ of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle ‘programming’ in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing. PMID:26431435

  8. Tumour suppressors hamartin and tuberin: intracellular signalling.

    PubMed

    Krymskaya, Vera P

    2003-08-01

    Tumour suppressors hamartin and tuberin, encoded by tuberous sclerosis complex 1(TSC1) and TSC2 genes, respectively, are critical regulators of cell growth and proliferation. Mutations in TSC1 and TSC2 genes are the cause of an autosomal dominant disorder known as tuberous sclerosis complex (TSC). Another genetic disorder, lymphangioleiomyomatosis (LAM), is also associated with mutations in the TSC2 gene. Hamartin and tuberin control cell growth by negatively regulating S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1), potentially through their upstream modulator mammalian target of rapamycin (mTOR). Growth factors and insulin promote Akt/PKB-dependent phosphorylation of tuberin, which in turn, releases S6K1 from negative regulation by tuberin and results in the activation of S6K1. Although much has been written regarding the molecular genetics of TSC and LAM, which is associated with either the loss of or mutation in the TSC1 and TSC2 genes, few reviews have addressed the intracellular signalling pathways regulated by hamartin and tuberin. The current review will fill the gap in our understanding of their role in cellular signalling networks, and by improving this understanding, an integrated picture regarding the normal function of tuberin and hamartin is beginning to emerge.

  9. Characterizations of intracellular arsenic in a bacterium

    NASA Astrophysics Data System (ADS)

    Wolfe-Simon, F.; Yannone, S. M.; Tainer, J. A.

    2011-12-01

    Life requires a key set of chemical elements to sustain growth. Yet, a growing body of literature suggests that microbes can alter their nutritional requirements based on the availability of these chemical elements. Under limiting conditions for one element microbes have been shown to utilize a variety of other elements to serve similar functions often (but not always) in similar molecular structures. Well-characterized elemental exchanges include manganese for iron, tungsten for molybdenum and sulfur for phosphorus or oxygen. These exchanges can be found in a wide variety of biomolecules ranging from protein to lipids and DNA. Recent evidence suggested that arsenic, as arsenate or As(V), was taken up and incorporated into the cellular material of the bacterium GFAJ-1. The evidence was interpreted to support As(V) acting in an analogous role to phosphate. We will therefore discuss our ongoing efforts to characterize intracellular arsenate and how it may partition among the cellular fractions of the microbial isolate GFAJ-1 when exposed to As(V) in the presence of various levels of phosphate. Under high As(V) conditions, cells express a dramatically different proteome than when grown given only phosphate. Ongoing studies on the diversity and potential role of proteins and metabolites produced in the presence of As(V) will be reported. These investigations promise to inform the role and additional metabolic potential for As in biology. Arsenic assimilation into biomolecules contributes to the expanding set of chemical elements utilized by microbes in unusual environmental niches.

  10. Intracellular sphingosine releases calcium from lysosomes

    PubMed Central

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-01-01

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC. DOI: http://dx.doi.org/10.7554/eLife.10616.001 PMID:26613410

  11. Emerging intracellular receptors for hemorrhagic fever viruses.

    PubMed

    Jae, Lucas T; Brummelkamp, Thijn R

    2015-07-01

    Ebola virus and Lassa virus belong to different virus families that can cause viral hemorrhagic fever, a life-threatening disease in humans with limited treatment options. To infect a target cell, Ebola and Lassa viruses engage receptors at the cell surface and are subsequently shuttled into the endosomal compartment. Upon arrival in late endosomes/lysosomes, the viruses trigger membrane fusion to release their genome into the cytoplasm. Although contact sites at the cell surface were recognized for Ebola virus and Lassa virus, it was postulated that Ebola virus requires a critical receptor inside the cell. Recent screens for host factors identified such internal receptors for both viruses: Niemann-Pick disease type C1 protein (NPC1) for Ebola virus and lysosome-associated membrane protein 1 (LAMP1) for Lassa virus. A cellular trigger is needed to permit binding of the viral envelope protein to these intracellular receptors. This 'receptor switch' represents a previously unnoticed step in virus entry with implications for host-pathogen interactions and viral tropism.

  12. Modeling the intracellular organization of calcium signaling.

    PubMed

    Dupont, Geneviève

    2014-01-01

    Calcium (Ca²⁺) is a key signaling ion that plays a fundamental role in many cellular processes in most types of tissues and organisms. The versatility of this signaling pathway is remarkable. Depending on the cell type and the stimulus, intracellular Ca²⁺ increases can last over different periods, as short spikes or more sustained signals. From a spatial point of view, they can be localized or invade the whole cell. Such a richness of behaviors is possible thanks to numerous exchange processes with the external medium or internal Ca²⁺ pools, mainly the endoplasmic or sarcoplasmic reticulum and mitochondria. These fluxes are also highly regulated. In order to get an accurate description of the spatiotemporal organization of Ca²⁺ signaling, it is useful to resort to modeling. Thus, each flux can be described by an appropriate kinetic expression. Ca²⁺ dynamics in a given cell type can then be simulated by a modular approach, consisting of the assembly of computational descriptions of the appropriate fluxes and regulations. Modeling can also be used to get insight into the mechanisms of decoding of the Ca²⁺ signals responsible for cellular responses. Cells can use frequency or amplitude coding, as well as take profit of Ca²⁺ oscillations to increase their sensitivity to small average Ca²⁺ increases. © 2014 Wiley Periodicals, Inc.

  13. A viral peptide for intracellular delivery

    NASA Astrophysics Data System (ADS)

    Falanga, Annarita; Tarallo, Rossella; Cantisani, Marco; Della Pepa, Maria Elena; Galdiero, Massimiliano; Galdiero, Stefania

    2012-10-01

    Biological membranes represent a critical hindrance for administering active molecules which are often unable to reach their designated intracellular target sites. In order to overcome this barrier-like behavior not easily circumvented by many pharmacologically-active molecules, synthetic transporters have been exploited to promote cellular uptake. Linking or complexing therapeutic molecules to peptides that can translocate through the cellular membranes could enhance their internal delivery, and consequently, a higher amount of active compound would reach the site of action. Use of cell penetrating peptides (CPPs) is one of the most promising strategy to efficiently translocate macromolecules through the plasma membrane, and have attracted a lot of attention. New translocating peptides are continuously described and in the present review, we will focus on viral derived peptides, and in particular a peptide (gH625) derived from the herpes simplex virus type 1 (HSV-1) glycoprotein H (gH) that has proved to be a useful delivery vehicle due to its intrinsic properties of inducing membrane perturbation.

  14. On the Computing Potential of Intracellular Vesicles.

    PubMed

    Mayne, Richard; Adamatzky, Andrew

    2015-01-01

    Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal 'circuitry' and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a 'vesicle modification' of the archetypal CBC 'billiard ball model' of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle 'programming' in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing.

  15. Uncoupling Caveolae from Intracellular Signaling In Vivo

    PubMed Central

    Kraehling, Jan R.; Hao, Zhengrong; Lee, Monica Y.; Vinyard, David J.; Velazquez, Heino; Liu, X.; Stan, Radu V.; Brudvig, Gary W.; Sessa, William C.

    2015-01-01

    Rationale Caveolin-1 negatively regulates eNOS derived NO production and this has been mapped to several residues on Cav-1 including F92. Herein, we reasoned that endothelial expression of an F92ACav-1 transgene would let us decipher the mechanisms and relationships between caveolae structure and intracellular signaling. Objective This study was designed to separate caveolae formation from its downstream signaling effects. Methods and Results An endothelial-specific doxycycline-regulated mouse model for the expression of Cav-1-F92A was developed. Blood pressure by telemetry and nitric oxide bioavailability by electron paramagnetic resonance and phosphorylation of VASP were determined. Caveolae integrity in the presence of Cav-1-F92A was measured by stabilization of Cav-2, sucrose gradient and electron microscopy. Histological analysis of heart and lung, echocardiography and signaling were performed. Conclusions This study shows that mutant Cav-1-F92A forms caveolae structures similar to WT but leads to increases in NO bioavailability in vivo thereby demonstrating that caveolae formation and downstream signaling events occur through independent mechanisms. PMID:26602865

  16. Intracellular magnetophoresis of amyloplasts and induction of root curvature

    NASA Technical Reports Server (NTRS)

    Kuznetsov, O. A.; Hasenstein, K. H.

    1996-01-01

    High-gradient magnetic fields (HGMFs) were used to induce intracellular magnetophoresis of amyloplasts. The HGMFs were generated by placing a small ferromagnetic wedge into a uniform magnetic field or at the gap edge between two permanent magnets. In the vicinity of the tip of the wedge the dynamic factor of the magnetic field, delta(H2/2), was about 10(9) Oe2.cm-1, which subjected the amyloplasts to a force comparable to that of gravity. When roots of 2-d-old seedlings of flax (Linum usitatissimum L.) were positioned vertically and exposed to an HGMF, curvature away from the wedge was transient and lasted approximately 1 h. Average curvature obtained after placing magnets, wedge and seedlings on a 1-rpm clinostat for 2 h was 33 +/- 5 degrees. Roots of horizontally placed control seedlings without rotation curved about 47 +/- 4 degrees. The time course of curvature and changes in growth rate were similar for gravicurvature and for root curvature induced by HGMFs. Microscopy showed displacement of amyloplasts in vitro and in vivo. Studies with Arabidopsis thaliana (L.) Heynh. showed that the wild type responded to HGMFs but the starchless mutant TC7 did not. The data indicate that a magnetic force can be used to study the gravisensing and response system of roots.

  17. Intracellular magnetophoresis of amyloplasts and induction of root curvature.

    PubMed

    Kuznetsov, O A; Hasenstein, K H

    1996-01-01

    High-gradient magnetic fields (HGMFs) were used to induce intracellular magnetophoresis of amyloplasts. The HGMFs were generated by placing a small ferromagnetic wedge into a uniform magnetic field or at the gap edge between two permanent magnets. In the vicinity of the tip of the wedge the dynamic factor of the magnetic field, delta(H2/2), was about 10(9) Oe2.cm-1, which subjected the amyloplasts to a force comparable to that of gravity. When roots of 2-d-old seedlings of flax (Linum usitatissimum L.) were positioned vertically and exposed to an HGMF, curvature away from the wedge was transient and lasted approximately 1 h. Average curvature obtained after placing magnets, wedge and seedlings on a 1-rpm clinostat for 2 h was 33 +/- 5 degrees. Roots of horizontally placed control seedlings without rotation curved about 47 +/- 4 degrees. The time course of curvature and changes in growth rate were similar for gravicurvature and for root curvature induced by HGMFs. Microscopy showed displacement of amyloplasts in vitro and in vivo. Studies with Arabidopsis thaliana (L.) Heynh. showed that the wild type responded to HGMFs but the starchless mutant TC7 did not. The data indicate that a magnetic force can be used to study the gravisensing and response system of roots.

  18. Intracellular phthalocyanine localization: confocal laser scanning microscopy studies

    NASA Astrophysics Data System (ADS)

    Chernyaeva, Elena B.; Greve, Jan; de Grooth, Bart G.; Van Leeuwen, A. G.

    1994-02-01

    Phthalocyanines (Pc) are promising second-generation photosensitizers for the photodynamic therapy (PDT) of cancer. We report on the tetrasulfonated aluminum phthalocyanine (AlPcS4) localization in cultured Chinese hamster lung cells studied by means of confocal laser scanning microscopy (CLSM). In these cells AlPcS4 was found in granules surrounding Golgi apparatus and in the peripheral cytoplasmic region. Peripheral Pc-containing granules partially coincided with the acidic cellular compartments. The effect of irradiation with light on Pc intracellular distribution was also studied. In the Pc-free medium disruption of some Pc- containing granules was observed followed by appearance of Pc fluorescence in the cell plasma membrane, the nuclear envelope, and the near-nuclear region. When cells were irradiated in the presence of Pc in external medium a drastic increase of membrane permeability to Pc was observed, followed by Pc binding the cell plasma membrane, nuclear envelope, and some structures in the cytoplasm. Diffusive Pc fluorescence in the nucleus was also observed. The implication of observed Pc redistribution caused by irradiation with light for the PDT protocol is discussed.

  19. Biochemistry and pathophysiology of intravascular and intracellular lipolysis.

    PubMed

    Young, Stephen G; Zechner, Rudolf

    2013-03-01

    All organisms use fatty acids (FAs) for energy substrates and as precursors for membrane and signaling lipids. The most efficient way to transport and store FAs is in the form of triglycerides (TGs); however, TGs are not capable of traversing biological membranes and therefore need to be cleaved by TG hydrolases ("lipases") before moving in or out of cells. This biochemical process is generally called "lipolysis." Intravascular lipolysis degrades lipoprotein-associated TGs to FAs for their subsequent uptake by parenchymal cells, whereas intracellular lipolysis generates FAs and glycerol for their release (in the case of white adipose tissue) or use by cells (in the case of other tissues). Although the importance of lipolysis has been recognized for decades, many of the key proteins involved in lipolysis have been uncovered only recently. Important new developments include the discovery of glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), the molecule that moves lipoprotein lipase from the interstitial spaces to the capillary lumen, and the discovery of adipose triglyceride lipase (ATGL) and comparative gene identification-58 (CGI-58) as crucial molecules in the hydrolysis of TGs within cells. This review summarizes current views of lipolysis and highlights the relevance of this process to human disease.

  20. Biochemistry and pathophysiology of intravascular and intracellular lipolysis

    PubMed Central

    Young, Stephen G.; Zechner, Rudolf

    2013-01-01

    All organisms use fatty acids (FAs) for energy substrates and as precursors for membrane and signaling lipids. The most efficient way to transport and store FAs is in the form of triglycerides (TGs); however, TGs are not capable of traversing biological membranes and therefore need to be cleaved by TG hydrolases (“lipases”) before moving in or out of cells. This biochemical process is generally called “lipolysis.” Intravascular lipolysis degrades lipoprotein-associated TGs to FAs for their subsequent uptake by parenchymal cells, whereas intracellular lipolysis generates FAs and glycerol for their release (in the case of white adipose tissue) or use by cells (in the case of other tissues). Although the importance of lipolysis has been recognized for decades, many of the key proteins involved in lipolysis have been uncovered only recently. Important new developments include the discovery of glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), the molecule that moves lipoprotein lipase from the interstitial spaces to the capillary lumen, and the discovery of adipose triglyceride lipase (ATGL) and comparative gene identification-58 (CGI-58) as crucial molecules in the hydrolysis of TGs within cells. This review summarizes current views of lipolysis and highlights the relevance of this process to human disease. PMID:23475957

  1. Insight into nanoparticle cellular uptake and intracellular targeting.

    PubMed

    Yameen, Basit; Choi, Won Il; Vilos, Cristian; Swami, Archana; Shi, Jinjun; Farokhzad, Omid C

    2014-09-28

    Collaborative efforts from the fields of biology, materials science, and engineering are leading to exciting progress in the development of nanomedicines. Since the targets of many therapeutic agents are localized in subcellular compartments, modulation of nanoparticle-cell interactions for efficient cellular uptake through the plasma membrane and the development of nanomedicines for precise delivery to subcellular compartments remain formidable challenges. Cellular internalization routes determine the post-internalization fate and intracellular localization of nanoparticles. This review highlights the cellular uptake routes most relevant to the field of non-targeted nanomedicine and presents an account of ligand-targeted nanoparticles for receptor-mediated cellular internalization as a strategy for modulating the cellular uptake of nanoparticles. Ligand-targeted nanoparticles have been the main impetus behind the progress of nanomedicines towards the clinic. This strategy has already resulted in remarkable progress towards effective oral delivery of nanomedicines that can overcome the intestinal epithelial barrier. A detailed overview of the recent developments in subcellular targeting as a novel platform for next-generation organelle-specific nanomedicines is also provided. Each section of the review includes prospects, potential, and concrete expectations from the field of targeted nanomedicines and strategies to meet those expectations.

  2. Intracellular responses of antennal chordotonal sensilla of the American cockroach.

    PubMed

    Ikeda, Suguru; Toh, Yoshihiro; Okamura, Jun-ya; Okada, Jiro

    2004-04-01

    The responses of mechanoreceptor neurons in the antennal chordotonal organ have been examined in cockroaches by intracellular recording methods. The chordotonal organ was mechanically stimulated by sinusoidal movement of the flagellum. Stimulus frequencies were varied between 0.5 and 150 Hz. Receptor neurons responded with spike discharges to mechanical stimulation, and were classed into two groups from plots of their average spike frequencies against stimulus frequency. Neurons in one group responded to stimulation over a wide frequency range (from 0.5 to 150 Hz), whereas those in a second group were tuned to higher frequency stimuli. The peak stimulus frequency at which receptor neurons showed maximum responses differed from cell to cell. Some had a peak response at a stimulus frequency given in the present study (from 0.5 to 150 Hz), whereas others were assumed to have peak responses beyond the highest stimulus frequency examined. The timing for the initiation of spikes or of a burst of spikes plotted against each stimulus cycle revealed that spike generation was phase-locked in most cells. Some cells showed phase-independent discharges to stimulation at lower frequency, but increasing stimulus frequencies spike initiation began to assemble at a given phase of the stimulus cycle. The response patterns observed are discussed in relation to the primary process of mechanoreception of the chordotonal organ.

  3. Intracellular protein mass spectroscopy using mid-infrared laser ionization

    NASA Astrophysics Data System (ADS)

    Awazu, K.; Suzuki, S.

    2007-07-01

    Large-scale analysis of proteins, which can be regarded as functional biomolecule, assumes an important role in the life science. A MALDI using an ultraviolet laser (UV-MALDI) is one of ionization methods without fragmentation and has achieved conformation analysis of proteins. Recently, protein analysis has shifted from conformation analysis to functional and direct one that reserves posttranslational modifications such as the sugar chain addition and phosphorylation. We have proposed a MALDI using a mid-infrared tunable laser (IR-MALDI) as a new ionization method. IR-MALDI is promising because most biomolecules have a specific absorption in mid-infrared range, and IR-MALDI is expected to offer; (1) use of various matrices, (2) use of biomolecules such as water and lipid as the matrix, and (3) super-soft ionization. First, we evaluated the wavelength dependence of ionization of different matrices using a difference frequency generation (DFG) laser, which can tune the wavelength within a range from 5.5 to 10.0 μm. As results, ionization was specifically occurred at 5.8 μm which the C=O vibration stretching bond in matrix material and mass spectrum was observed. Next, protein mass spectrum was observed in the culture cells, MIN6, which secrete insulin, without the conventional cell-preparation processes. We demonstrate that the IR-MALDI has an advantage over the conventional method (UV-MALDI) in direct analysis of intracellular proteins.

  4. Crystal structures of the TRIC trimeric intracellular cation channel orthologues

    PubMed Central

    Kasuya, Go; Hiraizumi, Masahiro; Maturana, Andrés D; Kumazaki, Kaoru; Fujiwara, Yuichiro; Liu, Keihong; Nakada-Nakura, Yoshiko; Iwata, So; Tsukada, Keisuke; Komori, Tomotaka; Uemura, Sotaro; Goto, Yuhei; Nakane, Takanori; Takemoto, Mizuki; Kato, Hideaki E; Yamashita, Keitaro; Wada, Miki; Ito, Koichi; Ishitani, Ryuichiro; Hattori, Motoyuki; Nureki, Osamu

    2016-01-01

    Ca2+ release from the sarcoplasmic reticulum (SR) and endoplasmic reticulum (ER) is crucial for muscle contraction, cell growth, apoptosis, learning and memory. The trimeric intracellular cation (TRIC) channels were recently identified as cation channels balancing the SR and ER membrane potentials, and are implicated in Ca2+ signaling and homeostasis. Here we present the crystal structures of prokaryotic TRIC channels in the closed state and structure-based functional analyses of prokaryotic and eukaryotic TRIC channels. Each trimer subunit consists of seven transmembrane (TM) helices with two inverted repeated regions. The electrophysiological, biochemical and biophysical analyses revealed that TRIC channels possess an ion-conducting pore within each subunit, and that the trimer formation contributes to the stability of the protein. The symmetrically related TM2 and TM5 helices are kinked at the conserved glycine clusters, and these kinks are important for the channel activity. Furthermore, the kinks of the TM2 and TM5 helices generate lateral fenestrations at each subunit interface. Unexpectedly, these lateral fenestrations are occupied with lipid molecules. This study provides the structural and functional framework for the molecular mechanism of this ion channel superfamily. PMID:27909292

  5. Insight into nanoparticle cellular uptake and intracellular targeting

    PubMed Central

    Yameen, Basit; Choi, Won Il; Vilos, Cristian; Swami, Archana; Shi, Jinjun; Farokhzad, Omid C.

    2014-01-01

    Collaborative efforts from the fields of biology, materials science, and engineering are leading to exciting progress in the development of nanomedicines. Since the targets of many therapeutic agents are localized in subcellular compartments, modulation of nanoparticle-cell interactions for an efficient cellular uptake through the plasma membrane, and the development of nanomedicines for precise delivery to subcellular compartments remain formidable challenges. The cellular internalization routes have a determining effect on the post-internalization fate and intracellular localization of nanoparticles. This review highlights the cellular uptake routes most relevant to the field of non-targeted nanomedicine, and presents an account of ligand targeted nanoparticles for receptor mediated cellular internalization as a strategy for modulating the cellular uptake of nanoparticles. Ligand targeted nanoparticles have been the main impetus behind the progress of nanomedicines towards the clinic. This strategy has even resulted in a remarkable development towards effective oral delivery of nanomedicines that can overcome the intestinal epithelial cellular barrier. A detailed overview of the recent developments towards subcellular targeting that is emerging as a platform for the next generation organelle specific nanomedicines is also provided. Each section of the review includes prospect, potential, and concrete expectations from the field of targeted nanomedicines and strategies to meet those expectations. PMID:24984011

  6. Intracellular magnetophoresis of amyloplasts and induction of root curvature

    NASA Technical Reports Server (NTRS)

    Kuznetsov, O. A.; Hasenstein, K. H.

    1996-01-01

    High-gradient magnetic fields (HGMFs) were used to induce intracellular magnetophoresis of amyloplasts. The HGMFs were generated by placing a small ferromagnetic wedge into a uniform magnetic field or at the gap edge between two permanent magnets. In the vicinity of the tip of the wedge the dynamic factor of the magnetic field, delta(H2/2), was about 10(9) Oe2.cm-1, which subjected the amyloplasts to a force comparable to that of gravity. When roots of 2-d-old seedlings of flax (Linum usitatissimum L.) were positioned vertically and exposed to an HGMF, curvature away from the wedge was transient and lasted approximately 1 h. Average curvature obtained after placing magnets, wedge and seedlings on a 1-rpm clinostat for 2 h was 33 +/- 5 degrees. Roots of horizontally placed control seedlings without rotation curved about 47 +/- 4 degrees. The time course of curvature and changes in growth rate were similar for gravicurvature and for root curvature induced by HGMFs. Microscopy showed displacement of amyloplasts in vitro and in vivo. Studies with Arabidopsis thaliana (L.) Heynh. showed that the wild type responded to HGMFs but the starchless mutant TC7 did not. The data indicate that a magnetic force can be used to study the gravisensing and response system of roots.

  7. Global intracellular slow-wave dynamics of the thalamocortical system.

    PubMed

    Sheroziya, Maxim; Timofeev, Igor

    2014-06-25

    It is widely accepted that corticothalamic neurons recruit the thalamus in slow oscillation, but global slow-wave thalamocortical dynamics have never been experimentally shown. We analyzed intracellular activities of neurons either from different cortical areas or from a variety of specific and nonspecific thalamic nuclei in relation to the phase of global EEG signal in ketamine-xylazine anesthetized mice. We found that, on average, slow-wave active states started off within frontal cortical areas as well as higher-order and intralaminar thalamus (posterior and parafascicular nuclei) simultaneously. Then, the leading edge of active states propagated in the anteroposterior/lateral direction over the cortex at ∼40 mm/s. The latest structure we recorded within the slow-wave cycle was the anterior thalamus, which followed active states of the retrosplenial cortex. Active states from different cortical areas tended to terminate simultaneously. Sensory thalamic ventral posterior medial and lateral geniculate nuclei followed cortical active states with major inhibitory and weak tonic-like "modulator" EPSPs. In these nuclei, sharp-rising, large-amplitude EPSPs ("drivers") were not modulated by cortical slow waves, suggesting their origin in ascending pathways. The thalamic active states in other investigated nuclei were composed of depolarization: some revealing "driver"- and "modulator"-like EPSPs, others showing "modulator"-like EPSPs only. We conclude that sensory thalamic nuclei follow the propagating cortical waves, whereas neurons from higher-order thalamic nuclei display "hub dynamics" and thus may contribute to the generation of cortical slow waves.

  8. Metabolic host responses to infection by intracellular bacterial pathogens

    PubMed Central

    Eisenreich, Wolfgang; Heesemann, Jürgen; Rudel, Thomas; Goebel, Werner

    2013-01-01

    The interaction of bacterial pathogens with mammalian hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft. During this conflicting interaction, the pathogen triggers metabolic host cell responses by means of common cell envelope components and specific virulence-associated factors. These host reactions generally promote replication of the pathogen. There is growing evidence that pathogen-specific factors may interfere in different ways with the complex regulatory network that controls the carbon and nitrogen metabolism of mammalian cells. The host cell defense answers include general metabolic reactions, like the generation of oxygen- and/or nitrogen-reactive species, and more specific measures aimed to prevent access to essential nutrients for the respective pathogen. Accurate results on metabolic host cell responses are often hampered by the use of cancer cell lines that already exhibit various de-regulated reactions in the primary carbon metabolism. Hence, there is an urgent need for cellular models that more closely reflect the in vivo infection conditions. The exact knowledge of the metabolic host cell responses may provide new interesting concepts for antibacterial therapies. PMID:23847769

  9. Repurposing bacterial toxins for intracellular delivery of therapeutic proteins.

    PubMed

    Beilhartz, Greg L; Sugiman-Marangos, Seiji N; Melnyk, Roman A

    2017-10-15

    Despite enormous efforts, achieving efficacious levels of proteins inside mammalian cells remains one of the greatest challenges in biologics-based drug discovery and development. The inability of proteins to readily cross biological membranes precludes access to the wealth of intracellular targets and applications that lie within mammalian cells. Existing methods of delivery commonly suffer from an inability to target specific cells and tissues, poor endosomal escape, and limited in vivo efficacy. The aim of the present commentary is to highlight the potential of certain classes of bacterial toxins, which naturally deliver a large protein into the cytosolic compartment of target cells after binding a host cell-surface receptor with high affinity, as robust protein delivery platforms. We review the progress made in recent years toward demonstrating the utility of these systems at delivering a wide variety of protein cargo, with special attention paid to three distinct toxin-based platforms. We contend that with recent advances in protein deimmunization strategies, bacterial toxins are poised to introduce biologics into the inner sanctum of cells and treat a wealth of heretofore untreatable diseases with a new generation of therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Control of Intracellular Calcium Signaling as a Neuroprotective Strategy

    PubMed Central

    Duncan, R. Scott; Goad, Daryl L.; Grillo, Michael A.; Kaja, Simon; Payne, Andrew J.; Koulen, Peter

    2010-01-01

    Both acute and chronic degenerative diseases of the nervous system reduce the viability and function of neurons through changes in intracellular calcium signaling. In particular, pathological increases in the intracellular calcium concentration promote such pathogenesis. Disease involvement of numerous regulators of intracellular calcium signaling located on the plasma membrane and intracellular organelles has been documented. Diverse groups of chemical compounds targeting ion channels, G-protein coupled receptors, pumps and enzymes have been identified as potential neuroprotectants. The present review summarizes the discovery, mechanisms and biological activity of neuroprotective molecules targeting proteins that control intracellular calcium signaling to preserve or restore structure and function of the nervous system. Disease relevance, clinical applications and new technologies for the identification of such molecules are being discussed. PMID:20335972

  11. Temperature dependence of Na+-H+ exchange, Na+-HCO3- co-transport, intracellular buffering and intracellular pH in guinea-pig ventricular myocytes.

    PubMed

    Ch'en, Frederick F-T; Dilworth, Emma; Swietach, Pawel; Goddard, Ruth S; Vaughan-Jones, Richard D

    2003-11-01

    Almost all aspects of cardiac function are sensitive to modest changes of temperature. We have examined the thermal sensitivity of intracellular pH regulation in the heart. To do this we determined the temperature sensitivity of pHi, intracellular buffering capacity, and the activity of sarcolemmal acid-extrusion proteins, Na+-H+ exchange (NHE) and Na+-HCO3- co-transport (NBC) in guinea-pig isolated ventricular myocytes. pHi was recorded fluorimetrically with acetoxymethyl (AM)-loaded carboxy-SNARF-1 at either 27 or 37 degrees C. At 27 degrees C, intrinsic (non-CO2-dependent) buffering power (betai) was approximately 60% of that at 37 degrees C. Acid-extrusion (Je) through NHE was approximately 50% slower than at 37 degrees C, consistent with a Q10 of approximately 2. In 5% CO2/HCO3--buffered conditions, in the presence of 30 microM cariporide to inhibit NHE, acid extrusion via NBC was also slowed at 27 degrees C, suggestive of a comparable Q10. Resting pHi at 27 degrees C was similar in Hepes- or 5% CO2/HCO3--buffered superfusates but, in both cases, was approximately 0.1 pH units lower at 37 degrees C. The higher the starting pHi, the larger was the thermally induced fall of pHi, consistent with a mathematical model where intrinsic buffers with a low principal pKa (e.g. close to 6.0) are less temperature-sensitive than those with a higher pKa. The high temperature sensitivity of pHi regulation in mammalian cardiac cells has implications for experimental work conducted at room temperature. It also has implications for the ability of intracellular acidosis to generate intracellular Na+ and Ca2+ overload, cardiac injury and arrhythmia in the heart.

  12. Effects of Methylprednisolone on Intracellular Bacterial Growth

    PubMed Central

    Meduri, G. Umberto; Kanangat, Siva; Bronze, Michael; Patterson, David R.; Meduri, Christopher U.; Pak, Chol; Tolley, Elizabeth A.; Schaberg, Dennis R.

    2001-01-01

    Clinical studies have shown positive associations among sustained and intense inflammatory responses and the incidence of bacterial infections. Patients presenting with acute respiratory distress syndrome (ARDS) and high levels of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), and IL-6, have increased risk for developing nosocomial infections attributable to organisms such as Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter spp., compared to those patients with lower levels. Our previous in vitro studies have demonstrated that these bacterial strains exhibit enhanced growth extracellularly when supplemented with high concentrations of pure recombinant TNF-α, IL-1β, or IL-6. In addition, we have shown that the intracellular milieu of phagocytic cells that are exposed to supraoptimal concentrations of TNF-α, IL-1β, and IL-6 or lipopolysaccharide (LPS) favors survival and replication of ingested bacteria. Therefore, we hypothesized that under conditions of intense inflammation the host's micromilieu favors bacterial infections by exposing phagocytic cells to protracted high levels of inflammatory cytokines. Our clinical studies have shown that methylprednisolone is capable of reducing the levels of TNF-α, IL-1β, and IL-6 in ARDS patients. Hence, we designed a series of in vitro experiments to test whether human monocytic cells (U937 cells) that are activated with high concentrations of LPS, which upregulate the release of proinflammatory cytokines from these phagocytic cells, would effectively kill or restrict bacterial survival and replication after exposure to methylprednisolone. Fresh isolates of S. aureus, P. aeruginosa, and Acinetobacter were used in our studies. Our results indicate that, compared with the control, stimulation of U937 cells with 100-ng/ml, 1.0-μg/ml, 5.0-μg/ml, or 10.0-μg/ml concentrations of LPS enhanced the intracellular survival and replication of all three species

  13. Arrhythmogenic consequences of intracellular calcium waves.

    PubMed

    Xie, Lai-Hua; Weiss, James N

    2009-09-01

    Intracellular Ca(2+) (Ca(i)(2+)) waves are known to cause delayed afterdepolarizations (DADs), which have been associated with arrhythmias in cardiac disease states such as heart failure, catecholaminergic polymorphic ventricular tachycardia, and digitalis toxicity. Here we show that, in addition to DADs, Ca(i)(2+) waves also have other consequences relevant to arrhythmogenesis, including subcellular spatially discordant alternans (SDA, in which the amplitude of the local Ca(i)(2+) transient alternates out of phase in different regions of the same cell), sudden repolarization changes promoting the dispersion of refractoriness, and early afterdepolarizations (EADs). Ca(i)(2+) was imaged using a charge-coupled device-based system in fluo-4 AM-loaded isolated rabbit ventricular myocytes paced at constant or incrementally increasing rates, using either field stimulation, current clamp, or action potential (AP) clamp. Ca(i)(2+) waves were induced by Bay K 8644 (50 nM) + isoproterenol (100 nM), or low temperature. When pacing was initiated during a spontaneous Ca(i)(2+) wave, SDA occurred abruptly and persisted during pacing. Similarly, during rapid pacing, SDA typically arose suddenly from spatially concordant alternans, due to an abrupt phase reversal of the subcellular Ca(i)(2+) transient in a region of the myocyte. Ca(i)(2+) waves could be visualized interspersed with AP-triggered Ca(i)(2+) transients, producing a rich variety of subcellular Ca(i)(2+) transient patterns. With free-running APs, complex Ca(i)(2+) release patterns were associated with DADs, EADs, and sudden changes in AP duration. These findings link Ca(i)(2+) waves directly to a variety of arrhythmogenic phenomena relevant to the intact heart.

  14. Analytical calculation of intracellular calcium wave characteristics.

    PubMed

    Kupferman, R; Mitra, P P; Hohenberg, P C; Wang, S S

    1997-06-01

    We present a theoretical analysis of intracellular calcium waves propagated by calcium feedback at the inositol 1,4,5-trisphosphate (IP3) receptor. The model includes essential features of calcium excitability, but is still analytically tractable. Formulas are derived for the wave speed, amplitude, and width. The calculations take into account cytoplasmic Ca buffering, the punctate nature of the Ca release channels, channel inactivation, and Ca pumping. For relatively fast buffers, the wave speed is well approximated by V(infinity) = (J(eff)D(eff)/C0)1/2, where J(eff) is an effective, buffered source strength; D(eff) is the effective, buffered diffusion constant of Ca; and C(0) is the Ca threshold for channel activation. It is found that the saturability and finite on-rate of buffers must be taken into account to accurately derive the wave speed and front width. The time scale governing Ca wave propagation is T(r), the time for Ca release to reach threshold to activate further release. Because IP3 receptor inactivation is slow on this time scale, channel inactivation does not affect the wave speed. However, inactivation competes with Ca removal to limit wave height and front length, and for biological parameter ranges, it is inactivation that determines these parameters. Channel discreteness introduces only small corrections to wave speed relative to a model in which Ca is released uniformly from the surface of the stores. These calculations successfully predict experimental results from basic channel and cell parameters and explain the slowing of waves by exogenous buffers.

  15. Thiol-oxidant monochloramine mobilizes intracellular Ca2+ in parietal cells of rabbit gastric glands.

    PubMed

    Walsh, Breda M; Naik, Haley B; Dubach, J Matthew; Beshire, Melissa; Wieland, Aaron M; Soybel, David I

    2007-11-01

    In Helicobacter pylori-induced gastritis, oxidants are generated through the interactions of bacteria in the lumen, activated granulocytes, and cells of the gastric mucosa. In this study we explored the ability of one such class of oxidants, represented by monochloramine (NH(2)Cl), to serve as agonists of Ca(2+) accumulation within the parietal cell of the gastric gland. Individual gastric glands isolated from rabbit mucosa were loaded with fluorescent reporters for Ca(2+) in the cytoplasm (fura-2 AM) or intracellular stores (mag-fura-2 AM). Conditions were adjusted to screen out contributions from metal cations such as Zn(2+), for which these reporters have affinity. Exposure to NH(2)Cl (up to 200 microM) led to dose-dependent increases in intracellular Ca(2+) concentration ([Ca(2+)](i)), in the range of 200-400 nM above baseline levels. These alterations were prevented by pretreatment with the oxidant scavenger vitamin C or a thiol-reducing agent, dithiothreitol (DTT), which shields intracellular thiol groups from oxidation by chlorinated oxidants. Introduction of vitamin C during ongoing exposure to NH(2)Cl arrested but did not reverse accumulation of Ca(2+) in the cytoplasm. In contrast, introduction of DTT or N-acetylcysteine permitted arrest and partial reversal of the effects of NH(2)Cl. Accumulation of Ca(2+) in the cytoplasm induced by NH(2)Cl is due to release from intracellular stores, entry from the extracellular fluid, and impaired extrusion. Ca(2+)-handling proteins are susceptible to oxidation by chloramines, leading to sustained increases in [Ca(2+)](i). Under certain conditions, NH(2)Cl may act not as an irritant but as an agent that activates intracellular signaling pathways. Anti-NH(2)Cl strategies should take into account different effects of oxidant scavengers and thiol-reducing agents.

  16. A quantitative study of the intracellular fate of pH-responsive doxorubicin-polypeptide nanoparticles.

    PubMed

    Wang, Jing; Bhattacharyya, Jayanta; Mastria, Eric; Chilkoti, Ashutosh

    2017-08-28

    Nanoscale carriers with an acid-labile linker between the carrier and drug are commonly used for drug delivery. However, their efficacy is potentially limited by inefficient linker cleavage, and lysosomal entrapment of drugs. To address these critical issues, we developed a new imaging method that spatially overlays the location of a nanoparticle and the released drug from the nanoparticle, on a map of the local intracellular pH that delineates individual endosomes and lysosomes, and the therapeutic intracellular target of the drug-the nucleus. We used this method to quantitatively map the intracellular fate of micelles of a recombinant polypeptide conjugated with doxorubicin via an acid-labile hydrazone linker as a function of local pH and time within live cells. We found that hydrolysis of the acid-labile linker is incomplete because the pH range of 4-7 in the endosomes and lysosomes does not provide complete cleavage of the drug from the nanoparticle, but that once cleaved, the drug escapes the acidic endo-lysosomal compartment into the cytosol and traffics to its therapeutic destination-the nucleus. This study also demonstrated that unlike free drug, which enters the cytosol directly through the cell membrane and then traffics into the nucleus, the nanoparticle-loaded drug almost exclusively traffics into endosomes and lysosomes upon intracellular uptake, and only reaches the nucleus after acid-triggered drug release in the endo-lysosomes. This methodology provides a better and more quantitative understanding of the intracellular behavior of drug-loaded nanoparticles, and provides insights for the design of the next-generation of nanoscale drug delivery systems. Copyright © 2017. Published by Elsevier B.V.

  17. Imaging and controlling intracellular reactions: Lysosome transport as a function of diameter and the intracellular synthesis of conducting polymers

    NASA Astrophysics Data System (ADS)

    Payne, Christine

    2014-03-01

    Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.

  18. ANOs 3–7 in the anoctamin/Tmem16 Cl− channel family are intracellular proteins

    PubMed Central

    Duran, Charity; Qu, Zhiqiang; Osunkoya, Adeboye O.; Cui, Yuanyuan

    2012-01-01

    Ca2+-activated Cl− channels (CaCCs) participate in numerous physiological functions such as neuronal excitability, sensory transduction, and transepithelial fluid transport. Recently, it was shown that heterologously expressed anoctamins ANO1 and ANO2 generate currents that resemble native CaCCs. The anoctamin family (also called Tmem16) consists of 10 members, but it is not known whether all members of the family are CaCCs. Expression of ANOs 3–7 in HEK293 cells did not generate Cl− currents activated by intracellular Ca2+, as determined by whole cell patch clamp electrophysiology. With the use of confocal imaging, only ANO1 and ANO2 traffic to the plasma membrane when expressed heterologously. Furthermore, endogenously expressed ANO7 in the human prostate is predominantly intracellular. We took a chimeric approach to identify regions critical for channel trafficking and function. However, none of the chimeras of ANO1 and ANO5/7 that we made trafficked to the plasma membrane. Our results suggest that intracellular anoctamins may be endoplasmic reticulum proteins, although it remains unknown whether these family members are CaCCs. Determining the role of anoctamin family members in ion transport will be critical to understanding their functions in physiology and disease. PMID:22075693

  19. NMDA receptor-mediated epileptiform persistent activity requires calcium release from intracellular stores in prefrontal neurons.

    PubMed

    Gao, Wen-Jun; Goldman-Rakic, Patricia S

    2006-02-01

    Various normal and pathological forms of synchronized population activity are generated by recurrent excitation among pyramidal neurons in the neocortex. However, the intracellular signaling mechanisms underlying this activity remain poorly understood. In this study, we have examined the cellular properties of synchronized epileptiform activity in the prefrontal cortex with particular emphasis on a potential role of intracellular calcium stores. We find that the zero-magnesium-induced synchronized activity is blocked by inhibition of sarco-endoplasmic reticulum Ca(2+)-ATPases, phospholipase C (PLC), the inositol 1,4,5-trisphosphate (IP3) receptor, and the ryanodine receptor. This same activity is, however, not affected by application of metabotropic glutamatergic receptor (mGluR) agonists, nor by introduction of an mGluR antagonist. These results suggest that persistent synchronized activity in vitro is dependent upon calcium release from internal calcium stores through the activation of PLC-IP3 receptor pathway. Our findings also raise the possibility that intracellular calcium release may be involved in the generation of pathologic synchronized activity in epilepsy in vivo and in physiological forms of synchronized cortical activity.

  20. Intracellular trafficking of the β-secretase and processing of amyloid precursor protein.

    PubMed

    Zhi, Pei; Chia, Pei Zhi Cheryl; Chia, Cheryl; Gleeson, Paul A

    2011-09-01

    The main component of the amyloid plaques found in the brains of those with Alzheimer's disease (AD) is a polymerized form of the β-amyloid peptide (Aβ) and is considered to play a central role in the pathogenesis of this neurodegenerative disorder. Aβ is derived from the proteolytic processing of the amyloid precursor protein (APP). Beta site APP-cleaving enzyme, BACE1 (also known as β-secretase) is a membrane-bound aspartyl protease responsible for the initial step in the generation of Aβ peptide and is thus a prime target for therapeutic intervention. Substantive evidence now indicates that the processing of APP by BACE1 is regulated by the intracellular sorting of the enzyme and, moreover, perturbations in these intracellular trafficking pathways have been linked to late-onset AD. In this review, we highlight the recent advances in the understanding of the regulation of the intracellular sorting of BACE1 and APP and illustrate why the trafficking of these cargos represent a key issue for understanding the membrane-mediated events associated with the generation of the neurotoxic Aβ products in AD. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  1. End-systolic pressure-volume relationship and intracellular control of contraction.

    PubMed

    Landesberg, A

    1996-01-01

    The left ventricular (LV) pressure-volume relationship and the effect of ejection on pressure generation are predicted theoretically based on the intracellular control mechanisms. The control of contraction is described based on coupling calcium kinetics and cross-bridge cycling. The analysis of published skinned and intact cardiac muscle data suggests two feedback control loops: 1) a positive cooperative mechanism that determines the force-length relationship, the length dependence calcium sensitivity of the contractile filaments, and the related Frank Starling law; and 2) a negative mechanical feedback that determines the force-velocity relationship and the generated power. The interplay between these two feedback mechanisms explains the wide spectrum of phenomena associated with the end-systolic pressure-volume relationship (ESPVR); it provides an explanation for the "shortening deactivation" and for the recent observations of the positive effect of ejection on the ESPVR, i.e., the increase of the end-systolic pressure of the ejecting beat over the pressure of the isovolumic beat at the same end-systolic volume. Furthermore, the analysis suggests that the LV contractility depends on the balance between the two intracellular mechanisms and that the effect of loading conditions is determined through these intracellular mechanisms.

  2. [Phospho-FACS: a powerful tool for exploring intracellular transduction cascades].

    PubMed

    Gernez, Y; Herzenberg, L A; Herzenberg, L A; Tirouvanziam, R

    2007-10-01

    FACS (fluorescence-activated cell sorting), or flow cytometry, was developed in 1971 by Leonard Herzenberg's team at Stanford University. Under continuous development, this technology enables single-cell multiparametric analysis and sorting, based on physical properties of cells and/or their relative expression levels of specific glycoproteic epitopes and metabolites. Recently, the use of fluorescent antibodies specific for phosphorylated epitopes - or "phospho-epitopes" - within proteins of interest has further extended the range of FACS analyses. This new application, dubbed "phospho-FACS", has quickly become a tool of choice for delineating intracellular phosphorylation cascades. In both basic research and clinical research, the application of phospho-FACS to cellular subsets from blood or the periphery, whether frequent or rare, enables the discovery of pathological biomarkers and therapeutic innovation. Thanks to its rapid implementation and its ability to generate single-cell data, the phospho-FACS technique features numerous advantages compared to preexisting analytical methods for intracellular phosphorylation cascades.

  3. Functional dependence of neuroligin on a new non-PDZ intracellular domain

    PubMed Central

    Shipman, Seth L; Schnell, Eric; Hirai, Takaaki; Chen, Bo-Shiun; Roche, Katherine W; Nicoll, Roger A

    2011-01-01

    Neuroligins, a family of postsynaptic adhesion molecules, are important in synaptogenesis through a well-characterized trans-synaptic interaction with neurexin. In addition, neuroligins are thought to drive postsynaptic assembly through binding of their intracellular domain to PSD-95. However, there is little direct evidence to support the functional necessity of the neuroligin intracellular domain in postsynaptic development. We found that presence of endogenous neuroligin obscured the study of exogenous mutated neuroligin. We therefore used chained microRNAs in rat organotypic hippocampal slices to generate a reduced background of endogenous neuroligin. On this reduced background, we found that neuroligin function was critically dependent on the cytoplasmic tail. However, this function required neither the PDZ ligand nor any other previously described cytoplasmic binding domain, but rather required a previously unknown conserved region. Mutation of a single critical residue in this region inhibited neuroligin-mediated excitatory synaptic potentiation. Finally, we found a functional distinction between neuroligins 1 and 3. PMID:21532576

  4. Extracellular matrix stiffness and architecture govern intracellular rheology in cancer.

    PubMed

    Baker, Erin L; Bonnecaze, Roger T; Zaman, Muhammad H

    2009-08-19

    Little is known about the complex interplay between the extracellular mechanical environment and the mechanical properties that characterize the dynamic intracellular environment. To elucidate this relationship in cancer, we probe the intracellular environment using particle-tracking microrheology. In three-dimensional (3D) matrices, intracellular effective creep compliance of prostate cancer cells is shown to increase with increasing extracellular matrix (ECM) stiffness, whereas modulating ECM stiffness does not significantly affect the intracellular mechanical state when cells are attached to two-dimensional (2D) matrices. Switching from 2D to 3D matrices induces an order-of-magnitude shift in intracellular effective creep compliance and apparent elastic modulus. However, for a given matrix stiffness, partial blocking of beta1 integrins mitigates the shift in intracellular mechanical state that is invoked by switching from a 2D to 3D matrix architecture. This finding suggests that the increased cell-matrix engagement inherent to a 3D matrix architecture may contribute to differences observed in viscoelastic properties between cells attached to 2D matrices and cells embedded within 3D matrices. In total, our observations show that ECM stiffness and architecture can strongly influence the intracellular mechanical state of cancer cells.

  5. Ultraviolet-irradiated monocytes efficiently inhibit the intracellular replication of Mycobacterium avium intracellulare.

    PubMed Central

    Mirando, W S; Shiratsuchi, H; Tubesing, K; Toba, H; Ellner, J J; Elmets, C A

    1992-01-01

    The purpose of this study was to evaluate the effect of ultraviolet (UV) radiation on the antimicrobial activities of monocytes for the intracellular pathogen Mycobacterium avium intracellulare (MAI). UV radiation augmented monocyte antimicrobial activity for MAI in a dose-dependent fashion. UVB doses of greater than or equal to 25 J/m2 resulted in a 50-100-fold reduction in MAI growth 7 d after initiation of culture. The increased monocyte antibacterial effect could be blocked by a plate glass filter, indicating that wavelengths within the UVB were responsible for the effect. UV radiation did not stimulate monocyte phagocytosis, and enhanced inhibition of MAI growth was observed in populations of adherent mononuclear cells that were devoid of T cells. This suggested that UV radiation acted directly to augment intrinsic monocyte antimicrobial activities. The administration of 8-methoxypsoralen plus UVA radiation to monocytes also augmented their antimicrobial activities against MAI. UV radiation thus may serve as a unique agent by which to evaluate the mechanisms by which mononuclear phagocytes control the growth of MAI. Images PMID:1556188

  6. Viral infectivity and intracellular distribution of matrix (M) protein of canine distemper virus are affected by actin filaments.

    PubMed

    Klauschies, F; Gützkow, T; Hinkelmann, S; von Messling, V; Vaske, B; Herrler, G; Haas, L

    2010-09-01

    To investigate the role of cytoskeletal components in canine distemper virus (CDV) replication, various agents were used that interfere with turnover of actin filaments and microtubules. Only inhibition of actin filaments significantly reduced viral infectivity. Analysis of the intracellular localization of the viral matrix (M) protein revealed that it aligned along actin filaments. Treatment with actin filament-disrupting drugs led to a marked intracellular redistribution of M protein during infection as well as transfection. In contrast, the localization of the CDV fusion (F) protein was not significantly changed during transfection. Thus, a M protein-actin filament interaction appears to be important for generation of infectious CDV.

  7. Intracellular Delivery of Peptidyl Ligands by Reversible Cyclization: Discovery of a PDZ Domain Inhibitor that Rescues CFTR Activity**

    PubMed Central

    Qian, Ziqing; Xu, Xiaohua; Amacher, Jeanine F.; Madden, Dean R.; Cormet-Boyaka, Estelle

    2015-01-01

    We report a general strategy for intracellular delivery of linear peptidyl ligands by fusing them with a cell-penetrating peptide and cyclizing the fusion peptides through a disulfide bond. The resulting cyclic peptides are cell permeable and have improved proteolytic stability. Once inside the cell, the disulfide bond is reduced to produce linear, biologically active peptides. This strategy was applied to generate a cell-permeable peptide substrate for real-time detection of intracellular caspase activities during apoptosis and a CAL-PDZ domain inhibitor for potential treatment of cystic fibrosis. PMID:25785567

  8. Alan N. Epstein award: Intracellular signaling and ingestive behaviors

    PubMed Central

    Daniels, Derek

    2010-01-01

    Understanding the role of intracellular signaling pathways in ingestive behavior is a challenging problem in behavioral neuroscience. This review summarizes work conducted on two systems with the aim of identifying intracellular events that relate to food and fluid intake. The first set of experiments focused on melanocortin receptors and their ability to signal through members of the mitogen-activated protein (MAP) kinase family. The second set of experiments focused on the role of intracellular signaling pathways in water and saline intakes that are stimulated by angiotensin II (AngII). The initial findings in each line of research have been extended by subsequent research that is discussed in turn. PMID:20346964

  9. Intracellular Acidosis Enhances the Excitability of Working Muscle

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas H.; Nielsen, Ole B.; Lamb, Graham D.; Stephenson, D. George

    2004-08-01

    Intracellular acidification of skeletal muscles is commonly thought to contribute to muscle fatigue. However, intracellular acidosis also acts to preserve muscle excitability when muscles become depolarized, which occurs with working muscles. Here, we show that this process may be mediated by decreased chloride permeability, which enables action potentials to still be propagated along the internal network of tubules in a muscle fiber (the T system) despite muscle depolarization. These results implicate chloride ion channels in muscle function and emphasize that intracellular acidosis of muscle has protective effects during muscle fatigue.

  10. Intracellular acidosis enhances the excitability of working muscle.

    PubMed

    Pedersen, Thomas H; Nielsen, Ole B; Lamb, Graham D; Stephenson, D George

    2004-08-20

    Intracellular acidification of skeletal muscles is commonly thought to contribute to muscle fatigue. However, intracellular acidosis also acts to preserve muscle excitability when muscles become depolarized, which occurs with working muscles. Here, we show that this process may be mediated by decreased chloride permeability, which enables action potentials to still be propagated along the internal network of tubules in a muscle fiber (the T system) despite muscle depolarization. These results implicate chloride ion channels in muscle function and emphasize that intracellular acidosis of muscle has protective effects during muscle fatigue.

  11. Strategies for the enhanced intracellular delivery of nanomaterials.

    PubMed

    Azevedo, Cláudia; Macedo, Maria Helena; Sarmento, Bruno

    2017-09-14

    The intracellular delivery of nanomaterials and drugs has been attracting increasing research interest, mainly because of their important effects and functions in several organelles. Targeting specific organelles can help treat or decrease the symptoms of diabetes, cancer, infectious, and autoimmune diseases. Tuning biological and chemical properties enables the creation of functionalized nanomaterials with enhanced intracellular uptake, ability to escape premature lysosome degradation, and to reach a specific target. Here, we provide an update of recent advances in the intracellular delivery mechanisms that could help drugs reach their target more efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Hydroxyhydroquinone, a by-product of coffee bean roasting, increases intracellular Ca(2+) concentration in rat thymic lymphocytes.

    PubMed

    Kamae, Risa; Nojima, Shoko; Akiyoshi, Kenji; Setsu, Shoki; Honda, Sari; Masuda, Toshiya; Oyama, Yasuo

    2017-04-01

    Hydroxyhydroquinone (HHQ) is generated during coffee bean roasting. A cup of coffee contains 0.1-1.7 mg of HHQ. The actions of HHQ on mammalian DNA were examined because HHQ is a metabolite of benzene, which causes leukemia. Currently, information on the cellular actions of HHQ is limited. We examined the effects of sublethal levels of HHQ on the concentration of intracellular Ca(2+) in rat thymic lymphocytes by using a flow cytometric technique with fluorescent probes. HHQ at 10 μM or more significantly elevated intracellular Ca(2+) levels by increasing the membrane permeability of divalent cations, resulting in hyperpolarization via the activation of Ca(2+)-dependent K(+) channels. HHQ-induced changes in the intracellular Ca(2+) concentration and membrane potential may affect the cell functions of lymphocytes. HHQ-reduced coffee may be preferable in order to avoid the possible adverse effects of HHQ.

  13. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein–protein interaction module

    PubMed Central

    Yim, Nambin; Ryu, Seung-Wook; Choi, Kyungsun; Lee, Kwang Ryeol; Lee, Seunghee; Choi, Hojun; Kim, Jeongjin; Shaker, Mohammed R.; Sun, Woong; Park, Ji-Ho; Kim, Daesoo; Do Heo, Won; Choi, Chulhee

    2016-01-01

    Nanoparticle-mediated delivery of functional macromolecules is a promising method for treating a variety of human diseases. Among nanoparticles, cell-derived exosomes have recently been highlighted as a new therapeutic strategy for the in vivo delivery of nucleotides and chemical drugs. Here we describe a new tool for intracellular delivery of target proteins, named ‘exosomes for protein loading via optically reversible protein–protein interactions' (EXPLORs). By integrating a reversible protein–protein interaction module controlled by blue light with the endogenous process of exosome biogenesis, we are able to successfully load cargo proteins into newly generated exosomes. Treatment with protein-loaded EXPLORs is shown to significantly increase intracellular levels of cargo proteins and their function in recipient cells in vitro and in vivo. These results clearly indicate the potential of EXPLORs as a mechanism for the efficient intracellular transfer of protein-based therapeutics into recipient cells and tissues. PMID:27447450

  14. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module.

    PubMed

    Yim, Nambin; Ryu, Seung-Wook; Choi, Kyungsun; Lee, Kwang Ryeol; Lee, Seunghee; Choi, Hojun; Kim, Jeongjin; Shaker, Mohammed R; Sun, Woong; Park, Ji-Ho; Kim, Daesoo; Heo, Won Do; Choi, Chulhee

    2016-07-22

    Nanoparticle-mediated delivery of functional macromolecules is a promising method for treating a variety of human diseases. Among nanoparticles, cell-derived exosomes have recently been highlighted as a new therapeutic strategy for the in vivo delivery of nucleotides and chemical drugs. Here we describe a new tool for intracellular delivery of target proteins, named 'exosomes for protein loading via optically reversible protein-protein interactions' (EXPLORs). By integrating a reversible protein-protein interaction module controlled by blue light with the endogenous process of exosome biogenesis, we are able to successfully load cargo proteins into newly generated exosomes. Treatment with protein-loaded EXPLORs is shown to significantly increase intracellular levels of cargo proteins and their function in recipient cells in vitro and in vivo. These results clearly indicate the potential of EXPLORs as a mechanism for the efficient intracellular transfer of protein-based therapeutics into recipient cells and tissues.

  15. EVIDENCE FOR THE MACROPHAGE INDUCING GENE IN MYCOBACTERIUM INTRACELLULARE

    EPA Science Inventory

    Background: The Mycobacterium avium Complex (MAC) includes the species M. avium (MA), M. intracellulare (MI), and possibly others. Organisms belonging to the MAC are phylogenetically closely related, opportunistic pathogens. The macrophage inducing gene (mig) is the only well-des...

  16. Acute disseminated encephalomyelitis associated with meningitis due to Mycobacterium intracellulare.

    PubMed

    Okada, Hiroshi; Yoshioka, Keiji

    2010-01-01

    A 73-year-old woman was admitted to our hospital because of persistent fever, headache and fatigue for several weeks. On admission, she was diagnosed as having meningitis due to Mycobacterium intracellulare (M. intracellulare) detected in her cerebrospinal fluid (CSF) by polymerase chain reaction. Even though anti-tuberculous therapy improved her CSF findings, her condition was not restored. Brain MRI showed multifocal and asymmetrical increases in T2 signals involving white matter and cortical gray-white junction of cerebral hemispheres, cerebellum and brainstem. Based on the progression of clinical symptoms and radiological features, we diagnosed her illness as acute disseminated encephalomyelitis (ADEM) associated with meningitis due to M. intracellulare. Steroid therapy dramatically improved her condition. This is the first report of ADEM following meningitis due to M. intracellulare in a non-immunocompromized host.

  17. Genome degeneration affects both extracellular and intracellular bacterial endosymbionts

    PubMed Central

    Feldhaar, Heike; Gross, Roy

    2009-01-01

    The obligate intracellular bacterial endosymbionts of insects are a paradigm for reductive genome evolution. A study published recently in BMC Biology demonstrates that similar evolutionary forces shaping genome structure may also apply to extracellular endosymbionts. PMID:19435469

  18. Inhibition of intracellular growth of Listeria monocytogenes by antibiotics.

    PubMed Central

    Michelet, C; Avril, J L; Cartier, F; Berche, P

    1994-01-01

    We studied the activities of 15 antibiotics on the intracellular growth of Listeria monocytogenes in a HeLa cell line. After 24 h of contact with the infected cells, the antibiotics most effective against the intracellular growth of the 10 strains tested were amoxicillin, temafloxacin, and sparfloxacin, which nevertheless failed to totally eliminate the intracellular bacteria. Rifampin and co-trimoxazole had variable effects, depending on the isolates studied. The most active combinations were amoxicillin-sparfloxacin, co-trimoxazole-gentamicin, and sparfloxacin-co-trimoxazole. The results suggest the value of using a cell culture technique to study the activities of antibiotics against certain bacteria with intracellular sites of multiplication. PMID:8203836

  19. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging

    NASA Astrophysics Data System (ADS)

    Abbott, Jeffrey; Ye, Tianyang; Qin, Ling; Jorgolli, Marsela; Gertner, Rona S.; Ham, Donhee; Park, Hongkun

    2017-05-01

    Developing a new tool capable of high-precision electrophysiological recording of a large network of electrogenic cells has long been an outstanding challenge in neurobiology and cardiology. Here, we combine nanoscale intracellular electrodes with complementary metal-oxide-semiconductor (CMOS) integrated circuits to realize a high-fidelity all-electrical electrophysiological imager for parallel intracellular recording at the network level. Our CMOS nanoelectrode array has 1,024 recording/stimulation 'pixels' equipped with vertical nanoelectrodes, and can simultaneously record intracellular membrane potentials from hundreds of connected in vitro neonatal rat ventricular cardiomyocytes. We demonstrate that this network-level intracellular recording capability can be used to examine the effect of pharmaceuticals on the delicate dynamics of a cardiomyocyte network, thus opening up new opportunities in tissue-based pharmacological screening for cardiac and neuronal diseases as well as fundamental studies of electrogenic cells and their networks.

  20. EVIDENCE FOR THE MACROPHAGE INDUCING GENE IN MYCOBACTERIUM INTRACELLULARE

    EPA Science Inventory

    Background: The Mycobacterium avium Complex (MAC) includes the species M. avium (MA), M. intracellulare (MI), and possibly others. Organisms belonging to the MAC are phylogenetically closely related, opportunistic pathogens. The macrophage inducing gene (mig) is the only well-des...

  1. Engineering of obligate intracellular bacteria: progress, challenges and paradigms.

    PubMed

    McClure, Erin E; Chávez, Adela S Oliva; Shaw, Dana K; Carlyon, Jason A; Ganta, Roman R; Noh, Susan M; Wood, David O; Bavoil, Patrik M; Brayton, Kelly A; Martinez, Juan J; McBride, Jere W; Valdivia, Raphael H; Munderloh, Ulrike G; Pedra, Joao H F

    2017-09-01

    It is estimated that approximately one billion people are at risk of infection with obligate intracellular bacteria, but little is known about the underlying mechanisms that govern their life cycles. The difficulty in studying Chlamydia spp., Coxiella spp., Rickettsia spp., Anaplasma spp., Ehrlichia spp. and Orientia spp. is, in part, due to their genetic intractability. Recently, genetic tools have been developed; however, optimizing the genomic manipulation of obligate intracellular bacteria remains challenging. In this Review, we describe the progress in, as well as the constraints that hinder, the systematic development of a genetic toolbox for obligate intracellular bacteria. We highlight how the use of genetically manipulated pathogens has facilitated a better understanding of microbial pathogenesis and immunity, and how the engineering of obligate intracellular bacteria could enable the discovery of novel signalling circuits in host-pathogen interactions.

  2. Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth

    USDA-ARS?s Scientific Manuscript database

    Microsporidia comprise a large phylum of obligate intracellular eukaryotes that are fungalrelated parasites responsible for widespread disease, and here we address questions about microsporidia biology and evolution. We sequenced three microsporidian genomes from two species, Nematocida parisii and...

  3. Intracellular Renin Disrupts Chemical Communication between Heart Cells. Pathophysiological Implications

    PubMed Central

    De Mello, Walmor C.

    2015-01-01

    Highlights Intracellular renin disrupts chemical communication in the heartAngiotensinogen enhances the effect of reninIntracellular enalaprilat reduces significantly the effect of reninIntracellular renin increases the inward calcium currentHarmful versus beneficial effect during myocardial infarction The influence of intracellular renin on the process of chemical communication between cardiac cells was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. The enzyme together with Lucifer yellow CH was dialyzed into one cell of the pair using the whole cell clamp technique. The diffusion of the dye in the dialyzed and in non-dialyzed cell was followed by measuring the intensity of fluorescence in both cells as a function of time. The results indicated that; (1) under normal conditions, Lucifer Yellow flows from cell to cell through gap junctions; (2) the intracellular dialysis of renin (100 nM) disrupts chemical communication – an effect enhanced by simultaneous administration of angiotensinogen (100 nM); (3) enalaprilat (10−9 M) administered to the cytosol together with renin reduced drastically the uncoupling action of the enzyme; (4) aliskiren (10−8 M) inhibited the effect of renin on chemical communication; (5) the possible role of intracellular renin independently of angiotensin II (Ang II) was evaluated including the increase of the inward calcium current elicited by the enzyme and the possible role of oxidative stress on the disruption of cell communication; (6) the possible harmful versus the beneficial effect of intracellular renin during myocardial infarction was discussed; (7) the present results indicate that intracellular renin due to internalization or in situ synthesis causes a severe impairment of chemical communication in the heart resulting in derangement of metabolic cooperation with serious consequences for heart function. PMID:25657639

  4. Assessment of Methods for the Intracellular Blockade of GABAA Receptors

    PubMed Central

    Atherton, Laura A.; Burnell, Erica S.; Mellor, Jack R.

    2016-01-01

    Selective blockade of inhibitory synaptic transmission onto specific neurons is a useful tool for dissecting the excitatory and inhibitory synaptic components of ongoing network activity. To achieve this, intracellular recording with a patch solution capable of blocking GABAA receptors has advantages over other manipulations, such as pharmacological application of GABAergic antagonists or optogenetic inhibition of populations of interneurones, in that the majority of inhibitory transmission is unaffected and hence the remaining network activity preserved. Here, we assess three previously described methods to block inhibition: intracellular application of the molecules picrotoxin, 4,4’-dinitro-stilbene-2,2’-disulphonic acid (DNDS) and 4,4’-diisothiocyanostilbene-2,2’-disulphonic acid (DIDS). DNDS and picrotoxin were both found to be ineffective at blocking evoked, monosynaptic inhibitory postsynaptic currents (IPSCs) onto mouse CA1 pyramidal cells. An intracellular solution containing DIDS and caesium fluoride, but lacking nucleotides ATP and GTP, was effective at decreasing the amplitude of IPSCs. However, this effect was found to be independent of DIDS, and the absence of intracellular nucleotides, and was instead due to the presence of fluoride ions in this intracellular solution, which also blocked spontaneously occurring IPSCs during hippocampal sharp waves. Critically, intracellular fluoride ions also caused a decrease in both spontaneous and evoked excitatory synaptic currents and precluded the inclusion of nucleotides in the intracellular solution. Therefore, of the methods tested, only fluoride ions were effective for intracellular blockade of IPSCs but this approach has additional cellular effects reducing its selectivity and utility. PMID:27501143

  5. Study of neurotoxic intracellular calcium signalling triggered by amyloids.

    PubMed

    Villalobos, Carlos; Caballero, Erica; Sanz-Blasco, Sara; Núñez, Lucía

    2012-01-01

    Neurotoxicity in Alzheimer's disease (AD) is associated to dishomeostasis of intracellular Ca(2+) induced by amyloid β peptide (Aβ) species. Understanding of the effects of Aβ on intracellular Ca(2+) homeostasis requires preparation of the different Aβ assemblies including oligomers and fibrils and the testing of their effects on cytosolic and mitochondrial Ca(2+) in neurons. Procedures for cerebellar granule cell culture, preparation of Aβ species as well as fluorescence and bioluminescence imaging of cytosolic and mitochondrial Ca(2+) in neurons are described.

  6. Intracellular concentrations determine the cytotoxicity of adefovir, cidofovir and tenofovir.

    PubMed

    Zhang, Xun; Wang, Ruduan; Piotrowski, Mary; Zhang, Hui; Leach, Karen L

    2015-02-01

    Lack of in vitro to in vivo translation is a major challenge in safety prediction during early drug discovery.One of the most common in vitro assays to evaluate the probability of a compound to cause adverse effects is a cytotoxicity assay. Cytotoxicity of a compound is often measured by dose–response curves assuming the administered doses and intracellular exposures are equal at the time of measurement.However, this may not be true for compounds with low membrane permeability or those which are substrates for drug transporters as intracellular concentrations are determined both by passive permeability and active uptake through drug transporters. We show here that three antiviral drugs, adefovir, cidofovir and tenofovir exhibit significantly increased cytotoxicity in HEK293 cells transfected with organic anion transporter (OAT) 1 and 3 compared to a lack of cytotoxicity in HEK293 wildtype cells. A further look at the media and intracellular drug concentrations showed that 24 h after dosing, all three drugs had higher intracellular drug concentrations than that of media in the HEK-OAT1 cells whereas the intracellular drug concentrations in the wildtype cells were much lower than the administered doses. Comparing cytotoxicity IC(50) values of adefovir, cidofovir and tenofovir based on administered doses and measured intracellular concentrations in HEK-OAT1 cells revealed that intracellular drug concentrations have significant impact on calculated IC(50) values. Tenofovir showed much less intrinsic cytotoxicity than adefovir and cidofovir using intracellular concentrations rather than media concentration. Our data suggest that for low permeable drugs or drugs that are substrates for drug transporters, the choice of cellular model is critical for providing an accurate determination of cytotoxicity.

  7. Intracellular Renin Disrupts Chemical Communication between Heart Cells. Pathophysiological Implications.

    PubMed

    De Mello, Walmor C

    2014-01-01

    HighlightsIntracellular renin disrupts chemical communication in the heartAngiotensinogen enhances the effect of reninIntracellular enalaprilat reduces significantly the effect of reninIntracellular renin increases the inward calcium currentHarmful versus beneficial effect during myocardial infarction The influence of intracellular renin on the process of chemical communication between cardiac cells was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. The enzyme together with Lucifer yellow CH was dialyzed into one cell of the pair using the whole cell clamp technique. The diffusion of the dye in the dialyzed and in non-dialyzed cell was followed by measuring the intensity of fluorescence in both cells as a function of time. The results indicated that; (1) under normal conditions, Lucifer Yellow flows from cell to cell through gap junctions; (2) the intracellular dialysis of renin (100 nM) disrupts chemical communication - an effect enhanced by simultaneous administration of angiotensinogen (100 nM); (3) enalaprilat (10(-9) M) administered to the cytosol together with renin reduced drastically the uncoupling action of the enzyme; (4) aliskiren (10(-8) M) inhibited the effect of renin on chemical communication; (5) the possible role of intracellular renin independently of angiotensin II (Ang II) was evaluated including the increase of the inward calcium current elicited by the enzyme and the possible role of oxidative stress on the disruption of cell communication; (6) the possible harmful versus the beneficial effect of intracellular renin during myocardial infarction was discussed; (7) the present results indicate that intracellular renin due to internalization or in situ synthesis causes a severe impairment of chemical communication in the heart resulting in derangement of metabolic cooperation with serious consequences for heart function.

  8. The effect of aminosulfonate buffers on the light responses and intracellular pH of goldfish retinal horizontal cells.

    PubMed

    Trenholm, Stuart; Baldridge, William H

    2010-10-01

    Retinal horizontal cell feedback acts as a gain control at the first synapse in the visual system and generates center-surround receptive fields in the outer retina. One model of feedback proposes that elevation of protons in the photoreceptor synaptic cleft produces feedback. Most evidence supporting the proton model has depended on the effect of proton buffers, in particular aminosulfonates, but these agents could potentially have effects other than external pH regulation. We therefore determined if the effects of aminosulfonates on horizontal cell rollback, an indicator of feedback, were consistent with external proton buffering. Intracellular recording from horizontal cells in isolated goldfish retina revealed that rollback was blocked only by aminosulfonates with an acid dissociation constant suited for buffering at the pH (7.5) of the Ringer's solution. In isolated goldfish horizontal cells, aminosulfonates, even those that did not block rollback, altered intracellular pH. This suggests that the effect of aminosulfonates on rollback is not because of changing intracellular pH. Measures of both intracellular and extracellular pH revealed that treatment with either glutamate or kainate resulted in acidification. As glutamate produced both internal and external acidification, intracellular and extracellular horizontal cell pH would be expected to increase in response to light, a change consistent with the proton model of feedback. © 2010 The Authors. Journal Compilation © 2010 International Society for Neurochemistry.

  9. Intra-cellular Staphylococcus aureus alone causes infection in vivo.

    PubMed

    Hamza, T; Dietz, M; Pham, D; Clovis, N; Danley, S; Li, B

    2013-07-08

    Chronic and recurrent bone infections occur frequently but have not been explained. Staphylococcus aureus (S. aureus) is often found among chronic and recurrent infections and may be responsible for such infections. One possible reason is that S. aureus can internalize and survive within host cells and by doing so, S. aureus can evade both host defense mechanisms and most conventional antibiotic treatments. In this study, we hypothesized that intra-cellular S. aureus could induce infections in vivo. Osteoblasts were infected with S. aureus and, after eliminating extra-cellular S. aureus, inoculated into an open fracture rat model. Bacterial cultures and radiographic observations at post-operative day 21 confirmed local bone infections in animals inoculated with intra-cellular S. aureus within osteoblasts alone. We present direct in vivo evidence that intra-cellular S. aureus could be sufficient to induce bone infection in animals; we found that intra-cellular S. aureus inoculation of as low as 102 colony forming units could induce severe bone infections. Our data may suggest that intra-cellular S. aureus can "hide" in host cells during symptom-free periods and, under certain conditions, they may escape and lead to infection recurrence. Intra-cellular S. aureus therefore could play an important role in the pathogenesis of S. aureus infections, especially those chronic and recurrent infections in which disease episodes may be separated by weeks, months, or even years.

  10. INTRA-CELLULAR STAPHYLOCOCCUS AUREUS ALONE CAUSES INFECTION IN VIVO#

    PubMed Central

    Hamza, Therwa; Dietz, Matthew; Pham, Danh; Clovis, Nina; Danley, Suzanne; Li, Bingyun

    2013-01-01

    Chronic and recurrent bone infections occur frequently but have not been explained. Staphylococcus aureus (S. aureus) is often found among chronic and recurrent infections and may be responsible for such infections. One possible reason is that S. aureus can internalize and survive within host cells and by doing so, S. aureus can evade both host defense mechanisms and most conventional antibiotic treatments. In this study, we hypothesized that intra-cellular S. aureus could induce infections in vivo. Osteoblasts were infected with S. aureus and, after eliminating extra-cellular S. aureus, inoculated into an open fracture rat model. Bacterial cultures and radiographic observations at post-operative day 21 confirmed local bone infections in animals inoculated with intra-cellular S. aureus within osteoblasts alone. We present direct in vivo evidence that intra-cellular S. aureus could be sufficient to induce bone infection in animals; we found that intra-cellular S. aureus inoculation of as low as 102 colony forming units could induce severe bone infections. Our data may suggest that intra-cellular S. aureus can “hide” in host cells during symptom-free periods and, under certain conditions, they may escape and lead to infection recurrence. Intra-cellular S. aureus therefore could play an important role in the pathogenesis of S. aureus infections, especially those chronic and recurrent infections in which disease episodes may be separated by weeks, months, or even years. PMID:23832687

  11. Uptake and intracellular activity of fluconazole in human polymorphonuclear leukocytes.

    PubMed Central

    Pascual, A; García, I; Conejo, C; Perea, E J

    1993-01-01

    The penetration of fluconazole into human polymorphonuclear leukocytes (PMNs) and tissue culture epithelial cells (McCoy) was evaluated. At different extracellular concentrations (0.5 to 10 mg/liter), fluconazole reached cell-associated concentrations greater than the extracellular ones in either human PMNs (intracellular concentration to extracellular concentration ratio, > or = 2.2) or McCoy cells (intracellular concentration to extracellular concentration ratio, > or = 1.3). The uptake of fluconazole by PMNs was rapid and reversible but was not energy dependent. The intracellular penetration of fluconazole was not affected by environmental pH or temperature. Ingestion of opsonized zymosan and opsonized Candida albicans did not significantly increase the amount of PMN-associated fluconazole. At therapeutic extracellular concentrations, the intracellular activity of fluconazole against C. albicans in PMNs was significantly lower than that of amphotericin B. It was concluded that fluconazole reaches high intracellular concentrations within PMNs but shows moderate activity against intracellular C. albicans in vitro. PMID:8452347

  12. Cell adhesion and intracellular calcium signaling in neurons

    PubMed Central

    2013-01-01

    Cell adhesion molecules (CAMs) play indispensable roles in the developing and mature brain by regulating neuronal migration and differentiation, neurite outgrowth, axonal fasciculation, synapse formation and synaptic plasticity. CAM-mediated changes in neuronal behavior depend on a number of intracellular signaling cascades including changes in various second messengers, among which CAM-dependent changes in intracellular Ca2+ levels play a prominent role. Ca2+ is an essential secondary intracellular signaling molecule that regulates fundamental cellular functions in various cell types, including neurons. We present a systematic review of the studies reporting changes in intracellular Ca2+ levels in response to activation of the immunoglobulin superfamily CAMs, cadherins and integrins in neurons. We also analyze current experimental evidence on the Ca2+ sources and channels involved in intracellular Ca2+ increases mediated by CAMs of these families, and systematically review the role of the voltage-dependent Ca2+ channels (VDCCs) in neurite outgrowth induced by activation of these CAMs. Molecular mechanisms linking CAMs to VDCCs and intracellular Ca2+ stores in neurons are discussed. PMID:24330678

  13. Citric acid production by Candida strains under intracellular nitrogen limitation.

    PubMed

    Anastassiadis, S; Aivasidis, A; Wandrey, C

    2002-10-01

    A suitable strain and important factors influencing citric acid formation in yeasts were identified. Candida oleophila ATCC 20177 was chosen as the best citric acid producer from several Candida strains. Yields of 50 g/l citric acid were produced in shake flask and 80 g/l in fed-batch fermentations with 1.5 and 3 g/l NH(4)Cl under non-optimized conditions. Ammonium nitrogen was identified as the limiting substrate for citrate formation. Citric acid excretion begins a few hours after exhaustion of nitrogen in the medium. The importance of intracellular nitrogen limitation was clarified by elemental analysis of C. oleophila biomass. The nitrogen content of C. oleophila biomass decreased from 7.45% during the growth phase to 3.96% in the production phase. The biomass contained less carbon and more trace elements in the growth phase compared with the production phase. Relatively high intracellular NH(4)(+) concentration of about 1.2 mg/g biomass (~37.4 mM) was found during the production phase. The low intracellular nitrogen content and increase of intracellular NH(4)(+) concentration, possibly caused by proteolysis following extracellular nitrogen exhaustion, trigger citric acid production. Intracellular nitrogen limitation and the increase in intracellular NH(4)(+) concentration are the most important factors influencing citric acid formation in yeasts.

  14. Invasion of the Central Nervous System by Intracellular Bacteria

    PubMed Central

    Drevets, Douglas A.; Leenen, Pieter J. M.; Greenfield, Ronald A.

    2004-01-01

    Infection of the central nervous system (CNS) is a severe and frequently fatal event during the course of many diseases caused by microbes with predominantly intracellular life cycles. Examples of these include the facultative intracellular bacteria Listeria monocytogenes, Mycobacterium tuberculosis, and Brucella and Salmonella spp. and obligate intracellular microbes of the Rickettsiaceae family and Tropheryma whipplei. Unfortunately, the mechanisms used by intracellular bacterial pathogens to enter the CNS are less well known than those used by bacterial pathogens with an extracellular life cycle. The goal of this review is to elaborate on the means by which intracellular bacterial pathogens establish infection within the CNS. This review encompasses the clinical and pathological findings that pertain to the CNS infection in humans and includes experimental data from animal models that illuminate how these microbes enter the CNS. Recent experimental data showing that L. monocytogenes can invade the CNS by more than one mechanism make it a useful model for discussing the various routes for neuroinvasion used by intracellular bacterial pathogens. PMID:15084504

  15. Intracellular Fate of Spherical Nucleic Acid Nanoparticle Conjugates

    PubMed Central

    2015-01-01

    Spherical nucleic acid (SNA) nanoparticle conjugates are a class of bionanomaterials that are extremely potent in many biomedical applications. Their unique ability to enter multiple mammalian cell types as single-entity agents arises from their novel three-dimensional architecture, which consists of a dense shell of highly oriented oligonucleotides chemically attached typically to a gold nanoparticle core. This architecture allows SNAs to engage certain cell surface receptors to facilitate entry. Here, we report studies aimed at determining the intracellular fate of SNAs and the trafficking events that occur inside C166 mouse endothelial cells after cellular entry. We show that SNAs traffic through the endocytic pathway into late endosomes and reside there for up to 24 h after incubation. Disassembly of oligonucleotides from the nanoparticle core is observed 16 h after cellular entry, most likely due to degradation by enzymes such as DNase II localized in late endosomes. Our observations point to these events being likely independent of core composition and treatment conditions, and they do not seem to be particularly dependent upon oligonucleotide sequence. Significantly and surprisingly, the SNAs do not enter the lysosomes under the conditions studied. To independently track the fate of the particle core and the fluorophore-labeled oligonucleotides that comprise its shell, we synthesized a novel class of quantum dot SNAs to determine that as the SNA structures are broken down over the 24 h time course of the experiment, the oligonucleotide fragments are recycled out of the cell while the nanoparticle core is not. This mechanistic insight points to the importance of designing and synthesizing next-generation SNAs that can bypass the degradation bottleneck imposed by their residency in late endosomes, and it also suggests that such structures might be extremely useful for endosomal signaling pathways by engaging receptors that are localized within the endosome

  16. Global Intracellular Slow-Wave Dynamics of the Thalamocortical System

    PubMed Central

    Sheroziya, Maxim

    2014-01-01

    It is widely accepted that corticothalamic neurons recruit the thalamus in slow oscillation, but global slow-wave thalamocortical dynamics have never been experimentally shown. We analyzed intracellular activities of neurons either from different cortical areas or from a variety of specific and nonspecific thalamic nuclei in relation to the phase of global EEG signal in ketamine-xylazine anesthetized mice. We found that, on average, slow-wave active states started off within frontal cortical areas as well as higher-order and intralaminar thalamus (posterior and parafascicular nuclei) simultaneously. Then, the leading edge of active states propagated in the anteroposterior/lateral direction over the cortex at ∼40 mm/s. The latest structure we recorded within the slow-wave cycle was the anterior thalamus, which followed active states of the retrosplenial cortex. Active states from different cortical areas tended to terminate simultaneously. Sensory thalamic ventral posterior medial and lateral geniculate nuclei followed cortical active states with major inhibitory and weak tonic-like “modulator” EPSPs. In these nuclei, sharp-rising, large-amplitude EPSPs (“drivers”) were not modulated by cortical slow waves, suggesting their origin in ascending pathways. The thalamic active states in other investigated nuclei were composed of depolarization: some revealing “driver”- and “modulator”-like EPSPs, others showing “modulator”-like EPSPs only. We conclude that sensory thalamic nuclei follow the propagating cortical waves, whereas neurons from higher-order thalamic nuclei display “hub dynamics” and thus may contribute to the generation of cortical slow waves. PMID:24966387

  17. Cyst formation following disruption of intracellular calcium signaling

    PubMed Central

    Kuo, Ivana Y.; DesRochers, Teresa M.; Kimmerling, Erica P.; Nguyen, Lily; Ehrlich, Barbara E.; Kaplan, David L.

    2014-01-01

    Mutations in polycystin 1 and 2 (PC1 and PC2) cause the common genetic kidney disorder autosomal dominant polycystic kidney disease (ADPKD). It is unknown how these mutations result in renal cysts, but dysregulation of calcium (Ca2+) signaling is a known consequence of PC2 mutations. PC2 functions as a Ca2+-activated Ca2+ channel of the endoplasmic reticulum. We hypothesize that Ca2+ signaling through PC2, or other intracellular Ca2+ channels such as the inositol 1,4,5-trisphosphate receptor (InsP3R), is necessary to maintain renal epithelial cell function and that disruption of the Ca2+ signaling leads to renal cyst development. The cell line LLC-PK1 has traditionally been used for studying PKD-causing mutations and Ca2+ signaling in 2D culture systems. We demonstrate that this cell line can be used in long-term (8 wk) 3D tissue culture systems. In 2D systems, knockdown of InsP3R results in decreased Ca2+ transient signals that are rescued by overexpression of PC2. In 3D systems, knockdown of either PC2 or InsP3R leads to cyst formation, but knockdown of InsP3R type 1 (InsP3R1) generated the largest cysts. InsP3R1 and InsP3R3 are differentially localized in both mouse and human kidney, suggesting that regional disruption of Ca2+ signaling contributes to cystogenesis. All cysts had intact cilia 2 wk after starting 3D culture, but the cells with InsP3R1 knockdown lost cilia as the cysts grew. Studies combining 2D and 3D cell culture systems will assist in understanding how mutations in PC2 that confer altered Ca2+ signaling lead to ADPKD cysts. PMID:25228769

  18. The development and in vitro characterisation of an intracellular nanosensor responsive to reactive oxygen species.

    PubMed

    Henderson, James R; Fulton, David A; McNeil, Calum J; Manning, Philip

    2009-08-15

    Advances in sensor technologies have enhanced our understanding of the roles played by reactive oxygen species (ROS) in a number of physiological and pathological processes. However, high inter-reactivity and short life spans has made real-time monitoring of ROS in cellular systems challenging. Fluorescent dyes capable of intracellular ROS measurements have been reported. However, these dyes are known to be intrinsically cytotoxic and thus can potentially significantly alter cellular metabolism and adversely influence in vitro data. Reported here is the development and in vitro application of a novel ROS responsive nanosensor, based on PEBBLE (Probes Encapsulated By Biologically Localised Embedding) technology. The ROS sensitive fluorescent probe dihydrorhodamine 123 (DHR 123) was employed as the sensing element of the PEBBLE through entrapment within a porous, bio-inert polyacrylamide nanostructure enabling passive monitoring of free radical flux within the intracellular environment. Successful delivery of the nanosensors into NR8383 rat alveolar macrophage cells via phagocytosis was achieved. Stimulation of PEBBLE loaded NR8383 cells with phorbol-12-myristate-13-acetate (PMA) enabled real time monitoring of ROS generation within the cell without affecting cellular viability. These data suggest that PEBBLE nanosensors could offer significant advantages over existing technologies used in monitoring the intracellular environment.

  19. Troglitazone-induced intracellular oxidative stress in rat hepatoma cells: a flow cytometric assessment.

    PubMed

    Narayanan, Padma Kumar; Hart, Timothy; Elcock, Fiona; Zhang, Cindy; Hahn, Laura; McFarland, David; Schwartz, Lester; Morgan, D Gwyn; Bugelski, Peter

    2003-03-01

    Troglitazone (TRO), a thiazolidinedione (TZD) peroxisome proliferator-activated receptor gamma agonist, was recently withdrawn from the market because of rare but serious hepatotoxicity. Previous studies investigating the cytotoxicity of TRO in cultured rat hepatocytes have conjectured about the role of oxidative stress in TRO-induced hepatotoxicity. Therefore, we investigated whether TRO induces oxidative stress and, if so, the portion of the TRO molecule responsible for the induction of oxidative stress. Novikoff rat hepatoma (N1S1) cells were incubated with TRO, troglitazone quinone (TQ), thiazolidinedione-phenoxyacetic acid (TD-PAA) or rosiglitazone (RSG). Membrane peroxidation, intracellular glutathione (GSH) content, and cellular viability were monitored simultaneously by multiparameter flow cytometry. TRO and TQ increased membrane peroxidation, decreased intracellular GSH, and decreased cell viability in a concentration-dependent manner. In contrast, TD-PAA and RSG neither increased membrane peroxidation nor induced loss of cell viability. In addition, TRO caused a concentration-dependent increase in intracellular superoxide generation accompanied by a collapse in mitochondrial membrane potential. Multiparameter flow cytometric evaluation of N1S1 cells indicated that the chromane ring of TRO, rather than the TZD moiety, may be responsible for oxidative stress and suggested that a direct effect on mitochondrial physiology may play a role in TRO-mediated hepatotoxicity. Copyright 2003 Wiley-Liss, Inc.

  20. InsP3-mediated intracellular calcium signalling is altered by expression of synaptojanin-1

    PubMed Central

    2004-01-01

    Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] plays an important physiological role as a precursor for the InsP3-mediated intracellular calcium (Ca2+) signalling cascade. It also regulates membrane trafficking, actin function and transmembrane proteins. SJ-1 (synaptojanin-1), a phosphoinositide phosphatase, regulates the turnover of a PtdIns(4,5)P2 pool involved in clathrin and actin dynamics at the cell surface. We tested the interrelationship of this pool with PtdIns(4,5)P2 pools involved in Ca2+ signalling by expressing in Chinese-hamster ovary cells full-length SJ-1 or its 5-Pase (inositol 5-phosphatase) domain. SJ-1 significantly attenuated the generation of Ca2+ oscillations induced by ATP and the 5-Pase domain mimicked this effect. These changes correlated with increased PtdIns(4,5)P2 phosphatase activity of cellular extracts. Overexpression of the endoplasmic reticulum-anchored PtdIns(4)P phosphatase Sac1 did not affect Ca2+ oscillations, although it increased the Ca2+ efflux rate from intracellular stores. The ability of SJ-1 to alter intracellular Ca2+ signalling indicates a close functional interrelationship between plasma membrane PtdIns(4,5)P2 pools that control actin and endocytosis and those involved in the regulation of specific spatio-temporal Ca2+ signals. PMID:15080793

  1. Activation of Oral Trigeminal Neurons by Fatty Acids is Dependent upon Intracellular Calcium

    PubMed Central

    Yu, Tian; Shah, Bhavik P.; Hansen, Dane R.; Park-York, MieJung; Gilbertson, Timothy A.

    2012-01-01

    The chemoreception of dietary fat in the oral cavity has largely been attributed to activation of the somatosensory system that conveys the textural properties of fat. However, the ability of fatty acids, which are believed to represent the proximate stimulus for fat taste, to stimulate rat trigeminal neurons has remained unexplored. Here, we found that several free fatty acids are capable of activating trigeminal neurons with different kinetics. Further, a polyunsaturated fatty acid, linoleic acid (LA), activates trigeminal neurons by increasing intracellular calcium concentration and generating depolarizing receptor potentials. Ion substitution and pharmacological approaches reveal that intracellular calcium store depletion is crucial for LA-induced signaling in a subset of trigeminal neurons. Using pseudorabies virus (PrV) as a live cell tracer, we identified a subset of lingual nerve-innervated trigeminal neurons that respond to different subsets of fatty acids. Quantitative real-time PCR of several transient receptor potential (TRP) channel markers in individual neurons validated that PrV labeled a subset but not the entire population of lingual-innervated trigeminal neurons. We further confirmed that the LA-induced intracellular calcium rise is exclusively coming from the release of calcium stores from the endoplasmic reticulum in this subset of lingual nerve-innervated trigeminal neurons. PMID:22644615

  2. Identification of intracellular peptides in rat adipose tissue: Insights into insulin resistance.

    PubMed

    Berti, Denise A; Russo, Lilian C; Castro, Leandro M; Cruz, Lilian; Gozzo, Fábio C; Heimann, Joel C; Lima, Fabio B; Oliveira, Ariclécio C; Andreotti, Sandra; Prada, Patrícia O; Heimann, Andrea S; Ferro, Emer S

    2012-08-01

    Intracellular peptides generated by the proteasome and oligopeptidases have been suggested to function in signal transduction and to improve insulin resistance in mice fed a high-caloric diet. The aim of this study was to identify specific intracellular peptides in the adipose tissue of Wistar rats that could be associated with the physiological and therapeutic control of glucose uptake. Using semiquantitative mass spectrometry and LC/MS/MS analyses, we identified ten peptides in the epididymal adipose tissue of the Wistar rats; three of these peptides were present at increased levels in rats that were fed a high-caloric Western diet (WD) compared with rats fed a control diet (CD). The results of affinity chromatography suggested that in the cytoplasm of epididymal adipose tissue from either WD or CD rats, distinctive proteins bind to these peptides. However, despite the observed increase in the WD animals, the evaluated peptides increased insulin-stimulated glucose uptake in 3T3-L1 adipocytes treated with palmitate. Thus, intracellular peptides from the adipose tissue of Wistar rats can bind to specific proteins and facilitate insulin-induced glucose uptake in 3T3-L1 adipocytes. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Shear-induced intracellular loading of cells with molecules by controlled microfluidics

    PubMed Central

    Hallow, Daniel M.; Seeger, Richard A.; Kamaev, Pavel P.; Prado, Gustavo R.; LaPlaca, Michelle C.; Prausnitz, Mark R.

    2010-01-01

    This study tested the hypothesis that controlled flow through microchannels can cause shear-induced intracellular loading of cells with molecules. The overall goal was to design a simple device to expose cells to fluid shear stress and thereby increase plasma membrane permeability. DU145 prostate cancer cells were exposed to fluid shear stress in the presence of fluorescent cell-impermeant molecules by using a cone-and-plate shearing device or high-velocity flow through microchannels. Using a syringe pump, cell suspensions were flowed through microchannels of 50 – 300 μm diameter drilled through Mylar® sheets using an excimer laser. As quantified by flow cytometry, intracellular uptake and loss of viability correlated with the average shear stress. Optimal results were observed when exposing the cells to high shear stress for short durations in conical channels, which yielded uptake to over one third of cells while maintaining viability at approximately 80%. This method was capable of loading cells with molecules including calcein (0.62 kDa), large molecule weight dextrans (150 - 2000 kDa), and bovine serum albumin (66 kDa). These results supported the hypothesis that shear-induced intracellular uptake could be generated by flow of cell suspensions through microchannels and further led to the design of a simple, inexpensive, and effective device to deliver molecules into cells. Such a device could benefit biological research and the biotechnology industry. PMID:17879304

  4. Identification and Characterization of a Novel Intracellular Poly(3-Hydroxybutyrate) Depolymerase from Bacillus megaterium▿

    PubMed Central

    Chen, Hui-Ju; Pan, Shih-Chuan; Shaw, Gwo-Chyuan

    2009-01-01

    A gene that codes for a novel intracellular poly(3-hydroxybutyrate) (PHB) depolymerase, designated PhaZ1, has been identified in the genome of Bacillus megaterium. A native PHB (nPHB) granule-binding assay showed that purified soluble PhaZ1 had strong affinity for nPHB granules. Turbidimetric analyses revealed that PhaZ1 could rapidly degrade nPHB granules in vitro without the need for protease pretreatment of the granules to remove surface proteins. Notably, almost all the final hydrolytic products produced from the in vitro degradation of nPHB granules by PhaZ1 were 3-hydroxybutyric acid (3HB) monomers. Unexpectedly, PhaZ1 could also hydrolyze denatured semicrystalline PHB, with the generation of 3HB monomers. The disruption of the phaZ1 gene significantly affected intracellular PHB mobilization during the PHB-degrading stage in B. megaterium, as demonstrated by transmission electron microscopy and the measurement of the PHB content. These results indicate that PhaZ1 is functional in intracellular PHB mobilization in vivo. Some of these features, which are in striking contrast with those of other known nPHB granule-degrading PhaZs, may provide an advantage for B. megaterium PhaZ1 in fermentative production of the biotechnologically valuable chiral compound (R)-3HB. PMID:19561190

  5. Quantitative measurement of intracellular transport of nanocarriers by spatio-temporal image correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Coppola, S.; Pozzi, D.; Candeloro De Sanctis, S.; Digman, M. A.; Gratton, E.; Caracciolo, G.

    2013-03-01

    Spatio-temporal image correlation spectroscopy (STICS) is a powerful technique for assessing the nature of particle motion in complex systems although it has been rarely used to investigate the intracellular dynamics of nanocarriers so far. Here we introduce a method for characterizing the mode of motion of nanocarriers and for quantifying their transport parameters on different length scales from single-cell to subcellular level. Using this strategy we were able to study the mechanisms responsible for the intracellular transport of DOTAP-DOPC/DNA (DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane; DOPC: dioleoylphosphocholine) and DC-Chol-DOPE/DNA (DC-Chol: 3β-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol; DOPE: dioleoylphosphatidylethanolamine) lipoplexes in CHO-K1 (CHO: Chinese hamster ovary) live cells. Measurement of both diffusion coefficients and velocity vectors (magnitude and direction) averaged over regions of the cell revealed the presence of distinct modes of motion. Lipoplexes diffused slowly on the cell surface (diffusion coefficient: D ≈ 0.003 μm2 s-1). In the cytosol, the lipoplexes’ motion was characterized by active transport with average velocity v ≈ 0.03 μm2 s-1 and random motion. The method permitted us to generate an intracellular transport map showing several regions of concerted motion of lipoplexes.

  6. Silencing of GRA10 protein expression inhibits Toxoplasma gondii intracellular growth and development.

    PubMed

    Witola, William H; Bauman, Bretta; McHugh, Mark; Matthews, Kwame

    2014-10-01

    Toxoplasma gondii dense granule proteins (GRAs) are secreted abundantly in both the tachyzoite and bradyzoite stages of the parasite and are known to localize to various compartments of the parasitophorous vacuole (PV) that interfaces with the host cell milieu. Thus, GRAs may play significant roles in the biogenesis of the PV that is important for survival of intracellular T. gondii. GRA10 is a dense granule protein whose role in T. gondii has not yet been characterized. Therefore, in this study, we endeavored to determine the role of GRA10 in the growth and survival of intracellular T. gondii by using phosphorodiamidate morpholino oligomers (PPMOs) antisense knockdown approach to disrupt the translation of GRA10 mRNA in the parasites. We expressed and purified a truncated recombinant GRA10 protein to generate anti-GRA10 polyclonal antibodies that we used to characterize GRA10 in T. gondii. We found that GRA10 is a soluble, dense granule-associated protein that is secreted into the parasite cytosol and the parasitophorous vacuole milieu. Using in vitro cultures, we found that knockdown of GRA10 results in severe inhibition of T. gondii growth in human fibroblasts and in ovine monocytic cells. Together, our findings define GRA10 as a dense granule protein that plays a significant role in the growth and propagation of intracellular T. gondii in human fibroblasts and in ovine monocytic cells.

  7. Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles

    PubMed Central

    Abraham, Ambily; Natraj, Usha; Karande, Anjali A.; Gulati, Ashutosh; Murthy, Mathur R. N.; Murugesan, Sathyabalan; Mukunda, Pavithra; Savithri, Handanahal S.

    2016-01-01

    The therapeutic potential of antibodies has not been fully exploited as they fail to cross cell membrane. In this article, we have tested the possibility of using plant virus based nanoparticles for intracellular delivery of antibodies. For this purpose, Sesbania mosaic virus coat protein (CP) was genetically engineered with the B domain of Staphylococcus aureus protein A (SpA) at the βH-βI loop, to generate SeMV loop B (SLB), which self-assembled to virus like particles (VLPs) with 43 times higher affinity towards antibodies. CP and SLB could internalize into various types of mammalian cells and SLB could efficiently deliver three different monoclonal antibodies–D6F10 (targeting abrin), anti-α-tubulin (targeting intracellular tubulin) and Herclon (against HER2 receptor) inside the cells. Such a mode of delivery was much more effective than antibodies alone treatment. These results highlight the potential of SLB as a universal nanocarrier for intracellular delivery of antibodies. PMID:26905902

  8. Intracellular calcium mobilization and phospholipid degradation in sphingosylphosphorylcholine-stimulated human airway epithelial cells.

    PubMed Central

    Orlati, S; Porcelli, A M; Hrelia, S; Lorenzini, A; Rugolo, M

    1998-01-01

    Extracellular sphingosylphosphorylcholine (SPC) caused a remarkable elevation in the intracellular Ca2+ concentration ([Ca2+]i) in immortalized human airway epithelial cells (CFNP9o-). An increase in total inositol phosphates formation was determined; however, the dose responses for [Ca2+]i elevation and inositol phosphates production were slightly different and, furthermore, PMA and pertussis toxin almost completely inhibited [Ca2+]i mobilization by SPC, whereas inositol phosphates production was only partially reduced. The possible direct interaction of SPC with Ca2+ channels of intracellular stores was determined by experiments with permeabilized cells, where SPC failed to evoke Ca2+ release, whereas lysophosphatidic acid was shown to be effective. The level of phosphatidic acid was increased by SPC only in the presence of AACOCF3, a specific inhibitor of phospholipase A2 (PLA2) and blocked by both pertussis toxin and R59022, an inhibitor of diacylglycerol kinase. R59022 enhanced diacylglycerol production by SPC and also significantly reduced [Ca2+]i mobilization. Only polyunsaturated diacylglycerol and phosphatidic acid were generated by SPC. Lastly, SPC caused stimulation of arachidonic acid release, indicating the involvement of PLA2. Taken together, these data suggest that, after SPC stimulation, phospholipase C-derived diacylglycerol is phosphorylated by a diacylglycerol kinase to phosphatidic acid, which is further hydrolysed by PLA2 activity to arachidonic and lysophosphatidic acids. We propose that lysophosphatidic acid might be the intracellular messenger able to release Ca2+ from internal stores. PMID:9729473

  9. Intracellular trafficking of Gag and Env proteins and their interactions modulate pseudotyping of retroviruses.

    PubMed

    Sandrin, Virginie; Muriaux, Delphine; Darlix, Jean-Luc; Cosset, François-Loïc

    2004-07-01

    Glycoproteins derived from most retroviruses and from several families of enveloped viruses can form infectious pseudotypes with murine leukemia virus (MLV) and lentiviral core particles, like the MLV envelope glycoproteins (Env) that are incorporated on either virus type. However, coexpression of a given glycoprotein with heterologous core proteins does not always give rise to highly infectious viral particles, and restrictions on pseudotype formation have been reported. To understand the mechanisms that control the recruitment of viral surface glycoproteins on lentiviral and retroviral cores, we exploited the fact that the feline endogenous retrovirus RD114 glycoprotein does not efficiently pseudotype lentiviral cores derived from simian immunodeficiency virus, whereas it is readily incorporated onto MLV particles. Our results indicate that recruitment of glycoproteins by the MLV and lentiviral core proteins occurs in intracellular compartments and not at the cell surface. We found that Env and core protein colocalization in intracytoplasmic vesicles is required for pseudotype formation. By investigating MLV/RD114 Env chimeras, we show that signals in the cytoplasmic tail of either glycoprotein differentially influenced their intracellular localization; that of MLV allows endosomal localization and hence recruitment by both lentiviral and MLV cores. Furthermore, we found that upon membrane binding, MLV core proteins could relocalize Env glycoproteins in late endosomes and allow their incorporation on viral particles. Thus, intracellular colocalization, as well as interactions between Env and core proteins, may influence the recruitment of the glycoprotein onto viral particles and generate infectious pseudotyped viruses.

  10. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles

    PubMed Central

    Lojk, Jasna; Bregar, Vladimir B; Rajh, Maruša; Miš, Katarina; Kreft, Mateja Erdani; Pirkmajer, Sergej; Veranič, Peter; Pavlin, Mojca

    2015-01-01

    Magnetic nanoparticles (NPs) are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs) are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA) in three cell types: Chinese Hamster Ovary (CHO), mouse melanoma (B16) cell line, and primary human myoblasts (MYO). We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM) as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours’ exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS) upon 24 and 48 hours’ exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP–cell interactions on several different cell types for better prediction of possible toxic effects on different cell and tissue types in vivo. PMID:25733835

  11. FRET-Based Nanobiosensors for Imaging Intracellular Ca2+ and H+ Microdomains

    PubMed Central

    Zamaleeva, Alsu I.; Despras, Guillaume; Luccardini, Camilla; Collot, Mayeul; de Waard, Michel; Oheim, Martin; Mallet, Jean-Maurice; Feltz, Anne

    2015-01-01

    Semiconductor nanocrystals (NCs) or quantum dots (QDs) are luminous point emitters increasingly being used to tag and track biomolecules in biological/biomedical imaging. However, their intracellular use as highlighters of single-molecule localization and nanobiosensors reporting ion microdomains changes has remained a major challenge. Here, we report the design, generation and validation of FRET-based nanobiosensors for detection of intracellular Ca2+ and H+ transients. Our sensors combine a commercially available CANdot®565QD as an energy donor with, as an acceptor, our custom-synthesized red-emitting Ca2+ or H+ probes. These ‘Rubies’ are based on an extended rhodamine as a fluorophore and a phenol or BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid) for H+ or Ca2+ sensing, respectively, and additionally bear a linker arm for conjugation. QDs were stably functionalized using the same SH/maleimide crosslink chemistry for all desired reactants. Mixing ion sensor and cell-penetrating peptides (that facilitate cytoplasmic delivery) at the desired stoichiometric ratio produced controlled multi-conjugated assemblies. Multiple acceptors on the same central donor allow up-concentrating the ion sensor on the QD surface to concentrations higher than those that could be achieved in free solution, increasing FRET efficiency and improving the signal. We validate these nanosensors for the detection of intracellular Ca2+ and pH transients using live-cell fluorescence imaging. PMID:26404317

  12. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles.

    PubMed

    Lojk, Jasna; Bregar, Vladimir B; Rajh, Maruša; Miš, Katarina; Kreft, Mateja Erdani; Pirkmajer, Sergej; Veranič, Peter; Pavlin, Mojca

    2015-01-01

    Magnetic nanoparticles (NPs) are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs) are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA) in three cell types: Chinese Hamster Ovary (CHO), mouse melanoma (B16) cell line, and primary human myoblasts (MYO). We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM) as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours' exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS) upon 24 and 48 hours' exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP-cell interactions on several different cell types for better prediction of possible toxic effects on different cell and tissue types in vivo.

  13. Impaired Intracellular Ca2+ Dynamics in Live Cardiomyocytes Revealed by Rapid Line Scan Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Plank, David M.; Sussman, Mark A.

    2005-06-01

    Altered intracellular Ca2+ dynamics are characteristically observed in cardiomyocytes from failing hearts. Studies of Ca2+ handling in myocytes predominantly use Fluo-3 AM, a visible light excitable Ca2+ chelating fluorescent dye in conjunction with rapid line-scanning confocal microscopy. However, Fluo-3 AM does not allow for traditional ratiometric determination of intracellular Ca2+ concentration and has required the use of mathematic correction factors with values obtained from separate procedures to convert Fluo-3 AM fluorescence to appropriate Ca2+ concentrations. This study describes methodology to directly measure intracellular Ca2+ levels using inactivated, Fluo-3-AM-loaded cardiomyocytes equilibrated with Ca2+ concentration standards. Titration of Ca2+ concentration exhibits a linear relationship to increasing Fluo-3 AM fluorescence intensity. Images obtained from individual myocyte confocal scans were recorded, average pixel intensity values were calculated, and a plot is generated relating the average pixel intensity to known Ca2+ concentrations. These standard plots can be used to convert transient Ca2+ fluorescence obtained with experimental cells to Ca2+ concentrations by linear regression analysis. Standards are determined on the same microscope used for acquisition of unknown Ca2+ concentrations, simplifying data interpretation and assuring accuracy of conversion values. This procedure eliminates additional equipment, ratiometric imaging, and mathematic correction factors and should be useful to investigators requiring a straightforward method for measuring Ca2+ concentrations in live cells using Ca2+-chelating dyes exhibiting variable fluorescence intensity.

  14. Electrophysiological properties of Achlya hyphae: ionic currents studied by intracellular potential recording

    PubMed Central

    1986-01-01

    The electrical properties of the water mold Achlya bisexualis were investigated using intracellular microelectrodes. Hyphae growing in a defined medium maintained a membrane potential (Vm) of -150 to -170 mV, interior negative. Under the conditions used here, this potential was insensitive to changes in the inorganic ion composition of the medium. Changes in external pH did affect Vm, but only outside the physiological pH range. By contrast, the addition of respiratory inhibitors caused a rapid depolarization without affecting the conductance of the plasma membrane. Taken together these findings strongly suggest that the membrane potential is governed by an electrogenic ion pump rather than by an ionic diffusion potential. Previous work from this laboratory showed that Achlya hyphae generate a transcellular proton current that enters the growing tip, flows along the hyphal length, and exits distally from the trunk. These initial experiments used an extracellular vibrating electrode, and I now report intracellular electrical recordings which support the hypothesis that protons enter the tip by symport with amino acids and are expelled distally by a proton-translocating ATPase. Most significantly, current flowing intracellularly along the hyphal length is associated with a cytoplasmic electric field of 0.2 V/cm or greater. Conditions that inhibit the current also abolish the internal field, suggesting that these two phenomena are closely linked. PMID:3958044

  15. Inhibition of the PtdIns(5) kinase PIKfyve disrupts intracellular replication of Salmonella

    PubMed Central

    Kerr, Markus C; Wang, Jack T H; Castro, Natalie A; Hamilton, Nicholas A; Town, Liam; Brown, Darren L; Meunier, Frederic A; Brown, Nat F; Stow, Jennifer L; Teasdale, Rohan D

    2010-01-01

    3-phosphorylated phosphoinositides (3-PtdIns) orchestrate endocytic trafficking pathways exploited by intracellular pathogens such as Salmonella to gain entry into the cell. To infect the host, Salmonellae subvert its normal macropinocytic activity, manipulating the process to generate an intracellular replicative niche. Disruption of the PtdIns(5) kinase, PIKfyve, be it by interfering mutant, siRNA-mediated knockdown or pharmacological means, inhibits the intracellular replication of Salmonella enterica serovar typhimurium in epithelial cells. Monitoring the dynamics of macropinocytosis by time-lapse 3D (4D) videomicroscopy revealed a new and essential role for PI(3,5)P2 in macropinosome-late endosome/lysosome fusion, which is distinct from that of the small GTPase Rab7. This PI(3,5)P2-dependent step is required for the proper maturation of the Salmonella-containing vacuole (SCV) through the formation of Salmonella-induced filaments (SIFs) and for the engagement of the Salmonella pathogenicity island 2-encoded type 3 secretion system (SPI2-T3SS). Finally, although inhibition of PIKfyve in macrophages did inhibit Salmonella replication, it also appears to disrupt the macrophage's bactericidal response. PMID:20300065

  16. Combined flow cytometric analysis of surface and intracellular antigens reveals surface molecule markers of human neuropoiesis.

    PubMed

    Turaç, Gizem; Hindley, Christopher J; Thomas, Ria; Davis, Jason A; Deleidi, Michela; Gasser, Thomas; Karaöz, Erdal; Pruszak, Jan

    2013-01-01

    Surface molecule profiles undergo dynamic changes in physiology and pathology, serve as markers of cellular state and phenotype and can be exploited for cell selection strategies and diagnostics. The isolation of well-defined cell subsets is needed for in vivo and in vitro applications in stem cell biology. In this technical report, we present an approach for defining a subset of interest in a mixed cell population by flow cytometric detection of intracellular antigens. We have developed a fully validated protocol that enables the co-detection of cluster of differentiation (CD) surface antigens on fixed, permeabilized neural cell populations defined by intracellular staining. Determining the degree of co-expression of surface marker candidates with intracellular target population markers (nestin, MAP2, doublecortin, TUJ1) on neuroblastoma cell lines (SH-SY5Y, BE(2)-M17) yielded a combinatorial CD49f(-)/CD200(high) surface marker panel. Its application in fluorescence-activated cell sorting (FACS) generated enriched neuronal cultures from differentiated cell suspensions derived from human induced pluripotent stem cells. Our data underlines the feasibility of using the described co-labeling protocol and co-expression analysis for quantitative assays in mammalian neurobiology and for screening approaches to identify much needed surface markers in stem cell biology.

  17. Intracellular disulfide reduction by phosphine-borane complexes: Mechanism of action for neuroprotection.

    PubMed

    Niemuth, Nicholas J; Thompson, Alex F; Crowe, Megan E; Lieven, Christopher J; Levin, Leonard A

    2016-10-01

    Phosphine-borane complexes are novel cell-permeable drugs that protect neurons from axonal injury in vitro and in vivo. These drugs activate the extracellular signal-regulated kinases 1/2 (ERK1/2) cell survival pathway and are therefore neuroprotective, but do not scavenge superoxide. In order to understand the interaction between superoxide signaling of neuronal death and the action of phosphine-borane complexes, their biochemical activity in cell-free and in vitro assays was studied by electron paramagnetic resonance (EPR) spectrometry and using an intracellular dithiol reporter that becomes fluorescent when its disulfide bond is cleaved. These studies demonstrated that bis(3-propionic acid methyl ester) phenylphosphine-borane complex (PB1) and (3-propionic acid methyl ester) diphenylphosphine-borane complex (PB2) are potent intracellular disulfide reducing agents which are cell permeable. EPR and pharmacological studies demonstrated reducing activity but not scavenging of superoxide. Given that phosphine-borane complexes reduce cell injury from mitochondrial superoxide generation but do not scavenge superoxide, this implies a mechanism where an intracellular superoxide burst induces downstream formation of protein disulfides. The redox-dependent cleavage of the disulfides is therefore a novel mechanism of neuroprotection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles.

    PubMed

    Abraham, Ambily; Natraj, Usha; Karande, Anjali A; Gulati, Ashutosh; Murthy, Mathur R N; Murugesan, Sathyabalan; Mukunda, Pavithra; Savithri, Handanahal S

    2016-02-24

    The therapeutic potential of antibodies has not been fully exploited as they fail to cross cell membrane. In this article, we have tested the possibility of using plant virus based nanoparticles for intracellular delivery of antibodies. For this purpose, Sesbania mosaic virus coat protein (CP) was genetically engineered with the B domain of Staphylococcus aureus protein A (SpA) at the βH-βI loop, to generate SeMV loop B (SLB), which self-assembled to virus like particles (VLPs) with 43 times higher affinity towards antibodies. CP and SLB could internalize into various types of mammalian cells and SLB could efficiently deliver three different monoclonal antibodies-D6F10 (targeting abrin), anti-α-tubulin (targeting intracellular tubulin) and Herclon (against HER2 receptor) inside the cells. Such a mode of delivery was much more effective than antibodies alone treatment. These results highlight the potential of SLB as a universal nanocarrier for intracellular delivery of antibodies.

  19. Extremely high intracellular concentration of glucose-6-phosphate and NAD(H) in Deinococcus radiodurans.

    PubMed

    Yamashiro, Takumi; Murata, Kousaku; Kawai, Shigeyuki

    2017-03-01

    Deinococcus radiodurans is highly resistant to ionizing radiation and UV radiation, and oxidative stress caused by such radiations. NADP(H) seems to be important for this resistance (Slade and Radman, Microbiol Mol Biol Rev 75:133-191; Slade, Radman, Microbiol Mol Biol Rev 75:133-191, 2011), but the mechanism underlying the generation of NADP(H) or NAD(H) in D. radiodurans has not fully been addressed. Intracellular concentrations of NAD(+), NADH, NADP(+), and NADPH in D. radiodurans are also not determined yet. We found that cell extracts of D. radiodurans catalyzed reduction of NAD(P)(+) in vitro, indicating that D. radiodurans cells contain both enzymes and a high concentration of substrates for this activity. The enzyme and the substrate were attributed to glucose-6-phosphate dehydrogenase and glucose-6-phosphate of which intracellular concentration was extremely high. Unexpectedly, the intracellular concentration of NAD(H) was also much greater than that of NADP(H), suggesting some significant roles of NADH. These unusual features of this bacterium would shed light on a new aspect of physiology of this bacterium.

  20. EBP50 induces apoptosis in macrophages by upregulating nitric oxide production to eliminate intracellular Mycobacterium tuberculosis

    PubMed Central

    Guo, Yang; Deng, Yating; Huang, Zikun; Luo, Qing; Peng, Yiping; Chen, Jie; Jiang, Hong; Ye, Jianqing; Li, Junming

    2016-01-01

    Mycobacterium bovis BCG is known to have the capacity to inhibit the positioning of iNOS on BCG-containing phagosomes by interfering with EBP50, a scaffolding protein that controls the recruitment of inducible nitric oxide synthase (iNOS) at the vicinity of phagosomes in macrophages. However, knockdown of the expression of EBP50 still facilitates the intracellular survival of BCG, which suggested that EBP50 may have some other unknown antimycobacterial properties. In this study we show that overexpression of EBP50 by a recombinant lentivirus had no effect on the iNOS recruitment to M.tuberculosis-containing phagosomes, but significantly promoted the elimination of intracellular M.tuberculosis. We revealed in the present study that the enhancement of intracellular killing to M. tuberculosis upon EBP50 overexpression was due to the increased level of apoptosis in macrophages. We showed that EBP50 overexpression significantly increased the expression of iNOS and generation of nitric oxide (NO), and EBP50-induced apoptosis was NO-dependent and mediated by Bax and caspase-3. We found that M. tuberculosis decreases while Mycobacterium smegmatis increases the expression of EBP50 in RAW264.7 cells, which suggested that virulent mycobacteria are capable of modulating the antimycobacterial properties of macrophages by inhibiting the expression and interfering with the function of EBP50. PMID:26729618

  1. Intracellular fluid flow in rapidly moving cells.

    PubMed

    Keren, Kinneret; Yam, Patricia T; Kinkhabwala, Anika; Mogilner, Alex; Theriot, Julie A

    2009-10-01

    Cytosolic fluid dynamics have been implicated in cell motility because of the hydrodynamic forces they induce and because of their influence on transport of components of the actin machinery to the leading edge. To investigate the existence and the direction of fluid flow in rapidly moving cells, we introduced inert quantum dots into the lamellipodia of fish epithelial keratocytes and analysed their distribution and motion. Our results indicate that fluid flow is directed from the cell body towards the leading edge in the cell frame of reference, at about 40% of cell speed. We propose that this forward-directed flow is driven by increased hydrostatic pressure generated at the rear of the cell by myosin contraction, and show that inhibition of myosin II activity by blebbistatin reverses the direction of fluid flow and leads to a decrease in keratocyte speed. We present a physical model for fluid pressure and flow in moving cells that quantitatively accounts for our experimental data.

  2. Excitation and Inhibition Compete to Control Spiking during Hippocampal Ripples: Intracellular Study in Behaving Mice

    PubMed Central

    English, Daniel F.; Peyrache, Adrien; Stark, Eran; Roux, Lisa; Vallentin, Daniela; Long, Michael A.

    2014-01-01

    High-frequency ripple oscillations, observed most prominently in the hippocampal CA1 pyramidal layer, are associated with memory consolidation. The cellular and network mechanisms underlying the generation of the rhythm and the recruitment of spikes from pyramidal neurons are still poorly understood. Using intracellular, sharp electrode recordings in freely moving, drug-free mice, we observed consistent large depolarizations in CA1 pyramidal cells during sharp wave ripples, which are associated with ripple frequency fluctuation of the membrane potential (“intracellular ripple”). Despite consistent depolarization, often exceeding pre-ripple spike threshold values, current pulse-induced spikes were strongly suppressed, indicating that spiking was under the control of concurrent shunting inhibition. Ripple events were followed by a prominent afterhyperpolarization and spike suppression. Action potentials during and outside ripples were orthodromic, arguing against ectopic spike generation, which has been postulated by computational models of ripple generation. These findings indicate that dendritic excitation of pyramidal neurons during ripples is countered by shunting of the membrane and postripple silence is mediated by hyperpolarizing inhibition. PMID:25471587

  3. Intracellular glutathione content influences the sensitivity of lung cancer cell lines to methylseleninic acid.

    PubMed

    Liu, Chengfei; Liu, Hongyu; Li, Ying; Wu, Zhihao; Zhu, Yu; Wang, Ting; Gao, Allen C; Chen, Jun; Zhou, Qinghua

    2012-04-01

    The synthetic selenium compound methylseleninic acid (MSA) is a direct precursor of active methylselenol and appears to be the best candidate for studies on the mechanisms of selenium cancer prevention and therapy in vitro. Reduced glutathione (GSH) is critical to MSA metabolism, in addition to being a protective antioxidant which scavenges reactive oxygen species (ROS) and maintains the stability of intracellular redox status. In this study, we demonstrated that MSA has an anticancer effect in the human lung cancer cell lines L9981 and 95D using growth inhibition detection, cell-cycle analysis, and apoptosis detection. We examined the role of intracellular GSH content and detected the ROS induced by MSA by fluorescence microscopy, and we used flow cytometry to quantify the ROS induced by pretreatment and co-treatment with N-acetylcysteine (NAC) and MSA. We also confirmed oxidative stress in MSA-induced apoptosis. MSA inhibited lung cancer cell lines L9981 and 95-D growth significantly, induced cell-cycle arrest in the G1 phase and induced apoptosis. Compared to the control group, MSA significantly decreased intracellular GSH content in L9981 cells at higher concentrations of MSA (5 and 7.5 µM), while the intracellular GSH level was also dramatically decreased in L9981 cells treated with 5 µM MSA at different time points of 12- and 24-h (decreased to about 50% and 20% of the control, respectively). Pretreatment with either NAC (GSH synthesis precursor) or buthionine sulfoximine (BSO, GSH synthesis inhibitor) in L9981 cells significantly inhibited the anti-proliferative effect of MSA. MSA induced the generation of ROS, which was significantly reduced by NAC pretreatment. Furthermore, we also confirmed these results in another lung cancer cell line 95-D. These results suggest that generation of ROS may be essential for the induction of oxidative stress and apoptosis by MSA in L9981 and 95-D lung cancer cells. The balance between oxidative stress induced by MSA

  4. Curcumin Mitigates the Intracellular Lipid Deposit Induced by Antipsychotics In Vitro.

    PubMed

    Canfrán-Duque, Alberto; Pastor, Oscar; Reina, Manuel; Lerma, Milagros; Cruz-Jentoft, Alfonso J; Lasunción, Miguel A; Busto, Rebeca

    2015-01-01

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), both inhibit cholesterol biosynthesis and impair the intracellular cholesterol trafficking, leading to lipid accumulation in the late endosome/lysosome compartment. In this study we examined if curcumin, a plant polyphenol that stimulates exosome release, can alleviate antipsychotic-induced intracellular lipid accumulation. HepG2 hepatocarcinoma cells were treated with antipsychotics or placebo and DiI-labelled LDL for 18 h and then exposed to curcumin for the last 2 h. Cells and media were collected separately and used for biochemical analyses, electron microscopy and immunocytochemistry. Exosomes were isolated from the incubation medium by ultracentrifugation. Curcumin treatment reduced the number of heterolysosomes and shifted their subcellular localization to the periphery, as revealed by electron microscopy, and stimulated the release of lysosomal β-hexosaminidase and exosome markers flotillin-2 and CD63 into the media. The presence of DiI in exosomes released by cells preloaded with DiI-LDL demonstrated the endolysosomal origin of the microvesicles. Furthermore, curcumin increased the secretion of cholesterol as well as LDL-derived DiI and [3H]-cholesterol, in association with a decrease of intracellular lipids. Thus, the disruption of lipid trafficking induced by FGAs or SGAs can be relieved by curcumin treatment. This polyphenol, however, did not mitigate the reduction of cholesterol esterification induced by antipsychotics. Curcumin stimulates exosome release to remove cholesterol (and presumably other lipids) accumulated within the endolysosomal compartment, thereby normalizing intracellular lipid homeostasis. This action may help minimize the adverse metabolic effects of antipsychotic treatment, which should now be evaluated in clinical trials.

  5. The invasive adenylate cyclase of Bordetella pertussis. Intracellular localization and kinetics of penetration into various cells.

    PubMed Central

    Farfel, Z; Friedman, E; Hanski, E

    1987-01-01

    The penetration of Bordetella pertussis adenylate cyclase into various mammalian cells exhibits similar kinetics; the accumulation of both intracellular cyclase activity and cyclic AMP is rapid, reaching constant levels after 15-60 min of incubation. The kinetics of enzyme penetration into turkey erythrocytes is different; cyclase activity and cyclic AMP accumulate linearly and do not reach constant levels even after 6 h of incubation. In the preceding paper [Friedman, Farfel & Hanski (1987) Biochem. J. 243, 145-151] we have suggested that the constant level of intracellular cyclase activity reflects a steady state formed by continuous penetration and intracellular inactivation of the enzyme. In contrast with other mammalian cells, no inactivation of cyclase is observed in turkey erythrocytes. These results further support the notion that there is continuous penetration and deactivation of the invasive enzyme in mammalian cells. A 5-6-fold increase in specific activity of the invasive cyclase is detected in a pellet fraction of human lymphocytes in which a similar increase in specific activity of the plasma-membrane marker 5'-nucleotidase is observed. A similar increase in the invasive-cyclase specific activity is detected in a membrane fraction of human erythrocytes. Cyclase activity in a membrane-enriched fraction of human lymphocytes reached a constant level after 20 min of cell exposure to the enzyme. Similar time courses were observed for accumulation of cyclase activity and cyclic AMP in whole lymphocytes [Friedman, Farfel & Hanski (1987) Biochem, J. 243, 145-151]. We suggest therefore that cyclic AMP generation by the invasive enzyme as well as the intracellular inactivation process occur while it is associated with a membrane fraction identical, or closely associated, with the plasma membrane. PMID:2886120

  6. Curcumin Mitigates the Intracellular Lipid Deposit Induced by Antipsychotics In Vitro

    PubMed Central

    Canfrán-Duque, Alberto; Pastor, Oscar; Reina, Manuel; Lerma, Milagros; Cruz-Jentoft, Alfonso J.

    2015-01-01

    Scope First- and second-generation antipsychotics (FGAs and SGAs, respectively), both inhibit cholesterol biosynthesis and impair the intracellular cholesterol trafficking, leading to lipid accumulation in the late endosome/lysosome compartment. In this study we examined if curcumin, a plant polyphenol that stimulates exosome release, can alleviate antipsychotic-induced intracellular lipid accumulation. Methods HepG2 hepatocarcinoma cells were treated with antipsychotics or placebo and DiI-labelled LDL for 18 h and then exposed to curcumin for the last 2 h. Cells and media were collected separately and used for biochemical analyses, electron microscopy and immunocytochemistry. Exosomes were isolated from the incubation medium by ultracentrifugation. Results Curcumin treatment reduced the number of heterolysosomes and shifted their subcellular localization to the periphery, as revealed by electron microscopy, and stimulated the release of lysosomal β-hexosaminidase and exosome markers flotillin-2 and CD63 into the media. The presence of DiI in exosomes released by cells preloaded with DiI-LDL demonstrated the endolysosomal origin of the microvesicles. Furthermore, curcumin increased the secretion of cholesterol as well as LDL-derived DiI and [3H]-cholesterol, in association with a decrease of intracellular lipids. Thus, the disruption of lipid trafficking induced by FGAs or SGAs can be relieved by curcumin treatment. This polyphenol, however, did not mitigate the reduction of cholesterol esterification induced by antipsychotics. Conclusion Curcumin stimulates exosome release to remove cholesterol (and presumably other lipids) accumulated within the endolysosomal compartment, thereby normalizing intracellular lipid homeostasis. This action may help minimize the adverse metabolic effects of antipsychotic treatment, which should now be evaluated in clinical trials. PMID:26517556

  7. A Francisella novicida pdpA mutant exhibits limited intracellular replication and remains associated with the lysosomal marker LAMP-1

    PubMed Central

    Schmerk, Crystal L.; Duplantis, Barry N.; Howard, Perry L.; Nano, Francis E.

    2009-01-01

    Several genes contained in the Francisella pathogenicity island (FPI) encode proteins needed for intracellular growth and virulence of Francisella tularensis. The pdpA gene is the first cistron in the larger of the two operons found in the FPI. In this work we studied the intracellular growth phenotype of a Francisella novicida mutant in the pdpA gene. The ΔpdpA strain was capable of a small amount of intracellular replication but, unlike wild-type F. novicida, remained associated with the lysosomal marker LAMP-1, suggesting that PdpA is necessary for progression from the early phagosome phase of infection. Strains with in cis complementation of the ΔpdpA lesion showed a restoration of intracellular growth to wild-type levels. Infection of macrophages with the ΔpdpA mutant generated a host-cell mRNA profile distinct from that generated by infection with wild-type F. novicida. The transcriptional response of the host macrophage indicates that PdpA functions directly or indirectly to suppress macrophage ability to signal via growth factors, cytokines and adhesion ligands. PMID:19372155

  8. A Francisella novicida pdpA mutant exhibits limited intracellular replication and remains associated with the lysosomal marker LAMP-1.

    PubMed

    Schmerk, Crystal L; Duplantis, Barry N; Howard, Perry L; Nano, Francis E

    2009-05-01

    Several genes contained in the Francisella pathogenicity island (FPI) encode proteins needed for intracellular growth and virulence of Francisella tularensis. The pdpA gene is the first cistron in the larger of the two operons found in the FPI. In this work we studied the intracellular growth phenotype of a Francisella novicida mutant in the pdpA gene. The DeltapdpA strain was capable of a small amount of intracellular replication but, unlike wild-type F. novicida, remained associated with the lysosomal marker LAMP-1, suggesting that PdpA is necessary for progression from the early phagosome phase of infection. Strains with in cis complementation of the DeltapdpA lesion showed a restoration of intracellular growth to wild-type levels. Infection of macrophages with the DeltapdpA mutant generated a host-cell mRNA profile distinct from that generated by infection with wild-type F. novicida. The transcriptional response of the host macrophage indicates that PdpA functions directly or indirectly to suppress macrophage ability to signal via growth factors, cytokines and adhesion ligands.

  9. Characterization of intracellular pteroylpolyglutamate hydrolase (PPH) from human intestinal mucosa

    SciTech Connect

    Wang, T.T.Y.; Chandler, C.J.; Halsted, C.H.

    1986-03-01

    There are two forms of pteroylpolyglutamate hydrolase (PPH) in the human intestinal mucosa, one in the brush border membrane and the other intracellular; brush border PPH is an exopeptidase with optimal activity at pH 6.5 and a requirement for zinc. The presence study characterized human intracellular PPH and compared its properties to those of brush border PPH. Intracellular PPH was purified 30-fold. The enzyme had a MW of 75,000 by gel filtration, was optimally active at pH 4.5, and had an isoelectric point at pH 8.0. In contrast to brush border PPH, intracellular PPH was unstable at increasing temperatures, was unaffected by dialysis against chelating agents and showed no requirement for Zn/sup 2 +/. Using PteGlu/sub 2/(/sup 14/C)Glu as substrate, they demonstrated a K/sub m/ of 1.2 ..mu..M and increasing affinity for folates with longer glutamate chains. Intracellular PPH required the complete folic acid (PteGlu) moiety and a ..gamma..-glutamyl linkage for activity. Using ion exchange chromatography and an HPLC method to determine the hydrolytic products of the reaction, they found intracellular PPH could cleave both internal and terminal ..gamma..-glutamyl linkages, with PteGlu as an end product. After subcellular fractionation of the mucosa, PPH was found in the lysosomes. In summary, the distinct characteristics of brush border and intracellular PPH suggest that the two hydrolases serve different roles in folate metabolism.

  10. Ethambutol plasma and intracellular pharmacokinetics: A pharmacogenetic study.

    PubMed

    Fatiguso, Giovanna; Allegra, Sarah; Calcagno, Andrea; Baietto, Lorena; Motta, Ilaria; Favata, Fabio; Cusato, Jessica; Bonora, Stefano; Perri, Giovanni Di; D'Avolio, Antonio

    2016-01-30

    We evaluated ethambutol plasma and intracellular pharmacokinetic according to single nucleotide polymorphisms in ABCB1, OATP1B1, PXR, VDR, CYP24A1 and CYP27B1 genes. Mycobacterium tubercolosis infected patients were enrolled. Standard weight-adjusted antitubercular treatment was administered intravenously for 2 weeks and then orally. Allelic discrimination was performed by real-time PCR. Ethambutol plasma and intracellular concentrations were measured by UPLC-MS/MS methods. Twenty-four patients were included. Considering weeks 2 and 4, median plasma Ctrough were 73 ng/mL and 247 ng/mL, intracellular Ctrough were 16,863 ng/mL and 13,535 ng/mL, plasma Cmax were 5627 ng/mL and 2229 ng/mL, intracellular Cmax were 133,830 ng/mL and 78,544 ng/mL. At week 2, ABCB1 3435 CT/TT (p=0.023) and CYP24A1 8620 AG/GG (p=0.030) genotypes for plasma Ctrough, BsmI AA (p=0.036) for intracellular Ctrough and BsmI AA (p<0.001) and ApaI AA (p=0.048) for intracellular Cmax, remained in linear regression analysis as predictive factors. Concerning week 4 only ABCB1 3435 CT/TT (p=0.035) and Cdx2 AG/GG (p=0.004) genotypes for plasma Ctrough and BsmI AA (p=0.028) for plasma Cmax were retained in final regression model. We reveal, for the first time, the possible role of single nucleotide polymorphisms on ethambutol plasma and intracellular concentrations; this may further the potential use of pharmacogenetic for tailoring antitubercular treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. An intracellular nanotrap redirects proteins and organelles in live bacteria.

    PubMed

    Borg, Sarah; Popp, Felix; Hofmann, Julia; Leonhardt, Heinrich; Rothbauer, Ulrich; Schüler, Dirk

    2015-01-13

    Owing to their small size and enhanced stability, nanobodies derived from camelids have previously been used for the construction of intracellular "nanotraps," which enable redirection and manipulation of green fluorescent protein (GFP)-tagged targets within living plant and animal cells. By taking advantage of intracellular compartmentalization in the magnetic bacterium Magnetospirillum gryphiswaldense, we demonstrate that proteins and even entire organelles can be retargeted also within prokaryotic cells by versatile nanotrap technology. Expression of multivalent GFP-binding nanobodies on magnetosomes ectopically recruited the chemotaxis protein CheW1-GFP from polar chemoreceptor clusters to the midcell, resulting in a gradual knockdown of aerotaxis. Conversely, entire magnetosome chains could be redirected from the midcell and tethered to one of the cell poles. Similar approaches could potentially be used for building synthetic cellular structures and targeted protein knockdowns in other bacteria. Intrabodies are commonly used in eukaryotic systems for intracellular analysis and manipulation of proteins within distinct subcellular compartments. In particular, so-called nanobodies have great potential for synthetic biology approaches because they can be expressed easily in heterologous hosts and actively interact with intracellular targets, for instance, by the construction of intracellular "nanotraps" in living animal and plant cells. Although prokaryotic cells also exhibit a considerable degree of intracellular organization, there are few tools available equivalent to the well-established methods used in eukaryotes. Here, we demonstrate the ectopic retargeting and depletion of polar membrane proteins and entire organelles to distinct compartments in a magnetotactic bacterium, resulting in a gradual knockdown of magneto-aerotaxis. This intracellular nanotrap approach has the potential to be applied in other bacteria for building synthetic cellular structures

  12. Curved FtsZ protofilaments generate bending forces on liposome membranes

    PubMed Central

    Osawa, Masaki; Anderson, David E; Erickson, Harold P

    2009-01-01

    We have created FtsZ-YFP-mts where an amphipathic helix on the C-terminus tethers FtsZ to the membrane. When incorporated inside multi-lamellar tubular liposomes, FtsZ-YFP-mts can assemble Z rings that generate a constriction force. When added to the outside of liposomes, FtsZ-YFP-mts bound and produced concave depressions, bending the membrane in the same direction as the Z ring inside liposomes. Prominent membrane tubules were then extruded at the intersections of concave depressions. We tested the effect of moving the membrane-targeting sequence (mts) from the C-terminus to the N-terminus, which is approximately 180 degrees from the C-terminal tether. When mts-FtsZ-YFP was applied to the outside of liposomes, it generated convex bulges, bending the membrane in the direction opposite to the concave depressions. We conclude that FtsZ protofilaments have a fixed direction of curvature, and the direction of membrane bending depends on which side of the bent protofilament the mts is attached to. This supports models in which the FtsZ constriction force is generated by protofilament bending. PMID:19779463

  13. [Intracellular signals involved in glucose control].

    PubMed

    Cruz, M; Velasco, E; Kumate, J

    2001-01-01

    Many proteins are involved in glucose control. The first step for glucose uptake is insulin receptor-binding. Stimulation of the insulin receptor results in rapid autophosphorylation and conformational changes in the beta chain and the subsequent phosphorylation of the insulin receptor substrate. This results in the docking of several SH2 domain proteins, including PI 3-kinase and other adapters. The final event is glucose transporter (GLUT) translocation to the cell surface. GLUT is in the cytosol but after insulin stimulation, several proteins are activated either in the GLUT vesicles or in the inner membrane. The role of the cytoskeleton is not well known, but it apparently participates in membrane fusion and vesicle mobilization. After glucose uptake, several hexokines metabolize the glucose to generate energy, convert the glucose in glycogen and store it. Type 2 diabetes is characterized by high glucose levels and insulin resistance. The insulin receptor is diminished on the cell surface membrane, tyrosine phosphorylation is decreased, serine and threonine phosphorylation is augmented. Apparently, the main problem with GLUT protein is in its translocation to the cell surface. At present, we know the role of many proteins involved in glucose control. However, we do not understand the significance of insulin resistance at the molecular level with type 2 diabetes.

  14. Exploring Anti-Bacterial Compounds against Intracellular Legionella

    PubMed Central

    Harrison, Christopher F.; Kicka, Sébastien; Trofimov, Valentin; Berschl, Kathrin; Ouertatani-Sakouhi, Hajer; Ackermann, Nikolaus; Hedberg, Christian; Cosson, Pierre; Soldati, Thierry; Hilbi, Hubert

    2013-01-01

    Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an ‘accidental’ human pathogen and cause a severe pneumonia known as Legionnaires’ disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoebacastellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target. PMID:24058631

  15. Self-organization of intracellular gradients during mitosis.

    PubMed

    Fuller, Brian G

    2010-01-29

    Gradients are used in a number of biological systems to transmit spatial information over a range of distances. The best studied are morphogen gradients where information is transmitted over many cell lengths. Smaller mitotic gradients reflect the need to organize several distinct events along the length of the mitotic spindle. The intracellular gradients that characterize mitosis are emerging as important regulatory paradigms. Intracellular gradients utilize intrinsic auto-regulatory feedback loops and diffusion to establish stable regions of activity within the mitotic cytosol. We review three recently described intracellular mitotic gradients. The Ran GTP gradient with its elaborate cascade of nuclear transport receptors and cargoes is the best characterized, yet the dynamics underlying the robust gradient of Ran-GTP have received little attention. Gradients of phosphorylation have been observed on Aurora B kinase substrates both before and after anaphase onset. In both instances the phosphorylation gradient appears to result from a soluble gradient of Aurora B kinase activity. Regulatory properties that support gradient formation are highlighted. Intracellular activity gradients that regulate localized mitotic events bare several hallmarks of self-organizing biologic systems that designate spatial information during pattern formation. Intracellular pattern formation represents a new paradigm in mitotic regulation.

  16. Intracellular transport of fat-soluble vitamins A and E.

    PubMed

    Kono, Nozomu; Arai, Hiroyuki

    2015-01-01

    Vitamins are compounds that are essential for the normal growth, reproduction and functioning of the human body. Of the 13 known vitamins, vitamins A, D, E and K are lipophilic compounds and are therefore called fat-soluble vitamins. Because of their lipophilicity, fat-soluble vitamins are solubilized and transported by intracellular carrier proteins to exert their actions and to be metabolized properly. Vitamin A and its derivatives, collectively called retinoids, are solubilized by intracellular retinoid-binding proteins such as cellular retinol-binding protein (CRBP), cellular retinoic acid-binding protein (CRABP) and cellular retinal-binding protein (CRALBP). These proteins act as chaperones that regulate the metabolism, signaling and transport of retinoids. CRALBP-mediated intracellular retinoid transport is essential for vision in human. α-Tocopherol, the main form of vitamin E found in the body, is transported by α-tocopherol transfer protein (α-TTP) in hepatic cells. Defects of α-TTP cause vitamin E deficiency and neurological disorders in humans. Recently, it has been shown that the interaction of α-TTP with phosphoinositides plays a critical role in the intracellular transport of α-tocopherol and is associated with familial vitamin E deficiency. In this review, we summarize the mechanisms and biological significance of the intracellular transport of vitamins A and E.

  17. Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy

    PubMed Central

    Taylor, Jack; Huefner, Anna; Li, Li; Wingfield, Jonathan

    2016-01-01

    Surface-enhanced Raman spectrocopy (SERS) offers ultrasensitive vibrational fingerprinting at the nanoscale. Its non-destructive nature affords an ideal tool for interrogation of the intracellular environment, detecting the localisation of biomolecules, delivery and monitoring of therapeutics and for characterisation of complex cellular processes at the molecular level. Innovations in nanotechnology have produced a wide selection of novel, purpose-built plasmonic nanostructures capable of high SERS enhancement for intracellular probing while microfluidic technologies are being utilised to reproducibly synthesise nanoparticle (NP) probes at large scale and in high throughput. Sophisticated multivariate analysis techniques unlock the wealth of previously unattainable biomolecular information contained within large and multidimensional SERS datasets. Thus, with suitable combination of experimental techniques and analytics, SERS boasts enormous potential for cell based assays and to expand our understanding of the intracellular environment. In this review we trace the pathway to utilisation of nanomaterials for intracellular SERS. Thus we review and assess nanoparticle synthesis methods, their toxicity and cell interactions before presenting significant developments in intracellular SERS methodologies and how identified challenges can be addressed. PMID:27479539

  18. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria.

    PubMed

    Benzerara, Karim; Skouri-Panet, Feriel; Li, Jinhua; Férard, Céline; Gugger, Muriel; Laurent, Thierry; Couradeau, Estelle; Ragon, Marie; Cosmidis, Julie; Menguy, Nicolas; Margaret-Oliver, Isabel; Tavera, Rosaluz; López-García, Purificación; Moreira, David

    2014-07-29

    Cyanobacteria have played a significant role in the formation of past and modern carbonate deposits at the surface of the Earth using a biomineralization process that has been almost systematically considered induced and extracellular. Recently, a deep-branching cyanobacterial species, Candidatus Gloeomargarita lithophora, was reported to form intracellular amorphous Ca-rich carbonates. However, the significance and diversity of the cyanobacteria in which intracellular biomineralization occurs remain unknown. Here, we searched for intracellular Ca-carbonate inclusions in 68 cyanobacterial strains distributed throughout the phylogenetic tree of cyanobacteria. We discovered that diverse unicellular cyanobacterial taxa form intracellular amorphous Ca-carbonates with at least two different distribution patterns, suggesting the existence of at least two distinct mechanisms of biomineralization: (i) one with Ca-carbonate inclusions scattered within the cell cytoplasm such as in Ca. G. lithophora, and (ii) another one observed in strains belonging to the Thermosynechococcus elongatus BP-1 lineage, in which Ca-carbonate inclusions lie at the cell poles. This pattern seems to be linked with the nucleation of the inclusions at the septum of the cells, showing an intricate and original connection between cell division and biomineralization. These findings indicate that intracellular Ca-carbonate biomineralization by cyanobacteria has been overlooked by past studies and open new perspectives on the mechanisms and the evolutionary history of intra- and extracellular Ca-carbonate biomineralization by cyanobacteria.

  19. Intracellular Neural Recording with Pure Carbon Nanotube Probes

    PubMed Central

    Yoon, Inho; Hamaguchi, Kosuke; Borzenets, Ivan V.; Finkelstein, Gleb; Mooney, Richard; Donald, Bruce R.

    2013-01-01

    The computational complexity of the brain depends in part on a neuron’s capacity to integrate electrochemical information from vast numbers of synaptic inputs. The measurements of synaptic activity that are crucial for mechanistic understanding of brain function are also challenging, because they require intracellular recording methods to detect and resolve millivolt- scale synaptic potentials. Although glass electrodes are widely used for intracellular recordings, novel electrodes with superior mechanical and electrical properties are desirable, because they could extend intracellular recording methods to challenging environments, including long term recordings in freely behaving animals. Carbon nanotubes (CNTs) can theoretically deliver this advance, but the difficulty of assembling CNTs has limited their application to a coating layer or assembly on a planar substrate, resulting in electrodes that are more suitable for in vivo extracellular recording or extracellular recording from isolated cells. Here we show that a novel, yet remarkably simple, millimeter-long electrode with a sub-micron tip, fabricated from self-entangled pure CNTs can be used to obtain intracellular and extracellular recordings from vertebrate neurons in vitro and in vivo. This fabrication technology provides a new method for assembling intracellular electrodes from CNTs, affording a promising opportunity to harness nanotechnology for neuroscience applications. PMID:23840357

  20. Relevance of intracellular polarity to accuracy of eukaryotic chemotaxis

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Tetsuya; Nagamatsu, Akihiro; Akuzawa, Naohiro; Nishikawa, Masatoshi; Shibata, Tatsuo

    2014-10-01

    Eukaryotic chemotaxis is usually mediated by intracellular signals that tend to localize at the front or back of the cell. Such intracellular polarities frequently require no extracellular guidance cues, indicating that spontaneous polarization occurs in the signal network. Spontaneous polarization activity is considered relevant to the persistent motions in random cell migrations and chemotaxis. In this study, we propose a theoretical model that connects spontaneous intracellular polarity and motile ability in a chemoattractant solution. We demonstrate that the intracellular polarity can enhance the accuracy of chemotaxis. Chemotactic accuracy should also depend on chemoattractant concentration through the concentration-dependent correlation time in the polarity direction. Both the polarity correlation time and the chemotactic accuracy depend on the degree of responsiveness to the chemical gradient. We show that optimally accurate chemotaxis occurs at an intermediate responsiveness of intracellular polarity. Experimentally, we find that the persistence time of randomly migrating Dictyostelium cells depends on the chemoattractant concentration, as predicted by our theory. At the optimum responsiveness, this ameboid cell can enhance its chemotactic accuracy tenfold.

  1. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria

    PubMed Central

    Benzerara, Karim; Skouri-Panet, Feriel; Li, Jinhua; Férard, Céline; Gugger, Muriel; Laurent, Thierry; Couradeau, Estelle; Ragon, Marie; Cosmidis, Julie; Menguy, Nicolas; Margaret-Oliver, Isabel; Tavera, Rosaluz; López-García, Purificación; Moreira, David

    2014-01-01

    Cyanobacteria have played a significant role in the formation of past and modern carbonate deposits at the surface of the Earth using a biomineralization process that has been almost systematically considered induced and extracellular. Recently, a deep-branching cyanobacterial species, Candidatus Gloeomargarita lithophora, was reported to form intracellular amorphous Ca-rich carbonates. However, the significance and diversity of the cyanobacteria in which intracellular biomineralization occurs remain unknown. Here, we searched for intracellular Ca-carbonate inclusions in 68 cyanobacterial strains distributed throughout the phylogenetic tree of cyanobacteria. We discovered that diverse unicellular cyanobacterial taxa form intracellular amorphous Ca-carbonates with at least two different distribution patterns, suggesting the existence of at least two distinct mechanisms of biomineralization: (i) one with Ca-carbonate inclusions scattered within the cell cytoplasm such as in Ca. G. lithophora, and (ii) another one observed in strains belonging to the Thermosynechococcus elongatus BP-1 lineage, in which Ca-carbonate inclusions lie at the cell poles. This pattern seems to be linked with the nucleation of the inclusions at the septum of the cells, showing an intricate and original connection between cell division and biomineralization. These findings indicate that intracellular Ca-carbonate biomineralization by cyanobacteria has been overlooked by past studies and open new perspectives on the mechanisms and the evolutionary history of intra- and extracellular Ca-carbonate biomineralization by cyanobacteria. PMID:25009182

  2. Quantitative Analysis of Intracellular Motility Based on Optical Flow Model

    PubMed Central

    Li, Heng

    2017-01-01

    Analysis of cell mobility is a key issue for abnormality identification and classification in cell biology research. However, since cell deformation induced by various biological processes is random and cell protrusion is irregular, it is difficult to measure cell morphology and motility in microscopic images. To address this dilemma, we propose an improved variation optical flow model for quantitative analysis of intracellular motility, which not only extracts intracellular motion fields effectively but also deals with optical flow computation problem at the border by taking advantages of the formulation based on L1 and L2 norm, respectively. In the energy functional of our proposed optical flow model, the data term is in the form of L2 norm; the smoothness of the data changes with regional features through an adaptive parameter, using L1 norm near the edge of the cell and L2 norm away from the edge. We further extract histograms of oriented optical flow (HOOF) after optical flow field of intracellular motion is computed. Then distances of different HOOFs are calculated as the intracellular motion features to grade the intracellular motion. Experimental results show that the features extracted from HOOFs provide new insights into the relationship between the cell motility and the special pathological conditions.

  3. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria

    NASA Astrophysics Data System (ADS)

    Benzerara, Karim; Skouri-Panet, Feriel; Li, Jinhua; Férard, Céline; Gugger, Muriel; Laurent, Thierry; Couradeau, Estelle; Ragon, Marie; Cosmidis, Julie; Menguy, Nicolas; Margaret-Oliver, Isabel; Tavera, Rosaluz; López-García, Purificación; Moreira, David

    2014-07-01

    Cyanobacteria have played a significant role in the formation of past and modern carbonate deposits at the surface of the Earth using a biomineralization process that has been almost systematically considered induced and extracellular. Recently, a deep-branching cyanobacterial species, Candidatus Gloeomargarita lithophora, was reported to form intracellular amorphous Ca-rich carbonates. However, the significance and diversity of the cyanobacteria in which intracellular biomineralization occurs remain unknown. Here, we searched for intracellular Ca-carbonate inclusions in 68 cyanobacterial strains distributed throughout the phylogenetic tree of cyanobacteria. We discovered that diverse unicellular cyanobacterial taxa form intracellular amorphous Ca-carbonates with at least two different distribution patterns, suggesting the existence of at least two distinct mechanisms of biomineralization: (i) one with Ca-carbonate inclusions scattered within the cell cytoplasm such as in Ca. G. lithophora, and (ii) another one observed in strains belonging to the Thermosynechococcus elongatus BP-1 lineage, in which Ca-carbonate inclusions lie at the cell poles. This pattern seems to be linked with the nucleation of the inclusions at the septum of the cells, showing an intricate and original connection between cell division and biomineralization. These findings indicate that intracellular Ca-carbonate biomineralization by cyanobacteria has been overlooked by past studies and open new perspectives on the mechanisms and the evolutionary history of intra- and extracellular Ca-carbonate biomineralization by cyanobacteria.

  4. High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila

    PubMed Central

    Chiaraviglio, Lucius

    2015-01-01

    Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. PMID:26392509

  5. Self-organization of intracellular gradients during mitosis

    PubMed Central

    2010-01-01

    Gradients are used in a number of biological systems to transmit spatial information over a range of distances. The best studied are morphogen gradients where information is transmitted over many cell lengths. Smaller mitotic gradients reflect the need to organize several distinct events along the length of the mitotic spindle. The intracellular gradients that characterize mitosis are emerging as important regulatory paradigms. Intracellular gradients utilize intrinsic auto-regulatory feedback loops and diffusion to establish stable regions of activity within the mitotic cytosol. We review three recently described intracellular mitotic gradients. The Ran GTP gradient with its elaborate cascade of nuclear transport receptors and cargoes is the best characterized, yet the dynamics underlying the robust gradient of Ran-GTP have received little attention. Gradients of phosphorylation have been observed on Aurora B kinase substrates both before and after anaphase onset. In both instances the phosphorylation gradient appears to result from a soluble gradient of Aurora B kinase activity. Regulatory properties that support gradient formation are highlighted. Intracellular activity gradients that regulate localized mitotic events bare several hallmarks of self-organizing biologic systems that designate spatial information during pattern formation. Intracellular pattern formation represents a new paradigm in mitotic regulation. PMID:20181052

  6. Intracellular glasses and seed survival in the dry state.

    PubMed

    Buitink, Julia; Leprince, Olivier

    2008-10-01

    So-called orthodox seeds can resist complete desiccation and survive the dry state for extended periods of time. During drying, the cellular viscosity increases dramatically and in the dry state, the cytoplasm transforms into a glassy state. The formation of intracellular glasses is indispensable to survive the dry state. Indeed, the storage stability of seeds is related to the packing density and molecular mobility of the intracellular glass, suggesting that the physico-chemical properties of intracellular glasses provide stability for long-term survival. Whereas seeds contain large amounts of soluble non-reducing sugars, which are known to be good glass formers, detailed in vivo measurements using techniques such as FTIR and EPR spectroscopy reveal that these intracellular glasses have properties that are quite different from those of simple sugar glasses. Intracellular glasses exhibit slow molecular mobility and a high molecular packing, resembling glasses made of mixtures of sugars with proteins, which potentially interact with additional cytoplasmic components such as salts, organic acids and amino acids. Above the glass transition temperature, the cytoplasm of biological systems still exhibits a low molecular mobility and a high stability, which serves as an ecological advantage, keeping the seeds stable under adverse conditions of temperature or water content that bring the tissues out of the glassy state.

  7. Quantitative intracellular magnetic nanoparticle uptake measured by live cell magnetophoresis

    PubMed Central

    Jing, Ying; Mal, Niladri; Williams, P. Stephen; Mayorga, Maritza; Penn, Marc S.; Chalmers, Jeffrey J.; Zborowski, Maciej

    2008-01-01

    Superparamagnetic iron oxide (SPIO) particles have been used successfully as an intracellular contrast agent for nuclear MRI cell tracking in vivo. We present a method of detecting intracellular SPIO colloid uptake in live cells using cell magnetophoresis, with potential applications in measuring intracellular MRI contrast uptake. The method was evaluated by measuring shifts in mean and distribution of the cell magnetophoretic mobility, and the concomitant changes in population frequency of the magnetically positive cells when compared to the unmanipulated negative control. Seven different transfection agent (TA) -SPIO complexes based on dendrimer, lipid, and polyethylenimine compounds were used as test standards, in combination with 3 different cell types: mesenchymal stem cells, cardiac fibroblasts, and cultured KG-1a hematopoietic stem cells. Transfectol (TRA) -SPIO incubation resulted in the highest frequency of magnetically positive cells (>90%), and Fugene 6 (FUG) -SPIO incubation the lowest, below that when using SPIO alone. A highly regular process of cell magnetophoresis was amenable to intracellular iron mass calculations. The results were consistent in all the cell types studied and with other reports. The cell magnetophoresis depends on the presence of high-spin iron species and is therefore expected to be directly related to the cell MRI contrast level.—Jing, Y., Mal, N., Williams, P. S., Mayorga, M., Penn, M. S., Chalmers, J. J., Zborowski, M. Quantitative intracellular magnetic nanoparticle uptake measured by live cell magnetophoresis. PMID:18725459

  8. High Intracellular Chloride Slows the Decay of Glycinergic Currents

    PubMed Central

    Pitt, Samantha J.; Sivilotti, Lucia G.; Beato, Marco

    2009-01-01

    The time course of currents mediated by native and recombinant glycine receptors was examined with a combination of rapid agonist applications to outside-out patches and single-channel recording. The deactivation time constant of currents evoked by brief, saturating pulses of glycine is profoundly affected by the chloride concentration on the intracellular side of the cell membrane. Deactivation was threefold slower when intracellular chloride was increased from a low level (10 mm), similar to that observed in living mature neurons, to 131 mm (“symmetrical” chloride, often used in pipette internal solutions). Single-channel analysis revealed that high chloride has its greatest effect on the channel closing rate, slowing it by a factor of 2 compared with the value we estimated in the cell-attached mode (in which the channels are at physiological intracellular chloride concentrations). The same effect of chloride was observed when glycinergic evoked synaptic currents were recorded from juvenile rat spinal motoneurons in vitro, because the decay time constant was reduced from ∼7ms to ∼3 ms when cells were dialyzed with 10 mm chloride intracellular recording solution. Our results indicate that the time course of glycinergic synaptic inhibition in intact neurons is much faster than is estimated by measurements in symmetrical chloride and can be modulated by changes in intracellular chloride concentration in the range that can occur in physiological or pathological conditions. PMID:18987182

  9. Relevance of intracellular polarity to accuracy of eukaryotic chemotaxis.

    PubMed

    Hiraiwa, Tetsuya; Nagamatsu, Akihiro; Akuzawa, Naohiro; Nishikawa, Masatoshi; Shibata, Tatsuo

    2014-08-14

    Eukaryotic chemotaxis is usually mediated by intracellular signals that tend to localize at the front or back of the cell. Such intracellular polarities frequently require no extracellular guidance cues, indicating that spontaneous polarization occurs in the signal network. Spontaneous polarization activity is considered relevant to the persistent motions in random cell migrations and chemotaxis. In this study, we propose a theoretical model that connects spontaneous intracellular polarity and motile ability in a chemoattractant solution. We demonstrate that the intracellular polarity can enhance the accuracy of chemotaxis. Chemotactic accuracy should also depend on chemoattractant concentration through the concentration-dependent correlation time in the polarity direction. Both the polarity correlation time and the chemotactic accuracy depend on the degree of responsiveness to the chemical gradient. We show that optimally accurate chemotaxis occurs at an intermediate responsiveness of intracellular polarity. Experimentally, we find that the persistence time of randomly migrating Dictyostelium cells depends on the chemoattractant concentration, as predicted by our theory. At the optimum responsiveness, this ameboid cell can enhance its chemotactic accuracy tenfold.

  10. Innate Immunity to Intracellular Pathogens: Lessons Learned from Legionella pneumophila.

    PubMed

    Shin, Sunny

    2012-01-01

    Intracellular bacterial pathogens have the remarkable ability to manipulate host cell processes in order to establish a replicative niche within the host cell. In response, the host can initiate immune defenses that lead to the eventual restriction and clearance of intracellular infection. The bacterial pathogen Legionella pneumophila has evolved elaborate virulence mechanisms that allow for its survival inside protozoa within a specialized membrane-bound organelle. These strategies also enable L. pneumophila to survive and replicate within alveolar macrophages, and can result in the severe pneumonia Legionnaires' disease. Essential to L. pneumophila's intracellular lifestyle is a specialized type IV secretion system, termed Dot/Icm, that translocates bacterial effector proteins into host cells. The ease with which L. pneumophila can be genetically manipulated has facilitated the comparison of host responses to virulent and isogenic avirulent mutants lacking a functional Dot/Icm system. This has made L. pneumophila an excellent model for understanding how the host discriminates between pathogenic and nonpathogenic bacteria and for systematically dissecting host defense mechanisms against intracellular pathogens. In this chapter, I discuss a few examples demonstrating how the study of immune responses triggered specifically by the L. pneumophila type IV secretion system has provided unique insight into our understanding of host immunity against intracellular bacterial pathogens.

  11. Intracellular calcium levels can regulate Importin-dependent nuclear import

    SciTech Connect

    Kaur, Gurpreet; Ly-Huynh, Jennifer D.; Jans, David A.

    2014-07-18

    Highlights: • High intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import. • The effect of Ca{sup 2+} on nuclear import does not relate to changes in the nuclear pore. • High intracellular calcium can result in mislocalisation of Impβ1, Ran and RCC1. - Abstract: We previously showed that increased intracellular calcium can modulate Importin (Imp)β1-dependent nuclear import of SRY-related chromatin remodeling proteins. Here we extend this work to show for the first time that high intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import generally. The basis of this relates to the mislocalisation of the transport factors Impβ1 and Ran, which show significantly higher nuclear localization in contrast to various other factors, and RCC1, which shows altered subnuclear localisation. The results here establish for the first time that intracellular calcium modulates conventional nuclear import through direct effects on the nuclear transport machinery.

  12. The unappreciated intracellular lifestyle of Blastomyces dermatitidis1

    PubMed Central

    Sterkel, Alana; Mettelman, Robert; Wüthrich, Marcel; Klein, Bruce S.

    2015-01-01

    Blastomyces dermatitidis, a dimorphic fungus and the causative agent of blastomycosis, is widely considered an extracellular pathogen, with little evidence for a facultative intracellular lifestyle. We infected mice with spores - the infectious particle - via the pulmonary route and studied intracellular residence, transition to pathogenic yeast and replication inside lung cells. Nearly 80% of spores were inside cells at 24 hours after infection with 104 spores. The majority of spores were located inside of alveolar macrophages, with smaller numbers in neutrophils and dendritic cells. Real time imaging showed rapid uptake of spores into alveolar macrophages, conversion to yeast, and intracellular multiplication during in vitro co-culture. The finding of multiple yeast in a macrophage was chiefly due to intracellular replication rather than multiple phagocytic events or fusion of macrophages. Depletion of alveolar macrophages curtailed infection in mice infected with spores, and lead to a 26-fold reduction in lung CFU by 6 days post-infection vs. non-depleted mice. Phase transition of the spores to yeast was delayed in these depleted mice over a time frame that correlated with reduced lung CFU. Spores cultured in vitro converted to yeast faster in the presence of macrophages than in medium alone. Thus, while advanced B. dermatitidis infection may exhibit extracellular residence in tissue, early lung infection with infectious spores reveals its unappreciated facultative intracellular lifestyle. PMID:25589071

  13. Intracellular activity of azithromycin against bacterial enteric pathogens.

    PubMed Central

    Rakita, R M; Jacques-Palaz, K; Murray, B E

    1994-01-01

    Azithromycin, a new azalide antibiotic, is active in vitro against a variety of enteric bacterial pathogens. Since it is concentrated inside human neutrophils and other cells, it might be particularly useful in the treatment of infections caused by enteropathogens that invade host tissues. The intracellular activity of azithromycin against several enteric pathogens that had been phagocytosed by neutrophils was determined. Azithromycin was effective in reducing the intracellular viabilities of almost all strains tested, including representative strains of Salmonella, Shigella, and enteroinvasive, enteropathogenic, enterotoxigenic, and enterohemorrhagic Escherichia coli. Erythromycin was also effective in this model system, although azithromycin was generally more effective than erythromycin against strains of invasive enteric pathogens. Cefotaxime reduced intracellular bacterial viability to a lesser extent than either azithromycin or erythromycin. The presence of neutrophils did not significantly affect the activity of azithromycin in this system. Azithromycin may be a useful agent for the treatment of bacterial diarrhea, and clinical trials should be considered. PMID:7810998

  14. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus.

    PubMed

    Lehar, Sophie M; Pillow, Thomas; Xu, Min; Staben, Leanna; Kajihara, Kimberly K; Vandlen, Richard; DePalatis, Laura; Raab, Helga; Hazenbos, Wouter L; Morisaki, J Hiroshi; Kim, Janice; Park, Summer; Darwish, Martine; Lee, Byoung-Chul; Hernandez, Hilda; Loyet, Kelly M; Lupardus, Patrick; Fong, Rina; Yan, Donghong; Chalouni, Cecile; Luis, Elizabeth; Khalfin, Yana; Plise, Emile; Cheong, Jonathan; Lyssikatos, Joseph P; Strandh, Magnus; Koefoed, Klaus; Andersen, Peter S; Flygare, John A; Wah Tan, Man; Brown, Eric J; Mariathasan, Sanjeev

    2015-11-19

    Staphylococcus aureus is considered to be an extracellular pathogen. However, survival of S. aureus within host cells may provide a reservoir relatively protected from antibiotics, thus enabling long-term colonization of the host and explaining clinical failures and relapses after antibiotic therapy. Here we confirm that intracellular reservoirs of S. aureus in mice comprise a virulent subset of bacteria that can establish infection even in the presence of vancomycin, and we introduce a novel therapeutic that effectively kills intracellular S. aureus. This antibody-antibiotic conjugate consists of an anti-S. aureus antibody conjugated to a highly efficacious antibiotic that is activated only after it is released in the proteolytic environment of the phagolysosome. The antibody-antibiotic conjugate is superior to vancomycin for treatment of bacteraemia and provides direct evidence that intracellular S. aureus represents an important component of invasive infections.

  15. Measuring intracellular motion in cancer cell using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zam, Azhar; Kolios, Michael C.

    2016-03-01

    In this study, we demonstrate that OCT speckle decorrelation techniques can be used to probe intracellular motion in cancer cells. Spheroids and cell pellets were used as a model to probe intracellular motion. ZnCl2 was used to inhibit mitochondrial motion within the cells. The results reveal the changes in intracellular motion during the spheroid growth phase. Moreover, to modify the motion of mitochondria, cell pellet were exposed to ZnCl2, and agent known to o impair cellular energy production through inhibition of mitochondrial function. The speckle decorrelation time during the growth phase of spheroids decreased by 35 ms over 21 days and 25 ms during inhibition of mitochondrial motion 10 minutes after exposure to ZnCl2.

  16. Neuronal Recordings with Solid-Conductor Intracellular Nanoelectrodes (SCINEs)

    PubMed Central

    Angle, Matthew R.; Schaefer, Andreas T.

    2012-01-01

    Direct electrical recording of the neuronal transmembrane potential has been crucial to our understanding of the biophysical mechanisms subserving neuronal computation. Existing intracellular recording techniques, however, limit the accuracy and duration of such measurements by changing intracellular biochemistry and/or by damaging the plasma membrane. Here we demonstrate that nanoengineered electrodes can be used to record neuronal transmembrane potentials in brain tissue without causing these physiological perturbations. Using focused ion beam milling, we have fabricated Solid-Conductor Intracellular NanoElectrodes (SCINEs), from conventional tungsten microelectrodes. SCINEs have tips that are <300 nm in diameter for several micrometers, but can be easily handled and can be inserted into brain tissue. Performing simultaneous whole-cell patch recordings, we show that SCINEs can record action potentials (APs) as well as slower, subthreshold neuronal potentials without altering cellular properties. These results show a key role for nanotechnology in the development of new electrical recording techniques in neuroscience. PMID:22905231

  17. An intracellularly activatable, fluorogenic probe for cancer imaging.

    PubMed

    Tian, Ruisong; Li, Mingjie; Wang, Jin; Yu, Min; Kong, Xiuqi; Feng, Yupeng; Chen, Zeming; Li, Yuxi; Huang, Weiqiang; Wu, Wenjie; Hong, Zhangyong

    2014-08-07

    A newly designed, dual-functional probe based on intracellular activation has been successfully developed for the detection of cancer cells. The probe is nearly non-fluorescent in buffer due to its highly efficient FRET quenching, but it can be specifically activated with dramatic fluorescence enhancement upon intracellular cathepsin B cleavage in target cancer cells after selective internalization via folate receptor-dependent endocytosis. Therefore, this probe enables "turn-on" visualization of cancer cells with desirable specificity and contrast enhancement. This targeted, intracellularly activatable probe exhibits low fluorescence-quenched background when compared with "always-on" probes and avoids non-specific activation by non-specifically expressed enzymes in normal tissue, which normally occurs when using common "turn on" probe design strategies. Therefore, this probe can be potentially applied in intraoperative inspection during clinical cancer surgery with higher contrast and sensitivity.

  18. FLIPR assays of intracellular calcium in GPCR drug discovery.

    PubMed

    Hansen, Kasper B; Bräuner-Osborne, Hans

    2009-01-01

    Fluorescent dyes sensitive to changes in intracellular calcium have become increasingly popular in G protein-coupled receptor (GPCR) drug discovery for several reasons. First of all, the assays using the dyes are easy to perform and are of low cost compared to other assays. Second, most non-Galpha(q)-coupled GPCRs can be tweaked to modulate intracellular calcium by co-transfection with promiscuous or chimeric/mutated G proteins making the calcium assays broadly applicable in GPCR research. Third, the price of instruments capable of measuring fluorescent-based calcium indicators has become significantly less making them obtainable even for academic groups. Here, we present a protocol for measuring changes in intracellular calcium levels in living mammalian cells based on the fluorescent calcium binding dye, fluo-4.

  19. Direct Determination of the Intracellular Oxidation State of Plutonium

    PubMed Central

    Gorman-Lewis, Drew; Aryal, Baikuntha P.; Paunesku, Tatjana; Vogt, Stefan; Lai, Barry; Woloschak, Gayle E.; Jensen, Mark P.

    2013-01-01

    Microprobe X-ray absorption near edge structure (μ-XANES) measurements were used to determine directly, for the first time, the oxidation state of intracellular plutonium in individual 0.1 μm2 areas within single rat pheochromocytoma cells (PC12). The living cells were incubated in vitro for 3 hours in the presence of Pu added to the media in different oxidation states (Pu(III), Pu(IV), and Pu(VI)) and in different chemical forms. Regardless of the initial oxidation state or chemical form of Pu presented to the cells, the XANES spectra of the intracellular Pu deposits was always consistent with tetravalent Pu even though the intracellular milieu is generally reducing. PMID:21755934

  20. 17-AAG Kills Intracellular Leishmania amazonensis while Reducing Inflammatory Responses in Infected Macrophages

    PubMed Central

    Petersen, Antonio Luis de Oliveira Almeida; Guedes, Carlos Eduardo Sampaio; Versoza, Carolina Leite; Lima, José Geraldo Bomfim; de Freitas, Luiz Antônio Rodrigues; Borges, Valéria Matos; Veras, Patrícia Sampaio Tavares

    2012-01-01

    Background Leishmaniasis is a neglected endemic disease with a broad spectrum of clinical manifestations. Pentavalent antimonials have been the treatment of choice for the past 70 years and, due to the emergence of resistant cases, the efficacy of these drugs has come under scrutiny. Second-line drugs are less efficacious, cause a range of side effects and can be costly. The formulation of new generations of drugs, especially in developing countries, has become mandatory. Methodology/Principal Findings We investigated the anti-leishmanial effect of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), an HSP90 inhibitor, in vitro. This inhibitor is currently in clinical trials for cancer treatment; however, its effects against intracellular Leishmania remain untested. Macrophages infected with L. amazonensis were treated with 17-AAG (25–500 nM) and parasite load was quantified using optical microscopy. Parasite load declined in 17-AAG-treated macrophages in a dose- and time-dependent manner. Intracellular parasite death became irreversible after 4 h of treatment with 17-AAG, and occurred independent of nitric oxide (NO) and superoxide (O2−) production. Additionally, intracellular parasite viability was severely reduced after 48 h of treatment. Interestingly, treatment with 17-AAG reduced pro-inflammatory mediator production, including TNF-α, IL-6 and MCP-1, yet IL-12 remained unaffected. Electron microscopy revealed morphological alterations, such as double-membrane vacuoles and myelin figures at 24 and 48 h after 17-AAG treatment. Conclusions/Significance The HSP90 inhibitor, 17-AAG, possesses high potency under low dosage and reduces both pro-inflammatory and oxidative molecule production. Therefore, further studies are warranted to investigate this inhibitor’s potential in the development of new generations of anti-leishmanials. PMID:23152914

  1. Cadmium Induces Transcription Independently of Intracellular Calcium Mobilization

    PubMed Central

    Tvermoes, Brooke E.; Bird, Gary S.; Freedman, Jonathan H.

    2011-01-01

    Background Exposure to cadmium is associated with human pathologies and altered gene expression. The molecular mechanisms by which cadmium affects transcription remain unclear. It has been proposed that cadmium activates transcription by altering intracellular calcium concentration ([Ca2+]i) and disrupting calcium-mediated intracellular signaling processes. This hypothesis is based on several studies that may be technically problematic; including the use of BAPTA chelators, BAPTA-based fluorescent sensors, and cytotoxic concentrations of metal. Methodology/Principal Finding In the present report, the effects of cadmium on [Ca2+]i under non-cytotoxic and cytotoxic conditions was monitored using the protein-based calcium sensor yellow cameleon (YC3.60), which was stably expressed in HEK293 cells. In HEK293 constitutively expressing YC3.60, this calcium sensor was found to be insensitive to cadmium. Exposing HEK293::YC3.60 cells to non-cytotoxic cadmium concentrations was sufficient to induce transcription of cadmium-responsive genes but did not affect [Ca2+]i mobilization or increase steady-state mRNA levels of calcium-responsive genes. In contrast, exposure to cytotoxic concentrations of cadmium significantly reduced intracellular calcium stores and altered calcium-responsive gene expression. Conclusions/Significance These data indicate that at low levels, cadmium induces transcription independently of intracellular calcium mobilization. The results also support a model whereby cytotoxic levels of cadmium activate calcium-responsive transcription as a general response to metal-induced intracellular damage and not via a specific mechanism. Thus, the modulation of intracellular calcium may not be a primary mechanism by which cadmium regulates transcription. PMID:21694771

  2. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms.

    PubMed

    Pareja, Maria Eugenia Mansilla; Colombo, Maria I

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance.

  3. Fluorogenic Substrate Detection of Viable Intracellular and Extracellular Pathogenic Protozoa

    NASA Astrophysics Data System (ADS)

    Jackson, Peter R.; Pappas, Michael G.; Hansen, Brian D.

    1985-01-01

    Viable Leishmania promastigotes and amastigotes were detected by epifluorescence microscopy with fluorescein diacetate being used to mark living parasites and the nucleic acid-binding compound ethidium bromide to stain dead cells. This procedure is superior to other assays because it is faster and detects viable intracellular as well as extracellular Leishmania. Furthermore, destruction of intracellular pathogens by macrophages is more accurately determined with fluorescein diacetate than with other stains. The procedure may have applications in programs to develop drugs and vaccines against protozoa responsible for human and animal disease.

  4. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms

    PubMed Central

    Mansilla Pareja, Maria Eugenia; Colombo, Maria I.

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance. PMID:24137567

  5. Danger signals, inflammasomes, and the intricate intracellular lives of chlamydiae.

    PubMed

    Pettengill, Matthew A; Abdul-Sater, Ali; Coutinho-Silva, Robson; Ojcius, David M

    2016-10-01

    Chlamydiae are obligate intracellular bacterial pathogens, and as such are sensitive to alterations in the cellular physiology of their hosts. Chlamydial infections often cause pathologic consequences due to prolonged localized inflammation. Considerable advances have been made in the last few years regarding our understanding of how two key inflammation-associated signaling pathways influence the biology of Chlamydia infections: inflammation regulating purinergic signaling pathways significantly impact intracellular chlamydial development, and inflammasome activation modulates both chlamydial growth and infection mediated pro-inflammatory cytokine production. We review here elements of both pathways, presenting the latest developments contributing to our understanding of how chlamydial infections are influenced by inflammasomes and purinergic signaling.

  6. Structure of intracellular mature vaccinia virus observed by cryoelectron microscopy.

    PubMed Central

    Dubochet, J; Adrian, M; Richter, K; Garces, J; Wittek, R

    1994-01-01

    Intracellular mature vaccinia virus, also called intracellular naked virus, and its core envelope have been observed in their native, unfixed, unstained, hydrated states by cryoelectron microscopy of vitrified samples. The virion appears as a smooth rounded rectangle of ca. 350 by 270 nm. The core seems homogeneous and is surrounded by a 30-nm-thick surface domain delimited by membranes. We show that surface tubules and most likely also the characteristic dumbbell-shaped core with the lateral bodies which are generally observed in negatively stained or conventionally embedded samples are preparation artifacts. Images PMID:8107253

  7. Quercetin Regulates Sestrin 2-AMPK-mTOR Signaling Pathway and Induces Apoptosis via Increased Intracellular ROS in HCT116 Colon Cancer Cells.

    PubMed

    Kim, Guen Tae; Lee, Se Hee; Kim, Young Min

    2013-09-01

    The suppression of abnormal cell proliferation is therapeutic strategies for the treatment of cancer. In this study, we investigated the regulatory mechanism of quercetin-induced apoptosis through regulation of Sestrin 2 and AMPK signaling pathway. After treatment of quercetin to colon cancer cells, intracellular ROS was detected using by DCFH-DA. To examine how quercetin and H2O2 induced apoptosis, we analyzed the change of Sestrin 2, p53 expression and p-AMPKα1, p-mTOR levels by Western blotting. To evaluate the effect of intracellular ROS generated by quercetin on colon cancer cells, NAC, anti-oxidative agent, was co-treated. Quercetin increased apoptotic cell death though generating intracellular reactive oxygen species (ROS), and it was responsible for Sestrin 2 expression. Increased Sestrin 2 expression was accompanied by AMPK activation. Interestingly, mTOR activity by Sestirn 2 expression was dependent on AMPK phosphorylation. On the other hand, the expression of Sestrin 2 by quercetin-generated intracellular ROS was independent of p53. We suggested that quercetin-induced apoptosis involved Sestrin 2/AMPK/mTOR pathway, which was regulated by increased intracellular ROS by quercetin.

  8. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air–liquid interface

    PubMed Central

    Mihai, Cosmin; Chrisler, William B.; Xie, Yumei; Hu, Dehong; Szymanski, Craig J.; Tolic, Ana; Klein, Jessica A.; Smith, Jordan N.; Tarasevich, Barbara J.; Orr, Galya

    2015-01-01

    Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in-vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn2+) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air–liquid interface (ALI). Using a fluorescent indicator for Zn2+, together with organelle-specific fluorescent proteins, we quantified Zn2+ in single cells and organelles over time. We found that at the ALI, intracellular Zn2+ values peaked 3 h post exposure and decayed to normal values by 12 h, while in submerged cultures, intracellular Zn2+ values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn2+ values that were nearly three-folds lower than the peak values generated by the lowest toxic dose of NPs in submerged cultures, and eight-folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn2+. At the ALI, the majority of intracellular Zn2+ was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn2+ following exposures to ZnSO4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. Together, our observations indicate that low but critical levels of intracellular Zn2+ have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs. PMID:24289294

  9. Intracellular APP Sorting and Aβ Secretion are Regulated by Src-mediated Phosphorylation of Mint2

    PubMed Central

    Chaufty, Jeremy; Sullivan, Sarah E.; Ho, Angela

    2012-01-01

    Mint adaptor proteins bind to the membrane-bound amyloid precursor protein (APP) and affect the production of pathogenic amyloid-beta (Aβ) peptides related to Alzheimer’s disease (AD). Previous studies have shown that loss of each of the three Mint proteins delays the age-dependent production of amyloid plaques in transgenic mouse models of AD. However, the cellular and molecular mechanisms underlying Mints effect on amyloid production are unclear. Because Aβ generation involves the internalization of membrane-bound APP via endosomes and Mints bind directly to the endocytic motif of APP, we proposed that Mints are involved in APP intracellular trafficking, which in turn, affects Aβ generation. Here, we show that APP endocytosis was attenuated in Mint knockout neurons, revealing a role for Mints in APP trafficking. We also show that the endocytic APP sorting processes are regulated by Src-mediated phosphorylation of Mint2 and that internalized APP is differentially sorted between autophagic and recycling trafficking pathways. A Mint2 phospho-mimetic mutant favored endocytosis of APP along the autophagic sorting pathway leading to increased intracellular Aβ accumulation. Conversely, the Mint2 phospho-resistant mutant increased APP localization to the recycling pathway and back to the cell surface thereby enhancing Aβ42 secretion. These results demonstrate that Src-mediated phosphorylation of Mint2 regulates the APP endocytic sorting pathway, providing a mechanism for regulating Aβ secretion. PMID:22787047

  10. Specific cellular delivery and intracellular fate of quantum dot- peptide and quantum dot-polymer nanoassemblies

    NASA Astrophysics Data System (ADS)

    Delehanty, James B.; Bradburne, Christopher E.; Medintz, Igor L.; Farrell, Dorothy; Pons, Thomas; Brunel, Florence M.; Dawson, Philip E.; Mattoussi, Hedi

    2008-02-01

    Luminescent semiconductor quantum dots (QDs) possess several unique optical and spectroscopic properties that are of great interest and promise in biology. These properties suggest that QDs will be integral to the development of the next generation of biosensors capable of detecting molecular processes in both living and fixed cells. We are developing robust and facile delivery schemes for the selective intracellular delivery of QD-based nanoassemblies. These schemes are based upon the self-assembly and subsequent cellular uptake of QD-peptide and QD-polymer bioconjugates. The QD-peptide structures are generated by the self-assembly of the peptide onto CdSe-ZnS core-shell QDs via metal ion coordination between the peptide's polyhistidine motif and the Zn-rich QD shell. The polymer-based QD assemblies are formed via the electrostatic interaction of aqueous cationic liposomes with available carboxylate moieties on the QD surface ligands. Cellular delivery experiments utilizing both delivery schemes will be presented. The advantages and disadvantages of each approach will be discussed, including the intracellular fate and stability of the QD-nanoassemblies.

  11. Intracellular Hypertonicity Is Responsible for Water Flux Associated with Na+/Glucose Cotransport

    PubMed Central

    Charron, François M.; Blanchard, Maxime G.; Lapointe, Jean-Yves

    2006-01-01

    Detection of a significant transmembrane water flux immediately after cotransporter stimulation is the experimental basis for the controversial hypothesis of secondary active water transport involving a proposed stoichiometry for the human Na+/glucose cotransporter (SGLT1) of two Na+, one glucose, and 264 water molecules. Volumetric measurements of Xenopus laevis oocytes coexpressing human SGLT1 and aquaporin can be used to detect osmotic gradients with high sensitivity. Adding 2 mM of the substrate α-methyl-glucose (αMG) created mild extracellular hypertonicity and generated a large cotransport current with minimal cell volume changes. After 20, 40, and 60 s of cotransport, the return to sugar-free, isotonic conditions was accompanied by measurable cell swelling averaging 0.051, 0.061, and 0.077 nl/s, respectively. These water fluxes are consistent with internal hypertonicities of 1.5, 1.7, and 2.2 mOsm for these cotransport periods. In the absence of aquaporin, the measured hypertonicites were 4.6, 5.0, and 5.3 mOsm for the same cotransport periods Cotransport-dependent water fluxes, previously assumed to be water cotransport, could be largely explained by hypertonicities of such amplitudes. Using intracellular Na+ injection and Na+-selective electrode, the intracellular diffusion coefficient for Na+ was estimated at 0.29 ± 0.03 × 10−5 cm2 s−1. Using the effect of intracellular αMG injection on the SGLT1-mediated outward current, the intracellular diffusion coefficient of αMG was estimated at 0.15 ± 0.01 × 10−5 cm2 s−1. Although these intracellular diffusion coefficients are much lower than in free aqueous solution, a diffusion model for a single solute in an oocyte would require a diffusion coefficient three times lower than estimated to explain the local osmolyte accumulation that was experimentally detected. This suggests that either the diffusion coefficients were overestimated, possibly due to the presence of convection, or the diffusion in

  12. Intracellular delivery of peptides and siRNAs using microbubble enhanced focused ultrasound

    NASA Astrophysics Data System (ADS)

    Kinoshita, Manabu; Hynynen, Kullervo

    2006-05-01

    Bioactive substances such as peptides and nucleic acid based agents have attracted great attention for the next generation drug for various diseases. However, the greatest challenge for using these bioactive substances is the development of their delivery system, especially the method for delivering these substances through the cell membrane. With the advancement of ultrasound and ultrasound contrast agent technology, it has become possible to transiently change the permeability of the cell membrane. Moreover, using a focused ultrasound transducer, it is possible to narrow and focus the ultrasound energy within a small target, avoiding damage to the surrounding tissue. In this research we have searched the possibility of delivering the Bak BH3 peptide, the death domain of the Bc1-2 family of proteins, or the short interfering RNA (siRNA) targeting the enhanced green fluorescent protein (EGFP) using microbubble-enhanced focused ultrasound in an in vitro setting. Using a 1.696 MHz focused ultrasound and a microbubble ultrasound contrast agent OPTISON®, we first tested the stability of BH3 peptide under microbubble-enhanced focused ultrasound exposure and proved that the peptide is stable under these circumstances. Next, we have tested the cell-killing effect of the intracellularly delivered Bak BH3 peptide in HeLa and BJAB cell line and observed a statistically enhanced cell death in BJAB cells but not in HeLa cells, leading to the conclusion that intracellularly delivered BH3 peptide by microbubble-enhanced ultrasound can exert its cell killing effect in some cells. We also investigated if we can silence the EGFP expression in the cell by delivering siRNA targeting the EGFP in both transient and stable EGFP expression cell line. Using a 1.653 MHz focused ultrasound and OPTISON®, in both cases, intracellularly delivered siRNA by microbubble-enhanced ultrasound was able to knock down the EGFP expression, which demonstrates the feasibility of using this novel method

  13. Generational diversity.

    PubMed

    Kramer, Linda W

    2010-01-01

    Generational diversity has proven challenges for nurse leaders, and generational values may influence ideas about work and career planning. This article discusses generational gaps, influencing factors and support, and the various generational groups present in today's workplace as well as the consequences of need addressing these issues. The article ends with a discussion of possible solutions.

  14. Generation and Validation of Intracellular Ubiquitin Variant Inhibitors for USP7 and USP10.

    PubMed

    Zhang, Wei; Sartori, Maria A; Makhnevych, Taras; Federowicz, Kelly E; Dong, Xiaohui; Liu, Li; Nim, Satra; Dong, Aiping; Yang, Jingsong; Li, Yanjun; Haddad, Dania; Ernst, Andreas; Heerding, Dirk; Tong, Yufeng; Moffat, Jason; Sidhu, Sachdev S

    2017-06-03

    Post-translational modification of the p53 signaling pathway plays an important role in cell cycle progression and stress-induced apoptosis. Indeed, a large body of work has shown that dysregulation of p53 and its E3 ligase MDM2 by the ubiquitin-proteasome system (UPS) promotes carcinogenesis and malignant transformation. Thus, drug discovery efforts have focused on the restoration of wild-type p53 activity or inactivation of oncogenic mutant p53 by targeted inhibition of UPS components, particularly key deubiquitinases (DUBs) of the ubiquitin-specific protease (USP) class. However, development of selective small-molecule USP inhibitors has been challenging, partly due to the highly conserved structural features of the catalytic sites across the class. To tackle this problem, we devised a protein engineering strategy for rational design of inhibitors for DUBs and other UPS proteins. We employed a phage-displayed ubiquitin variant (UbV) library to develop inhibitors targeting the DUBs USP7 and USP10, which are involved in regulating levels of p53 and MDM2. We were able to identify UbVs that bound USP7 or USP10 with high affinity and inhibited deubiquitination activity. We solved the crystal structure of UbV.7.2 and rationalized the molecular basis for enhanced affinity and specificity for USP7. Finally, cell death was increased significantly by UbV.7.2 expression in a colon cancer cell line that was treated with the chemotherapy drug cisplatin, demonstrating the therapeutic potential of inhibiting USP7 by this approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Intracellular proliferation of S. aureus in osteoblasts and effects of rifampicin and gentamicin on S. aureus intracellular proliferation and survival.

    PubMed

    Mohamed, W; Sommer, U; Sethi, S; Domann, E; Thormann, U; Schütz, I; Lips, K S; Chakraborty, T; Schnettler, R; Alt, V

    2014-10-23

    Staphylococcus aureus is the most clinically relevant pathogen regarding implant-associated bone infection and its capability to invade osteoblasts is well known. The aim of this study was to investigate firstly whether S. aureus is not only able to invade but also to proliferate within osteoblasts, secondly to delineate the mechanism of invasion and thirdly to clarify whether rifampicin or gentamicin can inhibit intracellular proliferation and survival of S. aureus. The SAOS-2 osteoblast-like cell line and human primary osteoblasts were infected with S. aureus EDCC5055 and S. aureus Rosenbach 1884. Both S. aureus strains were able to invade efficiently and to proliferate within human osteoblasts. Immunofluorescence microscopy showed intracellular invasion of S. aureus and transmission electron microscopy images could demonstrate bacterial division as a sign of intracellular proliferation as well as cytosolic bacterial persistence. Cytochalasin D, the major actin depolymerisation agent, was able to significantly reduce S. aureus invasion, suggesting that invasion was enabled by promoting actin rearrangement at the cell surface. 7.5 μg/mL of rifampicin was able to inhibit bacterial survival in SAOS-2 cells with almost complete elimination of bacteria after 4 h. Gentamicin could also kill intracellular S. aureus in a dose-dependent manner, an effect that was significantly lower than that observed using rifampicin. In conclusion, S. aureus is not only able to invade but also to proliferate in osteoblasts. Invasion seems to be associated with actin rearrangement at the cell surface. Rifampicin is effective in intracellular eradication of S. aureus whereas gentamicin only poorly eliminates intracellularly replicating bacteria.

  16. Imaging atrial arrhythmic intracellular calcium in intact heart

    PubMed Central

    Xie, Wenjun; Santulli, Gaetano; Guo, Xiaoxiao; Gao, Melanie; Chen, Bi-Xing; Marks, Andrew R.

    2014-01-01

    Abnormalities in intracellular Ca2+ signaling have been proposed to play an essential role in the pathophysiology of atrial arrhythmias. However, a direct observation of intracellular Ca2+ in atrial myocytes during atrial arrhythmias is lacking. Here, we have developed an ex vivo model of simultaneous Ca2+ imaging and electrocardiographic recording in cardiac atria. Using this system we were able to record atrial arrhythmic intracellular Ca2+ activities. Our results indicate that atrial arrhythmias can be tightly linked to intracellular Ca2+ waves and Ca2+ alternans. Moreover, we applied this strategy to analyze Ca2+ signals in the hearts of WT and knock-in mice harboring a ‘leaky’ type 2 ryanodine receptor (RyR2-R2474S). We